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Cardiovascular disease (CVD) is the first cause of death in the
Western world and its prevalence is increasing in Eastern Europe and devel-
oping countries. The main cause of CVD is atherosclerosis.1-3Atherosclerosis
is a chronic inflammatory disease of the vessel wall that occurs in the large
and medium-sized arteries of the body. Although risk factors for atheroscle-
rosis include hyperlipidemia, dietary habits, hypertension, cigarette smoking,
and physical inactivity, genetic factors also contribute to the development of
atherosclerosis.1-3 The function of lipoproteins, apolipoproteins, enzymes, and
lipid transfer factors that play a role in lipoprotein metabolism, inflammation,
and atherosclerosis will be outlined in more detail in this introduction.    



1. Lipoproteins and lipid metabolism

Cholesterol and triglycerides (TG) are the most important lipids in the circu-
lation. Cholesterol is a constituent of cellular membranes and is essential for
the synthesis of steroid hormones and bile acids, whereas TG is a precursor
of free fatty acids (FFA) that are used as an energy source in skeletal muscle
or heart, or stored as TG in adipose tissue. For distribution of these lipids
through the body, they are packaged in water-soluble lipoproteins, which con-
sist of a lipid core rich in cholesteryl esters (CE) and TG, surrounded by a
phospholipid (PL)-rich shell that is stabilized by unesterified cholesterol and
one or more apolipoproteins.4 Apolipoproteins are involved in the generation
of lipoproteins, and modulate the activity of plasma enzymes and transfer fac-
tors involved in lipoprotein metabolism. Based on their density, lipoproteins
are divided into five classes: chylomicrons, very-low-density-lipoproteins
(VLDL), intermediate-density-lipoproteins (IDL), low-density-lipoproteins
(LDL), and high-density-lipoproteins (HDL) that exhibit different lipid con-
tents and apolipoprotein composition. The characteristics of the various
lipoproteins are listed in Table 1.4-6 Lipoproteins mediate lipid transport,
which can be divided into three different pathways: the exogenous pathway,
the endogenous pathway, and reverse cholesterol transport.

Chylomicron VLDL IDL LDL HDL
Source Intestine Liver VLDL VLDL Liver+intestine
Diameter (nm) 75-1200- 30-80 25-35 18-25 5-12
Density (g/mL) <0.95 0.95 -1.006 1.006 -1.019 1.019 -1.063 1.063 -1.210
Mobility* Origin Pre-ß- slow pre -ß ß a
Composition**
Triglycerides 88 55 23 6 4
Phospholipids 7 18 20 22 30
Cholesteryl esters 3 13 31 41 14
Free cholesterol 1 6 7 9 5
Protein 1-2 8 19 22 47
Apolipoproteins AIV AV - - AI,AII,AIV,AV

B48 B100 B100 B100 -
CI,CII,CIII,CIV CI,CII,CIII,CIV CI,CII,CIII,CIV - CI,CII,CIII,CIV
E E E - E

Table 1. Physical properties and composition of human plasma lipoproteins.

* According to the electrophoretic mobility of plasma α- and β-globulins on agarose gel 
electrophoresis.
**Expressed as percentage of total weight. Modified from Wasan and Cassidy.4

α
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1.1. Exogenous pathway

The exogenous pathway involves the uptake of lipids by the intestine and
their transport to the liver in chylomicrons. Cholesterol and TG are the most
common dietary lipids. In the intestinal lumen, TG is hydrolyzed by pancre-
atic lipase into monoacylglycerol and FFA, upon which they are absorbed by
enterocytes in the intestinal wall, and re-esterified into TG. After microsomal
TG transfer protein (MTP)-mediated lipidation of apolipoprotein (apo)B48,
the resulting particles, termed chylomicrons, are secreted into the lymph.8;9
These nascent chylomicrons consist mainly of TG (88%), the remainder being
phospholipids (PL), cholesterol, cholesteryl esters (CE), apoB48, apoAI,
apoAII, and apoAIV. After secretion into the lymph, chylomicrons enter the
circulation, where apoAI, apoAII, and apoAIV are exchanged with HDL, and
apoCI, apoCII, apoCIII, apoCIV and apoE are acquired from circulating
lipoproteins. Concomitantly, TG from chylomicrons undergo lipolysis cat-
alyzed by lipoprotein lipase (LPL),10 that is associated with heparan sulfate
proteoglycans (HSPG) on the luminal site of vessels.11 LPL hydrolyzes TG,
thereby delivering liberated FFA to adipose tissue for storage, to skeletal mus-
cle and heart as an energy source, and to the liver for storage or generation of
lipoprotein particles.12 In addition, TG from chylomicrons are exchanged for
CE from HDL via the activity of cholesteryl ester transfer protein (CETP).13
CETP is a transfer factor, that is expressed in humans, yet not in mice.14As a
result, chylomicron remnants that are reduced in size and relatively enriched
in CE in their core are formed. During lipolysis, excess surface PL are trans-
ported to HDL via the activity of PL transfer protein (PLTP).15 Then, these
remnants possibly associate first with the scavenger receptor BI (SR-BI) or
HSPG on the liver,16 or are directly taken up via apoE-recognition receptors,
such as the LDL receptor (LDLr) and the LDLr related protein (LRP).17;18 In
addition, HSPG on the liver can internalize chylomicron remnants.19

1.2. Endogenous pathway

The endogenous pathway involves lipid transport from the liver to peripheral
tissues. The liver produces VLDL particles that consist of cholesterol and TG
derived from chylomicron remnants or de novo synthesis.20 MTP mediates
lipidation of apoB100 (and in mice also apoB48) with TG and cholesterol,21;22
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resulting in the generation of nascent VLDL particles that contain also small
amounts of apoCI, apoCII, apoCIII, apoCIV, apoE,23 and apoAV.24 VLDL is
then secreted into the circulation. Similar to chylomicrons, VLDL is enriched
with apoCI, apoCII, apoCIII, apoCIV, and apoE in the circulation, and TG
from VLDL are exchanged for CE from HDL via the activity of CETP.13 Like
chylomicrons, VLDL can undergo lipolysis catalyzed by LPL,10 resulting in
the formation of FFA for storage in adipose tissue or use as an energy source
for skeletal muscle or heart.12 During the lipolysis of VLDL, PL are transport-
ed to HDL via the activity of PLTP,15 whereas TG are also exchanged with CE
via the activity of CETP.13 These processes result in the formation of IDL,
which is partly cleared by the liver via apoE-recognizing receptors LDLr and
LRP,17;18;25 and probably also HSPG.19;26 The remainder is processed more
extensively by LPL and hepatic lipase (HL), and becomes depleted of many
apolipoproteins, resulting in relatively CE-rich LDL with apoB100 as its sole
apolipoprotein. LDL can be recognized and taken up by the LDLr on the liver
and peripheral tissues, using apoB100 as its ligand.25 In the liver, LDL under-
goes lysosomal hydrolysis and cholesterol can be re-esterified into CE via
acyl CoA:acyl transferase 2 (ACAT2),27 or converted into bile acids or vita-
min D.28;29 The peripheral tissues that can take up LDL include adrenals,
testes, and ovaries where LDL-derived cholesterol serves as precursor for
steroid hormones.30
In addition, LDL can be modified in the circulation by for example oxygen
radicals, resulting in the formation of minimally modified LDL (mmLDL)
and oxidized LDL (oxLDL) that both can induce endothelial activation and
monocyte to macrophage differentiation in the vessel wall. Subsequently,
mmLDL/oxLDL can be taken up by the scavenger receptor A (SRA) or CD36
in macrophages. 

1.3. Reverse cholesterol pathway 

To maintain cholesterol homeostasis, excess cholesterol in extrahepatic tis-
sues is returned to the liver via HDL, to be eventually excreted via the bile
into the faeces, which is known as the classical reverse cholesterol pathway.31
In addition, recent findings suggest that cholesterol is secreted from the cir-
culation directly into the intestine and that the liver is not involved in this
process.32 The first step of HDL formation is represented by the synthesis of
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apoAI by the liver and intestine, and secretion of apoAI into the circulation.
Then, ATP binding cassette (ABC)A1 transporter in the liver and the intestine
mediate cholesterol and PL efflux to apoAI, and small discoidal HDL3 parti-
cles are formed.33;34 These particles also contain apoE, apoCs, apoAII,
apoAIV, apoAV,24 and are further lipidated via ABCA1-mediated cholesterol
and PL efflux and ABCA7-mediated PL efflux from macrophages, resulting
in mature HDL2 and HDL1 particles.33;35 HDL2 and HDL1 are good acceptors
for subsequent cholesterol efflux from macrophages, as mediated by ABCG1
and SR-BI.36 The enlargement of the HDL particles is facilitated by PLTP-
mediated transfer of PL from chylomicrons, VLDL, and IDL. PLTP is also
involved in the transfer of PL between the different subforms of HDL.15
During the maturation of HDL3 into HDL1, the acquired cholesterol is esteri-
fied into CE in the core of HDL, mediated by lecithin:cholesterol acyl trans-
ferase (LCAT). Therefore, the core of HDL1 mainly consists of CE.36
Subsequently, CE from HDL is delivered to the liver. Several receptors and
transfer proteins are involved in this process. In mice, that do not express
CETP,14 the majority of HDL-CE is selectively taken up via the SR-BI.37 In
addition, CE from apoE-rich HDL1 can be recognized and taken up by the
liver via the LDLr.38;39 In humans, HDL-CE can be exchanged for TG from
apoB-containing lipoproteins, mediated by CETP.40As a result, in humans the
majority of HDL-CE is taken up by the liver via apoB-containing lipopro-
teins.41 In addition, it has been postulated recently that hepatocyte-associated
CETP itself can take up HDL-CE, independent of the SR-BI and the
LDLr.42;43
Both in mice and humans, the lipolysis of TG in HDL is efficiently catalyzed
by hepatic lipase (HL),44 while endothelial lipase (EL) catalyzes the lipolysis
of PL from HDL.45 CE that have returned to the liver are hydrolyzed and used
for VLDL or HDL formation. Alternatively, cholesterol is secreted into the
bile either as neutral sterols or bile salts, which requires the cholesterol trans-
porters ABCG5 and ABCG8, that form an obligatory heterodimer.46 The
exogenous, endogenous, and reverse cholesterol pathways in lipoprotein
metabolism are summarized schematically in Figure 1.



Figure 1. Schematically overview of pathways involved in lipoprotein metabolism. 
Explanation of pathways is described in text. Enzymes and transfer factors are boxed. LDLr,
low-density-lipoprotein receptor. LRP, LDLr-related-protein. SR-BI or SRA, Scavenger recep-
tor BI or A. FFA, free fatty acids. EL/HL/LPL, endothelial, hepatic, or lipoprotein lipase. TG,
triglycerides. CE, cholesteryl esters. AI/B/E, apolipoprotein AI/B/E. VL/I/HDL, very-low-/
intermediate-/high-density-lipoprotein. ABCA1/G1/G5/G8, ATP binding cassette transporter
A1/G1/G5/G8. LCAT, lecithin:cholesterol acyl transferase. CETP/PLTP, cholesteryl ester or
phospholipid transfer protein. 

2. Atherosclerosis

Hyperlipidemia is an important risk factor for atherosclerosis. Atherosclerosis
is driven by both increased VLDL/LDL-cholesterol levels and increased TG,
often accompanied by low HDL-cholesterol levels.1 Other risk factors for
atherosclerosis involve inflammation and hypertension.1 Atherosclerosis is a
disease of the vessel wall and occurs principally in large and medium-sized
elastic and muscular arteries.3 This section describes how atherosclerotic
lesions develop, from the healthy vessel wall to eventual plaque rupture and
the formation of a thrombus that causes acute clinical events, such as myocar-
dial infarction and stroke, by occluding the vessel lumen leading to ischemia
of underlying tissue. In addition, this section describes treatment of athero-
sclerosis, and mouse models used to study atherosclerosis development.
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2.1. Pathogenesis of atherosclerosis

The intact vessel wall consists of three layers: the intima, media, and adven-
titia. The intima is formed by a layer of endothelial cells at the luminal side
of the vessel, and is separated from the media by an elastic membrane, the
internal elastic lamina. The media is a layer of smooth muscle cells (SMC)
that are embedded in an interstitial matrix, containing elastin and collagen,
and separated from the adventitia by the external elastic lamina, composed of
collagen, elastin fibres, and fibroblasts.1;3 In addition, a fourth layer has been
described consisting of proteoglycans, glycoproteins, and absorbed plasma
proteins, termed the glycocalyx, that is present on the luminal side of the ves-
sel, on the intima.47
The initial step in the development of atherosclerosis is injury of the endothe-
lial cell layer. Most likely, this occurs at specific sites of arteries, such as
branches, bifurcations, and curvatures, where alterations of blood flow
decrease shear stress, making these sites more prone to endothelial cell
damage.3 Inflammatory molecules, that come into the circulation as a result of
a bacterial infection, mmLDL or oxLDL induce endothelial activation, re-
sulting in an inflammatory response, the start of the development of an
atherosclerotic lesion.3 The endothelial cells start to express selectins (P- and
E-selectin), and intracellular and vascular adhesion molecules (ICAM-1 and
VCAM-1), resulting in adhesion of monocytes and T-cells to the endothelial
wall, and increased permeability of the endothelial cell layer.3 The glycocalyx
is likely to serve as a barrier for monocyte adhesion,47;48 thus might be athero-
protective, however its role in atherosclerosis is still subject of ongoing
research. The monocytes start rolling on the endothelium, and migration of
monocytes and T-cells into the arterial wall is stimulated, in part by oxLDL
that induces the expression of chemotactic molecules by endothelial cells,
such as monocyte chemoattractant protein 1 (MCP-1).49 Also the receptor for
MCP-1, chemokine receptor 2 (CCR2), is upregulated on monocytes upon
hypercholesterolemia,50 leading to entry of monocytes in the subendothelial
space, where they start to multiply and differentiate into macrophages.
Monocyte to macrophage differentiation depends on factors such as (granulo-
cyte-) macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-1),
tumour necrosis factor α (TNFα), and interferon γ (IFNγ), secreted by SMCs,
endothelial cells, and other leukocytes. 
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These processes are associated with upregulation of scavenger receptors and
Toll-like receptors on macrophages.2
Macrophages subsequently take up modified forms of LDL, mediated by the
scavenger receptors SRA and CD36,3 followed by degradation in the lyso-
some. The liberated cholesterol is then esterified with fatty acids into choles-
teryl esters, catalyzed by the enzyme ACAT1.51 By excessive storage of cho-
lesterol as CE, these macrophages develop into foam cells, which, together
with some T-cells, form an initial lesion called the fatty streak.2 The
macrophage can release its cholesterol through efflux, which involves sever-
al pathways. Free cholesterol can be fluxed out of the cell, concomitant with
apolipoproteins, as described for apoE.52 Active cholesterol and PL efflux
occurs via ABCA1 and PL efflux also via ABCA7, mainly to small, HDL3
particles, thereby causing maturation of HDL into HDL2 and HDL1.35;53
ABCG1 and SR-BI constitute the pathways that mediate cholesterol efflux to
HDL2 and HDL1,53;54 as described in section 1.3. 
The Toll-like receptors present on foam cells are activated upon binding of
molecules with pathogen-like molecular patterns, such as heat shock protein
60 and oxLDL.2 

Figure 2. Pathogenesis of atherosclerosis. 
For explanation see text. The development of an atherosclerotic lesion is schematically present-
ed, from the monocyte adhesion to the thinning of the fibrous cap. mLDL, modified low-den-
sity-lipoprotein. MCP-1, monocyte chemoattractant protein-1. SR, Scavenger receptor. TLR,
Toll-like receptor. IFNγ, interferon γ. MMP, matrix metalloproteinase. Figure kindly provided
by Menno de Winther, and minimally modified. 
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In addition, Toll like receptors are activated by exogenous ligands that come
into the circulation as a result of an infection with Gram-negative bacteria.
Upon multiplication or lysis, these bacteria secrete lipopolysaccharide (LPS)
that activates the Toll like receptor 4 (TLR4). Subsequently, signal cascades
are initiated, involving the nuclear factor κB (NFκB) and the MAP kinase
pathway,55 leading to the secretion of cytokines.2 Among these cytokines are
IL-1 and TNFα that, next to increasing monocyte-to-macrophage differentia-
tion continuously, induce the migration of SMCs from the media into the inti-
ma and the subsequent pro- liferation of SMCs.2 SMCs can also take up
lipids, thereby contributing to foam cell formation. In addition, SMCs start to
synthesize and secrete connective tissue matrix, and also collagen, thereby
forming a protective layer over the fatty streak, the fibrous cap.2 Activated T-
cells that differentiate into type 1 helper T (Th1) effector cells secrete IFNγ,
that augments the synthesis of IL-1 and TNFα leading to SMC proliferation.2
As the accumulated foam cells within the lesions continue to take up modi-
fied LDL, a lipid core is formed. Once cholesterol cannot be efficiently stored
anymore, it becomes cytotoxic, and the cells go either in necrosis or apopto-
sis, resulting in formation of a necrotic core with extracellular lipid accumu-
lation in the form of cholesterol crystals. As long as the fibrous cap is stable,
the atherosclerotic plaque cannot release its content into the circulation.
However, collagen production by SMCs can be inhibited by for example
IFNγ secreted by Th1 cells.56When the fibrous cap is poor in SMCs and col-
lagen, it becomes thin and much more prone to rupture. In addition, these
advanced plaques contain a large necrotic lipid pool and an abundancy of
macrophages,57;58 that secrete matrix metalloproteinases (MMPs), such as col-
lagenases and elastases that can degrade the extracellular matrix synthesized
by SMCs in the fibrous cap. After rupture of the fibrous cap, the underlying
necrotic core is exposed to the blood flow. Massive tissue factor expression
by cells in the necrotic core results in activation of the coagulation cascade
and accumulation of platelets at the site of rupture. This leads to the forma-
tion of a thrombus that may occlude the vessel entirely, resulting in an abro-
gated oxygen supply to underlying vital tissue. In fact, thrombus formation is
the major cause of acute clinical events, such as myocardial infarction and
stroke.2 The processes involved in the development of atherosclerosis are
summarized in Figure 2.



20

Chapter 1

2.2. Treatment of atherogenic dyslipidemia

Treatment of atherogenic dyslipidemia nowadays is mainly focused on
decreasing pro-atherogenic VLDL/LDL-levels, as increased VLDL/LDL-
cholesterol and TG are important risk factors for atherosclerosis and may be
an initial sign of susceptibility to atherosclerosis.
Statins are most widely used to treat atherosclerosis. Statins inhibit the
enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase that
catalyzes the rate-limiting step in cholesterol biosynthesis in the liver, leading
to reduction of VLDL production. The liver compensates for reduced choles-
terol biosynthesis by increasing LDLr expression, and subsequently LDL lev-
els in the circulation decrease.25 In addition, statins have been shown to
increase HDL levels to some extent,59 and exert anti-inflammatory properties,
which may add to their anti-atherosclerotic action.60;61 Meta-analysis of
70.000 subjects in 25 studies showed that statins reduce LDL-cholesterol lev-
els up to 40%, thereby decreasing CVD mortality by 23%,62 whereas no
results on HDL-cholesterol were reported. 
Next to statins, fibrates decrease VLDL and LDL-cholesterol; however their
mode of action is mainly aimed at decreasing hypertriglyceridemia. Fibrates
activate peroxisome proliferator-activated receptor α (PPARα), causing stim-
ulation of LPL-mediated TG catabolism via increased hepatic LPL mRNA
expression and decreased hepatic apoCIII expression.63-65 In addition, fibrates
reduce VLDL production.66 Both processes lead to reduction of pro-athero-
genic hypertriglyceridemia. Furthermore, fibrates increase HDL cholesterol
levels through transcriptional induction of apoAI by PPARα,66;67 and exert
anti-inflammatory effects.61 A meta-analysis of 16.802 subjects in 53 trials
showed that fibrates decrease TG by 36%, decrease LDL-cholesterol by 8%,
and increase HDL-cholesterol by 10%, thereby decreasing CVD mortality by
25%.67 Despite the marked reductions in VLDL and LDL levels by statins,
and TG reduction and HDL increase by fibrates, these drugs still do not pre-
vent all the cases of CVD. As a low HDL level is the primary lipid abnormal-
ity in ~50% of men with coronary heart disease,68 and prospective epidemio-
logical studies have shown a strong inverse correlation between HDL choles-
terol levels and CVD,69 recent interests to treat CVD are aimed at increasing
HDL levels. As described in the sections 1.3 and 2.1, HDL induces cholesterol
efflux from macrophages.
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In addition, HDL neutralizes inflammatory molecules and may decrease the
oxidation level of LDL. Inhibition of CETP constitutes a novel approach in
order to increase anti-atherogenic HDL with concomitant decrease of pro-
atherogenic VLDL/LDL levels.70 Two experimental CETP inhibitors, JTT-
705 and Torcetrapib, have been shown to increase HDL-cholesterol in
humans.71-74 Torcetrapib (120 mg, daily) increased HDL-cholesterol by 60%
in individuals with low HDL-cholesterol,72 and decreased atherosclerosis
development in rabbits. In phase I and II clinical trials, its only side effect
seemed to be the induction of high blood pressure. Unexpectedly, recent
phase III trials had to be terminated prematurely, since the combination of
Torcetrapib and atorvastatin was found to induce more deaths in people with
CVD than atorvastatin alone.75 The question whether this effect was com-
pound-specific or related to CETP inhibition in general is under current inves-
tigation, as well as the effects of other CETP inhibitors on atherosclerosis.

2.3. Mouse models for atherosclerosis

Wild-type mice are not suitable for atherosclerosis research because they
express, in contrast to humans, low total cholesterol levels (~2 mM versus ~5
mM) with high levels of anti-atherogenic HDL and low levels of pro-athero-
genic VLDL. Therefore, to study the effects of genes involved in athero-
genesis and the effects of experimental anti-atherogenic drugs on atheroscle-
rosis, several mouse models have been developed. Nowadays, the hyperlipi-
demic apoe-/-, ldlr-/-, and APOE*3-Leiden mice are the most common used to
study atherosclerosis. 
The apoe-/- mouse is prone to spontaneous atherosclerosis development on
chow diet because of the largely abolished remnant uptake by the liver, via the
HSPG, LRP, and LDLr,76-78 and because of the largely reduced cholesterol
efflux from macrophages, as apoE is a potent cholesterol acceptor.79;80 The
ldlr-/- mouse is less prone to atherosclerosis development as it is only devoid
of clearance of apoB-containing particles via the LDLr, resulting in less ele-
vated VLDL/LDL-cholesterol levels on a chow diet (~6 mM) as compared to
apoe-/-mice (~10 mM). However, the ldlr-/-mouse develops atherosclerosis on
a cholesterol-rich diet.81;82 
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Also the APOE*3-Leiden mouse has been generated to study atherosclerosis.
These mice express a human mutant of the APOE3 gene, as first discovered
in hyperlipidemic patients,83;84 resulting in the attenuated hepatic clearance of
APOE*3-Leiden containing lipoproteins via the LDLr.85 Female APOE*3-
Leiden mice exhibit a human-like cholesterol distribution over their lipopro-
teins on a cholesterol-rich diet, and are susceptible to atherosclerosis de-
velopment on this diet.85 Their VLDL-cholesterol levels are highly responsive
to the cholesterol levels in their diet,85;86 and, in contrast to apoe-/- and ldlr-/-
mice, they show a human-like response to statins and fibrates, with respect to
lowering of apoB-containing lipoproteins.87;88 
It should be realized that atherosclerosis development in these mouse models
is not completely identical to atherosclerosis development in humans. Most
models, except for the ldlr-/- mouse, do not express human-like LDL. In addi-
tion, unlike humans, none of these models express CETP, and clinical events
as induced by plaque rupture do not seem to occur spontaneously in mice.
However, mice are still well-suited to study the mechanisms underlying the
pathogenesis of the onset and progression of atherosclerosis. The APOE*3-
Leiden mouse may be the preferred mouse model, since the clearance of
apoB-containing lipoproteins is attenuated yet not abrogated as in apoe-/- and
ldlr-/- mice, which is very similar to the clearance of these lipoproteins in
humans. The choice for the optimal mouse model should thus be based on the
expected mechanism of action of the gene and drug of interest on atheroscle-
rosis development.
In all of these mouse models, the development of atherosclerosis is not only
related to induced levels of apoB-containing lipoproteins and HDL, yet also
to chronic inflammation, which is a risk factor per se for atherosclerosis
development.2 As outlined in section 2.1., Gram negative bacteria, such as
Chlamydia pneumoniae, secrete lipopolysaccharide (LPS) upon multiplica-
tion or lysis. Inoculation with C. pneumoniae accelerates the development of
atherosclerosis in APOE*3-Leiden transgenic, apoe-/-, and ldlr-/- mice.89-91 In
addition, chronic treatment with LPS accelerates atherosclerosis in apoe-/-
mice.92 Studies with LPS, administrated in a peri-adventitial cuff, showed that
the effects of LPS on atherosclerosis are largely dependent on the TLR4, as
the intimal lesion formation was dramatically decreased in the absence of
TLR4.93 It would be interesting to unravel other genetic factors that affect this
process.
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3. Roles of LPL, CETP, and apolipoprotein CI in lipoprotein metabolism
and atherosclerosis

As outlined above, lipoprotein receptors, plasma enzymes, transfer factors,
and apolipoproteins are involved in the production, processing, and clearance
of lipoproteins and the development of atherosclerosis. This section will give
more insights in the role of the enzyme LPL, the transfer factor CETP, and
apoCI in lipoprotein metabolism and atherosclerosis development.

3.1. Lipoprotein lipase

As mentioned in section 1.1 and 1.2, LPL hydrolyzes VLDL and chylomi-
crons in order for TG-derived FFA to be taken up into tissues.10;12 LPL is
expressed in almost all tissues, yet most abundantly in adipose tissue, skele-
tal muscle, and heart.94-96 The regulation of LPL is tissue-specific and depend-
ent on the nutritional status, reflecting FA requirements of the respective tis-
sues at a specific time point, and LPL thus functions as a gatekeeper for FA
entry into tissues.12;97-99 Postprandial LPL activity is high in adipose tissue,
whereas in the fasted state, LPL activity is high in muscle.12;97;100 LPL secre-
tion from cells to the capillary surface is mediated by the VLDL receptor
(VLDLr) that functions as an intracellular chaperone protein.101 Upon secre-
tion, LPL binds to HSPG at the luminal side of the capillary blood vessels.97
Catalytically active LPL consists mainly of a homodimer of two non-cova-
lently linked glycoproteins of equal size.102;103 This LPL dimer is in equilibri-
um with the LPL monomer that can undergo a conformational change there-
by losing its catalytic activity, and has lower affinity for HSPG as compared
to dimeric LPL. Monomeric LPL can travel with lipoproteins and enhance
their binding to the LDLr,104;105 LRP,106-108 VLDLr,101;109 and HSPGs,110;111
thereby exerting a bridging function in the clearance of those lipoproteins. 
The catalytically active dimer of LPL, requires, in order to catalyze lipolysis
of chylomicrons or VLDL, its co-factor apoCII.112;113After lipolysis, the gen-
erated FFA are taken up by the underlying tissues either by passive diffusion
or by active transport,114;115 via fatty acid transporters including CD36,116;117
FA transporter protein (FATP),118 and plasma membrane FA-binding protein
(FABPpm).119;120
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Next to apoCII, other apolipoproteins have been shown to affect LPL activi-
ty. ApoAV has been shown to activate LPL in vitro and in mice in vivo,121
however, it is not clear as yet whether apoAV also activates LPL in humans
and as such contributes to lowering of TG. In addition to LPL activators,
inhibitors of LPL have also been described. ApoCIII seems to be the most
prominent LPL-inhibitor, and apoCIII levels are consistently associated with
plasma TG levels in humans.122;122;123 In addition, apoE has been reported to
inhibit LPL.124;125 Recent observations from our laboratory have identified
apoCI as an LPL inhibitor.123 Overexpression of human apoCI in mice results
in hypertriglyceridemia as a result of LPL inhibition.123 However, it is still
unclear whether physiological expression levels of endogenous apoCI can
also affect LPL activity. 
Decreased LPL expression has been associated with increased VLDL-TG lev-
els and decreased obesity in mice. Mice deficient for LPL have extremely ele-
vated VLDL-TG and show reduced subcutaneous fat stores in their short
lifespan of 18 h,126 and adipose tissue-specific lpl-/-mice show reduced obesi-
ty on the ob/ob background.127 In addition, reduced LPL expression as a con-
sequence of deficiency of the VLDLr, the intracellular chaperone protein for
LPL, resulted in decreased diet-induced obesity.128 As the lipolysis of TG is
hampered in the absence of the VLDLr,129 and less FFA were taken up by adi-
pose tissue, reduced LPL activity probably plays a role in the reduction in
obesity in vldlr-/-mice. Also mice transgenic for the LPL inhibitor apoCI were
protected against diet-induced obesity.130 Inversely, deficiency for the LPL
inhibitor apoCIII resulted in increased diet-induced obesity.131
With respect to atherosclerosis, LPL activity in plasma and LPL in the vessel
wall differently affect this disease in mice.132 Whereas systemic LPL overex-
pression has been associated with decreased atherosclerosis on the apoe-/- and
ldlr-/- background,133;134 LPL overexpression in macrophages of the vessel
wall resulted in increased atherosclerosis in apoe-/- and ldlr-/-mice.135-137 The
anti-atherogenic effect of plasma LPL is probably related to decreased hyper-
lipidemia by enhanced VLDL-TG lipolysis, while the pro-atherogenic effect
of LPL in the vessel wall may result from enhanced local lipoprotein uptake
due to its bridging function.
In humans, the mutations in LPL D9N and N291S, that occur in up to 5% of
the general population, are associated with decreased lipolytic activity of
LPL, elevated TG, decreased HDL and a higher incidence of cardiovascular
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disease (CVD).138-145 In contrast, the gain of function mutation S447X leads
to decreased TG, increased HDL, and meta-analyses of association studies
between the mutation and CVD indicate an overall lower incidence of
CVD.146-149 Nevertheless, there are also indications for increased CVD, and
the mechanisms as how this polymorphism sorts its effects are still under
investigation.147

3.2. Cholesteryl ester transfer protein

The glycoprotein CETP mediates the exchange of CE and TG between apoB-
containing lipoproteins and HDL.13 Not all mammalian species express
CETP.14;150 For example, rats and mice do not express CETP, whereas
humans, monkeys, rabbits, and hamsters do.14;150 In humans, CETP mRNA is
expressed predominantly in adipose tissue, liver, and spleen, with lower
expression levels in the small intestine, adrenal gland, kidney, skeletal mus-
cle, and heart.150;151 To evaluate the contribution of CETP to plasma lipid
metabolism and atherosclerosis development, the CETP gene has been intro-
duced in mice. These CETP transgenic mice express CETP predominantly in
the liver yet also in adipose tissue and spleen.152-154 CETP expression is main-
ly regulated by the liver X receptor (LXR).155 As a consequence, CETP
expression is highly upregulated in mice fed a hypercholesterolemic
diet,153;156 because the levels of oxysterols, the endogenous ligands for
LXR,157 increase in the liver. The introduction of CETP in mice shifts the cho-
lesterol distribution from HDL to VLDL.152 Feeding LXR agonists to the
CETP-expressing species hamsters and Cynomolgus monkeys induced a
similar shift,158 and increased the shift in CETP-expressing mice.159 CETP
thus determines the ratio of VLDL/LDL cholesterol to HDL cholesterol to a
great extent.13
As a result of mediating the exchange between CE from HDL and TG from
VLDL/LDL, plasma CETP might be anti-atherogenic by facilitating the trans-
port of HDL-cholesterol via apoB-containing lipoproteins to the liver, where
they are taken up by the SR-BI, LDLr, and LRP. Recent results indicate that
hepatocyte-associated CETP itself can also take up CE from HDL, independ-
ently of the SR-BI and the LDLr/LRP.42;43 On the other hand, CETP expres-
sion might be pro-atherogenic, because of increased levels of pro-atherogenic
VLDL/LDL concomitant with decreased HDL levels.
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The role of CETP in lipoprotein metabolism and atherosclerosis has been
studied in several mouse models. In the traditional mouse models for study-
ing atherosclerosis development, i.e. in apoe-/- and ldlr-/-mice, CETP expres-
sion appeared to be pro-atherogenic.160 Other atherosclerosis studies, in
APOC3 transgenic and LCAT transgenic mice, revealed that CETP expression
is anti-atherogenic.161;162 APOC3 mice accumulate particularly TG-rich
VLDL as a result of LPL inhibition, enabling a massive flux of TG from
apoB-containing lipoproteins to HDL,163 which may result in an accelerated
clearance of TG-rich HDL particles via HL. As a consequence, smaller, cho-
lesterol-poor HDL particles are formed,163 that may have higher anti-athero-
genic potential by more efficiently inducing cholesterol efflux. LCAT trans-
genic mice accumulate apoE-rich HDL1, that is not efficiently cleared by the
liver and are, therefore, more susceptible to atherosclerosis.161 CETP expres-
sion in LCAT mice provides an extra pathway of delivering HDL-cholesterol
to the liver, resulting in normalization of the HDL particle size161 and pre-
sumably increasing its cholesterol-accepting potency. However, it was shown
recently that HDL from CETP deficient humans, which shares similarities
with HDL from LCAT transgenic mice, is a potent cholesterol acceptor.164
Taken together, studies in mice show conflicting results regarding the role of
CETP in atherosclerosis development. On the other hand, CETP inhibition in
rabbits that naturally express CETP has been consistently associated with
decreased atherosclerosis.165-167
The role of CETP in atherosclerosis in humans is also still undergoing debate.
In humans, the main quantity of HDL-CE is exchanged for TG from apoB-
containing lipoproteins, mediated by CETP,40 indicating that this HDL-CE is
cleared via the LDLr/LRP pathway.41 Humans that are deficient for CETP
show increased atherosclerosis despite increased HDL levels.168;169 However,
more recently, decreased atherosclerosis has been reported in CETP-deficient
subjects, although the effects were not significant.170 As HDL isolated from
these individuals is still a potent cholesterol acceptor in vitro,164 it is likely
that the observed increased atherosclerosis is not the consequence of the
reduced cholesterol efflux accepting potency of HDL in plasma. In contrast,
the C629A promoter polymorphism,171 and the C629A,G971A,C1337T pro-
moter polymorphism are associated with increased CETP levels concomitant
with decreased HDL-cholesterol.172 In addition, the C629A promoter is also
associated with increased progression of CVD.171;173 Collectively, studies in



27

General Introduction

mice and humans show that CETP expression can be either pro- or anti-
atherogenic and more research regarding the role of CETP in atherosclerosis
is warranted, before CETP inhibition can be used as a therapeutic approach to
treat CVD in humans. With respect to the human situation, it would be in-
teresting to investigate the effect of CETP on atherosclerosis in the APOE*3-
Leidenmouse model that is a mouse model with a humanized lipoprotein pro-
file, as described in section 2.3.

3.3. Apolipoprotein CI

ApoCI is present on chylomicrons, VLDL, and HDL, and circulates in the
plasma at a concentration of ~6 mg/dl.122 It is the smallest member of the
apolipoprotein family (6.6 kDa), consists of 57 amino acids, and contains two
amphipathic class II α-helices in the N-terminus (residues 7-29) and C-termi-
nus (residues 38-52), connected by a unordered linker (residues 30-37).122;174
ApoCI has a high content of lysine (16 mol%), and its isoelectric point is the
highest of all the apolipoproteins (6.5).175-177 It readily exchanges between
particles due to self-association in an aqueous environment.122 The structure
of apoCI is represented in figure 3. ApoCI is expressed in the liver, brain, adi-
pose tissue, lung, and spleen.122;178 The apoCI expression is highest in the
liver, and the expression in the lung and the spleen is probably due to the pres-
ence of resident macrophages in these tissues.178 

Figure 3. Structure of human apoCI. ApoCI consists of two α-helical structures, residues 7-29
(with a mobile hinge region involving residues 12-15) and residues 38-52, which are linked by
a structurally unordered region (residues 30-37). Figure kindly provided by Jimmy Berbée. 
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The APOC1 gene is part of the APOE/APOC1/APOC4/APOC2 gene cluster
on chromosome 19, which is regulated by the hepatic control region (HCR)
in the liver179-181 and by an LXR response element in macrophages.182 In the
liver, APOC1 mRNA expression is upregulated after activation of a DR1
motif of the HCR by the TR4 orphan nuclear receptor,179 whereas in
macrophages, APOC1 mRNA expression is upregulated by the formation of
an obligatory heterodimer between LXRα/β and the retinoic X receptor
(RXR).182 Since the apoCI propeptide contains a signal peptide that is cleaved
co-translationally in the endoplasmatic reticulum (ER), newly synthesized
apoCI is not retained intracellularly but is secreted from cells.183
ApoCI affects the activity of several enzymes and receptors involved in
VLDL metabolism. It inhibits the apoE-mediated binding of IDL and VLDL
to LRP and the LDLr in vitro,184-186 and the apoE-mediated binding of VLDL
to the VLDLr in vitro.187 Mice overexpressing human apoCI hemizygously
(APOC1+/0 mice) and homozygously (APOC1+/+ mice) show elevated levels
of plasma cholesterol and TG, which correlate positively with the expression
level of the transgene.188;189 These increased lipid levels have initially been
explained by the apoCI-mediated inhibition of apoE-mediated clearance of
IDL and VLDL by the LDLr and LRP, also in vivo.188 However, these mice
showed a predominant hypertriglyceridemia, which is not observed in apoe-/-
mice, and more recent results showed that in the absence of apoE, VLDL-TG
and VLDL-cholesterol are still elevated in APOC1+/0 mice, indicating that
additional mechanism(s) should contribute to the hyperlipidemia in APOC1+/0
mice.123;190 Indeed, we recently showed in vitro and in vivo that apoCI is a
potent inhibitor of LPL,123 which can fully explain the combined hyperlipi-
demia in APOC1+/0 and APOC1+/+ mice. However, whether physiological
endogenous apoCI expression affects VLDL metabolism in normolipidemic
and hyperlipidemic mice by modulating LPL activity has not been addressed
in detail. 
In addition, apoCI affects plasma factors involved in HDL metabolism. It
activates LCAT, at least in vitro, yet to a lower extent than apoAI, the main
activator of LCAT.191 As compared to apoAI, apoCI activates LCAT by 10-
45%, dependent on the lipid substrate. Also apoE2 and apoE3 are LCAT acti-
vators, albeit weaker than apoAI.122;174;192 In addition, it has been shown that
apoCI inhibits hepatic lipase (HL) in vitro.190;193 More apolipoproteins exert
this effect, as also apoAI, apoAII, apoCIII, and apoE inhibit HL in vivo.193
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HDL-cholesterol levels are decreased in apoc1-/- mice,194 and increased in
wild-type mice that were injected with a human apoCI adenovirus (C.C. van
der Hoogt et al., unpublished observations). These data suggest that apoCI
also modulates HDL metabolism in vivo, presumably by activation of LCAT
and/or inhibition of HL. 
Next to its effects on VLDL and HDL metabolism separately, apoCI inhibits
CETP that affects both VLDL and HDL metabolism described in section
3.2.175;195A first study in dyslipidemic baboons showed that a naturally occur-
ring N-terminal peptide of apoCI that contained the first 38 amino acids (4
kDa, pI=7.1) inhibited CETP activity in vitro and in vivo.196 In humans, of all
the apolipoproteins on HDL, apoCI appeared to be the only apolipoprotein
that reduces CETP activity.175 Interestingly, a recent study using human CETP
showed that the CETP-inhibitory effect of human apoCI was mainly due to its
C-terminal peptide (residues 34-54).197 The effect of apoCI on CETP activity
has also been studied in vivo in CETP transgenic mice.195;198 Interestingly,
endogenous apoCI expression appeared to inhibit CETP effectively,195 reflec-
ted by decreased VLDL cholesterol and increased HDL cholesterol. In
APOC1+/0.CETP mice, apoCI also effectively inhibited CETP, as measured in
endogenous CETP activity assays, however, this was not reflected by an
increased HDL and a decreased VLDL.193;198 It appeared that the effect of
apoCI on CETP inhibition was completely overruled by the aforementioned
effect of apoCI on LPL and the apoE-recognition receptors on the liver result-
ing in hyperlipidemia.198 As a consequence of the hyperlipidemia in
APOC1+/0 mice, LXR-mediated transcription of CETP in the liver increased,
leading to increased total CETP levels in plasma.198As a result, the inhibition
of CETP by apoCI did not translate in expected changes of VLDL and HDL
levels. Thus, in APOC1+/0 mice, yet not in apoc1-/- mice, the CETP-inhibito-
ry effect of apoCI is secondary to the VLDL clearance-inhibiting effects of
apoCI with respect to the overall effect of apoCI on plasma lipid levels.
Not many apoCI polymorphisms are known in humans. In American Indian
and Mexican humans, one polymorphism has recently been found that
involves the substitution of the tyrosine on position 45 for serine.199 Though
studies with synthesized apoCI suggested that the variant had a higher prefe-
rence for VLDL and a lower preference for HDL,199 the functionality of this
apoCI mutation still needs to be determined. 
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Furthermore, the HpaI polymorphism in the promoter region of APOC1 has
been described, resulting in increased expression of APOC1 and elevated
TG.200;201 However, the correlation between apoCI levels and TG levels is not
very strong, and the effects of APOC1 on TG levels are in linkage disequili-
brium with APOE2 and APOE4, yet not APOE3.201 Collectively, it still needs
to be determined whether apoCI is a causal factor in determining VLDL-TG
levels in humans.    
The role of apoCI in LPL inhibition probably relates to the finding that
APOC1+/+ mice are protected against the development of obesity, either diet-
induced, or on the ob/ob background, as described in section 3.1.130 Next to
protection against obesity, APOC1+/+ mice exhibit cutaneous abnormalities,
including sebaceous and meibomian gland atrophy and lack of sebum produc-
tion, resulting in excessive hair loss.202 Although these mice exhibit elevated
levels of FFA in plasma and decreased levels of wax esters and TG in their
skin, the mechanism behind the cutaneous abnormalities has not been eluci-
dated yet. 
In addition to its roles in lipoprotein metabolism, we have recently demon-
strated that apoCI binds to lipopolysaccharide (LPS), thereby disaggregating
LPS, and increasing the inflammatory response to LPS by macrophages in
vitro and in mice in vivo.203 Increased apoCI expression in mice (APOC1+/0
versus wild-type versus apoc1-/-) thus resulted in an apoCI dose-dependent
increase in the inflammatory response against intropulmonal infection with
the Gram-negative bacterium Klebsiella pneumoniae. In fact, by effectuating
a more efficient inflammatory response, apoCI increased the anti-bacterial
attack and protected against K. pneumoniae-induced septic death.
Though many roles of apoCI in lipoprotein metabolism and also inflamma-
tion have now been described, it is not clear yet whether apoCI plays a role
in atherosclerosis. APOC1 mRNA expression is highly induced during mono-
cyte to macrophage differentiation (85-fold),204 and 25-fold upregulated in
macrophages treated with 1 µM of the LXR agonist T013017,182 indicating
that apoCI might indeed play a role in macrophage foam cell formation and
thus atherosclerosis development. In vitro data show that apoCI induces
ABCA1-mediated cholesterol efflux, at least from human epithelial (Hela)
cells.205 Cholesterol efflux from macrophages is considered anti-atherogenic.
In addition, apoCI activates LCAT,191 and increased LCAT activity was
shown to be anti-atherogenic in apoe-/- mice.206;207 Furthermore, apoCI
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inhibits CETP,175;195-197 which might be considered anti-atherogenic. On the
other hand, apoCI inhibits LPL,123 and systemic LPL inhibition in plasma
might be considered pro-atherogenic by increasing VLDL/LDL levels.133;134
In fact, human APOC1 overexpression increases atherosclerosis in apoe-/-
mice, which was presumably the consequence of dramatically increased lev-
els of VLDL-TG and VLDL-cholesterol.190 Other studies have indicated that
apoCI increases the apoptosis of aortic smooth muscle cells in vitro via
recruiting neutral sphingomyelinase, a condition that might accelerate plaque
rupture in vivo, and thus be pro-atherogenic.208 As apoCI increases the LPS-
induced inflammatory response in macrophages in vitro and in mice in
vivo,203 and LPS accelerates atherosclerosis in apoe-/- mice in vivo,92 apoCI
expression may also be pro-atherogenic in the context of chronic inflamma-
tion. Overall, the role of endogenous apoCI in atherosclerosis development,
related to hyperlipidemia and inflammation, requires more extensive
research.

4. Outline of Thesis

In this thesis studies were performed to elucidate the mechanisms behind the
effects of apoCI and CETP on plasma lipoprotein metabolism and atheroscle-
rosis development.
Although the role of apoCI in lipoprotein metabolism has been quite exten-
sively studied in mice, these studies mainly addressed the effects of human
apoCI overexpression instead of the effects of physiological endogenous
apoCI expression. Therefore, in chapter 2, the role of endogenous apoCI on
lipoprotein metabolism in apoe-/- mice was investigated. The apoe-/- back-
ground was used to exclude potential effects of apoCI on lipoprotein metab-
olism that are sorted via inhibition of the apoE-mediated remnant clearance.
In chapter 3, studies were performed to investigate the mechanism(s) behind
the observation that APOC1+/+ mice are protected against obesity and the
cutaneous abnormalities of these mice, since clues have been found that these
effects may not simply be explained by apoCI-induced LPL inhibition. 
Apart from these systemic effects of apoCI on lipoprotein metabolism, it has
also been suggested that apoCI affects local lipid homeostasis in
macrophages, as its expression is highly upregulated during monocyte to
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macrophage differentiation and upon incubation of macrophages with ago-
nists of the lipid sensor LXR. As macrophages play an important role in sev-
eral stages of atherosclerosis development, these findings suggest that apoCI
might affect atherosclerosis. The effects of apoCI expression on atherosclero-
sis development are described in chapter 4. In addition to its role in lipopro-
tein metabolism, apoCI increases the LPS-induced response in vivo and in
macrophages in vitro. Therefore, the effect of apoCI on LPS-induced athero-
sclerosis was investigated in chapter 5.
The role of CETP in atherosclerosis is still undergoing debate and a human-
like mouse model to study the effect of CETP modulation on plasma lipopro-
tein metabolism and atherosclerosis development is lacking. In chapter 6,
human CETP transgenic mice were cross-bred with the humanized APOE*3-
Leidenmouse, and the effect of CETP expression on plasma lipid metabolism
and atherosclerosis development was investigated. 
The results obtained from these studies and the implications of these studies
for future research are described in chapter 7.
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