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Abstract
 Netherton Syndrome (nts) is a rare genetic skin 
disease that is characterized by erythroderma, hair 
shaft defects, and severe atopic manifestations. The 
disease is caused by mutations in the serine protease 
inhibitor Kazal-type 5 (spink5) gene, which encodes 
the protease inhibitor lympho-epithelial Kazal-
type–related inhibitor (lekti). Lack of LEKTI causes 
epidermal proteases hyperactivity, which results in 
stratum corneum (SC) detachment. NTS patients 
have an impaired skin barrier function. Besides 
barrier proteins, SC lipids are also crucial for the skin 
barrier. The lipids primarily consist of ceramides 
(CERs), free fatty acids (ffas) and cholesterol. To 
date, hardly any information is available on the SC 
lipid composition and organization in SC of patients 
with NTS. Therefore, the aim of the present study is to 
determine the SC lipid composition and organization 
in NTS patients.
 We investigated the SC lipids by means of mass 
spectrometry, infrared spectroscopy and X-ray 
diffraction. We studied the lipid subclasses as well as 
the chain length distributions. A decreased ffa chain 
length and an increased level of monounsaturated 
ffas was observed in SC of NTS patients compared to 
controls. Furthermore, the level of short-chain CERs 
was increased in NTS patients, and in a subgroup 
of patients we observed a strong reduction in long-
chain CER levels. The changes in lipid composition 
modified the lipid organization: an increased 
disordering of the lipids compared to the controls. 
This study shows that there are striking changes in 
the lipid composition in NTS that may contribute to 
the skin barrier dysfunction in NTS.
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Introduction 
 Netherton syndrome (NTS) is a rare skin disorder with an occurrence of 1-3 in 200.000 
births and a fatality rate of around 20% in the first year of life by hypernatremic dehydration, 
electrolyte imbalances, perturbed thermoregulation, failure to thrive, and recurrent 
infections1-5. NTS is characterized by erythroderma, hair shaft defects (bamboo hair), 
and severe atopic manifestations6. In addition, NTS patients show a drastically reduced 
skin barrier function7-9. The skin barrier is primarily located in the outermost layer of the 
skin, the stratum corneum (SC). The SC consists of flattened corneocytes embedded in a 
highly ordered lipid matrix. The organization and composition of this lipid matrix seems 
crucial for the barrier function of the skin, but hardly any information is available on the 
SC lipids regarding NTS patients. The aim of the present study is therefore to unravel the 
composition and organization of this SC lipid matrix in NTS.
 SC lipids mainly consist of ceramides (CERs), cholesterol (CHOL) and free fatty acids 
(ffas). To date, 12 CER subclasses with a wide variation in chain length distribution have 
been identified in human SC10,11. FFAs mainly consist of saturated carbon-chains with 
lengths varying between 16 and 36 carbon atoms, of which the most abundant chain 
lengths are 24 and 26 carbon atoms12,13. In healthy SC, lipids form two lamellar phases 
with repeat distances of approximately 6 and 13 nm referred to as the short periodicity 
phase (SPP) and long periodicity phase (LPP), respectively14,15. Within the lamellae, the 
lipids form a dense (orthorhombic, highly ordered lipid chains) lateral organization, 
although lipid domains with a less dense (hexagonal, less ordered lipid chains) lipid 
organization also co-exist. Both the lipid composition and lipid organization are crucial 
for a proper SC barrier function. Recent studies show the important role of the SC lipids 
in the skin barrier function of atopic eczema (AE) patients16,17, a skin disease often 
linked to NTS because of its shared symptoms18,19. We demonstrated a modified chain 
length distribution in CERs in SC of AE patients. This change resulted in an altered SC lipid 
organization, which in turn was correlated with an impaired skin barrier function. 
 NTS is caused by mutations in the serine protease inhibitor Kazal-type 5 (SPINK5) 
gene. These mutations result in loss of function of lympho-epithelial Kazal-type–related 
inhibitor (LEKTI)20. LEKTI is described in relation to proteins involved in proliferation and 
differentiation of keratinocytes. In addition, several LEKTI-domains can efficiently inhibit 
the enzyme activity of various subtypes of kallikreins (KLKs): KLK5, KLK7 and KLK14. 
Lack of active LEKTI domains lead to increased activity of these KLKs, thereby affecting 
various biological processes that will have a detrimental effect on the skin barrier:
 i) KLKs 5 and 7 are involved in the desquamation process, that is, the degradation of 
the corneodesmosomes linking the corneocytes in the SC21-26. Reduction in the activity 
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of LEKTI, which inhibits the activity of these enzymes, causes epidermal proteases 
hyperactivity resulting in SC detachment27.
 ii) KLKs 5 and 14 induce cutaneous inflammation through proteinase-activated 
receptor 2 (PAR2) and NF-κB pathway activation in vitro28, leading to up-regulation of 
pro-Th2 cytokine thymic stromal lymphopoietin (TSLP), IL1-α, IL8, and TNF-α8,23,29,30. 
The production of these cytokines can in turn affect the SC lipid synthesis and thereby the 
skin barrier31,32. Besides, PAR2 activation can lead to abnormal lamellar body secretion 
that also results in disrupted lipid lamellae and a reduced skin barrier function7.
 iii) KLKs act as catalysts for the proteolysis of the enzymes β-glucocerebrosidase and 
acid sphingomyelinase33. Both enzymes are involved in synthesis of CERs that play an 
important role in the barrier function of the SC.
 iv) Increased activity of KLK5 (as a result of decreased inhibition by LEKTI) leads to 
hyperactivity of the epidermal protease elastase 2 (ELA2). This results in abnormal 
processing of filaggrin, a keratin filament-associated protein highly associated with atopic 
eczema34. Filaggrin breakdown products, the natural moisturizing factor (NMF), are 
suggested to be important for maintaining the acidic nature of the SC: An increase in pH 
induces premature degradation of corneodesmosomes leading to a disrupted barrier and 
cohesion of the skin35. In addition, an increase in pH can lead to altered catalytic activities 
of lipid processing enzymes that require an acidic pH for their optimal catalytic activity36. 
Besides these effects of KLKs on the different aspects of the metabolic pathways, KLKs 
may activate each other or induce self-activation, thereby exacerbating the effects30,37,38.
NTS patients show different expression of proteins like loricrin, involucrin and the 
transglutaminases. This disturbs the assembly of the cornified envelope surrounding the 
corneocytes and may also reduce the SC barrier function39-41. Altogether, this results in a 
drastically reduced barrier function in patients with NTS as measured by transepidermal 
water loss (TEWL)7-9.
 To date, little is known about the SC lipid composition in NTS. A study of Bonnart et 
al.34 with transgenic mice overexpressing ELA2 as a model for NTS reported a threefold 
increase in TEWL, demonstrating a decreased skin barrier function. For the first time, 
the lipids in total epidermis were analyzed. They observed an increased level of total 
glucosylceramides and a reduction of sphingomyelin, as well as significant decrease 
in FFA levels. In addition, it was reported that the lipids form irregular loose stacks of 
lamellae7,34,42. However, no data were reported on individual CER and FFA subclasses 
and chain length distributions of the lipids. In addition, no quantitative information 
about the lamellar phases was provided and no information is available on the lateral 
packing. Therefore, the aim of this study was to perform an in depth analysis of the lipid 
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composition and organization in SC of patients with NTS. 
 Our results show that in SC of NTS patients, there is a strong increase in short chain 
CERs and FFAs as well as an increase in unsaturated FFAs. Furthermore, the lipid chains 
are more disordered and the lamellar lipid organization is altered. A subgroup of patients 
showed no lamellar lipid profile at all, and these patients also had the most drastic changes 
in their SC lipid composition.

Materials and Methods
Study population
 The study was conducted in accordance with the Declaration of Helsinki and was 
approved by the Ethical Committee of Paris Ile de France. Eight patients with classical 
features of Netherton syndrome were included in the study. They were from different 
ethnic backgrounds and their age ranged from 8 to 39 years at the time of the study. 
Patients included four males and four females. Patients  and , as well as  and  
are siblings, respectively. Each patient presented congenital ichthyosiform erythroderma, 
trichorrhexis invaginata, and eczematous like lesions. Four of them had ichthyosis linearis 
circumflexa (patients , ,  and ). All patients had elevated immunoglobulin E in 
the serum. Each patient showed negative LEKTI immunostaining on skin biopsy. SPINK5 
mutations leading to premature termination codons were identified in each patient.
For comparison, SC from the epidermis of 5 Caucasian subjects (36.2 ± 12.2 years;  
3 males) was analyzed, which was obtained after abdominal- or mammaplasty reduction 
at the hospital. SC was isolated by trypsin digestion, a procedure that does not affect the 
lipid organization in SC43 and is described previously44.

Lipid classification and nomenclature
 FFAs are classified according to their shorthand lipid number designation in which the 
chain length and degree of unsaturation is denoted45. For example, octadecenoic acid 
(oleic acid) is denoted as C18:1. Ceramides consist of a sphingosine base linked to a fatty 
acid (acyl) chain. In human SC, both chains can vary in the number of carbon atoms. This 
results in a wide distribution in total chain length, that is, the total number of carbon 
atoms in both chains. In addition, both chains can have additional functional groups at 
specific locations. This results in 12 identified subclasses10,11 that are classified according 
to the nomenclature of Motta et al.46: CER [AdS], [AH], [AP], [AS], [EOdS], [EOH], [EOP], 
[EOS], [NdS], [NH], [NP], and [NS] (Figure 1).
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Figure 1: Cer nomenclature and molecular structure. Cers are composed of a sphingoid base (depicted in blue) linked 
via an amide bond to an acyl chain (gray). Both chains show a variable carbon chains length indicated by the red arrows. 
This results in a wide distribution of the total cer chain length, i.e. the chain length of the sphingoid base and acyl 
chain combined. Both chains can have additional functional groups at the carbon positions marked in red. This results 
in 4 different sphingoid bases (dihydrosphingosine [ds], sphingosine [s], phytosphingosine [p], 6-hydroxy sphingosine 
[h]) and 3 different acyl chains (non-hydroxy fatty acid [n], α-hydroxy fatty acid [a] and esterified ω-hydroxy fatty 
acid [eo]). Together, this results in the presence of 12 subclasses denoted as: [nds], [ads], [eods], [ns], [as], [eos], 
[np], [ap], [eop], [nh], [ah], [eoh]. As an example, a cer with a non-hydroxy fatty acid of 16 carbon atoms long and a 
phytosphingosine base of 18 carbon atoms will be denoted as cer [np] c34. 

Sc lipid extraction and analysis
 An enhanced procedure of the commonly used Bligh and Dyer method was performed 
to extract the lipids from the SC sheets of both NTS patients and control subjects. 
Afterwards, lipids were analyzed by liquid chromatography coupled to mass spectrometry 
(LC/MS) to profile the CERs and FFAs. A detailed protocol of the lipid extraction and lipid 
analysis is described elsewhere11,47. Briefly: a three-step sequential extraction procedure 
of chloroform/methanol/water (1:2:½; 1:1:0 and 2:1:0) was performed to extract all 
extracellular SC lipids. To enable proper analysis by LC/MS, samples were reconstituted 
in chloroform/methanol/heptane (2½:2½:95) to obtain a final concentration of 1.0 mg/
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mL. Two injections of 10 µl of each lipid sample were performed to analyze sequentially 
FFAs and CERs, using an Alliance 2695 HPLC system (Waters Milford, MA). The HPLC was 
coupled to a mass spectrometer (TSQ Quantum, Thermo Finnigan, San Jose, CA) equipped 
with an APCI ionization source. FFAs were separated using a C18 reverse phase column 
(Purospher Star LiChroCART, Merck, Darmstadt, Germany) and analyzed in negative ion 
mode, while separation of CERs was achieved using a normal phase column (PVA-Sil, YMC, 
Kyoto, Japan) while analyzing in positive ion mode. Xcalibur software version 2.0 was 
used for data acquisition. 

Small angle x-ray diffraction measurements
 SC sheets were analyzed by small angle X-ray diffraction (SAXD), performed at the 
European Synchrotron Radiation Facility (ESRF, Grenoble, France) using station BM26B. 
Sc was hydrated over a 27% NaBr solution during 24h before the measurements. SC 
sheets were oriented parallel to the primary X-ray beam in order to obtain high quality 
diffraction patterns. SAXD patterns were detected with a Frelon 2000 charge-couple 
device (CCD) detector at room temperature for a period of 10 minutes using a microfocus 
beam, similarly as described elsewhere48. The exposure time to the X-rays was kept to a 
minimum and samples showed no evidence of radiation damage. From the scattering 
angle, the scattering vector (q) was calculated by q = 4π sin θ/λ, in which λ is the wavelength 
of the X-rays at the sample position and θ the scattering angle. The repeat distance of a 
lamellar phase can be calculated from the diffraction peaks by d = n·2π/qn, in which n is 
the order of the peak. This means that a shift in peak position to higher q values results in 
a shorter repeat distance.

Conformational ordering of the lipids
 A high conformational ordering is an indication that the lipids adopt the properties of 
a crystalline phase, whereas a low conformational ordering indicate that the lipids form 
a liquid phase. To obtain information on the conformational ordering, Fourier transform 
infrared (FTIR) spectra were recorded using a Varian 670-IR spectrometer (Varian Inc., 
Santa Clara, CA) equipped with a broad band liquid nitrogen cooled mercury-cadmium-
telluride (MCT) detector and an external sample compartment containing a GladiATR 
(Pike, Madison, WI) attenuated total reflection (ATR) accessory with a single reflection 
diamond. The spectra of patients were collected in attenuated total reflectance (ATR) 
mode and transmission mode (as a control), and no difference between both methods 
was observed. SC samples were hydrated over a 27% NaBr solution during 24h. SC was 
mounted between two ZnSe windows when measured in transmission mode. Samples 
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were put under a purge of continuous dry air starting 30 minutes before data acquisition. 
Spectra were acquired as a co-addition of 256 scans at 1 cm-1 resolution during 4 minutes. 
When measuring in ATR mode, 150 spectra were acquired and averaged. The spectral 
resolution was 2 cm-1. Resolutions Pro 4.1 (Varian Inc.) was used for data acquisition.

Statistical analysis
 Statistical analysis was performed using SPSS Statistics. Non-parametric Mann-Whitney 
tests were performed when comparing 2 groups, unless explicitly noted elsewhere. 
Differences were considered either weakly significant (P<0.1), moderately significant 
(P<0.05), or highly significant (P<0.005), and are denoted throughout the manuscript as 
*, **, and ***, respectively.

Results
Decreased ffa chain length and increased degree of unsaturation in patients with 
Netherton syndrome
 Figure 2 shows data on the FFA composition of NTS patients (red) compared to the 
control subjects (green). The presence of FFAs <20 carbon atoms, being abundantly 
present in patients, were not taken into account in the present study as these FFAs are 
most probably present due to contamination of topical treatments of the NTS patients. 
It is impossible to distinguish between native FFAs and those from topical formulations. 
The relative abundance of saturated FFAs and mono-unsaturated FFAs (MUFAs) is shown 
in Figure 2a. In NTS patients, there is a lower level of saturated FFAs compared to SC 
of controls (71.3 ± 24.1% and 97.0 ± 1.1%, respectively), and a higher level of MUFAs 
compared to controls (28.7 ± 24.1% and 3.0 ± 1.1%, respectively). Figure 2b shows the 
relative chain length distribution of saturated FFAs in NTS patients (red) and in controls 
(green). The most abundant chain lengths in controls are C24:0 and C26:0. The large 
standard deviations of the NTS patients are caused by inter-subject variation and not due 
to methodological variation. 
 Compared to control subjects, lipids of SC in NTS patients show a shift to shorter FFA 
chain length: there is a significant increase in FFA C20:0 and C21:0 and a significant 
decrease in FFAs C24:0, C25:0 and C26:0. Figure 2c shows the chain length distribution 
of MUFAs. No odd chain length MUFAs were detected in SC from either NTS or control. SC 
of NTS patients show a significant level of MUFAs C20:1, C22:1, C24:1. On the contrary, 
control subjects did not show a detectable level of MUFAs ≤C24 (C20:1, C22:1, C24:1) and 
only very low levels of C26:1, C28:1, C30:1 and >C30:1. From the abundance of both the 
saturated FFAs and MUFAs, the average chain length for each patient and control was 
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Figure 2: a) Scatter dot plot showing the relative abundance of saturated ffas (left) and mufas (right). b) and (c) 
present bar graphs showing the relative abundance of respectively saturated ffas and mufas. The total abundance of 
saturated ffas and mufas together was set to 100%. d) Scatter dot plot showing the average ffa chain length. Controls 
(n=5) and nts patients (n=8) are presented as green and red bars/dots, respectively. Error bars represent sd values; 
Horizontal lines indicate averages. Nd means ‘not detected’. Individual nts patients are labeled -.
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calculated. These results are provided in Figure 2d and show that the average FFA chain 
length is significantly reduced in NTS patients versus controls (23.4 ± 0.9 and 24.5 ± 0.1 
carbon atoms, respectively).

Altered levels of acyl-ceRs and short-chain ceRs in sc of Nts patients
 The CER profiles of 5 controls and 8 NTS patients were studied. The CER profiles of two 
representative examples of controls and 4 examples of NTS patients are presented in the 
3D ion chromatograms in Figure 3. An overview of 3D ion chromatograms of the remaining 
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Figure 3: 3d ion chromatograms of control sc (a and b) and nts patients (c, d, e and f). retention time (3.6-8.3 
min), mass (480-1200 amu), and relative intensity of each peak are shown on the x-, y- and ‘z’-axis, respectively. 
Chromatograms are normalized to their most abundant peak. The chromatograms of the nts patients show a decreased 
chain length of the cers. In addition, in (e) and (f) there is a decrease in acyl-cers ([eo] cers) and a narrower chain 
length distribution in all other cer subclasses. Nts patients also show an increase in short chain cers, in particular cers 
with a chain length of 34 carbon atoms (c34 cers), which are indicated in the chromatograms by red peaks. The 3d ion 
chromatograms of the other controls and nts patients are listed in Supplementary Figure 1.
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NTS patients and control subjects is provided in Supplementary Figure 1. Figures 3a and 
b show two examples of the CER profiles of control SC. As there was very little difference 
in the profile of all control subjects, these two pictures closely resemble those of all 5 
controls. There are at least 12 CER subclasses depicted, as reported before11. Within 
each CER subclass, a large number of peaks can be observed. Each peak indicates a CER 
specie with a different chain length: The difference in molecular mass of two sequential 
CER species within one subgroup is 14 mass units, representing a reduction of one CH2-
group. In all 12 CER subclasses in human SC a wide distribution in their total carbon chain 
length is observed. The CERs with higher mass values in the upper part of the 3D mass 
spectrogram belong to the CER [EO] subclasses (also noted as acyl-CERs) and show a chain 
length distribution between 63-78 carbon atoms. The α-hydroxy [A] and non-hydroxy [N] 
CER subclasses have shorter chains and therefore lower masses. The carbon chain lengths 
of these subclasses are between 34-52 and 32-56 carbon atoms, respectively. The 3D ion 
chromatograms of NTS patients are provided in Figures 3c, d, e and f. 
 In general, of all CER subclasses, CER [NP] was most significantly reduced, whereas CER 
subclasses [AS], [NS], and [AH] were least affected. Furthermore, there is a shift in the 
lipid chain length distribution of NTS patients to lower mass values compared to controls: 
increased peak intensities in the molecular range between 550 and 650 amu are observed 
in chromatograms of NTS patients (labeled as red peaks in Figure 3). 
 The chromatograms of Figures 3c and d are representative for 5 NTS patients (,,,, 
and ). In the SC of these patients, all CER subclasses are observed. There is a clear shift 
to a higher abundance of short-chain CERs. This is particularly the case for CER subclasses 
[NS], [AS] and [AH], for which a very high peak was observed corresponding to CERs with a 
very short total carbon chain length of 34 carbon atoms (referred to as C34 CERs). Figures 
3e and f show the ion chromatograms representative for the other 3 NTS patients (, 
and ). These patients show a clearly distinguishable pattern compared to the other NTS 
patients: There is a narrow chain length distribution in [A] and [N] subclasses. In addition, 
the level of acyl-CERs is drastically decreased and the C34 CERs are strongly increased. 
NTS subject  also shows a clearly distinguishable pattern in the CER subclasses, but in 
contrast to the other 3 patients, acyl-CERs were present in this subject (Supplementary 
Figure 1). 
 Quantitative results on the relative abundance of acyl-CERs and short-chain CERs are 
shown in Figures 4a and b, respectively. Control subjects show on average a relative 
abundance of 8.4 ± 1.9% acyl-CERs. This abundance was comparable for 5 out of 8 NTS 
patients, but 3 patients show a drastic reduction to ~2.5%. Regarding the abundance of 
very short chain CERs with a mass lower than 600 amu (corresponding to a total chain 
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Figure 5: a) Mass chromatograms of a subsection (730-815 amu) of cer [np] in a representative control subject (upper 
chromatogram) and nts patient (lower chromatogram). Peak labels indicate the mass (amu) and to which cer chain 
length and degree of unsaturation it corresponds. red lines indicate the unsaturated cers observed in nts patients. 
Although [m+h]+ was the main ion observed, also the [m+h-h2o]+ is detected and shown in the chromatograms as 
dotted lines. These have a mass that is 18 amu lower than their main [m+h]+ counterpart. Figure b) shows the 3d ion 
chromatograms of Figure a). Saturated and unsaturated chromatograms are presented separately in the left and right 
column respectively. Chromatograms are normalized to their highest peak in the sample and marked by *: i.e. cer [np] 
c48:0 in the control subject and cer [np] c48:1 in nts patient.

Figure 4: Dot plots showing the relative abundance of a) acyl-cers and b) short chain cers (c32-c38). Black horizontal 
lines and the corresponding values indicate mean values (±sd). Gray dotted lines indicate averages for two different 
categories observed: 5 nts patients with normal acyl-cer levels and 3 nts patients with reduced acyl-cer levels. 
Individual nts patients are labeled -.
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length of about ≤38 carbon atoms), all NTS patients show an increase compared to control 
subjects (27.2 ± 6.0% and 8.5 ± 1.3%, respectively).
 A closer examination of the mass spectra led to the observation of unidentified peaks 
present in many CER subclasses, with a mass of exactly 2 amu lower compared to the 
identified CERs. As an example, this is illustrated in the mass chromatogram of Figure 5a, 
in which a subsection of the mass spectrum of CER [NP] is shown. These peaks correspond 
to CERs with one degree of unsaturation. The increase in unsaturated CERs in NTS is high, 
and the example of CER [NP] is illustrated in Figure 5b: The 3D ion chromatograms show 
the same subsection of CER [NP] in a control sample and a NTS patient. No unsaturated 
CERs were observed in control subjects, and the most abundant peak in this subsection 
corresponded to a saturated CER with a chain length of 48 carbon atoms. On the contrary, 
multiple peaks corresponding to unsaturated CERs of different chain length were 
observed in the NTS patient. In this subsection of CER [NP], unsaturated C48:1 was the 
most abundant peak. When comparing all the lipid profiles, it becomes apparent that NTS 
subject  does show the highest abundance of unsaturated CERs.

Altered lamellar lipid organization in Netherton syndrome
 Figure 6 shows diffraction patterns of controls and NTS patients. The positions of the 
peaks are indicative for the periodicity of the lipid lamellae: a shift to higher q-values 
in the figure is indicative for a shorter periodicity (d) of the lipid lamellae. Figure 6a 
shows diffraction patterns of control SC. In previous studies, the diffraction patterns 
were analyzed and attributed to the two lamellar phases with repeat distances of around 
13 (LPP) and 6 nm (SPP). All controls show clear peaks at scattering vector values (q) of 
1.00 ± 0.01 and 1.45 ± 0.01 nm-1. The 1.00 nm-1 diffraction peak is attributed to the 2nd 
order peak of the lpp and the 1st order peak of the SPP, whereas the 1.45 nm-1 peak is 
attributed to the 3rd order of the LPP. In addition, some controls also show the 1st order 
of the LPP as a weak shoulder at a q-value located at ~0.50 nm-1. Figures 6b and 6c show 
diffraction patterns of NTS patients. SAXD patterns of NTS patients (numbers ,,,, 
and ), who clearly showed acyl-CERs present in their 3D ion chromatograms of Figure 
3 and Supplement 1, are depicted in Figure 6b. The presence of a diffraction peak at 0.5 
nm-1, but also the presence of peak ‘2’ and ‘3’ in patients ,,, and  suggests that the 
LPP is present. The diffraction pattern of patient  is very similar to that of the controls, 
although the peak position indicated by ‘2’ is shifted to slightly higher q-values suggesting 
a reduction in the repeat distances of the lamellar phases. The other diffraction patterns 
show distinct differences. In the SAXD pattern of SC from patients , , and , the peak 
indicated as ‘3’ has a higher intensity compared that that in the controls and shifted to 
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either lower or higher q-values. The most likely explanation for this increased intensity 
and changed shape of the peak is the formation of additional phases. The diffraction 
pattern of patient  does not show any diffraction peak. Figure 6c shows the SAXD curves 
of the NTS patients (numbers ,, and ) that have a low level of acyl-CERs present in 
the 3D ion chromatograms in Figure 3. No peaks are observed in the diffraction patterns 
of these NTS patients. 

Higher degree of disordering of the lipid chains in Nts
 Figure 7 shows the CH2 symmetric stretching peak position of the SC lipids in controls 
(green) and NTS patients (red). A higher peak position indicates a higher degree of 
conformational disordering of the lipid chains. The average peak position of the NTS 
patients is 2850.0 ± 0.6 cm-1, which is significantly higher compared to the control 
samples, showing an average value of 2849.4 ± 0.1 cm-1. In addition, a larger variability 
between NTS patients compared to controls was observed when performing a non-
parametric Levene’s test (P<0.05).
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Figure 6: Saxd patterns of controls a) and nts patients (b and c). The positions of the peaks (q) are indicative for the 
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angle. Individual nts patients are labeled -.



169

Discussion 
 In this study, we investigated the SC lipid composition and organization in 8 NTS 
patients and compared this to control SC. Recently, Bonnart et al. studied the lipid 
composition in transgenic mice overexpressing ELA2 as a model for NTS34. They observed 
a decreased level of FFAs and an increased total level of glucosylceramide and reduction 
of sphingomyelin. Electron microscopy studies revealed the presence of unprocessed 
lipids in the intercellular space of the SC. However, no further details on lipid subclasses 
and chain length distributions were provided, which is the focus of the present study. In 
addition we analyzed the lipid organization. Both the lipid composition and organization 
in SC of NTS patients show large deviations from that in control subjects. More precisely, 
we show that in SC of NTS patients there is an increase in the levels of MUFAs and in 
short-chain FFAs. Similar changes were observed in the CER composition: increased levels 
of unsaturated CERs as well as short-chain CERs were abundantly present in SC of NTS 
patients compared to control subjects. We also observed changes in the lipid organization 
in SC of NTS patients: a higher degree in conformational disordering of the lipid chains 
as well as an altered lamellar organization. In a subgroup of NTS patients almost no acyl-
CERs were present. 
 The changes in the lipid composition correlated to changes in the lipid organization. 
NTS patients (,,, and ) with normal levels of acyl-CERs in their SC, revealed a 
diffraction pattern indicating the presence of the LPP. In contrast, NTS patients with low 
levels of acyl-CERs (,, and ) did not show any proper SC lamellar organization, as no 
diffraction peaks were observed in the corresponding SAXD profile. The exception is NTS 
patient : Despite a high level of acyl CERs present in the SC, no peaks were detected in the 
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Figure 7: Ch2 symmetric stretching peak 
position in sc of controls (green dots) and nts 
patients (red dots). A higher peak position 
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SAXD profile of this patient. However, this patient shows a clearly distinguishable profile 
in most CER subclasses and has the highest level of short chain CERs and unsaturated 
CERs. In addition, the highest level of MUFAs as well as the shortest average FFA chain 
length was observed in this patient. The abundant presence of shorter and unsaturated 
lipid chains enhances disordering of the lipid organization and may therefore explain 
the lack of regularly stacked lipid lamellae49. Finally, only one patient () showed a 
diffraction profile very similar to the controls. This patient exhibits the least deviation in 
SC lipid composition compared to the control subjects. 
 It has been reported that NTS patients show a drastic reduction in skin barrier function, 
as indicated by increased TEWL values7-9. As the lipids play a crucial role in the skin 
barrier function, an altered lipid composition and thus a change in lipid organization may 
contribute to the increased TEWL values in NTS patients: In previous studies using model 
lipid systems, we observed that both an absence of acyl-CERs as well as short chain FFAs 
results in an increased permeability49,50. Furthermore, very recently we also reported an 
excellent correlation between a reduction in chain length of CERs and an increase in TEWL 
in patients with AE, demonstrating that the lipids may play a role in the impaired skin 
barrier function17.
 NTS and AE are both inflammatory diseases with some genetic association. Patients with 
NTS show many symptoms comparable to AE patients18,19. Therefore, a comparison in lipid 
profiling between NTS and AE is also of interest. Several changes in lipid composition in 
NTS were also observed in SC of patients with AE, but in the latter less pronounced. These 
changes are: i) A reduction in the level of acyl-CERs; ii) Increased levels of CER [AS] and CER 
[NS] and a reduced level of CER [NP]; iii) Increased levels in C34 CERs; iv) A shift to shorter 
chain lengths in FFAs and CERs; v) Increased levels in MUFAs. In AE, these changes in lipid 
composition correlated very well with an increased TEWL16,17,51. Therefore, also in NTS 
these changes in lipid composition and organization may contribute to the impaired skin 
barrier. In AE we observed that changes in the SC lipids were more pronounced in lesional 
skin compared to non-lesional skin, which may indicate that either inflammation and/or 
the presence of surface bacteria may play a role in changes in the lipid composition.
 Several changes in epidermal processing may contribute to a change in the lipid 
composition in NTS. i) An increased pH in SC of NTS patients, which may be caused by an 
ELA-2 hyperactivity and lower NMF levels. This may lead to alterations in SC CER subclass 
levels in NTS33,36,52 as the activity of both sphingomyelinase and β-glucocerebrosidase are 
both highly dependent on the pH in their microenvironment. Furthermore, a pH increase 
induces high serine proteases activity that in turn degrades lipid processing enzymes33. 
Upregulation of KLK activity has also been reported to affect these enzymes33. As CER 
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[AS] and CER [NS] both have sphingomyelin as precursor, an imbalance in the activity of 
these enzymes may increase the relative levels of these ceramides. ii) Park et al. showed a 
downregulation of elongases 1, 4 and 6 (ELOVL1, 4 and 6) and a subsequent reduction in 
CER chain length in a murine atopic eczema model53, demonstrating that these enzymes 
may be involved in the reduction of CER chain length in this model. In addition, it is known 
that ELOVL-4 knockout mice show a strong reduction in long chain FFAs, especially beyond 
C24; increased presence of unsaturated FFAs; and absence of acyl-CERs54. Therefore, the 
reduction in chain length of the lipids in SC of NTS patients may be related to a decreased 
activity of ELOVLs. 
 In conclusion, this study indicates for the first time that the SC lipid composition and 
organization are both altered in NTS patients. These alterations in SC lipids may at least 
partly explain the skin barrier dysfunction in NTS. It is of interest to study the activity 
of the abovementioned enzymes in NTS patients in vivo as the SC lipid barrier is likely 
impaired due to altered epidermal enzyme activities in NTS patients.
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