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Chapter 5

Image

Let n and k be positive integers, let ε be a character of (Z /nZ )∗ with values
in C∗ and let f : Tε(n, k) → F` be a morphism of rings, where ` is a prime
not dividing n and 2 ≤ k ≤ ` + 1. The aim of this part of the thesis is
to give an algorithm which determines the image of the associated Galois
representation ρf , as in Corollary 4.0.5, up to conjugacy as subgroup of
GL2(F`).

In this chapter we prove that the image of the representation in GL2(F),
where F is the �eld of de�nition of the representation, is determined, up to
conjugation in GL2(F`), once we have computed the set of determinants of
the representation and the projective image Pρf (GQ ) ⊂ PGL2(F′) of the rep-
resentation, where F′ is the �eld of de�nition of the projective representation.
In Chapter 9 we will show that it is possible to compute such �elds.

In the �rst section of this chapter we recall the classi�cation of the subgroups
of PGL2(F`) given in Dickson's Theorem, this is a key element for the algo-
rithm we want to outline. In the second section, we describe the output of the
algorithm. We explain how to express the image of the Galois representation
ρf , up to conjugacy as subgroup of GL2(F`), using the projective image and
the set of determinants, under the hypothesis of having already determined
the de�nition �eld for the representation and the projective representation.

5.1 Projective image

Let n and k be positive integers, let ε : (Z /nZ )∗ → C∗ be a character and
let f : Tε(n, k)→ F` be a morphism of rings from the Hecke algebra of level
n, weight k and character ε : (Z /nZ )∗ → C∗ to an algebraic closure of
F`, where ` is a prime not dividing n. Let ρf be the Galois representation
associated to f in Corollary 4.0.5, and let F be the �eld of de�nition for the
representation.

The image of the representation ρf is a conjugate of a subgroup of GL2(F).

In the following Theorem, due to Dickson, see [Dic58] and [Lan76], are listed
all �nite subgroups of PGL2(F`), for ` ≥ 3, up to conjugation:

Dickson's Theorem. Let ` ≥ 3 be a prime and H a �nite subgroup of
PGL2(F`). Then a conjugate of H is one of the following groups:
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5.1 Projective image

� a �nite subgroup of the upper triangular matrices;
� SL2(F`r)/{±1} or PGL2(F`r) for r ∈ Z>0;
� a dihedral group D2n with n ∈ Z>1 and (`, n) = 1;
� a subgroup isomorphic to either A4, or S4 or A5.

In the last case, i.e. when H is conjugate to a subgroup of PGL2(F`) isomor-
phic to either A4, or S4 or A5, we give the following de�nition:

De�nition 5.1.1. Let ` ≥ 3 be a prime and let G be a subgroup of GL2(F`).
If the projective image of G is conjugate to a subgroup of PGL2(F`) isomor-
phic to either A4, or S4 or A5, we call G projectively exceptional.

In characteristic 2, there is a similar classi�cation to the one presented in
Dickson's Theorem:

Theorem 5.1.2 ([KW09a, Lemma 6.1]). Let H be a �nite subgroup of
PGL2(F2). Then a conjugate of H is one of the following groups:
� a �nite subgroup of the upper triangular matrices;
� SL2(F2r)/{±1} or PGL2(F2r) for r ∈ Z>0;
� a dihedral group D2n with n ∈ Z>1 and (n, 2) = 1.

In particular, if ` > 5 and the order of G is divisible by `, then either G is
contained in a Borel subgroup of GL2(F), where F is the �eld of de�nition of
the representation, or G contains SL2(F′), where F′ is the �eld of de�nition of
the projective representation. If the order of G is prime to the characteristic
of the �eld, then its projective image is:
� either cyclic and G is contained in a Cartan subgroup;
� or dihedral, and G is contained in the normalizer of a Cartan subgroup
but not in the Cartan subgroup itself;

� or conjugate to a subgroup isomorphic to one of the following groups: A4,
S4, or A5.

Let us recall that a Cartan subgroup C is a semi-simple maximal abelian sub-
group of GL2(F) and a Borel subgroup is a maximal closed connected solvable
subgroup of GL2(F). Hence, the subgroup of upper-triangular matrices is a
Borel subgroup in GL2(F). Since the representation ρf is semi-simple, if the
projective image is cyclic and the order of G is prime to the characteristic,
then the representation ρf is reducible: its image is an abelian group, while
in the other cases it is irreducible.

What we have just discussed motivates the following de�nition:

De�nition 5.1.3. Let n and k be two positive integers, let ` be a prime such
that (n, `) = 1 and 2 ≤ k ≤ `+ 1, and let ε : (Z /nZ )∗ → C∗ be a character.
Let f : Tε(n, k)→ F` be a morphism of rings and let ρf : GQ → GL2(F`) be
the representation attached to f in Corollary 4.0.5. If G := ρf (Gal(Q /Q ))
has order prime to ` we call the image exceptional. Moreover, we refer to the
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5.1 Projective image

�eld of de�nition of the projective representation Pρ as the Dickson's �eld
for the representation.

We will discuss about reducible representations in Chapter 7 and we will
study irreducible representation with exceptional images in Chapter 10. In
order to determine the projective image we need to determine the Dickson
�eld of the representation, which is the �eld of de�nition of the projective
representation and this is done in Chapter 9.

Remark 5.1.4. In characteristic 2, 3 and 5 we give a more explicit statement
of Dickson's Theorem, since it will be useful in the following discussion.

For ` = 2, let us underline that in Theorem 5.1.2 groups with projective
image isomorphic to A4, S4 and A5 are not explicitly listed, this follows
because:
� S4 cannot occur as irreducible representation: any element in GL2(F2) of
order a power of 2 is forced to be of order 1 or 2.

� A4 has a normal subgroup of order 4, hence, any group with projective
image A4 is conjugate to a subgroup of the upper triangular matrices of
GL2(F2): for any �nite extension F of F2, a Sylow 2-subgroup of GL2(F) is
given by the unipotent matrices. For more details and a proof see [Fab11,
Proposition 4.13].

� A5 is isomorphic to SL2(F4). Since all icosahedral groups are conjugated,
see [Fab11, Proposition 4.23], the Dickson's �eld of the representation is
F4.

For ` = 3, Dickson's Theorem can be stated in the following way: let H a
�nite subgroup of PGL2(F3), then a conjugate of H is one of the following
groups:
� a �nite subgroup of the upper triangular matrices;
� SL2(F3r)/{±1} or PGL2(F3r) for r ∈ Z>0;
� a dihedral group D2n with n ∈ Z>1 and (n, 3) = 1;
� a subgroup isomorphic to A5.
In any odd characteristic all octahedral (respectively tetrahedral) groups, i.e.
groups isomorphic to A4 (respectively S4), are conjugate, see [Fab11]. In
particular, we have that S4 is isomorphic to PGL2(F3) and applying [Fab11,
Proposition 4.17] we have that the Dickson's �eld of the representation is F3.
Similarly, A4 is isomorphic to SL2(F3)/{±1} and by [Fab11, Proposition 4.14]
the Dickson's �eld of the representation is F3.

Let us remark that icosahedral groups, i.e. groups isomorphic to A5, are
all conjugate in characteristic di�erent from 5 and that they can occur in
characteristic 3 only over extensions of F9 by [Fab11, Theorem A (4)]. Hence,
in this last case F9 is a sub�eld of the �eld of de�nition of the projective
representation since it is the Dickson's �eld of the representation.

For ` = 5, we have that A5 is isomorphic to SL2(F5)/{±1} and that all icosa-
hedral groups are conjugate to SL2(F5)/{±1} by [Fab11, Proposition 4.23].
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5.2 Image

Applying [Fab11, Proposition 4.13] and [Fab11, Proposition 4.17], we con-
clude that the Dickson's �eld for projectively exceptional groups is F5.

In the following remark we give a criterion to decide if the image of a modular
semi-simple 2-dimensional irreducible Galois representation is exceptional.

Remark 5.1.5. For any �eld k, let ϕ : PGL2(k)→ k be the function de�ned
by ϕ(γ) = Trace(γ)2/ det(γ) with γ ∈ PGL2(k). The following statement
holds:

Proposition 5.1.6 ([Bos11, Proposition 1]). Let q ≥ 4 be a prime power
and let ϕ : PGL2(Fq) → Fq. Let G be a subgroup of SL2(Fq)/{±1}. Then
we have G = SL2(Fq)/{±1} if and only if ϕ(G) = Fq.

This gives a test to control beforehand if the representation is not excep-
tional, and we will see that this will be relevant for projectively exceptional
images.

5.2 Image

Let n and k be positive integers, let ε : (Z /nZ )∗ → C∗ be a character
and let f : Tε(n, k) → F` be a morphism of rings, where ` is a prime not
dividing n. Let ρf be the associated semi-simple Galois representation,
as in Corollary 4.0.5. In this section we will use the following notation:
G = ρf (GQ ) ⊂ GL2(F) is the image of the representation, where F is the
�eld of de�nition of ρf ; the image of the projective representation is de-
noted by H = π(G), where GL2(F)

π→ PGL2(F) is the quotient map, and
D := {det(g) ∈ F∗,∀g ∈ G} ⊆ F∗ is the set of determinants, i.e. the image
of the map det : G→ F∗.

The representation is semi-simple, therefore if it is reducible, then it is de-
composable. Hence, if we determine the characters in which it splits, then
we have a complete description of the image. This problem is addressed in
Chapter 7

If the representation is irreducible and projectively dihedral, i.e. H is a di-
hedral subgroup of PGL2(F), then there exist a character, corresponding to
a quadratic extension of Q , such that the representation ρf is the induced
representation of GQ by this character, in Chapter 10 we will prove this
statement. We will also show that there exists a quadratic character such
that the representation and its twist by this character are equivalent. By
Dickson's Theorem, in this case the projective image contains a maximal
cyclic subgroups of order d not divisible by `. Therefore, the projective im-
age is isomorphic, up to conjugation, to µd(F`) o Z /2Z , with the action
given by z 7→ z−1. Conjugation corresponds to the choice of an embedding
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5.2 Image

for µd(F`). As stated in [Ser72, Section 2.6, ii)] and [Ser72, Proposition 17],
the image G is then contained in the normalizer of a Cartan subgroup. Let
F′ be the �eld of de�nition of the projective representation, the following
two cases can occur:

1. d divides the cardinality of F′∗. In this case there exists an embedding

ζd 7→
(
ζd 0
0 1

)
where ζd is an element of order d. Since all normalizers of

split Cartan subgroups are Galois conjugated, see [Lan76, Chapter XI],
we have that the image is given by

G ∼=

{
A

(
ζ
i
d 0

0 1

)
, A

(
0 ζ

j
d

1 0

)
for i, j ∈ Z /dZ and A ∈ D

}

2. d does not divide the cardinality of F′∗, but d divides the cardinality of
F′(
√
δ)∗, where δ ∈ F′∗ is not a square. In this case there is an embed-

ding ζd 7→ ( α 0
0 α ) where α ∈ F′(

√
δ) is an element of order d. Hence, G

is a Normalizer of a non-split Cartan, see [Ser72, Section 2.1, b)].

In the remaining cases, i.e. when the representation is not reducible and the
projective image is not dihedral, we derive the description of the image from
Goursat's Lemma, see [Rib76a, Section V]:

Goursat's lemma. Let A,A′ be groups, and let B be a subgroup of A×A′
such that the two projections p1 : B → A and p2 : B → A′ are surjective.
Let N be the kernel of p2 and N ′ the kernel of p1. Then the image of B in
A/N ×A′/N ′ is the graph of an isomorphism A/N ≈ A′/N ′.

If the �eld of de�nition of the projective image is F2, then the representation
is reducible or dihedral by Theorem 5.1.2: let us recall that

PGL2(F2) ∼= GL2(F2) ∼= D6
∼= S3,

and in both cases we are not interested in using this approach.

Let F be a �nite �eld, such that F2 6⊂ F, then the following sequence is exact:

1→ µ2(F)→ GL2(F)
(π,det)−→ PGL2(F)× F∗ → F∗/(F∗)2 → 1 (†)

where µ2(F) and F∗/(F∗)2 are respectively the kernel and the co-kernel of
the map (π,det). For F2 we have that PGL2(F2) ∼= GL2(F2).

Let F′ be a sub�eld of F, let us recall that if F 6= F2, then we have the
following sequence:

1 // µ2(F) //

&&

GL2(F)
(π,det)// PGL2(F)× F∗ // F∗/(F∗)2 // 1

GL2(F′) · F∗

OO

(π,det)// PGL2(F′)× F∗

OO 77
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5.2 Image

where the group GL2(F′) · F∗ is the subgroup of GL2(F) given by matrices
of GL2(F′) multiplied by scalar matrices in F∗. We will call such a group a
scalar extension of GL2(F′) by F.

Let us denote by q the quotient map GL2(F) → GL2(F)/µ2(F). The map
(π,det) in sequence (†) is injective on GL2(F)/µ2(F). Hence, we have the
following diagram:

F∗/µ2(F)
((

((

F∗ // // {±1}

∼=

{{

GL2(F)/µ2(F)

det

66 66

π

(( ((

//(π,det)// PGL2(F)× F∗

p1
��

p2

OO

// // {±1} × {±1}
p1
��

p2

OO

SL2(F)/{±1}
66

66

PGL2(F) // // {±1}

and by Goursat's Lemma, we conclude that the image of GL2(F)/µ2(F) in
the quotient is uniquely determined since the isomorphism is unique.

Let F and F′ be respectively the �eld of de�nition of the representation and
of the projective representation and let G := q(G). Let us assume that the
representation is irreducible and not dihedral, since these cases are treated
in a di�erent way. We have the following diagram:

N ′ �D##

##

D // // D := D/N ′

∼=

vv

G
q // // G

det

77 77

π

'' ''

// (π,det) // H ×D

p1

��

p2

OO

// // H ×D

p1
��

p2

OO

N �H
;;

;;

H // // H := H/N

where: G ⊆ GL2(F)/µ2(F), by de�nition of the map q; the group H ×D is
a subgroup of PGL2(F′) × F∗ since F and F′ are the �elds of de�nitions of
the image and the projective image respectively; and N,N ′ are respectively
normal subgroups in H and D. Let us remark that N contains all matrices
with determinant one ofG, since it is the intersection ofG with SL2(F)/{±1},
and, similarly, N ′ contains the scalar matrices of G: it is the centre of G.
Since D ⊆ F∗, then D is a cyclic subgroup. Applying Goursat's lemma it
follows thatH is a cyclic group too since the image of G inH×D is the graph
of an isomorphism between H and D. Then N �H is a normal subgroups
with cyclic quotient.

The representation is irreducible and its projective image is not dihedral,
therefore we have the following list of possible projective images H by Dick-
son's Theorem:
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5.2 Image

� H ⊇ SL2(F′)/{±1}. If F′ is neither F2 nor F3, then N = SL2(F′)/{±1}
or N = H, hence, H ⊆ {±1}. This follows because SL2(F′)/{±1} is
a simple group under these hypotheses. The case F′ = F2 is excluded
by our assumptions, and the possibility F′ = F3 is treated in the cases
of octahedral and tetrahedral projective image since we have respectively
SL2(F3)/{±1} ∼= A4 and PGL2(F3) ∼= S4.

� H ∼= S4, then either N = A4 and so H = {±1}, or N = H, therefore
H = {1}.

� H ∼= A4, then either N ∼= V4 is the subgroup given by double transpo-
sitions, then H ∼= C3 the cyclic group of 3 elements, or N = H, then
H = {1}.

� H ∼= A5, then N = A5 so H = {1}, since A5 is simple.
From this list we deduce that if H is not isomorphic to A4, Goursat's lemma
implies that the group G is uniquely determined. In the remaining case,
if H ∼= C3 there are be two possible isomorphism which are twist of each
other. We will see that they correspond to the choice of a character of C3

and, in particular, we will show that also in this case we can determine G
uniquely. Moreover, if −1 belongs to G then G = q−1(G), hence it is possible
determine G, the image of the representation, up to conjugacy as subgroup
of GL2(F`).

Now we will proceed to describe G, up to conjugacy as subgroup of GL2(F`),
for all possible H, listed according to Dickson Theorem. We will not consider
the reducible and the dihedral case. We will also show, case by case, that
−1 belongs to G.
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5.2 Image

� H ⊇ SL2(F′)/{±1} where F′ is the �eld of de�nition of the projective
representation.

Proposition 5.2.1. Let ` be a prime and let F be a �nite extension of F`.
Let G be a subgroup of GL2(F) with projective image H = SL2(F′)/{±1}
where F′ ⊆ F. Then, up to conjugation as subgroup of GL2(F`),

G = (SL2(F′) · F∗ det−→ (F∗)2)−1(detG).

Proof. Since H = SL2(F′)/{±1}, then by [EC11, Lemma 2.5.1] we have
that G contains SL2(F′). Moreover, since G ⊆ GL2(F) we have also that
G ⊂ SL2(F′) · F∗ because H is SL2(F′)/{±1}. In this case −1 belongs to
the image G since it belongs to SL2(F′). The following diagram resume the
hypotheses:

SL2(F) ∩G = SL2(F′) // // G

��

det // detG

��
SL2(F′) // � // SL2(F′) · F∗ det // (F∗)2

V // // F∗
�

OO
s

88

where V = (F∗ s→ (F∗)2)−1(detG) and s is the map sending x to x2. Since
SL2(F′) ⊆ G ⊆ SL2(F′) · F∗ and G = V · SL2(F′) then the statement follows.

Proposition 5.2.2. Let ` be a prime and let F be a �nite extension of F`.
Let G be a subgroup of GL2(F) with projective image H = PGL2(F′) where
F′ ⊆ F. Then, up to conjugation as subgroup of GL2(F`),

G = (GL2(F′) · F∗ det−→ F∗)−1(detG).

Proof. The proof is analogous to the proof of Proposition 5.2.1, but in this
case we have the following inclusions SL2(F′) ⊆ G ⊆ GL2(F′) · F∗.

Remark 5.2.3. If the projective image is isomorphic to SL2(F′)/{±1}, then
the determinants of the matrices in G belong to the set of squares (F∗)2,
while if the projective image is isomorphic to PGL2(F′), then they belong to
F∗.

� H ∼= A4

Let us recall that the group A4 has no non-trivial 2-dimensional irreducible
linear representation. Moreover, let r be a positive integer, the second co-
homology group H2(A4,Z /2rZ ) is isomorphic to Z /2Z by [Que95, Proposi-
tion 2.1 (i)]. Therefore, since this group classi�es the central extensions of A4
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5.2 Image

with kernel Z /2rZ , we have that there exists only one non-trivial extension
up to isomorphism. For r = 1, this extension is isomorphic to the group
SL2(F3) since SL2(F3)/{±1} ∼= A4, and this group does admit 2-dimensional
irreducible representations.

The complex linear 2-dimensional irreducible representations of SL2(F3) are
listed in Table 5.1 below.

SL2(F3) ( 1 0
0 1 ) ( -1 0

0 -1 ) ( 1 1
0 1 ) ( 1 -1

0 1 ) ( -1 1
0 -1 ) ( -1 -1

0 -1 ) ( 0 -1
1 0 )

Trace(τ1) 2 −2 −1 −1 1 1 0
Trace(τ2) 2 −2 1 + ζ −ζ ζ −1−ζ 0
Trace(τ3) 2 −2 −ζ 1 + ζ −1−ζ ζ 0

Table 5.1: List of the traces of 2-dimensional irreducible representations of
SL2(F3) in characteristic zero, computed in PARI/GP. In the �rst row are
listed representatives for the conjugacy classes. In the table ζ denotes a �xed
3-rd root of unity.

The representations τ1, τ2 and τ3 are three 2-dimensional faithful irreducible
representations of SL2(F3) in characteristic zero and they are twist of each
other by a character acting on C3, the maximal cyclic group inside A4. Hence,
we have that τ2(SL2(F3)) and τ3(SL2(F3)) are contained in the scalar exten-
sion of τ1(SL2(F3)) by Z [ζ]∗.

Let us remark that the representations of SL2(F3) in characteristic ` are
reduction modulo ` of the representations in characteristic zero. The rep-
resentation τ1 is realized over Z , while the representations τ2 and τ3 are
realized over Z [ζ].

Let λ be a maximal ideal over ` in the �eld of de�nition of the representation,
composing with the projection to the quotient we have a representation in
characteristic `. Let us still denote by τ1, τ2 and τ3 the three representation
obtained �xing a maximal ideal over ` and reducing the characteristic zero
representation modulo that ideal. We have that τ2(SL2(F3)) and τ3(SL2(F3))
are contained in the scalar extension of τ1(SL2(F3)) by F∗`2 . Moreover, let us
remark that for an odd prime `, the representations τ1, τ2 and τ3 are three
2-dimensional faithful irreducible representations of SL2(F3) in characteristic
`. Meanwhile, for ` = 2 they are 2-dimensional representation of C3, hence
they are reducible.

The images of the projective representations given composing τ1, τ2 and τ3

with the natural quotient map are isomorphic to A4 in any characteristic
di�erent from 2. In characteristic 2 they are isomorphic to C3 and their
kernel is V4, the Klein four group, given by double transpositions in A4.
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5.2 Image

Proposition 5.2.4. Let ` > 3 be a prime and let F be a �nite extension of
F`. Let G be a subgroup of GL2(F) with projective image H ⊂ PGL2(F), and
such that G acts irreducibly on P1(F). Let us assume that H is isomorphic
to A4. Then −1 belongs to G and the group G, up to conjugation as subgroup
of GL2(F`), is given by

G = (τ1(SL2(F3)) · F∗ det−→ (F∗)2)−1(detG),

where τ1 is the reduction modulo ` of the representation in Table 5.1.

Proof. Under the hypotheses of the proposition we have the following dia-
gram:

F∗` // // GL2(F`)
π // // PGL2(F`)

G ∩ F∗` // //

OO

G
π // //

OO

H ∼= A4.

OO

Let us recall that there is only a subgroup, up to conjugation, isomor-
phic to A4 in PGL2(F`) by [Bea10, Proposition 4.1] or [Fab11, Proposi-
tion 4.14]. Since A4 has no normal subgroup of order 2 then H is contained
in SL2(F`)/{±1}. Therefore, for ` > 3 the following diagram is exact:

{±1} // // SL2(F`)
π // // SL2(F`)/{±1}

{±1} // // SL2(F3) // //

τ1

OO

A4
∼= SL2(F3)/{±1} ∼= H ∼= π(τ1(SL2(F3)))

OO

where the map τ1 is a 2-dimensional representation of SL2(F3), given reduc-
ing the representation in Table 5.1 modulo `. Let us remark that the �eld
of de�nition of the representation τ1 is F`.

Let us show that −1 belongs to G. Proceeding by contradiction, let us
assume −1 is not in G. This means that G ∩ F∗` is cyclic of odd order,
by simple computation. Therefore, the determinant is a character of odd
order once restricted to G∩ F∗` . So, extending G by scalars, the intersection
G ∩ F∗` is trivial: this corresponds to twist the action of G on P1(F) with a
power of the determinant. Hence, there exists a non-trivial scalar extension
of G which is isomorphic to A4 and is a subgroup of GL2(F`). Since A4

does not admit 2-dimensional non-trivial irreducible representations, we get
a contradiction.

Since −1 belongs toG we have that the image of the determinant has 2-power
order and also G ∩ F∗` has 2-power order.

Let σ ∈ A4 be an element of order 3, and let σ̃ be a preimage of σ. Then
π(σ̃3) = 1 so σ̃3 ∈ G ∩ F∗` . This group is a cyclic group of 2-power order,
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5.2 Image

hence, the order of σ̃ is 3 · 2t for t ∈ Z>0. Let σ̃′ = σ̃2t , hence σ̃′ has order
3 and π(σ̃′) = σ±1 has order 3.

Let G3 be the subgroup of G generated by elements of order 3. The subgroup
G3 maps surjectively to A4 via π, since A4 is generated by 3-cycles. Moreover,
G3 is contained in SL2(F) and its intersection with the scalar matrices in
given by {±1}, otherwise A4 would have a 2-dimensional representation.
This means that G3 is a subgroup of SL2(F) and by construction it is a
central extension of A4 by {±1}:

G ∩ F∗` // // G
π // // H ∼= A4

{±1} // //

OO

G3

OO ;; ;;

// SL2(F).

Therefore, G3 is isomorphic to SL2(F3) because H2(A4,Z /2Z ) ∼= Z /2Z and
the trivial extension has no 2-dimensional irreducible representations. So
G3 is the image of a 2-dimensional irreducible representations of SL2(F3)
in SL2(F). From Table 5.1, it follows that G3 = τ1(SL2(F3)) since the
other representations are twist of τ1 by a non-trivial character, hence are not
de�ned over F3. The group G and the subgroup G3 both surject to a group
isomorphic to A4. This implies that for all g ∈ G there exists g′ ∈ G3 and
λ ∈ det(G) such that g = g′λ, uniquely up to sign, by construction of G3.
Hence, we have that

G3
∼= τ1(SL2(F3)) ⊆ G ⊆ τ1(SL2(F3)) · F∗.

Therefore, we have:

G

��

det // detG

��
τ1(SL2(F3)) · F∗ det // (F∗)2,

so the statement holds.

Remark 5.2.5. If the projective image is isomorphic to A4, then it is con-
tained in SL2(F′)/{±1}, where F′ is the �eld of de�nition of the projective
representation. So, the set of determinant of the representation is a subset
of the set of squares of F, �eld of de�nition of the representation.

� H ∼= S4

The group S4 has no non-trivial 2-dimensional irreducible linear represen-
tations.
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Let r be a positive integer, the second cohomology group H2(S4,Z /2rZ )
is isomorphic to Z /2Z × Z /2Z by [Que95, Proposition 2.4 (i)]. There-
fore, since this group classi�es the central extensions of S4 with kernel
Z /2rZ , we have that there exist three non-trivial extension by Z /2rZ up
to isomorphism. Among them only one is odd: this follows from [Que95,
Lemma 3.2]. For r = 1, this extension is isomorphic to the group GL2(F3)
since PGL2(F3) ∼= S4.

The complex linear 2-dimensional irreducible representations of GL2(F3) are
listed in the following table:

GL2(F3) ( 1 0
0 1 ) ( -1 0

0 -1 ) ( 0 1
-1 0 ) ( 0 1

1 -1 ) ( 0 1
1 1 ) ( 1 1

0 1 ) ( -1 1
0 -1 ) ( 1 0

0 -1 )

Trace(ρ1) 2 2 2 0 0 −1 −1 0
Trace(ρ2) 2 −2 0 α −α −1 1 0
Trace(ρ3) 2 −2 0 −α α −1 1 0

Table 5.2: List of the traces of 2-dimensional irreducible representations of
GL2(F3) in characteristic zero, computed in PARI/GP. In the �rst row are
listed representatives for the conjugacy classes. In the table α denotes

√
−2.

The representations ρ1 is not faithful and it corresponds to a representation
of S3. The representations ρ2 and ρ3 are 2-dimensional faithful irreducible
representations. They are twists of each other and they are de�ned over
Z [α]. In particular, ρ3

∼= ρ2 ⊗ det ρ2.

Proposition 5.2.6. Let ` > 3 be a prime and let F be a �nite extension of
F`. Let G be a subgroup of GL2(F) with projective image H ⊂ PGL2(F), and
such that G acts irreducibly on P1(F). Let us assume that H is isomorphic to
S4. Then −1 belongs to G and the group G, up to conjugation as subgroup
of GL2(F`), is given by

G = (ρ2(GL2(F3)) · F∗ det−→ F∗)−1(detG),

where ρ2 is the reduction modulo ` of the representation in Table 5.2.

Proof. We will use the same notation of the proof of Proposition 5.2.4. Since
A4 ⊂ S4 we have that −1 belongs to G. Moreover, we have that:

G

����

G3
∼= SL2(F3)oooo // //

����

GL2(F3) ∼= SL2(F3) o F∗3

����
S4 A4

oooo // // S4.
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Let G′ be the subgroup of G given by G′ := G3 oF∗3 ∼= G3 o {±1}. Then G′
is isomorphic to GL2(F3) and it surjects to H:

G

$$ $$

G′oooo // //

����

GL2(F3)

xxxx
H ∼= S4.

This implies that for all g ∈ G there exists g′ ∈ G′ and λ ∈ detG such that
g = g′λ uniquely up to sign. Hence, we have that

G′ ∼= ρ2(GL2(F3)) ⊆ G ⊆ ρ2(GL2(F3)) · F∗,

and so the statement holds.

Remark 5.2.7. Let us remark that, since ρ3 = ρ2 ⊗ det(ρ2) and det(ρ2)
belongs to {±1}, the choice of ρ2 instead of ρ3 does not change the image of
the representation up to conjugation.

� H ∼= A5

The group A5 has no non-trivial 2-dimensional irreducible linear representa-
tions.

Let r be a positive integer, the second cohomology group H2(A5,Z /2rZ ) is
isomorphic to Z /2Z by [Que95, Proposition 2.1 (i)]. Therefore, there exists
only one non-trivial extension up to isomorphism. For r = 1, this extension
is isomorphic to the group SL2(F5) since PGL2(F5) ∼= S4, and this group
does admit 2-dimensional irreducible representations.

The complex linear 2-dimensional irreducible representations of SL2(F5) are
listed in the following table:

SL2(F5) ( 1 0
0 1 ) ( -1 0

0 -1 ) ( 0 -1
1 -1 ) ( 2 0

0 3 ) ( 1 1
0 1 ) ( 1 2

0 1 ) ( 0 -1
1 1 ) ( -1 1

0 -1 ) ( -1 2
0 -1 )

Trace(ι1) 2 −2 −1 0 η η2 1 −η −η2
Trace(ι2) 2 −2 −1 0 η2 η 1 −η2 −η

Table 5.3: List of the traces of 2-dimensional irreducible representations of
SL2(F5) in characteristic zero, computed in PARI/GP. In the �rst row are
listed representatives for the conjugacy classes. In the table η denotes a �xed
5-th root of unity.

The representations ι1 and ι2 are 2-dimensional faithful irreducible repre-
sentations and they are twist of each other. Moreover, there is an outer
automorphism for which this two representations are conjugate (for example
conjugation by ( 2 0

0 1 ) ∈ GL2(F5)), hence up to conjugation in GL2(F`), these
representation have the same image.
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Proposition 5.2.8. Let ` be an odd prime di�erent from 5 and let F be a
�nite extension of F`. Let G be a subgroup of GL2(F) with projective image
H ⊂ PGL2(F), and such that G acts irreducibly on P1(F). Let us assume
that H is isomorphic to A5. Then −1 belongs to G and G, up to conjugation
as subgroup of GL2(F`), is given by

G = (ι1(SL2(F5)) · F∗ det−→ (F∗)2)−1(detG),

where ι1 is the reduction modulo ` of the representation in Table 5.3.

Proof. There is only a subgroup, up to conjugation, isomorphic to A5 in
PGL2(F`) by [Bea10, Proposition 4.1] or [Fab11, Proposition 4.22]. Since A5

has no normal subgroup of order 2 then H is contained in SL2(F`)/{±1}.
Since A4 ⊆ A5, we can proceed as in Proposition 5.2.4 and conclude that −1
belongs to G.

Let [G,G] be the commutator of G, let us recall that A5 is a perfect group
i.e. A5 = [A5,A5]. By hypotheses G surjects to A5 so also [G,G] surject
to [A5,A5] = A5. Moreover, [G,G] ∈ SL2(F`) since elements of the form
ghg−1h−1 have determinant 1. Hence, we have the following diagram:

G

"" ""

[G,G]oooo

����

// // SL2(F`)

A5 SL2(F5)

OO

oooo

which implies that ∀g ∈ G there exist g′ ∈ [G,G] and λ ∈ (detG) such that
g = g′λ uniquely up to sign. Since [G,G] ∈ SL2(F`) and H2(A5,Z /2Z ) is
isomorphic to Z /2Z , then [G,G] ∼= SL2(F5). Hence, we conclude that

[G,G] ∼= ι1(SL2(F5)) ⊆ G ⊆ ι1(SL2(F5)) · F∗.

And, since up to conjugation in GL2(F`) the representations ι1 and ι2 are
equivalent, the statement follows.

Remark 5.2.9. In Proposition 5.2.4 and 5.2.6 we assume the characteristic
di�erent from 2 and 3. Indeed, in the �rst case the representation is re-
ducible by Theorem 5.1.2. In characteristic 3, projective image isomorphic
to A4 or to S4 corresponds to have big image. In this last case we apply
Proposition 5.2.1 and Proposition 5.2.2 to determine the image of the lin-
ear 2-dimensional representation: the set of determinant is known, hence we
distinguish the two cases. Analogously, in Proposition 5.2.8 we assume the
characteristic di�erent from 2 and 5. Indeed, in both cases, projective image
isomorphic to A5 corresponds to have big image, therefore we apply Proposi-
tion 5.2.1 to determine the image of the linear 2-dimensional representation.
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