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I. INTRODUCTION

Human IgA is the prevalent antibody isotype involved in the defense against
microorganisms, especially at mucosal surfaces. Binding of IgA-opsonized particles
(e.g. bacteria, viruses) to myeloid cells bearing receptors for the Fc region of IgA
(FcaR) may trigger various cell-mediated immune effector functions to eliminate
foreign antigens.

FcaRl is the first Fc receptor for IgA that has been molecularly characterized.
It represents a transmembrane glycoprotein that binds IgA1 and IgA2 with similar
affinity. FcaRI is constitutively expressed on myeloid cells such as neutrophils,
eosinophils and monocytes. Genetic characterization has shown that FcaRI is a
distantly related member of the Ig receptor gene family. FcaRl has a short
cytoplasmic tail without consensus signaling motifs. Similar to other receptors,
which lack signaling motifs, FcaRl can associate with the FcR y-chain signaling
subunit through a charge-based mechanism. Upon IgA binding, triggering of FcaRlI
results in effector functions such as phagocytosis, induction of neutrophil
degranulation, antibody dependent cell-mediated cytotoxicity (ADCC) and release
of inflammatory mediators.

Since defects in IgA clearance have been proposed to play an important role in
the pathogenesis of IgA-mediated diseases, studying the precise mechanisms of IgA
binding to FcaR, in specific tissues or on selected cells in the human body is
important.

Il. IMMUNOGLOBULIN A

The IgA molecule is a tetramer, consisting of two identical light (k or A) and two
heavy (a) chains (Figure 1). In humans, there are two isotypes of IgA, IgA1 and
IgA2 (1). In addition 3 allotypic variants of human IgA2 have been identified,
designated A2m(1), A2m(2) and A2m(3) (2). The a-chain contains 1 variable
domain Vu and 3 constant domains Cal, Ca2 and Ca3. In IgAT1 there is a hinge
region between Cal and Ca2, of which 13 aminoacids (aa) are not present in
IgA2 (1). This hinge region is susceptible to cleavage by specific bacterial IgA1
proteases. Furthermore, IgA1, in contrast to IgA2, possesses 5 O-linked
carbohydrate moieties at serines in the hinge region (3) (Figure 2).

Serum IgA is predominantly monomeric in structure (mlgA), although dimers
(dIgA) and polymers (plgA) are present. To enable dimer Ig formation, IgA bears
an additional 18 aa C terminal to the Ca3 domain, which similar to IgM
monomers can interact with a joining (or ]) chain. ] chain is a small molecular
weight glycoprotein (15kD) that contains 6 interchain disulfide bonds. In addition,
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J chain bears 2 cysteine residues, each of which can form a disulfide bond with
cysteine residues in the migA tail piece, thus stabilizing a dimeric molecule (5,6).

In the mucosa dimeric IgA complexes are transported from the basolateral to
the apical surface of mucosal epithelial cells, via the poly (lg) receptor (pIgR).
During this highly specific process, the extracellular part of the plgR, which is
covalently bound to one of the IgA monomers, is cleaved (7).

Dimeric IgA2

Figure 1. Proposed domain structure of human migAl and dIgA2. The a heavy chain
contains 1 variable domain Vy and 3 constant domains Cal, Ca2 and Ca3. The light chain
contains 1 variable domain V, and 1 constant domain C, Positions of disulfide bonds (S), N-(N)
and O-(0) linked sugars are indicated. (adapted from (4)).

Therefore, the dimeric IgA molecule, upon secretion, acquires an additional
peptide termed secretory component (SC), finally resulting in secretory IgA (sIgA)
(8). Secretory IgA serves as the first line of defense at mucosal surfaces. IgA
polymerization can occur in the absence of ] chain, as illustrated by the fact that ]
chain knock out mice have high concentrations of dIgA (2). In contrast, in the
absence of ] chain, plgR-mediated transport is hampered.
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Protective antibodies of the IgA isotype have been described against a wide
range of human pathogens including viruses such as HIV-1 and influenza, bacteria,
bacterial toxins and parasites (11). The mechanisms by which IgA exerts its
protective effect are partially passive; this includes neutralization of viruses by
blocking their receptors for host cell proteins (immune exclusion) and inhibition of
bacterial motion by aggregation. However, when IgA attached to foreign antigen
recruits effector systems such as complement, T cells and granulocytes, the
protective effect of IgA is mediated actively and receptors for IgA are involved.

IgA1 hinge region
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Figure 2. Schematic diagram depicting the hinge region of IgA1 from proline 223 upto
serine %% with the predicted O-linked glycan side chains, as indicated. The numbers 3 and 6

indicate to which relative carbon atom of a glycan, the next glycan side chain is connected.
Enzymes involved in glycosylation (left) and deglycosylation (right) are indicated. Depicted
glycan side chains: GalNAc, N-acetyl galactosamine; NeuNAc, N-actelyl neuraminic (sialic) acid;
Gal, galactose. Binding capacity to Jacalin, an IgA1 binding lectin and the ASGP-R are indicated
at the bottom (adapted from (10)).

In the liver, IgA clearance is mediated via an endocytotic mechanism involving the
asioglycoprotein receptor (ASGP-R). The ASGP-R is a 46-kD single subunit
receptor of the C-type (Ca%*-dependent) lectin-family expressed on the surface of
hepatocytes. These molecules recognize proteins via their oligosaccharide chains,
specifically terminal galactosyl residues. The receptor is endocytosed and proteins
bound to the receptor are targeted for degradation. The ASGP-R binds IgA1 via
its carbohydrate side chains in the hinge region (Figure 2), targeting IgA for

13



Chapter 1

clearance. In the circulation, binding of IgA is mediated via FcaRl, the first Fc
receptor for IgA that has been molecularly characterized.

Ill. FC RECEPTORS

Receptors for the constant regions of all five classes of human immunoglobulins
have been described (12), but only Fc receptors for IgG and IgE have been studied
intensively (13,14). Three different types of IgG Fc receptors (FcyR), all members
of the Ig superfamily, were identified on human blood cells. FcyRI (CD64), a 72-
kD glycoprotein, is constitutively expressed on monocytes and macrophages and
can be induced by IFNy or G-CSF treatment on neutrophils. FcyRI serves as a high
affinity (Ka~ 5x10%M) receptor for monomeric 1gG. In contrast, FcyRIl (CD32), a
40kD glycoprotein found on a wide variety of cell types, including monocytes,
platelets, neutrophils and B cells, is a low affinity (Ka~ 10°M) receptor. Finally,
FcyRII (CD16) is a variably glycosylated, low affinity receptor (Ka~ 10°M) of 50-
70 kD, that is present on neutrophils, NK cells, eosinophils, a subset of T cells and
cultured monocytes. FcyRIIl binds poorly to monomeric IgG but interacts well with
aggregates or complexes of IgG. On neutrophils FcyRIIl is anchored in the
membrane via a glycosyl-phosphatidylinositol (GPI) linkage, whereas on NK cells a
transmembrane form is present (13,15).

For IgE, two types of Fc receptors have been described. The high affinity
FceRl, also a member of the Ig superfamily, is composed of a 45-kD a-chain, and a
33-kD B-chain, and expressed on mast cells and basophils. It has furthermore been
detected on monocytes, eosinophils and Langerhans cells of selected individuals
(16). The low affinity FceRIl (CD23), a 45-kD glycoprotein, is present on
monocytes, eosinophils, T cells, B cells and activated macrophages. This receptor
however belongs to the C-type lectin superfamily (14).

Although receptors for IgA have been recognized since the early 1980’s (17-
20), relatively little is known about their nature and function. IgA binds to various
types of blood cells, such as human neutrophils, monocytes, macrophages,
eosinophils, B cells, T cells and myeloid cell lines (21,22). Evidence for existence
of FcaR on a subpopulation of human B-lymphocytes was obtained in a rosetting
assay with mouse IgA-coated on ox RBC. FcaR was shown to be present on 5-20
% of B cells from peripheral blood of normal volunteer’s (18). Rabbit IgA-coated
sheep RBC were used in a rosetting technique to demonstrate the expression of a
FcaR on human T lymphocytes (19). Peripheral human neutrophils and monocytes
were shown to form rosettes with human IgA1 or IgA2 coated ox RBC (20).
Interestingly, in vitro experiments with murine T cells demonstrated that they
could form rosettes with human IgA1-coated ox erythrocytes. It was found that
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both human IgD and IgA1 bind via their O-linked glycans to the murine IgD
receptor (23).

At present, an IgA Fc receptor found on monocytes, neutrophils and
eosinophils (FcaRl), is the only FcaR that has been defined molecularly (24). This
myeloid FcaRl was given the designation CD89 at the Fifth leukocyte-typing
workshop (25).

IV. FCaRI/CD89

IV.1. Genetics

A 1.6-kb cDNA clone encoding CD89 was isolated from PMA-stimulated U937
cells, using the CD89 mAb My43 (26) and expression cloning in COS-7 cells
(24). The CD89 gene contains 5 exons and 4 introns (27). The first exon or S1,
encodes for the 5’-untranslated region, the ATG start codon and a 27 bp stretch
of the coding sequence for the leader peptide. Exon 2 or S2, is 36 bp long and
encodes the remaining part of the leader peptide, including the predicted signal
peptidase cleavage site between the alanine-21 and glutamine-22 residues. The
third and fourth exons encode the extracellular domains one (EC1) and two
(EC2), respectively. The fifth exon encodes a short extracellular segment, the
transmembrane domain and a short cytoplasmic tail with a TAA stop codon (27).
More recently, a sixth exon was described (28). However, this 78 bp exon or S3,
between S2 and EC1, encodes a stop codon, and is thus believed to represent a
pseudo-exon (29).

All FcyR genes (in man, rats and mice), as well as FceRI, have a 21 bp S2 mini
exon, instead of the 36 bp S2 exon in CD89 (12). Interestingly, only in bovine
Fcy2R has such a 36 bp S2 mini exon has been found, suggesting that this bovine
IgG receptor is more closely related to CD89 compared to the other human FcR
genes (30).

The CD89 gene has been localized on chromosome 19, at position 19q13.4
(31). This is different from all other Fc receptor genes, which are located on
chromosome 1. However, the 19q13.4 region does contain multiple genes
encoding type | transmembrane molecules, all of which belong to the Ig-
superfamily, termed the leukocyte receptor complex (LRC) (32,33). This family
includes the Kkiller inhibitory receptors (KIR’s) (34,35), the Ig-like transcript
receptors (ILT) (36), leukocyte Ig-like receptors (LIR), Monocyte/Macrophage Ig-
like receptors (MIR) (37) and the leukocyte-associated immunoglobulin-like
receptor (LAIR) (38). On the basis of homology with CD89, the paired Ig-like
receptors (PIR-A and PIR-B) (39,40) have been identified in mice. Their genes are
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located on mouse chromosome 7 in a region syntenic with human chromosome
19q13.

1V.2. Protein structure

The CD89 protein has a 21 aa leader peptide. This hydrophobic leader peptide is
cleaved between position Ala21-Glu22 during membrane insertion, resulting in the
formation of a 266 aa mature type | transmembrane glycoprotein. The 206 aa
extracellular part of CD89 consists of two Ig-like domains and carries one potential
O-linked, and 6 potential N-linked glycosylation sites. The transmembrane part is
19 aa long and bears a positively charged arginine (Arg 209) which is essential for
association of CD89 with the FcR y-chain homodimer-signaling subunit (41,42).
The short cytoplasmic tail of 41 aa of CD89 contains no consensus signaling motifs
of its own (Figure 3).

The predicted molecular weight of CD89 is 30 kD (24). The apparent mo-
lecular weight of CD89 on monocytes and neutrophils is 55-75 kD (43) and on
eosinophils 70-100 kD (44), due to heterogeneous glycosylation. Deglycosylation
of CD89 from eosinophils and neutrophils with N-glycanase gives rise to distinct
bands of 32 and 36 kD in size (43,44). Deglycosylation with neuramidase and O-

glycanase together with N-glycanase on

.. Ue37 «cells, a CD89 expressing

terminus monocytic cell line, revealed two distinct

bands of 32 and 34 kD (45). Finally,

tunicamycin treatment of U937, which

induces complete inhibition of N-linked

glycosylation, followed by CD89 specific

immunoprecipitation revealed only one

band of 32 kD (45). These experiments

point at the complexity in CD89

glycosylation between various myeloid
cell types.

Figure 3. Structure of the CD89 FcR y-chain
complex. The extracellular domain 1 and 2
(EC-1 and EC-2), as well as the y-chain with its
signaling (ITAM) motifs and the charged
residues responsible for association are
depicted.

The IgA protein has been studied to find the specific domains that are involved in
CD89 binding. Using both domain-swapped IgA/IgG and point-mutated IgA chi-
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meras, expressed by recombinant baculovirus infected cells, the CD89 recognition
site on IgA was located (46). It was demonstrated that neither the hinge region,
nor the tailpiece was necessary for binding. When mutations were made near the
boundary between Ca2 and Ca3, binding to CD89 was ablated. Recent studies
showed in more detail that the Leu?*’-Gly?*® region in Ca2 and Pro**°-Phe*** re-
gion in Ca 3, are crucial for CD89 binding and triggering, thereby enhancing pres-
ent understanding of the molecular basis of the IgA-CD89 interaction (47).

Figure 4. A model
of the 3 dimen- EC-1
sional structure of

the extracellular

part of CD89, bas-
ed on homology

with the KIR struc-

ture. The EC-1 and
EC-2 domains, N-
terminus, Arginyl 82
and Histidyl 85 resid-
ues are depicted.

N-terminus EC-2

The IgM mAb
My43 blocks bin-
ding of IgA to
CD89, whereas all other known CD89 mAb, A3, A59, A62, and A77 (all of the
IgG1 isotype) do not (26,45). With a soluble form of CD89 and a strategy
combining chemical modification and site-directed mutagenesis, the histidyl 85 and
arginyl 82 residues in the EC1 domain of FcaRI were shown to be essential for
binding of IgA (48). On the basis of homology with the KIR sequence and the
crystal structure, a model for CD89 has been made (49,50) (Figure 4). It was
demonstrated that CD89, like several IgG receptors, represents a low affinity
receptor for IgA (Ka ~ 10° M"). Rapid dissociation of the soluble form of CD89
complexed with IgA (tiiz ~ 25 s) suggests that mIgA binds transiently to cell
bound CD89, while plgA or IgA immune complexes (IgA-IC) may bind more av-
idly.

IV.3. Splice variants

A number of alternatively spliced CD89 mRNA’s have been found in cDNA
libraries of CD89-expressing cells (Figure 5). Three variants identified in
neutrophils lacked coding sequences from the exons S2, EC2 or S2 plus EC1. Two
other variants lacked 66 bp from EC2, due to the use of an alternative splicing site
66 bp from the 3’ end. In one of these latter cONAs, S2 was also deleted (51).
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The variant lacking EC2 was identified in neutrophils, eosinophils, alveolar
macrophages THP-1, and U937 cells (52-54).

Recently a FcaR variant has been cloned from a human eosinophil cDNA
library (FcaRb), which shows an abberant transmembrane/intracellular region
(55). In alveolar macrophages, two alternatively spliced products corresponding to
deletions of 66 and 288 bp in the EC2 domain were detected, FcaRa.2, and a.3,
respectively (52). The FcaRa.2 molecule was detected on the membrane of
alveolar macrophages, and N-glycanase treatment resulted in a protein core,
smaller to that on the FcaRI backbone of blood monocytes (52).

S1 S22 S3 EC-1 EC-2 T™/C

CD8Y wiyre | EC-1 || EC-2 R
AS2 . EC-1 || EC-2 | e |
AS2,EC-1 W A EC-2 | v |
AEC-2 | EC-1 | A | v |
AGEbPEC-2 | EC-1 || EC2 | w/| Ttmc |
AS2,66bpEC-2 ~ EC-1 || EC2 | w| Ttmc |
ATM | EC-1 || EC-2 B

AS2,T™ | EC-1 || EC-2 B

Figure 5. Schematic view of the different splice variants that have been described for
CD89. From top to bottom: The exon organization derived from the gene map (not on scale),
CD89 (wildtype) (27), CD89/AS2, CD89/AS2,EC-1 (51), CD89/AEC-2 (or FcaRa.3) (51-54),
CD89/A66bpEC-2 (or FcaRa.2) (51,52), CD89/AS2,66bpEC-2 (51), ATM (or FcaRb) and
AS2,TM (or FcaRbAS?2) (55).

The biological relevance of the various FcaRI splice-variants still remains unclear
(52). In view of the fact that splice-variants of certain FcyR and FceR have been
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found to be expressed in vivo, as biologically active receptors (13), the FcaRlI
splice variants may have physiologic relevance.

Next to alternative splicing, membrane bound receptors can be released via
proteolytic cleavage, as demonstrated for various molecules, including cytokines,
cytokine receptors, adhesion molecules and Fc receptors (56-58). Soluble forms
have been identified for Fc receptors for IgG (FcyRII/CD32, and FcyRIII/CD16)
and IgE (FceRII/CD23) (59-61). Release of soluble receptors has been suggested
to represent an universal mechanism of receptor regulation, which might be
dysregulated in various human diseases (56). Levels of sCD16 (FcyRIIl) have been
proposed to be a measure for the number of neutrophils present in the circulation
(60). Little or no information is available on the existence of soluble forms of
FcaR.

IV.4. Cell distribution and modulation of expression

Using Northern blot analysis (with parts of the CD89 cDNA as a probe), CD89
MRNA was detected in monocytes, neutrophils and eosinophils (24,43). FACS
analysis using CD89 mAb, demonstrated the presence of CD89 at the surface of
myeloid cells such as monocytes, neutrophils, macrophages and eosinophils. It has
been estimated that both monocytes and neutrophils express between 6,000 and
7,000 CD89 molecules per cell (62,63). In addition, myeloid cell lines such as
U937, THP-1, MonoMac-6, HL-60 and PBL985 express CD89 at comparable
levels.

Both Northern blots and FACS analysis revealed that human T cells, B cells,
NK cells, platelets, erythrocytes, B cell lines or K562 cells are negative for CD89
(21,24,26,45). The expression of CD89 by human kidney mesangial cells remains
controversial, although some results from Northern blotting have supported the
presence of CD89 in rat and human mesangial cells (64). CD89 membrane
expression, however, was not detectable using antibodies on human mesangial cells,
and IgA induced activation of human mesangial cells was shown to be independent
of CD89 (65).

Some early studies demonstrated that the expression of myeloid FcaR on
peripheral blood neutrophils could be enhanced by overnight incubation with IgA
(20,43). In addition to an IgA-induced increase in CD89 expression (22),
different cytokines and other factors (Figure 6) can modulate the number of CD89
molecules.

CD89 expression on monocytes can be increased by incubation with IL-13, TNFaq,
GM-CSF, LPS, PMA, and the differentiating agent calcitriol (66-69). In contrast,
incubation with TGFB, or the polyanionic compound suramin reduce CD89
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expression levels (70,71). CD89 expression levels on the monocytic cell lines HL-
60, PBL985, THP-1, MonoMac-6 and U937 can be modulated in a similar
manner to that on monocytes, with the exception of CD89 expression on
MonoMac-6, which remains unaffected after GM-CSF, or IL-1B treatment
(66,67).

Neutrophils and eosinophils, stimulated with chemotactic agents such as fMLP
and zymosan-activated-serum (ZAS, a source of C5a), upregulate CD89 expression
in a Ca?*-dependent manner (77). Interestingly, upregulation of CD89 membrane

expression on U937
CD89 surface expression appears to be Ca**
independent (44).
Furthermore, the rapid
(within 20 minutes)
CD89 upregulation
found in neutrophils is
not affected by inhibi-
tion of protein synthe-
Monocytes sis, suggesting the exis-
A L1 oF tence of an intracellu-
Fa oM CSF Suramin lar pool of CDBY
A Calcitriol (77). Also, IL-8 and
LPS TNFa upregulate
CD89 expression on
neutrophils,  whereas
GM-CSF has no effect
(44,72,76).

Figure 6: Modulation of
CD89 surface expres-
sion. CD89 surface ex-
pression increases after
treatment with IL-8 (76),
MLP/ZAS (77) and iono-
mycin (77) on neutrophils
only; with IgA (22), TNFa (66,67,72,73), and PMA (24,43,45,68) on both, monocytes and neutro-
phils; and with IL-13 (67), GM-CSF (67,74), Calcitriol (69,74,75), and LPS (67) on monocytes
only. CD89 surface expression decreases after treatment with TGF[ (70) and suramin (71) on
monocystes.

1V.5. Signal transduction
Although CD89 has a short cytoplasmic tail, one without consensus signaling mo-
tifs, crosslinking of the receptor induces intracellular signaling and leads to cell
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activation (62,78). Like other leukocyte Fc receptors that lack intracellular
signaling motifs, intracellular signals are initiated via association of CD89 with a
small (10 kD), predominantly intracellular, dimeric y-chain. The Fc receptor y-
chain was first identified as a subunit of the FceRl complex (792). Subsequently it
was shown to associate with members of all three classes of human leukocyte FcyR,
as well as with TCR-CD3 complexes, where the y-chain is responsible for coupling
of receptors to intracellular signaling pathways (12,80,81). A functional
association between the y-chain homodimer and CD89 was observed only when a
positively charged aa was present within its transmembrane domain. Substitution of
Arg209 with another positively charged aa preserved association with the y-chain
homodimer, whereas substitution with a neutral or negatively charged aa did not
(42).

In addition to acting as a signal-transducing subunit, it has been documented
that y-chain may enhance FcyRI ligand-binding affinity (82). Furthermore, the FcR
y-chain may play a role in stabilizing cell surface expression of receptors. For
example, FceRl, FcyRl and FcyRIlla all require association with FcR y-chain for
stable surface expression (79,83). Recently it was demonstrated that CD89 surface
expression was absent when CD89 transgenic mice were crossed with y-chain
knock-out mice (73,84). However, expression of CD89 in IIA1.6 cells appears
independent of FcR y-chain co-transfection (42,85). At present it is not clear how
this presumed discrepancy can be explained.

Crosslinking of CD89 results in the phosphorylation of ITAM maotifs on the y-
chain. Src family phosphotyrosine kinases (PTKs) are responsible for this
phosphorylation and kinases thought to be critical include p56Lyn (86), Syk and
Bruton tyrosine kinase (Btk)(87). Following ITAM phosphorylation, a Syk family
member, p72syk or ZAP-70 is recruited to the complex (86), resulting in the
phosphorylation/activation of further downstream proteins, including PKC, PLCy
and MAP kinases (88), ultimately triggering cellular effector functions.

1V.6. CD89 functions

Phagocytosis of IgA complexed antigens represents an important effector function
of CD89 (Figure 7). First evidence for FcaR-mediated phagocytosis was found in
monocytes, by inhibition studies of IgA coated erythrocytes uptake using the
CD89 mAb My43 (26). Before the molecular characterization of CD89, it was
shown that unstimulated neutrophils phagocytose both yeast coated with serum
IgA anti-mannan antibodies and S. aureus opsonized with serum or secretory IgA,
in a FcaR dependent fashion (8%). IgA-opsonized latex particles were inefficiently
phagocytosed by unstimulated PMN. These cells needed priming with GM-CSF or
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IL-8 for enhanced uptake. The increased phagocytosis correlated with higher
membrane expression of the CD89 molecule results from the GM-CSF or IL-8
priming (76,90). Similarly, priming of monocytes with IL-13, TNFa, GM-CSF,
and LPS, upregulates CD89 membrane expression and enhances IgA-mediated
phagocytosis (67).

Chemically aggregated IgG and IgA are able to induce neutrophil
degranulation (21), and these Fc-receptor mediated processes could be primed by
fMLP (77). In addition, non-aggregated serum IgA1 and IgA2 trigged
degranulation, similar to both dimeric IgA and My43 after crosslinking CD89
(22). Neutrophil degranulation for a given concentration of IgA was greater than
that of similar concentrations of IgG (21). On monocytes, the induction of
superoxide release triggered by either serum IgA or secretory IgA and IgG was
equal. Since CD89 expression on monocytes was lower as compared to FcyR’s,
these experiments suggest that CD89 triggering results in higher activation levels
when compared to other FcyR’s (26). In addition, aggregated IgA has been shown
to degranulate eosinophils and to release eosinophil derived neurotoxin (23).
Antibody dependent cell-mediated cytotoxicity (ADCC), is another important
effector function of FcaR. Crosslinking FcaR’s on monocytes and neutrophils with
IgA can trigger ADCC (94,97), and IgA2 opsonization of Schistosoma mansoni
results in effective killing of this parasite (109). Furthermore, monocytes mediate
an IgA dependent killing of bacteria from patients with meningococcal infections
(98). Similarly, mononuclear cells efficiently lyse erythrocytes coated with IgA,
isolated from patients suffering from acquired immune hemolytic anemia in a
complement-independent, IgA-dependent manner (929).

Release of cytokines following FcaR stimulation is an important function that
can result in recruitment of other effector cells to sites of infection. Crosslinking
monocytic CD89 with specific mAb, followed by Fab’2 fragments of an anti-
mouse antiserum has been shown to induce release of a number of cytokines such
as TNFa, IL-1B and IL-6 (100,110). Aggregated IgA also has been shown to
trigger release of inflammatory mediators such as leukotrienes C4 and B4 and
prostaglandin E2 from monocytes (102).

Recently, bispecific molecules were produced by chemical crosslinking of
F(ab’) fragments of the CD89 mAb A77, with a tumor Ag-specific mAb and
examined for their ability to mediate ADCC and phagocytosis. These BsAb
effectively mediate ADCC and phagocytosis of tumor cells by monocytes and
neutrophils in a CD89 dependent manner (111). Furthermore, similar bispecific
molecules directed to CD89 and Candida albicans, enhanced neutrophil
phagocytosis of fungi (112). Comparison between CD89, FcyR’s and CR3 as
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trigger molecules, showed CD89 mediated ADCC and phagocytosis to be most
efficient (113).

AT, el

dlgA, slgA, plgA IgA + antigen

IgA and IgA
immune

Monocyte Neutrophil Eosinophil
I. ADCC IV. ADCC Vill. ADCC
1. Phagocytosis V. Phagocytosis IX. Degranulation
Ill. Release of VI. Release of
cytokines cytokines
Vil. Degranulation

Figure 7: Summary of the described functions for FcaR, CD89 expressed on the surface of
Monocytes: 1. ADCC (94-99), Il. Phagocytosis (26,62,67,95), Ill. Release of TNFa and IL-6 (in-
creased) (100), (decreased) (101), IL-RA (86,101), IL-1a (100), IL-8 (86), leukotrienes C4, B4
and prostaglandin E2 (102); Neutrophils: IV. ADCC (94,96,97), V. Phagocytosis (62,76,90,103-
106), VI. Release of TNFa (72), VII. Degranulation (26,67,77,78,91,92,103,107,108) and Eo-
sinophils: VIIl. ADCC (96,109), IX. Degranulation (88,93).

Phagocytic IgA receptors have been proposed to function in the clearance of IgA-
antigen complexes from the blood (114). IgA from serum is efficiently internalized
by PMN, whereas CD89 mAb need to be crosslinked before internalization by
PMN, monocytes, and transfected [IA1.6 cells (42). Therefore, CD89 may
mediate the removal of IgA, and small IgA-complexes from the circulation in
normal individuals.
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V. DISEASES ASSOCIATED WITH IGA AND CD89

Defective CD89-mediated endocytosis has been suggested to be relevant for several
IgA-associated diseases, including HIV-1 infection, alcoholic liver cirrhosis (ALC)
and IgA-Nephropathy (IgAN) (115-118). All of these diseases have elevated
serum IgA concentrations and increased levels of IgA-containing immune
complexes, when compared to healthy controls.

Primary IgA nephropathy (IgAN) is the most common form of primary
glomerulonephritis, with a broad spectrum of clinical presentations, leading to
progressive renal failure in a substantial proportion of patients (119,120). The
disease is characterized by increased production of plasma IgA1 by the bone
marrow and by deposits of IgA1 in the glomerular mesangium (120,121). The
mesangial IgA has been found to consist of pIgA (122). The mechanisms
responsible for the mesangial depositions remain unclear (120). It has been
hypothesized that a receptor for IgA can be expressed on mesangium, and thereby
is involved in IgA deposition. In accordance with this hypothesis, it was suggested
that mesangial cells in vitro express CD89 mRNA, however membrane expression
was not investigated (64). Polymeric IgA and dIgA, but not mIgA bind efficiently
to mesangial cells and enhance IL-6 expression levels (123). In addition both plgA
and migA bound to human mesangial cells independent of CD89 and only plgA
induced c-jun expression, suggesting the presence of a new FcaR on human
mesangial cells (65).

It has been suggested that phagocytes in IgAN patients were “over-saturated”
with IgA, and are defective in CD89-mediated endocytosis (115). Other IgA
mediated effector functions like ADCC, superoxide generation and release of
cytokines and inflammatory mediators have been linked to tissue damage (21).
Thus a defect in CD89-mediated clearance of IgA immune complexes is thought to
contribute to the pathogenesis of these diseases (124).

The quantitative difference in serum IgA concentrations between patients with
IgAN and controls seems to be caused by a increased production of IgA1 by the
bone marrow (120). However, a deficient mucosal IgA immune response has been
reported in patients with IgAN (125). In addition to increased production,
qualitative differences in the IgA molecule itself, may also influence its clearance
and deposition. IgA contains 2 to 14% by weight of glycans linked to the
immunoglobulin heavy chains. Recently it was suggested that the O-linked
carbohydrates in the hinge region of the IgA 1 molecule contain less galactose (Gal)
(126,127). Glycans on glycoproteins and glycolipids play an essential role in many
biological functions, such as homing of lymphocytes to various tissues, binding of Ig
to cellular receptors, phagocytosis, activation of the complement cascade, and
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binding, internalization, and catabolism of Ig by hepatocytes (128). An altered
IgA1 glycosylation could cause decreased binding to FcaR and results in defective
clearance of IgA and IgA-immune complexes, explaining the observed higher
serum IgA1 levels and or IgA1 deposition. In addition, down regulation of CD89
on monocytes of patients with IgAN was demonstrated, indicating that aberrant
regulation of CD89 may also contribute to higher serum IgA levels (129).

VI. SCOPE OF THIS THESIS

For a better understanding of the role of IgA in immunity, we focussed on the
interaction between the prototypic IgA receptor CD89 and different forms of IgA.
We developed a set of specific reagents for further analysis of IgA-CD89
interactions, and localized the immunoglobulin-binding region on CD89 to the
membrane-distal EC-1 domain (Chapter 2). Activation of the CD89 molecule
resulted in an FcR y-chain dependent shedding of soluble CD89 (Chapter 3).

In IgA-mediated diseases, deposition of IgA-complexes plays an important
pathogenic role. We studied the binding of different sizes of IgA to CD89-
transfected cells and found larger complexes of IgA to exhibit better binding to
CD89 compared to mIgA (Chapter 4). A possible role for IgA receptors in IgAN
was investigated, and resulted in documentation of reduced binding of
immunoglobulin A (IgA) from patients with primary IgA nephropathy to CD89
(Chapter 5). Finally, we demonstrated that human mesangial cells in culture and in
kidney sections lack CD89 expression (Chapter 6), suggesting the presence of an
alternative IgA receptor in the kidney.
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