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Quantum Smectic as a Dislocation Higgs Phase
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The theory describing quantum smectics in 2� 1 dimensions, based on topological quantum melting is
presented. This is governed by a dislocation condensate characterized by an ordering of Burger’s vector
and this ‘‘dual shear superconductor’’ manifests itself in the form of a novel spectrum of phononlike
modes.
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Different from classical liquid crystals [1,2], the quan-
tum smectic and nematic type orders occurring at zero
temperature are far from understood. These came into
focus recently, motivated by empirical developments in
high Tc superconductivity and quantum-Hall systems [3].
Fundamentally, it is about the partial breaking of the
symmetries of space itself, and on the quantum level this
might carry consequences which cannot be envisaged
classically.

The ‘‘most ordered’’ liquid crystal is the smectic, which
can be pictured as lines in two dimensions (or layers in
three dimensions) of liquid forming a periodic array in one
spatial direction. Emery et al. [4] (for doped Mott insula-
tors) and MacDonald and Fisher [5] (for quantum-
Hall systems), delivered proof of principle that things are
different on the quantum level by showing that a two-
dimensional quantum system can organize spontaneously
into an array of one-dimensional metals. Here we will
present a description of the quantum smectic which is com-
plementary to these earlier works. It rests on Kramers-
Wannier duality [6,7], the field-theoretical fact that the
disordered state (the smectic) corresponds to an ordered
state (in fact, the Higgs phase) formed from the topological
excitations (dislocations) of the ordered state (the crystal),
and as such it can be viewed as a quantum extension of the
famous Nelson-Halperin-Young [8] theory of two-
dimensional melting.

The theory is completely tractable for a system of bo-
sons living in the 2� 1D Galilean invariant continuum [9],
in the limit that all characteristic length scales are large
compared to the lattice constant. The outcome is a spec-
trum of propagating long-wavelength collective modes
[10], which should have a universal status in the scaling
limit. Before discussing the theory, let us first present this
mode spectrum. The quantum smectic in (2� 1)D is char-
acterized by a ‘‘crystalline’’ and an orthogonal ‘‘liquid’’
direction [see Fig. 1(d)]. For simplicity we assume that the
quantum smectic is associated with a reference crystal
described by isotropic quantum elasticity (e.g., a hexago-
nal crystal) characterized by just a shear (�) and compres-
sion (�) modulus, and a mass density �, such that the
longitudinal and transversal phonon velocities are given

by cL �
�����������������������
�����=�

p
and cT �

����������
�=�

p
. For modes prop-

agating exactly along either the fluid [� � 0 mod�, i.e.,
Figs. 1(a)–1(c)] or solid [� � �=2 mod�, i.e., Figs. 1(e)–
1(g)] directions transversal and longitudinal motions de-
couple. Let us first focus on the solid direction. The lon-
gitudinal mode [Fig. 1(b)] vibrates the ‘‘leftover’’ lattice
and behaves like a phonon; it actually propagates with cL,
showing that this mode is set by the shear rigidity of the
reference crystal. The transversal mode [Fig. 1(c)], corre-
sponding to ‘‘sliding motions’’ of the ‘‘liquid lines’’ rela-
tive to each other, is very different from a phonon: there is
no massless mode and we find instead a single massive
‘‘dual Higgs photon’’ [Fig. 1(a)] which is the fingerprint of
the ‘‘true’’ liquid as we will explain later. This implies the
absence of a reactive elastic response, and our quantum
smectic can be understood as ‘‘an array of independent
one-dimensional quantum liquids’’, in the same sense as
the Kivelson-Lubensky sliding phases [4].

Let us now turn to the modes propagating along the fluid
direction [Fig. 1(g)]. The longitudinal mode [Fig. 1(e)]
looks like a compressional wave in the liquid, but it is
again indistinguishable from the longitudinal phonon of
the reference crystal. The transversal wave in the liquid
direction [Fig. 1(f)] is clearly not fluctuating the lattice

liquid

solid

q q0 0

a) b) c) d) e, f) g)

FIG. 1 (color). The elastic response (strain spectral functions)
of a quantum smectic as function of momentum (q) and fre-
quency (!) in the two special solid (a) and liquid (g) direction, as
determined by the orientation of the condensate Burgers
vectors (d). The longitudinal phonons (blue) are unaffected,
corresponding either to (b) compression of layers along the solid
direction or to (e) density waves in the liquid direction. The
transversal response (red) is gapped along the solid direction due
to the decoupling of the layer motion (c). Along the liquid
direction (f), shear rigidity is screened, but the transversal
motions of the layers results in a massless quadratic mode.
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directly, but it is neither a pure motion of the liquid. The
outcome is remarkable: besides the dual Higgs photon, the
fingerprint of the liquid, we find a mode with a quadratic
dispersion: ! � �ScTq

2, where �S is the shear penetration
depth, the characteristic length of crystal correlations in the
liquid, associated with the ‘‘shear Higgs mass’’ by � �
cT=�S. These quadratic modes are of course well known
from the classical smectics [1,2,11], but they are also
consistent with the findings in the quantum-Hall smectic
[5]. As will become clear, they arise in the present context
in a quite surprising way.

What happens when one deviates from either the liquid
or solid direction? The transversal and longitudinal modes
now couple and at arbitrary angles a ‘‘longitudinal-like’’
mode is present with a velocity decreasing from cL to,
amusingly, a purely compressional velocity c� �

���������
�=�

p
at

�=4 [Fig. 2(b)]. In the transversal-like response one finds
always the dual Higgs photon. However, deviating infini-
tesimally from the solid direction (� � �=2) one finds
immediately a new massless pole in the spectrum with a
velocity c1 � cT�

������������������
2�1� ��

p
, demonstrating that shear ri-

gidity becomes finite [Fig. 2(a)]. This mode persists at all
intermediate angles, with a velocity going through a maxi-
mum at � � �=4. Upon approaching the liquid direction
(� � 0, Fig. 2(c)] it continues to be the only ‘‘transversal-
like’’ massless mode which turns into the quadratic mode
[Fig. 1(g)] precisely at � � 0.

To the best of our knowledge, the massles excitations
amount to a novel enumeration of the Goldstone sector of
the quantum-smectic state. The way we derived it might be
surprising: it can be viewed as the observable ‘‘shadow’’ of
an underlying order which we call the dual shear super-
conductor. It is about a duality construction which is a
close sibling of the well-known vortex duality in (2� 1)D
[12–14]: the quantum disordered superfluid (Mott-
insulator) corresponds to a Bose condensate of vortices.
Since the long range interactions between the vortices are
indistinguishable from electromagnetic interactions, this
dual condensate is a (gauged) superconductor. It is even a

relativistic Higgs condensate: the particle and hole excita-
tions of the Mott insulator are identified with the ‘‘massive
Goldstone’’ and ‘‘longitudinal’’ photon of the relativistic
theory [14]. In dual elasticity the role of electromagnetic
fields is taken by the stress fields, hence the dual conden-
sate of dislocations is a (gauged) superconductor where
(dual) shear stress becomes short ranged.

Turning to the quantum crystal, the breaking of trans-
lations implies shear rigidity and the translational topo-
logical charge is the Burgers vector of the dislocation [15].
Disclinations take care of rotations and in topological
language a (quantum) liquid crystal is a medium where
dislocations have proliferated while disclinations stay mas-
sive, as pointed out a long time ago in the classical context
by Nelson, Halperin, and Young [8]. This classic work
deals with nematic (‘‘hexatic’’) order and how does one
fit in smectics? In this regard we profit from a very recent
theoretical advance. In the construction of the dislocation
condensates one has room to play with the vectorial topo-
logical charges, and according to Bais and Mathy [16], the
usual recipe for spontaneous symmetry breaking based on
Lie groups does not suffice to classify defect condensates.
Instead one needs Hopf symmetry, a larger mathematical
structure keeping track of symmetry and topology simul-
taneously, with the ‘‘quantum-double’’ Hopf symmetry
being the one of relevance to liquid crystalline orders
[16]. Their bottom line is illustrated in Fig. 3: consider
for simplicity the hexagonal crystal breaking the symmetry
of 2D Euclidean space R2 32 O�2� to Z2 32 D6. The Burgers
vectors can take values along any of the six directions in
the hexagonal lattice. According to the quantum-double
machinery, one possibility is that the Burgers vectors are
populated with equal probability along all six directions

a) b) c)

FIG. 2 (color). The long-wavelength modes at intermediate
values of the propagation angle �. (a) Close to the ‘‘solid’’
direction (� � 14�=30) the longitudinal phonon mode and
massive shear photon of Fig. 1(a) are coupled, but in addition
a massless mode has appeared with a velocity and pole strength
in the strain propagator increasing / �. (b) Halfway (� � �=4),
one finds two massless modes with velocities cT and the com-
pressional velocity c�, as well as the massive shear photon.
(c) Close to the ‘‘liquid’’ direction (� � �=30), the quadratic
mode of Fig. 1(g) acquires a linear dispersion at small momenta.

FIG. 3. The topology of the zero temperature phase diagram as
suggested by ‘‘quantum-double Hopf symmetry breaking’’ [16].
The amount of quantum disorder (i.e., coupling constant @!) is
represented on the horizontal axis; the vertical axis carries the
inverse rotational stiffness, a parameter whose smallness pro-
hibits the proliferation of disclinations [10,17] that would lead to
the isotropic superfluid phase. The nematic or ‘‘quantum hex-
atic’’ state with the occupation of all allowed Burgers vectors
with equal probability while the smectic corresponds in this
topological scheme to a preferential occupation one particular
dislocation-antidislocation pair.
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and the overall symmetry of this state is R2 32 D6, the
hexatic nematic state, where all translations are restored
but rotations are broken. However, it is also allowable to
condense dislocation-antidislocation pairs in one particu-
lar direction and the symmetry of this state is R� Z 32 D6,
which is the symmetry of the smectic. Hence, smectic
order is part of the repertoire of topological melting, and
at zero temperature it should be located in between the
crystal and the hexatic (Fig. 3).

The above amounts to a symmetry classification and
next is the construction of the theory describing the dy-
namics in (2� 1)D. Since dislocations are Abelian defects,
this follows the pattern of vortex duality resulting in a dual
gauge theory. Adapting the methods developed by Kleinert
in the 1980s for the 3D classical case [17] we derived the
(2� 1)D theory in an earlier paper [9], but this contains
some technical errors, which are serious enough to obscure
the physics: the neglect of the condensate dynamics and
a flawed gauge fix. These are now repaired [10], and
we will present here a summary of this earlier work, to
discuss in detail the correct treatment of the dual shear
superconductor.

Consider a hexagonal crystal in (2� 1)D with a long-
wavelength action coinciding with isotropic quantum elas-
ticity: the usual theory in terms of the strains @aub (ub’s are
the atomic displacements) and an added kinetic energy
��=2��@�ua�2. In terms of the stress field 	a� (� � x, y,
�, and a � x, y), dual to the strains @�ua, the Lagrangian
reads in (2� 1)D Euclidean space-time [9,17],

 L gauge �
1

2
	a�C�1

��ab	
b
�; (1)

where 	a� corresponds to the momenta dual to the veloc-
ities @�ua, with inverse coupling constant C��ab � 
ab=�.
The conservation of stress implies @�	a� � 0 and this can
be imposed in (2� 1)D by expressing the stress fields in
terms of stress gauge fields [17] Ba�,

 	a� � ����@�B
a
�: (2)

Hence, the theory describing acoustic phonons can be
formulated as a Maxwell theory containing two ‘‘flavored’’
(a � x, y) U�1� gauge fields—these photons describe the
capacity of the solid to carry elastic forces. Imposing
the Ehrenfest constraint (	yx � 	xy), one ends up with a
Coulomb force between static sources and two propagating
photons, coinciding with the longitudinal and transversal
phonon of the (2� 1)D medium [9,10]. The sources of
these stress gauge fields are the nonintegrabilities associ-
ated with the translational part of the displacement fields
[9,17],

 L int � iBa�J
a
�; Ja� � ����@�@�u

a: (3)

These dislocation currents can be factorized as Ja� � ba

J �, the world lines of dislocations with Burgers vector
~b � �bx; by�, implying Ba�Ja� ! �baBa��J �. This structure
is quite similar to vortex duality: the dislocations are

‘‘charged’’ particles (like the vortices) minimally coupled
to gauge fields mediating the long-range interactions, ex-
cept that these fields are now stress gauge fields, while the
‘‘Burgers’’ charge is vectorial.

The kinematics of dislocations is unusual because of the
‘‘glide constraint’’, the fact that dislocations only propa-
gate in the direction of their Burgers vectors [15], implying
that the spacelike components of the dislocation currents
form symmetric tensors Jxy � J

y
x � 0 [9,18]. A ramification

is that dislocations only carry shear, and no compressional
gauge charge. The effect is that only shear rigidity is
destroyed by the dislocation condensate, while it still
carries sound [9,18]. Glide plays an especially interesting
role in the quantum smectic: although the dislocations
form a (2� 1)D condensate, the Burgers vectors are ori-
ented in the liquid direction and only in this direction
‘‘diamagnetic’’ currents occur, screening the shear stress.
This fact is largely responsible for the dichotomy high-
lighted in Fig. 1.

We overlooked in our previous work [9] the fact that the
velocity scale of the dislocation condensate coincides with
the transversal phonon velocity, playing the role of light
velocity: the dual shear superconductor is a relativistic
‘‘Higgs phase’’. This is implied by the effective Lorentz
invariance of the starting theory [14], where space and time
derivatives appear on equal footing such that the phonon
velocity also governs the dynamics of the defects [15].
Having collected all the required information, let us not
turn to the order parameter theory of the smectic dual shear
superconductor [10]. Given the dislocation currents
Eq. (3), the tangle of dislocation world lines can be de-
scribed in terms of a single [9] Ginzburg-Landau-Wilson
(GLW) order parameter field � as,

 L GLW �
1

2
j�@� � ib

aBa���j
2 � V��� �Lgauge: (4)

With the usual potential term V��� � �
2 �j�j

2 ��2=��2

and the Maxwell-like term Lgauge defined by Eq. (1). In the
dislocation condensate amplitude has condensed, j�0j �

�=
����
�
p

, and by integrating out the dislocation phase field
the remaining Higgs term can be written in gauge invariant
form as [19],

 L Higgs;bare �
1

2

�2

�

�ba	a���bb	b��

@2
�

; (5)

with @2
� �

1
c2
T
@2
� � @

2
i , using the condensate velocity cT .

The glide constraint has still to be imposed and this is
straightforwardly accomplished by adding a Lagrange
multiplier to the action,

 L glide � i�"��aJ
a
�; (6)

which implies that the gauge fields in Eq. (4) should
acquire an additional piece Ba� ! Ba� � �"��a, or, equiv-
alently, that the dual stresses turn into 	a� ! 	a� �

�a@��� 
��@a�. Integrating out the multiplier field �
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we obtain a Higgs term respecting the glide constraint

 L Higgs �
1

2

�2

�
�	H�2

�@���� �2
; (7)

with the dislocation second sound governed by

 �@���� �2 �
1

c2
T

@2
� � ba@2

a�
1

c2
T

!2
n � q2cos2� (8)

showing that the condensate only propagates along the
direction of the Burgers vectors, introducing also the angle
� keeping track of the direction of the liquid direction
relative to the wave vector. In addition, only the following
stress component appears in the Higgs term,

 	H � �acbabb	bc; (9)

which becomes in the quantum smectic 	H � 	xy, taking
the liquid direction along x̂ such that bbbc � 
b;x
c;x. The
remainder is a lengthy but straightforward exercise:
Eqs. (1) and (7), are expressed in the stress gauge fields
via Eq. (2), followed by imposing gauge transversality
(using a Lorentz gauge 1

c2
T
@�Ba� � @iBai � 0) and the

Ehrenfest constraint. Finally, stress-strain relations are
used to express the strain (phonon) propagators hh@uj@uii
in terms of stress photon propagators [9,14] and the spec-
tral functions of the former are shown in Figs. 1 and 2.

We are now in the position to discuss some of the deeper
issues related to the mode spectrum, Figs. 1 and 2. There
are three propagating modes: the two (gauge-transversal)
stress photons of the crystal plus the single ‘‘longitudinal’’
(or condensate) photon. For arbitrary �’s the mode cou-
plings conspire to produce the two massless ‘‘phonons’’
and the massive shear photon of Fig. 2. The longitudinal
photons decouple completely from the condensate in the
liquid and crystal directions of Fig. 1, but this is different in
the transversal sectors: in the solid direction only the
Higgsed transversal phonon shows up, while the ‘‘longitu-
dinal photon’’ cannot be excited because of the one-
dimensional (glide) nature of the shear screening currents.
In the liquid direction this is different: the massive mode is
the massive second sound of the condensate (longitudinal
photon), while the quadratic mode is like a Higgsed gauge
particle where the ‘‘Higgs mechanism failed at the last
moment’’.

If quantum smectics exist, are its modes observable? In
Figs. 1 and 2 we show phonon propagators, but there is no
obvious ‘‘atomistic’’ candidate quantum smectic. In elec-
tronic systems, the smectic modes can only be detected by
their electromagnetic response, a story by itself which we
will discuss elsewhere [20]. What about dc properties? The
dual shear superconductor deals with dimensionality in a
strange way: the dislocations form an ordered (2� 1)D
Higgs condensate, carrying only one-dimensional shear
screening currents because of the glide principle. On
‘‘our side’’ of the duality this has the strange consequence
that it would actually be a superfluid but only precisely

along the liquid direction [9,10]. This is, however, a pa-
thology of the (implicit) assumption governing the field
theory that all length scales are large compared to the
lattice constant. This is equivalent to the assumption that
the single-particle (interstitial and vacancy) defects can be
ignored, which is not the case for any finite lattice constant
[9]. A real life Bose quantum smectic should therefore
behave as an anisotropic two-dimensional superfluid.
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