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Chapter1

General introduction 

Plants produce a high diversity of secondary metabolites (SMs). The number of SMs which have been 
identified exceeds 100 000 (Wink, 2009) and the chemical structures of at least 47 000 SMs have 
been described (De Luca and St Pierre, 2000). With many more SMs yet to be discovered, estimates 
of the total number of SMs in plants exceed 500,000 (Hadacek, 2002). Within a particular species, or 
individual plant, a number of major SMs are usually accompanied by several derivatives as minor com-
ponents (Wink, 2003). For instance, 34 glucosinolates were found in Arabidopsis thaliana (Kliebenstein 
et al, 2001) and more than 20 indole alkaloids were produced in hairy root culture from Rauvolfia 
serpintina (Sheludko et al, 2002). Beside the structural diversity, SMs often show a large variation in 
concentration. A good example is the variation in the total concentration of the aliphatic glucosinolates 
in leaves of the ecotypes of A. thaliana, which varied nearly 20 fold in total concentration (Kliebenstein 
et al, 2001). Qualitative and quantitative variation of SMs in plants is determined by genetics (Vrieling 
et al, 1993; van Dam and Vrieling, 1994; Kliebenstein et al, 2001; Macel et al, 2004), the environment 
and the interaction between these two (Arany et al, 2009; Lankau and Kliebenstein, 2009; Kirk et al, 
2010). As yet, it is poorly understood from an evolutionary point of view how SM diversity emerged 
and why it is maintained in nature. 

In this thesis I will study this evolutionary question from a perspective of the SMs’ functions. As 
a study system I have chosen the pyrrolizidine alkaloids (PAs) of Jacobaea (syn. Senecio) species. I will 
investigate whether structurally related PAs in Jacobaea species can differentially influence the plants 
resistance against specialist and generalist insect herbivores. I will study the variation in PA compo-
sition and concentration among circa 100 F2 hybrid genotypes of a cross between Jacobaea aquatica 
(syn. Senecio aquaticus) and Jacobaea vulgaris (syn. Senecio jacobaea). Making use of the indepen-
dent segregation of different structural types of PAs, I will study the effect of PAs on plant resistance 
against generalist and specialist insect herbivores. 

1. Secondary metabolites
In 1873, Julius Sachs, one of the founders of plant physiology realized that plants contained substances 
with no obvious function. In 1891, plant physiologist Albrecht Kossel designated the term “secondary” 
for these low-molecular weight and seemingly non-functional metabolites present in plants. Almost 
in the same period, others, such as Anton Kerner von Marilaun, Ernst Stahl and Leo Errera found 
that secondary metabolites protected plants from attack of animals (see reviews by Hadacek, 2002; 
Hartmann, 2007 and 2008). 

Classes of compounds that are regarded as SMs include, amongst others, glucosides, saponins, 
tannins, alkaloids, essential oils and organic acids. These compounds differ from primary chemicals 
with respect to function and occurrence. SMs are not directly involved in the growth, development, 
or reproduction of the plant. Very often they occur in specific taxons (Fraenkel, 1959). But the distinc-
tion between primary and secondary metabolism is blurred. Firstly, not all primary metabolites (PMs) 
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occur in every plant, although primary metabolism involves the essential reactions that occur in all 
different groups of living organisms. Secondly, some SMs may also function as co-substrates or co-
enzymes in primary metabolism (Hadacek, 2002). 

Hartmann (1996 and 2007) suggested to base the definition of primary and secondary meta-
bolites on their functions. Thus PMs are universal, conservative, and indispensable chemicals, while 
SMs are exclusive, diverse, and while dispensable for growth and development, they are indispensa-
ble for survival. According to this definition, a metabolite may be a PM as well as a SM. For instance, 
canavanine from jack bean (Canavalia ensiformis) has this dual role as a PM and a SM, because it is 
both an efficient defense and a nitrogen storage compound (Rosenthal and Rosenthal, 1982). 

Fig.1 Ecological functions of plant secondary metabolism (from Hartmann, 1996)

1.1. Function of secondary metabolites (SMs) in plants  
The idea that SMs have important functions for plants has been widely accepted since the 1970s 
(Harborne, 1972; Swain, 1977). The functional aspects of plant SMs are illustrated in Fig.1 as proposed 
by Hartmann (1996). This scheme also illustrates the major groups of SMs and that SMs originate from 
common precursors of primary metabolism. SMs are involved in all the interactions between plants 
and their environment (biotic and abiotic). SMs may act as defense compounds against antagonistic 
organisms such as microbiological attackers, invertebrate and vertebrate herbivores and competing 

plants. In contrast, specialist herbivores adapted to plant defense can use particular SMs as cue for 
locating food-plants, oviposition and even utilize SMs for their own benefit. SMs are signaling chemi-
cals in communication with potentially beneficial (and non-beneficial) organisms. They may attract 
pollinators, seed dispersers (see Hadacek, 2002 and references therein). In addition, SMs may act as 
protection against abiotic stresses such as high levels of UV radiation, temperature and drought stress 
(Chen et al, 2009; Vickers et al, 2009). It was also found that plants can release distinct volatile bou-
quets of SMs when attacked and these SMs can function as indirect defense compounds by attracting 
carnivores as was shown in controlled experiments in the greenhouse (reviewed by Allison and Hare, 
2009) and in the field (Allmann and Baldwin, 2010).

1.2. Hypotheses to explain secondary metabolites (SM) diversity
Several theories and hypotheses have been put forward to explain the SM diversity in plants from the 
perspective of the function of SMs in plant defense against herbivores. Although these hypotheses are 
dealing with the diversification of all classes of SMs, they can be used to explain the diversity in struc-
turally related SMs of a specific class. After all, the diversity within a major group of SMs is generally 
greater than across different kinds of SMs (Langenheim, 1994). For instance, in A. thaliana there are 
more than 170 SMs belonging to 7 different classes, each class containing more than 10 different com-
pounds (D’Auria and Gershenzon, 2005).

Firstly, the SM diversity could be the result of Neutral Selectivity. Firn and Jones (2003 and 2009, 
see also Jones and Firn, 1991) developed the “Screening Hypothesis” to explain the evolution of plant 
SM diversity. Unlike the theories which emphasize the SMs’ function against herbivores, their hypothe-
sis states that most SMs (perhaps more than 90%, as has been estimated from commercial screening 
programs) have no distinct function for the plants and provide neither cost nor benefit in relation to 
plant fitness. In other words, most individual SMs are of neutral selection. Nevertheless, SM diversity 
is favored because it confers the likelihood of producing new active compounds. This can be compa-
red to some extent to commercial screening programs that search for novel bio-active compounds to 
certain receptor targets. In the screening programs the chance of success is directly related to the num-
ber of chemicals that can be screened in a short time, due to a very low frequency of a good match. 
It is not easy to test this hypothesis in a direct way, because it is difficult to exactly identify the func-
tion of each particular SM in plants. However, by applying this hypothesis for a group of SMs, we can 
test how many compounds from this particular group have an effect on herbivores and how many do 
not. If a high proportion of SMs (say more than 10%) shows a repellent effect, then the theory of neu-
tral selectivity may not be true for this group of SMs. In contrast to the Screening Hypothesis, many 
SMs, as for instance, PAs in Senecio species, are generally regarded as powerful defense compounds 
in plants (e.g. Hartmann, 1996).

Secondly, it was hypothesized that the SM diversity was caused by the “Arms Race” between 
plants and the herbivores. Ehrlich and Raven (1964) proposed that novel SMs increase plant fitness 
because of the reduction of herbivory. Plant species with the novel SMs have entered a new adaptive 
zone and the evolutionary radiation might follow. In turn, herbivore species that succeed to coun-
ter adapt to these SMs, gain greater fitness and evolutionary radiation happened. The next step is that 
plants again evolve new SMs. The diversity of plants, herbivorous insects and the SMs that we observe 
today could be the result of this sequence of evolutionary events. Applying this theory to explain the 
diversity within a structurally related group of SMs, it follows that individual SMs should differ in their 
effects on insect herbivores and the SMs that have most recently evolved are more effective than the 
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older ones. This theory is supported by some experimental evidence (e.g. Berenbaum and Feeny, 1981; 
Miller and Feeny, 1983, Macel et al, 2005). Cornell and Hawkins (2003) stated that herbivorous insects 
can adapt to the SMs in host plants, so it may be expected that the more widespread SMs are less toxic 
than the more narrowly distributed ones. This trend will be stronger with generalist than with specia-
list herbivores, due to the different adaption strategies of these two groups. Specialist herbivores can 
quickly adapt to novel, more toxic metabolites in specific host plants, while generalists can tolerate 
less toxic chemicals by means of feeding on many different hosts and in this way reducing their toxic 
burden. The Arms Race Theory and other hypotheses of phytochemical coevolution have been critici-
zed on a number of points and some researchers doubt whether insect herbivores could be a selective 
force on plant SMs (e.g.Thompson, 1988; Jermy, 1993). However, in general, the concept of coevo-
lution has been enthusiastically adopted and it has evoked a lot of new ideas for further development 
or modification (Futuyma and Agrawal, 2009; Janz, 2011)

Thirdly, the SM diversity could be explained by the acting of Synergistic Effects among SMs. 
If different compounds can act synergistically on herbivores, then a mixture of structurally related 
SMs could have a more toxic and deterrent effect on herbivores than the SMs individually. Therefore, 
plants obtain a benefit if they maintain a high diversity of SMs (Berenbaum et al, 1991; Dyer et al, 
2003; Macel et al, 2005). 

Finally, the SM diversity may be a result of the Selection from Multiple Herbivores. It can be 
assumed that each specific SM provides resistance to one or a number of specific herbivores. Several 
studies have revealed that the relative effects of related compounds may differently affect generalist 
insect herbivores (Mithen et al, 1995; Juenger and Bergelson, 1998; Juenger and Bergelson, 2000; 
Macel et al, 2005; Iason et al, 2011). Hence, a mixture of SMs could be selectively advantages by 
protecting the plants under the pressure from multiple herbivore species including specialists and 
generalists. 

Beside the variation of SM compositions in plants there is a high variation in concentration of SMs, 
which could be explained by the balance between benefits and direct costs or ecological costs of SM 
production. Plants benefit from the SMs because the SMs protect them from herbivores, leading to an 
increased fitness. On the other hand, production of SMs may reduce the plants’ investment to growth 
and reproduction. This is called The Direct Cost of Resistance. The trade-off between costs and bene-
fits of SM production can be used to explain the variation of SMs maintained in plants (Coley et al, 
1985; Herms and Mattson, 1992). Several studies provide support for this idea; while others did not 
find fitness costs of plant defense (see reviews by Bergelson and Purrington, 1996; Koricheva, 2002; 
Strauss et al, 2002). In the case of PAs in Jacobaea species, costs related to the PA production were 
regarded absent or small (Vrieling and and van Wijk, 1994a; Vrieling and van Wijk, 1994b; Vrieling et 
al, 1996). In some cases, the costs of the production of SMs may be not direct, but rather indirect, e.g. 
may result from increased damage by specialist herbivores. SMs defend plants from generalist herbi-
vores but at the same time they may attract specialist herbivores. The variation in SM concentration 
in plants can thus be explained by the opposing effect of specialist and generalist herbivores, which 
is called the Generalist-Specialist Dilemma (van der Meijden, 1996). This hypothesis is supported by 
the experimental evidence that in plants the concentration of defense chemicals shifted according to 
the pressure from specialist and generalist herbivores (Lankau, 2007; Arany et al, 2008). Finally, costs 
could also arise from the negative effects that SMs can exert on beneficial organisms (van der Meijden, 
1996). However, this aspect will not be a topic of this thesis.

PAs produced in a hybrid system from a cross between two Jacobaea species were chosen as a model 
to study the SM evolution. PAs from Jacobaea species are a well-documented group of SMs and PA 
biosynthesis has been intensively studied. However, the evolutionary basis of the PA diversity is not 
clear yet (Langel et al, 2011). 

2. Pyrrolizidine alkaloids (PAs)
PAs represent a class of typical SMs, which are constitutively formed in the plants containing them 
and mediating plant-herbivore interactions (Hartmann, 1999). More than 400 PAs have been identi-
fied from approx. 6000 angiosperm species (Chou and Fu, 2006), of which more than 95% belong to 
four families: Asteraceae, Boraginaceae, Fabaceae and Orchidaceae (Langel et al, 2011).

PAs can occur in plants in two forms: tertiary amine (free base) and N-oxide (Rizk, 1991; 
Wiedenfeld et al, 2008). Hartmann and coworkers showed that PAs are produced as N-oxides in the 
roots and are predominantly present as N-oxides in Senecio species. The (partial) reduction of N-oxides 
to corresponding tertiary amines can happen spontaneously during alkaloid extraction, resulting in 
an artificially high amount of tertiary PAs in the sample (Hartmann and Zimmer, 1986; Hartmann 
and Toppel, 1987, Hösch et al, 1996). However, more recent research indicated that not all PAs are 
exclusively present as N-oxides in the shoots of vegetative J. vulgaris plants. Some jacobine-like PAs 
(jacobine, jacoline, jaconine and jacozine) can regularly occur up to 50% as tertiary amines (Joosten 
et al, 2009). I will investigate the occurrence of tertiary amines in more detail in Chapter 3.

2.1 PA biosynthesis, translocation and accumulation in Jacobaea/Senecio plants 
Pelser et al (2005) reported that 26 PAs (as tertiary amines) were present in 24 species of sect -  Jacobaea. 
In Jacobaea species, all PAs except senecivernine are derived from senecionine N-oxide; senecionine 
N-oxide is synthesized in the roots, via the phloem transported to the shoots, where it is diversified 
into other PA structures (Hartmann and Toppel, 1987; Hartmann et al, 1989). Aside from structural 
diversification, PAs do not undergo any significant turnover or degradation (Hartmann and Dierich, 
1998). The diversity from senecionine N-oxide to other PAs comprises simple one-step or two-step 
reactions such as hydroxylations, epoxidations, dehydrogenations, and O-acetylations, as well as the 
more complex conversion of the retronecine into the otonecine base moiety (Hartmann and Dierich, 
1998). The first specific compound of PA biosynthesis was identified as homospermidine, which is con-
verted to spermidine and putrescine by the enzyme homospermidine synthase (HSS) (Böttcher et al, 
1993). It was shown that the HSS encoding gene originated by gene duplication (Ober and Hartmann, 
1999), independently in unrelated angiosperm families (Reimann et al, 2004). The enzymes responsi-
ble for the PA diversification are not identified yet. It has been suggested that the genes encoding for 
the PA pathway-specific enzymes are regulated by a switch-off and switch-on mechanism rather than 
by gain and loss, since PA distribution appears to be largely incidental in Senecio species (Pelser et al, 
2005). A schematic diagram representing putative PA biosynthetic pathways is shown in Appendix 1 
and the chemical structures of PAs detected in the Jacobaea hybrid system that has been used in this 
study are shown in Appendix 2.

PA accumulation in a particular tissue depends on a number of interacting processes: (i) syn-
thesis of senecionine N-oxide in roots, (ii) continuous long-distance translocation of senecionine 
N-oxide into shoots, (iii) differential senecionine N-oxide transformations in different plant organs, (iv) 
continuous allocation of PAs in the plant, and (v) tissue selective vacuolar storage of PAs (reviewed 
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by Hartmann and Dierich, 1998). In Jacobaea erucifolia (syn. Senecio erucifolius), a closely related 
species of J. vulgaris, PA biosynthesis occurs mainly in the root apex and thus coincides with the site 
of active root growth (Sander and Hartmann, 1989). This is in line with the finding that in young J. 
vulgaris plants the total PA amount in plants was positively correlated to root biomass but negatively 
correlated to shoot to root ratio, which suggested that PAs are produced by roots at a root-biomass 
dependent rate and the greater the shoot to root ratio, the greater the overall dilution of alkaloids (Hol 
et al, 2003;Schaffner et al, 2003). 

2.2. The function of PAs in plant defense against herbivores and pathogens  

2.2.1. The effect of PAs on vertebrates 
PAs are toxic for most vertebrates. Already decades ago, it was understood that, upon ingestion, in 
particular 1,2-unsaturated PAs were toxic to livestock and humans by causing damage to organs 
such as liver, lungs, and blood vessels. Most severe damage often occurs to the liver (Bull et al, 1968; 
McLean, 1970). PAs are not toxic themselves, but require metabolic activation (Mattocks, 1968; Fu et 
al, 2004; Wiedenfeld, 2011). After ingestion and absorption of PAs, the cytochrome P-450 monoxo-
genase enzyme complex in the liver can introduce a hydroxyl-group adjacent to the nitrogen-atom 
in the necine ring system. These hydroxy-PAs are unstable and are rapidly dehydrated to the corres-
ponding 3,4-dehydropyrrolizidine alkaloids (DHPAs). Ring opening at C-7 will produce a stabilized 
carbonium ion that can react with the nucleophiles such as mercapto, hydroxy and amino functio-
nal groups. Such functional groups are present for instance in proteins and PA-protein adducts will 
be formed in vivo. They also react with the amino groups of purine and pyrimidine bases present in 
DNA and RNA (Fu et al, 2004). The alkylated products can lead to abnormal functions and alkylation 
of DNA may produce mutations which in the end may result in genotoxic and tumorigenic effects. PA 
N-oxides can be reduced by bacteria and enzymes present in the gut or by the liver microsomes to 
the corresponding tertiary PAs and they show similar toxicity as the tertiary PAs. Therefore both forms 
of PAs are considered carcinogenic, mutagenic, genotoxic, fetotoxic and teratogenic (Mattocks, 1968; 
Mattocks, 1971; Mattocks, 1986; Fu et al, 2004, Wiedenfeld, 2011). 

Major detoxification pathways in vivo of PAs are: hydrolysis of the ester bonds in PAs leading 
to necic acids and the necine bases which are not toxic; N-oxidation by cytochrome P-450 yielding 
PA N-oxides which are highly water soluble and easily excreted (Mattocks, 1986). Hence, the toxicity 
level of PAs will depend on: 1)the efficiency of metabolic activation to form DHPAs and the corres-
ponding carbonium ions and: 2) the efficiency of detoxification by ester hydrolysis or N-oxidation 
and excretion via urine (Wiedenfeld and Edgar, 2011). This could explain why the effects of PAs on 
animals are structure-related and that the sensitivity to PAs is different among different animal species 
(enzymes involved in PA metabolism differ among species). For instance, typical macrocyclic diesters 
PAs (e.g. PAs in J. vulgaris) are regarded to be more toxic than monoester PAs (e.g. PAs derived from 
the necine supinidine) (Wiedenfeld and Edgar, 2011). The 1,2-saturated PAs (e.g. PAs derived from 
the platynecine) are not genotoxic to mammalians (Wiedenfeld et al, 2008). 

Contamination with PAs of livestock forage, honey and pollen (Deinzer et al, 1977; Kempf et 
al, 2010; Dübecke et al, 2011), herbal medicine and tea (Wiedenfeld and Edgar, 2011), and even milk 
(Dickinson et al, 1976; Deinzer et al, 1982; Hoogenboom et al, 2011) has been reported. PA-containing 
plants may contaminate food or they may be consumed as vegetables by mistake (Wiedenfeld and 

Edgar, 2011). Therefore, much attention has been paid to PAs because of their potential threat to human 
and animal health (Boppré, 2011), 

2.2.2. The effect of PAs on invertebrates
The toxicity mechanism of PAs to insect herbivores is not as clear as that to mammals. Frey et al (1992) 
suggested that the same mechanisms may be involved for both kinds of animals. Bioassays have demon-
strated that structurally different PAs differentially affect insect herbivores. A particular PA that was 
effective against one insect did not necessarily deter other insect species (Bentley et al, 1984; Dreyer 
et al, 1985; van Dam et al, 1995; Macel et al, 2005; Dominguez et al, 2008). PA mixtures often have 
a stronger effect on insects compared to individual PAs, indicating the presence of synergistic effects 
(Macel et al, 2005). Generally, the PA N-oxides are less deterrent than the corresponding tertiary PAs 
(Dreyer et al, 1985; van Dam et al, 1995; Macel et al, 2005). 

PA-adapted specialist insects detoxify PAs through N-oxidation (Lindigkeit et al, 1997; Naumann 
et al, 2002). PAs may stimulate the feeding and oviposition of the larva and adult of specialist insects 
(Boppré, 1986; Honda et al, 1997; Kelley et al, 2002; Macel and Vrieling, 2003; Bernays et al, 2004). 
The oviposition-stimulating effect of PAs on T. jacobaeae was observed to be different among struc-
turally different PAs but concentration-dependent effects were not found (Macel and Vrieling, 2003). 
Larval feeding-preference of specialist insects (the sawfly Aglaostigma discolour and the beetle Oreina 
cacaliae) on a PA-containing plant species (Adenostyles alliariae) was not affected by the isolated PAs 
individually added to artificial diets (Hagele and Rowell-Rahier, 2000). Some specialist insects take up 
PAs from the host plants and utilize them for their own defense or as sexual pheromones (see review 
by Trigo, 2011). Tyria jacobaeae even produces its own specific PAs by metabolizing PAs that were 
taken up from host plants (Rothschild et al, 1979). 

There are some in vivo studies which indicated the negative influence of PAs in plants on gene-
ralist herbivorous insects. Negative correlations between concentration of total PAs and of individual 
PAs such as jacobine and the resistance to the generalist insect herbivore Franklinella occidentalis were 
observed in J. vulgaris and the hybrids of J. vulgaris and J. aquatica (Macel, 2003; Leiss et al, 2009). In 
field experiments, the total amount of PAs in plants of J. vulgaris was negatively correlated to the perfor-
mance of the generalist aphid Brachycaudus cardii and the specialist aphid Aphis jacobaeae (Vrieling 
et al, 1991). It has also been observed that the young leaves of J. vulgaris plants were less damaged 
by generalist herbivorous insects than the old leaves, and the young leaves always contained higher 
amounts of PAs than the older leaves (de Boer, 1999; Leiss et al, 2009).

No relationship was found between the PAs in J. vulgaris plants and the specialist T. jacobaeae 
with regard to both preference and performance in bioassays under controlled conditions (Vrieling and 
de Boer, 1999). Similar results were found in a bioassay with T. jacobaeae and eight Senecio species 
(Macel et al, 2002). However, in a field study Macel and Klinkhamer (2010) found that the damage 
that was mainly caused by specialist herbivorous insects such as T. jacobaeae, Longitarsus jacobaeae 
and Haplothrips senecionis, on J. vulgaris plants was positively correlated to the concentration of total 
PAs and individual PAs (jacobine and jacobine N-oxide). This finding suggests that plants with higher 
concentrations of PAs are more attractive to the specialists. The studies published thus far seem to 
contradict one another. It is not clear yet whether PA variation in plants has an effect on specialist her-
bivores preference and performance. 
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2.2.3. The effect of PAs on pathogens  
It was demonstrated by means of in-vitro bioassays that PAs isolated from plants can significantly inhi-
bit the growth of many different fungal species (Jain and Sharma, 1987; Marquina et al, 1989; Reina 
et al, 1995; Reina et al, 1997; Reina et al, 1998; Hol and van Veen, 2002; Singh et al, 2002). It was 
shown that rhizosphere fungal communities were influenced by the PA content and composition of J. 
vulgaris. High PA concentrations decreased the diversity in the rhizosphere (Kowalchuk et al, 2006). 
At the other hand, there are indications that soil-born microorganisms can influence the concentra-
tion of individual PAs in J. vulgaris (Joosten et al, 2009).

2.2.4. PAs and plant inducible defense against aboveground herbivores 
It has been suggested that whether or not PAs are involved in inducible defense depends on the life 
history and ecological environment of the plants (van Dam et al, 1993). In general, the difference in 
constitutive PA levels in J. vulgaris was greater than that caused by induction. It was observed that 
the total PA concentration in J. vulgaris decreased within 6-12 h, but returned to the initial value 24 
h after the mechanically induced damage (van Dam et al, 1993). Vrieling and Bruin (1987) did not 
found a significant change of total PA concentrations in the shoots of J. vulgaris after artificial damage. 
Aboveground herbivory did not change the total concentration of PAs in the shoots, and the effect on 
PA composition was genotype-dependent (Hol et al, 2004). 

2. 3. PA variation in Jacobaea/Senecio plants

2.3.1. Inter-species variation 
A large variety of PA profiles can be found among Senecio and Jacobaea species (Langel et al, 2011). 
PA profiles are species-specific (Hartmann and Dierich, 1998). For instance, some species are very rich 
in jacobine-like PAs such as J. vulgaris, while erucifoline-like PAs dominate in J. erucifolia. However, 
PA profiles do not represent the phylogenetic relationships between the Senecio/Jacobaea species. 
This indicates that the flexible PA profiles in these species are probably helpful to protect plants from 
multiple herbivores, because flexible PA mixtures are more difficultly adapted by herbivores (Pelser 
et al, 2005; Langel et al, 2011).  

2.3.2. Intra-species variation 
PA profiles also vary within species. The existence of different chemotypes of J. vulgaris is a well 
known example for the intra-species PA variation. Based on the evaluation of the PA profiles of more 
than 100 J. vulgaris populations in Europe, it was concluded that there existed two different chemoty-
pes: the ‘jacobine chemotype’, which is dominated by jacobine and its derivatives as major PAs; the 
‘erucifoline chemotype’, dominated by erucifoline-like PAs (Witte et al, 1992). Besides these two che-
motypes, later on also a ‘senecionine chemotype’ (with senecionine-like PAs as dominating PAs) and 
a ‘mixed chemotype’ (with both jacobine- and erucifoline-like PAs as dominating PAs) were described 
(Macel et al, 2004). The distribution of the chemotypes showed a geographic pattern: The jacobine 
chemotype mostly occurs in the coastal areas and the erucifoline chemotype is mainly found inland of 
Europe (Witte et al, 1992; Vrieling and de Boer, 1999; Macel et al, 2004). Plants from the same popu-
lation often belong to the same chemotype but still they shown significant variation in relation to PA 
composition. For instance, although plants collected at Meijendel (the Netherlands) mainly contained 

jacobine, the percentage of jacobine ranged from 41 to 100% of the total PA content and the percen-
tage of erucifoline ranged from 0 to 19% (Macel et al, 2004). 

2.3.3. Intra-plant variation 
PAs are not equally distributed over the organs of individual plants. PAs are stored in vacuoles and 
typically accumulate in the inflorescences and the peripheral stem tissues, i.e. epidermal and sub-epi-
dermal cell layers in the plants, as has been shown for Senecio vulgaris (Hartmann et al, 1989). The 
total concentration of PAs in vegetative J. vulgaris plants was found to decrease with leaf age (de Boer, 
1999), and inflorescences often have a higher concentration of PAs than the leaves in reproductive J. 
vulgaris plants (Witte et al, 1992).

PA composition differs in the root and shoot of the vegetative plants of J. vulgaris, J. aquatica 
and the F2 hybrids: Generally, shoots have more variation in the composition and more jacobine-like 
PAs compared to the roots ( Joosten et al, 2009). In reproductive J. vulgaris plants, leaves have less 
senecionine-like PAs but more jacobine- or erucifoline-like PAs. In J. vulgaris erucifoline chemotype 
the proportion of acetylerucifoline was however much higher in the leaves than in inflorescences 
(Witte et al, 1992).

The PA concentration on the leaf surface of J. vulgaris is much lower (less than 1%) compared 
to the interior of the leaves. The concentration at the surface of the leaves was only marginally cor-
related with that of the interior, and the PA composition on the leaf surface also differed from the PA 
spectrum inside (Vrieling and Derridj, 2003). 

2.3.4. Genetic control and environmental influence on PA variation 
It has been estimated that under climate room conditions 50-100% of the variation in total PA con-
centration is due to genetic variation (Vrieling et al, 1993). PA measurements on replicated genotypes 
illustrated that the PA concentration and composition were genotype-dependent (Macel et al, 2004; 
Joosten et al, 2009). PA accumulation in plants is also affected by abiotic environmental factors such 
as nutrients and water. It was found that J. vulgaris plants grown under drought or nutrient stress con-
ditions tend to have higher PA concentrations, than those grown under normal conditions (Vrieling 
and van Wijk, 1994). Increased nutrient availability leads to a significant reduction in total PA concen-
tration in shoots of J. vulgaris plants (Hol et al, 2003). It was postulated that in this particular situation 
of rich nutrient supply, the decreased PA level in shoots may have resulted from a dilution effect: The 
increase of the nutrient supply will favor an increase of shoot over root biomass ratio and as PA pro-
duction is correlated with root growth, plants under nutrient rich conditions produce relatively less 
PAs. Some genotypes of J. vulgaris, J. aquatica and their hybrids produce different PA concentrations 
and compositions under different nutrient and water treatment conditions, so it seems that PA expres-
sion is affected by genotype and environment interactions (Kirk et al, 2010). 

3. Research questions
In this thesis, I will investigate whether the structurally related PAs differentially influenced generalist 
and specialist insect herbivores in Jacobaea hybrids. I will address the following questions: 

1.	 Do the F2 hybrids from a cross between J. vulgaris and J. aquatica display a greater PA variation 
compared to their parents?  Is PA variation, especially the production of tertiary PAs, dependent 
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on the plant genotype? 
2.	 Is herbivore resistance against generalist and specialist insect herbivores dependent on the plant 

hybrid genotype? 
3.	 Does herbivores resistance against generalist and specialist insect herbivores relate to PA com-

position and concentration? 
4.	 Do the effects of PAs on herbivore resistance differ among different PAs and does it make a dif-

ference whether they are present as tertiary amines or N-oxides? 
5.	 Do different PAs act synergistically in their effects on herbivores?

Up to now, most conclusions about the effects that PAs have on insects and pathogens are based on 
in vitro experiments, while these effects of PAs are not always apparent in in vivo experiments (see 
reviews by Joosten and van Veen, 2011; Macel, 2011; Trigo, 2011). Also, most of the previous studies 
were hampered by the fact that less sensitive methods were used to detect PAs and often no distinc-
tion was made between tertiary amines and N-oxides. Research on individual PAs is difficult as the 
majority of the PAs cannot be obtained commercially unless at a very high cost. In vivo experiments 
have an advantage over in vitro bioassays, in the sense that these can overcome the need for PAs as 
isolated compounds. The disadvantage of in vivo experiments is that the species or genotypes that are 
used may differ in other characteristics as well that are relevant for herbivory. Therefore it can be dif-
ficult to sort out the effect of PAs. Many of these disadvantages can be overcome by using segregating 
hybrids instead of randomly chosen genotypes: Firstly, a greater variation of SMs and herbivore resi-
stance can occur among these hybrids compared to genotypes within a single species (Fritz, 1999; 
Orians, 2000; Cheng et al, 2011). Secondly, traits will segregate independently so that trait variation 
can be studied against an on average equal genetic background (Hochwender et al, 2000; Lexer et al, 
2003). Therefore, I will use Jacobaea hybrids as a study system.

4. Outline of the thesis
In Chapter 2, the PA variation in the shoots and roots of F2 hybrids, obtained from a cross between J. 
vulgaris and J. aquatica, will be studied. I will investigate whether there are any novel PAs, or novel 
PA compositions, present in the hybrids, and whether transgressive segregation of PA concentrations 
occurs. I will investigate whether the PA expression is different among the plant genotypes. The PA 
variation patterns and the implications for PA biosynthesis and PA genetic control will be discussed. 
For a long time it has been assumed that in Senecio species PAs are present mainly as N-oxides and 
that tertiary amines were mostly artifacts formed by (spontaneous) reduction of N-oxides during PA 
extraction. The presence of significant amounts of specific tertiary PAs in the plants of J. vulgaris, J. 
aquatica and their hybrids will be described and discussed in Chapter 3. 

The oviposition preference of T. jacobaeae among the hybrids of J. vulgaris and J. aquatica 
is studied in Chapter 4. The resistance of Jacobaea hybrids against two generalist insect herbivores, 
F. occidentalis (western flower thrips) and Liriomyza trifolii (American serpentine leafminer), will be 
studied in Chapter 5 and Chapter 6, respectively. Through the use of bioassays, I will explore the rela-
tionship between herbivore resistance and PA variation and the possible synergism among PAs with 
respect to plant resistance against these insects. 

Finally, the relation between PA variation in the Jacobaea hybrids and performance and pre-
ference of insects among the plants will be discussed and the conclusions will be summarized in the 
last chapter (Chapter 7).
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