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Preface 

 
Echocardiography or cardiac ultrasound is the most widely applied imaging technique for 
the evaluation of anatomy and function of the heart. It is generally non-invasive and no 
ionizing radiation is involved. There are few contra-indications and there is no evidence of 
negative effects for patients or medical staff. Equipment is relatively cheap, versatile, 
flexible in use and mobile.  

At the same time, echocardiography is not an easy imaging modality for interpretation 
or analysis - images appear noisy and are hampered by artifacts such as false echoes, 
dropouts, shadowing, etc. 

The proper operation of a modern echocardiograph is not a simple task at all - the 
complexity comes close to that of a small airplane's cockpit and not many users are 
familiar with the complete functionality and all its possibilities. Also, the physical 
properties of ultrasound sometimes limit its applicability, e.g. in obese patients or in case 
of poor acoustical windows. 

From the medical viewpoint, interpretation of the images requires a high level of 
anatomical insight, knowledge of the physics of ultrasound and familiarization to the 
common appearance of anatomical structures and typical artifacts. 

From the image processing point of view, images are anisotropic, extremely nonlinear 
in any sense, hardly reproducible and there is no simple relation between physical tissue 
properties and image intensities. 

 
It is very important to extract quantitative information from such images, for obtaining 
objective diagnoses, verifying the effect of interventions, etc. Common measurements 
include the anatomical dimensions such as the length of long and short axis of the left 
ventricle, volumes at end-diastole and end-systole and ejection fraction, or more complex 
measures such as sphericity, regional wall motion patterns, or wall thickness curves. 

It is possible to calculate such measures from manually drawn contours or markers, 
but this suffers from large inter- and intra-observer variabilities and is often impractical, 
since many images need to be analyzed consistently. Therefore, there is a great need for 
automated image analysis tools. 
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This thesis covers the computerized, automated analysis and quantification of important 
structures in echocardiographic images. The main topics of our research were the 
automated detection and tracking of the endocardial border of the left heart chamber, and 
the subsequent analysis of the endocardial wall motion. 
 
The setup of the thesis is as follows. 
 
Chapter 1 provides a general introduction into digital image processing as applied to 
echocardiographic images and sketches the most commonly applied approaches for border 
detection in echocardiography, including the ones elaborated upon in our research. 
 
Chapter 2 is dedicated to the most classical border detection problem in 
echocardiography, detection of the endocardium in short-axis cross-sectional images, and 
our solution for that. 
 
Chapter 3 covers a more elaborate approach for endocardial border tracking in cross-
sectional images acquired along the major axis of the left ventricle (e.g. apical four- and 
two-chamber images, parasternal long-axis). 
 
Chapter 4 is devoted to the application of a new class of border detection techniques, the 
Active Appearance Models. 
 
In chapter 5, an extension of these models to a three-dimensional space is described, 
which makes them highly attractive for time sequences of two-dimensional images as 
well. 
 
Chapter 6 describes a novel approach for automatic classification of wall motion 
abnormalities from detected borders, which is directly derived from the statistical shape 
modeling described in the previous chapters. 
 
Chapter 7 lists the clinical applications of the research described in the previous chapters, 
as well as some important spin-offs from our work that would otherwise not be covered in 
this thesis. In this way, we hope to supply a more complete and unifying image of the total 
research endeavors. 
 
Finally, some conclusions are presented. 
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1.1   Introduction 
Digital image processing techniques nowadays can be found in any ultrasound machine or 
off-line analysis system. Moreover, ultrasound machines have evolved from mainly 
analog, video-type technology into fully digital, computer-like systems. Digital image 
storage and digital processing of echocardiographic images, both for image enhancement 
and analysis, is widely practiced. Some forms of automated image analysis and automated 
border detection (ABD) techniques (also known as edge detection, border delineation, 
edge finding) are commercially available. However, automated border detection is still in 
full development. Many issues remain to be solved, but important breakthroughs may be 
expected soon. 

Automated border detection can potentially liberate echocardiography from its scent of 
subjectivity, and supply the echocardiologist with quantitative, less subjective tools for 
research and clinical practice. However, ultrasound is a difficult imaging modality for 
interpretation, both for humans and computers. Frequently, unrealistic expectations as 
well as unfounded denunciation of the possibilities of image processing and automated 
analysis are encountered. In this chapter we want to provide the clinician with some 
insight into the background of different techniques and supply some practical guidelines 
for the choice and use of techniques and their possibilities and limitations.  

1.1.1 Digital image processing and endocardial edge  
detection: why and when? 

Digital image processing concerns all manipulation of images by a computer. In a more 
limited sense, it refers to enhancement or analysis of images. Image enhancement aims at 
improvement of images, for visual interpretation or for further automated analysis. This 
can range from a simple contrast adjustment up to sophisticated filtering. The user can 
apply these when (parts of) an image need improved visualization. 

Image analysis generally involves the derivation of some quantitative measures or 
parameters from images. In a narrower sense this often refers to automatic localization 
and outlining (edge detection, border detection) of certain structures. In echocardiography, 
the left ventricular (LV) endocard is of prime interest. Outlining of the LV endocardial 
border is necessary for quantitative measurements of LV cavity area and calculation of 
volume, local wall displacement and velocity, etc. Combination with the epicardial border 
allows calculation of wall thickness and LV mass. 

Besides quantitative measurements based on delineated areas or caliper distances, 
visual estimation of parameters (such as ejection fraction) or semiquantitative 
classification (e.g. wall motion scoring for stress echo) still plays an important role in 
clinical practice. Eyeballing can be done fast, without much ado, and some experts reach 
an admirable accuracy. However, in general it is inaccurate, irreproducible and hard to 
learn1. 

Visual estimation of quantifiable measures should be discouraged for any purpose 
beyond a rough classification, whenever a quantitative alternative is present. Quantitative 
analysis is advisable when repetitive interpretations are done; when more subtle 
differences are sought; when interpretation experience is limited; and whenever scientific 
research is the goal.  
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The classical method of outlining the borders is manual drawing. Any ultrasound 
machine or off-line analysis system has facilities for this, using a mouse, trackball or 
similar device. Manual drawing, however, is known to have high inter- and intra-observer 
variability, it is strenuous and time consuming for the operator and requires expertise and 
dexterity. Especially drawing of all frames in the cardiac cycle, over multiple cycles and 
over multiple stages (as in stress echo) is hard to perform practically, both in terms of 
consistence as well as workload. Automated border detection (ABD) in principle can 
provide solutions to these problems. Potentially, any measurement that requires manual 
drawing of borders or indication of landmark points may benefit from automated detection 
techniques. Moreover, if ABD can be performed on-line and in real time, it opens 
possibilities for real-time monitoring of parameters like LV area and volume. 

Procedures like stress echo that currently rely totally on visual scoring of wall motion 
and comparison between different stages could benefit enormously from automated 
analysis; the lack of quantification and the large inter- and intra-observer and inter-
institution variabilities2 are felt as important limitations. No practical automated method 
for stress echo analysis is available yet, but some promising developments will be 
described. 

1.2   Digital image storage,  
communication and compression 

The basis of digital image processing and analysis is the availability of images in digital 
form. Digital image storage and related subjects will be discussed in more detail in the 
chapters on the digital echocardiography lab; here, an overview of properties of 
importance for image processing is given. The generation of ultrasound images, including 
ultrasound physics, RF signal processing, scan conversion, and the instrumentation of 
ultrasound machines is beyond the scope of this chapter. Excellent descriptions on these 
subjects can be found in many handbooks3-6. 

1.2.1 Digital images 
Digital images are bitmaps, large rectangular matrices of dots or pixels (picture elements) 
in which the brightness (or color) at each position is represented by a numeric (digital) 
value. Brightness level is also referred to as intensity or gray value. Typical sizes for echo 
images are 640 * 480 * 24-bit, equivalent to an NTSC color image, or 768 * 576 * 8-bit 
for a PAL B/W image. This should be read as: 640 columns by 480 rows of pixels (width 
* height), 24 bits per pixel; the composing colors red, green and blue are each coded by 8 
bits, giving 256 levels per color, allowing 16.8 million color combinations. A cineloop or 
movie is a sequence of such images, typically at a frame rate of 30 or 25 images per 
second. A digital representation makes it possible to store images as data files and process 
these in a computer – hence, digital image processing. Analog images, as they are used in 
TVs and VCRs, consist of a continuously varying electrical signal (the video signal) that 
represents the brightness along horizontal lines in the image. Such a signal is subject to 
noise and degradation when it is transmitted over a line or stored on a VCR tape. On the 
other hand, digital images do not degrade when copied, transmitted or stored for longer 
periods. Digital images can be stored on digital media like floppy disks, MOD, CD-R, 
DVD, etc., transported over networks and stored in large databases, linked with any other 
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patient information. The main drawback is still the huge amount of data storage that is 
involved – a single VCR tape of 2 hours carries the equivalent of about 200 Gigabytes of 
uncompressed color images. With image compression and selection we can limit the 
storage requirements considerably, but still we cannot use digital storage simply instead of 
a VCR now.  

Inside the ultrasound system, echo images are always created as digital images. Frame 
rates and image size can be very different from the typical video values. For display on a 
monitor and recording on VCR, these digital images are converted into an analog video 
signal. Not all ultrasound machines support the storage or communication of digital 
images, and some can only store single frames, not cineloops.  

For digital image processing and analysis, digital images are a prerequisite. If only 
analog video output or VCR tape is available, it is possible to redigitize the analog signal 
with the help of computer devices named frame grabbers or video digitizers. Note that 
this introduces unwanted image deterioration in the form of noise and jitter, loss of spatial 
and temporal detail, loss of separation between image, graphics and color overlays, and 
loss of additional information such as calibration, patient information, etc. 

1.2.2 Storage formats, image communication 

1.2.2.1 DICOM 
The current method of choice for digital image storage and exchange is DICOM (Digital 
Imaging and Communications in Medicine)7. DICOM 3.0 is a generally accepted 
international standard for medical images proposed by the DICOM committee, a 
cooperation of professional organizations such as the American College of Radiology 
(ACR), the American College of Cardiology (ACC) and the European Society of 
Cardiology (ESC), experts from the medical imaging industry and standardization 
organizations like NEMA (National Electrical Manufacturers Association). Originally 
developed for radiography, DICOM now encompasses extensions for most image 
modalities, including ultrasound, MRI, CT, X-ray angiography and nuclear imaging. The 
DICOM standard is still being extended and improved to better support stress echo, 3D 
echo, IVUS etc. DICOM should improve the exchangeability of all medical image data. 
As its name implies, DICOM is a communication standard rather than a file format – it 
defines the way in which medical imaging devices such as ultrasound machines, PACS 
servers, printers etc. communicate to transport, store, retrieve, find or print images and 
associated patient information. All major manufacturers have committed themselves to 
support DICOM; eventually, this should allow easy networking in multi-vendor 
environments, workable PACS systems, easy and transparent off-line viewing and 
analysis. Ultimately this may lead to the digital integrated patient record, which should 
contain the full patient file, including patient history, lab reports, images of all modalities, 
etc. DICOM covers every detail of medical image handling, for a multitude of imaging 
modalities and uses, all captured in substandards that are defined by subcommittees and 
working groups. Therefore, DICOM is a very complicated standard: the full description 
covers several thousands of pages8. A very readable explanation of DICOM for 
echocardiographers is given by Thomas9. 

Note that the statement that devices are ‘DICOM compliant’ is rather meaningless; 
DICOM defines a multitude of services and imaging modalities; for each piece of 
equipment a DICOM Conformance Statement defines precisely which services are 
supplied and supported for what modalities and to what extend. For ultrasound, it is good 
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to know that image loop storage is not a part of the standard US modality, but of the later 
defined US-MF (Ultrasound-MultiFrame) modality. To verify interoperability between 
devices, the conformance statements should be compared - not a simple job for a novice in 
DICOM10. 

1.2.2.2 Proprietary formats 
Several manufacturers still use or support their own proprietary formats for storage of 
digital image runs with associated patient and image information. Such formats include 
HP-TIFF or DSR11, DEFF12 (both TIFF extensions), VINGMED, etc. While these digital 
formats may be adequate or even have certain advantages in a single-vendor environment, 
they may complicate exchange with other departments or hospitals, use of PACS, off-line 
analysis systems etc. 

1.2.2.3 General purpose formats  
Other widely used general-purpose image formats are BMP, TIF, GIF, and JPEG. These 
are often used for export of screen shots or single images for use in reports, presentations 
and papers. These formats generally lack the possibility for storage of image loops 
(movies) and additional patient information. For movies, AVI, MPEG and QuickTime are 
popular formats. These are also general-purpose formats without possibilities for storage 
of associated data. 

1.2.3 Image compression 
For reducing the data storage requirements, image compression can be employed. A 
distinction should be made between lossless and lossy image compression. For lossless 
compression techniques (like Run Length Encoding (RLE), Lossless JPEG or various 
general-purpose file compression techniques such as LZW (used in the ubiquitous ZIP, 
TAR etc)), reversing the compression will produce a perfect copy of the original image. 
Unfortunately, lossless compression generally only reduces file sizes by a factor of 2 to 5. 

Lossy compression can reach much higher compression ratios (up to 20-100) at the 
cost of a certain amount of image degradation, generally by eliminating information for 
which the eye is least sensitive. This degradation may be very acceptable visually (JPEG 
factor 20 has been found to produce only diagnostically non-significant degradation13), 
especially when compared to the degradation associated with VCR storage. However, the 
compression artifacts may certainly influence digital image processing and analysis. 
Severely lossy compression is not advisable for archiving or when digital image 
postprocessing is foreseen. Lossy compression techniques include Lossy JPEG, fractal 
and wavelet compression, and MPEG, a popular compression scheme for movies. 

DICOM currently supports RLE and JPEG (lossless and lossy) compression. MPEG 
and JPEG 2000 compression schemes have been proposed as extensions to the standard. 

1.3   Digital image processing 
Digital image processing14,15 is a science by itself and cannot be discussed here in great 
detail. Medical image processing is a thriving subdiscipline with many applications and 
innovations that have become valuable tools in the hands of the clinician. Several good 
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handbooks on medical image processing, with special attention to ultrasound are 
available16-19. 

1.3.1 Image enhancement: level manipulations, filtering 
Image enhancement deals with the improvement of images, either for visual interpretation 
or as a preprocessing for analysis. Most of the techniques described here are available in 
any general-purpose program for manipulating digital images, photo editors etc., as well 
as on most ultrasound machines and off-line analysis programs. 

The simplest class of operations is level manipulations: operations that change the 
brightness level or color of each pixel without considering any neighboring pixels. These 
operations are also known as lookup-table (LUT) operations, because the original 
brightness of the pixel is simply used to look up the new value in a conversion table. 
Operations of this class include brightness level manipulations and pseudocoloring. 

1.3.1.1 Brightness level manipulations 
This class includes all one-to-one conversions of image brightness levels (input) to display 
brightness levels (output), either linear or non-linear. Examples are digital 
contrast/brightness adjustments, image inversion, gamma correction and histogram-based 
conversions. The histogram H(I) of an image is a function that describes for each 
brightness level I, the number or percentage of pixels in the image that have this 
brightness level. Histogram-based conversions include histogram stretching, a linear 
contrast stretch between the minimum and maximum values of I (or certain percentiles) in 
the histogram; and histogram equalization, a nonlinear transform that redistributes the 
gray levels I so that a flat histogram is obtained, increasing the contrast in brightness 
ranges with many pixels and reducing the contrast in less frequented ranges. Some 
examples are given in Fig. 1.1. Note that many level manipulations may result in clipping 
(Fig. 1.1.C,D,E) and in reduction of the effectively used number of brightness levels. The 
extreme example is thresholding (Fig. 1.1.E), where all brightness levels above a 
threshold are set to white, and all below to black. 

1.3.1.2 Pseudocolors 
Pseudocoloring involves a direct conversion of brightness levels to a color scale, generally 
labeled with fancy names like ‘Rainbow’, ‘Ocean’, ‘Harvest’ etc. As the eye is more 
sensitive to color differences than to intensities, this may reveal subtle contrast 
differences. It can be visually pleasing but it is highly suggestive, as it clusters similar 
gray values into color groups. As brightness levels in ultrasound by themselves do not 
represent any physical property (see ‘problems and pitfalls’ below) and are highly 
dependent of gain, signal attenuation, TGC etc, the borders that are suggested visually by 
these colors have no practical significance20. This technique is also applied sometimes to 
highlight brightness values above some threshold with a color, e.g. during contrast 
injection. Similar objections apply there. 
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Figure 1.1.   Image brightness conversions (LUT operations) and their results. 
A. Identity: no change.  
B. Inversion  
C. Increased contrast (note clipping C)  
D. Decreased brightness  
E. Thresholding  
F. Histogram equalization 
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1.3.1.3 Filtering 
Filtering is the generic name for image operations that consider neighborhoods of pixels, 
and deal with the spatial or temporal aspects of the image. Filtering operations include 
noise reduction, smoothing or blurring, sharpening or edge enhancement. Smoothing or 
low-pass filtering (e.g. uniform, Gaussian) is used in many ABD methods (see below) to 
reduce the speckle noise and get more or less homogeneous regions; hi-pass edge 
enhancing or detection filters (e.g. Sobel, Laplacian) are used often to find (candidate) 
border points. Note that most smoothing methods change the positions of edges and 
cannot differentiate between noise and weak signals. Hi-pass filters tend to be very 
sensitive to noise. In general, filtering does not improve the appearance of ultrasound 
images without simultaneously removing valuable information. Smoothing/sharpening 
filters may be available on your ultrasound machine for real-time use: keep the above-
mentioned caveats in mind when using this option. 

Many more complex forms of postprocessing exist, including median filters, temporal 
smoothing, morphological operators like opening/closing, region growing, matched filters, 
texture analyses, wavelet transforms, Fourier and Cosine transforms, all of which have 
been used as parts of ABD methods. Most of these have little practical value by 
themselves. 

1.3.2 Image interpretation: the interpretation pyramid 
The interpretation of highly complex information like (medical) images is an extremely 
complicated task. We humans tend to underestimate it considerably: for us, vision is a 
very natural process that we perform instantly and automatically. From the study of 
human perception we know that vision is all but a simple, straightforward process. Think 
of the many well-know optical illusions: there is a lot of hidden interpretation going on. In 
the interpretation of images, a certain number of information abstraction levels can be 
distinguished. This is generally known as the image interpretation pyramid (Fig. 1.2). The 
levels of this pyramid give us more insight in the mechanisms of different automated 
techniques and their limitations. A good analogy is found in the interpretation of 
handwriting or spoken language. This analogy is described in Table 1.1. For interpretation 
of a written text, one has to know about the alphabet, spelling, vocabulary, syntax and 
semantics, and ultimately about the subject of the text, the intentions of the source and 
adornments like humor, sarcasm, metaphors, etc. These last aspects concern real-world 
knowledge that has nothing to do with language – it refers to the domain that the text is 
discussing. In practice, this is not just a simple bottom-up process of combining letters 
into words into sentences into signification. Text can be fragmented, there are 
imperfections like misspellings and ambiguities, unknown words, missing domain 
knowledge etc., that necessitate interactions and feedback between all levels and even 
guessing, to come to a consistent interpretation.  

1.3.2.1 Cardiac image interpretation 
In image interpretation, we have a similar hierarchy. At the basis, we find the raw image 
information (pixels). Going up, we encounter image features like local texture, gradients; 
structures  like regions (groups of adjacent pixels with similar properties) and edges (lines 
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Figure 1.2.   The image interpretation pyramid. 
 
of sudden change, between regions); objects like a square, a person etc; and a scene, e.g. a 
football match. At the top we have significance, e.g. finding out who’s winning - this 
requires very specific knowledge on behavior of the players and audience, rules of the 
play, etc.  

Interpretation of medical images, especially of a complex, dynamic organ like the 
heart is still more difficult, as it requires expert knowledge about the three-dimensional 
anatomical structures in the heart, their dynamical behavior, pathology and anatomical 
variability between patients, and the intricacies of the imaging modality involved. This 
last point specifically is not to be underestimated for ultrasound.  

Again, interpretation is not a simple bottom-up process. Missing or ambiguous 
information, disturbances like noise and artifacts, and higher-level knowledge on 
anatomy, physiology and pathology are involved and necessitate feedback and 
interactions between levels. 

Clearly, very different sorts of knowledge are applied at each level to come to a valid 
interpretation, and only the lower levels have to do with image properties: higher levels 
concern sizes and shapes of cardiac parts, anatomical models of the heart, physiology, 
congenital or pathological conditions, etc. Automated border detection systems generally 
have very limited knowledge or models at the higher interpretation levels, and resolve this 
in one of three ways:  

1. They use simplifying assumptions regarding the objects. E.g. the left ventricle 
is a dark, round object in the middle of the image; the endocardial contour is 
convex, the endocard is the strongest edge in the image, the cardiac wall will 
not move more than x pixels per frame. Most of such assumptions will hold 
only to some extend or are overly general. 



Chapter 1 

21 

Table 1.1.  
Abstraction level hierarchy 

Level General Speech Image Cardiac Associated operations 
0 raw data samples pixels pixels image generation 
1 features amplitude, 

frequency 
intensity, texture, 
gradients 

intensity, texture, 
gradients 

preprocessing, filtering, 
feature extraction 

2 structures phonemes edges, regions edges, regions  linking, merging, 
matching, clustering 

3 objects words world entities, 
borders, objects 

cardiac structures 
(lumen, endocard, 
valve) 

model relaxation, border 
finding, classification 

4 object 
sets 

sentences scene cardiac scene scene modeling, inter-
object relations 

5 Interpreta
tion 

significance scene 
interpretation 

interpretation and 
diagnosis 

hi-level interpretation, 
expert systems, rules 

 
2. They limit themselves to a subset of the problem domain, for aspects like cross 

sections (e.g. only mid-papillary short-axis), image quality (no dropouts, low 
noise), anatomy (e.g. no congenital defects) or imaging equipment or settings 
(scale, gain, frequency). 

3. They require the user to handle the high-level aspects by initializing, steering 
and/or correcting the system. 

The level of knowledge that a certain system applies, the validity of its assumptions and 
the ease of interaction for the user determine the ‘intelligence’ and practical value of the 
system.  

1.3.2.2 Rules for a well-behaved ABD method  
No practical system can do without the intervention of the user. Ideally, there is only one 
desired and necessary interaction: in cases where there is room for multiple 
interpretations, the user should have the final decision. In practice, a computer system can 
never have all the high-level knowledge that the physician has, and it requires his 
intervention to handle these blind spots. Systems with little high-level knowledge and 
models, however, rely heavily on the user to handle their shortcomings and mistakes 
(USER = Universal Solution for Error Recovery). 

With the above in mind, we can formulate a few criteria for a good and well-behaved 
ABD method.  

1. The method should generate ‘correct’ contours. As this may be subjective (in 
the light of multiple possible interpretations), a system should be able to adapt 
to the expert user’s general ideas about correct contours. 

2. The contours should be reproducible; this seems obvious for an automatic 
system, but almost all systems require some type of user interaction (setting of 
certain parameters, indicating some start point or region, selection of the 
images to be analyzed, corrections), which will lead to some variability in 
results. This inter- and intra-observer difference should possibly be smaller than 
the considerable inter- and intra-observer variabilities associated with similar 
manual work. 

3. The method should be user-friendly; it should only address the user for high-
level expert decisions. It should not require him or her to handle ‘stupid’ 
mistakes, do repetitive corrections, etc. Some implications: 
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• It should not generate physically or anatomically impossible solutions; 
unlikely solutions should be marked as such. It should supply alternative 
hypotheses (when relevant). 

• It should not override user-drawn contours etc., unless specifically asked 
to (apart from cleanup of minor imperfections). 

• It should allow for easy, intelligent, minimized control and correction 
(the intent of the correction should be applied throughout the whole 
image set). 

1.4   Automated border detection in 
echocardiography 

1.4.1 Problems and pitfalls of border detection in  
ultrasound 

Ultrasound is a particularly difficult imaging modality for interpretation. Outsiders mostly 
find it hard to interpret, contrary to other tomographic modalities such as CT and MRI. 
Ultrasound suffers from several specific drawbacks, which also impede automated 
analysis. 

1. There is no simple physical relation between pixel intensity and any physical 
property of the tissue visualized, in contrast to the Lambert-Beer law for X-ray 
or the Hounsfield units for CT. In ultrasound, images are formed by sound 
reflection and scattering, resulting in a combination of interference patterns 
(ultrasound speckle patterns) and reflections at tissue transitions. Different 
tissues are often only distinguishable by subtle differences in texture (speckle 
patterns) or behavior of texture over time, rather than by different intensity 
values. 

2. Ultrasonic image information is very anisotropic and position-dependent, as 
reflection intensity, spatial resolution and signal-to-noise (S/N) ratio are very 
dependent of both the depth and the angle of incidence of the ultrasound beam, 
as well as of the user-controlled Time Gain Compensation (depth gain) settings. 
Even the definition of the border position may be direction-dependent (leading 
edge or trailing edge borders20). 

3. Image disturbances: artifacts caused by side lobes, reverberations, lateral and 
radial point spread functions, significant amounts of random noise. Many of 
these problems are associated with high gain settings, often necessary in obese 
or older patients. Speckle noise can be seen as an artifact as well; although it is 
an inherent part of ultrasound imaging, it often veils anatomical details. 

4. Missing information: dropouts (for structures parallel to the ultrasound beam), 
shadowing (behind acoustically dense structures), scan sector limitations, 
limited echo windows. Still-frame images generally miss some information; the 
human eye compensates for this when viewing a sequence of images. It 
resolves ambiguities and interpolates the missing parts by exploiting the 
temporal behavior of structures and texture, which allows discrimination 
between noise, artifacts and anatomy.  
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5. Problems caused by the limited temporal resolution and the scanning process. 
The sequential scanning of lines combines information from different time 
moments into one image. For fast moving structures, this may lead to spatial 
distortion. When the scan frame rate is not synchronous with the video frame 
rate of 25 or 30 images per second, sharp transitions between ‘old’ and ‘new’ 
scan line information may appear in still images. These effects are stronger for 
lower scan frame rates. 

6. 2D ultrasound generally lacks spatial reference information: no exact spatial 
localization of the cross section plane is known. In 3D techniques as MRI or 
CT, this information is often employed in model positioning for the detection. 
In cardiac ultrasound, the choice of the imaged cross section depends both on 
the skill and precision of the sonographer and the available echo window, 
which is limited by ribs or other structures. Apart from volume measurement 
errors, this may also result in detection problems if the ABD method relies on 
assumptions of shape, distance between epicard and endocard, presence or 
absence of other structures like valves, papillary muscles etc. 

1.4.2 Practical considerations for ABD 
Practical considerations for appropriate border detection (either automatic or manual) are 
listed in Table 1.2, subdivided in three categories. 

1.4.2.1 Acquisition and image quality 
The primary requirement for any analysis, whether automated, manually traced, or visual, 
is optimal image quality. If the border cannot be seen, it can only be guessed (more or less 
intelligently). Therefore, one should optimize image quality, standardize system settings, 
and reduce variability in settings and cross sections. Select a depth such that the object of 
interest fits well inside the scan sector, and fills most of it. Try to adjust acoustic power, 
overall gain, Time Gain Control (TGC, STC, depth gain etc.) and/or Lateral Gain Control 
(LGC) such that the endocard is best and most homogeneously visualized. Remember that 
stop-frame images are much harder to interpret than moving sequences – individual 
frames may be much less pleasing than the cineloop suggests. Since most detection 
methods do not use inter-frame relations, they actually use single frames and suffer from 
the higher uncertainty. A high frame rate (at least 25 f/s) is advisable, both for full-cycle 
analysis and for proper selection of end-systolic frame in case of ED/ES analysis. For 
image storage, use digital images whenever possible - do not store images on videotape to 
re-digitize these later. Avoid lossy compression with high compression rates, image 
subsampling (resolution reduction), temporal subsampling (frame rate reduction), etc. 
When selecting a region of interest (ROI) for storage, make sure that it will contain the 
object completely over the full time range. 

 1.4.2.2 Contour definitions and consistency 
Before attempting manual or automated detection, make sure that proper criteria are 
defined for the desired contours. This may depend on the desired calculation(s) to be 
performed from the contour. Trabecular structures, papillary muscles, or valves can either 
be included or excluded for certain calculations (LV volume, regional wall motion, LV 
mass). Many points need to be standardized:  whether leading, maximum or trailing edges 
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Table 1.2. 
Practical considerations for (Automated) Border Detection. 

Acquisition and image quality 
 Optimize border visualization 
 Limit variation in system settings (gain, power, TGC, LGC)  
 Limit variation in cross sections (use landmarks) 
 Proper ROI / depth 
 High frame rate 
 Digital storage (pref. lossless); no filtering 
 No spatial/temporal subsampling or small ROIs for storage 
Border definitions and consistency 
 Inventory of desired calculations 
 Standardize border drawing definitions:  
  In- or exclusion of papillary muscles, trabecular structures, valves etc. 
  Position of edges: leading, peak, trailing 
 Exclusion criteria and special cases: 
  Image quality: foreshortening, dropouts, artifacts, noise 
  Pathologies: hypertrophy, dilation, cardiac masses etc. 
  Congenital deformations etc. 
 Assess inter- and intra-observer variabilities: 
  To test standardization 
  To check errors against study goal, estimate patient population size for significance 
  Include acquisition protocol? 
Choice of detection technique 
 Check specs of ABD technique against problem: 
  Cross sections 
  Cardiac objects (LV, RV,...; endocard, epicard,...) 
  Border definitions 
  Single frame, ED/ES, full-cycle, multicycle 
  Real-time on-line or off-line with corrections 
  ABD dependence on image quality, artifacts, settings 
  Amount and types of user interaction 
 Is manual analysis a practical alternative? 

 
are drawn; what to do in case of foreshortening, dropout, etc20,21. When possible, perform 
inter- and intra-observer comparisons and try to reach consensus before starting a large 
study. In some cases this should include the image acquisition, to assess inter- and intra-
operator variability in the choice of cross section, ultrasound system settings etc. 

1.4.2.3 Choice of detection technique 
When considering an automated technique for border detection, it is wise to check the 
following against the specifications of the automated method: the cross sections involved; 
the object to be detected (LV, RV, atria...); single-frame, ED/ES, full-cycle or multi-cycle 
analysis; the brand and type of echo machine(s) used; the type of contour to be found 
(blood-tissue border or other like epicard); on-line or off-line availability of the detection; 
possibilities for user correction of the boundaries (in off-line case); dependency on system 
gain, image quality and common artifacts as dropouts, noise; amount of user interactions 
needed. In case no suitable automated technique is found for a certain analysis, manual 
measurements may (or may not) provide a practical alternative. 
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1.4.3 Overview of ABD methods 
Ever since the invention of echocardiography, methods have been devised for the 
automated analysis of these images. Literally hundreds of methods have been reported 
(overviews:22 23), most of which have only academic value24,25. We will not try to present a 
complete taxonomy here, and limit ourselves to the main directions of research. We will 
refrain from any comparisons on reported success scores, as there are no standard test data 
sets for this purpose, nor standard test criteria. It is also difficult to compare the type and 
extent of user interaction, reproducibility etc. Any success scores reported depend very 
much on the chosen inputs and their quality. By lack of a gold standard, contours are 
generally judged by an expert, or compared to contours manually drawn by one or more 
experts, or derived values like area or volume are compared to some alternative 
measurement. Most of these are hard to compare between studies. A rough measure for 
the value of a method could be the number of patients on which it has been tested. 
Methods that have been tested on less than 10 patients probably have no practical value 
(although their academic value may be high): no matter how naive the method, one can 
always find a few images on which it will work. 

A listing of a representative cross section of reported techniques is given in Table 1.3. 
For each level, the most basic technique is given first. This one is often applied by 
methods that focus on other levels. Unsurprisingly, older techniques generally operate on 
a lower level. Of level 5, few true examples currently exist. The terms ‘knowledge-based’, 
‘intelligent’ and ‘model-driven’ are widely misused, even for the most basic techniques at 
any level. 

1.4.4 Feature based method: Integrated Backscatter  

1.4.4.1 Method, advantages, limitations 
The clinically most widespread method for ABD is by far Hewlett-Packard’s Acoustic 
Quantification® (AQ32) that is installed in several HP (Agilent) ultrasound machine 
models (Fig. 1.3). AQ is not an ABD system in the strict sense as described above, 
because it merely does a blood/border/tissue pixel classification (by thresholding) on the 
basis of the integrated backscatter energy of the RF ultrasound signal. Therefore, it falls 
into the lower hierarchical levels of the image interpretation pyramid. However, its use of 
the RF data, the on-line real-time applicability and widespread availability make it a 
valuable tool. A real-time lumen area plot and area change (dA/dt) plot can be generated, 
as well as a real-time frame-to-frame monoplane volume calculation. When used with 
care in images of good quality, it can give very nice results. However, AQ also suffers 
from some serious drawbacks55,56, which may be summarized as follows. 

• The AQ borders are very sensitive to image quality (noise, dropouts) and gain 
settings (TGC, LGC), and often difficult to control for the user. Cardiac-cycle 
dependent intensity changes can influence area change calculations55. 

• AQ uses a fixed, user-drawn ROI within which the blood pixels are counted. 
Parts of the ventricle (the valve plane and/or septum) tend to move in and out of 
such a region throughout the cycle, resulting in considerable measurement 
errors because of missed parts of the ventricle or included parts of the atrium 
and the other ventricle. 
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Table 1.3. 
Overview of ABD methods at different abstraction levels. 

Level Name Basic technique(s) Advanced techniques 
1. 

Preprocessing 
• Heavy smoothing for 

noise/speckle reduction26  
• Contrast stretching 
• Histogram equalization 

• Spatiotemporal smoothing27 
• Morphological filters28 
• Texture filters: Inverse Difference Moment29; Wavelet 

transforms30; Fourier-based filters31 
• RF data processing: Integrated backscatter (AQ)32 

2. 
Edge / region 

detection 

• Global or local 
thresholding27,33  

• Simple edge detectors like 
difference-of-boxes26,34,35 

• Advanced edge detectors: Marr-Hildreth36,37; Canny38-

40; rank-based operator41 
• Pattern or profile matching42  
• Matched filters43; arc filters44 
• Region detection: Region growing31; fuzzy clustering; 

resolution pyramids; neural nets; Markov Random 
Fields45 

3. 
Geometric 
objects / 
models 

Implicit models:  
e.g. radial search for 
candidate points26, 
interpolation/linking, 
smoothing/shape filtering. 

• Classification of edge points by fuzzy reasoning37 
• Dynamic Programming optimization39,46-49 
• Simulated Annealing40; Self-organizing maps (SOM, 

Kohonen)41 
• Snakes/balloons/active contours/deformable contours 

etc.34,38,39,50 
• Active Shape Models (ASM)42,51 

4. 
Anatomical 
structure / 

scene models 

None or implicit:  
• hard-coded  
• manually positioned  
• user-drawn 

Single geometrical shape models in 2D, 2D+T, 3D, 
3D+T:  

• Model positioning / landmark finding techniques: 
row/column sums35,37, arc filters44, template matching; 
Hough transform40; Fuzzy Logic30 

• Shape parameters (2D+T)23 
• 3D shape Neural Nets52 
Composite models (several objects and their relation, e.g. 

ventricles and septum), in 2D, 2D+T, 3D, 3D+T:  
• Point Distribution Models53 
• Multiple active contours38 
• Fuzzy neural nets (2D)54 

5. 
Interpretation, 

high-level 
knowledge 

• None  
• User intervention: 

correction of contours etc 

• Adaptation of models to image and user23 
• Use of patient group derived models: Neural nets54, 

SOM41, geometrical eigenvariations (PDM)42,53 
• Learning behavior over all cases analyzed 
• Rule-based analysis 
• Pathology awareness 
• Multiple hypothesis generation 

 
• It is mostly impossible to eliminate tissue parts within the ventricle (valve, 

papillary muscle, and trabecular structures) or to exclude dropout regions from 
the ventricle, and noise and artifacts may cause serious problems, especially in 
difficult patients. Reported success scores in larger patient populations vary 
widely. 

• The contours are very noisy, which can be expected for a thresholding-type 
technique; this implies they are not directly suitable for regional wall motion 
calculations. A procedure for extracting and postprocessing these contours has 
been reported57. 
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Figure 1.3.   (see color suppl.) Acoustic Quantification (AQ) on Agilent (Philips) equipment.   
(Reprinted with permission of Agilent Technologies, Healthcare Solutions Group, Imaging Systems Division, 
Andover, MA) 
 
 
 

 
 
Figure 1.4.   (see color suppl.) Color Kinesis (CK) image on Agilent (Philips) equipment.  
(Reprinted with permission of Agilent Technologies, Healthcare Solutions Group, Imaging Systems Division, 
Andover, MA) 
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• The method is real-time by nature, as it uses the RF signal, which is only 
available during image acquisition. Apart from being a unique advantage, this 
also means the method cannot be used off-line, nor can the same images be re-
analyzed with different settings. Whenever RF data can be stored, this 
limitation will be resolved. 

Most of these problems are exemplary for a low-level method that does not use any 
geometric models or knowledge about cardiac anatomy. Apart from these drawbacks, the 
use of RF data supplies superior basic information for blood-tissue classification and may 
well serve as a basis for higher-level developments, especially when the digital RF data 
becomes available for off-line postprocessing. 

The use of Harmonic Imaging (see below) has been shown to improve AQ border 
delineation58,59, but does not eliminate most of these problems. 

A spin-off of AQ is known as Color Kinesis60,61 (Fig. 1.4). This is in essence a method 
of presenting the time sequence of AQ contours in a single image, by color-coding the 
lumen area for each time frame and superimposing these. This renders a rainbow-like 
lumen where each color represents some time-offset from ED. Provided there is little 
global heart translation, this can give a good impression of wall motion patterns in systole 
or diastole, especially when these are analyzed per region61-63. Of course, all limitations of 
AQ apply here as well, plus the concern of overall heart translation, so that this technique 
is also challenging to apply accurately. 

1.4.4.2 Clinical use 
AQ has been applied in clinical studies for many purposes, especially for looking at left 
ventricular function (lumen area, volume and fractional area change). Studies on right 
ventricular function have been reported as well64. Combination of AQ data with invasively 
measured ventricular pressure has been reported65 allowing pressure-area and pressure-
volume loops to be constructed, which may hold promise for the assessment of LV 
mechanical performance. Color Kinesis has been used for studying wall motion patterns 
in several patient groups, systolic and diastolic function, regional wall motion in stress 
echo, etc.63,66,67 

1.4.5 Structure based method: matched filters 
As an example of a structure based method, we highlight the method by Geiser and 
Wilson24,44,68 for automatically detecting endocardial and epicardial borders in short-axis 
echocardiograms. The method is based on matched filters that respond to arc-like 
structures. The first step applies a filter that responds to the bright epicardial/pericardial 
interface at the posterior wall. Subsequently, other circular structures along the wall are 
detected and after update of the LV center estimate, redetected (an example of high-to-low 
level feedback). This gives an estimate of epicardial position, which is used as a region of 
interest. Radial edge detectors are used to locally adjust epicardial edges and to estimate 
the (relatively strong) anteroseptal endocardial edge. From the estimated wall thickness, 
the border search is further limited and final endocardial and epicardial edge estimates are 
found (Fig. 1.5). 
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Figure 1.5.   Short-axis border detection with arc filters.  
Top: Short-axis echocardiographic images at end diastole and end systole. 
Bottom: automatically generated borders at end diastole and end systole. 
(From: Sheehan F, Wilson DC, Shavelle D, Geiser EA: Echocardiography. In: Sonka M, Fitzpatrick JM, eds. 
Handbook of medical imaging. Volume 2. Medical image processing and analysis, p 659. Reprinted with 
permission of SPIE - The International Society for Optical Engineering, Bellingham, WA). 
 

This method seems practically useful (it has been validated on a large set of (quality-
selected) patients), and it is clever in the sense that it uses feedback between a high-level 
model of a short-axis cross section and low-level feature data. From a theoretical 
viewpoint it is vulnerable because of the cascade of dependent steps, each of which may 
 fail and cause the process to break down. Much of the applied geometrical and expert 
knowledge (like the order of strength of expected features) seems to be coded into the 
steps of the algorithm rather than being captured in a general model. Such an approach 
may be hard to extend to other views or to certain pathologies that break the assumptions, 
as this requires redesigning the algorithm. 

1.4.6 Object based method: Echo-CMS 

1.4.6.1 Method 
As an example of an object based (pattern- and geometric model based) ABD method, we 
will describe the Echo-CMS® system (Medis medical imaging systems bv, Leiden, the 
Netherlands) that was developed in our laboratory. The system has been designed for 
practical use, with the main intent of quantifying endocardial wall motion and lumen 
volume frame-to-frame. A relatively simple circular-model based dynamic programming 
approach is used for short-axis views46,56. An LV center point is indicated by the user, 
defining a circular model and ROI in which the strong endocardial edge is found by 
Dynamic Programming using first-derivatives and smoothness/distance constraints. The 
found border is used as a model in neighboring frames to allow frame-to-frame analysis.  
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Figure 1.6.   Echo-CMS semiautomated border detection procedure. From left to right:  
A. ECG and original images 
B. Manual drawing of 2 contours and inspection of markers 
C. Generation of pose models (landmarks) 
D. Generation of shape models 
E. Generation of profile models (match patterns) 
F. Automatically detected contours 
 
In the different long axis views (apical four-chamber, two-chamber and parasternal long 
axis) a more elaborate semiautomated pattern-based approach is used23,69. For the analysis 
of one ore more complete beats (Fig. 1.6.A), one ED and ES contour must be manually 
drawn (Fig. 1.6.B). Next, three landmark points characterizing the position of the LV 
(apex and mitral valve attachment points, which are the end points of the contour) are 
extracted from the contours and inter/extrapolated linearly over the cycle(s). The user is 
required to inspect these markers over the cycle(s) and may then redefine, if necessary, 
intermediate positions where the true position deviates from the estimated position. Now, 
the automated contour detection is started. From the manually drawn ED and ES contours, 
models are extracted describing the geometrical shape of the ventricle over the cycle and 
the intensity profiles in a neighborhood of the drawn contours. All models (phase, pose, 
geometry and edge profiles) are interpolated over the cycle and extrapolated over other 
cycles (Fig. 1.6.C,D,E). The resulting geometry models are positioned over the images 
(Fig. 1.7.B), which are resampled along straight lines perpendicular to the models. For 
each point of all scan lines (Fig. 1.7.C, left), a cost value is calculated representing the 
likelihood of this point as a contour point: unlikely points will have high costs. The cost is 
calculated from a combination of edge detectors, match differences with the edge profile 
models, and local edge reliability measures. Through this rectangular array of cost values 
(Fig. 1.7.C, center), an optimal connective path is determined using a Dynamic 
Programming approach. Cumulative costs for all connective paths are calculated, applying 
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Figure 1.7.   Echo-CMS Dynamic Programming border detection. 
A. Original image 
B. Image with landmarks and shape model 
C. Scan value matrix (left); cost value matrix (middle) and detected path (right) 
D. Image with detected contour 
 
position-dependent penalties for deviation from a straight path. In this way, local stiffness 
of parts of the border is modeled. The path with overall lowest cost is selected as optimal 
(Fig. 1.7.C, right) and by inversion of the resampling process converted into a new 
contour (Fig. 1.7.D). 

After detection of all contours (Fig. 1.6.F), the user may apply any corrections by 
overdrawing part of a contour. Consecutively, all models are updated with the extra user-
defined information, which is interpolated and extrapolated over the sequence, followed 
by a redetection of all non-manual contours. 

In short, this method uses full-cycle models for the 2D pose, shape and local stiffness 
properties of the wall, and for the intensity profiles of the edges. Case-specific and user-
specific information is incorporated by collecting information from all user-defined 
contours. Drawbacks are the need for 2 manually defined borders and the marker 
manipulations. 
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1.4.6.2 Clinical use 
This method has been applied in studies on wall motion patterns for pacemakers70,71 and 
systolic function72-74. The system has some very strong features, including tracking of 
structures other than blood-tissue borders (user-defined positions); temporal and spatial 
coherence; and basic knowledge of LV anatomy and appearance. For research purposes it 
has been shown to be a valuable tool, but at the moment it is mainly focused on frame-to-
frame or multi-beat analyses of wall motion patterns. For ED/ES analyses it offers no 
extra benefits, as the ED/ES contours need to be defined manually. 

1.4.7 Population model based method:  
Active Appearance Models 

A great promise is held by a new class of techniques named Active Appearance Models 
(AAM). These techniques were originally developed by Cootes et al.75,76 for facial 
recognition and medical image analysis, as an extension of the Active Shape Model 
(ASM)42,51,53 approach. We have recently applied AAMs to MRI77 and echocardiograms78 
with very promising results. These techniques derive the typical shape and appearance of 
an echocardiogram from a large set of example images with expert-drawn contours. 
Principal Component Analysis (PCA) on a Point Distribution Model extracts the average 
organ shape and the principal shape variations. By warping all examples to the average 
shape, an average image (Fig. 1.8) and principal image variations (Fig. 1.9) can be found. 
By applying another PCA simultaneous shape and intensity eigenvariations are modeled, 
in an Appearance Model. Such an Appearance Model can synthetically generate 
‘probable’ echocardiographic images similar to the variations in Fig. 1.9. By deforming 
the model along the characteristic model eigenvariations using a gradient descent 
minimization of the difference between the synthetic and the real image, the desired 
structure can be found (Fig. 1.10). This can be done fast and fully automatically with good 
results. 

This technique has some significant advantages: it models both average organ shape 
and all variations over a population of examples; it models the complete organ 
appearance, including typical artifacts; it captures the expert’s definition of proper border 
definition; it can model complex shapes (e.g. LV endocard plus LV epicard, RV, valves 
etc.); it is not limited to blood-tissue borders; and it is easily customizable for different 
types of images. Limitations of this technique are its dependence on the training data, the 
selected population of examples and the quality of the expert contours. 

1.5   Future promise 
In the near future, serious improvements in the applicability of ABD may be expected. 
Some instrumental developments will have important effects, and the ABD methods 
themselves will improve. 
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Figure 1.8.  Active Appearance Model: average four-chamber images of left ventricle from 65 
patients, at different moments in the cardiac phase. 
A. End-diastole 
B. Mid-systole 
C. End-systole 
D. End of rapid filling 
E. Start of atrial filling 
 

 
 
Figure 1.9. Active Appearance Model: AAM eigenvariations 1 to 4 of 4-chamber LV at end-diastole.  
Left to right: average minus 3 standard deviations, average, average plus 3 standard deviations 
Top to bottom: AAM eigenvariations 1 to 4. Note the simultaneous shape and intensity variations. 
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Figure 1.10.   AAM matching 
results on end-systolic LV four-
chamber image. 
A.      Image with initial model 
B.      Intermediate iteration 
C.      Final matching result  
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1.5.1 Impact of instrumental developments 

1.5.1.1 Harmonic imaging 
Any technical measure that improves visual image quality is likely to improve ABD as 
well. This is certainly true for Harmonic Imaging (HI). Originally intended to be used in 
combination with contrast, HI has been shown to improve endocardial visualization in 2D 
echo79 without contrast as well58. It has also been shown to improve endocardial tracking 
by AQ as rated visually58, and by correlating AQ EF measurements to X-ray 
ventriculography59. AQ with HI still underestimates absolute volumes and can be 
technically difficult to perform. Note that HI will not improve image quality in all cases, 
and that it sometimes results in a very grainy image. ABD techniques that rely on image 
texture may be influenced, but others should certainly benefit from HI. 

1.5.1.2 Tissue Doppler, strain imaging 
Tissue Doppler (TDI) can supply real-time information on tissue velocity in the direction 
of the ultrasound beam, and thus in itself is a method for quantification of motion80-83. The 
derived Strain Rate Imaging84 and Strain Imaging85,86 techniques provide an estimate of 
local tissue strain, but their practical value remains to be established. For certain purposes, 
this may become an alternative to border motion detection approaches, but the one-
dimensionality of the measurement limits its use considerably. Tissue Doppler 
information could also well be included into Automated Border Detection techniques, as it 
provides clues both on presence and local speed of tissue. ABD might supply additional 
(transversal) motion information. 

1.5.1.3 3D/4D ultrasound 
In principle, 3-D image acquisition may provide superior input data for ABD. Border 
positions can be detected more reliable if information from neighboring slices can be 
used: spatial continuity, like temporal continuity, may provide additional clues in 
difficult-to-interpret cases. Furthermore, real volumes may be calculated from 3-D data 
instead of monoplane or biplane estimates. However, the triggered acquisition of such 
image sets may introduce motion artifacts. 3-D smoothing and cut-plane interpolations 
may also influence border positions. This modality will probably benefit most from an 
inherently 3-D or 4-D model-based detection technique. Momentarily, real-time 3D 
ultrasound (RT3D, Volumetrics, Durham NC) is becoming available87,88; this eliminates 
triggering problems and motion artifacts, but image quality is still limited. With 
improvement of image quality, RT3D may become an important substrate for ABD. 

1.5.1.4 Contrast 
Ultrasound contrast agents can be used for luminal opacification to improve visualization 
of the endocardial border, or for myocardial opacification. In contrary to what is 
sometimes suggested89, it is unlikely that contrast will directly enhance ABD. Although 
lumen opacification may boost the visual interpretation, application of contrast still has 
many pitfalls. Especially the transient nature of the opacification, incomplete or 
inhomogeneous filling of the cavity, shadowing, and local destruction of microbubbles 
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(causing mixing of ‘white’ and ‘black’ blood) make it hard to model the lumen 
appearance for any detection method. Next-generation contrast agents or special-purpose 
border detection techniques may provide solutions. 

1.5.1.5 Digital image storage/RF data 
Digital image storage and communication will have a positive effect on general image 
quality and the availability of additional information (calibration, time, patient age and 
sex, BSA, physiological signals, protocol stages, views) can be a highly important source 
of a priori information for ABD techniques. As soon as raw RF information becomes 
available via digital storage, digital postprocessing of this data may provide superior input 
for ABD methods, effectively combining the strengths of AQ with those of high-level 
model-based approaches. 

1.5.2 Developments in image processing 

1.5.2.1 Model-based techniques 
As seen in the section on Active Appearance Models, the biggest promises come from 
new developments in higher-level image processing. These techniques can model the 
complete appearance of a cardiac echo scene, including patient variabilities. This may 
allow more natural solutions than older, edge-based or geometric-model based 
approaches. As both shape variations over a large patient set and image appearance 
variations can be modeled, these techniques may handle typical artifacts, locally differing 
edge patterns, etc., while restricting themselves to probable shapes. Furthermore, it seems 
possible to separate these models in patient-specific, view-specific and pathology-specific 
parts90, allowing more precise and flexible models, and opening views to automated 
classification. The next-generation ABD technique for ultrasound may well emerge from 
this family. 

1.5.2.2 Intelligent systems 
At the interpretation level, we enter the domain of Artificial Intelligence. Work in this 
field, especially in conjunction with image interpretation, is still in its infancy. Many high-
level interpretation problems will need techniques from AI to be solved: formal reasoning 
from rule-based expert knowledge; generating multiple hypotheses with measures of 
confidence; reasoning with pathological/congenital conditions during detection; checking 
overall consistency of an interpretation, and taking action to resolve conflicts; 
opportunistically choosing an optimal detection strategy for the image data presented; 
learning from operator corrections and actions. Ultimately, such developments may lead 
to an intelligent ‘automated image interpretation assistant’ for echocardiographers. 

1.6   Summary 
Automated border detection for ultrasound is still in full development. Few clinically 
applicable systems exist, and automation is limited. Positive expectations exist for the 
future. At the instrumental side, new opportunities will emerge from computer and 
ultrasound hardware improvements, availability of digital images and of raw RF 
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information and the perfection of techniques like Harmonic Imaging, Tissue Doppler, 
real-time 3D echo and maybe contrast echo. In the field of ABD, improvements will result 
from several new technologies at the higher hierarchical levels (especially better 3D/4D 
geometrical modeling, anatomical scene descriptions and modeling of anatomical inter-
patient variability and pathological conditions) and techniques from Artificial Intelligence. 

References 
1. Foster E, Cahalan MK: The search for intelligent quantitation in echocardiography: "eyeball", "trackball" 

and beyond. J Am Coll Cardiol 1993;22:848. 
2. Hoffman R, Lethen H, Marwick TH, et al: Analysis of interinstitutional observer agreement in 

interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol 1996;27:330. 
3. Feigenbaum H: Instrumentation. In:  Echocardiography. Philadelphia, Lea & Febiger, 1986, p 1. 
4. Geiser EA: Echocardiography: physics and instrumentation. In: Skorton DJ, Schelbert HR, Wolf GL, 

Brundage BH, eds. Marcus cardiac imaging: a companion to Braunwald's heart disease. Philadelphia, 
W.B. Saunders, 1996, p 273. 

5. Weyman AE: Physical principles of ultrasound. In: Weyman AE, ed. Principles and practice of 
echocardiography. Philadelphia, Lea & Febiger, 1994, p 3. 

6. Weyman AE: Cross-sectional scanning: technical principles and instrumentation. In: Weyman AE, ed. 
Principles and practice of echocardiography. Philadelphia, Lea & Febiger, 1994, p 29. 

7. Kennedy TE, Nissen SE, Simon R, Thomas JD, Tilkemeier PL: Digital cardiac imaging in the 21st 
century: a primer. Bethesda, MD, American College of Cardiology, Cardiac and Vascular Information 
Working Group, 1997. 

8. DICOM Committee: Digital imaging and communications in medicine (DICOM), 1999 ed. Rosslyn, VA, 
National Electrical Manufacturers Association, 1999. 

9. Thomas JD: The DICOM image formatting standard: what it means for echocardiographers. J Am Soc 
Echocardiogr 1995;8:319. 

10. Waitz AS: An echocardiographer's guide to determining whether DICOM disk interchange can be 
achieved between two systems. In: Kennedy TE, Nissen SE, Simon R, Thomas JD, Tilkemeier PL, eds. 
Digital cardiac imaging in the 21st century: a primer. Bethesda, MD, American College of Cardiology, 
Cardiac and Vascular Information Working Group, 1997, p 138. 

11. Anon.: Digital Storage and Retrieval (DSR) file format specification V 0.18. Andover, MA, Agilent 
Technologies, Healthcare Solutions Group, Imaging Systems Division (ISY), 2000. Report Nr. 77450-
99000.  

12. Bono J: Data Exchange File Format. Bothell, WA, ATL Ultrasound, 1992. Report Nr. 9062-0085-00 rev 
B.  

13. Karson TH, Chandra S, Morehead AJ, Stewart WJ, Nissen SE, Thomas JD: JPEG compression of digital 
echocardiographic images: impact on image quality. J Am Soc Echocardiogr 1995;8:306. 

14. Castleman KR: Digital image processing. Englewood Cliffs, NJ, Prentice-Hall, 1996. 
15. Sonka M, Hlavac V, Boyle R: Image processing, analysis and machine vision, 2nd ed. Pacific Grove, CA, 

International Thomson - Brooks/Cole, 1999. 
16. Collins SM, Skorton DJ: Cardiac imaging and image processing. New York, McGraw-Hill, 1986. 
17. Skorton DJ, Schelbert HR, Wolf GL, Brundage BH: Marcus cardiac imaging: a companion to 

Braunwald's heart disease, 2nd ed. Philadelphia, W.B. Saunders, 1996. 
18. Sonka M, Fitzpatrick JM: Handbook of medical imaging. Volume 2. Medical image processing and 

analysis. Bellingham, WA, SPIE - The International Society for Optical Engineering, 2000. 
19. Thomas JD: Digital image processing. In: Weyman AE, ed. Principles and practice of echocardiography. 

Philadelphia, Lea & Febiger, 1994, p 56. 
20. Vuille C, Weyman AE: Left Ventricle I: general considerations, assessment of chamber size and function. 

In: Weyman AE, ed. Principles and practice of echocardiography. Philadelphia, Lea & Febiger, 1994, p 
575. 

21. Nidorf SM, Weyman AE: Left Ventricle II: quantification of segmental dysfunction. In: Weyman AE, ed. 
Principles and practice of echocardiography. Philadelphia, Lea & Febiger, 1994. 

22. Sher DB, Revankar S, Rosenthal S: Computer methods in quantitation of cardiac wall parameters from 
two dimensional echocardiograms: a survey. Int J Card Imaging 1992;8:11. 



Chapter 1 

38 

23. Bosch JG, van Burken G, Nijland F, Reiber JHC: Overview of automated quantitation techniques in 2D 
echocardiography. In: Reiber JHC, van der Wall EE, eds. What's new in cardiovascular imaging. 
Dordrecht, the Netherlands, Kluwer, 1998, p 363. 

24. Sheehan F, Wilson DC, Shavelle D, Geiser EA: Echocardiography. In: Sonka M, Fitzpatrick JM, eds. 
Handbook of medical imaging. Volume 2. Medical image processing and analysis. Bellingham, WA, 
SPIE - The International Society for Optical Engineering, 2000, p 609. 

25. Geiser EA: Edge detection and wall motion analysis. In: Chambers J, Monaghan M, eds. 
Echocardiography: an international review. Oxford, Oxford University Press, 1993, p 71. 

26. Grube E, Mathers F, Backs B, Luederitz B: Automatische und halbautomatische Konturfindung des linken 
Ventrikels im zweidimensionalen Echokardiogramm. In-vitro Untersuchungen an formalinfixierten 
Schweineherzen. Z Kardiol 1985;74:15. 

27. Ezekiel A, Garcia EV, Areeda JS, Corday SR: Automatic and intelligent left ventricular contour detection 
from two-dimensional echocardiograms. Proceedings, Computers in Cardiol. IEEE Computer Society 
Press, Los Alamitos, CA, 1985;261. 

28. Klingler JW, Vaughan CL, Fraker TD, Andrews LT: Segmentation of echocardiographic images using 
mathematical morphology. IEEE Trans Biomed Eng 1988;35:925. 

29. Montilla G, Barrios V, Roux C, Mora F, Passariello G: Border detection in echocardiography images 
using texture analysis. Proceedings, Computers in Cardiol. IEEE Computer Society Press, Los Alamitos, 
CA, 1992;643. 

30. Setarehdan SK, Soraghan JJ: Automatic left ventricular feature extraction and visualisation from 
echocardiographic images. Proceedings, Computers in Cardiol. IEEE Computer Society Press, Los 
Alamitos, CA, 1996;9. 

31. Verlande M, Flachskampf FA, Schneider W, Ameling W, Hanrath P: 3D reconstruction of the beating left 
ventricle and mitral valve based on multiplanar TEE. Proceedings, Computers in Cardiol. IEEE Computer 
Society Press, Los Alamitos, CA, 1991;285. 

32. Perez JE, Waggoner AD, Barzilai B, Melton HE, Miller JG, Sobel BE: On-line assessment of ventricular 
function by automatic boundary detection and ultrasonic backscatter imaging. J Am Coll Cardiol 
1992;19:313. 

33. Han CY, Lin KW, Wee WG, Mintz RM, Porembka DT: Knowledge-based image analysis for automated 
boundary extraction of transesophageal echocardiographic left-ventricular images. IEEE Trans Med 
Imaging 1991;10:602. 

34. Hozumi T, Yoshida K, Yoshioka H, et al.: Echocardiographic estimation of left ventricular cavity area 
with a newly developed automated contour tracking method. J Am Soc Echocardiogr 1997;10:822. 

35. Monteiro AP, Marques de Sa JP, Abreu-Lima C: Automatic detection of echocardiographic LV-contours. 
A new image enhancement and sequential tracking method. Proceedings, Computers in Cardiol. IEEE 
Computer Society Press, Los Alamitos, CA, 1988;453. 

36. Chu CH, Delp EJ, Buda AJ: Detecting left ventricular endocardial and epicardial boundaries by digital 
two-dimensional echocardiography. IEEE Trans Med Imaging 1988;7:81. 

37. Feng J, Lin W-C, Chen C-T: Epicardial boundary detection using fuzzy reasoning. IEEE Trans Med 
Imaging 1991;10:187. 

38. Chalana V, Linker DT, Haynor DR, Kim Y: A multiple active contour model for cardiac boundary 
detection on echocardiographic sequences. IEEE Trans Med Imaging 1996;15:290. 

39. Dong L, Pelle G, Brun P, Unser M: Model-based boundary detection in echocardiography using dynamic 
programming technique. Proceedings, SPIE Medical Imaging V. SPIE - The International Society for 
Optical Engineering, Bellingham, WA, 1991;178. 

40. Friedland N, Adam D: Echocardiographic myocardial edge detection using an optimization protocol. 
Proceedings, Computers in Cardiol. IEEE Computer Society Press, Los Alamitos, CA, 1989;379. 

41. Belohlavek M, Manduca A, Behrenbeck T, Seward J, Greenleaf JF: Image analysis using modified self-
organizing maps: automated delineation of the left ventricular cavity in serial echocardiograms. 
Proceedings, 4th int conf Visualisation in Biomedical Computing VBC '96. Springer, Berlin, 1996;247. 

42. Cootes TF, Hill A, Taylor CJ, Haslam J: Use of active shape models for locating structures in medical 
images. Image and Vision Computing 1994;12:355. 

43. Detmer PR, Bashein G, Martin RW: Matched filter identification of left-ventricular endocardial borders in 
transesophageal echocardiograms. IEEE Trans Med Imaging 1990;9:396. 

44. Geiser EA, Wilson DC, Wang DX, Conetta DA, Murphy JD, Hutson AD: Autonomous epicardial and 
endocardial boundary detection in echocardiographic short-axis images. J Am Soc Echocardiogr 
1998;11:338. 

45. Herlin IL, Nguyen C, Graffigne C: Stochastic segmentation of ultrasound images. Proceedings, 11th IAPR 
Int Conf Pattern Recognition A: Computer vision and applications. IEEE Computer Society Press, Los 
Alamitos, CA, 1992;289. 



Chapter 1 

39 

46. Bosch JG, Savalle LH, van Burken G, Reiber JHC: Evaluation of a semiautomatic contour detection 
approach in sequences of short-axis two-dimensional echocardiographic images. J Am Soc Echocardiogr 
1995;8:810. 

47. Dias JMB, Leitao JMN: Wall position and thickness estimation from sequences of echocardiographic 
images. IEEE Trans Med Imaging 1996;15:25. 

48. Gustavsson T, Molander S, Pascher R, Liang Q, Broman H, Caidahl K: A model-based procedure for fully 
automated boundary detection and 3D reconstruction from 2D echocardiograms. Proceedings, Computers 
in Cardiol. IEEE Computer Society Press, Los Alamitos, CA, 1994;209. 

49. Maes L, Delaere D, Suetens P, Aubert A, van der Werf F: Automated contour detection of the left 
ventricle in short axis view and long axis view on 2D echocardiograms. Proceedings, Computers in 
Cardiol. IEEE Computer Society Press, Los Alamitos, CA, 1990;603. 

50. Cohen LD: Note on active contour models and balloons. CVGIP Image Understanding 1991;53:211. 
51. Cootes TF, Taylor CJ, Cooper DH, Graham J: Active Shape Models - their training and application. Comp 

Vision Image Understanding 1995;61:38. 
52. Coppini G, Poli R, Valli G: Recovery of the 3-D shape of the left ventricle from echocardiographic 

images. IEEE Trans Med Imaging 1995;14:301. 
53. Parker AD, Hill A, Taylor CJ, Cootes TF, Jin XY, Gibson DG: Application of point distribution models to 

the automated analysis of echocardiograms. Proceedings, Computers in Cardiol. IEEE Computer Society 
Press, Los Alamitos, CA, 1994;25. 

54. Brotherton T, Pollard T, Simpson P, DeMaria A: Echocardiogram structure and tissue classification using 
hierarchical fuzzy neural networks. Proceedings, IEEE Conf Acoustics, Speech and Signal Proc. IEEE 
Computer Society Press, New York, 1994;573. 

55. Marcus R, Bednarz J, Coulden R, Shroff S, Lipton M, Lang R: Ultrasonic backscatter system for 
automated on-line endocardial boundary detection: evaluation by ultrafast computed tomography. J Am 
Coll Cardiol 1993;22:839. 

56. Bosch JG, Reiber JH, van Burken G, Savalle L, Maurincomme E, Helbing WA: Automated contour 
detection and acoustic quantification. Eur Heart J 1995;16 Suppl J:35. 

57. Chandra S, Garcia MJ, Morehead AJ, et al.: Spatiotemporal Fourier filtration of acoustic quantification 
endocardial border using carthesian vs. polar coordinate system. Proceedings, Computers in Cardiol. IEEE 
Computer Society Press, Los Alamitos, CA, 1994;17. 

58. Spencer KT, Bednarz J, Rafter PG, Korcarz C, Lang RM: Use of harmonic imaging without 
echocardiographic contrast to improve two-dimensional image quality. Am J Cardiol 1998;82:794. 

59. Tsujita-Kuroda Y, Zhang G, Sumita Y, et al.: Validity and reproducibility of echocardiographic 
measurement of left ventricular ejection fraction by Acoustic Quantification with Tissue Harmonic 
Imaging technique. J Am Soc Echocardiogr 2000;13:300. 

60. Lang RM, Vignon P, Weinert L, Bednarz J, Korcarz C, Sandelski J et al.: Echocardiographic 
quantification of regional left ventricular wall motion with color kinesis. Circulation 1996;93:1877. 

61. MorAvi V, Vignon P, Koch R, Weinert L, Garcia MJ, Spencer KT et al.: Segmental analysis of color 
kinesis images: New method for quantification of the magnitude and timing of endocardial motion during 
left ventricular systole and diastole. Circulation 1997;95:2082. 

62. Vignon P, MorAvi V, Weinert L, Koch R, Spencer KT, Lang RM: Quantitative evaluation of global and 
regional left ventricular diastolic function with color kinesis. Circulation 1998;97:1053. 

63. Koch R, Lang RM, Garcia MJ, Weinert L, Bednarz J, Korcarz C et al.: Objective evaluation of regional 
left ventricular wall motion during dobutamine stress echocardiographic studies using segmental analysis 
of color kinesis images. J Am Coll Cardiol 1999;34:409. 

64. Helbing WA, Bosch HG, Maliepaard C, Zwinderman KH, Rebergen SA, Ottenkamp J et al.: On-line 
automated border detection for echocardiographic quantification of right ventricular size and function in 
children. Pediatr Cardiol 1997;18:261. 

65. Gorcsan J, Romand JA, Mandarino WA, Deneault LG, Pinsky MR: Assessment of left ventricular 
performance by on-line pressure-area relations using echocardiographic automated border detection. J Am 
Coll Cardiol 1994;23:242. 

66. Carey CF, Mor A, V, Koch R, Lang R, Perez JE: Effects of inotropic stimulation on segmental left 
ventricular relaxation quantified by color kinesis. Am J Cardiol 2000;85:1476. 

67. Mor-Avi V, Spencer KT, Lang RM: Acoustic quantification today and its future horizons. 
Echocardiography 1999;16:85. 

68. Geiser EA, Wilson DC: Automatic center point determination in 2-dimensional short-axis 
echocardiographic images. Pattern Recognition 1992;25:893. 

69. Bosch JG, van Burken G, Reiber JHC: Automatic frame-to-frame contour detection in echocardiograms 
using motion estimation. Proceedings, Computers in Cardiol. IEEE Computer Society Press, Los 
Alamitos, CA, 1992;351. 



Chapter 1 

40 

70. Auricchio A, Ghanem A, Groethus F, et al: Echocardiographic analysis of left ventricular contraction 
patterns in left bundle branch block and congestive heart failure. Abstract. J Cardiac Failure 1999;5(3, 
suppl. 1):3. 

71. Breithardt OA, Kramer A, Schiffgens B et al: Characteristics of left ventricular contraction patterns and 
acute changes with multisite pacing in patients with heart failure as assessed by echocardiographic 
semiautomatic contour detection. Abstract. Eur Heart J 2000;21(Abstract suppl.):351. 

72. Fry SJ, Hunziker PR, Bosch HG, Reiber JHC, Picard MH: Automated echocardiographic confirmation of 
regional wall motion abnormalities: quantitation of continuous LV volume. Abstract. J Am Coll Cardiol 
1998;31(2 suppl. A):56A. 

73. Hunziker PR, Schöb L, Lefkovits M, et al: Automatic border detection in dobutamine stress echo: how do 
normal and ischaemic segments behave objectively and quantitatively? Abstract. Eur Heart J 
1999;20(Abstract suppl):618. 

74. Hunziker PR, Yuan D, Schöb L et al: Objective and quantitative stress echo analysis to diagnose coronary 
disease using model-based image processing. Abstract. J Am Coll Cardiol 2000;35(2(suppl A)):413A. 

75. Cootes TF, Edwards GJ, Taylor CJ: Active Appearance Models. Proceedings, European Conf Computer 
Vision. Springer, Berlin, 1998;2:484. 

76. Edwards GJ, Taylor CJ, Cootes TF: Interpreting face images using Active Appearance Models. 
Proceedings, 3rd Int Conf Face and Gesture Recognition. Japan, 1998;300. 

77. Mitchell SC, Lelieveldt BPF, van der Geest RJ, Schaap J, Reiber JHC: Segmentation of cardiac MR 
images: an active appearance model approach. Proceedings, SPIE Medical Imaging 2000, Image 
Processing. SPIE - The International Optical Engineering Society, Bellingham, WA, 2000;3979:224. 

78. Bosch JG, Mitchell SC, Lelieveldt BPF et al: Feasibility of fully automated border detection on stress 
echocardiograms by Active Appearance Models. Abstract. Eur Heart J 2000;21(abstract suppl):11. 

79. van Camp G, Franken PR, Schoors D, Hagers Y, Koole M, Demoor D et al.: Impact of second harmonic 
imaging on the determination of the global and regional left ventricular function by 2D echocardiography: 
a comparison with MIBI gated SPECT. Eur J Echocardiography 2000;1:122. 

80. Isaaz K: What are we actually measuring by Doppler tissue imaging? J Am Coll Cardiol 2000;36:897. 
81. Hunziker PR, Picard MH, Jander N, Scherrer CM, Pfisterer M, Buser PT: Regional wall motion 

assessment in stress echocardiography by tissue Doppler bull's-eyes. J Am Soc Echocardiogr 
1999;12:196. 

82. Derumeaux G, Ovize M, Loufoua J, Pontier G, Andre F, X, Cribier A: Assessment of nonuniformity of 
transmural myocardial velocities by color-coded tissue Doppler imaging - Characterization of normal, 
ischemic, and stunned myocardium. Circulation 2000;101:1390. 

83. Pasquet A, Armstrong G, Beachler L, Lauer MS, Marwick TH: Use of segmental tissue Doppler velocity 
to quantitate exercise echocardiography. J Am Soc Echocardiogr 1999;12:901. 

84. Heimdal A, Stoylen A, Torp H, Skjaerpe T: Real-time strain rate imaging of the left ventricle by 
ultrasound. J Am Soc Echocardiogr 1998;11:1013. 

85. Armstrong G, Pasquet A, Fukamachi K, Cardon L, Olstad B, Marwick T: Use of peak systolic strain as an 
index of regional left ventricular function: Comparison with tissue Doppler velocity during dobutamine 
stress and myocardial ischemia. J Am Soc Echocardiogr 2000;13:731. 

86. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA: Myocardial strain by Doppler 
echocardiography - Validation of a new method to quantify regional myocardial function. Circulation 
2000;102:1158. 

87. Qin JJX, Jones M, Shiota T, et al.: New digital measurement methods for left ventricular volume using 
real-time three-dimensional echocardiography: comparison with electromagnetic flow method and 
magnetic resonance imaging. Eur J Echocardiography 2000;1:96. 

88. Takuma S, Zwas DR, Fard A, Wu H, Chaudhry H, Di Tullio MR et al.: Real-time, 3-dimensional 
echocardiography acquires all standard 2-dimensional images from 2 volume sets: A clinical 
demonstration in 45 patients. J Am Soc Echocardiogr 1999;12:1. 

89. Kamp O, Sieswerda GT, Visser CA: State-of-the-art. Stress echocardiography entering the next 
millennium. In: Reiber JHC, van der Wall EE, eds. What's new in cardiovascular imaging. Dordrecht, the 
Netherlands, Kluwer, 1998, p 351. 

90. Costen N, Cootes TF, Edwards GJ, Taylor CJ: Simultaneous extraction of functional face subspaces. 
Proceedings, IEEE computer vision & pattern recognition. IEEE Computer Society Press, Los Alamitos, 
CA, 1999;492. 

 
 
 



 

41 

 
Chapter 2 

 
Evaluation of a semiautomatic  

contour detection approach in sequences 
of short-axis two-dimensional 

echocardiographic images. 

 

 
J.G. Bosch1, L.H. Savalle2, G. van Burken1, J.H.C. Reiber1. 

 
 
 

1Division of Image Processing, Department of Radiology,  
Leiden University Medical Center, Leiden, The Netherlands. 

 
2Department of Cardiology, Leiden University Medical Center, 

Leiden, The Netherlands. 
 
 
 
 
 

J Am Soc Echocardiogr 8 (1995): 810-821. 
 



Chapter 2 

42 

 

Abstract 
Quantitative analysis of echocardiographic sequences has been limited by time-consuming 
and strenuous manual tracing approaches. To circumvent these disadvantages, we have 
developed the EchoCardiographic Measurement System (ECHO-CMS). ECHO-CMS 
employs the robust, model-based Minimum Cost Contour Tracking technique for semi-
automatic detection of left ventricular (LV) endocardial contours in sequences of 
consecutive echocardiographic images. An evaluation study was carried out on 20 short-
axis patient studies (10 transesophageal and 10 transthoracic studies), each consisting of 
16 consecutive images covering approximately one cardiac cycle. 

The LV endocardial contours in the 320 images were analyzed both by manual tracing 
and semiautomatically. In addition, inter-observer and intra-observer variabilities were 
determined for both techniques in two patients (32 images). Manual editing was required 
in only 57 (18%) of all 320 contours detected. Average processing time per patient for 
manual tracing was 25 minutes (of which 18½ minutes was for drawing and corrections), 
and for semiautomatic tracing it was only 5½ minutes (of which just 1½ minutes was for 
corrections). Regression analysis showed excellent correspondence between manual and 
semiautomatic tracing: semiautomatic = 1.01*manual + 5.58%; r = 0.989, standard error 
of the estimate = 11.9% (n = 320 contours). Inter-observer and intra-observer variabilities 
were smaller for semiautomatic than for manual tracing, although not in all cases 
statistically significant. In conclusion, semiautomatic LV short-axis endocardial contour 
detection by ECHO-CMS provides contours that are highly similar to those drawn by an 
expert; it is five to 10 times faster than manual tracing and reduces intra-observer and 
inter-observer variabilities. This demonstrates that ECHO-CMS is a useful tool for clinical 
echocardiographic research studies. 
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2.1   Introduction 
2.1.1 Need for objective quantification of wall motion 
Two-dimensional echocardiography allows the real-time inspection of the wall motion of 
the heart over many cardiac cycles. By far most echocardiographic examinations are used 
for qualitative diagnostic purposes only. Quantitative analysis of echocardiographic 
images has been shown to provide many clinically relevant parameters1,2. However, 
quantitative analysis remains unpopular, because it requires in general manual tracing of 
contours, which is strenuous and time-consuming and subject to intra-observer and inter-
observer variabilities3-6. Most manual analyses are restricted to end-systolic (ES) and end-
diastolic (ED) images1,7. 

However, these ES/ED analyses address only a small portion of the information on 
cardiac function that may be derived from the full cardiac cycle. Cross-sectional 
echocardiography was recognized early on as a reliable method for the detection of the 
presence and location of regional asynergy associated with acute myocardial infarction8. 
There is evidence that knowledge of the endocardial contours only at end systole and end 
diastole is not sufficient: important wall motion abnormalities may remain undetected and 
in some cases dyskinetic segments may be missed completely9. This implies that analysis 
of all images in the cardiac cycle (i.e. frame-to-frame contour detection) is necessary for a 
proper quantitative assessment of left ventricular wall motion. Only a few truly 
quantitative wall motion studies have been published1,2,9; most wall motion studies, 
including stress echocardiographic protocols10, are based on qualitative and 
semiquantitative assessment (i.e. eyeball scoring on a 4- or 5-point scale) of wall motion 
abnormalities. Automated, objective quantification of wall motion changes in the different 
stages of a pharmacologic or physical stress echocardiographic protocol may greatly 
improve the quality of clinical decision making. 
 
Frame-to-frame quantitative analysis may be important for patient monitoring as well. It 
has been shown that acute ischemia causes visible wall motion abnormalities in 
transesophageal echocardiograms (TEE) long before any S-T segment changes are noted 
in the electrocardiogram. As a result, TEE seems superior to the electrocardiogram for the 
detection of intraoperative myocardial ischemia and should allow early identification of 
patients at higher risk of postoperative cardiovascular complications11,12. Also, TEE is 
more suitable for detecting intraoperative myocardial ischemia than the widely used 
pulmonary capillary wedge pressure measurement13. 

Therefore, echocardiography (especially TEE) may also be very valuable as a patient-
monitoring technique. For practical applicability, however, automatic frame-to-frame 
contour detection would be required, preferably in real time. Regional endocardial wall 
motion (as opposed to overall luminal area) should be monitored to detect wall motion 
abnormalities under these circumstances. 
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2.1.2 Automated contour detection approaches 
The technique that momentarily best satisfies the above mentioned requirements is the 
Acoustic Quantification technique14,15. Because this is a pixel-classification technique 
rather than a true contour-detection technique, only overall blood area can be calculated, 
not regional wall motion. Although it is hampered by several limitations and problems, it 
supplies valuable clinical information in real time16,17. 

Several other automated approaches for frame-to-frame contour detection in 
echocardiograms have been reported,18 but none of these has gained practical acceptance 
yet. Their applicability is generally limited to superior-quality images or has not been 
demonstrated on a representative set of routinely acquired images. 

As a result, no reliable method exists at this time for the automated frame-to-frame 
quantification of regional wall motion in echocardiographic images. Commercially 
available techniques either provide insufficiently accurate borders, or are not capable of 
supplying quantitative wall motion information. Therefore the rationale for further 
developments in approaches to frame-to-frame contour detection persists. Features of such 
a technique should include: (1) frame-to-frame contour detection, extensible to real-time 
performance; (2) generation of contour position and motion information, both globally 
and regionally (not just blood-tissue edges or blood areas); and (3) model-based approach, 
adaptable to different types of edges and features. 

A method for automated contour detection with the above-mentioned features has been 
developed in our laboratory in the past years19,20. It is known as the Minimum Cost 
Contour Tracking (MCCT) method. The MCCT technique provides continuous, 
connective, smooth contours that allow regional wall motion calculations, volume 
estimations, user corrections etc., in both single frames and frame-to-frame analysis. In 
this article the advantages and limitations of this MCCT technique are presented, based on 
the results from an evaluation study carried out on routinely acquired clinical materials. 

2.2   Methods and material 
2.2.1 EchoCardiographic Measurement System  

(ECHO-CMS) 
The MCCT method has been implemented in an off-line echocardiographic analysis 
workstation developed in our laboratory: the EchoCardiographic Measurement System* 
(ECHO-CMS) (Fig. 2.1). It consists of an IBM-compatible personal computer 
(486/25MHz was used in this study) equipped with a frame grabber (Imaging Technology 
Variable-Scan Frame Grabber; Imaging Technology, Bedford, Mass.) for digitization and 
display of images, two color monitors, and a mouse. ECHO-CMS can either digitize 
images from an analog video source (typically a VCR or the video output of an ultrasound 
scanner) or import digital images (e.g., from an optical disk unit). A time-base corrector is 
used to provide adequate synchronization when digitizing still-frame VCR images.  

The ECHO-CMS program has been implemented as an MS-Windows application, 
which  provides  a  familiar,  standardized,  and  versatile  user   interface,  allowing  user- 

                                                           
* Commercialized by Medis medical imaging systems bv, Dungense Kant 12, Nuenen, the 
Netherlands. 
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Figure 2.1.   Diagram of ECHO-CMS system. ECHO-CMS consists of PC (486 or Pentium), frame 
grabber, two monitors and mouse. Images are acquired from VCR or directly from ultrasound 
scanner. 
 
friendly, intuitive control over the various elements of the analysis process. The ECHO-
CMS system is controlled mainly with the mouse; a trackball or digitizer board may be 
used as an alternative. 

Both automated contour detection and manual tracing of contours are supported, as 
well as manual correction of contours and propagation of corrections (forward or 
backward) over a range of images. This allows semiautomatic detection of large numbers 
of contours with minimal effort and a high degree of user control. The user may apply the 
automated contour detection by either positioning a geometric model on the image (e.g., a 
circle with a fixed radius for the short-axis cross sections discussed here) or pre-drawing 
an approximate contour. 

2.2.2 Minimum Cost Contour Tracking 
MCCT is a flexible contour detection technique that employs models for the contours to 
be detected and allows frame-to-frame detection, as well as forward or backward 
propagation of model information and manual corrections. It is based on dynamic 
programming21, a well-known mathematic technique for determining an optimal solution 
to logistics problems. In general, it can be applied to any problem that can be formulated 
in terms of finding an optimal path through a network of points, which is highly relevant 
to contour detection. 

The steps of the MCCT procedure are illustrated in Fig. 2.2. The MCCT technique 
requires model information representing the approximate shape and position of the 
contour to be detected. This model may be a contour found in a previous image, a user-
drawn approximation, a geometric shape (like a hemiellipse for the left ventricle in the 
four-chamber view) or a  combination of  these.  The  image is resampled along scan lines 



Chapter 2 

46 

 
 
Figure 2.2.   Different steps of MCCT procedure. A. Image is resampled along scan lines 
perpendicular to contour model (circle). B. Scan lines are placed in rectangular array, scan matrix. 
C. Cost matrix is generated by assigning cost value to each point in scan matrix. Cost value is 
inversely proportional to probability that specific point belongs to desired contour. D. Path through 
cost matrix is found by dynamic programming technique. E. Path is spatially transformed back into 
image, interpolated, and smoothed to provide new contour. 
 
perpendicular to this model (Fig. 2.2.A). These scan lines are placed in a rectangular array 
(Fig. 2.2.B). To each point in this array, a cost value is assigned (Fig. 2.2.C). This cost 
value is inversely proportional to the probability that the specific point belongs to the 
desired contour. Different types of information may be included in the cost value, e.g., 
gray value, several measures of edge strength (e.g., first derivative value), distance from 
the model, etc. Furthermore, factors are used that specify the allowed raggedness of the 
edge and the propagation of the previous shape in subsequent images. 

By the dynamic programming technique, the path with overall minimal cost values is 
found (Fig. 2.2.D). This path is spatially transformed back into the image, interpolated, 
and smoothed, to provide the new contour (Fig. 2.2.E). 

Because the MCCT process starts and ends with a contour, it can be used in an 
iterative manner. A rough contour can be used to find a more detailed one, or a contour 
from a previous image may serve as a model in the next image. Also, a corrected contour 
may be used as a model to propagate the manual correction over a number of images. 

2.2.3 Evaluation setup 
To assess the speed, robustness, and reproducibility of the MCCT approach, an evaluation 
study was carried out on 20 patient studies (10 transthoracic echocardiograms (TTEs) and 
10 TEEs). Each study consisted of 16 consecutive short-axis cross sections at the 
midpapillary level, on which semiautomatic and manual contour delineations were 
compared. Issues of interest were (1) time required for the analysis process, (2) validity of 
contours, (3) required user interaction, and (4) inter-observer and intra-observer 
variabilities. 

The hypothesis investigated in this study was the following: the semiautomatic MCCT 
method can provide contours equivalent to manually traced contours, in a fraction of the 
time necessary for manual tracing. The primary test is the decrease in analysis time, under 
the condition that semiautomatic contours are not structurally different from manual 
contours. 
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The patient studies were selected from videotapes of routinely acquired images from 
six hospitals in the Netherlands covering a range of echocardiographic equipment (four 
different brands), image qualities, diseases, and operator settings. Studies included 
anterior wall infarcts, hypertrophy, dobutamine stress, and TEE-pacing protocols, patients 
in the intensive care unit with cardiac complications, valvular disease, and normal 
subjects. Although no explicit grading of image quality was applied, the sequences had to 
be technically adequate and suitable for visual identification of the endocardium by 
manual tracing. This criterion did not result in a set of studies with superior image quality: 
several sequences featured significant dropouts and high noise levels, as well as valvular 
and trabecular structures. Observers marked some of the sequences as difficult to analyze 
because of the image quality. 

For each patient study, one cardiac cycle was selected of which 16 consecutive images 
(time interval of 40 msec according to standard European (PAL) video system) were 
digitized into matrix sizes of 256² pixels (8 bit/pixel) by the ECHO-CMS system; each set 
of images constituted approximately one cardiac cycle. Each digitized run began at end 
diastole and ended in the last part of diastole (diastasis) or at the beginning of the next 
cardiac cycle, depending on the specific heart rate. The sets were stored digitally and used 
both for the manual and the semiautomatic delineation of the endocardial contour. 

The endocardial contours were first drawn manually in all 320 images by the first 
observer: a cardiologist who was not familiar with the system development and who had 
only received instructions on the operation of the system. The observer could review the 
traced contours in cineloop and edit the contours until he was satisfied with the results. 
Contours were traced to the inner gray value edge, excluding papillary muscles from the 
luminal area. The final version of the contours after manual editing (contour set Manual) 
were saved, as well as measured contour areas (in image pixels). The time involved in the 
drawing of each contour was recorded, as well as the total analysis time per patient study 
(including loading of images from disk and reviewing of cineloops). 

After a period of 7 days, the contours were detected semiautomatically with the 
MCCT approach by the first observer. A standardized procedure for the semiautomatic 
contour detection was applied in this study to allow comparisons. The observer indicated 
the approximate center point of the left ventricle in the first image of the sequence. A 
general geometric model for the contour to be detected (a circle, for the short-axis view) 
was positioned relative to this point. As a start, all contours were detected automatically 
and saved directly. Consecutively, the observer inspected the sequence in a cineloop for 
erroneous contour parts requiring improvement. If present, an erroneous contour part was 
corrected manually in only one of the images involved, followed by an automated 
redetection in the remainder of the images, based on this new model. This step was 
repeated until all contours were approved by the observer and saved (contour set 
Semiautomatic). The number of corrections per image and the time involved in the 
corrections were recorded, as well as the luminal areas of the contours, and total analysis 
time as above. An example of one image with the manually drawn and automated 
contours (without corrections) is shown in Fig. 2.3. 

After a period of 6 weeks, the manual and semiautomatic tracing procedures were 
repeated by the first observer for two patient studies (one TEE and one TTE, for a total of 
32 images), and carried out for the first time by a second observer who was familiar with 
the system development (contrary to the first observer). From these data, inter-observer 
and intra-observer variabilities could be assessed. The contours and derived values from 
the semiautomatic analysis were compared with the manual results. Comparisons were 
done separately for the groups of  TEE and  TTE  patient studies and for the total group of 
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Figure 2.3.   Typical short-axis TEE image with endocardial contours.   
A.  Image without contour.  
B.  Image with manually defined contour (from manual set).  
C.  Image with semiautomatically defined contour (from semiautomatic set). No corrections 

were applied. 
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20 patients. Also, the number of corrections and redetections per image was tabulated. 
Area comparisons were calculated in image pixels, not square millimeters, because the 
scales of images were different and the comparison was focused on the validity of the 
contours, not on true areas. Because scales were not varying widely, statistical results will 
generally apply to true areas as well. Some statistics are expressed in percentages of the 
average area; this was the average area of all the manual contours: 1565 pixels. Total 
range of the areas was from 115 to 6135 pixels. Fractional area change was also studied: 
fractional area change is widely used in echocardiography as a measure of overall heart 
function based on the ES and ED contours (fractional area change = (EDA - ESA) / EDA, 
with EDA = ED area, ESA = ES area).  

2.3   Statistics 
Linear regression and correlation coefficients were used to assess the correspondences 
between manual and semiautomatic contour areas. Furthermore, paired area differences 
were used to compare manual and semiautomatic contours and to assess intra-observer 
and inter-observer variabilities. For the area differences between pairs of corresponding 
contours, the statistics systematic difference (SysDif) and random difference (RanDif) 
were used. SysDif was defined as the average of paired (signed) differences between 
corresponding contour areas (e.g., between manual and semiautomatic contours) or 
between corresponding contours in the inter-observer or intra-observer study. RanDif was 
defined as the standard deviation of these paired differences. From these measures a 
confidence interval for the expected difference can easily be calculated (e.g., as SysDif ± 
2*RanDif/√n for a 95% confidence interval of the average of n differences. 

A p value <0.05 was generally used for tests of statistical significance (or lower if 
mentioned otherwise). Three different types of significance tests were performed. To test 
whether a SysDif was statistically significantly different from 0 (e.g., in an intra-observer 
study), a paired Student t test (two-tailed) was used. To test whether RanDifs were smaller 
for semiautomatic than for manual, a one-tailed F test was used; because RanDifs are 
standard deviations, the ratio of their squares was tested against a table of critical values 
of the F distribution. 

To find significant differences between SysDif values (i.e., to show that intra-observer 
SysDifs are smaller for semiautomatic than for manual contours), an unpaired one-tailed 
Student t test was used. 

2.4   Results 
2.4.1 Analysis time 
Processing time with the MCCT automatic detection procedure proved to be significantly 
shorter than by the manual tracing procedure (Table 2.1). Total semiautomatic analysis 
time for the 20 patients was 4.7 times shorter than by manual drawing, which took about 
8½ hours for the 320 contours. The time spent specifically on the actual contour drawing, 
correction, and redetection was even 11.3 times shorter: less than 2 minutes per patient 
study, instead of almost 20 minutes for the manual procedure. The remaining time was 
spent on loading the images and viewing the cineloop and the contours. 
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Table 2.1. 
Analysis time per patient 

(average of 20 patients, 16 contours each) 

 Drawing, detections, corrections (min) Total analysis time (min) 
Automatic 1.65  5.42  
Manual 18.58 25.22  

 
Table 2.2. 

Comparison of manual and semiautomatic contour areas 
based on 20 patient studies 

Areas 
(n = 320 contours) 

 Absolute area 
(pixels) 

Relative area  
(% of average 
manual area) 

FAC (%)  
(n=20 patients) 

Manual contour areas Average 1565 100 69.8 
 SD   11.1 
Semiautomatic Average 1668 106.6 67.3 
   contour areas SD   11.5 
Manual-semiautomatic SysDif -103.2 * -6.6* 2.51 
   paired differences RanDif 184.9 11.8 5.7 
Semiautomatic &  Slope (a) 1.010  0.91 
   manual regression Intercept (b) 87.3 5.6 3.95 
   and correlation† SEE 185.1 11.9 5.9 
 r 0.989  0.874 

FAC, Fractional area change; SEE, standard error of the estimate. 
* p < 0.05 
† x=manual; y=semiautomatic. 
 

2.4.2 Comparison of manual and automatic contour areas 
An excellent correlation (r = 0.989) and linear regression relation (a = 1.010, b = 87.3 
(5.6% of average area)) were found between the manual and semiautomatic contours (Fig. 
2.4). This implies that the semiautomatic contour areas correlated very well with those 
from the manually traced contours. This is to be expected in a setting in which both the 
manual and semiautomatic contours were under full control of the observer; it primarily 
proves that the observer could obtain semiautomatic contours equivalent to the manual 
contours with limited user interaction. More precise information was obtained from the 
SysDif and RanDif data calculated for the paired area differences between manual and 
semiautomatic sets (Table 2.2). Although the systematic difference (-6.6% of average 
area) is significantly different from 0 (p < 0.001), it is still small. The negative SysDif 
implies that the semiautomatic contours were slightly larger than the manual ones, which 
is also apparent from the regression equation. The RanDifs (SD of paired differences) 
were found to be 11.8%. The magnitude of these differences can partially be explained by 
intra-observer variability, which is described below. 

2.4.3 Fractional Area Change 
Fractional area change was found to be nearly identical (differences not significant) for 
the manual and semiautomatic sets (Table 2.2). From the SysDif of paired differences of 
fractional area changes, it is apparent that the fractional area changes from the 
semiautomatic method were only marginally smaller (2.51%;  p > 0.05).  The range of this 
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Figure 2.4.   Linear regression of semiautomatic (SA) contour areas versus areas derived from 
manual (MAN) contour tracings. Slope a = 1.010, intercept b = 87.3 pixels.  
 
 

Table 2.3a. 
Manual corrections 

Manual Corrections No Yes Total 
No. of images 263 57 320 
% Images 82.2 17.8 100 

 
Table 2.3b. 

Redetections 

No. of redetections  
0 1 2 >2 

No. of images 63 151 59 47 
% Images 19.7 47.2 18.4 14.7 

 
Table 2.4. 

Inter-observer and intra-observer variabilities measured in two patients (32 images) 

Variabilities Intra-observer (%) Inter-observer (%) 
(n = 32) SA MAN SA MAN 
SysDif 1.74* 2.91 1.97† 8.44* 
RanDif 4.18‡ 8.54 4.95 5.45 

Significance tests, p < 0.05. 
SA, semiautomatic; MAN, manual. 
*SysDif ≠ 0  
†SysDif SA < SysDif MAN  
‡RanDif SA < RanDif MAN  
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variation, described by the RanDif, remains small (5.7%) relative to the SD of the total 
sets of fractional area changes (11.1% and 11.5%, respectively). The SysDif implies that 
the area overestimation in semiautomatic contours was slightly larger at end systole than 
at end diastole. Good correlation (r = 0.87) and regression (a = 0.91, b = 3.95%) were 
found, considering the small number of measurements (n = 20), the narrow range of the 
fractional area change parameter, and the well-known fact that fractional area change is a 
derived parameter in which errors accumulate. 

2.4.4 Number of corrections and redetections 
To tabulate the amount of user interaction involved, two types of interactions were 
registrated: (1) the number of images in which a direct manual correction was applied 
(i.e., drawing a corrected contour piece manually) and (2) the number of redetection 
iterations applied to any image. A manual correction was generally used to start a 
redetection over (a part of) the sequence. The number of redetections is a measure of the 
success of the semiautomatic approach. Many contours could be (re)detected successfully 
without needing direct manual corrections. 

In 263 (82.2%) of 320 contours, no direct manual corrections were needed (Table 
2.3a). In other words, in the vast majority of the images, adequate contours were obtained 
by automated detection or redetection, without explicit manual corrections. However, in 
many cases a redetection of part of the image sequence was required (after a manual 
correction in only one contour) to obtain accurate contours (Table 2.3b). 66.9% of the 
contours could be found without or with only one redetection and 85.3% within two 
iterations. Because the MCCT contour detection approach is model driven, an accurate 
contour for the first image is very important. In this study this first contour was detected 
with no more information than a center point indicated by the user. In 15 cases of the 20 
studies a manual correction to the first contour had to be made, after which the entire 
sequence was redetected automatically. Only in a small minority of the images were small 
additional corrections required in a second iteration. 

Of course the number of corrections and redetections is dependent on the observer’s 
skills and familiarity with the program, which is normal for an interactive situation like 
this. Because the experiments were performed mainly by an unskilled observer, results 
will only improve with skill. 

2.4.5 Inter-observer and intra-observer variability 
Inter-observer and intra-observer variabilities for the two patient studies are given in 
Table 2.4. The semiautomatic contours proved less subject to observer variations than did 
manual sets in all cases, although this was statistically significant only for inter-observer 
SysDif and intra-observer RanDif. As was to be expected, the inter-observer variations 
were generally larger than intra-observer variations, except for the inter-observer manual 
RanDif, which was rather low. 

SysDif should approximate 0, especially for an observer variability study. A high 
SysDif value means that systematically larger contours were traced in one of the two 
repetitions. Inter-observer manual SysDif was significantly different from 0 (p < 0.01); 
intra-observer semiautomatic SysDif was significant at p < 0.05, but not at p < 0.01. 
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Figure 2.5.   Linear regression of semiautomatic (SA) contour areas versus areas derived from 
manual (MAN) contour tracings for TEE and TTE studies.  
A.  TEE. Slope a = 0.983, intercept b = 105.6 pixels.  
B. TTE. Slope a = 1.031, intercept b = 76.9 pixels.  
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Table 2.5. 
Intra-observer and inter-observer variabilities of TEE and TTE 

(each one patient, 16 images) 

Variabilities  Intra-observer (%) Inter-observer (%) 
(n = 16 each) SA MAN SA MAN 
SysDif TEE 0.87 -2.87 -0.31† 10.23* 
RanDif TEE 2.68‡§ 6.25§ 2.81‡§ 4.86 
SysDif TTE 2.61 2.96 3.63 6.65* 
RanDif TTE 5.68‡ 10.82 7.09 6.04 

Significance tests, p < 0.05. 
See Table 2.4 for abbreviations. 
*SysDif ≠ 0  
†SysDif SA < SysDif MAN  
‡RanDif SA < RanDif MAN  
§RanDif TEE < RanDif TTE 

2.4.6 Differences between TEE and TTE images 
The comparisons described above were also performed separately for the group of TEE 
and TTE studies. In Fig. 2.5, linear regression relations and correlations are shown for 
TEE and TTE studies. In Table 2.5, intra-observer and inter-observer variabilities for TEE 
and TTE studies are summarized. Few apparent differences were seen; results were 
comparable to the overall results. SysDif was significantly different from 0 only for 
manual inter-observer variabilities (for both TEE and TTE). RanDif was significantly 
smaller for semiautomatic than for manual variabilities except for TTE inter-observer 
variabilities. SysDif and RanDif were slightly better in TEE sequences (RanDif mostly 
significantly), probably because of better image quality. Also, slightly fewer redetections 
were required in TEE images. In conclusion, MCCT automatic detection seems to work 
well in both types of sequences. 

2.5   Discussion 
There is a definite need for quantitative analysis of echocardiographic image sequences 
for the assessment of left ventricular function. However, in practice this is limited by the 
tedious task of manual tracing of all the contours, which is also subject to observer 
variabilities. Although some (semi) automated approaches may be available at individual 
research institutes for their own clinical research studies, no single automated technique 
has been accepted as yet and distributed on a larger scale. 

In an attempt to provide a practical solution to this image processing and analysis 
problem, we have developed and implemented the MCCT approach on the ECHO-CMS 
system. As mentioned earlier, the MCCT is a well-known mathematic technique for 
determining optimal solutions to logistics problems. It has been used, for example, to 
solve the problem of the traveling salesman who has to visit many cities and find the most 
efficient way to do so in terms of distance, time spent, travel expenses, etc. Hence the 
name minimal cost; it is also known as dynamic programming. 

This study demonstrates that the MCCT method provides an easy and rapid way to 
process large numbers of contours. It was found that in 263 (82.2%) of the total number of 
320 contours analyzed, no direct manual corrections were needed. The reduction of 
required processing time by a factor of 5 to 10 is an essential benefit of ECHO-CMS and 
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implies practical feasibility of frame-to-frame wall motion studies. Random differences 
between manual and automatic contours could be contributed mainly to observer 
variability in both manual and semiautomatic contours. 

From a comparison of the enclosed area values, it could be concluded that at the 
average the semiautomatic contours were defined slightly larger than the manually traced 
ones, resulting in a SysDif of 6.6% of the average area values. Which of the 
measurements better approaches the truth can only be concluded from a study in which 
these values would be compared to known areas or volumes (e.g., phantom or cast 
studies). The inter-observer and intra-observer data were definitely in favor of the 
semiautomatic approach. The SysDifs between the inter-observer and intra-observer 
measurements were smaller than those for the manual tracings, particularly for the inter-
observer case. This demonstrates one of the great strengths of an automated approach: it is 
more consistent than two expert observers. The manual intra-observer data show that the 
SysDif was small (2.91%) and the RanDif rather high (8.54%). This implies that on 
average small differences were found between contours, although individual cases 
deviated considerably. A high SysDif value implies that in one of two observations, areas 
were consistently larger (e.g., because of the systematic inclusion of a particular detail in 
one observation that was excluded in the other observation). 

The manual interobserver data demonstrate that one of the observers consistently drew 
larger contours than the other, with a relatively small RanDif value. It is very clear that the 
semiautomatic results for the intraobserver and interobserver studies were associated with 
small SysDifs (<2%) and very acceptable RanDifs (<5%). Both types of errors proved to 
be smaller than those for manual analysis, although this was not significant in all cases. 

In other studies, intra-observer and inter-observer variabilities in manual area 
measurements in short-axis images were reported to be typically around 10%3-6, which 
was confirmed by this study. 

Considering the intra-observer RanDifs, it becomes clear that a large part of the 
RanDif of the paired differences between manual and semiautomatic data may be 
explained from the intra-observer variabilities. Intra-observer variabilities of both manual 
(RanDif 8.54%) and semiautomatic approaches (RanDif 4.18%) contribute to the manual-
semiautomatic RanDif (Table 2.2: 11.8%). Assuming that the intra-observer RanDifs (of 
two patients) are good estimations of the general variability for the full set of patients, this 
would account for a manual-semiautomatic RanDif of 9.51% on the basis of intra-
observer variability alone. 

Another conclusion can be drawn from the inter-observer results. The first observer 
was not familiar with the system development and only instructed in the use of the system. 
The second observer was indeed familiar with the development. The data from Table 2.4 
show that no significant systematic inter-observer differences were found by the 
semiautomatic approach; on the other hand, the manual processing indeed showed 
systematic differences. The RanDifs were comparable between the two approaches. This 
implies that familiarity with the program does not seriously influence the tracing results.  

Although some user interaction (in the form of corrections) is still necessary, the 
semiautomatic contours are equivalent to manually drawn contours and are less subject to 
observer variabilities. 

2.5.1 Limitations 
This study was limited in a number of ways: only relatively short sequences were 
analyzed (16 images) with limited image resolution (256 × 256 pixels). This was done to 
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limit both storage space and processing time; in a future study, longer sequences at full-
size resolution will be used. The current version of the ECHO-CMS allows the analysis of 
sequences of more than 100 images at a resolution of 512². In this study, only contour 
areas have been compared, not contour shape. However, because both manual and 
semiautomatic contours were under user control and visually similar, results based on 
shape measurements are expected to be comparable. 

Furthermore, this study is limited by the number of patients and observers and does 
not systematically address the influence of differences in image quality. However, the 
results seem general enough to support the conclusions given. 

2.5.2 Sources of problems in MCCT technique 
The following remaining sources of problems in the MCCT technique were noted during 
the evaluation study. Detection of the very first frame in a sequence is still the weakest 
point of the current implementation of the MCCT. When an erroneous contour part is 
detected in the first frame, this error will often propagate through the whole sequence. 
Frequently a small manual correction in the first frame would suffice to detect adequate 
contours in the full sequence. In a practical situation, the user will indeed process one 
frame, apply any necessary corrections to the detected contour, and then start the detection 
for the rest of the sequence. This was not allowed in this study; to obtain a uniform speed 
measurement for all studies and obtain full information on MCCT performance, the study 
protocol was standardized. After the definition of the center point, a full detection over all 
images was performed, followed by corrections and redetections. Probably a practical 
protocol as sketched above would increase speed and reduce the number of required 
corrections. 

Other problems may occur in the ES phase of the cardiac cycle. The contour may 
become very small and deformed in this phase. Especially papillary muscles and 
trabeculae are pressed against each other and the wall, causing the model information to 
become unreliable. Tracking of the endocardium may be lost in some cases, especially 
when it is moving outward rapidly. Backward propagation from the following ED frame 
towards the ES frame solved this problem in most cases. Also, this problem can be solved 
in a future software release by adding knowledge of general phase-related contour 
deformation to the detection algorithm. 

Very large endocardial shape deviations caused difficulties in the tracking. In one 
patient this was the cause for several manual corrections. An adaptation of one of the 
parameters of the MCCT technique could solve the problem; however, for this study a 
fixed set of parameters was used. 

Correction of small details through the full sequence was sometimes cumbersome. The 
correction propagation method was optimized for larger corrections; an additional 
propagation method for small corrections seems useful. 

2.5.3 Comparison with other methods 
The general setup of this evaluation study was comparable to some other edge detection 
algorithm evaluation studies3,22, especially the study performed by Geiser et al.3 A 
comparable number of patient studies and contours was processed. Our study was less 
focused on observer variabilities; two instead of five observers were used, and only a 
subset of patients was analyzed repeatedly. In both studies, similar results for the inter-
observer and intra-observer variabilities in manual drawing were found. Also, the 
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similarity between manual contours and automated contours found with the method of 
Geiser et al. is comparable to our results. However, results cannot be compared directly, 
because the two methods were not tested on the same set of images. 

The method of Geiser et al. used a priori information and user input as well: three fully 
manually drawn contours (per cycle per patient, in an average of 27 images) to generate 
areas of search and restrict deviations. This amount of manual contour input is comparable 
to the 18% of contours needing partial corrections in our method. 

In the study of Geiser et al.,3 images were differentiated in three image quality classes 
and results were computed per quality class. This was not done in our study, but inclusion 
criteria of studies and differentiation of sources seems comparable. For the rest, image 
quality is difficult to standardize; a reference set of images would be needed for 
comparison purposes. 

MCCT performs much faster (about 10 seconds per sequence on 486/25MHz) than the 
method of Geiser et al. (4 minutes, system unknown). This may partially be due to 
increased computer speed. 

2.5.4 Comparison to Acoustic Quantification 
At this moment the commercially available Acoustic Quantification technique is the most 
widespread and best-known method for automated border detection in echocardiography. 
It provides real-time luminal area and area change information but no wall motion 
information. The technique employs a 3.2 µsec integration time over which each 
radiofrequent A line is analyzed to obtain an integrated backscatter image rather than a 
conventional ultrasound image14,15. Because the two-dimensional integrated backscatter 
image is considerably smoothed and averaged and speckle noise reduced, it can be used to 
classify image pixels as blood, tissue or boundary pixels in real time. The user manually 
outlines a region of interest in the image; pixels labeled as blood within this region of 
interest can be counted in real time. This allows blood area (A), change of area over time 
(dA/dT) and fractional area change to be calculated and displayed in graphs in real time. 
In selected cross sections, volume graphs can be generated as well by applying a single-
plane modified Simpson’s rule volume estimation. 

Acoustic Quantification is certainly a powerful technique with great clinical value. 
However, it is not a panacea: it does not provide information on regional wall motion 
(although it may be extended in this direction) and cannot detect other structures that are 
not blood-tissue interfaces, like the epicardium. Also, it excludes papillary muscles and 
trabecular structures from the luminal area, which is not in correspondence with the 
recommendations of the American Society of Echocardiography.23 This is assumed to be a 
reason for the area and volume underestimations found in comparisons with manually 
drawn areas as well as with true volume.16 

Furthermore, it is hampered by its dependence on the user-defined, fixed region of 
interest, which is problematic in case of significant motion of the septum or valvular 
plane.16 It is highly sensitive to time-gain compensation and lateral gain compensation 
settings16,17; it can only be used during the echocardiographic examination (on-line) 
because it is incorporated in the front end (radiofrequency part) of the ultrasound machine. 
Therefore it does not allow off-line analysis or retrospective analysis and it lacks adequate 
contour-correction facilities. 

Although this study does not provide a comparison with Acoustic Quantification, the 
MCCT method shows that there are alternatives to Acoustic Quantification that may 
overcome many of its limitations. Although not all limitations of Acoustic Quantification 
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are eliminated by the MCCT method as described in this paper, it is not limited principally 
by them. Furthermore, combinations of Acoustic Quantification with MCCT are viable, 
because MCCT may use the edge information supplied by Acoustic Quantification, in that 
way combining the advantages of both techniques.24  

MCCT can either exclude or include papillary muscles, depending on parameter 
settings. The Acoustic Quantification technique, however, cannot eliminate the papillary 
muscles. In this study we had chosen to exclude them from the lumen, because at the 
midpapillary level it is often difficult to indicate an exact border between myocardial and 
papillary tissue. This extra source of observer variability would complicate the study 
unnecessarily. The MCCT method, however, can deal quite well with papillary muscles 
(detached or not), mitral valve apparatus, trabeculae, intracavitary structure and artifacts, 
etc. Intracavitary structure and artifacts were in fact present in several images and did not 
pose special problems.  

2.6   Conclusions 
In conclusion, quantitative echocardiographic left ventricular analysis in the ECHO-CMS 
system, with a model-based contour detection technique, provides contours that are 
similar to those drawn by an expert observer, is 5 to 10 times faster than manual tracing, 
and is characterized by reduced intra-observer and inter-observer variabilities. This allows 
ECHO-CMS to become a useful tool for clinical research studies.  
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3.1   Introduction 
Automated quantitation in two-dimensional (2D) echocardiography has been a field of 
continuous research since the advent of cardiac echo itself. The limitations of a visual 
assessment of cardiac parameters from ultrasound images have been widely 
acknowledged1. E.g., visual wall motion scoring as practiced in stress echocardiography is 
associated with large variabilities2.  

Quantitative analysis requires a reliable and reproducible detection of endocardial 
borders of the left ventricle. Outlining the borders of the cardiac wall is essential for 
calculation of volumes, wall motion and thickness. Automatic border detection (ABD, 
also known as contour detection or automatic delineation) would eliminate the tedious 
manual tracing, which is highly subject to inter- and intra-observer variability. 
Unfortunately, automating the border detection in cardiac ultrasound is a difficult and 
underestimated task. 

Perception and interpretation of images is a very complicated task in general. Humans 
perform it extremely well; therefore they amply underestimate its complexity. 
Interpretation of medical images, especially of a complex, dynamic organ like the heart is 
still more difficult, as it requires expert knowledge of the three-dimensional anatomical 
structures in the heart, their dynamical behavior, pathology and anatomical variability 
between patients, and the intricacies of the imaging modality involved. This last point 
specifically should not be underestimated for ultrasound. The problems - both in general 
and specific for ultrasonography - are further discussed in chapter 1 of this thesis and in 
the introductions of chapters 2, 4, 5 and 6. An extensive overview of different techniques 
for automated endocardial border detection is also given in chapter 1 of this thesis. 

Despite continuous efforts of numerous research groups, no ‘silver bullet’ technique 
for automatic quantitation in echocardiography has evolved yet. A number of useful and 
promising methods have been developed and have been used in clinical practice, but fully 
automated, unsupervised analysis of echocardiograms is still a distant goal.  

In this chapter, we describe multiple practically applicable techniques that we have 
developed for semiautomatic border detection of the left ventricle in sequences of 
echocardiograms, and their evaluation. These techniques were implemented in the Echo-
CMS system (which was commercialized by Medis medical imaging systems bv, Leiden, 
the Netherlands), an off-line analysis system for automated border detection in 
echocardiographic image sequences. The system and its applications are described in ch. 2 
and 7 of this thesis.  

3.2   Methods 
3.2.1 Border detection as a graph search problem 
The task of detecting borders of an object in an image can be treated in many ways: as a 
pixel-labeling problem, as an iterative deformation problem, as a shape-matching problem 
etc. (see ch. 1). In this chapter, we will look at the detection of the border of an object as a 
graph search problem. Many methods have been developed for finding an optimal path 
through a graph (a network consisting of nodes and arcs between nodes, each with certain 
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properties). If we can formulate our detection problem as a graph and the properties of 
nodes represent local image properties related to a border, then we can use graph search 
techniques to find a path corresponding to our desired contour. As we will see, this is a 
powerful approach that can be relatively flexible and robust. 

3.2.2 Concepts of Dynamic Programming 
The methods described in this chapter all make use of variants of Dynamic Programming3 
(DP), a well-known graph search technique stemming from the field of Operations 
Research. DP finds the optimal path through a network of nodes in a particularly effective 
manner. It was initially applied to border finding in images by Montanari4 and Martelli5. 
A good overview of the classical application of DP for segmentation is given by 
Gerbrands6. In Fig. 3.1, the technique is explained. DP works on a special class of 
networks, consisting of nodes that are arranged as a rectangular matrix X of R rows and K 
columns. Each node Xr,k at row r and column k is connected only to a limited number q = 
(2s+1) of neighboring nodes Xr+1,k’ on the next row, where k’∈ { k-s , ... , k+s}; s is the 
allowed ‘sidestep’ (Fig. 3.1.A, with s=1). We will call such a matrix q-connective. One 
can traverse the matrix of nodes from start row 1 (bottom) to end row R (top) by going 
from any node on the start row to any of its q-connected neighbors on the second row, and 
from there to any of its neighbors on the third row, etc. Each resulting path p = ( X1,k(1) , 
X2,k(2) , ... , XR,k(R) ) (Fig. 3.1.B) is uniquely described by its R-dimensional index vector k = 
( k(1) , ... , k(R) ), will contain exactly one node pr = Xr,k(r) on each row r and will be q-
connective, e.g. consecutive path nodes are never more than s columns apart (Eq. (3.1)). 
 
 | k(r+1) – k(r) | ≤ s  for ∀r ∈ {1 , ... , R-1}     (3.1) 
 
A cost value Cr,k is assigned to each node (and possibly also to each arc that connects two 
nodes). For this example, costs are assigned to nodes only (Fig. 3.1.A). The total cost T(p) 
of a path p is defined as the sum of all node (and arc) costs (Fig. 3.1.B, Eq. (3.2).  
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The task at hand is to find the path pmin (Fig. 3.1.F) for which the total cost T(p) is 
minimal (Eq. (3.3)). Hence, DP is also often referred to as ‘minimum cost path search’ or 
‘minimum cost algorithm’ (MCA). 
 
Figure 3.1.   Dynamic Programming (facing page). 
A. Array of R*K nodes with costs assigned to nodes; q-connectivity for q=3, s=1 (per node, 3 

connections to neighbors on next row).  
B. Example of a q-connective path p (bold nodes and arcs) with total cost T(p). Node costs 

given within nodes; partial cumulative costs Tr,k(r) of path on right upper side of each path 
node. 

C. Example of forward search (resulting in suboptimal path). 
D. Example of picking best candidates per row (resulting in non-connective path). 
E. Dynamic programming: forward cumulative cost calculation. From bottom to top, for all 

nodes a best partial cumulative cost Tr,k and a reference to its predecessor node (bold 
arrows) are stored. 

F. Dynamic programming: backtracking of optimal path pmin from best node (2) on row R. 
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This may seem a simple problem at first glance, but the solution requires some ingenuity. 
A brute-force comparison of the costs of all possible paths is extremely time consuming 
for all but the smallest matrices (complexity of order K*qR, with q≥3 and R>100 
typically). A basic forward search (plainly choose the best q-connective candidate on the 
next row) will in most cases not find the minimal cost solution, as is obvious from our 
simple example (Fig. 3.1.C). Finally, picking the nodes with lowest cost on each row (Fig. 
3.1.D) is not a valid approach either, because it is unlikely to result in a q-connective 
solution that satisfies Eq. (3.1).  
 
Several methods are known to find the optimal solution of Eq. (3.3); DP is one of them. It 
is a breadth-first heuristic search method, closely related to its depth-first cousin, the A*-
algorithm7. For the described special class of regular networks, DP is particularly 
effective. Its essential notion is, that for each node X on the optimal path pmin = AB, the 
partial paths A (from Start to X) and B (from X to End) must also be optimal. This is easily 
proven by reductio ad absurdum:  
 
 (1) AB is the optimal path from Start to End; X is a node on this path.  

(2) Assume there is a different partial path C from X to End with lower cost than B.  
Then, the total path AC would have lower cost than AB. 
This is in contradiction with (1). 

(3) Therefore, no partial path C with lower cost than B can exist (Q.E.D.).  
 

This means, that for each node Xr,k there is an optimal partial path from Start to Xr,k. That 
partial path pr,k and its total cost Tr,k is all we need to know during the solving of our 
problem. We can forget about any other paths between Start and Xr,k. Furthermore, if we 
know the optimal paths and costs for all nodes on row r, it is easy to find the optimal paths 
for row r+1, because for a certain node Xr+1,k, there are only q possible predecessors (Fig. 
3.1.E), for each of which the cost of the partial optimal path Tr,j is already known. The 
cost Tr+1,k of the optimal path from Start to Xr+1,k is therefore simply 
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K
       (3.4) 

 
For each node Xr,k we store the partial cumulative cost Tr,k and an index to the predecessor 
node. We know the minimal cumulative costs for each node of the start row; this is the 
cost of the node itself: 
 

T1,k = C1,k           (3.5) 
 
So by combining Eq. (3.4) and (3.5), we can calculate the minimal costs for all nodes on 
the second row, and by induction, for all rows. This is illustrated in Fig. 3.1.E.  

When we have arrived at the end row, the optimal path is simply found by 
backtracking (Fig. 3.1.F). We pick the node with overall lowest cost (in the example, this 
is node XR,2). This is the end node of the optimal path, and we look up its predecessor 
node; from the predecessor, we look up its predecessor etc. and the total optimal path is 
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reconstructed. The method is guaranteed to find the optimal solution, and complexity is of 
order K*q*R, dramatically lower than the brute-force approach. 

3.2.2.1 From image to graph network and back 
In our border detection applications, the nodes in the rectangular arrays represent 
positions in an image, the node costs represent the local image features (somehow related 
to the contour we want to detect, e.g. local edge strength) and the found path is the 
optimal contour, given the cost function and connectivity restrictions we apply. In general, 
the image samples are taken only from a part of the image, the region where we want to 
find a contour. See Fig. 3.2 for illustration. In the image (Fig. 3.2.A), an estimate for the 
contour (a ‘model’) is placed (Fig. 3.2.B). In a strip around this estimate, the image is 
resampled and the values are placed in the rectangular array (Fig. 3.2.C, left). This can be 
done by an actual warping of the target region into the rectangular array, or by sampling 
along scanlines perpendicular to the model. In all cases, one should ensure that the 
sampling gives an adequate representation of the image features. Minimally, proper 
smoothing or low pass filtering should be used to prevent aliasing; bilinear or other 2D 
interpolation can be used for sampling at non-integer pixel positions. 

Classically, resampling is applied to the image itself, which results in a rectangular 
scan matrix; feature extraction for generating the cost matrix (Fig. 3.2.C, mid) is 
performed in the resampled scan matrix, mostly by applying convolution filters. This has 
the advantage of reduced data processing, and allows feature extraction at the proper 
resolution and in the proper direction with respect to the expected edges (important for 
edge detection). However, it is also possible to process the original image first for feature 
extraction, and resample the result. This is to be preferred for operations that may suffer 
from distortions in the image grid or local scale changes, such as smoothing, line 
detectors, and scale-dependent edge detectors (e.g., Canny8). 

After generating the cost matrix, the optimal path can be found by DP (Fig. 3.2.C, 
right). Note that each node in the graph corresponds to a discrete point in the image. The 
solution space is therefore limited to these discrete points. A detected path therefore 
corresponds to a sequence of these points; generally, some interpolation is used to derive a 
connective contour in the original image coordinate system (Fig. 3.2.D). 

3.2.2.2 Properties of the DP optimal path 
The DP optimal path has some elegant properties: 
 

1. If the search through the cost matrix is performed in the reverse direction, the 
found optimal path will be identical. This is logical, since the cost of the path is 
the sum of the cost of its nodes. This is a desirable property in case of object 
contours, where the found border should not depend on the direction of search. 

2. If a fixed offset C0 is added to all node costs, the optimal path will not change; 
total cost of all paths will increase with R*C0.  

3. If a fixed offset Cr is added to all node costs of one row, the optimal path will 
not change. Total cost of all paths will increase with Cr.  

4. If all node costs are ≥0, multiplying all node costs by a positive factor F0 will 
not change the optimal path. Total cost is multiplied by F0. This condition can 
always be fulfilled by using property 2, with C0 ≤ min(Cr,k).  

 



Chapter 3 

68 

 
 
Figure 3.2.   Standard DP (Minimum Cost) application for contour detection. 
A. Original image 
B. Image with landmarks and shape model 
C. Left: scan matrix. Mid: cost matrix. Right: detected path 
D. Image with detected contour 
 
These properties enhance the robustness of DP, because the optimality is insensitive to 
general linear changes in the cost function output. If the cost function uses linear operators 
on images (e.g. convolutions), global changes in image contrast or brightness will not 
influence the results.  

Furthermore, the optimality is relatively insensitive to noise and small disturbances; 
the total cost difference between the optimal path and any “second best” candidate path 
determines the stability of the solution. Even in very noisy conditions, the strong features 
are still accurately found and the path only deviates locally in regions with very poor edge 
definition, which is often practically very acceptable6. 
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3.2.3 Dynamic Programming variations in border 
detection 

While the basis of DP is simple and well known, an enormous number of variations are 
possible, some of which apply special restrictions or additions to the basic concept, others 
‘change the rules’. 

3.2.3.1 Forcing a path through a node 
A straightforward restriction is forcing the path to start or end at a certain node, or to pass 
through one or more nodes. This can simply be enforced by setting the costs of all other 
nodes of the particular row(s) to infinite (or sufficiently high values, in practice) and 
running a standard DP. More elegantly, a penalty can be applied to any nodes outside a 
certain neighborhood. Such a penalty can be a complex combination of figures of merit as 
well, like the distance to the preferred position, image features, distance from a model, 
etc. We have applied this for fitting a best smooth path to a number of (possibly 
conflicting) support points9, as described below in 3.2.3.5. 

3.2.3.2 Finding a closed path 
Another common variation is finding the optimal closed contour, in case the model is a 
closed shape (such as a circle or a blob). In that case, an optimal closed path is desired: the 
start and end node are required to be adjacent (q-connected), and the constraint of Eq. 
(3.1) is extended into Eq. (3.6). 
 
 | k(1) – k(R) | ≤ s    ∧   | k(r+1) – k(r) | ≤ s  for ∀r ∈ {1 , ... , R-1}  (3.6) 
 
In our case, closed contours are desired in short-axis echocardiographic images.  

A simple but computationally expensive solution requires that for each node on the 
start row, all non-adjacent nodes on the end row are masked. This brute-force solution 
requires K complete DP runs. Of the K resulting paths (all closed) the one with lowest cost 
is the optimal closed path.  

A fast and practical solution only uses maximally 2 DP runs; however, it is not 
guaranteed to find the optimal closed path in all cases. Here, a standard optimal path (not 
necessarily closed) is first found with DP; if start and end are adjacent (Eq. (3.6) is 
satisfied), the optimal closed path is already found. If this is not the case, along one of the 
middle rows the matrix is cut and the start row is made q-connected to the end row. For 
the new start and end row, the position where the optimal path crossed is enforced (by 
masking the other nodes). Now, a second DP run finds a closed path, which is presumed 
to be optimal or very close to that. This works very well if the cost information is known 
to be very reliable around the row where the matrix is cut. This is indeed the case for 
short-axis images, where the edges are most prominent near the upper and lower points of 
the lumen, due to the perpendicular incidence of the ultrasound beams.  

Our lab has also developed a solution that is guaranteed to be optimal and has a 
complexity between 1 and K DP runs (depending on the data and allowed sidestep s)10,11. 
Because of the higher implementational complexity of this approach, mostly either the 
previous suboptimal solution or the brute-force solution is used.  
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3.2.3.3 Finding a path in 3 or more dimensions 
A simple extension to finding a path in multiple dimensions is possible. In the standard 2-
dimensional case, we find a path through a sequence of R rows of size K with q-
connectivity; in the 3D case, we find a path through a sequence of R rectangular matrices 
of size Kx*Ky with qx*qy-connectivity; in 4D, the path traverses a sequence of R cubes of 
size Kx*Ky*Kz with qx*qy*qz connectivity, etc. The positions in these matrices can 
represent positions in images, but also in an arbitrary parameter space. In all cases, a 
singular optimal path of R points with q-connectivity in all dimensions is found. One 
application is tracking of an anatomical landmark in two dimensions (x,y) over time; 
another was described by Sonka12 for simultaneous detection of a pair of interrelated 
contours. Costs at points (k1,k2,r) in a cube (sequence of matrices) are defined as a 
function of both the costs from a conventional two-dimensional DP cost matrix for the 
first contour (k1,r dimensions) and the other contour (k2,r dimensions). Finding the 3D 
path in the r direction and projecting it back onto k1,r and k2,r planes will simultaneously 
give the two 2D paths for both interrelated contours (p.194 in13). A similar approach has 
been used in our lab by Dijkstra et al.14 for simultaneous detection of longitudinal vessel 
contours in IVUS sequences.  

3.2.3.4 Finding a plane (or multiple connective paths) in 3 dimensions 
Many researchers have tried to extend dynamic programming to finding a minimum-cost 
connective plane in a 3-dimensional cube of nodes. This would correspond to finding 
contours in a number of consecutive planes (in space or time), which are connective 
between planes and form the optimal overall set. Although this may look like a 
straightforward extension, it is easy to show that the connectivity in two dimensions 
makes it impossible to apply the essential notion of a partial optimal solution and use a 
similar form of induction as described by Eq. (3.4) and (3.5). A row-by-row approach, 
covering the plane by a spiral, meander or other pattern all fail because they break the 
assumptions for optimality, or cannot guarantee connectivity, or result in explosive 
complexity (each path of R points in plane y of the cube has Rq valid neighbor paths in 
plane y+1; q≥3). 

Partial solutions to this problem have been formulated (e.g.15) in which pairs or triplets 
of contour points from neighboring planes are combined into single nodes, which are 
interconnected in a more complex way. This has been shown to be feasible for finding 
connective contours in 2 to 5 planes simultaneously, but the complexity explodes for more 
than 3 planes. 

Recently, a general solution for this problem has emerged. It was inspired by a 
different part of graph theory and involves computing minimum s-t cuts in graphs16. This 
appears very promising for finding optimal solutions to many medical image 
segmentation problems. 

Obviously, such a solution has not been used in the methods described below. In 
general, connectivity of contours between consecutive time frames was induced either by 
using the previous contour as a model in the next frame (a form of “forward search” not 
guaranteed to lead to an optimal solution) or by postprocessing (temporal smoothing of 
contours). 
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3.2.3.5 Cost functions 
In the classical DP-based border detection, costs are mostly defined from low-level image 
features, e.g. the output of edge detectors (generally simple convolution filters). Often, 
also other components are introduced, such as distance from an expected position. Such 
cost components can easily be combined (e.g. as weighted sums) but the weighting can 
have dramatic effects on the results. 

However, a cost function can also be defined from very different information, such as 
local correspondence to some border template, a priori likelihood of presence of an edge, 
or co-occurrence of other objects. Therefore, the quality of the result in DP-based methods 
does not depend on the DP algorithm itself, but on the applied parameters and restrictions, 
and especially on the composition of the cost function. 

A general problem lies in the weighting of model-based and image-based terms. 
Translation of image features into cost terms is generally realized in a straightforward 
manner, e.g. by a fixed weighting term or by normalizing to some output range estimate. 
In practice, differences in image features (contrast, brightness, noise) make it often hard to 
perform a proper weighting between cases. Cost terms that represent shape properties (e.g. 
distance from the model, contour smoothness etc) are mostly from a very different order. 
Balancing shape-based cost terms against image-dependent terms is not trivial. In fact, the 
problems are similar to the balancing of internal and external forces in snake or balloon 
approaches17. The DP approach, however, has a definite advantage over a snake-like 
approach, because it is guaranteed to find an optimal solution instantaneously (given the 
model, cost function etc.); it is not an iterative method and lacks the typical problems of 
convergence, stopping criteria, local minima etc. 

An elegant application is relating node costs to probabilities. If for each node a 
probability Pr,k can be estimated that this node is part of the path, DP provides a way of 
finding the path with overall highest probability. Intuitively, probability of a path should 
be proportional to the product of the probabilities of its nodes. If we model our cost as Cr,k 
= – log (Pr,k), the total cost of a path is 
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which is indeed proportional to the product of the probabilities of its nodes. As additional 
constraints, probabilities should be between 0 and 1, and the sum of all probabilities per 
row must be exactly 1, because the path must pass through one of the nodes. 
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A row r’ that has absolutely no preferences for any node, should have a uniform 
probability distribution: Pr’,k = 1/K for ∀k . 

An example of such a probability-based cost function is given in9, where we used 
dynamic programming to fit a smooth contour to a number of possibly conflicting support 
points. Here, probability of each node as being part of the path was composed of multiple 
Gaussian probability distributions, of which the height and width were determined by 
probability and proximity of the support points (Fig. 3.3). 
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Figure 3.3.   Probability-based cost function for fitting a smooth contour to a number of possibly 
conflicting support points (from9).  
A. Cost matrix, with a landscape plot representing the cost values generated from the distances 

to the support points. 
B. Resulting fit through support points by DP. 
 

3.2.3.6 Smoothness of paths 
The sidestep parameter s limits the maximally allowed tortuosity of the path, but it is not 
very useful for controlling the smoothness of the path, since it is an integer value mostly 
set to 1 or 2. In general, we want to control smoothness in a more subtle way. The path 
should follow strong edges accurately, but in noisy regions it should not jump around to 
follow all peaks in the noise. A popular way of controlling the smoothness of the detected 
contours is by introducing a penalty for ‘sidestepping’ in the path search. If such a penalty 
(“sidestep cost”) is high, paths will tend to be mostly straight and the detected contour will 
look much like a scaled version of the model. If the penalty is 0, no adherence to the 
model’s shape is applied; only the allowed sidestep limits the deviation. The penalty can 
even be negative, stimulating a zigzag-type path and a winding border. As above, if this 
penalty is simply a fixed value, it is very hard to properly normalize this value with 
respect to the current costs.  

Sometimes the use of a multiplicative penalty is advocated, so a sidestep effectively 
increases the cost of the target node with a constant factor. This can be advantageous, 
since for low-cost (reliable) path sections the extra sidestep cost will have little influence, 
while in relatively high-cost regions, the sidestep cost will be large and the path will tend 
to become straight. In that way, the penalty normalization problem is circumvented, and 
the cost of sidestepping will always be in accordance with the feature strength. However, 
one can show that such multiplicative penalties inhibit all four of the aforementioned 
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elegant properties of the DP solution. Therefore, a multiplicative penalty should be 
applied with care and only after costs are properly normalized to a fixed positive range.  

A more flexible and elegant approach is to assign explicit costs to the arcs between 
nodes in the network. Such costs can then be generated from image information or model 
information, and localized, weighted or normalized at will, just like node costs. 

3.2.3.7 Iterative approaches 
Since the DP approach starts and ends with a contour, it can be applied iteratively. This 
means that a detected contour is used as a model in a following iteration, possibly with 
adjusted parameters. Starting with a rough model and coarse resampling over a broad 
range, a rough approximation of a contour can be detected, which again serves as a model 
for a higher-resolution resampling over a narrow band around the model. In this way, an 
accurate and detailed border can be found with low computational demand; also, this 
allows the detection of highly winding, non-convex shapes. This is impossible with a 
single-step approach and a convex, smooth model because of the sidestep limitation. This 
approach has been applied throughout our developments, starting with the early single-
frame detection approaches for TEE18-20 and IVUS21,22. A similar approach is used for 
feed-forward detection in sequences: from the border detected in an image, a model is 
constructed which is used in neighboring images. This is based on the assumption that 
shape change between consecutive images is sufficiently limited. 

In our research, we have concentrated on finding well-matched cost functions for our 
problem, that exploit the optimality of DP contour finding; generating good geometrical 
models; and including pattern matching approaches into the cost functions, to make best 
use of the information that can be extracted from expert-defined contours. Furthermore, 
we have dealt with forcing contours through fixed positions, finding closed contours, and 
imposing local stiffness to parts of the path. We also have incorporated reliability 
measures of the feature extraction into our cost measures. 

3.2.4 DP detection with pattern matching: MCCT 

3.2.4.1 Limitations of edge-based endocardial border detection  
The original detection approach for short-axis image sequences is described in detail in 
chapter 2 of this thesis. It uses closed-contour dynamic programming (see 3.2.3.2) with an 
edge-based cost function and requires only the indication of a center point of the left 
ventricle, or the manual drawing of a first contour approximation. A feed-forward 
geometric model prediction (3.2.3.7) is used: the contour detected in one image is 
smoothed and used as the model for the next and/or previous image. The width of the 
search range is adapted to the expected maximal frame-to-frame wall displacement.  

In major-axis cross sections (apical four-chamber, apical two-chamber, parasternal 
long axis), similar approaches have been applied (see chapter 7.2.2) but with limited 
success. In major-axis images, two specific issues make detection of the endocardium 
more difficult than for short-axis images: 

1. The geometric model is more complex: a hemi-elliptic, open shape, with 
complex dynamic behavior (e.g. the moving mitral valve plane). 

2. The border appearance (intensity patterns) can be very different per region; and 
the strongest edge is often not the desired one. Edges are obscured by noise, 
artifacts, dropouts etc. Often, the cardiologist wants to track a structure that is 
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not associated with an edge at all (e.g. because of trabecular structure, imaging 
artifacts, or foreshortening). 

The second issue (diversity of edge patterns, inhomogeneity) is very typical for 
ultrasound, where standardization of image generation is particularly hard to achieve. 
Apart from normal anatomical variations, this is specifically due to the strong influence of 
operator-dependent choice of image cross section and regional gain settings, and to the 
patient-dependent acoustic windows and artifacts. Therefore, for echocardiography it is 
very difficult to formulate general properties of the appearance of edges and regions that 
are valid for all regions and all patients. 

Initially, the technique described above for short-axis detection was extended in a 
straightforward way towards major-axis images, addressing only the first issue. Instead of 
a single center point, three markers were used: an apical marker and two mitral valve 
points. A hemi-elliptic model was fit through these three points, and an edge-based 
dynamic programming detection comparable to the method described for short-axis 
views23 was applied.  

Evaluations of this technique are discussed in ch. 7.2.2.1. In conclusion, it was found 
that the contour detection worked well as long as the endocardial border was clearly 
visible. The main limitations were found in areas of considerable dropout (often the mid 
lateral wall) where significant temporal inconsistency in the borders could occur, that 
necessitated manual correction. It was also found that characteristics of the endocardial 
borders in the major-axis views were considerably different for each segment of the wall, 
which complicated a proper choice of settings of the DP algorithm.  

To handle the second issue mentioned above, we devised a more elaborate border 
detection/tracking method, which effectively uses all information that it can derive from 
limited expert input. It is based on the combination of DP with our earlier research on 
border motion estimation by pattern matching24-26. This method was branded Minimum 
Cost Contour Tracking (MCCT)27-31. MCCT has already been described in general terms 
in ch. 1; it is further explained below, is illustrated in Fig. 3.4 to 3.6 and summarized in 
Table 3.1.  

3.2.4.2 MCCT image preparation and user interaction 
After image digitization or import (containing one or more complete heart beats), the 
cardiac phase is defined, from ECG information and/or by indicating ED and ES images 
(Fig. 3.4.A). Next, the user manually draws the endocard in one end-diastolic (ED) and 
one end-systolic (ES) image (Fig. 3.4.B). From these contours, a model is generated 
encompassing both the pose and shape of the left ventricle and the intensity pattern (gray 
value profile) around the desired border, as well as their change over the heart cycle. Next, 
sets of three landmark points characterizing the position of the LV (apex and mitral valve 
attachment points, which are the end points of the contour) are extracted from the drawn 
contours and inter/extrapolated linearly over the cycle(s) (Fig. 3.4.C). The user can inspect 
these markers over the cycle(s) and may then redefine, if necessary, intermediate positions 
where the true position deviates from the estimated position. In general, this is rarely 
necessary in the systolic phase, in which motion behaves quite linearly; but it is generally 
important to do this in the diastolic phase, which can exhibit highly nonlinear motion. By 
dividing the diastolic phase in three subphases (rapid filling, diastasis and atrial filling) 
and by redefining the markers at the two phase transitions (start and end of diastasis, 
which can easily be identified in the images as mitral valve closing and opening, 
respectively), the true valve plane and apex motion can be accurately approximated.  
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Figure 3.4.   Echo-CMS semiautomated border detection procedure. From left to right:  
A. ECG and original images 
B. Manual drawing of 2 contours and inspection of markers 
C. Generation of pose models (landmarks) 
D. Generation of shape models 
E. Generation of profile models (match patterns) 
F. Automatically detected contours 
 

3.2.4.3 MCCT automated detection 
After these manual stages, the automated contour detection is started. From the manually 
drawn ED and ES contours, models are extracted describing the geometrical shape of the 
ventricle over the cycle (Fig. 3.4.D) and the grey-value profiles in a neighborhood of the 
drawn contours (Fig. 3.4.E).  

For the geometrical shape, the pose and shape of the contour are treated separately. 
The three marker positions (either manually positioned or derived from the contours) 
represent the pose of the contour; the pose can be defined as an affine transform T that 
transforms a set of three points on the upper half of a unity circle into the three marker 
positions (Fig. 3.5.A). 
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The transform consists of scaling, shear, rotation and translation and is described by the 6 
parameters A-F. For every set of 3 points, there is a unique transform T, as long as the 
three points are not on one straight line and do not coincide (matrix determinant will be 
0). The transform is easily calculated by solving Eq. (3.9) for the three point pairs. 
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Fig. 3.5.   Affine transforms for representing the pose of a contour and normalizing shape. 
A. Affine transform T represents pose of apex and valve landmarks with respect to unity circle. 
B. Applying the inverse transform T-1 to the contour points allows a normalized shape 

representation with respect to the unity circle. 
 
 
 

 
                       A                                                 B                                                C 
 
Figure 3.6.   Minimum Cost Contour Tracking (MCCT).  
A. Generation of match pattern from image with manual contour.  
B. Image with shape model and scan lines.  
C. Left to right: Scan matrix, match pattern, cost value matrix and detected path. 
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Table 3.1. 

Steps in intensity pattern matching detection. (See Fig. 3.4 to 3.6) 

1. User draws endocard in ED and ES, ensuring consistent tracing (Fig. 3.4.B). 
2. Landmark positions are extracted and linearly intra/extrapolated over cycle(s). User may correct 

landmark points in some intermediate frames (Fig. 3.4.B,C).  
3. Start automatic detection: shape (Fig. 3.5) and intensity models (Fig. 3.6.A) are extracted from manual 

borders and extrapolated to all images of the cycle(s) (Fig. 3.4.D,E). 
 Now, for each image: 

4. Images are resampled in a strip around the interpolated shape models (Fig. 3.6.B). 
5. Difference between model intensity pattern and local image intensities is established for each 

point within the resampled strip (Fig. 3.6.C, left). 
6. Match results are collected in a cost matrix (Fig. 3.6.C, middle). Match values per line are 

transformed to incorporate local wall stiffness and pattern reliability. In the cost matrix, a DP 
graph search is performed. This will find the path through the best matching points satisfying 
connectivity requirements (Fig. 3.6.C, right). 

7. Path points are transformed back to image points and interpolated (Fig. 3.4.F). 
8. User may correct any contour. If so, the process is repeated from step 3, where additional models are 

extracted from all corrected frames. 

 
Applying the inverse transform T-1 to a contour projects the contour on the unity circle; 
pose is eliminated and shape can now easily be represented as a set of radial excursions 
with respect to the unity circle (Fig. 3.5.B). Note that this requires that the tortuosity of the 
contour is limited so that angle is continuously non-decreasing along the pose-normalized 
contour. This is a valid limitation in the type of borders we want to detect. 

At any time point in between two known contours, an interpolated contour can be 
found by calculating the interpolated shape representation, and the interpolated marker 
positions, defining the transform T’ that should be applied to the interpolated shape. This 
delivers a sensible and smooth, natural interpolation. Decoupling pose and shape changes 
makes sense, since the heart is subject to translations and rotations during the cycle and 
respiration, and the transducer can rotate and translate as well. Shape change need not be 
coupled to that. 
 
The grey-value profiles are smoothed and subsampled versions of narrow scan matrices 
derived from the drawn contours in the corresponding images (Fig. 3.6.A). Smoothing and 
subsampling is such (up to a factor 8 lateral) that speckle is removed but the grey value 
distributions in a neighborhood around the border are represented well. A typical profile 
pattern consists of 24 lines with 5 samples per line (Fig. 3.6.A,C). Phase and LV pose are 
already known from the manual definitions described above. All models (phase, pose, 
geometry and edge profiles) are interpolated over the cycle and extrapolated over other 
cycles (Fig. 3.4). For the edge profiles, interpolation is performed linearly over time for 
each sample point. The resulting geometry models are positioned over the images (Fig. 
3.6.B), and in a neighborhood of the model, the image is resampled along straight lines 
perpendicular to the model. For each point of all scan lines (Fig. 3.6.C, left), a cost value 
is calculated representing the likelihood of this point as a contour point: unlikely points 
will have high cost values. The cost C is calculated from a combination of match metrics 
Q (differences with the edge profile models (Fig. 3.6.C, mid)), and local edge reliability 
measures. The edge profiles from the models are first scaled and interpolated to match the 
scan line sampling, so that a specific profile Zr is available for each scanline Sr. A Sum of 
Absolute Differences (SAD) match criterion is used as a metric Q to evaluate the quality 
of the match26.  
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Evaluation of match values is performed per line to suppress local unreliable results; a 
priori knowledge on local border properties (local wall stiffness and pattern reliability) is 
incorporated. Stiffness is relatively high close to the apex, and decreases linearly towards 
the mid section of the walls. Through the rectangular array of cost values, an optimal 
connective path (Fig. 3.6.C, right) is determined using the DP (Minimum Cost) approach. 
Cumulative costs for all connective paths are calculated, applying line-dependent additive 
penalties for deviation from a straight path (see 3.2.3.6). In this way, local stiffness of 
parts of the border is modeled, both for fixed regions and for scan lines with poor match 
quality. The path with overall lowest cost is selected as optimal (Fig. 3.6.C, right) and by 
inversion of the resampling process converted into a new contour. 

After detection of all contours (Fig. 3.4.F), the user may apply corrections by 
overdrawing part of any contour. Consecutively, all models are updated with the extra 
user-defined information, which is interpolated and extrapolated over the beats within the 
sequence, followed by a redetection of all non-manual contours. In this manner, models 
are always coherent with all manually defined or corrected contours, and use the 
maximum amount of user-supplied information. 

From the detected contours, different clinically relevant parameters can be calculated 
over the full cycle, such as cross-sectional areas, dimensions along long and short axis, 
volumes and wall displacements. Some typical results are shown in Fig. 3.7. 

Using monoplane or biplane volume formulas such as Simpson’s rule and Area-length, 
full-sequence volume and volume change (equivalent to flow) can be calculated. (Fig. 
3.7.A). Local wall motion between the ED contour and the contour at any other time point 
(Fig. 3.7.B) is calculated at 100 points along the contour using a modified Centerline 
approach32. The local wall displacement from ED is displayed as a ‘landscape’ or ‘flying 
carpet’ plot (Fig. 3.7.C), showing extent and synchronicity of the wall displacement. By 
averaging local wall motion over all centerline cords within a segment, segmental wall 
motion is obtained over the cycle (Fig. 3.7.D). 
 
In conclusion, this method uses full-cycle models for the 2D pose, shape and local 
stiffness properties of the wall, and for the intensity profiles of the edges. Case-specific 
and user-specific information is incorporated by collecting information from all user-
defined contours, including corrections, which allows iterative improvement of the 
models. 
 

 
 
 
 
 

Figure 3.7.   (see color suppl.) Typical results of patient study (facing page):  
A. Full-cycle volume and volume derivative 
B. Centerline analysis 
C. Wall motion over cycle (left to right) along the wall (front to back: septum, apex, lateral 

wall) 
D. Segmental wall motion for standard four-chamber segments 
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3.3   Evaluation of MCCT detection 
3.3.1 Clinical study setup 
The pattern matching major-axis border detection technique as described above was 
validated as part of a large clinical study on the impact of myocardial viability on left 
ventricular dilatation with low-dose dobutamine stress echocardiography (DSE)33. Goal of 
the study was to assess whether ventricular dilatation occurs less in patients with 
myocardial viability as shown by DSE. In 129 acute myocardial infarct patients from 2 
different hospitals in Amsterdam, the Netherlands, 3 separate sets of apical four-chamber 
(4C) and two-chamber (2C) cross sections were recorded: at day 3±1 after acute 
myocardial infarction, at rest (DAY3); at the same day, with low-dose dobutamine applied 
(DOBU), and after 3±1 months, at rest (3MTH). The sequences were recorded on VHS 
videotape. Single complete beats (ED to next ED) for each of the 6 sequences were 
digitized from tape and analyzed. ED and ES contours were drawn manually by the expert 
user; point markers at next ED and start and end of diastasis were repositioned (and more 
if necessary to accurately track the marker motion), and the other contours were detected 
automatically. In total, about 16,000 images were analyzed. User corrections to the 
contours and markers were allowed and counted; redetection was applied after the 
correction. Contours were corrected until the user was content with all resulting contours. 
This resulted in data on frame-to-frame biplane volume, local and regional wall motion 
over the complete heart cycle. 

In this study, no independent gold standard of LV volume was present; the intention 
was to evaluate the applicability of the tracking method in clinical practice by counting all 
needed corrections. For a subset, inter- and intra-observer variability of manually drawn 
and automatically detected contours was determined. No direct comparison between 
manually and automatically determined borders was performed, because of the prohibitive 
amount of work for the clinicians involved. Instead, the clinician’s decision of correctness 
of the borders was used. 

3.3.2 Evaluation results 
Because of missing follow-up, not all 129 patients had 6 sequences; a total of 732 single-
beat sequences were analyzed, with a total of 16,736 images and contours (on average, 
22.9 images/seq.). Approximate analysis time was about 20 minutes per sequence, 
including digitization, loop editing, review, manual drawing, marker correction, contour 
detection and corrections. Detection itself took approximately 20 seconds for one heart 
cycle (Intel 486 at 100MHz).  

Results are listed in Table 3.2 and Fig. 3.8. Proper endocardial contours could be 
detected in all sequences with the manually supplied ED and ES contours and less than 1 
contour correction on average per sequence (0.9 corrections/seq.; 87.3% of contours 
detected fully automatically. See Table 3.2, column 3). This implies that 95.7% of all 
intermediate contours (non-ED or ES) was found automatically. The total number of 
frames per sequence requiring contour or marker interaction is listed in column 4 (on 
average 6.7/seq.). Initially, contours were drawn in 2 frames and markers positioned 
generally in 3 additional frames, which leaves 1.7 frames/seq. for corrections and extra 
points.  Although the time and effort for the marker  manipulations is relatively low, these 
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Table 3.2. 
Evaluation results. 

Results (n=129 patients) #Frames / seq. 
(Average ± SD) 

#Manual contours per 
seq. 

#Manual points & 
contours per seq. 

4C, DAY3 (n=129) 23.0 ± 3.6 2.9 ± 0.8 6.8 ± 2.5 
2C, DAY3 (n=129) 23.0 ± 3.7 2.8 ± 0.8 6.2 ± 2.1 
4C, DOBU (n=129) 21.5 ± 3.9 3.1 ± 0.9 6.7 ± 2.4 
2C, DOBU (n=128) 21.1 ± 3.8 3.0 ± 0.9 6.6 ± 2.3 
4C, 3MTH (n=109) 24.5 ± 3.9 2.9 ± 0.9 6.9 ± 2.4 
2C, 3MTH (n=108) 24.6 ± 3.9 2.8 ± 0.9 6.8 ± 2.4 
All seq. (n=732 seq.) 22.9 ± 4.0 2.9 ± 0.9  6.7 ± 2.3 
Corrected / above initial 
manual input 

 0.9 corrections above 
initial 2 (ED&ES) 

1.7 above initial 5 
(2*ED, ES, 2*Dia) 

Total # over all seq. 16,736 2,122 (12.7%) 4,865 (29,1%) 
Total # corrected / above 
initial manual input 

 658 (3.9%) 1,185 (7.1%) 

 

 
 
Figure 3.8.   Results of MCCT evaluation: number of corrected contours and total editing.  
A. Required contour corrections per sequence (percentage of all sequences) 
B. Distribution of number of edited frames per sequence (frames where contours and/or 

markers were drawn or corrected) (n=732 sequences) 
 
numbers suggest the processing time and user dependence of the method can be improved 
by automating this marker placement or tracking the markers. 

Contour detection was slightly better in the baseline sequences (DAY3 and 3MTH) 
than in the stress sequences (DOBU), and better for 2C than for 4C, but none of these 
differences were significant. 

3.3.3 Inter- and intra-observer variability 
From the same study, inter- and intra-observer variability was established on 80 sequences 
of 20 randomly chosen patients (~1900 images). Contour drawing and detection were 
repeated by the first observer after 14-20 months, and independently by a second trained 
observer. Images and procedures were identical to those described above. Comparisons 
were made within and between observers to establish the inter- and intra-observer 
variability; this was done separately for  ED/ES contour sets (totally manual contours) and 
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Figure 3.9.   Inter-observer variability results (intra-observer results are very similar). 
A. Regression plot 
B. Bland Altman plot  
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Table 3.3. 
Inter- and intra-observer variabilities, manual and automated. 

Biplane volumes 
[ml] 

Intra-observer, 
manual ED/ES 
(n=40) 

Intra-observer,  
all  
(n=954) 

Inter-observer, 
manual ED/ES 
(n=40) 

Inter-observer,  
all  
(n=954) 

Regression y=1.022x - 1.42 
r=0.993  
see=0.014 

y=1.026x - 1.16 
r=0.989  
see=0.005 

y=1.027x - 2.40  
r=0.995  
see=0.011 

y=1.031x - 2.64 
r=0.993  
see=0.004 

Differences 
(Average ± SD) 

0.69 ± 6.67 (8.4%) 1.37 ± 7.54 (8.6%) 0.19 ± 5.67 (6.7%) 0.40 ± 6.05 (6.9%) 

Repetition coeff. 
[ml] 

13.35 15.08 11.33 12.10 

 
for full cycle sets (mostly automatic contours), to evaluate structural differences between 
manually and automatically determined contours.  

Note that we are evaluating a tracking technique, that is supposed to follow the 
contours that the user has drawn as good as possible. The assumption was, that if the 
automated border detection gave structurally different borders than manual drawing, this 
should certainly show up in inter-and intra-observer results: if the border detection would 
mostly find the same edges, independent of the different manually chosen borders, 
observer variabilities would be lower for the automatic borders; if the border detection 
was more chaotic than manual drawing, this should show up as increased observer 
variabilities for the automatic borders.  

Differences in biplane volumes were calculated and subjected to Bland-Altman 
analysis (Table 3.3, Fig. 3.9). All mean differences were not significantly different from 0, 
so there was no systematic volume difference between observations. There were no 
significant differences between intra-observer variations and inter-observer variations. No 
significant differences were found between ED/ES (manual) and full-cycle (mostly 
automatic) inter- and intra-observer variabilities. All standard deviations of the differences 
were around 7 ml, or 7-8% of the average volumes, both for the ED/ES sets (only manual 
borders) and the total full-cycle sets (mostly automatic borders). The fact that they are not 
significantly different implies that the detection succeeded in generating contours 
equivalent to manual drawing. 

3.3.4 Edge-based detection vs. intensity pattern matching 
In a study of 21 infarct patients taken from the COMPASS study (Dept. Cardiology, 
University Medical Center Maastricht), 42 single-beat sequences were analyzed (two-
chamber and four-chamber views, ED to next ED, on average 20.9 frames/sequence). 
Detection over the complete cardiac cycle was performed earlier34 with the older major 
axis edge-based method (see ch. 7.2.2.1) and, after 2 years, with the new pattern-based 
technique, based on the original manually drawn ED and ES contours29. Full-cycle 
contours were assessed visually and corrected where necessary.  

Results were much better for the MCCT method: the number of corrected frames per 
sequence decreased by a factor of 9 from 3.95 to 0.43, while the resulting contours overall 
were more consistent (Fig. 3.10). This implies that the percentage of intermediate frames 
(non-ED and ES) that was detected automatically increased from 81% to 98%, in line with 
the findings of 3.3.2. Over the total sequence, the percentage of automatically detected 
frames (not drawn or corrected) increased from 72% to 88%. These results imply more 
reliable and robust performance of the intensity pattern based contour detection algorithm. 
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Figure 3.10.   Improvement of MCCT (intensity pattern approach) over edge-based detection: 
number of corrections per sequence decreased from 3.95 to 0.43. (n=42 sequences) 
 

3.4   Conclusions 
Overall, this proves that the MCCT detection provides a practical and successful way of 
analyzing contours over the full cardiac cycle. In this study, no complete comparison with 
manually drawn contours was performed for practical reasons (the manual drawing of 
almost 17,000 contours), but there is no reason to assume that results would be inferior to 
those found in the earlier smaller-scale studies23,35. Furthermore, it was shown that inter- 
and intra-observer variations of the automated method were not significantly different 
from those of the manually drawn contours – an indication that the tracking was consistent 
with the manual input. 

The intensity pattern matching detection performs much better than the edge-based 
detection, with a very low number of corrections. Therefore, the technique is practically 
applicable for full-cycle wall motion analysis. In chapter 7 of this thesis, several clinical 
applications of these methods are discussed. 
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Abstract 
A novel extension of active appearance models (AAMs) for automated border detection in 
echocardiographic image sequences is reported. The active appearance motion model 
(AAMM) technique allows fully automated robust and time-continuous delineation of left 
ventricular (LV) endocardial contours over the full heart cycle with good results. 
Nonlinear intensity normalization was developed and employed to accommodate 
ultrasound-specific intensity distributions. The method was trained and tested on 16-frame 
phase-normalized transthoracic four-chamber sequences of 129 unselected infarct 
patients, split randomly into a training set (n=65) and a test set (n=64). Borders were 
compared to expert drawn endocardial contours. On the test set, fully automated AAMM 
performed well in 97% of the cases (average distance between manual and automatic 
landmark points was 3.3 mm, comparable to human inter-observer variabilities). The 
ultrasound-specific intensity normalization proved to be of great value for good results in 
echocardiograms. The AAMM was significantly more accurate than an equivalent set of 
two-dimensional AAMs. 
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4.1   Introduction 
Ultrasound imaging allows direct visualization of the heart in motion. Image sequences of 
standard cross-sectional views through the heart provide insight in the functional 
performance of the different segments of the left ventricular (LV) wall. It is widely 
recognized that quantitative analysis of echocardiograms is preferable over qualitative 
interpretation, in particular for wall motion and volume estimation. However, manual 
measurements are tedious and time consuming, require expert knowledge, and suffer from 
considerable inter- and intra-observer variability. Semiautomated methods are either too 
unreliable or require too much interaction, especially when many sequences need to be 
analyzed, e.g. for stress echo studies. Therefore, robust and highly automated border 
detection of endocardium and other structures is desired. 

4.1.1 Echocardiographic image segmentation 
Ultrasound suffers from several specific drawbacks, which impede both human 
interpretation and automated analysis: 

1. There is no simple relation between pixel intensity and any physical property of 
the tissue visualized, in contrast to, e.g., the Lambert-Beer law for X-ray. 
Ultrasound images are formed as a combination of interference patterns 
(speckle) and reflections at tissue transitions. Different tissues are mostly not 
distinguishable by their intensity values or texture. 

2. Ultrasonic image information is highly anisotropic and position dependent, 
since reflection intensity, spatial resolution and signal-to-noise (S/N) ratio 
depend on the depth and the angle of incidence of the ultrasound beam, as well 
as of user-controlled depth gain settings.  

3. Many imaging artifacts occur, resulting in local loss of anatomical information: 
significant amounts of noise, dropouts (for structures parallel to the ultrasound 
beam), shadowing (behind acoustically dense structures), sidelobes, 
reverberations, and limited echo windows. Still-frame images, therefore, often 
only contain partial information.  

For these reasons, automated segmentation of echocardiographic image sequences has 
shown to be a challenging task. Many approaches to segmentation of the endocardium in 
echocardiographic data have been proposed (for overviews, see [1] and [2]) based on, 
among others, integrated backscatter RF processing [3], arc filters [4], fuzzy neural nets 
[5], dynamic programming [1], [6], [7], simulated annealing [8], self-organizing maps [9], 
snakes/active contours [10], [11], and active shape models (ASM) [12], [13]. Though 
partially successful, three major problems are associated with many of the existing 
echocardiographic contour detection strategies. 

1. The current methods typically do not include information about the allowable 
range of shape and appearance variations of the segmented objects. Ultrasonic 
image information is often ill-defined or incomplete. Therefore, extensive 
model knowledge about the characteristic organ shape and appearance, its 
anatomical and pathological shape variations and spatial organ embedding 
should form an integral part of a robust segmentation approach. 
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2. Most existing methods use implicit, global, and oversimplified models for the 
contour location (e.g., strongest edges). The location of strong local image 
features, however, does not always correspond to the desired contour as drawn 
by an expert human observer. In particular, the papillary muscles and 
trabeculations pose a problem, as well as the mentioned anisotropy and 
artifacts. Therefore, the exact location of the contour cannot always be 
determined from the strongest image evidence, but should be modeled or 
learned from examples provided by expert observers. Moreover, contour 
characteristics vary for different parts of the local (and yet unknown) anatomy. 

3. Many automated techniques perform a static segmentation on single two-
dimensional (2-D) frames or use rudimentary continuity constraints and, 
therefore, often produce segmentation results that are inconsistent with the 
dynamics of the cardiac cycle. An expert observer, however, utilizes knowledge 
about cardiac contraction dynamics and temporal coherence of structures and 
texture to resolve ambiguities and to determine the exact LV boundary location, 
mostly after reviewing the image data in a cine-loop. 

Recently, several methods have been reported that try to deal with the third problem in 
time sequences of either 2-D or three-dimensional (3-D) echocardiograms. Montagnat et 
al. [14] report a time-continuous segmentation in 3-D time sequences based on a two-
simplex mesh deformable surface and a feature detection by a cylindrical Deriche gradient 
filter. Time continuity is enforced by propagating the found surface as a model to 
following time frames. Results are shown for one clinical example. Angelini et al. [15] 
mainly aim at feature enhancement and speckle suppression in four-dimensional (4-D) 
echoes using so-called 4-D brushlets, which are wavelet-like decompositions of the spatial 
frequency domain. A standard 2-D balloon consecutively performs segmentation in short-
axis cross sections. Promising results on six patients are reported, but significant manual 
interaction and very time-consuming processing is required. Jacob et al. [16] describe a 
statistical shape model trained from example contours by principal component analysis, 
combined with a Kalman filter approach for prediction of dynamic shape changes and a 
feature detection based on temporal smoothing, integrated backscatter calculation, and 
one-dimensional log-Gabor filters. The practical value of these approaches remains 
uncertain due to the limited testing on clinical image data. 

4.1.2 Active Appearance Models (AAMs) 
AAM matching is a highly promising segmentation technique that may provide new 
solutions to these problems. The AAM technique was recently introduced by Cootes et al. 
[17], [18] and forms an extension of the widely applied ASMs [13] from which it 
inherited the shape-modeling approach. An AAM describes both image appearance and 
object shape over a set of examples as a combined statistical shape-appearance model. 
AAMs can be applied to image segmentation through analysis-by-synthesis, by 
minimizing the difference between a model-generated synthetic image patch and a real 
image using statistically plausible parameter adjustments. We have shown earlier that 
AAMs are highly robust in the segmentation of routinely acquired single-phase single 
slice cardiac magnetic resonance (MR) images [19] and end-diastolic echocardiograms 
[20], because they exploit a priori knowledge of the cardiac shape, image appearance, and 
observer preference in a generic way. AAMs model the complete object appearance, 
including typical local position-dependent artifacts such as lateral wall dropouts. Since 
ultrasound images are generally acquired in standardized cross sections, typical problems 
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occur in the same parts of the anatomy in most of these images. A technique like AAM 
can model such typical local effects. Moreover, effects of high spatial frequency and a 
more random nature such as speckle and noise are suppressed by the spatial averaging and 
principal component analysis (PCA). Averaging the images retrieves the reproducible 
information in a generalized form. Furthermore, since AAMs are trained from expert-
segmented examples, they mimic the expert’s segmentation decisions in cases of typical 
artifacts. The AAM will also cover the shape and appearance variability in the example 
set. Provided that the example set is representative of the variability in the population and 
the distribution can be approximated by a high-dimensional Gaussian ellipsoid, an AAM 
can generate any statistically plausible intermediates [18]. If the distribution is disjunct or 
very skewed, the model may generate implausible intermediates or may fail to cover the 
full range of variability. In practice, it was not a problem in our experiments.  

These properties of the AAM cover most of the typical problems of ultrasound 
segmentation as listed above. However, the sequential application of 2-D AAMs to a time 
sequence does not guarantee a time-continuous segmentation result because it does not 
exploit temporal coherency in the data. Moreover, to apply 2-D AAMs to segmentation of 
a full cardiac cycle, multiple models may be required for different phases of the cardiac 
cycle (rather than an overly generalized model for all phases).  

In this paper, a novel active appearance motion model (AAMM) for normalized time 
sequences of 2-D images is presented that models the shape and appearance of the heart in 
combination with the dynamics of the cardiac cycle. This way, the proven strong points of 
AAMs (robustness, ability to capture observer preference) can be augmented with 
temporal consistency over an image sequence. Cootes’ 2-D AAM framework was 
extended to time sequences by considering a whole image sequence as a single 
shape/intensity sample. As an important contribution to the successful application of 
AAMMs for echocardiographic image segmentation, a specific nonlinear intensity 
normalization is introduced. 

4.2   Methods 
4.2.1 Active Appearance Models 
The AAM approach has been extensively described [17]–[19]. A concise overview of the 
general AAM approach is given here to clarify the place of the described extensions. 
Generating an AAM requires three stages.  

1. Generating a statistical model describing shape and appearance over a set of 
normalized and aligned hand-annotated examples. From a small set of model 
parameters, an appearance model can generate synthetic images closely 
resembling the original examples and statistically plausible intermediates. 

2. Determining the relation (e.g., by multivariate linear regression) between small 
perturbations in the model parameters and resulting errors between the 
synthesized and the true image. The inverse of this relation can be used for 
adjusting model parameters such that the error will be minimized. 

3. Establishing a procedure to apply the appearance model to an unknown image, 
and iteratively adjusting its model parameters to better match the image under 
investigation. The best match then renders the desired segmentation. 
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Together, these three aspects constitute an AAM segmentation method. In stage 1, the 
model generation, a set of training images with expert-drawn borders is analyzed. 

All shapes in the set are described using point distribution models (PDM). All drawn 
shapes are represented as sets of N corresponding landmark points modeled as a 2N-
dimensional vector: 

 
 ( )T

NN ,y,x,,y,x,yx L2211=x .       (4.1) 
 
All shape samples are aligned by Procrustes analysis [21] and an average shape x  is 
calculated. By applying a PCA on the sample distribution, a set of shape eigenvectors is 
found that describes all significant shape variations over the training set in the order of 
their importance (corresponding eigenvalues). A subset of the eigenvectors describing a 
sufficient fraction of the total variation is grouped into a matrix Ps. Each aligned sample x 
within the distribution can now be approximated by the average shape with a linear 
combination of the eigenvectors superimposed:  

 
 ssbPxx +≈          (4.2) 
 
where bs is a vector containing the coefficients for each of the eigenvectors. This vector 
can be calculated by using the pseudoinverse of the matrix Ps to find the projection of the 
shape on the space spanned by the eigenvectors:  
 
 ( )xxPb −= T

ss .         (4.3) 
 
A similar approach is used to calculate a model of image appearance variations. 

1. Warp all images so that their landmark points match the average shape. 
Subsampling with appropriate Gaussian filtering is applied here to limit the 
amount of data. Pixels inside an image patch spanned by the average shape are 
considered (i.e. the complete image near the shape, all pixels within the shape, 
plus a band of pixels surrounding the shape). The warping provides a shape-
free image patch with the same number of pixels M for each example, which 
can be represented as a vector of intensities similar to (4.1)   
 
 ( )T

M,g,,gg L21=g .        (4.4) 
 

2. Normalize intensity of each image patch and calculate the average normalized 
image g . In the original AAM implementation, this is done by linearly 
normalizing to the average intensity of the patch and a variance to best match 
the average normalized image. For ultrasound, we apply a nonlinear 
normalization before calculating the average image (see section 4.2.2). 

3. Perform a PCA on the normalized intensity patches to get a matrix of 
eigenvectors Pg that describes the principal intensity variations. 

4. Express each intensity sample as a linear combination of eigenvectors similar to 
(4.2) and (4.3):  
 gg bPgg +≈ and ( )ggPb −= T

gg . 
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5. Concatenate shape and intensity coefficient vectors:   
 TT

g
T
s )b(bb =  

and perform another PCA to find a matrix of eigenvectors Q describing 
simultaneous shape and intensity variations (“appearance”). Each example can 
now be expressed as a linear combination c of these appearance 
eigenvariations: Qcb = . 

4.2.2 Ultrasound-specific intensity normalization 
PCA models a multidimensional Gaussian distribution by calculating the centroid and 
main axes of the high-dimensional distribution ellipsoid. The intensity PCA, therefore, 
assumes a more or less Gaussian distribution of intensities over the set of samples for each 
element of the intensity vector (4.4) after intensity normalization. The standard AAM 
intensity normalization consists of a linear scale/offset correction for global lighting 
variations such that mean patch intensity is zero and variance is 1. Such linear scale/offset 
intensity variations occur in echocardiograms as well, due to ultrasound gain/offset 
settings as well as video postprocessing. However, there is an extra complication. 
Echocardiograms have highly non-Gaussian intensity histograms. The image formation 
process described above (including speckle) gives it a somewhat “derivative” character, 
very different from typical real-world images. Histograms peak at very low intensities and 
tend to decrease exponentially. This is an intrinsic property of ultrasound images, more or 
less independent of the type of tissue and the scene involved. Consequently, the intensities 
in the image patches are not normally distributed; neither the distribution within 
individual patches nor the distributions of a certain patch point’s intensities over the 
training set are Gaussian. In our findings, the patch histograms are roughly inversely 
exponential or Chi-square distributed (Fig. 4.1(a)). This chaotic plot (note the logarithmic 
scale) shows several noisy patch histograms, with widely varying skewness, range, and 
offsets. 

Further video signal processing introduces more offset and gain variations, causing the 
histogram peak to shift considerably, and intensity ranges may differ greatly.  

Therefore we hypothesized that the standard linear intensity normalization and 
modeling with average and variance would not work well for ultrasound images. Because 
of the extremely skewed distributions, simple alignment to average and standard deviation 
of intensities will not produce the desired normalization. A special nonlinear intensity 
normalization was developed and employed, and AAMM results with and without this 
normalization were compared. The goal was to normalize the individual patch pixel’s 
intensity distribution by calculating a global nonlinear intensity correction. If the 
intensities within a small region of one tissue class would be normally distributed (over 
the set of samples) then the joint distribution of many such regions would be more or less 
normally distributed as well. Since the overall joint distribution is not Gaussian or 
bimodal, we assume that the general shape of all regional distributions seriously 
contributes to the global distribution’s shape. Transforming the overall distribution into a 
more or less normal distribution compensates for this effect as well as normalizes the 
regional distributions.  

In the original AAM method, where Gaussian distributions are assumed, each image 
intensity vector gim  is only scaled and offset, to minimize the effects of global lighting 
variation.  All examples need to be best aligned to the normalized mean image zg  , which 
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Figure 4.1.   Nonlinear normalization of intensities for echocardiographic image patches. (a) 
Uncorrected patch intensity histograms. (b) Total histogram of range-aligned distributions. (c) FZ(r) 
conversion function. (d) Normalized cumulative distributions. 
 
has an average of 0 and a variance of unity. For each example, a scaling α and offset β are 
applied which are chosen to best match the intensity vector to the normalized mean. In the 
model creation step, the mean image is not yet established, but must be created from the 
normalized examples gz: this involves an iterative process. 
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where n is the number of elements in the vector, I is the vector of all ones, and zg is the 
mean of the normalized samples.  

Before this normalization is applied, the following nonlinear normalization steps are 
performed to deal with the skewed and shifted intensity distributions. First, a linear range 
normalization realigns the upper and lower bounds of the distributions (rather than 
aligning their means). This is followed by a nonlinear intensity conversion that results in 
an approximately Gaussian distribution. Converted intensities are further processed by the 
standard AAM normalization procedure.  

1. For each patch gim individually, eliminate the range variability. Calculate the 
frequency distribution f(i) of the intensities i in gim and derive the cumulative 
probability density function CPi( ). Due to the smoothing and warping, the 
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intensities i are on a continuous scale rather than discrete. Thus, this involves 
numerical histogram integration (instead of summation), resulting in a fairly 
smooth function.  

 ( ) ( ) ∫∫
∞

∞−∞−

=≤= diifdiiftiptCP
t

i )()(       (4.6) 

Determine 0.1 percentile upper (up) and lower (lo) bounds of the intensity 
distribution: 
 ( ) ( )999.0;001.0 11 −− == ii CPupCPlo  
Transform all intensities i into range-normalized relative intensities r using 

( )
( )loup

loir −
−=  and clip between 0 and 1 to create the range-normalized intensity 

vector gr. 
2. Calculate the total intensity distribution f(r) over the whole training set of 

range-normalized patches gr (Fig. 4.1(b)) and derive its cumulative probability 
density function CPr( ). 

3. The cumulative probability density function CPZ( ) of the standardized 
Gaussian distribution (Z, average 0, standard deviation (SD) of 1) is generally 
defined as  

 ( )( ) ∫ −− =−=
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Z dtexerferfzCP
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.    (4.7) 

Calculate a Z-value mapping function FZ(r) (Fig. 4.1(c)) that converts relative 
intensities r into the Z value that corresponds to the same cumulative 
probability   
 

( ) ( )( )rCPCPrF rZZ
1−=  .       (4.8) 

 
4. Use FZ(r) to transform all range-normalized patches gr in the training set to a Z-

normalized gn.  
5. Normalized patches gn are now processed by the standard AAM intensity 

normalization (4.5) where the average image is calculated iteratively. The 
cumulative distributions now closely match those of a normal distribution (Fig. 
4.1(d)). The mapping function FZ(r) is stored with the model.  

6. During matching of a new image, step 1 is performed to get gr , step 4 is applied 
to get gn , and the standard AAM intensity normalization (4.5) is applied to get 
gZ. Further processing is standard.  

 
For each example up, lo, α, and β are calculated separately. The nonlinear mapping FZ(r), 
however, is calculated once from the training set and is identical for all images. By 
aligning the bounds of the ranges before addition, the histogram shapes will match and a 
general histogram shape for the object under consideration will be found. Even though 
individual example objects may have differently shaped histograms, the function will have 
a normalizing effect and will reduce modeling problems. 
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4.2.3 AAMM generation 
In the AAMM, the appearance of the heart is modeled for the entire cardiac cycle by 
considering the time sequence as a stack of 2-D images (time frames). All single-beat 
sequences are phase-normalized into a fixed number of frames F so that end-diastolic and 
end-systolic frames map to the same frame number. The other frames are found by nearest 
neighbor interpolation. In the training set, corresponding shape points on the LV 
endocardial contour are defined for each time frame based on expert drawn contours. The 
sequence of contours is considered as a single shape sample (compare Fig. 4.2): the shape 
vectors for all time frames are concatenated in the order of their phase number and further 
treated as a single 2-D shape vector.  
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Only the 2-D coordinates of the points are considered, so, unlike what Fig. 4.2 suggests, 
the third dimension is only implicitly involved. 

The image appearance of the heart for each time frame is modeled as a vector of pixel 
intensity values in the shape-free image patch spanned by the corresponding average 
shape. The vectors of image patch intensities for each time frame are concatenated in the 
order of their phase number to a single intensity vector: 

 
 TT

F
T )gg(g L1= .  

 
The total intensity distributions are normalized nonlinearly as described above. The length 
of the resulting shape and intensity vectors is approximately F times larger than in a 
corresponding 2-D AAM (note that different phases do not need to have the same number 
of landmarks or pixels).  

PCA on the set of training time sequences renders the mean and eigenvariations of 
shape and motion (Fig. 4.2) and intensity appearance (the “average heartbeat,” Fig. 4.3) 
over the complete cardiac cycle. 

4.2.4 Matching the AAMM to image sequences 
The AAMM is applied to segmentation of a phase-normalized image sequence by 
minimizing the difference between the synthesized model appearance and the whole target 
time stack by varying the pose and deforming the Appearance Motion model along the 
characteristic model eigenvariations using a gradient descent minimization. This involves 
finding an affine transformation, global intensity parameters, up, lo, α, β, and appearance 
coefficients that minimize the root-mean-square (rms) difference between the synthetic 
appearance model sequence and the target image sequence. This procedure results in a 
time-continuous segmentation for the complete cardiac cycle. 
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Figure 4.2.   Second eigenvariation of AAMM shape. The objects represent motion patterns; stacks 
of contours for the full cardiac cycle (time axis from bottom left to top right; the shape constriction 
in the middle corresponds to end-systole, the open ends to end-diastole). (a) Average shape motion 
pattern minus three standard deviations. (b) Average motion pattern. (c) Average plus three 
standard deviations. 
 
 

 
 
Figure 4.3.   “Average heartbeat” of the LV in four-chamber view over 65 patients, five of 16 
cardiac phases shown. Left to right: (1) End-diastole. (5) Mid-systole. (9) End-systole. (13) Mid-
diastole. (16) Atrial filling. 
 

The AAMM matching procedure resembles conventional 2-D AAM matching. 
However, the rms error criterion and the parameter regression matrices for the appearance 
coefficients, pose, and global intensity are calculated for the full image sequences in 
AAMMs, as opposed to a single 2-D image frame in AAMs. Therefore, the temporal 
coherence in the cardiac motion is preserved during the matching, ensuring a 
segmentation result which is largely consistent with the cardiac motion patterns observed 
in the training set. 

Apart from the nonlinear intensity normalization described in section 4.2.2, 
ultrasound-specific parts of the matching method include the initialization of pose 
(translation, scale, and rotation) to averages found from the training set. As the field of 
view of an ultrasound probe is quite limited, the actual variations in position, orientation, 
and size are relatively small. Therefore, an initialization to the average pose in the training 
set renders good results and eliminates the need for multiple initializations or manual 
positioning of the model. 
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4.3   Experiments 
4.3.1 Data 
Echocardiographic transthoracic four-chamber sequences were acquired from 129 
unselected infarct patients participating in a clinical trial. No patients were excluded for 
reasons of image quality. Images were digitized from videotape at a resolution of 
768 × 576 pixels with different calibration factors (0.28 to 0.47 mm/pixel). End-diastolic 
and end-systolic frames were marked by the expert observer. All single-beat sequences 
were phase normalized to F=16 frames so that end-diastolic (ED) and end-systolic (ES) 
frames mapped to the same frame number (1, 9, and 16, respectively).  

4.3.2 Independent standard, training, and analysis 
In all sequences, an expert observer who was blind to the computer analysis results 
outlined the contours of the LV endocardium in all frames of the image sequences. This 
was done manually for ED and ES; for the remaining images, a semiautomated detection 
was used based on these ED/ES borders (ECHO-CMS system [1]). In all cases, manual 
corrections were applied until the expert was completely satisfied with all resulting 
borders. The expert-validated contour set was, therefore, considered equivalent to a 
manually defined set. In total, 2064 ultrasound frames were available with an 
accompanying independent standard. The total data set was split randomly into a training 
set of 65 patients and a testing set of 64 patients. Each contour was modeled by 37 
landmark points, of which the apex and mitral valve attachments were true anatomic 
landmarks; the other points were defined by regular subdivision of the manually defined 
contours. The AAMM created from the training set was applied to segmentation of the 64 
sequences forming the testing set. All models were initialized to the same fixed initial 
pose, which was the average pose obtained from the training set. For comparison, 
matching was also performed on the training set. 

4.3.3 Intra- and inter-observer variability of  
independent standard 

To determine the reliability of the independent standard, a limited inter- and intra-
observer variability study was performed. For 20 randomly selected patients, contours 
were drawn independently by a second observer, and for a second time (with an interval 
of six months) by the first observer. Differences in areas and unsigned point distances 
were determined as described below for the manual/computer comparisons. 

4.3.4 Quantitative validation 
Five quantitative indices were calculated per patient to compare the automatically 
detected contours with the observer-identified independent standard. Endocardial border 
positioning error was defined as the average of all 592 unsigned distances between 
corresponding contour points over the full cycle. Note that these are Euclidean distances 
between corresponding landmarks, not minimal distances of points to contours. The latter 
give lower errors but tend to obscure matching errors along the border, missed end points, 
etc. The success rate of the automated matching was determined as the number of patients 
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with endocardial border positioning error below a predefined threshold. Endocardial 
percent area errors were determined separately for each phase of the cardiac cycle, where 
endocardial area was defined as area enclosed by the endocardial border. The area ejection 
fraction was determined as  
 )1(

ED

ES

Area
Area− ;  

the area ejection fraction error was the difference between the computer-determined and 
manually defined ejection fraction. All mean errors were tested against the mean errors of 
the test set and against zero. Statistical significance was determined with a one-sided t 
test, where p<0.01 was considered significant. Linear area regressions were also 
performed.  

4.3.5 Validation of nonlinear intensity normalization 
To determine the contribution of the ultrasound-specific nonlinear normalization of 
intensities, the total evaluation was repeated without this normalization in model 
generation, regression training, and matching. The standard AAM normalization as 
described by (4.5) was used instead. All other parameters were identical. The same 
quantitative indices as described above were calculated. 

4.3.6 Comparison of AAMM with multiple AAMs 
We hypothesized that AAMMs could better exploit the temporal continuity of the image 
data than AAMs. To test this hypothesis, we compared the results of the 16-phase AAMM 
with the combined results of 16 single-phase AAMs, each trained and tested on images of 
only one phase, with all other parameters identical. Average and standard deviation of 
endocardial border positioning errors for the 16-phase AAMM were compared to the 
pooled average and standard deviation of the set of single-phase AAMs. The AAMM 
average error was tested for being significantly lower using a single-sided Z test. Percent 
area errors were compared between each single-phase AAM and the corresponding phase 
of the 16-phase AAMM. 

4.4   Results 
4.4.1 Inter- and intra-observer variability 
From the 20 randomly chosen patients, one patient with an extremely dilated ventricle of 
>250 ml posed problems in interpretation and constituted an extreme outlier in the 
comparisons. This patient was excluded and results over the 19 remaining patients are 
listed in Table 4.1. As expected, intra-observer variabilities are generally smaller than 
inter-observer variabilities. The criterion for a successful match in further experiments 
was derived from the found point distances in the inter-observer variability (3.82 ± 1.44 
mm): an average point distance < 8 mm (equivalent to inter-observer mean + 3 SD) was 
considered successful, as it lies within the bounds of human variability. This criterion is 
mainly a test to remove apparent convergence failures from further statistical analysis. For 
claiming clinical success, a narrower criterion could be chosen; several are listed next. 
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Table 4.1.  
AAMM results on test set and comparison to training set  

and manual inter-/intra-observer results 

Results (mean ± SD) Test set  
(n = 62 of 64) 

Training set  
(n = 61 of 65) 

Manual  
Intra-observer 

Manual  
Inter-observer 

Success score  
(%) 

96.9%  (62/64) 93.8%  (61/65) – – 

Point distance  
(mm) 

3.35 ± 1.22 0.12 ± 0.36 † 2.32 ± 0.75 † 3.82 ± 1.44 † 

Fractional area error 
(%) 

-2.89 ± 10.2 0.07 ± 1.08 *† 0.92 ± 6.19 † -4.39 ± 10.3 

Ejection Fraction error 
(%) 

0.66 ± 5.5 * -0.05 ± 0.41 * -1.71 ± 2.84 0.88 ± 3.15 * 

Area regression (cm2) 
  (y=computer, 
    x=manual) 

y = 0.91x + 1.73 
   r = 0.87 

y = 1.00x + 0.001 
   r = 0.999 

y = 0.87x + 3.57 
   r = 0.96 

y = 0.95x + 0.15 
   r = 0.88 

* : mean not significantly different from 0;  
† : mean significantly larger/smaller than mean of test set 
 

Inter- and intra-observer variabilities of manual contours as found in this study were 
comparable to those reported in other studies, although direct comparisons are difficult 
due to dependence on the measurement protocol, number and type of patients, and image 
quality. E.g., Gordon et al. [22] report the SD of inter-observer percental error in LV area-
length volumes: 8.5% for ED, 16.5% for ES, comparable to the SD of inter-observer 
percental error in LV area of 10.3% (all phases) in our study. 

4.4.2 Test set 
An example of the matching process is given in Fig. 4.4.A-C. The corresponding contours 
manually defined by an independent expert are shown for comparison in Fig. 4.4.D.  

In 62 of all 64 tested patients (97%), the AAMM converged successfully (average 
point distance < 8mm). To give a better impression of the range of positioning errors in 
relation to the inter-observer error, the percentage of patients with average point distance 
< 3.82 mm (the inter-observer mean variability) was 72%; < 5.26mm (mean+1SD): 89%; 
< 6.7mm (mean+2SD): 94%. The two cases where the matching failed (distances of 9.2 
and 9.9 mm) were excluded from further statistical analysis. In the 62 successful matches, 
the fully automatically found borders agreed well with the independent standard (Table 
4.1) with mean unsigned border positioning errors of 3.35 ± 1.22 mm (9.3 ± 3.2 pixels). 
Results for the full set of 64 tested subjects can be found in Table 4.2. Fig. 4.5(a) 
demonstrates a very good correlation of the observer-identified and AAMM-determined 
LV endocardial areas (r=0.87). Endocardial percent area error averaged over all phases 
was -2.89 ± 10.2%, showing a slight but significant negative bias of the AAMM areas. 
Mean signed and unsigned area ejection fraction errors were small: 0.66 ± 5.5% and 4.6 ± 
3.0%, respectively. Variability in ejection fraction was too high to reach significance in 
the relatively few measurements. Fig. 4.5(b) shows the endocardial percent area error as a 
function of cardiac phase, demonstrating that the border detection accuracy does not 
change substantially along the cardiac cycle. Comparison with the inter- and intra-
observer variabilities clearly shows that the fully automated AAMM detection performed 
significantly better or at least equivalent to inter-observer variabilities. In other words, the 
AAMM generally performs better than a second independent observer. A repetition by the 
first observer  would generally be significantly superior to the AAMM result on an unseen 
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Figure 4.4.   Example result of fully automated AAMM segmentation of an echocardiographic 
image sequence from the test set, spanning over one heartbeat. Segmentation was performed 
simultaneously in all 16 image phases. From top to bottom, partial images from phase 1, 9, and 16 
are shown. A. Initial 16-phase AAMM model positioned on phase images 1, 9, and 16. B. AAMM 
match after five iterations. C. Final match after 20 AAMM iterations. D. Observer-identified 
endocardial contours shown for comparison. 
 
 

Table 4.2. 
AAMM results with nonlinear and linear intensity normalization 

Nonlinear intensity normalization Standard linear normalization 
Results (mean ± SD) 

Test set  
(n = 64) 

Training set  
(n = 65) 

Test set  
(n = 64) 

Training set  
(n = 65) 

Success score 
(success/total) 

96.9% (62/64) 93.8% (61/65) 73.4% (47/64) 80% (52/65) 

Point distance  
(mm) 

3.54 ± 1.62 0.75 ± 2.53 † 5.73 ± 3.01 † 3.75 ± 4.35 † 

Fractional area error 
(%) 

-3.70 ± 11.0 -1.84 ± 8.22 † -5.72 ± 16.18 † -6.15 ± 14.1 † 

Ejection Fraction error 
(%) 

0.99 ± 5.7 * 0.43 ± 2.68 * 1.04 ± 6.77 * 1.07 ± 4.86 * 

Area regression (cm2) 
  (y=computer,  
    x=manual) 

y = 0.77x + 5.51 
   r = 0.84 

y = 0.88x + 2.77 
   r = 0.89 

y = 0.79x + 4.25 
   r = 0.76 

y = 0.83x + 2.90 
   r = 0.76 

* : mean not significantly different from 0;  
† : mean significantly larger/smaller than mean of test set (nonlinear normalization) 
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(test) patient. However, the intra-observer variability can be seen as a measure for 
inaccuracies in the training data set that was used to generate the AAMM. Such 
inconsistencies are likely to limit the overall accuracy of the AAMM. The intra-observer 
errors are, therefore, a plausible lower bound of the AAMM accuracy. 

4.4.3 Training set 
For comparison, matching was performed on the training set as well. Here, four of 65 
patients showed a failed match (distances 9.3 – 12.5mm). For all others the match was 
nearly perfect on all results (Table 4.1). All failed matches could be attributed to the 
model’s initialization to the average pose of the set; as expected, a manual re-initialization 
closer to the true pose gave a near-perfect result in each case. These results confirm the 
correctness of the implemented methods. 

4.4.4 Nonlinear intensity normalization 
The nonlinear intensity normalization causes a dramatic improvement in match results 
(Table 4.2). When it is left out, the test-set failure rate increases from 3% to 27%. In order 
to make a fair comparison, all results were compared over the full set without eliminating 
failures.  

The nonlinear normalization renders significantly better results for all measures, both 
for the training set and the test set (area ejection fraction error improvement is not 
significant). The obvious matching improvement in the training set (where the model in 
principle can match each example closely) shows that a major disturbing factor in the 
method has been eliminated. These results confirm our hypothesis that the non-Gaussian 
distribution of the ultrasound intensities is not handled well by the standard intensity 
normalization, and it proves that the correction is successful.  

4.4.5 AAMM versus AAM 
The pooled average border positioning error for the set of 16 single-frame AAMs was 
4.27 ± 2.52 mm (n=1024, 16 × 64 frames in test set) whereas for the 16-frame AAMM, it 
was 3.54 ± 1.62 mm. This 17% improvement is highly significant (p<<0.001). The 
percent endocardial area errors in Fig. 4.5(b) and 4.5(c) shows that the AAMM (Fig. 
4.5(b)) does indeed show a much more consistent behavior over the phases, with generally 
15% lower standard deviation. 

 

4.5   Discussion 
We found that the AAMM method performed very well in clinical quality ultrasound 
images. The specific nonlinear intensity normalization contributes substantially to this.  

The AAMM approach is a highly general extension of standard AAM and is 
applicable in any multidimensional case where a fixed image indexing (in time or space) 
is appropriate.  

The appearance motion model captures typical motion patterns associated with cardiac 
contraction. An example is given in Fig. 4.2, where it is shown that a dilation of the apex 
is typically associated with a reduced displacement at end-systole (hypokinesis). Our 



Chapter 4 

103 

hypothesis that an AAMM can better exploit temporal consistency in the data was 
confirmed by the highly significant 17% border error improvement reported in section 
4.4.5.  

4.5.1 Comparison to other AAM approaches 
The limitation to a fixed number of slices distinguishes the AAMM approach from a real 
3-D AAM. However, in the anisotropic 2-D+time case, a real 3-D AAM (employing 3-D 
coordinates, and allowing for 3-D rotations, translations, and scaling) would be less 
appropriate, as free 3-D rotation is meaningless in that case. Furthermore, a full 3-D AAM 
implementation has not been reported yet. 

On the other hand, the phase normalization poses a practical limitation. The cardiac 
phase must be known beforehand, and borders are only found for the 16 frames. If 
contours for other frames are needed as well, an additional step is required. As we already 
have a close approximation of this border, numerous techniques can be used for this. 

The coupled-view AAMs recently introduced by Cootes [23] may provide similar 
facilities. In this approach, separate models are trained for different related “views”, of 
which the interdependencies are incorporated by applying another PCA over the 
parameters. Provided that linearity applies and no significant variability is eliminated 
during model generation, this may render similar results as an AAMM. However, this was 
not further investigated. 

4.5.2 Comparison to other echocardiographic 
segmentation techniques 

In comparison to some other proposed techniques for spatiotemporal segmentation of 
echocardiograms, the AAMM approach has several clear advantages. In most approaches 
(e.g. by Montagnat et al. [14] and Angelini et al. [15]) the cardiac shape models are 
simple and not restricted to anatomically probable shapes. Endocardial points are 
localized from gradient-based features, which is problematic in regions with weak 
gradients and in cases where an expert would choose a different position. Jacob et al. [16] 
uses a simple PCA-based description of shape, but temporal behavior is modeled with a 
Kalman filter prediction of shape change over time. In AAMM, we use PCA modeling for 
both the temporal and spatial shape patterns. We do not employ a sophisticated noise 
suppression and feature extraction, but the high spatial frequencies and effects of more 
random nature are suppressed in the model by the spatial averaging and the PCA analysis. 
Jacob’s approach is similar to an ASM, as it is based on finding candidate gradient-based 
edge points along profiles near the estimated border. An AAM approach like ours is based 
on image intensity patterns over the whole object of interest and does not rely on strong 
edge features to localize positions. 

It is hard to compare our results directly to other automated border detection results, 
since the circumstances under which such results are attained can be totally different. We 
found no other studies doing a similar fully automated analysis on large numbers of 
unselected patients, clinical image quality, etc. Therefore, comparison to the 
corresponding human inter-observer variability on the same data set (as reported above) is 
appropriate. 
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Figure 4.5.   Validation results. (a) Comparison of the observer-defined and computer-determined 
LV endocardial areas in the 992 test set images from 62 out of 64 patients. The regression analysis 
compared areas detected in all 16 cardiac phases. (b) Endocardial percent area error as a function 
of cardiac phase. Mean error ± SD is shown. (c) Endocardial percent area error for 16 single-
phase AAMs. 

4.5.3 Landmark definitions and shape correspondence 
Another issue of interest is the definition of point correspondence between training 
shapes. This is an actively researched field both in 2-D and 3-D [24]–[26], where 
correspondence is established based on shape features. The AAMM approach applies a 
straightforward shape modeling and analysis, identical to that described by Cootes et al. 
In our application, the sampling of training shapes to certify point correspondence 
between examples is based on three expert-defined anatomical landmarks and an 
equidistant contour subsampling in between. For our purpose (endocardial border 
detection), we employ relatively smooth borders and the distribution of the intermediate 
points over the border is of little interest. If more detailed shapes or landmark 
displacements along the contour are desired, a more elaborate shape alignment and point 
sampling would be required during the training phase. In that case, automated anatomical 
landmark placement should probably be based on image features rather than shape 
analysis, as proposed by Walker et al. [27]. 

4.5.4 Results, limitations and further improvements 
The results of the presented ultrasound case studies showed a high robustness (97% 
successful matches) of our fully automated AAMM approach. The fully automatically 
detected contours demonstrated good accuracy, both in border positioning errors and in 
endocardial area measures. The errors compare favorably to the found inter- and intra-
observer variabilities associated with manual tracing and, therefore, are clinically 
acceptable. The detected contours were highly similar to the manually defined contours in 
the sense that papillary muscles, trabecular structures, and apical noise were successfully 
excluded from the contours. The AAMM method, however, has a tendency to prefer a 
“too normal” contraction pattern. This can be seen from the regression lines: extreme 
values seem to be harder to find. This may be caused by the optimization process getting 
trapped in local minima. In other model-based techniques such as snakes, a direct balance 
between an internal (model) and external (image) force is established, and the local 
strength of model and image features may cause problems. This is less of a problem in 
AAMs, where the driving force is the residual image difference between synthetic and real 
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image, the content of which determines the size and direction of the update step in the 
parameter space. Variations in the gradient descent optimization method, multiple 
initializations, a multiresolution approach [18], hybrid AAM/ASM approach [19], or 
modeling other structures like epicardium, right ventricle, and valves may help to surpass 
local minima. Match results on the training data confirm that model initialization and/or 
lock-in range are candidates for improvement. Alternatively, if a very localized and 
precise detection is required, a combination with a local contour optimization (dynamic 
programming [1], snakes [10]) may be attempted.  

For a practical application, we strive toward minimal user interaction to attain 
maximal automation and limit sources of variability. However, the user should always be 
allowed to apply additional corrections. AAMs allow a very elegant approach for 
interactive corrections, as recently described by Cootes and Taylor [28]. 

The described approach is not free of some limitations. As any AAM approach, its 
reliability depends on the range of variabilities covered in the training set. In case of 
clinical images, the patient set should include sufficient cases of expected pathologies. 
Also, images from different types of equipment or special imaging modes (use of contrast, 
harmonic imaging, etc.) may influence accuracy and may require training of specialized 
models. This is a topic of further investigation. Furthermore, the result is clearly limited 
by the quality and reproducibility of the training image and contour data: accurately 
validated borders on substantial data sets are required.  

The temporal segmentation approach is fully automated for phase-normalized 
sequences, not requiring any operator interaction. Indicating the ED and ES frames for 
phase normalization, however, was not done automatically in this study, although ED 
images can be easily identified automatically using the ECG. It remains to be investigated 
whether good results can be achieved as well for sequences normalized on the ED frames 
only. 

Segmentation of a 16-phase image sequence is fast with typical processing times of 6 s 
on an 800-MHz Windows PC. To our knowledge, no other fully automated approach has 
been reported yielding comparable results in a large clinical evaluation. Still, additional 
development is needed to include all standard views, all representative pathologies and 
determine the routine clinical performance in a large scale clinical study validation. 

In this study we have shown that AAMMs can automatically detect endocardial 
contours practically equivalent to those defined by a human expert. We should note that 
the clinical quality of quantitative information derived from these contours remains to be 
determined. We expect the AAMM method to be useful for full-cycle LV volume 
measurements, locating and quantifying wall motion abnormalities, localizing ischemia, 
etc. Proving its clinical significance for such applications is beyond the scope of this paper 
and remains the subject of future clinical studies. 

4.6   Conclusions 
An AAM for normalized time sequences (AAMM) has been developed that models time-
continuous cardiac motion and image appearance and performs fast, robust, fully 
automated contour detection on phase-normalized cardiac time sequences in a practically 
applicable manner. It generates time-continuous segmentation results, which are 
consistent with cardiac dynamics. The AAMM demonstrated robustness and accuracy in a 
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large clinical study of LV segmentation using four-chamber transthoracic ultrasound 
image sequences. 
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Abstract 
A model-based method for three-dimensional image segmentation was developed and its 
performance assessed in segmentation of volumetric cardiac magnetic resonance (MR) 
images and echocardiographic temporal image sequences. Comprehensive design of a 
three-dimensional (3-D) active appearance model (AAM) is reported for the first time as 
an involved extension of the AAM framework introduced by Cootes et al. The model’s 
behavior is learned from manually traced segmentation examples during an automated 
training stage. Information about shape and image appearance of the cardiac structures is 
contained in a single model. This ensures a spatially and/or temporally consistent 
segmentation of three-dimensional cardiac images. 

The clinical potential of the 3-D AAM is demonstrated in short-axis cardiac MR 
images and four-chamber echocardiographic sequences. The method’s performance was 
assessed by comparison with manually identified independent standards in 56 clinical MR 
and 64 clinical echo image sequences. The AAM method showed good agreement with 
the independent standard using quantitative indices of border positioning errors, endo- and 
epicardial volumes, and left ventricular mass. In MR, the endocardial volumes, epicardial 
volumes, and left ventricular wall mass correlation coefficients between manual and AAM 
were R2 = 0.94, 0.97, 0.82 respectively. For echocardiographic analysis, the area 
correlation was R2 = 0.79. The AAM method shows high promise for successful 
application to MR and echocardiographic image analysis in a clinical setting. 
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5.1   Introduction 
Cardiovascular disease is the number one cause of death in the Western world. Cardiac 
imaging is an established approach to diagnosing cardiovascular disease and plays an 
important role in its interventional treatment. Three-dimensional (3-D) imaging of the 
heart and the cardiovascular system is now possible with X-ray computed tomography, 
magnetic resonance (MR), positron emission tomography, single photon emission 
tomography, and ultrasound, to name just the main imaging modalities. While cardiac 
imaging capabilities are developing rapidly, the images are mostly analyzed visually, and 
therefore qualitatively. The ability to quantitatively analyze the acquired image data is still 
not sufficiently available in routine clinical care. Large amounts of acquired data are not 
fully utilized because of the tedious and time-consuming character of manual analyses. 
This is even more so when three-dimensional image data need to be processed and 
analyzed. Image segmentation is a prerequisite to quantitative analysis, and thus 
developing methods for highly automated three-dimensional cardiac image segmentation 
is of primary importance.  

There are three main reasons why existing methods frequently exhibit lower the 
success rate in comparison with human expert observers, especially when applied to 
clinical-quality images: existing methods do not incorporate a sufficient amount of a priori 
knowledge about the segmentation problem; do not consider three-dimensional or 
temporal context as an integral part of their functionality; and position the segmentation 
boundaries at locations of the strongest local image features not considering true 
anatomical boundary locations.  

A number of 3-D medical image analysis approaches have occurred recently, many of 
them addressing one or more of the above-mentioned shortcomings of available 
segmentation techniques. A detailed review of existing 3-D cardiac modeling approaches 
is provided in [1]. In the context of our work and considering the goal of segmenting 
three-dimensional volumetric and temporal cardiac images and image sequences, 
statistical modeling of 3-D shape and 3-D image properties is crucial. Vemuri et al. 
concentrated on a 3-D model that combines deformed superquadric primitives with a local 
displacement field expressed on an orthonormal wavelet basis [2]. As a result of this 
orthonormal basis, the shape parameters become physically meaningful, and thus a 
preferred shape can be imposed based on parameter distributions in a set of training 
samples. Similarly, Staib et al. developed a three-dimensional balloon model [3].The 
model is parameterized on an orthonormal Fourier basis such that the statistics of the 
Fourier coefficients in a training set allow a constrained image search. Model fitting in 
these two methods is performed by balancing an internal energy term with an external, 
gradient-derived scalar field.  

Cootes and Taylor developed a statistical point distribution model (PDM) and 
demonstrated its utility for two-dimensional (2-D) image segmentation [4], [5]. One of the 
primary contributions was an ease of automated learning of the model parameters from 
sets of corresponding points as well as the PDM’s ability to incorporate shape and 
boundary gray-level properties and their allowed variations. Applications to segmentation 
of echocardiographic data [6] and deep neuroanatomical structures from MR images of 
the brain may serve as examples [7]. Following the point distribution model ideas, 
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Kelemen et al. built a statistical model of three-dimensional shapes using parametric 
surface representations [8]. Similar to PDMs, shape and gray-level information in the 
boundary vicinity was incorporated in the model. The method’s performance was 
demonstrated on 3-D segmentation of neuroanatomical structures. A multiscale 3-D shape 
modeling approach called M-reps was developed by Pizer et al. [9]. M-reps support a 
coarse-to-fine hierarchy and model shape variations via probabilistically described 
boundary positions with width- and scale-proportional tolerances. Three-dimensional 
echocardiographic image segmentation using core atoms was reported by Stetten [10]. 
Davatzikos et al. presented a deformable model in which geometric information is 
embedded via a set of affine-invariant attribute vectors; these vectors characterize the 
geometric structure around a model point from a local to a global scale, forming an 
adaptive focus deformable statistical shape model [11]. The methodology was applied to 
segmentation of neuroanatomical structures.  

In all the above-referenced approaches, the models primarily hold information about 
shape and its allowed variations. The information about image appearance is only 
considered in close proximity to the object borders. A powerful, model-driven 
segmentation technique called active appearance model (AAM) was recently introduced 
by Cootes et al. [12]–[14]. An AAM describes the image appearance and the shape of an 
object in a set of examples as a statistical shape-appearance model. AAMs can be applied 
to image segmentation by minimizing the difference between the model and an image 
along statistically plausible shape/intensity variations (analysis by synthesis). AAMs have 
shown to be highly robust in the segmentation of routinely acquired single-phase single-
slice cardiac MR [15] and echo images [16], because they exploit prior knowledge about 
the cardiac shape, image appearance, and observer preference in a generic way. For a 
detailed background on AAMs and their application to image segmentation, the reader is 
referred to [13].  

Until now, AAMs have only been applied to 2-D images and to normalized (fixed-
phase) 2-D time sequences [15]–[17]. Two-dimensional active appearance motion models 
[16], [17] have demonstrated the ability of time-continuous segmentation by exploiting 
temporal coherency in the data. However, these 2-D + time AAMs do not represent a true 
3-D approach. Their segmentation ability is limited to cases with fixed numbers of 
preselected frames; they rely on a priori knowledge of image frame correspondences 
within each cardiac cycle.  

The primary contribution of this paper is the development of a fully three-dimensional 
active appearance model (3-D AAM) that requires no additional interactively supplied 
information. A demonstration of its segmentation performance in volumetric or temporal 
image segmentation of cardiac structures is given below. No 3-D AAM has been reported 
to date that is capable of successful segmentation of cardiac MR and echocardiographic 
images. The model’s behavior is learned from manually traced segmentation examples 
during an automated training stage. The shape and image appearance of the cardiac 
structures are contained in a single model. This ensures a spatially and/or temporally 
consistent segmentation of three-dimensional cardiac images.  



Chapter 5 

113 

5.2   Methods 
5.2.1 Point distribution model concept 
Point distribution models describe populations of shapes using statistics of sets of 
corresponding landmarks of the shape instances [4], [5], [18]. By aligning N shape 
samples (consisting of n landmark points) and applying a principal component analysis 
(PCA) on the sample distribution, any sample x within the distribution can be expressed 
as an average shape x  with a linear combination of eigenvectors P superimposed 

 
 Pbxx +=           (5.1) 

 
In two-dimensional models, p = min(2n, N-1) eigenvectors P form the principal basis 
functions, while in a three-dimensional model, p = min(3n, N-1) eigenvectors are formed. 
(The minimum operator is needed since we frequently have more corresponding shape 
points than training set samples.) In both cases, the corresponding eigenvalues provide a 
measure for compactness of the distribution along each axis. By selecting the largest q 
eigenvalues, the number of eigenvectors can be reduced, where a proportion k of the total 
variance is described such that  

 

 ∑∑
==

=⋅≥
p

i
i

q

i
i TotalwhereTotalk

11
λλ       (5.2) 

 

5.2.2 Representing shape of 3-D cardiac ventricles 
Extending the two-dimensional PDM to three dimensions is a nontrivial task. To create a 
compact and specific model, point correspondences between shapes are required. Even if 
landmark points are easily identifiable in both models, specifying uniquely corresponding 
boundary points in between these landmarks is difficult in 3-D. In a 2-D case [15], 
boundary points may be identified by evenly sampling points on a boundary from one 
landmark to the next. In a 3-D case, the problem lies in defining a unique sampling of the 
object surfaces.  

For the purpose of ventricular segmentation, a normalized cylindrical coordinate 
system is defined with its primary axis aligned with the long axis of the heart and the 
secondary axis aligned with the posterior junction of the right and left ventricles in the 
basal slice. The cardiac ventricles resemble a cylindrical or paraboloid shape. First, 
contours are sampled slice-by-slice at even angle increments. To transform the rings in the 
normalized cylindrical coordinate system, each point on the ring is connected by a straight 
line to the next adjacent corresponding point on the rings above and below. Starting from 
the apex slice to the basal slice, a fixed number of slicing planes are placed evenly along 
the long axis. New points are interpolated where the planes intersect the lines. This yields 
a set of corresponding boundary points for each sampled left ventricle across the 
population of ventricles (Fig. 5.1).  
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Figure 5.1.   A  cross-sectional  depiction  of trans- Figure 5.2.   A wireframe  representation 
forming a cardiac MR stack with manually  placed of  the mean  LV shape in the  normalized 
landmarks to a normalized  cylindrical  coordinate cylindrical coordinate system. 
system. 

5.2.3 Three-dimensional point distribution models 
Aligning shape samples to a common scale, rotation, and translation is important for a 
compact model to be generated during the PCA stage. Procrustes analysis [19], [20] is 
used, whereby an arbitrary shape is selected as the initial average shape estimate. All the 
other shapes are aligned to this average using a least squares minimization. A new average 
is computed by a simple mean across the corresponding points, and the algorithm repeats 
until convergence.  

For the 2-D case, aligning one shape to another can be solved analytically by 
minimizing scale, rotation, and translation terms. Extending to 3-D, the minimization of 
scaling, translations, and rotation differences along the three axes may lead to singularities 
known as gimbal lock. Assuming that 3-D translation is represented by a separate 
translation vector t, a quaternion q representation of scaling and rotation avoids such 
behavior [21]. 

A quaternion q is defined as the linear combination of a scalar term q0 ≥ 0 and three 
right-handed orthonormal vectors (i, j, and k) 
 
 q = q0 + q1 i + q2 j + q3 k.        (5.3) 
 
The magnitude of the quaternion is defined as 
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0 qqqq +++=q         (5.4) 

 
and any unit length quaternion can be written as 
 
 q = cos(ϕ )⋅u + sin(ϕ )⋅u        (5.5) 
 
where u is a unit vector and ϕ  represents a rotational twist along the unit vector. Thus, 
any scaling and rotation in 3-D can be expressed as a quaternion, where scaling is 
expressed by the magnitude of the quaternion and the 3-D rotation is expressed by the 
direction of the unit vector u and rotation ϕ. 
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The Cartesian rotation matrix is shown in (5.6) 
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Together, the position and orientation of a 3-D object can be represented as a seven-
element pose vector: 
 
 ( ) [ ]kji tttqqqq ,,,,,, 3210=tq . 
 
The alignment of two 3-D shape instances is accomplished using a well-known procedure 
given by Besl et al. [22] to optimize for q and t. Aligning all the shapes is a matter of 
employing the Procrustes analysis using Besl’s procedure to calculate the pose 
parameters. Once shape alignment is finished, principal component analysis is applied to 
the 3-D models in a way that is no different from the conventional 2-D application [5]. 

5.2.4 Modeling volume appearance 
The first part of creating an appearance model of volume is to warp all the sample 
volumes to the average shape to eliminate shape variation and bring voxel-wise 
correspondence across all the training samples, such that the voxel intensities can be 
represented as a shape-free vector of intensity values. Warping an image I to a new image 
I’ involves creating a function that maps control points xi to xi’ as well as the intermediate 
points in between. For the 2-D case, either piecewise affine warping or thin-plate spline 
warping is adequate. In our models, piecewise warping is preferred because it is 
significantly faster than thin-plate spline warping.  

In 2-D piecewise affine warping, landmark points are used to construct the shape area 
as a set of triangles. The well-known Delaunay triangulation algorithm is suitable for 
computing such a triangular mesh and can be found in many computational geometry 
references. Individual triangular patches are locally warped using barycentric coordinates. 
Given a triangle with the three corners x1, x2, and x3, we can represent any point x within 
the triangle as x = αx1 + βx2 + γx3, where γ = 1 – (α + β) or α + β + γ = 1. In order for a 
point x to fall inside a triangle, 0 ≤ α, β, γ ≤ 1 must be true. 

Piecewise affine warping is implemented as follows. 
For each pixel location x’ in I’: 

1. Find the triangle t’ that contains x’ by solving α, β, and γ for each triangle and 
finding the triangle where 0 ≤ α, β, γ ≤ 1. 

2. Find the equivalent pixel location x by computing x = αx1 + βx2 + γx3, where 
x1, x2, and x3 are the triangle points from the original image. 

3. Copy the pixel value in I located by x into the warped image I’ located at x’. 
Some form of pixel interpolation such as bilinear may be used at this stage. 

In our 3-D models, piecewise affine warping is extended to tetrahedrons with four corners 
x1, x2, x3, and x4. Any point within the tetrahedron is represented as x = αx1 + βx2 + γx3 + 
δx4. In a general case, creating a tetrahedral representation of volume is solved using a 3-
D Delaunay triangulation algorithm. However, due to the cylindrical nature of the left 
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ventricular (LV) shape, a manually defined volume partitioning in regular tetrahedrons 
was utilized. Each slice level is constructed of pie-shaped wedges built on four 
tetrahedrons with exterior profile cubes built with five tetrahedrons. Piecewise affine 
warping is implemented in a similar fashion as in the 2-D case. Because all volumes are 
warped to the average volume, barycentric coordinates α, β, γ, δ are precomputed for each 
fixed voxel point, eliminating the time-consuming process of searching for the enclosing 
tetrahedron for each voxel point during the matching. Due to the regular geometry of the 
tetrahedrons in our volume partitioning, the barycentric coordinate computation did not 
become ill-posed. 

After the warping phase, the shape-free intensity vectors are normalized to an average 
intensity of zero and an average variance of one to remove the effects of brightness and 
contrast variations across scans. Next, PCA is applied to the shape-free intensity vectors 
to create an intensity model. In agreement with the AAM principle, shape information and 
intensity information are combined into a single active appearance model. Lastly, another 
PCA is applied to the coefficients of the shape and intensity models to form a combined 
appearance model [23].  

In the equations below, the subscript s corresponds to shape parameters and the 
subscript g represents intensity (gray-level) parameters. To summarize, the 3-D AAM is 
created as follows.  

1) Let xi denote a vector of 3-D landmark points for a given sample i. Compute a 
3-D PDM and approximate each shape sample as a linear combination of 
eigenvectors, where ( )xxPb −= T

ss  represents the sample shape parameters.  
2) Warp each image to the mean shape using a warping such as piecewise affine 

or thin plate spline warping to create shape-free intensity vectors.  
3) Normalize each intensity vector, applying a global intensity transform with 

parameters hi , to match the average intensity vector g .  
4) Perform a PCA on the normalized intensity images.  
5) Express each intensity sample as a linear combination of eigenvectors, where 

( )ggPb −= T
gg  represents the sample shape parameters. 

6) Concatenate the shape vectors bs and gray-level intensity vectors bg in the 
following manner:  
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 where the weighting matrix W is a diagonal matrix relating the different units 

of shape and intensity coefficients. 
7) Apply a PCA to the sample set of all b vectors, yielding the appearance model  

 
  b = Qc.         (5.8) 
 

5.2.5 Matching 3-D AAM to image data 
Matching an appearance model to image data involves minimizing the root mean square 
(rms) intensity difference between the image data and appearance model instance by 
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modifying the affine transformation, global intensity parameters, and appearance 
coefficients. A gradient descent method is used that employs the relation between model 
coefficient changes and changes in the voxel intensity difference between the target image 
and synthesized model [23]. This relation is derived during a training stage. 

Let t and q represent the translation and quaternion transformation parameters and h 
the intensity transform parameters. As shown above, shape x is derived in the target image 
from the appearance coefficient c and the affine transformation vectors t and q. Then, 
shape intensity vector gs is sampled from the target volume data after warping the space 
defined by x to the mean shape x . The model intensity vector gm is derived from the 
appearance coefficients c with the global intensity corrected via h. The error function E is 
the rms difference of gs - gm.  

Gradient descent optimization requires the partial derivatives of the error function 
defined by the intensity of the target and synthesized model volume. While it is not 
possible to create such a function analytically, these derivatives may be approximated 
using fixed matrices computed by randomly perturbing model coefficients for a set of 
known training images and observing the resulting difference in error images [23]. Using 
a set of training images, their corresponding modeling parameters c, t, q, and h are 
randomly displaced, thus creating a difference between gs and gm. From the parameter 
displacements and the resulting difference intensity vectors, gradient approximating 
matrices Ac, At, Aq, and Ah can be determined using reduced-rank multivariate linear 
regression. Alternatively, the gradient matrices may be built one column at a time by 
averaging the Gaussian weighted differences between the target and synthesized image of 
each individual model perturbation. The latter method is preferred for 3-D AAM matching 
due to lower memory requirements, better representation of high order eigenmodes, and 
faster computation. This iterative refinement technique of precomputed fixed matrices 
versus brute-force gradient descent optimization was formulated by Cootes [13] as well as 
by Baker and Matthews [24]. Formally, the gradient matrices are created as follows. 

1) Select an object from the training set with known appearance model parameters 
c0, t0, q0, and h0. 

2) For each element in the model parameters, c, t, q, or h, perturb a single element 
by a fixed δp with the rest of δc, δt, δq, and δh assigned to zero. Typically, c is 
perturbed within ±1.5 standard deviation, t by 3–5 voxels, and q, h by 10% of 
their original value. 

3) Let c = δc + c0. Compute shape x and texture gm. 
4) Apply an affine transformation to x by first transforming x using δt and δq, 

then transforming the result by t0 and q0. This cascaded transform is required to 
maintain linearity.  

5) Create the image patch gs warped from the target image to the mean shape 
using shape x. 

6) Apply global intensity scaling to gs by using δh first and then scaling the result 
by h0. 

7) Compute δg = gs - gm. 
8) Compute the slope, δs = δg / δp. Weight the slope by a normalized Gaussian 

function with the ±3 standard deviation set to the maximum and minimum 
model perturbation values.  

9) Accumulate the slope with previous slopes for that given element.  
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10) Go to Step 2) and repeat until all elements and perturbations of each element 
are sufficiently covered. Place the average slope into the appropriate column in 
the gradient matrices Ac, At, Aq, or Ah.  

11) Go to Step 1) and repeat until there is sufficient coverage of displacement 
vectors.  

The corresponding model correction steps are computed as 
 
 δc = Ac (gs - gm) (5.9) 
 δt = At (gs - gm) (5.10) 
 δq = Aq (gs - gm) (5.11) 
 δh = Ah (gs - gm) (5.12) 
 
Matching the AAM to the image data is accomplished as follows.  

1) Place the mean appearance model (c, h = 0; t, q defined by the initial model 
position) roughly on the object of interest and compute the difference image  
gs - gm. 

2) Compute the rms error of the difference image E. 
3) Compute the model corrections δc, δt, δq, and δh from the difference image 

[(5.9)–(5.12)].  
4) Set k = 1.  
5) Compute new model parameters as c := c - kδc, t := t - kδt, q := q - kδq, and 

h := h - kδh. 
6) Based on these new parameters, recompute gs - gm and find the rms error.  
7) If the rms error is less than E go to Step 2).  
8) Else try setting k to 1.5, 0.5, 0.25, 0.125, etc., and go to Step 5. Repeat steps 5–

8 until the error cannot be reduced any further. 

5.3   Case studies 
To investigate the clinical potential of the reported 3-D active appearance model under 
clinically realistic conditions, AAMs were trained and tested in two substantially different 
medical imaging modalities: multislice short-axis cardiac magnetic resonance and four-
chamber echocardiographic image sequences. While the overall approach is identical in 
the two reported application areas, some modality- as well as application-specific 
differences exist and are provided as follows. 

5.3.1 Cardiac MRI 

5.3.1.1 Data 
Cardiac MR image sequences were collected from 38 normal subjects and 18 patients, 
yielding a total of 56 short-axis 3-D cardiac MR data sets. Patients were selected who 
were suffering from different common cardiac pathologies (among others, different types 
of myocardial infarction, hypertrophic cardiomyopathy, arrhythmia). Images were 
acquired using standard electrocardiography (ECG) gated fast field echo MR pulse 
sequences on a Philips Gyroscan NT 15 scanner. Slices were acquired in a per-slice 
manner, under breathhold in end-expiration. End-diastolic images were used in this study. 
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Image resolution was 256 × 256 pixels, with a field of view of 400–450 mm and slice 
thickness of 8–11 mm. Between eight and 14 slices were scanned to at least cover the 
entire left ventricle, depending on LV dimensions and slice spacing. 

5.3.1.2 Independent Standard 
The left ventricular endocardium and epicardium were manually traced by an expert 
observer who was blinded to the results of the computer analysis. Following common 
practice in clinical quantitative cardiac MR analysis, endocardial (ENDO) contours were 
drawn behind the papillary muscles and trabeculae, and epicardial (EPI) contours were 
drawn on the inside of the epicardial fat layer. The apical slice was defined as the last slice 
with both ENDO and EPI contours visible. Apex slices with merely a small visible muscle 
cap were excluded. In each slice, a reference point was manually placed at the posterior 
junction of the left and right ventricular walls to define point correspondence between 
different samples as required during the AAM training. 

5.3.1.3 Training using leave-one-out approach 
To maximize the effective size of the training set, validation was performed using a leave-
one-out approach [25]. AAM models were trained on image and contour data from 55 
subjects, and the model matching performance was subsequently evaluated on the one 
left-out data set. The training process was repeated 56 times, always leaving out a 
different data set, which was then used for validation. The model voxel size varied from 
one data set to another, but in general with 3 × subsampling, the model occupied 
approximately 6000 voxels and required about 1 h of training and 2–3 min for matching 
on a 1-GHz Windows PC. 

5.3.1.4 Matching procedure 
In midventricular short-axis MR images, the left ventricle can usually be identified as an 
approximately circular object (Fig. 5.3(a)). This fact is used for automated initialization of 
the 3-D AAM. A previously validated Hough transform-based method determines a 2-D 
centroid of the LV long axis for each MR image slice [26]. A 3-D centroid of a line 
segment fitted through the 2-D centroids of individual MR slices defines the initial 
position of the 3-D AAM.  

To make the 3-D segmentation procedure completely independent from any user 
interaction regarding the rotation and scale of the heart in the short-axis plane, the 
matching process was repeatedly performed for a range of five orientations and three 
scales. This multiple initialization is important because AAM matching may be dependent 
on initial positioning since gradient descent may contain local minima. The matching 
result yielding the smallest quadratic intensity error was selected as the final match. The 
matching procedure resulted in a set of endo-and epicardial contours for each volumetric 
MR image. 

5.3.1.5 Quantitative validation 
To exclude obvious matching errors from further quantitative analyses, matching results 
were visually evaluated. A matching result was scored as acceptable when the ENDO and 
EPI contours in the majority of slices showed good agreement with the image data. The 
number  of  unacceptable  results  yielding  matching failures  is reported.  Studies  with  a 
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   (a)      (b) 
 
Figure 5.3.   Example cardiac MR images used for validation. (a) LV segmentation was performed 
in volumetric images consisting of 8–12 full-size MR images like the one shown here. (b) Subimages 
depicting LV detail in all nine images of this volumetric data set. See Fig. 5.4 for the segmentation 
results. 
 
poorly localized apex but with correctly localized mid-ventricular segments were graded 
as acceptable. In some cases, the 3-D model did not deploy far enough to span over all the 
slices for which manual contours were available. Then, manual contours were present in 
extreme apical or basal slices but no automatic contours were identified there. Such 
segmentations were not excluded, and the numbers of slices missed by the AAM method 
are reported below.  

To quantitatively assess the performance of the 3-D AAM approach, surface 
positioning errors were determined comparing the automatically detected endo- and 
epicardial surfaces with the independent standard. The average signed and unsigned 
surface positioning errors were defined by measuring the distances between points along 
rays perpendicular to the centerline between the respective manual contours and the 
computer-determined surfaces; 100 rays were used for each contour. Surface positioning 
errors are expressed in millimeters as mean ± standard deviation. A negative sign of the 
signed error value means that the automatically determined surface was inside of the 
observer-defined surface. 

Three clinically important measures were calculated and used for performance 
assessment: LV cavity volume, LV epicardial volume, and LV myocardial mass. The 
volumetric indexes were determined using all slices for which both manually traced 
contours and computer-determined surfaces were available and were expressed in cm3. 
The LV mass measurements are reported in g. Regression analysis was used to compare 
the computer measurements with the independent standard. 
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   (a)      (b) 
 
Figure 5.4. (see color suppl.) Segmentation results in testing-set image data. (a) Manually identified 
contours forming an independent standard. (b) Three-dimensional AAM determined segmentation of 
the left ventricle. 3-D AAM segmentation was performed in full-size image volumes; see Fig. 5.3. 

5.3.1.6 Results 
Fig. 5.4 shows an example of an automatically analyzed volumetric MR data set. Fig. 5.5 
demonstrates several stages of the model matching process, starting with the initial model 
position and ending with the final fit. The leave-one-out validation yielded 56 fully 
automatically detected 3-D segmentation results depicting endocardial and epicardial 
surfaces—with all testing surfaces being fully disjoint from the training sets. In 53 out of 
56 cases, the matching procedure resulted in an acceptable match. In three cases (two 
patients and one normal subject), the matching diverged from a plausible solution because 
it was attracted by a neighboring structure. These three cases were excluded from further 
quantitative analyses.  

In the 53 volumetric MR images, manually identified contours were available in 391 
MR slices. As mentioned above, the 3-D model sometimes does not fully deploy in the 
longitudinal direction to cover the apical or basal slices. In 28 of 53 data sets, computer-
determined contours were present in all slices for which manual contours were available. 
In 18 data sets, computer-determined contours were missing in one MR slice (apical or 
basal), and in seven data sets, two MR slices with missing contours were present. Overall, 
the 3-D AAM identified contours in 359 of 391 MR slices, or in 96.2% of all cases in 
which manual contours were deemed identifiable. The 359 slices were used for 
quantitative validation.  

Mean signed endo-and epicardial surface positioning errors were –0.46 ± 1.33 mm and  
–0.29 ± 1.16 m, respectively, showing a slightly negative border detection bias. The mean 
unsigned positioning errors were 2.75 ± 0.86 mm for the endocardial contours and 2.63 ± 
0.76 mm for the epicardium, demonstrating small absolute differences from the 
independent standard (voxel sizes ranged from 1.56 × 1.56 × 8 mm to 1.76 × 1.76 × 11 
mm). Fig. 5.6 shows a very good correlation of the manually identified and 3-D AAM-
determined LV endo- and epicardial volumes as well as correlation of computer-
determined LV wall mass with the independent standard. 
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       (a)      (b) 
 

       (c)      (d) 
 
Figure 5.5.   (see color suppl.) 3-D AAM matching process. (a) The initial position of the model in 
the volumetric data set. (b), (c) Stages during the iterative model matching process. (d) The final 
match. Note the color coding of all frames and the coordinate axes. The color-coded straight lines 
show position of frames in the other two cutting planes. 
 

 

 
    (a)          (b)     (c) 
 
Figure 5.6.   Comparison of observer-defined and computer-determined LV measurements in 53 
volumetric MR images used for validation. (a) Endocardial volume. (b) Epicardial volume.  
(c) Myocardial mass. 

5.3.2 Echocardiography 
The 3-D AAM segmentation was also applied to endocardial border detection in 
echocardiographic ultrasound image sequences. In these temporal sequences, the third 
dimension represents time. Spatial 2-D coordinates were converted from pixels into 
millimeters by applying the image calibration factor. A consistent 3-D set is formed by 
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converting the time dimension (s) into a spatial dimension (mm) using a fixed ratio 
(“speed” of 40 mm/s). This ratio was chosen to obtain similar sizes of the 3-D object in all 
three dimensions. A consistent 3-D voxel space is obtained in which the shape and 
appearance of the heart over a full cardiac cycle can be modeled as a 3-D object. A 3-D 
AAM for this object was applied to image sequences extending over three cardiac cycles. 
This approach allows fully automated detection of time-continuous contours in time 
sequences of arbitrary length without knowledge of end-diastolic (ED) and end-systolic 
(ES) time points. The model adjusts itself in both time and space and locates a complete 
cardiac cycle automatically. This is an important difference from the previously reported 
2-D + time AAM approach [16].  

In a training set, corresponding shape points on the endocardial contour are defined for 
each frame of one complete cardiac cycle (ED to ED) based on expert-drawn contours. 
Point correspondence in the third (time) dimension is defined by using the relative cardiac 
phase of each image. The relative cardiac phase of each image is modeled as a value 
between zero and two, defined for systolic frames as the frame’s relative position between 
ED and ES (range 0–1) and for diastolic frames as its relative position between ES and 
following ED incremented by one (range 1–2). For each training case, 17 time slices with 
equidistant relative phase (starting and ending with ED) are identified by nearest neighbor 
interpolation. Of these frames, the 2-D shape point coordinates are extended to 3-D spatial 
coordinates by multiplying the frame’s time by the speed ratio. The resulting 3-D shape is 
represented as a surface of 3-D points (Fig. 5.7). The image appearance of the heart is 
modeled as a vector of voxel intensity values in an image volume patch spanned by the 
manual contour surface, extended equally in all directions. Partitioning of the image 
volume into regular tetrahedrons was coded specifically for this shape. The actual image 
volume was sampled sparsely (factor 5–7) after appropriate Gaussian filtering to limit the 
dimension of the intensity vector to a practical size of a few thousand voxels. The 3-D 
AAM provides time-continuous segmentation for one complete cardiac cycle, located 
automatically in both time and space. An ultrasound-specific initialization procedure was 
followed, in which the model was allowed to iterate from 25 different initializations (five 
3-D size factors ranging between 0.9 and 1.3 compared to the average size and five 
temporal positions along the time axis). The matching result with the lowest quadratic 
intensity error was considered the best match. 

Data 
To allow comparison of 3-D AAM results with the 2-D + time AAM approach, the 
method was tested on the same data set [16]. Sets of transthoracic echocardiographic four-
chamber sequences were acquired at 25 frames/s from 129 unselected infarct patients 
participating in a clinical trial. These were single-beat (end-diastole to end-diastole) 
sequences with 15–33 image frames per heartbeat artificially extended to three cardiac 
cycles as described above. Images were digitized at a resolution of 768 × 576 pixels with 
different calibration factors (0.28 to 0.47 mm/pixel). The total data set was split randomly 
into a training set of 65 patients and a testing set of 64 patients. The model voxel size 
varied from one data set to another, but in general with 8 × subsampling the model 
occupied approximately 7000 voxels, required about 1 h of training and 2–3 min for 
matching on a 1-GHz Windows PC. The larger subsampling of the echocardiographic 
model reduced the voxel size and complexity to approximately the same as the MR 
model, resulting in similar training and matching times. 
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Figure 5.7.   Motion of the left ventricular endocardium in ultrasound four-chamber cross section 
represented as a 3-D object. Time axis from bottom left to top right. 

5.3.2.2 Independent standard 
In all sequences, an expert observer who was blinded to the computer analysis results 
manually outlined the contours of the endocardium in all frames of the image sequences. 
To compare the performance of 3-D AAMs with that of human experts, inter- and intra-
observer variabilities of manual contour tracing were determined in a subset of 19 
randomly chosen image sequences. Manual contour definition was independently repeated 
by the same expert observer and by another expert observer. 

5.3.2.3 Quantitative validation 
To compare the automatically detected contours with the observer-identified independent 
standard, the number of segmentation failures was determined. Failures were identified as 
segmentations in which the 3-D AAM-defined borders did not agree well with the 
independent standard (average unsigned spatial distance component >7.5 mm). In the 
successfully segmented images, unsigned three-dimensional endocardial border 
positioning errors were defined as unsigned distances between matched model points and 
image-based 3-D shape points extracted for the testing-set images in a same manner as the 
training-set shape points. These distances were calculated in 3-D and also split into spatial 
(x,y) and temporal (z) components, where the temporal component can be expressed in 
mm or milliseconds by inverting the “speed” conversion specified above. Furthermore, 
endocardial areas were determined for all time slices; regression analysis was used to 
compare the computer-determined areas with the independent standard.  

5.3.2.4 Results 
In 57 of the 64 tested echocardiographic image sequences (success rate 89%), the 3-D 
AAM-defined  borders  agreed  well with  the  independent  standard.  An example  of  the 
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Figure 5.8.   (see color suppl.) Example of the 3-D AAM matching process in an ultrasound time 
sequence. The position of the model within the 3-D image data is shown in red. The independent 
standard is shown in green. Top row gives the initial positioning of the 3-D AAM; bottom row 
provides its final match. The left three panels represent image information along three 
perpendicular planes cutting through the three-dimensional data set. The leftmost column provides 
an image within the temporal plane; the two middle columns depict image data along the horizontal 
and vertical cutting planes. Note the color-coding of all frames and the coordinate axes. The color-
coded straight lines show position of this frame in the other two cutting planes. In the rightmost 
panel, a 3-D rendering of model and independent standard is shown. 
 
matching procedure is given in Fig. 5.8. In the successful 57 temporal sequences, three-
dimensional absolute endocardial surface positioning errors were 3.90 ± 1.38 mm; the 2-D 
spatial component was 3.35 ± 1.05 mm, which compares favorably with two-
dimensionally determined (within the same image frame) inter-observer variability of 3.82 
± 1.44 mm. The intra-observer variability was 2.32 ± 0.75 mm. The result also compares 
reasonably well with the previously reported two-dimensional endocardial border 
positioning errors of 3.35 ± 1.22 mm (success rate 97%) achieved by our less general 2-D 
+ time active appearance motion model implementation [16]. The temporal error of border 
positioning was 37.0 ± 29.6 ms, less than a single frame duration of 40 ms. Frame-based 
endocardial area regression over the 57 successful matches is given in Fig. 5.9. 

5.4   Discussion 
A method for three-dimensional segmentation of medical images has been presented and 
its performance demonstrated in two cardiac image analysis applications. The method 
allows fully automated segmentation of volumetric or temporal images. Its inherent 3-D 
character incorporates information context in all three dimensions—a feature frequently 
not possible with previous approaches. The step leading from existing 2-D active 
appearance models to a functional 3-D AAM is not an easy one. Mastering the fully 3-D 
behavior will facilitate the method’s extension to analysis of three-dimensional temporal 
sequences, one of the ultimate goals of medical image analysis. This discussion will focus 
on  three areas:   1)  performance of the current method;   2)  its limitations with respect to  
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Figure 5.9.   Comparison of observer-defined and computer-determined LV endocardial areas in all 
time slices of the 57 echocardiographic four-chamber sequences (969 images) used for validation. 
 
design of 3-D AAMs for clinical applications; and 3) future extensions of the 
methodology to facilitate four-dimensional image analysis. 

5.4.1 Performance of the current method 
The described method is fully automated, with no user interaction. This is a significant 
strength in comparison to existing semiautomated approaches to cardiac segmentation that 
require almost undivided attention of the analysis operator. In addition, the value of the 
matching function after the 3-D AAM’s convergence can identify the situation when the 
model failed to segment the cardiac structures successfully, thus potentially allowing to 
incorporate yet another level of automated quality control. Consequently, it should be 
possible to identify segmentation successes with high confidence and then limit review of 
the results to a small number of image data sets for which the possibility of imperfect 
segmentation is indicated. 

At present, performance robustness is achieved by multiple initializations; 15 initial 
positions of the model were used for MR segmentation and 25 different initializations for 
echocardiographic data. This approach improves the results but also increases 
computational demands. While the processing times are quite favorable—between 2–3 
min for one data set in both applications (this includes the multiple initializations; 1-GHz 
Windows PC)—the number of model matching processes can be decreased by replacing 
brute-force multiple initializations with better positioning of the model. For example, 
information about the ventricular size and orientation is available in MR data from the 
Hough transform steps. In ultrasound, an estimate of ED and ES frames can be derived 
from ECG information or image sequence analysis, and there are several methods for 
estimating the size and position of ventricles automatically. No such information is 
currently utilized.  

The border positioning errors as well as the volume and mass measures revealed a 
slight but systematic bias toward smaller contours. The presented 3-D AAM assumes the 
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image data to be truly three-dimensional. However, the MR data sets are acquired over 
several heartbeats as sequences of 2-D slices, not in a volumetric fashion. Individual slices 
are frequently acquired during separate breath-holds. Differences in inspiration level and 
thus heart position lead to variable shifts in the LV position between slices. The effect of 
these shifts is threefold.  

1) During the training of the model, unsystematic shifts are modeled in the shape 
model, decreasing the sensitivity of the model with respect to real shape 
variation.  

2) During the matching, the match for multiple other adjacent slices is greatly 
disturbed by a single shifted slice.  

3) The border positioning and volumetric errors are affected by the shifted slices.  
This may well explain a large part of the underestimation of the reported MR volume 
measures. 

For the ultrasound application, results were promising but less convincing than those 
achieved using our previously reported 2-D + time AAM approach. Area regression (Fig. 
5.9) over the 57 successful matches exhibited a systematic area underestimation of 3.8% 
(y = 0.83x + 3.6, R2 = 0.79). Compared to the 2-D + time AAM (y = 0.91x + 1.73, R2 = 
0.76; area underestimation 2.9%), a slightly higher systematic area error and a flatter 
regression line were observed. In part, this can be attributed to the extra degree of freedom 
with which the 3-D AAM has to cope. The 2-D + time AAM uses a priori knowledge of 
the phase/time aspect. However, the non-Gaussian distribution of intensity values in 
ultrasound is likely an even more important problem. Its indication is that model 
localization in the time dimension is much more accurate than in the spatial localization. 
For the 2-D + time AAM approach in ultrasound, intensity distributions were normalized 
nonlinearly to deal with ultrasound-specific intensity properties [16]. This resulted in a 
substantially improved accuracy of the border localization. The nonlinear normalization 
improved both the systematic area underestimation and the slope of the area regression 
line. The 3-D version of this correction has not yet been developed. After its 
implementation, further improvements of segmentation accuracy in the echocardiographic 
images are expected. Another problem observed in the testing case studies is associated 
with incomplete deployment of the model in the longitudinal (z) direction in the MR 
studies. In 32 of 391 MR slices, the contours were not determined by the 3-D AAM due to 
insufficient pulling force in the longitudinal direction, thus not covering one of the apical 
or basal slices. Currently, such slices were excluded from quantitative assessments. 
Missing slices may, however, substantially influence volumetric indexes of complete 
ventricles. Substantial MR slice thickness and consequently lack of detail in the z 
direction are the main reason. In the analyzed data sets, there is a lack of a clear “end” of 
the LV at the basal level. Making the 3-D AAM to cover the entire longitudinal length of 
the cardiac ventricles requires future attention. In addition, the apical part of the ventricle 
only asserts a small influence in the volumetric matching error function, due to the 
relatively small volume of the apex. As a result, the matching procedure tends to 
“sacrifice” apex accuracy for better mid-ventricular accuracy. Currently, improvements in 
apex boundary localization performance by nonuniformly weighting the three parts of the 
ventricle (apical, mid-ventricular, basal) are being investigated. 

5.4.2 Current limitations 
Point correspondence between shapes is a critical factor for 3-D AAMs to become a 
general purpose method for segmentation of volumetric data. Due to the limited 
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complexity of the left ventricle shape, simple parameterization of the surface was 
sufficient in this work. However, developing methodologies for creating point 
correspondence among a population of more complex 3-D shape instances is an actively 
researched area.  

There are several solutions to developing correspondence in volumetric data. One of 
the simplest, representing a 3-D shape as a stack of 2-D contours, was used in our 
implementation. Another popular method is projecting landmark points on a spherical 
coordinate system, but this method is generally limited to single convex objects [27]. 
Lorenz et al. present a method whereby a 3-D template mesh is created from a shape 
instance. This template is deformed to other shape instances in the population providing 
landmark and intermediate points [28]. Duta et al. specify an automatic construction of 2-
D shape models by approximating shape instances to polygons of a common number of 
boundary points. These polygons are aligned using Procrustes analysis, and the 
corresponding points are extracted from the nearest polygon vertices [29]. Although a 2-D 
method is reported, it may be extended to 3-D models. A framework for automated 
landmark identification in 2-D was reported by Hill et al. [30]. The correspondence 
algorithm that was developed with PDMs in mind locates a matching pair of sparse 
polygonal approximations by maximizing a landmark similarity cost function using a 
greedy algorithm. Extension to 3-D is under investigation. Guest et al. describe point 
correspondence based on sensitivity of the point being matched to movement [31]. The 
driving idea is that a perturbation of reliable corresponding points shall not result in large 
displacements. The method was used for 2-D and 3-D registration of pre- and 
postoperative facial range scans. Kelemen et al. create point correspondence by an area-
preserving parameterization followed by object-oriented normalization of its starting 
point, thus yielding a continuous mapping function between similar objects in 3-D [8]. 
Lastly, Davis et al. create statistical shape representation based on minimizing the total 
information required to encode and decode the original shape samples using information 
theory. This is done by creating corresponding points via a parametric representation of 
each individual shape and optimizing this function with respect to the compactness of the 
final shape model [32]. 

As with 2-D AAMs, another limitation of 3-D AAMs is an uncertainty of adequate 
covering of all pathologies in training sets. Although the AAM technique demonstrated 
segmentation reliability, there are always concerns using a model-based method built 
upon a finite set of training data to correctly handle often grossly abnormal patient data. 
One solution to this problem is to utilize larger training sets to cover all representative 
pathologies. User interaction is another solution to the limitations of a finite model. 
Cootes proposes adding a statistical framework to the AAM matching technique, thereby 
introducing a prior term to the matching phase. Using this model, a user can interactively 
provide constraints to landmarks improving the accuracy of the matching [33]. Another 
possible technique is allowing the user to interactively correct segmentation results and 
adapt the AAM model to incorporate these corrections. Taking advantage of the inherent 
linearity of AAM models, it is believed that such modifications may be used to improve 
the model. Lastly, local deformations are often lost due to the overgeneralizing of PCA 
given a finite number of samples in the training set. We previously reported the hybrid 
AAM whereby an edge-based technique such as ASM is employed simultaneously with 
the region-based AAM. After each iteration, the shape and pose results are combined 
using a weighted average. This method was originally proposed for fully automated 
segmentation of 2-D cardiac MR and shown to produce better results than AAM alone 
[15].  
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To keep data size, memory requirements, and processing time within acceptable limits, 
subsampling of image data was applied in generating the intensity models (up to a factor 
of eight for ultrasound). Although appropriate Gaussian filtering was used, this may 
compromise the overall accuracy. Improvements in speed and accuracy can be expected 
when a multiscale approach as described by Cootes is employed [12]. However, memory 
requirements remain a concern due to the 3-D nature of the processed data. 

5.4.3 Extensions to allow 4-D image analysis 
The heart is a dynamic system, making time-independent segmentation inadequate. 
Applying 3-D AAM segmentation to the full cardiac cycle would require multiple models 
for different phases because any temporal knowledge of the interrelationship between 
frames would be lost. Several existing methods have been developed for 3-D + time 
cardiac segmentation taking into account the temporal relationship between frames. For 
example, one technique by Jacob et al. [34] solves temporal coherency between active 
shape models in echocardiograms through the use of a Kalman filter, creating a motion 
model to predict the cardiac cycle in addition to a shape model. An alternative method by 
Montagnat et al. [35] segments cylindrical echocardiographic images using deformable 
models. Here temporal coherence is accomplished by reinitializing the deformable model 
using the previous segmentation, while incorporating a 4-D anisotropic diffusion filter that 
significantly improves the spatial and temporal information between frames.  

To extend the 3-D AAM framework to 3-D + time, we propose to incorporate a time 
element into the model by phase-normalizing objects to a common time correspondence 
and concatenating shape and texture vectors of individual phases into a single shape and 
texture vector. Such a technique has been found efficient in 2-D + time AAM and ASM 
models [16], [17], [36] and is promising as a future extension of 3-D AAMs. 

5.5   Conclusion 
A three-dimensional active appearance model method for analysis of volumetric cardiac 
images and temporal image sequences was presented and its performance demonstrated in 
two substantially different cardiac imaging modality case studies. To our knowledge, this 
is the first report describing a comprehensive design of a well-validated three-dimensional 
active appearance model-based segmentation. The model’s training from manually traced 
segmentation examples as well as its segmentation of previously unseen images are fully 
automated. It carries substantial promise for successful application in a clinical setting. 
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Abstract 
Principal Component Analysis of sets of temporal shape sequences renders 
eigenvariations of shape/motion, including typical normal and pathological endocardial 
contraction patterns. A previously developed Active Appearance Model for time 
sequences (AAMM) was employed to derive AAMM shape coefficients (ASCs) and we 
hypothesized these would allow classification of wall motion abnormalities (WMA). A set 
of stress echocardiograms (single-beat four-chamber and two-chamber sequences with 
expert-verified endocardial contours) of 129 infarct patients was split randomly into 
training (n=65) and testing (n=64) sets. AAMMs were generated from the training set and 
for all sequences ASCs were extracted and statistically related to regional/global Visual 
Wall Motion Scoring (VWMS) and clinical infarct severity and volumetric parameters. 
Linear regression showed clear correlations between ASCs and VWMS. Infarct severity 
measures correlated poorly to both ASCs and VWMS. Discriminant analysis showed good 
prediction from low #ASCs of both segmental (85% correctness) and global WMA (90% 
correctness). Volumetric parameters correlated poorly to regional VWMS.  
Conclusions:  

1) ASCs show promising accuracy for automated WMA classification.  
2) VWMS and endocardial border motion are closely related; with accurate 

automated border detection, automated WMA classification should be feasible.  
3) ASC shape analysis allows contour set evaluation by direct comparison to 

clinical parameters. 
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6.1   Introduction 
The visual detection of wall motion abnormalities (WMA) in echocardiograms is an 
important diagnostic issue. Detecting such WMA (abnormal contraction patterns of the 
myocardium of the left ventricle) forms the basis of stress echocardiography1, a widely 
applied diagnostic technique. Stress echo is now solely evaluated visually and although 
the technique is well validated, it is known to be subject to high inter- and intra-observer 
variability and high inter-institution variability2. For the physician, it also requires a long 
training process and is cumbersome to perform. Therefore, both the applicability and the 
reliability of stress echo could benefit from automated analysis and automated 
classification of WMA. The purpose of this study was to evaluate a new approach for such 
an automated classification. 

6.1.1 Stress echo and visual wall motion scoring 
Stress Echo is a diagnostic technique for non-invasive assessment of left ventricular (LV) 
dysfunction and suspected coronary artery disease by studying the LV regional wall 
motion patterns in echocardiographic images. Comparing these patterns when the patient 
is at rest with a state of stress (maximum workload for the myocardial muscle, invoked 
either by physical exercise or by a pharmacological agent such as dobutamine) allows the 
detection of several types of myocardial tissue conditions, such as ischemia, necrosis 
(infarct) and hibernation. Deteriorating contractility in one or more segments in stress is a 
sign of local ischemia and is associated with a stenosis in the corresponding coronary 
artery. For stress echo, images are acquired in standard cross sections or views, (generally 
apical four-chamber, apical two-chamber, parasternal long axis and parasternal short 
axis). These views are acquired at rest and under several levels of stress. Typically one 
complete heart beat per view is selected. These beats are synchronized and replayed as a 
loop in a quad screen (Fig. 6.1.A). Wall motion for the different segments of the LV wall 
is assessed visually. A qualitative score (such as "normal", "hypokinetic", etc) is assigned 
to each segment; this process is named Visual Wall Motion Scoring (VWMS). Different 
scoring systems are in use; the data we describe in this study uses a 4-point scoring system 
(0: normokinesia; 1: hypokinesia; 2: akinesia: 3: dyskinesia) and 13 segments (Fig. 
6.1.B,C). The scoring is generally presented graphically (Fig. 6.1.B) by coloring the 
segments in a schematic drawing of the four views and/or in a so-called bull’s eye plot 
(Fig. 6.1.C, a projection map of the whole LV wall as seen from the apex). Each scoring 
level is associated with a numeric value so that semiquantitative results can be calculated, 
such as the total score of all segments, the score index (average score for the number of 
available segments) and similar numbers for the groups of segments associated with one 
of the coronary arteries. Although differences in scores between rest and stress play an 
important role, the absolute scores have diagnostic value as well. Therefore, we would 
like to conceive an automatic method for classification of wall motion similar to the visual 
wall motion scores. We expect that (automatic) detection of the endocardial borders and 
subsequent analysis of the found endocardial shapes gives the best chance of achieving 
automated classification. 
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   A         B          C 
Figure 6.1.   (see color suppl.) Stress Echo in practice.  
A. Quad-screen of synchronized views. 
B. Schematic views with scored segments. 
C. Bull’s eye representation (13 segments, 4 scoring levels as employed in this study). 

6.1.2 Analysis of endocardial shapes 
Provided that endocardial contours have been outlined accurately (either manually or 
automatically), deriving a measure for regional wall motion from such contours is not 
straightforward. Many parameters of size, shape and displacement have been suggested 
for wall motion analysis (regional contribution to ejection fraction and regional 
displacements with and without global motion correction3, systolic change of log LV 
volume4, peak systolic velocity5, segmental radial and longitudinal velocity6, etc.), but 
relation to wall motion scores was mostly of medium to weak strength. Partly this may be 
attributed to the inherent variabilities in VWMS itself, partly to the limitations of the 
applied measures (either too global or too local; sensitivity to disturbing factors such as 
overall heart motion, minor temporal or spatial mispositioning, etc.). Furthermore, we 
presume that more is involved in VWMS than estimating absolute local displacement - 
such as wall thickening, endocardial shape itself and specific local and global motion 
patterns over the full cardiac cycle. Therefore we expect that more descriptive and subtle 
parameters of shape are required to allow assessment of WMA.  

During the development of the Active Appearance Model (AAM) border detection 
methods (as described below) we noticed that the shape modeling approach employed in 
AAM might be very useful for shape classification purposes. This shape modeling based 
on Principal Component Analysis renders mean and eigenvariations of shape/motion over 
a collection of examples, and thus captures typical motion patterns associated with cardiac 
contraction. Any such shape can be accurately decomposed into the average shape plus a 
specific linear combination of eigenvariations. Thus, all shapes can be compactly and 
completely described by their AAM shape coefficients (ASCs), a small set of numbers 
(about 60 in our case). Moreover, some eigenvariations of shape/motion seemed to 
correspond to typical pathological patterns (Fig. 6.3). Therefore, we hypothesized that 
ASCs could be useful for classification of wall motion abnormalities. 
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6.1.3 Automated border detection and Active Appearance 
Models 

For automatic detection of the desired endocardial borders in sequences of 
echocardiograms, we have earlier presented several approaches, including semiautomated 
techniques based on Dynamic Programming and pattern matching7,8 and fully automated 
techniques based on Active Appearance Models. AAM is a highly promising 
segmentation technique that was introduced by Cootes et al. and has been extensively 
described in many papers9,10. It forms an extension of the widely applied Active Shape 
Models11 from which it inherited the shape modeling approach. An AAM completely 
describes both image appearance and object shape over a set of examples as a combined 
statistical shape-appearance model. AAMs can be applied to image segmentation through 
analysis-by-synthesis, by minimizing the difference between a model-generated synthetic 
image patch and a real image using statistically plausible parameter adjustments. AAMs 
model the complete object appearance, including typical local, position-dependent 
artifacts. Ultrasound images are generally acquired in standardized cross sections and 
artifacts typically occur in the same parts of the anatomy (such as lateral wall dropouts). 
Furthermore, since AAMs are trained from expert-segmented examples, they mimic the 
expert’s segmentation decisions in cases of typical artifacts. All this makes AAMs highly 
suitable for ultrasound segmentation. Details of our implementations of Active 
Appearance Model echocardiographic segmentation are given in Refs. 12-15. As said, the 
purpose of the study described here was to assess the feasibility of the automated 
classification of WMA from AAM Shape Coefficients. AAM appearance modeling and 
border detection play a minor role here. 

6.2   Methods 
6.2.1 Shape modeling by Point Distribution Models 
The basis of our shape analysis is a model of the variation in shape over a collection of 
examples; in this case, expert-drawn left ventricular endocardial contours over a 
population of patients. For this purpose, we use Point Distribution Models (PDMs). PDMs 
describe populations of shapes using the statistics of sets of corresponding landmarks of 
the shape instances9-17.  

We start with a collection of C shapes. All shapes are represented as a set of N 
corresponding landmark points which are consistently definable in each example. 
Generally such a set consists of a few uniquely definable anatomical landmarks and a 
fixed number of equally spaced intermediate points to accurately define the contour shape. 
For the two-dimensional case, each shape in the collection is represented as a 2N-
dimensional vector: 

 
 ( )T

NN ,y,x,,y,x,yx L2211=x .       (6.1) 
 
All shape samples are aligned by Procrustes Analysis18. Their original pose (translation, 
scale and rotation) is represented by 4 pose parameters. An average shape x  is calculated, 
and for all N landmarks the C coordinates of the samples form a distribution around this 



Chapter 6 

138 

average. A Principal Component Analysis (PCA) is applied on the sample distribution; 
this involves computing the 2N*2N covariance matrix S of the data and finding its 2N 
eigenvectors Φi and corresponding eigenvalues λi and order them for decreasing 
eigenvalues.  

When each aligned shape sample is seen as a single point in the 2N-dimensional space, 
the distributions form a 2N-dimensional Gaussian ellipsoidal cloud around point x  (Fig. 
6.2). The shape eigenvectors Φi represent the main axes of the cloud, while their 
corresponding eigenvalues λi provide a measure for the compactness of the distribution 
along each axis. Together, all eigenvectors form the principal basis functions of the total 
subspace containing all samples. 

By discarding eigenvectors with low eigenvalues, a compact lower-dimensional model 
is generated that can approximate each sample with good accuracy. The largest q 
eigenvalues are selected, where a proportion k of the total variance is described such that 
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This subset of the first q shape eigenvectors Φ1  ... Φq is grouped into a matrix Ps. Each 
aligned sample x  within the distribution can now be approximated by the average shape 
with a linear combination of the shape eigenvectors superimposed (Fig. 6.2):  

 
 ssbPxx +≈          (6.3) 
 
where bs is a vector containing the q coefficients for each of the shape eigenvectors (the 
ASCs).  bs  is calculated by using the pseudoinverse of the matrix Ps to find the projection 
of the shape on the space spanned by the eigenvectors:  

 
 ( )xxPb −= T

ss .         (6.4) 
 
 

 
 
Figure 6.2.   Simple example of Principal Component Analysis (for a two-dimensional parameter 
space D1,D2). Average x  and eigenvectors (axes) Φ1 and Φ2 of point cloud are determined and 
samples x are expressed by coefficients b1 and b2 (free after Cootes9) 

6.2.2 Extension to temporal sequences of shapes 
We previously reported on 2D12,13 and 3D14,15 extensions of Active Appearance Models 
for automated segmentation of echocardiographic four-chamber image sequences.  
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In the 2D AAM for time sequences (named Active Appearance Motion Model or 
AAMM), the appearance of the heart is modeled for the entire cardiac cycle by 
considering the time sequence as a stack of 2D images (time slices). All single-beat 
sequences are phase-normalized into a fixed number of frames F (16) so that end-diastolic 
(ED) and end-systolic (ES) frames map to the same frame number (1, 9, and 16 
respectively). The other frames are found by nearest neighbor interpolation. In the training 
set, corresponding shape points on the LV endocardial contour are defined for each time 
slice based on expert drawn contours. The sequence of contours is considered as a single 
shape sample (see Fig. 6.3): the shape vectors for all time frames are concatenated in the 
order of their phase number and further treated just as a single 2D shape vector (2NF-
dimensional). Only the 2D coordinates of the points are considered, so, unlike Fig. 6.3 
suggests, the third dimension is only implicitly involved. 

Principal Component Analysis on the set of training time-sequences renders the mean 
and eigenvariations of shape of the complete cardiac cycle. In fact it results in an “average 
heartbeat” and its characteristic motion variations over the complete cycle, as associated 
to normal/abnormal cardiac contraction. An example is given in Fig. 6.3, where it is 
shown that a dilation of the apex is typically associated with a reduced displacement at 
end-systole (hypokinesis). 
 

 
 
Figure 6.3.   Second eigenvariation of endocardial shape/motion from an AAMM for four-chamber 
sequences (mean shape (b) plus and minus ((a) and (c)) 3 standard deviations). The objects show 
contour sequences expressed as a single shape sample. The open ends of the “tube” represent the 
end-diastolic phases, whereas the constriction in the middle corresponds to end-systole. This 
eigenvariation is related to typical pathology: apex dilation (panel (a)) is generally associated with 
reduced apical contraction. 

6.3   Experiments 
6.3.1 Clinical data 
Low-dose dobutamine stress echoes were acquired from 129 unselected infarct patients 
participating in a clinical trial19. For all patients, visual wall motion scoring was 
performed following the scoring system described in section 6.1 (13 segments, scores 
from 0 to 3 per segment). Scores per segment and summations (total, per view and per 
combination of corresponding mid and basal segments) were determined. Several other 
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clinical parameters associated with wall motion abnormality and severity of myocardial 
infarction were available:  

1. The peak levels of Creatine Kinase (peakCK) and Creatine Kinase - Myocardial 
Band (peakMB), blood enzyme measures determined from a series of blood 
samples. PeakCK is a biochemical measure for infarct size, but it may be 
disturbed by general (non-myocardial) muscle cell damage. PeakMB is a 
similar measure which is more specific for myocardial damage.  

2. The number of pathological Q-waves seen in the ECG within a certain time 
period (pathQ). This is an indicator for so-called Q-wave infarctions, generally 
associated with larger infarcted area and more severe LV dysfunction than non-
Q-wave infarctions. 

3. Standard global LV volume measures: biplane ED and ES volumes and ejection 
fraction (EDV, ESV, EF), calculated using biplane Simpson’s rule from the 
manually defined ED/ES contours as specified in section 6.3.2. 

4. Sphericity Index for ED and ES, a simple shape measure specifying the ratio of 
the biplane volume to that of a sphere with the same diameter as the LV’s long 
axis. A dilated ventricle has an increased Sphericity Index. 

6.3.2 Image data and manual border definition 
From all patients of the set, the transthoracic apical four-chamber and two-chamber image 
sequences from the baseline stage (non-stress) were available for border detection. Images 
were digitized from videotape at a resolution of 768*576 pixels with different calibration 
factors (0.28 to 0.47 mm/pixel). End-diastolic and end-systolic frames were marked by the 
expert observer. All single-beat sequences were phase-normalized to 16 frames as 
described in section 6.2.2. 

The expert observer manually outlined the contours of the endocardium in ED and ES 
images of all image sequences. The volumetric measures listed in section 6.3.1 were 
calculated from these borders. For the remaining images, a semiautomated detection was 
used based on these ED/ES borders (ECHO-CMS system8). In all cases, the expert applied 
manual corrections and redetection until completely satisfied with all resulting borders. In 
total, less than 20% of the contours was manually defined or corrected. Although this 
contour set can not be considered to be a manually defined set, it is completely expert-
validated and therefore a valid independent standard. In total, 4128 ultrasound frames 
were available with an accompanying expert-validated contour.  

6.3.3 Model training and shape analysis 
The total data set was split randomly into a training set of 65 patients (TRN) and a testing 
set of 64 patients (TST). Each contour was modeled by 37 landmark points, of which the 
apex and mitral valve attachments were true anatomic landmarks; the other points were 
defined by regular subdivision of the manually defined contours. A full-cycle shape 
representation of all 16 phases thus contained 592 points.  

Active Appearance Motion Models for two-chamber and four-chamber were generated 
from the training set and the ASCs for all training patients were extracted. During shape 
training, 99.9% of shape variability was kept (Eq. 6.2) to make sure that even the very 
subtle modes of variation were retained. This resulted in 62 eigenvectors for the two-
chamber model and 63 for the four-chamber model and equivalent numbers of ASCs. 
Also, the four parameters representing the pose of each shape before alignment and its 
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calibration factor were exported, since it was assumed that at least total size of the shape 
might be related to pathology. An absolute shape size estimate was calculated from the 
calibration and two pose parameters and was included in the analysis as well, resulting in 
63 and 64 parameters, respectively. Contour sequences of the test patients (TST) were 
optimally approximated by the AAMM’s shape model by projecting the shapes onto the 
model (Eq. 6.4) and the corresponding ASCs and pose were extracted.  Note that we did 
not employ AAMM automated border detection, but only its shape modeling. All 
analyzed contours were from the set described in section 6.3.2. 

6.4 Results 
We used SPSS for Windows version 9.0 (SPSS Inc., Chicago, IL) for statistical analyses 
on ASCs, VWMS results, and clinical and volumetric parameters. We employed 
multivariate linear regression and linear discriminant analysis on different combinations 
of parameters. 

6.4.1 Multivariate linear regression with ASCs as 
independents 

Multivariate linear regression was performed for the different sets of ASCs (as 
independents) against all VWMS results and clinical parameters (as dependents) (Table 
6.1). R-square values (the square of the correlation coefficient R) were determined, 
representing the percentage of the variability in the dependent variable that can be 
explained by the independent variable(s), the ASCs.  

ASCs from the AAMM model appropriate for the dependent variable’s view were 
employed. So, for VWMS of single or combined two-chamber segments, all 62 ASCs plus 
the size estimate from the 2-chamber model; for four-chamber segments, all 63 ASCs plus 
the size estimate from the four-chamber model. For the combined-view results (the apex, 
the total of all 9 segments from four- and two-chamber, the total of all 13 segments, and 
all clinical/volumetric parameters), entering all 127 variables resulted in undesired 
statistical effects like ‘over-training’ (see below). Therefore it was decided to use only the 
lower 25 ASCs of both views, giving a total of 52 variables. These 25 lower eigenvalues 
were responsible for about 95% of total shape variabilities (see Eq. 6.2). In the result 
table, the number of ASCs actually employed in the regression is given. 

The regressions were performed both for the collection of all relevant ASCs (giving 
the best possible prediction, column 4) and for an optimized subset of ASCs (column 5). 
Here, all ASCs with a low correlation to VWMS were eliminated to get an optimal 
prediction of VWMS from a minimal number of ASCs (using the ‘backward’ method of 
independent variable selection in linear regression in SPSS). The resulting R-square value 
and the remaining number of ASCs are reported. 
The blood enzyme measures PeakCK and PeakMB are poorly predictable from shape 
parameters, which is a bit surprising since they are supposed to correlate with infarct size; 
the ECG parameter PathQ correlates reasonably with ASCs. This is expected, since PathQ 
is partly associated with infarct severity. 
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Table 6.1.  
Multivariate linear regression: 

 prediction of all clinical and VWMS values by ASCs (independents). 

Dependent variable Category View R-square   
(with all ASCs) 

R-sq backward  
(with #ASCs)  

PeakMB All 0.582 (52) 0.356   (8) 
PeakCK All 0.536 (52) 0.283   (7) 
PathQ 

Clinical 

All 0.737 (52) 0.668 (20) 
Biplane ED Vol. 4C+2C 0.956 (52) 0.949 (19) 
Biplane ES Vol. 4C+2C 0.944 (52) 0.936 (16) 
Biplane EF  4C+2C 0.960 (52) 0.952 (28) 
ED Sphericity 4C+2C 0.915 (52) 0.893 (19) 
ES Sphericity 

Volumes 

4C+2C 0.945 (52) 0.930 (17) 
Total (all 13 segments) All 0.867 (52) 0.838 (24) 
Total 4C+2C (9 segments) 4C+2C 0.844 (52) 0.781 (15) 
Total 4C (5 segments) 4C 0.846 (64) 0.786 (19) 
Total 2C  (5 segments) 2C 0.852 (63) 0.798 (21) 
Septal (2 segments) 4C 0.648 (64) 0.511 (14) 
Lateral (2 segments) 4C 0.765 (64) 0.668 (22) 
Anterior (2 segments) 2C 0.757 (63) 0.660 (18) 
Inferior (2 segments) 

VWMS 
Multiple 
segments 

2C 0.806 (63) 0.701 (15) 
Apex 4C+2C 0.826 (52) 0.753 (13) 
Septal basal 4C 0.594 (64) 0.409   (9) 
Septal mid 4C 0.762 (64) 0.668 (15) 
Lateral basal 4C 0.627 (64) 0.466 (13) 
Lateral mid 4C 0.767 (64) 0.675 (24) 
Anterior basal 2C 0.551 (63) 0.376 (16) 
Anterior mid 2C 0.757 (63) 0.643 (15) 
Inferior basal 2C 0.828 (63) 0.744 (20) 
Inferior mid 

VWMS 
Single 
segments 

2C 0.733 (63) 0.614 (16) 
Single segment averages ± standard deviation 0.716 ± 0.101 0.595 ± 0.142  

(15.7 ± 4.3) 

 
Volume measures (EDV, ESV, EF, ED and ES Sphericity) are very well predicted by 

shape (ASCs), which is not surprising at all since these measures are calculated directly 
from the ED and ES contours, which form a subset of the contours defining the ASCs. 

A clear relation was found between ASCs and the different VWMS measures, 
although sometimes a large number of ASCs (9-24) was needed to get an optimal 
regression. In the prediction for single segments, most of the basal segments (anterior 
basal, septal basal and lateral basal) performed relatively bad. The apex performed 
relatively well, maybe because the combined 4C and 2C parameters were utilized 
together. From the 2-segment combinations, inferior performed relatively well, probably 
due to the good performance of the inferior basal segment. These differences between 
segments may be caused by several factors, either general or specific for this patient set: 
the distributions of WMA over the segments, the visibility of different segments, or 
particularities in the VWMS scoring or border tracing. In general, results were relatively 
better when more segments were combined, which is partly an effect of averaging, partly 
of the longer total range of results (see Fig. 6.4). Regression plots for the prediction of  the 
total VWMS and for a single segment (Apex) are given in Fig. 6.4. 

 



Chapter 6 

143 

 
 
Figure 6.4.   Multivariate linear regression: Visual Wall Motion Scoring Total (sum of all 13 
segments) versus prediction from 24 ASCs of 4C and 2C AAMMs and VWMS of Apex (single 
segment) predicted from 13 ASCs.  
 

6.4.2 Linear regressions with different VWMS results as 
dependents 

To determine which clinical and volumetric parameters best explain the variability in 
VWMS results, simple linear regressions were established between the 8 clinical and 
volumetric measures (independents) and a selection of multi- and single-segment VWMS 
results (dependents). Again, R-square values are given (Table 6.2). A multivariate linear 
regression for the combination of all 8 clinical/volume parameters was applied. This was 
done both for the set of all 8 parameters and an optimized subset by backward elimination 
of insignificant independents as described above. For comparison, results from the ASC 
backward regression (from the last column of Table 6.1) are given for the same VWMS 
results. 

It was found that peakCK and peakMB correlated very poorly to any VWMS result; 
PathQ correlated weakly to only the global values. This is consistent with the finding that 
these parameters are poorly predictable from ASCs.  

From the volume parameters, EF clearly had the best relation to VWMS, especially for 
the global results. This is to be expected, of course, since a reduced wall motion will 
generally produce a lower EF. It can be seen that EF contributes for a large part to the 
combined regression results. Sphericity indices showed little relation to any VWMS 
result; ES and ED volumes seem merely related via their contribution to EF. 

The combined regression performs equally well for the prediction of global VWMS as 
ASCs. This was largely because of EF. From Table 6.1 it can be seen that ASCs can 
predict EF very well also. For global performance, EF is a good measure. However, it 
cannot predict local effects. This is evident from the comparison for 1- and 2-segment 
VWMS results: ASCs perform very well there, while the prediction by global EF (and 
combined) quickly deteriorates. 
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Table 6.2.  
Linear regression results of global and segmental VWMS results.  

Several clinical measures as independents. 

Regression of different 
VWMS (R-square) 

Total  Total 
4C+2C  

Total 4C  Lateral   Inferior Septal 
basal 

Anterior 
mid 

                           View: all 4C+2C 4C 4C 2C 4C 2C 
                  #segments: 
Independent: 

13 9 5 2 2 1  1  

PeakMB 0.133 0.092 0.084 0.063 0.000 0.002 0.047 
PeakCK 0.170 0.111 0.106 0.048 0.001 0.004 0.032 
PathQ 0.251 0.231 0.256 0.010 0.008 0.004 0.132 
EDV 0.224 0.195 0.161 0.119 0.023 0.000 0.019 
ESV 0.473 0.446 0.337 0.185 0.045 0.009 0.085 
EF 0.786 0.760 0.587 0.214 0.036 0.069 0.156 
ED-sphericity 0.052 0.057 0.025 0.037 0.014 0.004 0.002 
ES-sphericity 0.149 0.153 0.052 0.120 0.088 0.051 0.001 
All 8 combined 0.840 

(8) 
0.786  
(8) 

0.656  
(8) 

0.293  
(8) 

0.252  
(8) 

0.181 
(8) 

0.266 
(8) 

All 8 backward  
(with #pars) 

0.835 
(4) 

0.777  
(2) 

0.649  
(6) 

0.281  
(4) 

0.243  
(5) 

0.141 
(4) 

0.235 
(3) 

ASCs backward  
(with #pars) 

0.838 
(24) 

0.781 
(15) 

0.786 
(19) 

0.668 
(22) 

0.701 
(15) 

0.409 
(9) 

0.643 
(15) 

 

6.4.3 Linear discriminant analysis 
Discriminant analysis was performed to find optimal classification of WMA from a 
minimal number of ASCs. Since VWMS is a visually established, subjective assessment 
with considerable observer variability, wall motion score values were grouped into only 
two classes for these classification experiments. For single segments and combinations of 
2 segments, a distinction was made between normal and abnormal wall motion, where a 
score of 0 was considered normal, and all scores >0 abnormal. For combinations of 5 and 
more segments, where many scores are summed, such a distinction would result in very 
biased or even empty classes (note that the patient set contained only infarct patients and 
no normals). Therefore, for these multi-segment combinations a distinction into mild and 
severe WMA was made. For groups of 5 segments, a summed score >1 was considered 
severe; for the 9-segment combination of 4C and 2C segments, >3; and for the total score 
of 13 segments, >5.  This resulted in reasonably balanced groups in most cases. 

Classification was performed in three different experiments, representing an ‘ideal’ 
situation, a ‘worst-case’ situation and a mixed case. As described above, the patient set 
was split in a TRN set (n=65) and a TST set (n=64). The shape model was trained from 
the TRN set only and thus is capable of modeling the TRN shapes exactly; so the ASCs 
describe these shapes perfectly. For the TST set, the shapes were projected on the shape 
model and approximated. However, these ASCs may not perfectly describe the shapes, 
since the training was performed on a limited set only and may not completely cover all 
variability in the TST set. The ASCs derived for the TST set may also have slightly 
different characteristics with respect to WMA than those from the TRN set.  

To assess the differences between such situations, three experiments were performed. 
First of all, the classification was performed on the TRN set (column 5 in Table 6.3), 
representing ASCs from a ‘perfect’ shape model (corresponding to a shape model trained 
from a very large and well-balanced patient set). The classifier was trained using a leave-
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one-out approach: in turn, each of the training cases was left out, the optimal discriminant 
function was determined from the other cases, and tested on the one remaining case. This 
was repeated n-1 times. This approach guarantees independence between training and test 
cases. Leave-one-out experiments are listed by L-1-O in Table 6.3.  

Secondly, a classifier was trained on ASCs from all TRN cases and tested on those of 
all TST cases (column 6 in Table 6.3). This is a worst-case real-world experiment: both 
shape model and classifier are trained from a limited training set and tested on completely 
‘new’ shapes. 

Thirdly, an intermediate real-world situation is simulated using the whole patient set 
(TRN+TST, n=129): the shape model is trained on TRN only, but the classifier is trained 
on ASCs from both the TRN set (perfect) and TST set (imperfect), again using a leave-
one-out approach (column 4 in Table 6.3). This classifier will be tuned better to the 
different ASC characteristics of the TST set. The classifier may also perform better 
because of the larger set. A discriminant function is determined based on a linear 
combination of the predictor variables that provides the best discrimination between the 
groups. The independent predictor variables were entered into the analysis in a stepwise 
fashion. In each step, the variable is entered that minimizes the sum of the unexplained 
variation between groups. Variables may be entered or removed if the significance level 
of their F value passes a given entry/removal threshold. The process continues until no 
more variables can be entered or removed. No prior probabilities were computed from  the 
training group sizes, so all a priori group probabilities were equal. 

Linear discriminant analysis results on the prediction of VWMS are listed in Table 6.3. 
For comparison, the ASC predictions were set against the best predictor from the clinical 
parameters as listed in Table 6.2: Biplane EF. Note that this parameter should not be 
considered a gold standard for segmental VWMS prediction since it is associated only 
with global LV function. Three different experiments were performed as described above 
(columns 7, 8, 9). 

Table 6.3 shows good ASC classification of WMA (78%-95% correctness for 
TRN+TST set) for both single (on average, 85%) and combined (multiple) segments. The 
numbers of ASCs employed were generally low (on average, 10 or 8 for single segments) 
except for a few combined cases where the discriminant seemed to ‘over-train’ itself in 
order to cover 100% of the variation in the training data. In such cases, it would be 
possible to limit the number of included ASCs (probably at the cost of a lower 
performance). In the hardest test (column TST, shape model and classifier training on the 
TRN set and test on the TST set), still a 74% correctness for single segments was 
achieved, which certainly is a promising result considering the variabilities in VWMS. 
The TRN test suggests that with an optimal shape model, a segmental correctness of up to 
89% is feasible. 

ASCs predict WMA better than EF in most cases, both for combined segments and 
single segments. As expected, the difference is largest for single segments, where EF 
predicts not much better than a random choice (50%). In fact it could be seen as a biased 
guess: a reduced EF can tell that there must be a wall motion abnormality somewhere for 
a specific case, but it obviously cannot tell you where. For the Total TRN+TST set and the 
TRN set, ASC performs better in all cases; for the TST set, EF is sometimes slightly 
better, but this may well be an accidental effect. For all three sets, the ASC single-segment 
average was significantly higher than the corresponding EF average, according to a 
single-sided paired t-test at the 1% level.  
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Table 6.3.  
Classification correctness of wall motion abnormality  

for different segments and combinations. 
Classification correctness (%) Predicted from AAM Shape 

Coefficients 
(#ASCs employed) 

Predicted from Biplane EF 

VWMS 
(criterion) 

Category Views (# 
segments) 

TRN+TST 
(L-1-O)  

TRN 
(L-1-O) 

TST  TRN+ 
TST  
(L-1-O) 

TRN  
(L-1-O) 

TST 

Total (>5) All (13) 90% (20) 100% (35) 77% (35)  79% 85% 73% 
Total 4+2 
(>3) 

4C/2C (9) 89% (14) 89% (11) 70% (11) 79% 75% 83% 

Total 4c (>1) 4C (5) 85% (15) 88% (13) 78% (13) 74% 79% 77% 
Total 2c (>1) 2C (5) 94% (9) 100% (21) 97% (21) 61% 65% 64% 
Septal (>0) 4C (2) 78% (12) 100% (28) 67% (28) 67% 66% 72% 
Lateral (>0) 4C (2) 78% (9) 82% (10) 70% (10) 71% 69% 73% 
Anterior (>0) 2C (2) 86% (14) 94% (11) 73% (11) 67% 68% 69% 
Inferior (>0) 

VWMS 
Multiple 
segments 

2C (2) 85% (16) 94% (16) 75% (16) 49% 54% 45% 
Apex  4C/2C 95% (17) 94% (7) 81% (7) 74% 75% 72% 
Septal basal 4C 78% (7) 87% (10) 70% (10) 64% 74% 58% 
Septal mid 4C 86% (10) 92% (12) 73% (12) 67% 63% 70% 
Lateral basal 4C 85% (6) 86% (8) 64% (8) 67% 71% 63% 
Lateral mid 4C 78% (10) 77% (6) 70% (6) 73% 69% 75% 
Anterior 
basal 

2C 88% (2) 95% (3) 95% (3) 75% 86% 86% 

Anterior mid 2C 88% (14) 94% (11) 75% (11) 69% 68% 70% 
Inferior basal 2C 84% (12) 85% (5) 72% (5) 57% 55% 58% 
Inferior mid 

VWMS 
Single 
segments 
(criterion
: >0) 

2C 81% (14) 91% (12) 66% (12) 55% 63% 50% 
Single segment averages ± standard 
deviation 

84.7±5.6% 
(10.2±4.7) 

88.9±5.9% 
(8.2±3.2) 

74.0±9.4% 
(8.2±3.2) 

66.6 ± 
7.1% 

69.4 ± 
8.8% 

66.7 ± 
10.8% 

 
Two-chamber results were generally superior to four-chamber; this may be attributed to 
the distribution of WMA over the segments, where the two-chamber segments saw a 
wider range of VWMS scores. 

Note that the prediction of total VWMS for all 13 segments is at least as good as that 
of the 9 segments (four- and two-chamber only). This may sound strange, since the extra 
segments (belonging to the long axis view) are not included in the ASCs at all. However, 
this may be attributed to the high correlation between the long-axis segments and their 
neighbors in the four and two chamber views, which are supplied by the same coronary 
arteries. 

6.5   Discussion 
As the most important result from this study, we can conclude that ASCs are indeed 
suitable for classification of wall motion abnormalities. It also shows that endocardial 
contours (by themselves) may be sufficient to allow automated classification/prediction of 
VWMS, and that our proposed approach of endocardial border detection and subsequent 
shape analysis is feasible in principle.  

Another interesting result is that an ASC shape analysis can assess the quality of sets 
of contours through direct correlation with clinical parameters. The percentage of 
variability of the clinical parameter explained by a linear combination of ASCs (R-square) 
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is a useful measure for this. This also allows comparisons between different sets of 
contours (e.g. manual vs. automatically detected). Apart from these interesting first 
results, several issues remain to be treated.  

6.5.1 Manually versus automatically detected contours 
Of course, it remains to be shown that the described approach will also work on 
automatically determined contours (preferably determined by an AAM). All above 
experiments were performed on an ‘expert-verified’ contour set (section 6.3.2.). This set 
was in fact for >80% derived semiautomatically, but the most important contours (ED and 
ES) were defined manually by the expert and subsequently detected contours were 
corrected, so that we consider it closer to a manually defined set. We only performed 
some preliminary experiments on contours that were detected fully automatically by 
AAMM, but results were clearly less good than for the original set. This may be attributed 
to several factors, but most likely small errors in the detection tend to obscure the typical 
patterns seen in the manual contours. As we have seen with earlier studies13,15,17, it seems 
that AAMs tend to stay a bit too close to the average shape/motion patterns. They generate 
quite a good overall approximation of the shapes (in terms of distances and area 
differences), but fail to follow the finer details. Luckily, there are still many possibilities 
to optimize the border detection, e.g. by a hybrid combination with Active Shape Models 
and/or Dynamic Programming, as described earlier17. This is a subject of further studies. 
An alternative may be to adjust for the change in patterns by training another shape model 
from the automatically detected shapes and correlate its ASCs directly to the visual wall 
motion scores.  

6.5.2 Limitations of VWMS 
It should be stressed that the strength of the found relations must be seen in the light of the 
large inherent uncertainties and variabilities associated with VWMS itself. The fact that 
on average 60% of the total variability in single-segment VWMS can be explained from a 
limited number (~16) of ASCs is actually a strong result. 

VWMS is in fact a qualitative measure made semiquantitative, which makes it less 
suitable for a linear regression approach as applied here. Single segments can only have a 
few different scores and due to the small numbers of examples the distributions are quite 
irregular, so correlations and linear regression may be weak. Furthermore, Visual Wall 
Motion Scoring is known to be subjective and operator-dependent. Even in highly 
controlled multi-center studies it has been shown that inter-institution variability can be 
high. Although such numbers cannot be compared directly, e.g. 73% agreement on 
normality/abnormality of a complete dobutamine stress test was reported2. 

One should realize that automating or imitating VWMS is not the main goal. VWMS 
is in fact a tool to predict the presence of coronary artery disease, and its virtues for that 
have been assessed well by comparison to established clinical measures, such as 
quantitative coronary angiography. It has also been compared to competing techniques 
like the nuclear imaging thallium stress test, ECG stress testing etc. Therefore, it would be 
most interesting to relate ASC shape analysis directly to quantitative coronary 
angiography to determine its sensitivity and specificity for detection of coronary artery 
disease. It could also be related to other established measures of coronary or myocardial 
pathology. 



Chapter 6 

148 

6.5.3 Relations with clinical parameters 
The clinical parameters peakCK, peakMB and pathQ were found to be only weakly 
related to both VWMS results and ASCs. For all three we can state that these are 
measures of global pathology/infarct size, with many sources of errors, and not 
necessarily directly coupled to wall motion in the views involved.  

From the volumetric parameters it was found that only EF correlated well to global 
VWMS. Sphericity indices showed poor relations, and biplane volumes offered no 
additional value. Predictive power for segmental VWMS was very low, as can be 
expected. 

However, these weak relations stress the fact that VWMS and ASCs are indeed closely 
related, and that both global and segmental VWMS can be predicted from ASCs. The 
weak relations also rule out the possibility that by using a large number of ASC variables 
we could predict almost anything - this obviously is not the case. The found relations are 
real and not statistical artifacts. Furthermore, the fact that ASCs can predict any of the 
volumetric parameters is another proof that they cover the properties of shape well. 

6.5.4 Alternatives for assessment of wall motion 
abnormalities 

In this study, we have chosen to analyze endocardial borders to detect wall motion 
abnormalities. As mentioned, alternative approaches exist, such as Tissue Doppler 
Imaging (TDI) or the derived Strain Rate20 and Strain21 Imaging. Without going into 
details, we can state that these techniques are limited as well. In particular, we have shown 
that combining longitudinal velocities from TDI with radial velocities from endocardial 
border detection may increase success6. 

Another possibility is the addition of epicardial contours. In visual wall motion 
scoring, thickening of the myocardium is an important clue for normal contraction. 
Assessment of myocardial thickness/thickening would involve both endocardium and 
epicardium. However, the epicardium is often hard to delineate precisely from 
echocardiographic data. Although an AAM approach allows for multiple contours to be 
modeled and detected simultaneously, it remains to be studied whether this will improve 
WMA classification.  

6.5.5 PCA limitations, extensions and alternatives 
The described PCA-based approach has some limitations. As any training-based approach, 
its reliability depends on the range of variabilities covered in the training set: it should 
include normals and sufficient cases of expected pathologies. Furthermore, the result is 
limited by the quality and reproducibility of the training contour data: accurately validated 
borders on substantially larger data sets are required.  

PCA assumes Gaussian distributions. Provided that the example set is representative 
of the variability in the population and the distribution can be approximated by a high-
dimensional Gaussian ellipsoid, an AAM can generate any statistically plausible 
intermediates10. If the distribution is disjunct or very skewed, the model may generate 
implausible intermediates or may fail to cover the full range of variability. 

In this study, almost all shape variation (99.9%) from the training set was included in 
the models and analyses, except for the combined views where 95% was used. Removing 
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a larger percentage of variation would result in a more generalized and compact model. 
However, we should probably use larger training sets to achieve good generalization. 

In this study, separate shape models for four-chamber and two-chamber images were 
trained. In fact, AAMs can use coupled models which incorporate the different views of 
the same object into a single model22. This will automatically include interrelated shape 
properties in the eigenvariations.  

PCA will provide an optimal description of variability over a set, but is not aimed at an 
optimal classification or localization. This is a reason why relatively many ASCs are 
involved in single- and multi-segment VWMS prediction or WMA classification. For this 
purpose, Independent Component Analysis (ICA) may form a good alternative for PCA, 
allowing to decompose shapes into components that describe very local shape behavior. 
This is a subject of further study. 

PCA shape modeling is an inherent part of AAM methods, and it is therefore attractive 
to combine AAM border detection with ASC shape analysis. However, the ASC analysis 
can be applied completely independent of AAMs and can be combined with any type of 
border detection. 

6.5.6 Limitations of the study setup 
The setup of this study was limited in several aspects. Only infarct patients were included, 
while for a good unbiased general shape model training and ASC discriminant function 
determination, other pathologies and normals should be included as well. From the stress 
echoes, only resting two- and four-chamber images were used. Adding long-axis and 
short-axis images may improve results. The same approach should be tested on the 
dobutamine images, and on the assessment of rest/stress differences. A combined shape 
model for rest and stress images could be trained as well. 

For the statistical analyses, only linear regression and linear discriminant classifiers 
were employed, while VWMS is a very nonlinear measure. Other nonlinear classifiers 
may achieve better results. 

6.6   Conclusions 
AAM shape coefficients can describe regional wall motion abnormality and can be used 
for automated classification of such abnormalities with good accuracy: for single 
segments, on average 89% correctness was achieved against an expert observer in case of 
a ‘perfect’ shape model. With a suboptimal shape model, 85% correctness was obtained. 
Considering the inaccuracy and high inter- and intra-observer variability of visual scoring, 
the achieved results suggest that automated wall motion scoring is feasible. 

VWMS and endocardial border shape/motion patterns are shown to be closely related; 
if accurate automated border detection is available, this opens the way to fully automated 
classification of wall motion abnormality in echocardiograms. 

ASC shape analysis is also a powerful tool for evaluating the relation of shapes with 
arbitrary clinical parameters or for comparing the quality of different contour sets by 
direct comparison to clinical measures. 
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7.1   Introduction 
This thesis describes the results of our echocardiographic image analysis research carried 
out over many years (1987-2004). Over this extended period, the main line of research 
was the detection and tracking of the endocardial border in echocardiographic images and 
sequences, but the intended applications and the approaches evolved considerably with 
time. Meanwhile, other researchers applied our developments in clinical studies. 
Furthermore, we investigated new application opportunities that often resulted in separate 
branches of research. Therefore, this chapter presents an overview of our work within its 
historical context, sketches the connections between the previous chapters and provides a 
broader view.  

In Fig. 7.1, a timeline is presented marking some important general developments in 
echocardiography and image processing, together with the primary and secondary 
research projects discussed in this chapter.  
 

 
Figure 7.1.   Timeline of developments: echocardiography, echocardiographic image processing, 
and primary and secondary developments at LKEB. 
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First, an overview of the primary developments over the years is given in section 7.2, with 
a summary of clinical results and applications†. The next part of this chapter (section 7.3) 
reports on several sidesteps that have spawned significant results. These are discussed 
topically in more or less chronological order. Finally, in 7.4 we will present conclusions 
and some visions of the future. 

7.2   Overview of the main line of research 
 and its applications 

Over the years, several projects were performed that constituted the central line of 
research. The subjects evolved from straightforward contour detection in single images to 
more complex and advanced image analysis approaches. This corresponds to the general 
evolution of image processing from the classical data-driven (bottom-up) approaches, via 
model driven (top-down) approaches to modern analysis-by-synthesis and knowledge-
based methods. 

7.2.1 Short-axis single-frame endocardial contour 
detection 

Our earliest work in echocardiographic analysis focused on endocardial detection in 
single-frame short-axis images from transesophageal echocardiography (TEE). Two-
dimensional transesophageal echocardiography was still a relatively new technique, 
developed to a large extent by Nicolaas Bom PhD and Charles T. Lancée PhD1 at the 
Department of Experimental Echocardiography of the Thoraxcenter, Erasmus University 
Rotterdam. Image quality of TEE echo was at that time significantly better than that of 
transthoracic echo (TTE), due to the lack of obstructions like ribs and lungs, the proximity 
to the heart (allowing the use of higher ultrasound frequencies) and the absence of 
subcutaneous fatty tissue in the ultrasound pathway. 

The first publications on automated border detection in echocardiograms started to 
appear in the early 1980’s (e.g.2-4, see ch. 1 for overviews) but methods were still very 
primitive. Preliminary experiments on automated border detection in TEE images were 
performed at the Thoraxcenter by Lancée et al.5, based on the work of Grube et al.6. At the 
same time and place, the Laboratory for Clinical and Experimental Image Processing 
(LKEB), led by Johan H.C. Reiber, PhD, performed research on automated image analysis 
for X-ray angiography. This resulted in automatic methods for LV angiographic lumen 
detection and coronary artery analysis7 that were implemented in the CAAS system 
(commercialized by Pie Data Medical, Maastricht, the Netherlands).  

Around 1986, Peter J. van Leeuwen at the LKEB demonstrated that the dynamic 
programming (DP) algorithms that were successful in angiography8 could be adapted for 
use in ultrasound as well. This initiated the project on which the author started working on 
the subject of echocardiographic image analysis, funded by the Dutch Heart Foundation 
                                                           
† In this chapter, many references to other researchers are made. For most cooperators, the scientific 
titles (PhD, MSc, MD) are given that were applicable at the time of the cooperation. Some titles 
were omitted if unknown or uncertain. For clarity, all clinical cooperators are indicated at least by 
the title “MD”, irrespective of their exact scientific title. We apologize to all whose titles are not 
stated correctly. 
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(NHS 86.080, “Automatic analysis of transesophageal echocardiograms” 1987 - 1990). 
The anticipated automated echocardiographic detection technique was primarily intended 
to support automatic transesophageal monitoring of cardiac parameters like ejection 
fraction (EF) and cardiac output (CO), for use in anesthesiology during surgery. This was 
clinically explored in cooperation with Marc E.R.M. van Daele MD and Jos R.T.C. 
Roelandt MD PhD at the Thoraxcenter9,10. This intended use also necessitated a real-time 
implementation. Therefore, we started a separate project on the development of special 
real-time contour detection hardware, which is further described in section 7.3.2. 

The technique that was developed in the NHS project11-15 consisted of a DP approach 
(see ch. 3.2) based on a circular model of the short-axis endocardial contour. The user 
would indicate a centerpoint with the mouse, a circular model with fixed radius was 
applied (Fig. 7.2) and the image was resampled with low resolution in a broad ring-shaped 
strip around this model. The samples were placed in a scan matrix and costs were assigned 
per node as a linear combination of grey value averages, distances from the model, a first 
derivative in normal direction to the model and an absolute first derivative in tangential 
direction. Using DP, a closed contour was found (chapter 3.2.3.2), which was 
subsequently used as a model itself for resampling over a narrow strip with higher 
resolution, to reach a better approximation of the true border. A typical result is shown in 
Fig. 7.3.A. 
This technique was a quite advanced model-driven approach in comparison to others 
reported in that period (see ch. 1), that used purely bottom-up (data driven) approaches, 
such as thresholding16, morphological operations17 or a radial search for a strong edge, 
followed by edge linking6. Also, we entrusted our approach to be more successful than 
methods based on simulated annealing18 or on snakes or active contours19, since it lacked 
the convergence problems and instabilities associated with those iterative approaches, and 
directly led to an optimal solution. 

In the first evaluations, we showed that the inter- and intra-observer variability in the 
automatic contours (caused by variations in the indicated centerpoint) was below 1.42 mm 
for ED and ES images of 10 patients11-14. In a further study9,10 in 10 patients, cross-
sectional areas of ED and ES frames taken at 4 intervals were analyzed manually and by 
our DP technique. Areas correlated well between manual and DP contours (r = 0.97) and 
to thermodilution results; a slightly lower beat-to-beat variation was found for DP (DP 
4.5%, manual 5%, thermodilution 9%) for the good-quality images, but in suboptimal 
images the detection was sensitive to artifacts.  

A more elaborate evaluation15,20 was performed on standard-quality TEE images of 12 
patients, each with 4 sequences of 5 consecutive beats (480 ED and ES images). Manual 
and automatic contours were compared by calculating local distances (in mm) between 
pairs of corresponding contours using a 100-point modified centerline analysis21. 
Automatic contours with and without corrections were analyzed. Also, inter- and intra-
observer variabilities were calculated for all 3 sets (manual, DP, corrected) on 40 images. 
Distances between manual and automatic contours were 2.8 ± 2.4 mm, indicating that the 
automatic contours were slightly but systematically smaller; the manual contours still had 
lower observer variability (1.1mm vs. 2.1mm). The corrected contours were closer to the 
manual contours (2.0 ± 1.8mm) and had an observer variability of 1.6mm. These results 
were encouraging, given the challenges, but it was clear that this single-frame DP 
approach could not yet replace manual drawing. 
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Figure 7.2.   Single-frame short-axis contour detection procedure (from12).  
A. Original image with manually placed circular model.  
B. Path search. Left upper: resampled image from strip around model. Left lower: array of 

cost values. Right: minimum cost path.  
C. Detected contour is applied as a model in the second iteration with resampling over a 

narrower range. 
D. Final contour after second iteration. 
 

We experimentally applied this DP approach to several other types of images as well, 
including short-axis TTE, open-chest epicardial echoes, IVUS22-25 and short-axis MRI 
(Fig. 7.3.B-D). Some of these experiments, performed with adapted versions of our 
algorithmic implementations for echo, formed the onset for the development of similar 
detection approaches in other domains, like the methods for IVUS developed by W. Li 
(see 7.3.1). Automated detection for MRI based on DP later was investigated categorically 
at our laboratory by Rob J. van der Geest et al., which resulted in the successful MASS 
system for semiautomatic analysis of MRI images26.  

7.2.2 Contour detection and tracking in echocardiographic 
sequences 

The DP approach was evaluated with promising results, as described above. However, the 
complexity and ambiguity of the still-frame images formed a serious problem and left a 
considerable margin of variability and uncertainty. The general image quality of B-mode 
echocardiograms  was (and  actually  still is) insufficient to allow reliable segmentation of 
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Figure 7.3.   Applications of single-frame DP algorithm to short-axis TEE and other domains.  
A. Short-axis TEE (from13).  
B. Intraoperative epicardial short-axis echo. 
C. IVUS (from24). 
D. MRI short-axis. 
 
single (still-frame) images. Even human observers have great difficulties to reach a 
consistent, reliable segmentation on single images; in practice, cardiac images are always 
reviewed in motion before a single image is manually segmented. It is widely known that 
an echo image in motion (directly acquired, or played back from videotape or in digital 
cineloop) is much easier to interpret than a single still image. The coherence between 
consecutive images, the difference in temporal behavior of tissue and artifacts and the 
information redundancy facilitate in distinguishing subtle anatomical structure and detail 
from clutter, artifacts, noise etc. Therefore, the logical next step was the development of 
methods for time sequences of images. Analyzing a sequence allows the integration of 
such coherence and application of models of both endocardial shape and motion.  

These subjects were investigated in a project funded by the Technology Foundation, 
the Netherlands (STW, project LGN92.1706, 1990-1995; “Development, implementation 
and evaluation of an automated analysis station for quantitative echocardiography”). 
Final development into a commercial system was funded by Medis medical imaging 
systems bv, Leiden, the Netherlands (1995-1996). 
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7.2.3 Edge-based endocardial border detection for short 
axis sequences 

First, the detection of short-axis sequences was taken up. This work was closely coupled 
to our efforts to realize real-time detection, as described in 7.3.2. However, for solving the 
general case we are not restricted by the severe limitations of the real-time monitoring 
application (extreme robustness, total automation, high and predictable speed, lack of user 
guidance or correction).  

The detection approach that we have developed for short-axis image sequences and its 
evaluation is described in detail in chapter 2 of this thesis. It uses closed-contour dynamic 
programming (see 3.2.3.2) with an edge-based cost function and requires only the 
indication of a center point of the left ventricle, or the manual drawing of a first contour 
approximation. A feed-forward geometric model prediction (3.2.3.7) is used: the contour 
detected in one image is smoothed and used as the model for the next and/or previous 
image. The width of the search range is matched to the expected maximal frame-to-frame 
wall displacement. This detection was described in several papers27-32 and evaluated on 20 
patients with good results: the automated contour areas were shown to correlate very well 
with manually defined contours29: 

Semiautomatic = 1.01 * Manual + 5.58%;  r = 0.989,  SEE = 11.9%.  
Furthermore, inter- and intra-observer variability of the automated method were 
significantly smaller than those of manual delineation. Manual correction was needed in 
only 18% of images. Total analysis time was reduced by a factor of 5 in comparison to 
manual analysis. 

7.2.4 Edge-based detection for major axis sequences 
After the realization of the short-axis detection, we turned our attention to the analysis of 
the other cross sections of clinical interest. In particular the apical four-chamber and two-
chamber cross sections allow a much broader range of parameter calculations than the 
short-axis cross section, especially for volume and wall motion analyses. 

In major-axis cross sections (apical four-chamber, apical two-chamber, parasternal 
long axis), two specific issues make detection of the endocardium more difficult than for 
short-axis images: 

1. The geometric model is more complex: a hemielliptic, open shape, with 
complex dynamic behavior (e.g. the moving mitral valve plane).  

2. The border appearance (intensity patterns) can be very different per region; and 
the strongest edge is often not the desired one. Edges are obscured by noise, 
artifacts, dropouts etc. Often, the cardiologist wants to track a structure that is 
not associated with an edge at all (e.g. because of trabecular structure, imaging 
artifacts, or foreshortening).  

 
Initially, the technique described above for short-axis detection was extended directly 
towards major-axis images, addressing only the first issue. Instead of a single center point, 
three markers were used: an apical marker and two mitral valve points. A hemi-elliptic 
model was fit through these three points, and an edge-based dynamic programming 
detection comparable to the method described for short-axis views was applied. The 
model propagation was also improved: instead of simply using the previous contour as a 
model, a weighted average between the default model shape and the previous detected 
contour could be used33. This prevented uncontrolled propagation of local shape 
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deviations. This technique was initially evaluated34 in cooperation with Michael H. Picard 
MD PhD and R.L. Morrissey MD PhD of Massachusetts General Hospital, Boston. 
Evaluation was performed on epicardial four-chamber views in an open-chest canine 
beating heart model (n=4); sequences contained ED and ES images only (Fig. 7.4). 
Monoplane Simpson’s rule volumes were calculated from the detected (ABD) contours, as 
well as from manually drawn contours, and compared with the true LV volumes measured 
with an intracavitary balloon connected to an extra-cardiac reservoir. In total, 59 volume 
stages (10 – 127 ml) were assessed. ABD volume and EF correlated well with the true 
value: 

Volume:  ABD = 0.88 * True + 3 ml,  r = 0.85, SEE = 15 ml;  
EF:  ABD = 1.0 * True - 2.3%,  r = 0.81, SEE = 12%.  

The difference (mean ± standard deviation) from true volumes for ABD (3 ± 15 ml) was 
not significantly different from that for manually traced volumes (6 ± 9 ml). The 
underestimation of true volumes, both for the manual and ABD tracings, was attributed to 
foreshortening, i.e. the difficulty of obtaining the largest major axis cross section. It was 
concluded that this technique allowed volume and EF determination with an accuracy 
equivalent to more time consuming manual methods.  

Of course, this was a relatively easy task for automated detection, since the open-chest 
epicardial images were of excellent image quality, and the LV cavity was clearly outlined 
by the intracavitary balloon. 
 

 
 
Figure 7.4.   A. Open-chest canine heart with intracavitary balloon. B. with detected contour. 
 
In a further stage, the technique was extended for full-cycle image sequences by modeling 
the shape change over the whole cardiac cycle. This is further described under 3.2.4.3. A 
clinical study on 22 patients with acute myocardial infarction was performed in 
cooperation with J.M. van Dantzig MD PhD and E.C. Cheriex MD PhD (Department of 
Cardiology, Academic Hospital Maastricht, 1996). Visual wall motion scoring (VWMS) 
was performed on these patients in a 13-segment, 5-grade model. Independently, in the 
four- and two-chamber sequences semiautomatic border detection was performed and 
segmental contour excursion was calculated with a centerline analysis (Fig. 7.5). These 
excursions were classified as normal, hypokinetic, akinetic etc. using preset thresholds. 
These automated scorings were compared to the visual scores. It was concluded35,36 that 
the location of the infarct (either anterior or inferior) was found correctly in 82% of cases 
while the difference in wall motion scoring was 1 grade or less in 84% of segments. Good 
correlation of global wall motion score between the automatic and visual analyses was 
found (r=0.81).  
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Figure 7.5.   (see color suppl.) Typical regional wall motion graphs showing abnormal motion in 
the basal and mid inferior wall (segments 1-40). Two-chamber view from the Maastricht study. The 
five segmental wall motion scores were: dyskinetic, akinetic, normal, normal, normal, both for the 
visual scoring and the score assigned by the automated border detection. 
 

This was the first step towards automatic wall motion scoring and the results were 
very encouraging, notwithstanding the fact that we used an overly simple approach for 
translating wall displacement to VWMS: the same absolute displacement threshold for all 
segments, no corrections for overall motion or heart size, etc. However, the quality of the 
detection could still be improved; it proved quite hard to reach consistent segmentations 
with this edge-based detection method. Overall, almost 4 contour corrections were needed 
per cardiac cycle.  
 
In internal evaluations of the performance of the detection, it was found that the contour 
detection worked well as long as the endocardial border was clearly visible. The main 
limitations were found in areas of considerable dropout (often the lateral wall) where 
significant temporal inconsistency in the borders could occur, that necessitated manual 
correction. It was also found that characteristics of the endocardial borders in the major-
axis views were considerably different for each segment of the wall, which complicated a 
proper choice of settings of the DP algorithm. In the open-chest canine images with 
intracavitary balloons mentioned above, the edge-based major-axis detection method 
showed good results. In clinical-quality transthoracic images in humans, detection clearly 
proved more complicated, mostly because of issue 2 formulated above. 

Also, one of the general limitations of echocardiography – the lack of image 
standardization – poses problems for automated analysis. More than in other imaging 
modalities, echocardiography depends strongly upon the manual skills of the operator: 
finding the correct cross sections, adjusting several machine settings to get an optimal 
image, and dealing with the patient-specific acoustical window limitations, artifacts and 
anatomic variabilities. 

7.2.5 Early pattern matching and tracking approaches 
Early on (1992), we proposed that a pattern matching approach based on one-dimensional 
edge patterns might be useful for tracking the motion of contours in sequences of images, 
as an alternative to edge filters as applied in the DP approach. We assumed that using 
border  characterization  features  from  the  images  themselves  would  work  better  than 
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Figure 7.6.   Pattern matching result on scan matrices of short-axis image pairs (from37).   
Top row: scan matrix from source image (left) with path and band from which the match patterns 
are extracted (right).   
Middle row: scan matrix from target image (left) with detected contour by pattern matching (right). 
Bottom row: result of matching the patterns with the target image, calculated with SRAD method 
(left); in this result image, the contour is detected (right) as shown in the middle row, using DP. 
 
relying on rather arbitrary assumptions of edge definition, as is the case for specific edge 
detectors. This was investigated by applying different pattern matching techniques in 
sequences of short-axis echocardiograms with known edge positions (from 
semiautomatically detected, manually corrected borders). One-dimensional patterns taken 
from scanlines around the edge position were matched to scanlines in the subsequent 
images. Six different match criteria: Sum of Absolute Differences (SAD), Sum of 
Reciprocal of Absolute Differences (SRAD), Cross Correlation (CRCOR), Normalized 
Cross Correlation (NCC), Correlation Coefficients (CORCF) and Deterministic Sign 
Change (DSC) with six different pattern lengths (3-13) were compared over 10 sequences 
of 16 frames (Fig. 7.6). In the match array, optimal paths were detected by dynamic 
programming; these were compared to the independent standard. Best results were found 
for NRCOR, CORCF and SAD with mask lengths 11 and 13. In conclusion, the SAD 
criterion (sum of absolute differences) was found to be most suitable, combining good 
performance with low computational demand37,38.  

7.2.6 Landmark tracking 
The robustness of the pattern matching approach led us to investigate the automatic 
tracking of the 2D motion of the mitral valve attachment points and apex (Fig 7.7) by 
using 2D block matching with similar match criteria, such as SAD, NCC and DSC39 (Fig. 
7.8). While the blockmatching itself proved quite robust, the simple feed-forward 
approach for tracking the points did not suffice: the mitral valve points were lost too 
easily, especially at phases in the cycle where the valve deforms significantly and moves 
fast, such as the rapid filling phase in early diastole. Improvements seemed certainly 
possible, e.g. by using 3D DP path tracking (see 3.2.3.3) but because the manual 
adjustment of the marker positions was only a minor issue, in practice this automated 
tracking was not used. 
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Figure 7.7.   Mitral valve  and  apex Figure 7.8.   Example of blockmatching for tracking of 
point motion derived from manually  mitral valve attachment point (from39). Left: first image 
indicated points (from39). with indicated mitral valve point and 21*21 mask for 
 matching. Middle: match criterion function values (SAD) 
 for search region in target image. Right: target image 
 with 90*90 search region and detected point (cross). 

7.2.7 Acoustic Quantification 
Around 1992, the Acoustic Quantification (AQ) approach was introduced on Hewlett-
Packard ultrasound machines (later Agilent, Philips Medical Systems). AQ was a real-
time border detection technique based on integrated backscatter processing of the RF 
data40; within a user-indicated region of interest, it could supply a continuous curve of the 
luminal area. It also allowed calculations of Fractional Area Change, LV volume etc. It 
was initially received with great enthusiasm, but it turned out to be quite susceptible to 
image artifacts like dropout and clutter, and very dependent on operator-controlled gain 
settings41. Because it was based on low-level RF signal processing to distinguish blood 
from tissue, the technique could only be applied in real time and could not easily be 
combined with geometrical model based approaches. We showed that combining the 
border output of AQ retrospectively with our DP-based approaches was possible and 
could overcome some of the problems of AQ42,43 (Fig. 7.9). 

At this point, we also extended our developments towards right ventricular (RV) 
analysis. We investigated the use of AQ and manual analysis of different cross sections 
for RV volume estimation, comparing it to MRI. This work is further described in section 
7.3.4. 

A wall motion analysis approach (named Color Kinesis) was derived from AQ. It 
displays the trajectory of the AQ blood-tissue border within a user-indicated region in 
consecutive frames as a set of multicolored bands, which visualizes the contraction pattern 
and allows quantitative postprocessing. It initially received considerable attention in 
literature for quantification of wall motion abnormalities44 but has not found a wide 
application, mainly because it suffers from the same limitations as AQ. 

The advent of AQ by no means fulfilled the need for good automated border detection; 
it simply was not reliable enough. Moreover, it partly spoiled the case for other ABD 
methods. Outsiders got the impression that ABD was solved and simply for sale; insiders, 
who really started to use the AQ technique, found out that it did not give the answers they 
expected and often turned away from ABD approaches altogether. 
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Figure 7.9.   Example of DP detection on four consecutive images of RV with AQ contours (from42). 

7.2.8 Minimum Cost Contour Tracking 
At the time of the early pattern matching approaches described in 7.2.5, we still 
concentrated on short-axis detections and the need for this pattern matching technique was 
not yet strong. But for major-axis images, the limitations of edge-based detection became 
apparent, and we postulated that a method based on a combination of pattern matching 
and better dynamic modeling of the object under investigation should offer better quality 
of border tracking. This permitted a solution for the limitations of the edge-based 
detection techniques. This combination of ideas formed the basis for the invention in 1997 
of the Minimum Cost Contour Tracking (MCCT) approach35,45-48, the kernel technique in 
the Echo-CMS semiautomatic analyses. MCCT employs full-cycle geometrical shape 
models, as well as full-cycle regional edge templates for detection of borders over long, 
multi-cycle sequences of images. These shape and edge models are derived completely 
from user-defined borders in a minimal number of images (generally 2).  

This technique and its evaluation are described in detail in chapter 3.2.5 and 3.3. It was 
implemented in the Echo-CMS analysis system described in 7.2.9, which was 
commercialized and used in a number of studies as described below in 7.3.5, 7.3.7 and 
7.3.8. 

The MCCT approach, in turn, was later extended into the 3D/4D echocardiographic 
analysis techniques described in 7.2.12. 

7.2.9 Echocardiographic wall motion analysis system: 
Echo-CMS 

The STW project LGN92.1706, as said, aimed at realizing a complete system for 
echocardiographic wall motion analysis. This was indeed accomplished in the form of the 
Echocardiographic Analysis System (EAS). This system was further developed into a 
commercial product: the Echo-CMS system, which was commercialized by Medis 
medical imaging systems bv, Leiden, the Netherlands. Medis also financed the final 
product development. Over the years, over 20 systems were distributed to customers or 
scientific partners. The Echo-CMS system consisted of a high-end PC-based workstation 
with image acquisition hardware, running Windows and the Echo-CMS analysis software 
(see Fig. 2.1, ch. 2). The system has been designed for practical use, with the main intent 
of quantifying endocardial wall motion and lumen volume over sequences of images 
(frame-to-frame). It included image sequence digitization, import of different digital 
image file formats, loop review and editing, contour detection, correction and redetection, 
contour analysis and calculation of various clinically relevant parameters, and reporting. 
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The system applies different semiautomatic contour detection strategies, which require 
various amounts of user interaction. We created a system that assists the cardiologist in 
tracing the borders he selects. In most systems up to then, the user could only 
automatically detect strong edges. If another position was needed, the only option was to 
trace or correct manually. We also implemented an effective iterative correction facility, 
in which an optimal contour set could be achieved with a minimal number of corrections. 

Examples of detected contours and typical results are shown in chapter 3 (Fig. 3.2 and 
3.7). These techniques and their evaluation are described in ch. 2 and 3 of this thesis. 
Some of the results are described in 7.3.5, 7.3.7 and 7.3.8. 
 
The main evaluation and part of the system’s development was performed in close 
cooperation with Francisca Nijland MD and Otto Kamp MD PhD from the department of 
Cardiology, VUMC, Amsterdam. The Echo-CMS system was used in a large study on 
myocardial viability after acute myocardial infarction. In this study, myocardial viability 
was assessed via visual scoring (13-segment model, 4-point scale) by two observers with 
low-dose dobutamine (LDD) echocardiography in 107 patients at 3±1 days after acute 
myocardial infarction. Viability of infarcted segments was defined as segmental 
improvement of wall thickening of ≥1 point between rest and LDD. Cross-sectional 
echocardiography was repeated after 3 months. Left ventricular volumes and ejection 
fraction were determined with Echo-CMS using biplane Simpson’s rule on apical four-
chamber and two-chamber sequences. It was shown that myocardial viability in one or 
more segments predicted an increase in ejection fraction at 3 months. Viability in ≥2 
segments predicted ≥5% increase in EF with a sensitivity of 81% and a specificity of 65%. 
In a multivariate regression analysis over a number of clinical and echocardiographic 
parameters, viability was the strongest independent predictor of EF improvement, before 
non-Q wave infarction and anterior infarction49. 

In the same patient population, the relation between myocardial viability and left 
ventricular dilatation (remodeling) after 3 months was assessed50-52. It was shown that LV 
dilatation occurred only in patients with large infarcts without viability. In patients with 
viability (n=60), end diastolic volume index (EDVI) remained stable, while end systolic 
volume index (ESVI) decreased significantly; in patients without viability, both EDVI and 
ESVI increased significantly. 

The cooperation with Nijland and Kamp regarding this large study supplied a solid, 
real-world test bed for our improvements on automated border tracking that have 
significantly boosted the robustness of the MCCT approach. 

Furthermore, the large number of patients and variety of images analyzed in this study 
with great care (full-cycle apical four-chamber and two-chamber at rest, low-dose 
dobutamine and 3-month follow-up) formed a solid basis for the development of the 
Active Appearance Model and wall motion classification methodologies described below 
under 7.2.11 and 7.2.12. Also, the inter- and intra-observer variability of manual drawing 
and of the automated detections were determined on a subset of 20 randomly chosen 
patients from this study (see chapter 3.3.3 of this thesis). 
 
Stefanie Fry MD, Patrick Hunziker MD and Michael Picard MD PhD (Massachusetts 
General Hospital, Boston MA) used the Echo-CMS system in a study on the relation 
between wall motion abnormalities and LV volume change. In 73 patients referred for 
coronary artery disease, visual wall motion scoring was performed to separate those with 
resting wall motion abnormalities (WMA(+), n=24) from normals (WMA(-), n=49). 
Standard apical 2- and 4-chamber views were acquired and analyzed with Echo-CMS. 
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Figure 7.10.   Decrease of log LV volume in systole is significantly different between WMA and non-
WMA patients (from53). 
 
Full-cycle Simpson’s rule LV volumes were calculated from the semiautomatically 
detected contours. It was found that the rate of LV emptying in systole was an important 
and easy to determine parameter. This slope S of the volume decrease was calculated as 
S=∆log(Volume)/∆t. It was found to be statistically different between the WMA(+) and 
WMA(-) groups for both four-chamber and two-chamber volumes (Fig. 7.10).  

Four-chamber:  S(-) = 1.32 ± 0.59   vs.   S(+) = 0.87 ± 0.38,   p<0.001 
Two-chamber:  S(-) = 1.27 ± 0.58   vs.   S(+) = 0.88 ± 0.40,   p<0.001.  

This work was presented at ACC 199853 and a full paper was written, which unfortunately 
remained unpublished54. Nevertheless, this was a clear indication that automatically 
determined full-cycle contours could characterize wall motion abnormality, at least in a 
global sense. 
 
Patrick Hunziker MD PhD, Lucas Schöb MD et al. (Department of Cardiology, 
Kantonsspital Basel, Switzerland) performed several studies using Echo-CMS.  

In a study in 300 segment stages in dobutamine stress echocardiography, it was shown 
that systolic wall velocity measured by Echo-CMS was significantly lower in ischemic 
segments than for non-ischemic segments. Segments perfused by stenosed coronary 
arteries (>70%) were compared to normal control segments. In the normal segments, peak 
velocities of 14±6cm/s were reached early at 20-40µg/kg/min dobutamine. In the ischemic 
segments, peak velocities were reached at peak dobutamine and were limited to 5.9 ± 3.7 
cm/s (p<0.0001 compared to normal segments). In addition, a biphasic response was often 
seen in the ischemic segments at peak stress. The best cutoff value for discrimination 
between normal and ischemic segments was 10.5cm/s at peak dobutamine. It was 
concluded that the Echo-CMS ABD allowed diagnosis of myocardial ischemia by 
objective, quantitative parameters55-57. 

In a further study on 105 consecutive patients undergoing Dobutamine-Atropine stress 
echocardiography, the feasibility of quantitative stress echo analysis with Echo-CMS was 
investigated.  Patients were divided in  coronary artery disease  (CAD),  normals (NL) and 
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Figure 7.11.   A. Segmental systolic velocities for segments perfused by stenosed and non-stenosed 
coronaries in dobutamine echo (from56,57). B. Discrimination between normals and patients at peak 
stress by lowest segmental peak velocity (from58).  
 
LV hypertrophy and conduction defects (LVH/BBB), based on coronary angiography, 
echo and Bayesian analysis. Coronaries were classified as stenosed (>50%) or open. 

At baseline, peak systolic endocardial velocity was 3.3±1.6cm/s. At peak stress, 
average peak velocities were 12±3.6 cm/s for NL, 7.0±3.1cm/s for CAD, and 7.6±2.7cm/s 
in LVH/BBB (both significantly different from NL, p<0.001). 

By using the lowest peak velocity in any perfused territory at peak stress for diagnosis 
of ischemia, patients with CAD could be discriminated from normals (Fig. 7.11) with 
good sensitivity (93%) and specificity (77%). It was concluded that quantitative analysis 
of stress echo was feasible with Echo-CMS and automated diagnosis of CAD was 
possible with good sensitivity and specificity. This reduces the reader dependency and has 
the potential to improve diagnostic accuracy58,59. 

Although we developed our methods for quantification of wall motion, aiming for 
detection of ischemia or infarct, also other applications emerged that we had not foreseen 
initially: the evaluation of resynchronization therapy (further described in section 7.3.7) 
and the combination of transversal wall motion measured by Echo-CMS with longitudinal 
motion measured with Tissue Doppler (further described in section 7.3.8). 

7.2.10 Quantitative analysis of stress echocardiography 
Above, it was shown that the MCCT methods were very useful for quantification of 
endocardial wall motion, and that this formed a very good basis for application in stress 
echocardiography.  

Stress echo is an important technique for diagnosis of regional myocardial dysfunction 
with a good noninvasive prediction of Coronary Artery Disease (CAD)60,61. The diagnosis 
of myocardial ischemia by stress echocardiography is based on the detection of new or 
worsening wall motion abnormalities during stress. Stress echo is applied worldwide on a 
large scale and has many additional prognostic applications such as predicting long-term 
cardiac events, success of revascularization by determining tissue viability, etc.  

In stress echo, several standard echocardiographic cross sections are recorded while 
the patient is in rest and during different levels of cardiac exercise (stress), mostly induced 
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Figure 7.12.   (see color suppl.) Stress echocardiography. Top: quad screen showing four standard 
cross sections. Bottom: bull’s eye display showing 13 segments of the cardiac wall for visual 
scoring (from Stress-CMS prototype, Medis medical imaging systems bv) 
 
by physical exercise or by pharmacological means, such as dobutamine (which increases 
myocardial oxygen demand) or dipyridamole or adenosine (which induce coronary artery 
vasodilation). By examining the contractility of the different segments of the left 
ventricular wall both in rest and stress stages (Fig. 7.12), healthy and diseased myocardial 
segments can be distinguished and CAD can be predicted with good sensitivity and 
specificity (both around 80%; good overviews of sensitivities and specificities are given 
in62). However, stress echo relies on visual image interpretation and therefore suffers 
considerably from inter- and intra-observer errors, as is widely acknowledged63. Also, the 
visual interpretation is difficult and requires a long training and considerable expertise.  

For these reasons, there is a great need for objective, quantitative analysis of stress 
echo, and automated border detection techniques could provide the desired objectivity64. 
Stress echo formed our main focus of attention for the following projects.  
 
The first project, “Objective and reproducible quantitative assessment of left ventricular 
function from stress echocardiograms” (STW LGN4349, 1997-2001) aimed at a 
semiautomatic stress echo analysis with a combination of classical, DP-based techniques, 
and novel approaches. 

The MCCT approach had proven its value for wall motion analysis; however, it 
required the manual drawing of two contours per sequence, which made it impractical for 
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stress echo, where multiple sequences over multiple stages of stress need to be analyzed in 
coherence. There was a definite need for further automation, better modeling of shapes 
and edge patterns covering the range of inter-patient variations, etc. Similar limitations 
were felt in other application areas, such as MRI. Classical techniques driven by 
geometric models were encountering their limits. Therefore, we considered the use of 
statistical models to capture inter-patient and temporal variability of shape and edge 
characteristics. 

In a concerted action between several research sections in our lab and the group of 
Milan Sonka PhD of the Department of Electrical and Computer Engineering of the 
University of Iowa, Iowa City, we considered several of such techniques and decided to 
focus our attention on a recently emerged high-potential technique: Active Appearance 
Models (AAM). Our work on Active Appearance Models turned out to be very successful 
and is further described under 7.2.11 and chapters 4, 5 and 6 of this thesis. 

Apart from these AAM developments (general extensions and specific adaptations for 
ultrasound such as nonlinear intensity normalization, see 7.2.11), during this project 
research efforts were directed at border detection in contrast images (see 7.3.5), 
probabilistic mincost (see 3.2.3.5), specific MCCT optimizations (see 3.2.4.3), and 
cooperations with and support of the different clinical sites with whom we cooperated (see 
3.3, 7.2.9, 7.3.7, 7.3.8).  
 
The good results of the STW LGN4349 project inspired us to expand this work, especially 
regarding the AAM results, in a second stress echo project in cooperation with Medis 
medical imaging systems bv: “Automated quantitative analysis of echo images of the 
heart in rest and under stress”, sponsored by the Dutch Ministry of Economic Affairs 
under the BTS program (project BTS00123, 2001-2004). This project was dedicated to 
fully automated stress echo analysis, based on AAM. Especially the research on 3D 
AAMs and on automated classification of wall motion was performed in this project, as 
described below under 7.3.11.3 and 7.3.12. Finally, a coupled-view AAM (Fig. 7.13) for 
simultaneous detection in the different stress echo cross sections was realized in 
cooperation with Leo Baur MD PhD, Atrium Hospital Heerlen. This bi-phase AAM (for 
ED and ES images) was combined with MCCT detection to achieve full-cycle border 
detection. Unfortunately, evaluation of this method remained incomplete at the end of the 
project. Furthermore, this project aimed at realizing a complete automated analysis system 
for stress echo, and considerable effort was spent on more earthly matters such as user 
interface, database and system design, DICOM compatibility for a number of vendors and 
integration in a general measurement system for echocardiography, all in close 
cooperation with Medis medical imaging systems bv. 

7.2.11 Active Appearance Models 
As described above, we started investigating Active Appearance Models in close 
cooperation with Steven C. Mitchell MSc and Milan Sonka PhD, of the department of 
Electrical and Computer Engineering, University of Iowa, Iowa City. Most of the core 
research was performed within exchange programs such as the honorary Boerhaave 
professorate of Milan Sonka in Leiden in the spring of 1999, and summer periods of Steve 
Mitchell at the LKEB in 2000 and 2001. During these months, four to six people were 
devoted completely to the AAM research. During the rest of the year, the AAM work 
continued both in Leiden and Iowa. Research in Leiden was performed in parallel for 
echocardiography and MRI, the latter in cooperation with Rob J. van der Geest MSc (MRI 
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Figure 7.13   (see color suppl.) Coupled-view AAM for stress echo. 
A. Coupled-view AAM in progress on 4 views simultaneously; ED and ES frames are detected 

in parallel.  
B. Result of AAM on ED frames.  
C. Result on ES frames.  
D. Result of DP detection on intermediate frames based on ED/ES AAM results. 
 
section) and Boudewijn P.F. Lelieveldt PhD (knowledge-guided image processing 
section). Conferences and visits were used to discuss and monitor progress, and for 
fruitful discussions with major researchers in this field, such as Timothy F. Cootes PhD 
and Mikkel B. Stegmann MSc. The theory and workings of Active Appearance Models 
are described in chapter 4, 5 and 6 of this thesis.  

Besides the primary work described below, this resulted in considerable spin-off, not 
only in Leiden (e.g.65-68) and Iowa69,70 , but also at other sites71,72. 

7.2.11.1 Single-frame AAM 
The feasibility of an AAM approach on ultrasound and MRI images was investigated with 
a basic implementation of AAMs on single image frames, closely following the original 
approach  described by Cootes et al.73  It was found that AAMs  were very well capable of 
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Figure 7.14.   (see color suppl.) Single-frame AAM matching (from77).  
A. Original four-chamber ED image, with manual contour in green. 
B. Appearance Model initial state. The red dots indicate the model’s contour estimate. 
C. End of pose optimization: rotation, scale and translation of AAM are optimized without 

modifying appearance. 
D. Start of appearance optimization  
E. End of appearance optimization. Note that the image patch has almost ‘dissolved’ in the 

background. 
F. Original image with both borders shown. 
 
performing fully automated segmentation both in short-axis MRI images74 and in apical 
four-chamber end-diastolic ultrasound images47,75-77 (Fig. 7.14).  

For the apical 4-chamber ultrasound images, an AAM model was generated from ED 
images with manually drawn contours from117 infarct patients. Fully automated matching 
of this model was performed on the images from the training set (TRN) and on images of 
12 patients that were not included in the training set (TST). The resulting borders were 
compared to manual contours, both in terms of average point distance (APD, in mm.) and 
monoplane Simpson’s rule volume (VOL, in ml.). The automatically found volumes 
correlated well with manual volumes both for the TRN and TST set (y=0.99x, r=0.86 for 
TRN, y=0.99x, r=0.80 for TST). APD was 2.8±1.6mm for TRN and 3.2±1.5mm for TST. 
No significant differences were found between TRN and TST set results and errors were 
comparable to inter- and intra-observer variability of the manually drawn contours. 

It was also concluded that despite the good global segmentation, locally the contours 
could still deviate from the best position. To overcome this, a multistage hybrid 
AAM/ASM approach was developed that significantly improved segmentation in MRI 
images78. In this approach, an AAM was used to segment an image with medium 
precision. After convergence of the AAM, the resulting shape is used in an Active Shape 
Model (ASM) that will result in a locally more precise delineation of the border. The 
shape found after ASM convergence is projected into the shape space of the AAM, 
resulting in new AAM shape coefficients. Starting from this new shape estimate, a new 
AAM convergence is performed. In many cases, a better approximation of the true border 
is achieved. The process can be repeated and can also be performed with other more 
localized detections, such as DP. With an AAM/DP hybrid, similar results were found. 
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7.2.11.2 Active Appearance Motion Models 
In the single-frame AAM approach, an AAM model was trained for single images from a 
specific phase of the cardiac cycle. For images of known phase (specifically ED and ES) 
these models performed well. AAM models trained from images of any cardiac phase 
were found to perform slightly worse, likely because phase-based variability is mixed 
with inter-patient variability, so that the model becomes less specific. Also, any coherence 
of typical phase-related changes is lost in the general model. It was postulated that a 
model that is aware of these typical phase-related changes and performs a simultaneous 
match for a number of cardiac phases, could outperform a mixed-phase single-frame 
model or a set of single-phase models. 

This led to the invention of AAMs for time sequences of images, the Active 
Appearance Motion Models (AAMM)79-82. These were extensively explored both for 
ultrasound79,83-86 and MRI80,87-89. The AAMM research for ultrasound is described 
extensively in Chapter 4 of this thesis. We proved86 that the modeling of motion by 
AAMM indeed outperforms single-phase AAMs. For ultrasound, another important 
innovation was achieved: a nonlinear gray value normalization, which allows a quasi-
Gaussian modeling of ultrasound image appearance. It was shown86 that this nonlinear 
normalization significantly improves the detection results. This is due to the fact that the 
pixel intensity distributions of ultrasound images violate the assumption of Gaussian data 
distributions, required for valid PCA analysis. The proposed nonlinear normalization 
corrects this. 

7.2.11.3 Three-dimensional Active Appearance Model 
We further extended our research towards a truly three-dimensional Active Appearance 
Model (3D AAM). Although the principle of point distribution modeling is independent 
of the dimensionality, a complete implementation of a 3D AAM requires several special 
efforts, such as 3D point correspondence and alignment, 3D voxel warping and 3D pose 
handling. A functional 3D AAM had not yet been reported in literature. We succeeded in 
realizing the first 3D AAM90-94, both for MRI and ultrasound. This is described in Chapter 
5 of this thesis. For ultrasound, we performed our research on pseudo-3D data, since at 
that point we did not possess an adequate set of expert-segmented 3D ultrasound data. 
Therefore, we constructed voxel sets by stacking time sequences of four-chamber 
ultrasound images, in which the time dimension was converted to the third spatial 
dimension in a consistent manner. All further processing was performed in a truly three-
dimensional fashion, both the modeling, regression training and matching. In comparison 
to the AAMM approach, there is an extra degree of freedom; apart from deformation in 
the spatial dimensions, the model can now also deform, translate and rotate in the 
temporal dimension. In practical terms, the 3D AAM can locate end-diastolic and end-
systolic phase automatically within a sequence, while an AAMM can only be applied to a 
sequence with known cardiac phase. 

7.2.12 Wall motion classification 
In our Active Appearance Motion Model research, we encountered typical eigenvariations 
of shape motion that seemed closely related to pathology (see Fig. 6.3 in chapter 6 of this 
thesis). Therefore, we investigated whether specific combinations of modal shape 
coefficients were related to certain wall motion abnormalities. 
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This proved to be the case, as we described in several publications95-101. We 
demonstrated that principal component analysis of shape motion provides tools for 
automated classification of wall motion abnormality. Wall motion abnormality could be 
predicted from specific combinations of modal shape coefficients, both for specific 
segments and in a global fashion. This is further described in chapter 6 of this thesis. 

Similar work was performed for MRI98,102. In turn, it formed the basis for the 
application of Independent Component Analysis (ICA) as an alternative to PCA. After 
initial work by Steve Mitchell, this idea was investigated by Mehmet Üzümcü MSc103 and 
later by Avan Suinesiaputra MSc104 at our lab, in cooperation with Alejandro Frangi PhD, 
University of Zaragoza. ICA allows to divide the motion pattern distributions into 
independent components, e.g. components that are related to specific wall segments. In 
principle, this allows better classification possibilities, but this is subject of further 
research.  

7.2.13 3D / 4D echo LV quantification 
From an early stage, it was clear that our approaches for automated detection on time 
sequences of 2D images could be extended to 3D and 4D detection, and that 3D and 4D 
analysis were in great need of automated tools as well. 

Work on 3D echocardiography started in1994 in the form of feasibility studies with 
freehand 3D analysis in cooperation with Donald King MD PhD, Andrew Keller MD PhD 
and Aasha Gopal MD PhD (Columbia University, New York) using the Freescan system 
(K3 systems)105. Due to priorities on 2D analyses, lack of funding and technical 
incompatibilities, this work was not followed up. In 1998 - 2000, we performed some 
preliminary studies with Patrick Hunziker MD PhD and adapted the Echo-CMS system to 
accommodate volume analysis and VRML visualization of omniplane TEE studies.  

Later, a full EU Eureka grant proposal was written (in cooperation with TomTec 
imaging systems GmbH, Unterschleissheim, Germany) to extend our pattern matching 
approach to 3D images. Unfortunately, no funding was acquired for this project, so it was 
frozen and the ideas were put into the drawer. 

In 2003, a project on 3D/4D LV segmentation was started, funded by IOP-BV 
(Innovative research on image processing, Senter, Dutch Ministry of Economic Affairs). 
This project (IBV02003, “Model-based segmentation of the moving left ventricle in 4-
dimensional cardiac ultrasound images acquired with the Fast Rotating Ultrasound 
Transducer”) was performed in cooperation with the laboratory for Experimental 
Echocardiography of the Thoraxcenter, Erasmus MC in Rotterdam, that was developing a 
novel transducer for fast 3D image acquisition, the Fast Rotating Ultrasound (FRU) 
transducer. For the atypical images that are generated by the FRU, a specialized left 
ventricular border detection needed to be developed. In the first part of this project, a 
semiautomatic analysis method was devised and evaluated106-112 (Fig. 7.15). The method, 
developed by Marijn van Stralen MSc under guidance of author, built primarily on the 
MCCT approach for 2D+T time sequences. Many ideas that were earlier applied in 2D 
could now be extended to 3D. The system was evaluated on 4D echocardiograms of 10 
patients acquired with the FRU transducer and compared to full-cycle LV volumes from 
MRI sets of the same patients, analyzed manually with the MASS package. Good 
correlations were found against MRI volumes (r=0.94, y=0.72x + 30.3, difference of 9.6 ± 
17.4 ml (Av ± SD)) and a low inter-observer variability for US (r=0.94, y=1.11x - 16.8, 
difference of 1.4 ± 14.2 ml). On average only 2.8 corrections per patient were needed (in a 
total of 160 images). 
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Figure 7.15.   Four-dimensional semiautomatic segmentation result of FRU images (from112). 
Top row: reconstructed volume casts from 8 cardiac phases. Bottom row: for each phase, image 
taken from a different angle, with detected contour. Only the leftmost contour was manually defined. 
 
The realized semiautomatic analysis, which is a successful tool in itself, will also be 
employed to generate sufficient suitable training data for a fully automated 3D AAM-
based approach that is currently under development in the second part of the project. 

Recently (April 2005) we have started another project on 4D echocardiographic 
analysis: “Automated Analysis for Three-Dimensional Stress Echocardiography”, STW 
project LGT.6666. 

This project aims at automated analysis techniques to support 3D stress 
echocardiography from different acquisition systems (FRU and matrix transducers for 
real-time 3D ultrasound, like the Philips Sonos 7500 and iE33 systems). Apart from 3D 
AAM research, we are investigating 3D registration, 4D voxel interpolation113, border 
refinement approaches, 3D wall motion analysis and motion abnormality classification. 

7.3   Overview of secondary developments 
 and spin-offs 

This section reports on several sidesteps from the main research line that have spawned 
significant results. 

7.3.1 Intravascular ultrasound 
One of the earliest spin-offs of the research on automated border detection in 
echocardiographic images was the application to the newly developed field of 
intravascular ultrasound (IVUS). While our group was working on the analysis of 
echocardiographic images, our colleagues next door at the Laboratory for Clinical and 
Experimental Echocardiography of Nicolaas Bom PhD were developing the first 
intravascular ultrasound devices: miniature ultrasound transducers mounted on a catheter 
tip. It was shown that the DP technique we had devised for short-axis echo images was 
also very applicable for IVUS (Fig. 7.16). Due to the high tissue-to-blood contrast ratio in 
these in-vitro images, detection was very successful. After a number of preliminary 
experiments with Nico de Jong MSc, Elma Gussenhoven MD PhD and Nicolaas Bom 
PhD22-25, a separate line of research was started with Wenguang Li MSc as the primary 
investigator, in which the author functioned as an advisor. Li modified and extended the 
techniques we earlier developed for  IVUS and implemented some ideas, suggested by the 
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Figure 7.16.   Early IVUS contour detection results (from23). Left: in-vitro IVUS image; Right: with 
automatically detected contour. 
 
author, on template matching for detection of the dark ring of the vessel media. Results 
were published in114-116 as well as Li’s PhD thesis117,118. Eventually, the developed 
methods were implemented in the EchoScan IVUS quantitative analysis software 
commercialized by TomTec Imaging Systems GmbH, Unterschleissheim, Germany. At 
our lab, work on IVUS analysis was continued also, first by Eric Maurincomme MSc119,120 
who worked on snakes (active contour) methods for intravascular ultrasound 
segmentation. After that, we followed up our DP-based work on IVUS and acquired a 
STW grant (LGN44.3419, “Objective and reproducible assessment of coronary vessel 
morphology with automated contour detection techniques in IVUS imaging”). This project 
was carried out by J. Dijkstra PhD and G. Koning MSc and formed the basis for the 
development of the QCU-CMS package121 for automated analysis of IVUS, which was 
commercialized by Medis medical imaging systems bv. 

7.3.2 Real-time contour detection hardware 
In an early stage of research, it was recognized that the methods developed might be 
useful in a real-time setting, e.g. for combination with an ultrasound machine or as a real-
time patient monitoring device. At the time, the most obvious bottleneck for realizing this 
was the slow access to the image data (grabbed from the video output of an ultrasound 
machine). The image resided in the frame grabber’s memory, which the analysis program 
could only access via the PC’s AT-bus, which was notoriously slow. While algorithmic 
developments were still in progress, it was decided to try and find a solution for this 
bottleneck, to allow real-time detection applications. This was first investigated as part of 
STW LGN92.1706 and later in a separate STW project (LGN00.2330 “Verdere 
ontwikkeling, implementatie, fabricage en evaluatie van een acceleratorkaart voor de 
realtime (25 beelden/s) contourdetectie van gemodelleerde structuren in gedigitaliseerde 
videobeelden”) in cooperation with the department of Computer Architecture of the 
faculty of Electrical Engineering, Delft University of Technology (A.J. van de Goor PhD, 
Andrey Kostov MSc, Sietze S. Schukking MSc, Rogier Wolff MSc). 
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C 
 
Figure 7.17.   Minimum Cost Contour Detector (MCCD) real-time contour detection hardware 
(from42,43).  
A. System diagram. 
B. MCCD block diagram. 
C. Realized MCCD PCB board. 
 

After a feasibility study in which different architectures and processors were 
compared122, a wire-wrap prototype board was developed, the Minimum Cost Contour 
Detector (MCCD). This AT-bus board was used in cooperation with a VFG frame grabber 
(Imaging Technologies, Bedford, MA) in a PC workstation (Fig. 7.17.A). The MCCD 
used dual Intel i960CA processors (Fig. 7.17.B) to realize the intended functionality. 
Images were continuously grabbed into one of two frame buffers of the VFG frame 
grabber; these images were transferred over the frame grabber’s VisionBus into the 
MCCD, where a dynamic programming contour detection (programmed in i960 assembly 
language) was performed. The detected contours were sent to the host PC via the AT-bus. 
While the next image was being grabbed, the detected contour was overlayed on the 
current image in the frame grabber’s buffer and displayed in real time. Also, real-time 
luminal area and regional area in 8 segments were calculated and displayed as graphs on 
the host PC’s screen. The whole detection process took less than 25 msec, which is more 
than fast enough for real-time performance (40msec/frame for PAL video). The MCCD 
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was finally realized as a PCB design in SMD technology (Fig. 7.17.C). This research was 
performed from 1991 to 1994 and was described in several papers20,42,43,123,124 and a 
number of reports122,125,126.  
Technically, the project was a success. However, further development into a routinely 
producible board was not attempted, because much effort was still needed and the main 
bottleneck had been solved by hardware progress - in the mean time, real-time image 
transfer into main PC memory and memory sizes beyond 1MB were no longer a serious 
technical problem. A more fundamental problem was found to be the real-time control and 
stability of the detection process. The stability of the detection over long runs of images 
proved a problem if image quality decreased temporarily or if the cross-sectional plane 
changed. Also, the edge-based detection was quite susceptible to artifacts, as already 
described in 7.2.2.2. Promising ideas to improve the detection or apply interactive steering 
were formulated43, but many ideas for improvement would be impossible within the 
limitations of the current real-time detection hardware. The costs and efforts of further 
hardware development prevented us from following up on this. Also, the intended use of 
the detection had shifted from intraoperative monitoring towards quantification of wall 
motion abnormalities, which did not require real-time processing. 

Therefore, with great pain, this development was eventually abandoned. We took two 
important lessons from this endeavor: (1) such hardware solutions should be developed 
extremely fast, not to be simply overtaken by technical progress; (2) developing hardware 
for algorithms that have not completely crystallized results in a deadly embrace: further 
algorithmic development is inhibited by the limitations of the hardware, and/or hardware 
designs must be constantly adjusted to changing demands of the algorithms. Both result in 
frustration and gross waste of resources. 

7.3.3 Arterial wall thickness 
Around 1990, it was found that the intima-media thickness of the arterial wall could give 
an indication of progress of atherosclerosis127. This arterial intima-media thickness (IMT) 
as measured by B-mode ultrasound in the brachial, femoral or carotid artery was shown to 
be of important diagnostic value for age-related diffuse atherosclerosis. This was 
investigated with Meindert N. Sosef MD, Alexandr Šrámek MD and F.R. Rosendaal MD 
PhD. We supported the ultrasonic measurements performed in this research by supplying 
and adapting software for manual measurements. Since the automated segmentation of 
such images was already developed in a far stage by other groups128,129, we did not further 
work on the automated analysis. Sosef130 measured carotid IMT in 121 healthy, relatively 
young (15-56) volunteers and assessed the association of IMT with the risk factor status of 
the subjects (e.g. age, sex, cholesterol, smoking etc.) and with plasma coagulation factor 
VII and fibrinogen plasma level. It was found that age, blood pressure and cholesterol 
were independent determinants of IMT, while factor VII and fibrinogen levels showed no 
association with IMT for this population. Šrámek131 investigated the short- and long-term 
intra-observer reproducibility of IMT measurements at different sites in carotid and 
femoral arteries for 15 healthy individuals and 18 patients suffering from CAD. 
Reproducibility was best in the common carotid artery, which therefore offers the best 
possibilities for IMT measurements. It was shown that IMT measurements in carotid and 
femoral arteries are a good indicator for coronary and general atherosclerosis. The 
publications with Rosendaal, Sosef and Šrámek130,131 were well cited and contributed to 
the popularity of the IMT measurement. 
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7.3.4 Right ventricular function 
While our main line of research concentrated on left ventricular function, we also worked 
on right ventricular function, mainly in the proper modeling of the right ventricular (RV) 
volume. This work was performed in cooperation with W.A. Helbing MD and C. 
Maliepaard MSc and funded by the Gisela Thier Foundation, Leiden. 

Some initial work on automated detection of right ventricular wall (based on a 
combination of Acoustic Quantification® (AQ) and dynamic programming) was 
performed and published in42. Consecutively, two larger studies were executed. 

In the first study, comparisons were made between RV volumes in MRI and 2D echo 
for 16 children with congenital disorders and 17 age-matched healthy children. Manual 
outlining of the right ventricle in short-axis gradient-echo MRI slices (with the MASS 
system developed at our lab) was used to determine dimensionally accurate RV ED and 
ES volumes and ejection fraction (EF). From transthoracic 2D echocardiograms from 3 
different views (apical four-chamber, parasternal short-axis, subcostal RV outflow), 
manual endocardial contours were derived using an early version of the Echo-CMS 
system. Echocardiographic RV volumes were calculated using 5 different monoplane and 
biplane area-length and multi-slice formulas. All echocardiographic RV volumes and EFs 
were correlated to the MR-determined standard. Significant correlations were found, but 
all echocardiographic methods underestimated ED and ES MRI volumes. None of the 
geometrical models for the right ventricle described in literature could satisfyingly 
calculate the RV volume from a limited number of ultrasound cross-sectional images. The 
systematic difference was larger for ED than for ES. The best predictor for MRI volume 
was the biplane pyramidal method; however, for EF a simple monoplane area-length 
ellipsoid model was best, so the theoretical advantage of multislice methods was not 
confirmed for the complex RV shapes132,133. 

In a second study, AQ-determined borders of the right ventricle were compared to 
manually traced borders. Automated segmentation of right ventricle was attempted with a 
Hewlett Packard HP-SONOS 2500 ultrasound system featuring AQ®. AQ determined RV 
luminal areas were compared to MRI areas, to manually drawn echocardiographic borders 
using an early version of the Echo-CMS system, and to ‘corrected AQ’ borders, in which 
non-RV cavities within the ROI (atrium, LV etc) were eliminated manually. Best 
correlation was found between MRI and conventional echo, and it was concluded that 
manual corrections of online AQ were required for adequate assessment of RV function. 
No significant differences between manual areas and corrected AQ areas were found134-

136. 

7.3.5 Contrast echo 
In the early days of contrast echocardiography, it was assumed that the use of contrast 
would make automated border detection a trivial task, and experiments in this direction 
were performed at an early stage with Nico de Jong MSc and Folkert J. ten Cate MD. 
Detection was indeed easy when the contrast filled the cavity completely. Unfortunately, 
this was seldomly the case, due to uneven filling of the lumen (swirling), destruction of 
contrast bubbles by the ultrasound acoustic pressure, shadowing behind high contrast 
concentrations and other artifacts. Luckily, newer second-generation contrast agents such 
as Levovist, Optison and SonoVue are more persistent and provide good lumen 
opacification. Also, improvements in the detection technique, employing pattern matching 
rather than  edge detection,  provided much  better results  in  tracking  of the  endocardial 



Chapter 7 

180 

 
 
Figure 7.18.   Automated border detection on Levovist contrast images (from137). Case example of 
contrast enhancement of endocardial border visualization and automated border detection with 
Echo-CMS. End-diastolic stop frame images before (A) and after (C) contrast administration, and 
the automatically detected endocardial contours (B and D). 
 
borders. This has been shown in a pilot study on Levovist images (Fig. 7.18) together with 
Otto Kamp MD PhD and Gertjan Tj. Sieswerda MD137.  

Recently the Echo-CMS system has been applied for analysis of Optison contrast 
images of 50 patients, in a large-scale study on the effect of hyperbaric aqueous oxygen 
on LV remodeling by Hazem Warda MD and Jeroen J. Bax MD PhD138-142, as part of the 
AMIHOT trial. Biplane LV volumes were determined at baseline and 1-month follow-up 
in acute myocardial infarction patients treated with hyperbaric oxygen (n=20), and a 
control group (n=22). It was shown that hyperbaric oxygen prevented LV remodeling and 
improved LV ejection fraction at 1-month follow-up.  
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7.3.6 Knowledge-based image analysis 
From the early days of ultrasound, it was clear that many problems in echocardiographic 
image processing would only be solvable through the use of high-level knowledge, either 
in the form of elaborate geometric models, statistical modeling of normal and pathological 
variation and/or rule-based expert knowledge. This applies to most medical image 
modalities, but particularly strong to ultrasound. Therefore, we put considerable effort into 
this field, firstly by exploring its possibilities (Master’s thesis of Christian Nyqvist and 
Vincent Buller143) and the development of a blackboard system for medical image 
analysis (by Pieter MJ van der Zwet MSc); after that, we focused our attention on agent-
based image processing and acquired several grants for research projects, executed 
primarily by Ernst G.P. Bovenkamp PhD and supervised by Jouke Dijkstra PhD and 
author. Main application was IVUS, but methodology was general and aiming at other 
modalities such as cardiac echo as well. 
 
In the initial project, IOP-BV IBV97008, “Combined contour detection and tissue 
classification in sequences of ultrasound images based on model and knowledge guided 
techniques”, the basic idea of an agent-based analysis approach was investigated and 
implemented. In our multi-agent system, ‘intelligent software agents’ are independent 
entities that employ high-level rule-based reasoning to locate and segment individual 
structures. Each agent has its own detection specialty, e.g. we employed specific agents 
for lumen and vessel contour, plaque, shadowing, side branches etc.). These agents can 
communicate their findings to other agents and collaborate to resolve conflicts, with the 
mutual goal of coming to a consistent overall interpretation of image runs (Fig. 7.19). We 
showed that application of such a multi-agent system for IVUS image analysis was 
successful; in a comparison to the detection results of separate structures by single agents, 
the multi-agent system reduced the number of erroneous detections considerably. This 
was qualitatively estimated in a study of 94 images of 3 patients144,145. In a larger study on 
1067 images from 7 patients, vessel and lumen contours were determined fully 
automatically. A quantitative comparison to a set of expert-corrected semiautomatically 
detected contours was performed. A good correlation between agents and observer was 
found, with y=0.80x+1.32mm2, r=0.84 for the lumen cross-sectional areas (CSA) and 
y=1.01x-0.36mm2, r=0.92 for the vessel CSA. Paired differences were –0.14±1.01mm2 for 
lumen CSA and 0.13±2.16 mm2 for vessel CSA, which compares very well to inter-
observer variability as reported in the literature. In practice, the system turned out to be 
effective, easily expandable and modifiable146-148. 
 
In a follow-up project, IOP-BV IBV00304, “Optimal integration and utilization of the 
user-interaction as knowledge source in model and knowledge guided segmentation of 
medical images” the effect of high-level user interaction (via a special agent) was 
investigated. In the first project we had found that the agent reasoning and inter-agent 
conflict resolution was sometimes hampered by sensitivity to some parameter settings or 
low levels of certainty on certain situations. We assumed that those complications could 
be effectively solved by a limited high-level user interaction. An agent was added to the 
system that communicates with the user and acts as his representative. The agents can 
present the user with their most likely interpretation of the situation and ask for 
confirmation. On the other hand, the user can actively correct, supplement or confirm the 
results of image-processing agents. The high-level interaction replaces traditional contour 
redrawing or  indicating  support  points.  When  tested in the same  study of 1067 images 
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Figure 7.19.   (see color suppl.) Multi-agent segmentation of IVUS images (from147).  
A. Vessel agent proposes vessel contour.  
B. Lumen and shadow agents propose objects. 
C. Conflicts are resolved, and sidebranch agent reacts. 
D. Resulting segmentation after conflict resolution with sidebranch, calcified plaque, lumen 

and vessel objects. 
 
mentioned above, it was shown that the results improved dramatically with only such 
high-level corrections. Much better correlations between agents and observer were found, 
with y=0.97x-0.01mm2, r=0.93 for the lumen cross-sectional areas (CSA) and 
y=1.01x+0.25mm2, r=0.99 for the vessel CSA. Paired differences were 0.20±0.69mm2 for 
lumen CSA and -0.37±0.55 mm2 for vessel CSA149.  

Recently, this research has broadened into two larger projects: “SAVAGE: Self-
Adaptation of Vision Agents through Genetic Evolution” (NWO EW open competition, 
Computer science, 2004); and “LAISA: Learning agents to bridge the knowledge gap in 
medical images” (STW LPG.6544). These projects aim at a deeper exploration of the 
multi-agent concept and especially the use of automated learning and parameter optimiza-
tion within such systems. The reaction of an expert user to the multi-agent system’s seg-
mentation establish a rich source of expert information that can be employed to augment 
the knowledge base, automatically fine-tune parameters etc. Results will be applied to 
IVUS and CTA images. Potentially, these developments may lead to totally new ap-
proaches to medical image analysis. The question remains when an automated image 
analysis system will pass the famous Turing test for machine intelligence: the point at 
which an observer can no longer determine whether the analysis was produced by a hu-
man expert, or by the automated system. However, without the addition of high-level rea-
soning as described above, an automated system will never be able to pass the Turing test. 

7.3.7 Ventricular Resynchronization Therapy 
As mentioned, our developments in automated border detection have also been applied for 
purposes that we did not directly foresee. One of those applications was ventricular 
resynchronization therapy (VRT) by biventricular pacing. Echo-CMS has been used in 
 

 
Figure 7.20.   (facing page) Differences in wall motion patterns as found by Echo-CMS in normals 
and VRT patients (adapted from152). A. Apical four-chamber image with endocardial contour. B. LV 
wall motion for 100 segments determined with the centerline method. C. Septal (dashed line) and 
lateral (solid line) wall motion averaged for 40 septal and lateral segments and 3 to 7 cardiac 
cycles and displayed as displacement from ED (mm) over time (s). D-G. Examples of different types 
of wall motion patterns for controls and type 1, 2, and 3 patients (see text). H-I. Effect of 
biventricular cardiac resynchronization therapy (BV CRT) on patients of type 2 and 3. 
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several studies in this field by research groups from Aachen, Magdeburg, Brussels and St. 
Paul, all involved in the PATH-CHF study group (Pacing Therapies for Congestive Heart 
Failure) with Guidant Corporation, St. Paul, Minnesota. Echo-CMS was used by Angelo 
Auricchio MD PhD et al.150 to study mechanical LV contraction patterns in apical four-
chamber images of 56 patients of several patient groups: Left Bundle Branch Block 
(LBBB), Congestive Heart Failure (CHF) and low EF. It was shown that most LBBB 
patients (67% in this study) exhibit a typical contraction pattern where septal and lateral 
walls are clearly out of phase150.  

Echo-CMS was also applied by Ole A. Breithardt MD et al.151 as part of the PATH-
CHF study (Pacing Therapy in Congestive Heart Failure), for the evaluation of the success 
of biventricular pacing in VRT in heart failure patients. Left ventricular contraction 
patterns were assessed quantitatively by phase angle difference between septal and lateral 
motion and time between septal and lateral peak inward motion. For the wall motion 
phase measurements, a special Fourier analysis extension was developed based on the 
Echo-CMS output. These measurements were done before and after pacemaker 
implantation, both with intrinsic conduction and optimized multi-site VDD pacing. It was 
shown that patients with heart failure and prolonged QRS demonstrate discoordinated 
wall motion and that optimized VRT improves these patterns with reduced phase angle 
differences, and is superior to RV pacing151. 

In a third study, Breithardt et al. showed that echocardiographic quantification with 
Echo-CMS of left ventricular asynchrony predicts an acute hemodynamic benefit of 
cardiac resynchronization therapy152 (Fig. 7.20). In 34 patients, the wall motion phase 
difference between lateral and septal wall ΦLS was measured before CRT by Echo-CMS 
wall motion analysis and Fourier analysis of segmental excursion. Three types of phase 
relationships were identified: type 1, synchronous (n=4), ΦLS =5±6°; type 2, delayed 
lateral wall motion (n=17) ΦLS=77±33°; and type 3, delayed, triphasic septal wall motion 
(n=13) ΦLS=-115±33°. A large |ΦLS| predicted a larger hemodynamic improvement by 
CRT. In 16 patients, the effect of different CRT pacing sites was compared: RV, LV or 
BV (biventricular). All these acutely reduced |ΦLS|, this effect was significant for LV and 
BV, as well as hemodynamic improvement. 

Therefore, it was concluded that Echo-CMS wall motion analysis could identify 
patients that were likely to have improved systolic function with CRT152,153. 

7.3.8 Combined longitudinal and transversal wall motion 
We have mainly looked at quantifying segmental cardiac wall motion by determining the 
inward displacement of the endocardium by ABD. An alternative technique for 
quantifying myocardial motion is Tissue Doppler or Tissue Velocity Imaging (TDI or 
TVI), in which the velocity of the moving tissue in the direction of the ultrasound beam is 
measured with a Doppler shift and displayed with a color overlay. In principle, this allows 
a direct measurement of myocardial performance, without the need of border detection. 
However, the technique is limited in several ways. It is only suitable for measuring 
velocity in the direction of the ultrasound beam, and sensitive to noise, dropout and 
clutter. This makes it hard to apply for some segments. In apical four-chamber and two-
chamber views, motion of the apical segments cannot be reliably determined with TDI. In 
a study with Peter Cain MD and Thomas H. Marwick MD PhD (University of 
Queensland, Brisbane, Australia) we attempted to combine the transversal wall velocity 
information  derived  from   Echo-CMS  ABD   contours  with  TDI-derived   longitudinal 
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Figure 7.21.   Accuracy of optimized velocity cut-off approach to diagnosis of coronary artery 
disease compared with visual wall motion assessment: better diagnosis in LAD, worse in LCX and 
equivalent in RCA and overall territoria. So, quantitative assessment of WMA by combined 
transversal and longitudinal velocities is as accurate as visual scoring (from155). 
 
velocity information, in order to improve diagnosis of wall motion abnormality. Because 
transversal wall thickening is associated with longitudinal wall shortening, this 
information could be combined. 

We examined 82 unselected patients undergoing a standard dobutamine 
echocardiogram. Longitudinal velocity was obtained in the basal and mid segments of 
each wall using Tissue Doppler in the apical views. Radial velocities were derived in the 
same segments using the Echo-CMS automated border detection and the centerline local 
wall displacements from ED position. All displacements within a segment were averaged 
to obtain segmental transversal displacement values, from which peak transversal 
velocities were determined. In 25 patients at low probability of coronary disease, the 
pattern of regional variation in longitudinal velocity (higher in the septum) was the 
opposite of radial velocity (higher in the free wall) and the combination was homogenous. 
In 57 patients undergoing angiography, velocity in abnormal segments was less than 
normal segments using longitudinal (6.0 ± 3.6 vs. 9.0 ± 2.2 cm/s, p=0.01) and radial 
velocity (6.0 ± 4.0 vs. 8.0 ± 3.9 cm/s, p=0.02). However, the composite velocity permitted 
better separation of abnormal and normal segments (13.3 ± 5.6 vs. 17.5 ± 4.2 cm/s, 
p=0.001). There was no significant difference between the accuracy of this quantitative 
approach and expert visual wall motion analysis (81% vs. 84%, p=0.56) (Fig. 7.21). 

In conclusion, regional variation of uni-dimensional myocardial velocities necessitates 
site-specific normal ranges, probably because of different fiber directions. Combined 
analysis of longitudinal and radial velocities allows the derivation of a composite velocity, 
which is homogenous in all segments and may allow better separation of normal and 
abnormal myocardium154,155. 

7.4   Conclusions and future work 
In conclusion, we can state that we have accomplished a number of important 
breakthroughs in echocardiographic image processing. Several of these have found their 
way into commercial applications, either directly or indirectly. We have seen that the 
purpose, the methods and the expectations concerning automated border detection in 
echocardiography have changed considerably over time. The intended purpose has 
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evolved from automated TEE monitoring of cardiac function, via automatic LV volume 
measurements towards detection and classification of wall motion abnormalities, and is 
now shifting to 3D and 4D echocardiography. The applied methods changed from low-
level bottom-up edge finding and linking into medium-level pattern matching and 
sequence tracking approaches (MCCT), further into complex geometrical and statistical 
models (AAM), and finally are moving into the realm of artificial intelligence (agent-
based approaches). The expectations have become more realistic over the years, but at the 
same time the requirements have increased – from detection of a simple global measure to 
the classification of abnormal motion patterns over all regions of the LV, and from finding 
a single contour in a single frame to full-cycle detection of borders in all cardiac cycles 
and all angles of a 4D image set. 
 
We hope to have shown that we have made important contributions to this field of 
research. Furthermore, our research has spawned a wide array of secondary developments 
that made it into the literature and/or into commercial applications. Also, many 
researchers have extended our methods and applied them with success.  

7.4.1 Outcome of earlier predictions 
In the previous chapters, we have made several predictions on the future of ultrasound and 
echocardiographic image processing. Some of these already have come true: 

• With improvement of image quality, real-time 3D ultrasound may become an 
important substrate for ABD (Ch. 1). The Philips Live3D approach and its on-
board semiautomatic detection156 are the first realization of this; other vendors 
are following rapidly. 

• The next-generation ABD technique for ultrasound may well emerge from the 
family of appearance models (Ch. 1). Several vendors are currently 
investigating such techniques72,157. 

 
In 1987, our work started, aiming at fully automated border detection in TEE for 
monitoring of cardiac function. In that year, Charles Lancée, who pioneered some of this 
work1 formulated the following proposition (‘stelling’) in his Ph.D. thesis: 

“Fully automated border detection and the resulting quantitative monitoring of left 
ventricular geometry is still in its infancy, for the time being.” 

We must conclude that this was indeed very true, and that the problem of fully automated 
echocardiographic border detection suitable for monitoring, after 20 years, is actually still 
in its childhood, or maybe in its adolescence.  
 

Actually, considering the amount of research that has been spent worldwide on 
automated analyses for ultrasound images, and the hundreds of methods that have been 
described in literature, it is surprising how little automatic border detection has penetrated 
clinical practice. Some systems are available, some ultrasound manufacturers have 
included methods in their equipment, but grosso modo ultrasound remains a modality that 
is visually interpreted or manually analyzed. 

In our opinion, the conclusion should be that the difficulty of the task was grossly 
misapprehended. The same applies to similar tasks such as (continuous, speaker-
independent) speech recognition, identification of faces (under non-controlled 
circumstances) etc. Aside from some controlled, special applications, these are still largely 
unsolved problems, despite decades of intense research. Because we humans perform such 
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tasks constantly and without effort, it is very hard for us to acknowledge that the 
mechanisms for doing this are in fact extremely complex. However, slowly we learn more 
and more about these mechanisms, computers become more powerful and undoubtedly a 
solution will become available at some point. 

7.4.2 General future of echocardiographic imaging  
and image processing  

Currently, we foresee a number of developments in echocardiography and image 
processing. 

7.4.2.1 From 2D to 3D.  
3D will become the standard modality in ultrasound imaging. This will be the case for 
TTE, TEE, intraoperative, intracardiac, and intravascular imaging. This will also happen 
for non-cardiological ultrasound, e.g. for peripheral or ob/gyn use. With the further 
evolution of transducers and front-end acquisition hardware, the majority of transducers 
will be principally real-time 3D, removing most limitations posed by 2D planes. Improved 
stereoscopic displays may eliminate much of the current visualization limitations. 
Anatomic B-mode or anyplane images may replace the current 2D functionality, just like 
(anatomic) M-mode imaging is nowadays a functional subset of B-mode imaging. 
Combined with integrated probe position sensing, freehand probe manipulation will allow 
acquisition of large 3D volumes (e.g. trajectories of long vessels) by volume stitching 
techniques. 

7.4.2.2 Combination of diagnostic and therapeutic use of ultrasound. 
Especially the developments in ultrasound contrast agents will allow ultrasound to be used 
simultaneously for diagnosis and therapy. The microscopic gas bubbles are strong 
ultrasound reflectors and are very well visible in the echogram. This allows the use of 
contrast for blood opacification and myocardial perfusion visualization. Also, specialized 
contrast agents could be developed for functional imaging of pressure, temperature etc.  

Contrast bubbles can also be manipulated or destroyed by high-energy pulses of 
ultrasound. This allows the creation of ‘smart bubbles’ for drug and gene delivery and 
targeted imaging; in the shell (or inside) of such bubbles, special ligands, drugs or genes 
are incorporated that can be released at a specific site by destroying the bubbles with 
ultrasound. These new applications of contrast agents can potentially have an enormous 
clinical impact and will require new echocardiographic quantification tools as well as 
allow new forms of parametric imaging. 

7.4.2.3 Integration of image analysis in front-end processing 
Advances in computing power will allow to make the ultrasound front-end more 
intelligent. E.g. image acquisition settings may be optimized on-line (e.g. by automatically 
adjusting depth-gain or lateral gain settings, suppression of near-field artifacts and other 
anomalies, etc. Furthermore, the signal acquisition may be optimized with knowledge of 
the image content, derived from a previous analysis or segmentation. (Naturally, this 
should be applied with care in ambiguous situations; the  hypothesis may amplify itself at 
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the cost of other viable interpretations.) Such developments may improve image quality 
and benefit image segmentation.  

7.4.2.4 Portability and automation.  
Ultrasound equipment will become more and more miniaturized, and will become 
available in very portable form (laptops, handhelds). Meanwhile, all functionality of 
current high-end machines will also be available in small formats and at low cost. More 
and more, imaging settings will be automatically optimized. This will also allow a more 
widespread use of ultrasound (by less experienced physicians) and will induce a need for 
more objective, automated analysis approaches. 

7.4.2.5 Better modeling of organs in context 
We have made significant steps towards better modeling of the left ventricle, resulting in 
improved analyses; however, much remains to be gained in this terrain. In an ideal model, 
dynamic and functional aspects of the organ in its neighborhood should be included, as 
well as natural variation, congenital abnormalities, and pathological changes. Apart from 
the shape of the organ, its appearance in the ultrasound image and its typical artifacts 
should be modeled as well. If appearance for multiple modalities (ultrasound, MR, CT, 
different machines or acquisition protocols) can be modeled in conjunction, this would 
form the key to intermodality registration.  

Such an ideal model will require significant advances in geometric modeling and 
combinations with statistical shape/appearance modeling, medical knowledge engineering 
etc. If such a model can be realized, it will not only allow improved segmentation, but 
also open the way to more advanced computer aided diagnosis: the diagnosis that best 
predicts (or matches) the currently derived images/segmentation (given all non-image 
based patient knowledge) would be considered correct. 

7.4.2.6 Multimodal integration (MR, CT, X-ray, ultrasound)  
Especially for interventions, it is often desirable to combine the advantages of different 
imaging modalities. The detailed, high-quality anatomical 3D information from a 
preoperative MR or CT can then be combined with real-time, intraoperative ultrasound 
information. With the use of position sensing, anatomical landmarks or intermodality 
registration techniques, it should be possible in these different modalities to align 
coordinate systems, and apply the same anatomical models for segmentation (see previous 
point). This is a research area of growing interest, not only in fields like neurosurgery, but 
also in cardiology, e.g. for electrophysiology interventions, ASD/VSD closures etc. 

7.4.2.7 Further miniaturization 
Unlike MR or CT, ultrasound image generation does not require high-energy elements or 
enclosure of the body; miniaturization is limited mainly by the state of the art in 
microchip technology, especially micromachining. Therefore, ultrasound can evolve into 
an extremely ‘miniaturized’ modality, even beyond handheld devices: its functionality can 
in principle migrate down to a microscale. Ultrasound imaging can reach much higher 
resolutions (at the cost of limited penetration) by using higher frequencies. Also, latency 
between image formation and display can be very small, allowing real-time, very high 
frame-rate imaging. Ultrasound in the future is likely to be used for real-time, direct local 
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inspection of (dynamic) organs, probably within a larger anatomic framework put up by 
MR or CT (see above). This makes it very useful for catheter-tip interventional use, 
especially in combination with position sensing and precise stereotactic catheter steering, 
and possibly for freely navigating microscale or nanoscale devices. 
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Conclusions 

 
Echocardiographic border detection techniques have evolved over the years from crude, 
data-driven approaches, via simple geometric models into sophisticated tools based on 
elaborate statistical models. Many of the difficult problems of ultrasonic image analysis 
have been overcome, and several problems remain. 

We have shown that semiautomatic detection based on Dynamic Programming and 
Pattern Matching provides a useful and reliable way of analyzing 2D echocardiographic 
sequences of different cross sections. 

Main conclusion of our work is that the new detection tools based on statistical models 
(Active Appearance Models) provide superior possibilities for automated analysis of 
echocardiographic images, since they are capable of realistically modeling both the typical 
problems and artifacts of cardiac ultrasound and the variability between patients. 

Also, these tools can be extended towards multi-view and multi-stage applications 
(e.g. stress echo), higher dimensions (3D echo), and simultaneous detection of multiple 
structures (LV, RV, atria, epicardium, valves). They also offer possibilities for computer-
aided diagnosis, such as wall motion abnormality classification (stress echo and Cardiac 
Resynchronization Therapy). Further development and integration with other border 
detection and tracking approaches is certainly feasible and will offer a range of new 
research opportunities. 
 
Some of the results of this research have been commercially available, although not sold 
to the level of the high hopes we cherished sometimes. We are indeed content that many 
of our ideas have found a lasting place in scientific literature and clinical practice, are 
followed and improved by others, have spread into other fields of research and have 
shown up in commercial applications as well. 
 
This thesis is based on research, which we carried out over a long period of time - 
eighteen years, which is extraordinarily long for this type of technical research. The many 
challenges in this field, the push for commercial application and the pull of new, better 
methods all contributed to the length of this journey. 

And although we have come a fair distance, most of these problems still have not yet 
been completely solved, neither by us nor by the many other researchers working in this 
field. But the technical possibilities of ultrasound equipment, computer power and image 
processing capabilities have improved tremendously over time and will continue to do so.  
 
Fully automated, reliable analysis of echocardiographic images will eventually become a 
definite reality. 
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Summary 

 
Echocardiography is the most widely applied diagnostic imaging technique for the heart. 
It is noninvasive, harmless to the patient and physician, relatively inexpensive, versatile 
and mobile. However, image acquisition and interpretation can be difficult. Visual 
interpretations or manual measurements are cumbersome and often reproducibility is 
poor. Therefore, there is a clear need for standardization and automated analysis of these 
images.  
 
Over an extended period, we have developed several methods for automated analysis of 
echocardiographic images. This thesis describes these methods and their evaluation and 
use. 
 
Chapter 1 provides a general introduction into digital image processing as applied to 
echocardiographic images and sketches the most commonly applied approaches for 
automated border detection (ABD) in echocardiography, including the ones elaborated 
upon in our research. 

It describes digital image processing approaches for image enhancement and image 
analysis, both in qualitative and quantitative sense. The limitations of manual analysis 
(border drawing) are explained. The essentials of analog and digital images are treated, as 
well as digital image storage and communication standards (such as DICOM) and image 
compression. Simple digital image enhancement techniques such as brightness level 
changes, histogram stretching, pseudo-coloring and basic filtering are introduced. The 
subject of image interpretation is treated according to the metaphor of the interpretation 
pyramid, which represents the concept that interpretation is a complex process with 
several hierarchical levels, from the low-level image features like gradients and texture up 
towards structures like regions and edges, up to anatomical objects and their relations (a 
‘scene’) and finally towards some significance like a diagnosis. This concept serves as a 
framework for classification in an overview of automated analysis techniques for 
echocardiograms as reported in literature. Furthermore, thought is given to the criteria for 
a well-behaved ABD method (correct, reproducible, user-friendly), the problems and 
pitfalls of ABD in ultrasound (such as the many artifacts, dropouts, anisotropy, plane 
variability), and practical considerations for appropriate border detection (optimization of 
acquisition and image quality, consensus on criteria, choice of detection technique). 

In the overview of different ABD methods, several key techniques from different 
levels are discussed in detail, such as Acoustic Quantification, the arc-filter technique by 
Geiser, the Echo-CMS system and Active Appearance Models. 

The possible impact on ABD of several new instrumental developments is assessed: 
harmonic imaging, tissue Doppler and strain (rate), 3D/4D ultrasound, contrast, and RF 
processing. Also, the promises of more elaborate model-based ABD techniques and of 
artificial intelligence are described.  
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Chapter 2 is dedicated to the detection of the endocardium in short-axis image sequences, 
the most classical border detection problem in echocardiography. It describes the short-
axis automated border detection technique as originally implemented in the early versions 
of the Echo-CMS system, and its evaluation. In this ABD technique the user indicates a 
center point of the left ventricle which defines a circular model, the image is resampled in 
a strip around this model, gradients along and perpendicular to the scanlines are 
determined and an optimal contour is found using dynamic programming. The found 
contour is used as a new model and a more detailed contour is determined; this contour is 
also transferred to the next image as a model, and the detection is done for all frames in 
the sequence. 

An evaluation study was carried out on 20 short-axis patient studies (10 
transesophageal and 10 transthoracic), each covering approximately one cardiac cycle. 
The LV endocardial contours were analyzed both by manual tracing and semi-
automatically by the short-axis ABD. In addition, inter-observer and intra-observer 
variabilities were determined for both techniques in two patients. Manual editing was 
required in only 18% of all detected contours. Regression analysis showed excellent 
correspondence between manual and semiautomatic tracing. Inter-observer and intra-
observer variabilities were smaller for semiautomatic than for manual tracing. In 
conclusion, semiautomatic LV short-axis ABD provided contours that were highly similar 
to those drawn by an expert; was five to 10 times faster than manual tracing and reduced 
intra-observer and inter-observer variabilities.  
 
Chapter 3 describes the different approaches for semiautomatic border detection in 
sequences of images of the different cross sections, based on dynamic programming (DP). 
The concept and mathematical and historic background of DP is described, and its 
application to contour detection, by transforming a strip of image data into a rectangular 
array of costs in which the path search is performed. The properties of the DP optimal 
path with respect to certain transforms of the cost array are discussed, as well as its 
inherent robustness to common image imperfections. Some variations of DP are 
described: forcing a path through a node; finding closed paths (connectivity between end 
and start nodes); finding multidimensional paths; finding a connective plane in a 3-
dimensional cube of nodes; choice of cost functions and probability-related cost functions; 
influencing the smoothness of the path by penalizing sidesteps; and iterative application of 
DP. 

Furthermore, the combination of DP with pattern matching is described. This 
enhancement is inspired by the limitations of edge-based endocardial border detection, 
especially in the more demanding segmentation of major-axis cross sections. In this 
Minimum Cost Contour Tracking technique (MCCT), two manually defined borders are 
used to derive models of shape, pose and border intensity patterns, which are interpolated 
over the full heart cycle. From the interpolated shape and pose, a resampling model for 
each frame is generated and the resampled data is matched with the interpolated edge 
patterns. DP is applied to the match results and delivers the borders. 

The MCCT technique was validated as part of a large clinical study on myocardial 
viability and dilatation in infarct patients. The study setup and the evaluation procedure 
are described. The evaluation results showed that the MCCT detection provides a practical 
and successful tool for analyzing full-cycle contours, which requires only 0.43 additional 
contour corrections per sequence, much better that the classical edge-based detection that 
requires 3.95 corrections. Observer variability studies showed that there were no 
significant differences in inter- and intra-observer variabilities of manual ED/ES contours 
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and full-cycle (mostly automatic) contours, implying that MCCT generated contours are 
equivalent to manual drawing. 
 
Chapter 4 explains the use of Active Appearance Models for automated detection in 
echocardiographic sequences. This chapter describes the extension of AAM to time 
sequences and the adaptation to echocardiographic images. After an introduction on the 
peculiarities of echocardiographic image segmentation, it explains the basics of Active 
Appearance Modeling and the properties that make this approach attractive to 
echocardiographic segmentation. For application in echocardiograms, a specific problem 
needs to be addressed: the non-Gaussian distribution of pixel intensities. This distribution 
violates one of the assumptions of Principal Component Analysis (PCA). PCA assumes an 
N-dimensional Gaussian distribution and finds the N principal axes of this distribution. In 
case the distribution is very skewed or multimodal, the distribution’s description by a 
single mean and a range of several standard deviations along each axis is not a very 
appropriate one. To obtain to a better modeling of grey value distributions within the PCA 
framework, we devised an ultrasound-specific nonlinear intensity normalization, which is 
described in this chapter. From the distributions of grey values of all points within the 
model’s texture patch, we calculate an overall mapping function that transforms these 
distributions into Gaussian-like distributions.  

Furthermore, the extension of the AAM to a time sequence of images is described. The 
heartbeat is modeled as a fixed number of F images (e.g. 16), each representing one 
interval of the heart cycle. By concatenating the information of all F shapes and F textures 
and treating them as one sample, we can use the general AAM approach to model shape, 
appearance and temporal patterns of these, which gives us an Active Appearance Motion 
Models (AAMM). In the parameter regression training and the model matching, the root-
mean-square error between synthetic model image and real image is calculated for the full 
sequence. The AAMM approach was trained and evaluated on 16-frame phase-normalized 
four-chamber sequences of 129 patients. The set was randomly split into a training set of 
65 patients and a test set of 64. Borders were compared to expert-verified semi-
automatically detected endocardial contours. On the test set, the fully automated AAMM 
performed well in 97% of cases, with average landmark distance of 3.3 mm, which was 
comparable to human inter-observer variability. The nonlinear intensity normalization 
proved to be of great value for the results, and the AAMM approach was shown to be 
significantly more accurate than an equivalent set of single-phase AAMs.  
 
Chapter 5 is devoted to the extension of AAM to three-dimensional images, an 
improvement that we realized simultaneously for cardiac MR and ultrasound images. It 
was the first reported working application of a complete 3D-AAM. The 3D-AAMs were 
tested in clinical short-axis MR sets of 56 patients and temporal four-chamber 
echocardiographic sets of 64 patients and were compared to manually identified 
independent standards. For the echocardiographic experiments, we did not have a 3-
dimensional segmented data set of sufficient patients available; therefore, we constructed 
pseudo-3D sets from temporal sequences of apical four-chamber cross sections. The 
single-beat sequences of variable length (15-33 frames) were repeated 3 times and the 
third dimension was constructed from time by a fixed conversion factor (‘speed’ of 40 
mm/sec). In the 3D-AAM the endocardial shape was modeled as a truly 3-dimensional 
object, including defining the volume of interest by a division in regular tetrahedrons. In 
detection, the shape was allowed to scale, translate, rotate and deform in all dimensions. 
In comparison to the 2D+T AAM, the model has several extra degrees of freedom, since it 
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can traverse the temporal dimension as well, e.g. it can locate ED and ES frames 
automatically in any sequence, instead of working only on fixed-length sequences of 
frames with known phase. In the evaluation, the borders found by 3D-AAM fully 
automatically agreed well with the manual borders in 89% of cases. In these cases, 
average 3D border error was 3.9 mm, corresponding to 3.35 mm for the 2D component 
(which compares well to the 3.3 mm error found for AAMM) and less than 40msec 
temporal error. Performance of the method, current limitations, possible extensions and 
improvements are extensively discussed. It is concluded that 3D AAM holds considerable 
promise for clinical application. 
 
Chapter 6 links the border detection work in the previous chapters to stress 
echocardiography, i.e. the analysis of shapes and classification of wall motion abnormality 
(WMA). This chapter covers the subject of automated classification of WMAs based on 
the coefficients of shape employed by AAMs. As described in chapter 4, we noticed that 
some of the shape/motion eigenvariations found in the AAMM models corresponded 
directly to certain pathologies. This led us to investigate the relations between WMAs and 
the AAMM shape coefficients (ASCs) describing each patient’s endocardial shape 
motion.  

Of the patient population described in Chapter 4, expert-verified borders were 
available in apical four-chamber and two-chamber images, from which two AAMMs were 
trained. Furthermore, general clinical information and biochemical infarct severity 
measures were present and global parameters of LV function were calculated from the 
contours. Finally, regional WMA was assessed by visual wall motion scoring (VWMS) in 
a 13-segment, 4-level scoring system.  

Like in chapter 4, the population was split into a training and test set. AAMMs were 
generated from the training set and for all sequences ASCs were extracted and statistically 
related to regional/global VWMS and clinical infarct severity and volumetric parameters. 
Linear regression showed clear correlations between ASCs and VWMS. Infarct severity 
measures correlated poorly to both ASCs and VWMS. Discriminant analysis showed good 
prediction from low #ASCs of both segmental (85% correctness) and global WMA (90% 
correctness). Volumetric parameters correlated poorly to regional VWMS. In conclusion, 
we found that: 1) ASCs show promising accuracy for automated WMA classification; 2) 
VWMS and endocardial border motion are closely related, with accurate automated 
border detection, automated WMA classification should be feasible; and 3) ASC shape 
analysis allows direct contour set evaluation by determining a relation to certain clinical 
parameters. 
 
Chapter 7 illustrates the relations between previous chapters and describes the 
development of our research over the years, both regarding the main line of projects as 
well as important sidelines and spin-offs. The clinical and research applications of our 
developments are described and the main results are highlighted.  

The description of the main research line commences with our initial short-axis single-
frame contour detection developments. Consecutively, the early edge-based detections in 
sequences of short-axis as well as major-axis images are described; followed by the work 
on pattern matching approaches, which formed the basis for landmark tracking and for the 
Minimum Cost Contour Tracking (MCCT), which solved the main limitations of edge-
based border detection. This MCCT algorithm was extensively used in the Echo-CMS 
system. A number of studies that were performed with this system are described. Several 
of these were directed at quantification of stress echocardiography, and this formed the 
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next challenge for our research. Because of the need for further automation and some 
limitations of our geometrical model-based MCCT, we turned our attention to a new class 
of statistical models: the Active Appearance Models. Our work on single-frame 
echocardiographic AAMs is described, the extension to time sequences of 2D frames 
(AAMMs), and to 3D AAMs. We also demonstrated that classification of wall motion 
abnormalities from the modal shape coefficients was possible. The step into 3D and 4D 
echocardiography using MCCT and AAM technology concludes the description of the 
main research line. 

The rest of the chapter is devoted to secondary developments, sidelines of our research 
that have led to significant results: early work on intravascular ultrasound, development of 
real-time contour detection hardware, detection and modeling of the right ventricular 
contours, border detection for contrast echocardiography, multi-agent image analysis, use 
of Echo-CMS in ventricular resynchronization therapy and in the combined measurement 
of longitudinal (tissue Doppler) and transversal (Echo-CMS) wall motion. This chapter 
finishes with some conclusions on the totality of these developments, and a view on the 
future of echocardiographic imaging and image processing is given. 
 
Finally, the main Conclusions of this thesis are given. We have made significant 
contributions in the described field, but echocardiography remains one of the most 
challenging modalities for medical image analysis. We have shown that our 
semiautomatic MCCT detection based on Dynamic Programming and Pattern Matching 
provides a useful and reliable way of analyzing 2D echocardiographic sequences of 
different cross sections. Furthermore, the new detection tools based on Active Appearance 
Models provide superior possibilities for automated analysis of echocardiographic images, 
since they are capable of realistically modeling both the variability between patients and 
the typical problems and artifacts of cardiac ultrasound. 
With the improvements in echocardiographic image acquisition and progress in analysis 
approaches, fully automated, reliable analysis of echocardiographic images will 
eventually become a reality. 
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Samenvatting 

 
Echocardiografie is de meest toegepaste diagnostische beeldvormende techniek voor het 
hart. Echocardiografie is niet-invasief, onschadelijk voor patiënt en arts, relatief 
goedkoop, veelzijdig en mobiel. De beeldacquisitie en –interpretatie kan echter lastig zijn. 
Visuele interpretatie en handmatige metingen vereisen aanzienlijke inspanning en de 
reproduceerbaarheid is vaak matig. Er is derhalve een duidelijke behoefte aan 
standaardisatie en aan automatische analyse van deze beelden. 
 
Wij hebben gedurende een aanzienlijke periode verschillende methodieken ontwikkeld 
voor de automatische analyse van echocardiografische beelden. Dit proefschrift beschrijft 
deze methoden, de evaluatie en het gebruik ervan. 
 
Hoofdstuk 1 geeft een algemene inleiding in de digitale beeldverwerking zoals toegepast 
in echocardiografische beelden en schetst de meest toegepaste benaderingen voor 
automatische contourdetectie (ABD) in de echocardiografie, inclusief die welke in ons 
onderzoek zijn uitgewerkt. Dit hoofdstuk beschrijft digitale beeldverwerkingstechnieken 
voor beeldverbetering en beeldanalyse, zowel in kwalitatieve als kwantitatieve zin. De 
beperkingen van handmatige analyse (contourtekenen) worden beschreven. De 
grondbeginselen van analoge en digitale beelden worden behandeld, evenals de digitale 
beeldopslag- en communicatiestandaarden (zoals DICOM), en beeldcompressie. 
Eenvoudige digitale beeldverbeteringen worden geïntroduceerd, zoals aanpassingen van 
de helderheidsniveaus, oprekken van het histogram, gebruik van pseudo-kleuren en basale 
filtering. Het onderwerp beeldinterpretatie wordt behandeld aan de hand van de metafoor 
van de interpretatiepiramide, die verbeeldt dat interpretatie een complex proces is met 
meerdere hiërarchische niveaus. Op het laagste niveau vinden we basale 
beeldeigenschappen zoals gradiënten en textuur, daarboven structuren zoals gebieden en 
randen, daarboven anatomische objecten en hun onderlinge relaties (de ‘scène’) en 
tenslotte bovenaan een betekenis, zoals een diagnose. Deze metafoor dient als raamwerk 
voor classificatie in een literatuuroverzicht van automatische analysetechnieken voor 
echocardiogrammen. Verder wordt aandacht besteed aan de criteria voor een deugdelijke 
ABD-techniek (accuraat, reproduceerbaar, gebruikersvriendelijk), de problemen en 
valkuilen van ABD in echobeelden (zoals de vele beeldartefacten, signaaluitval, 
anisotropie, en onzekerheid in de vlakkeuze), en praktische overwegingen voor correcte 
contourdetectie (optimalisatie van acquisitie en beeldkwaliteit, consensus over criteria, 
keuze detectietechniek). 

In het overzicht van ABD-methodes wordt een aantal belangrijke technieken van 
verschillende niveaus in detail besproken, zoals Acoustic Quantification, de 
boogfiltertechniek van Geiser, het Echo-CMS systeem en Active Appearance Models.  

De mogelijke invloed van verschillende nieuwe instrumentele ontwikkelingen op ABD 
wordt besproken: harmonic imaging, tissue Doppler en strain (rate), 3D/4D echo, contrast 
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en RF-signaalverwerking. Tevens worden de beloftes van krachtigere modelgebaseerde 
ABD-technieken en van kunstmatige intelligentie beschreven. 
 
Hoofdstuk 2 is gewijd aan de detectie van het endocard in korte-as beeldseries, het meest 
klassieke contourdetectieprobleem in de echocardiografie. Het beschrijft de ABD-
techniek voor korte-asbeelden zoals oorspronkelijk geïmplementeerd in de vroege versies 
van het Echo-CMS systeem, en de evaluatie daarvan. In deze ABD-techniek geeft de 
gebruiker het middelpunt van de linkerhartkamer aan. Dit levert een cirkel als 
contourmodel, waaromheen een strook beeldinformatie wordt herbemonsterd. Langs en 
loodrecht op de scanlijnen worden gradiënten berekend en een optimale contour wordt 
gevonden door middel van dynamisch programmeren. De gevonden contour wordt 
wederom als model gebruikt en er wordt een verfijnde contour bepaald; deze wordt 
vervolgens als model overgezet naar het volgende beeld, en aldus wordt de detectie 
uitgevoerd voor alle beelden in de serie. 

Een evaluatiestudie werd uitgevoerd op korte-as beeldseries van 20 patiënten (10 
transoesofagaal, 10 transthoracaal), elk van ongeveer één hartslag lang. De endocardiale 
contouren van de linkerhartkamer werden zowel door handmatig tekenen als door de 
semiautomatische ABD-techniek bepaald. Bovendien werd de inter- en intra-
observervariabiliteit van beide methodes bepaald in twee patiënten. 

Handmatige correctie was slechts in 18% van alle gedetecteerde contouren nodig. 
Regressie-analyse leverde een uitstekende overeenkomst tussen de handmatige en 
semiautomatische analyse. Inter- en intra-observervariabiliteit was kleiner voor de 
semiautomatische techniek dan voor handmatig tekenen. Conclusie was dat de 
semiautomatische korte-as ABD-techniek contouren leverde die zeer vergelijkbaar waren 
met contouren getekend door een expert; vijf tot tien keer sneller was dan handmatig 
tekenen; en lagere inter- en intra-observervariabiliteit vertoonde. 
 
Hoofdstuk 3 beschrijft de diverse benaderingen voor semiautomatische contourdetectie in 
beeldseries van de verschillende standaarddoorsneden, gebaseerd op dynamisch 
programmeren (DP). Het principe en de wiskundige en historische achtergrond van DP 
worden beschreven, evenals de toepassing bij contourdetectie. Daarbij wordt een strook 
beelddata omgevormd naar een rechthoekige matrix van kostenwaardes, waarin een 
optimaal pad wordt gezocht. De eigenschappen van het optimale DP-pad met betrekking 
tot specifieke transformaties van de kostenmatrix worden besproken, evenals de inherente 
robuustheid van het pad met betrekking tot veel voorkomende onvolkomenheden in de 
beelden. Enkele variaties van DP worden beschreven: het forceren van een pad door een 
knooppunt; het vinden van gesloten paden (connectiviteit tussen begin- en eindpunt); 
multidimensionale paden vinden; het vinden van een connectief vlak in een 
driedimensionaal blok van knooppunten; keuze van kostenfuncties en kans-gerelateerde 
kostenfuncties; het beïnvloeden van de onregelmatigheid van een pad door het beboeten 
van zijstappen; en iteratieve toepassing van DP.  

Verder wordt de combinatie van DP met pattern matching (‘patronen vergelijken’) 
beschreven. Deze verbetering is ingegeven door de beperkingen van endocardiale 
contourdetectie die is gebaseerd op helderheidsovergangen (‘edges’), vooral voor de 
lastigere segmentatie van lange-asdoorsneden. 

In deze Minimum Cost Contour Tracking-techniek (MCCT) worden twee 
handgetekende contouren gebruikt om modellen af te leiden voor de vorm, positie en 
helderheidspatronen van de contour. Deze modellen worden over de gehele hartslag 
geïnterpoleerd. Uit de geïnterpoleerde vorm en positie wordt een herbemonsteringsmodel 
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voor elk beeld berekend, en de herbemonsterde beelddata wordt op elk punt vergeleken 
met de geïnterpoleerde randpatronen. Op de uitkomsten wordt DP uitgevoerd om de 
contouren te bepalen.  

MCCT werd gevalideerd als onderdeel van een grote klinische studie naar ‘myocardial 
viability’ (levensvatbaarheid van het hartspierweefsel) en dilatatie in infarctpatiënten. 
Opzet van de studie en de evaluatieprocedure worden beschreven. De evaluatieresultaten 
laten zien dat de MCCT-detectie een praktische en bruikbare methode voor analyse van 
contouren over de volledige hartslag vormt. De detectie vereiste slechts 0.43 extra 
contourcorrecties per beeldserie, aanzienlijk beter dan de klassieke edge-gebaseerde 
contourdetectie, die 3.95 correcties vereiste. Analyse van de observervariabiliteit liet zien 
dat er geen significante verschillen waren in inter- en intra-observervariabiliteit tussen de 
manuele contouren (getekend in de ED- en ES-beelden) en de contouren voor de volledige 
hartslag, die voornamelijk automatisch gevonden waren. Dit duidt erop dat de MCCT-
contouren gelijkwaardig zijn aan de manuele contouren. 
 
Hoofdstuk 4 beschrijft de toepassing van Active Appearance Models voor de 
automatische detectie in echocardiografische beeldseries. Dit hoofdstuk beschrijft de 
uitbreiding van AAM naar tijdseries en de aanpassing aan echocardiografische beelden. 
Na een inleiding omtrent de eigenaardigheden van de segmentatie van 
echocardiografische beelden worden de grondbeginselen van de Active Appearance 
Modellering uitgelegd, en de eigenschappen die deze techniek aantrekkelijk maken voor 
echocardiografische beelden. Voor toepassing in echocardiogrammen moet een specifiek 
probleem worden aangepakt: de niet-Gaussische verdeling van de pixelgrijswaarden. Deze 
verdeling doet één van de aannames van de Principale Componenten Analyse (PCA) 
geweld aan. PCA veronderstelt een N-dimensionale Gaussische verdeling en vindt de N 
hoofdassen van deze verdeling. Als de verdeling erg scheef is of meerdere pieken heeft, 
dan is de beschrijving met behulp van een enkel gemiddelde en een bereik van een aantal 
standaarddeviaties langs elke as niet erg adequaat. Om een betere modellering van de 
grijswaardenverdeling binnen het PCA-raamwerk te verkrijgen, hebben wij een specifieke 
niet-lineaire grijswaardenormalisatie voor ultrageluidsbeelden ontwikkeld, die in dit 
hoofdstuk wordt beschreven. Uit de grijswaardeverdelingen voor elk punt van het 
textuurdeel van het model berekenen we een overkoepelende afbeeldingsfunctie die de 
verdelingen omzet naar een meer Gaussische verdeling. 

Verder wordt de uitbreiding van AAM naar een tijdreeks van beelden beschreven. De 
hartslag wordt gemodelleerd met een vast aantal van F beelden (bv. 16), die elk een 
interval van de hartcyclus representeren. Door de informatie van alle F vorm- resp. 
textuurvectoren te concateneren en als één patroon te behandelen, kunnen we de algemene 
AAM-aanpak gebruiken om zowel objectvorm en appearance (‘verschijning’) te 
modelleren, als ook de temporele patronen van beide, hetgeen ons het Active Appearance 
Motion Model (AAMM) oplevert. In de parameter-regressietraining en de modelmatching 
wordt de gemiddelde kwadratische fout tussen het synthetische modelbeeld en het echte 
beeld berekend over de gehele serie. De AAMM-aanpak werd getraind en getest op fase-
genormaliseerde beeldseries van 16 frames, van 129 patiënten. De set werd willekeurig 
gesplitst in een trainingsset van 65 patiënten en een testset van 64. De contouren werden 
vergeleken met semiautomatische contouren die door experts waren geverifieerd. In de 
testset behaalde de volautomatische AAMM een goed resultaat in 97% van de gevallen, 
met een gemiddelde afstand tussen overeenkomstige punten van 3.3 mm, wat 
vergelijkbaar is met de variabiliteit tussen menselijke waarnemers. De niet-lineaire 
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grijswaardenormalisatie bleek van groot belang voor de resultaten, en de AAMM-aanpak 
werkte significant beter dan een equivalente set AAMs voor afzonderlijke fases. 
 
Hoofdstuk 5 is gewijd aan de uitbreiding van AAM naar driedimensionale beelden, een 
verbetering die wij tegelijkertijd voor MRI- en echo-opnames van het hart gerealiseerd 
hebben. Het betrof de eerste gepubliceerde werkende toepassing van een compleet 3D-
AAM. De 3D-AAMs werden getest in klinische korte-as MRI sets van 56 patiënten en in 
tijdseries van apicale vierkamer-echo-opnames van 64 patiënten en vergeleken met 
handmatig aangegeven onafhankelijke standaardanalyses. Voor de echocardiografische 
experimenten waren geen gesegmenteerde 3D datasets van een voldoende aantal patiënten 
beschikbaar; daarom construeerden we pseudo-3D sets uit tijdseries van apicale 
vierkamerdoorsneden. De reeksen, die één hartslag omvatten en van wisselende lengte 
waren (15 tot 33 beelden) werden driemaal herhaald en de derde dimensie werd 
omgerekend uit de tijdwaarde door middel van een vaste conversiefactor (‘snelheid’ van 
40 mm/sec). In de 3D-AAM werd de endocardvorm gemodelleerd als een echt 
driedimensionaal object, waarbij de ruimte rond het object in reguliere tetraëders verdeeld 
werd. Bij de detectie kon de vorm zich aanpassen via schaling, translatie, rotatie en 
vervorming in alle dimensies. In vergelijking met de 2D+T-AAM heeft dit model 
verschillende extra vrijheidsgraden, omdat het zich ook in de temporele dimensie kan 
aanpassen. Het kan bv. in een willekeurige beeldreeks automatisch de ED- en ES-beelden 
vinden, in plaats van te werken op beeldreeksen van een vaste lengte bestaand uit vaste 
hartfasen. In de evaluatie kwamen de met de 3D-AAM volautomatisch gevonden 
contouren goed overeen met de handmatige in 89% van de gevallen. Hierbij was het 
gemiddelde 3D positieverschil 3.9mm, hetgeen overeenkomt met 3.35mm voor de 2D 
afstand (wat weer goed overeenkomt met de 3.3mm fout voor de AAMM), en minder dan 
40msec temporele fout. De prestaties van de methode, de huidige beperkingen, mogelijke 
uitbreidingen en verbeteringen worden uitgebreid besproken. De conclusie luidt dat 3D 
AAM een belangrijke belofte inhoudt voor klinische toepassing. 
 
Hoofdstuk 6 verbindt het contourdetectie-onderzoek in de vorige hoofdstukken met de 
inspannings-echocardiografie (stress echo), en wel door de analyse van de contourvorm en 
de classificatie van wandbewegingsafwijkingen (WMA’s). Dit hoofdstuk behandelt de 
automatische classificatie van WMA’s op basis van de vormcoëfficiënten zoals die 
gebruikt worden door AAM’s. Zoals in Hst. 4 beschreven viel het ons op dat sommige 
eigenvariaties van vorm en beweging die in de AAMM-modellen gevonden werden, direct 
correspondeerden met bepaalde bekende pathologieën. Naar aanleiding daarvan besloten 
we de relatie te onderzoeken tussen WMA’s en de vormcoëfficiënten van AAMM’s (de 
ASC’s), die het endocardiale bewegingspatroon van elke individuele patiënt beschrijven. 

Van de patiëntenpopulatie die in hst. 4 werd beschreven waren door experts 
geverifieerde contouren beschikbaar in apicale vier- en tweekameropnames. Voor beide 
doorsneden werd een AAMM getraind. Verder waren algemene klinische informatie 
beschikbaar en biochemische meetwaarden die de ernst van het infarct karakteriseren, 
evenals globale parameters voor LV-functie die uit de contouren berekend werden. 
Tenslotte waren regionale WMA’s beschikbaar die door middel van visuele 
wandbewegingsbeoordeling (VWMS) in een scoringssysteem met 13 segmenten en een 
vierpuntsschaal door experts bepaald waren. 

Evenals in Hst. 4 werd de populatie verdeeld in een trainingsset en een testset. Uit de 
trainingsset werden AAMM’s gegenereerd en voor alle beeldseries werden ASC’s bepaald 
en statistisch vergeleken met de regionale en globale VWMS, de klinische infarctmaten en 
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de volumetrische parameters. Lineaire regressie liet duidelijke verbanden zien tussen 
ASC’s en VWMS. De infarctmaten correleerden slecht met zowel de ASC’s als VWMS. 
Discriminantanalyse leverde een goede voorspelling uit een beperkt aantal ASC’s van 
zowel segmentele (85% correct) als globale WMA (90% correct). De volumetrische 
parameters correleerden slecht met regionale VWMS. Concluderend hebben wij 
vastgesteld dat 1) ASC’s een veelbelovende nauwkeurigheid laten zien voor automatische 
WMA-classificatie; 2) VWMS en wandbewegingsscores inderdaad nauw gerelateerd zijn, 
en dat met een goede automatische contourdetectie een automatische classificatie van 
WMA’s haalbaar moet zijn; en 3) ASC vormanalyse directe evaluatie van een contourset 
mogelijk maakt door het vinden van een relatie met bepaalde klinische parameters. 
 
Hoofdstuk 7 illustreert de relaties tussen de voorgaande hoofdstukken en beschrijft de 
ontwikkeling van ons onderzoek over de jaren, zowel wat betreft de hoofdlijn van 
projecten als ook de belangrijke zijlijnen en spin-offs. De klinische en 
onderzoekstoepassingen van onze ontwikkelingen worden beschreven en de belangrijkste 
resultaten toegelicht. 

We beginnen de beschrijving van de hoofdlijn van het onderzoek met onze eerste 
ontwikkelingen voor contourdetectie in afzonderlijke beelden van de korte-asdoorsnede. 
Vervolgens worden de vroege op intensiteitsovergangen (edges) gebaseerde detecties op 
beeldseries van korte-as- en lange-asdoorsnedes beschreven; gevolgd door het onderzoek 
naar benaderingen die gebruik maken van pattern matching, hetgeen de basis vormde voor 
het automatisch volgen van herkenningspunten en voor de Minimum Cost Contour 
Tracking (MCCT), die de belangrijkste beperkingen van de edge-gebaseerde 
contourdetectie onderving. Het MCCT-algoritme werd uitgebreid toegepast in het Echo-
CMS systeem. Een aantal studies die met dit systeem werden uitgevoerd worden 
beschreven. Verschillende hiervan waren gericht op kwantificatie van stress echo, en dit 
vormde de volgende uitdaging voor ons onderzoek. Vanwege de noodzaak van verdere 
automatisering en enkele beperkingen van de op geometrische modellen gestoelde 
MCCT-aanpak, besloten we onze aandacht te richten op een nieuwe klasse van statistische 
modellen: de Active Appearance Models. Ons werk op het gebied van AAM’s voor 
afzonderlijke echobeelden wordt beschreven, en de uitbreiding naar tijdseries van 2D 
beelden (AAMM’s) en naar 3D AAM’s. We hebben eveneens laten zien dat classificatie 
van wandbewegingsafwijkingen door middel van de vormcoëfficiënten mogelijk is. De 
stap naar 3D en 4D echocardiografie met MCCT- en AAM-technologie besluit de 
beschrijving van de hoofdlijn van ons onderzoek. 

De rest van het hoofdstuk is gewijd aan secundaire ontwikkelingen, zijwegen van ons 
onderzoek die tot significante resultaten geleid hebben: vroeg werk op het gebied van 
intravasculair ultrageluid, ontwikkeling van real-time contourdetectie-apparatuur, de 
detectie en modellering van de contouren van de rechterhartkamer, contourdetectie voor 
contrast-echocardiografie, multi-agent beeldanalyse, het gebruik van Echo-CMS in 
ventriculaire resynchronisatietherapie en in de gecombineerde meting van longitudinale 
(tissue Doppler) en transversale (Echo-CMS) wandbeweging. Dit hoofdstuk eindigt met 
enkele conclusies over de totaliteit van deze ontwikkelingen, en we geven een overzicht 
over de toekomst van de echocardiografische beeldvorming en beeldanalyse. 
 
Tenslotte worden de belangrijkste Conclusies van dit proefschrift gegeven. We hebben 
significante bijdragen aan het beschreven onderzoeksveld geleverd, maar de 
echocardiografie blijft een van de meest uitdagende modaliteiten voor medische 
beeldanalyse. We hebben laten zien dat onze semiautomatische MCCT detectie, gebaseerd 
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op Dynamic Programming en Pattern Matching, een bruikbare en betrouwbare manier 
levert om 2D echocardiografische beeldseries te analyseren. Verder leveren de nieuwe 
contourdetectiemethoden gebaseerd op Active Appearance Models superieure 
mogelijkheden voor automatische analyses van echocardiografische beelden, omdat ze in 
staat zijn een realistische modellering te genereren van zowel de variabiliteit tussen 
patiënten als de typische problemen en artefacten in de echocardiografie. 

Met de verbeteringen in de echocardiografische beeldacquisitie en de vooruitgang in 
analysemethodes zal volautomatische, betrouwbare analyse van echocardiografische 
beelden uiteindelijk werkelijkheid worden. 
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About the cover 

 
A few words on the design of the cover of this thesis; the connection to the subject might 
be somewhat enigmatic to many readers.  

The front cover shows The Heart (highlighted in red), a remarkable granite feature on 
one of the most famous rock faces of the world: El Capitan, Yosemite Valley, California. 
Although The Heart is an unmistakable landmark once it is pointed out to you, it is not 
obvious to distinguish at first sight (see back cover and Fig. A.2), nor is it easy to estimate 
its size. Once outlined (using Echo-CMS, see Fig. A.1), its properties can be quantified. 
Central axis length is about 200 m; cross-sectional area is measured here as about 0.013 
km2. When accounting for the 27 degrees of obliqueness of the photograph, this gives us 
an estimate of 14,600 m2 (about 3 soccer fields), which probably makes it the largest 
‘heart’ on the planet. 

El Capitan (among climbers: El Cap) is the origin and world capital of big wall 
climbing, an alpine sport. A mountain face denoted as a ‘big wall’ is a large, vertical rock 
face that cannot be climbed by the normal (‘free’) techniques and requires ‘artificial’ or 
‘aid’ climbing, in which equipment such as pitons, nuts and friends are used not only for 
protection, but also for progression. A route is called a ‘big wall climb’ if the climb 
normally takes several days to complete. Like several of my friends, I’ve spent a few 
months climbing such routes. 

The almost 1000 m high face of El Cap – insurmountable as it may look - is covered 
with around a hundred of these routes [1], most of which take 5 to 10 days to complete. A 
few of such routes are shown on the back cover. Routes nr. 2 and 3, The Heart Route and 
Son of Heart, follow The Heart’s natural features. The Heart is surrounded by some of the 
most famous climbs in the world, such as Salathé Wall (opened in 1961 by Royal Robbins 
et al.; nr. 1 on back cover) and The Nose, opened in 1958 by Warren Harding et al. in 45 
days of climbing (nr. 4 on back cover). 

 
 
 
 
 
 
 
 
 
 
Figure A.1.   El Capitan, The Heart, with contour 
detected semiautomatically by Echo-CMS (with 
slight manual corrections), and quantitative results 
(long axis length, circumference, cross-sectional 
area). Note on the calibration: 1cm corresponds to 
1km in this case. 
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Figure A.2.   El Capitan, Southwest face, with 
The Heart, as seen from Valley View. 
(photograph courtesy of Nick Strobel, 
Bakersville, CA). Insert: the Euromast (186 m), 
at the same scale 
 
 

 
 

Both routes have only in recent years 
(1988/93) been climbed free [2,3]. The 
Nose was climbed free within one day by 
Lynn Hill in 1994 [3], an extraordinary 
event that has drawn great attention 
internationally and that was never repeated 
up to the fall of 2005. 

Defining a route is very much like 
image segmentation: given the natural 
features of the rock, a coarse plan and 
certain constraints (like other routes), the 
task is to find the best path, by minimizing 
‘costs’ or maximizing ‘reward’, according 
to some criterion. 

With a speed of about 0.01 km/h, big wall climbing is probably the slowest sport in the 
world. The sport involves technical, climbing and organizational skills, physical but 
especially mental strength and endurance. Much of the effort is spent on logistics, like 
hauling large bags of climbing equipment, food and especially drinking water up the 
route. For the rest, you’re hammering in pitons, testing your placements, finding your 
way, disentangling your ropes, fearing for the problems of the next pitch, standing the 
heat and dreaming of water and food... In effect, you gain height very, very slowly. 
Reaching the summit, however, sets off an explosion of relief and triumph. 
 
In my opinion, there are many more analogies between the descriptions above and the 
subjects of this thesis, or, for that matter, with scientific research in general. So – find the 
10 similarities and color the pictures... 
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