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Atopic eczema and its relation to the skin barrier
	 Atopic eczema (ae) is a multifactorial, chronic 
relapsing, pruritic, inflammatory skin disease. The 
disease is characterized by eczematous lesions as 
well as a broad spectrum of clinical manifestations, 
like xerosis (dry skin), erythema (red skin), and 
pruritus (itch) (Figure 1)1. These symptoms affect 
the quality of life substantially, and patients often 
show difficulties in their social life2. The incidence 
of ae in developed countries is rapidly increasing 
over the last two decennia to a current prevalence of 
5-10% in adults and around 20% in children, making 
it one of the most common skin diseases3-8. The 
diagnosis of ae is based on a constellation of clinical 
findings, as there is no pathognomonic biomarker 
for diagnosis. Formerly, ae was considered as a solely 
inflammatory disease and therefore often referred 
to as atopic dermatitis (but also neurodermatitis and 
endogenous eczema). Patients show an increased 
reaction to antigens, thereby inducing a dominant 
T-cell response that upregulates the production of 
cytokines. Although the disease is called ‘atopic’, up 

Figure 1: An example of a child with ae. In general, patients show the 
presence of lesional areas (affected, presence of erythema) as well as 
non-lesional sites (unaffected, which appear healthy). 
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to 60% of patients with the clinical phenotype of ae do not have elevation of total or 
allergen-specific IgE levels in serum.  As only a subpopulation show increased levels of 
IgE antibodies and eosinophils (white blood cells associated with allergy), there is still a 
controversy in terminology9-11.
	 However, a strong association between ae and loss-of-function mutations in the filaggrin 
gene (flg) was observed in 200612-16. Filaggrin is not directly related to the primary 
inflammatory response in ae, but is crucial for a proper formation of the outermost layer 
of the skin, the stratum corneum (sc), and sc hydration. The sc functions as the primary 
barrier of the skin17-19. Often referred to as a ‘brick and mortar’ structure, both the 
corneocytes (bricks) and lipids (mortar) are essential for the skin barrier. This finding 
created a paradigm shift in the understanding of the disease away from the inflammatory 
aspects towards ae as an epidermal barrier disorder11,20,21. One of the current hypotheses 
is that defects in the barrier function of the sc may facilitate the transport of pathogens, 
allergens, and irritants across the skin, thereby provoking dysfunctional innate and 
adaptive immune responses (Figure 2)11. This inflammation exacerbates the barrier 
defects, which allows successive pathogens to penetrate the skin, initiating a vicious 
circle. Recent studies corroborate this theory that a skin barrier dysfunction is causative 
for the risk of developing ae21-26.

Human epidermis
	 Mammalian skin is divided into two layers, the dermis and epidermis (Figure 2). The 
former consists of predominantly collagen and elastin, but also contains fibroblasts and 
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Figure 2: Schematic overview of the skin. a) Illustration resembling a cross-section of the skin showing the epidermis, 
dermis, and the subcutaneous tissue. A magnification of the epidermis is provided in. b) Under healthy conditions (left), 
the stratum corneum functions as the main barrier. However, a reduced barrier in ae patients (right) facilitates the 
transport of exogenous compounds into the deeper layers of the epidermis, thereby provoking an immune response. The 
reduced skin barrier function also leads to increased transepidermal water loss (tewl).
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the lymph vessels crucial for lymphocyte distribution in the dermis27. Lymphocytes act 
as a second line of defense, and may induce a T-cell response when arrest of exogenous 
compounds occurs. In ae, lymphocyte activation leads to an inflammatory response 
resulting in skin lesions11. The fact that exogenous compounds can reach the second line 
of defense means that it has already surpassed the epidermis. 
	 The human epidermis can be divided into 4 layers (strata). The stratum basale is the 
deepest located layer that contains the epidermal stem cells. In this layer, proliferation 
of keratinocytes the major cell type takes place28. Keratinocytes migrate upwards, and 
differentiate during this migration. This differentiation is a sequential process crucial for 
formation of the barrier function of the skin29,30. First, keratinocytes are migrating to 
the stratum spinosum where the formation of lamellar bodies (LBs) is initiated31. LBs 
are secretory organelles that contain the precursors of the lipids essential for a proper 
skin barrier as well as many enzymes necessary to convert the lipids into their final 
structure in human sc32. The corneocytes are gradually differentiating and migrating 
towards the stratum granulosum, where numerous processes take place in a very short 
time period30,33,34: Keratin filaments aggregate after interaction with filaggrin, and 
enzymes will start to degrade cell components like the nucleus and cell organelles. In 
addition, desmosomes that keep the keratinocytes together are transformed into 
corneodesmosomes, and a cornified envelope is formed around the plasma membrane of 
the keratinocytes34. Lipids and enzymes of the LBs are extruded at the interface between 
the stratum granulosum and the uppermost layer of the skin, the sc35-37.

The stratum corneum as the primary skin barrier 
	 The sc acts as the primary barrier against penetration of pathogens, allergens and 
other exogenous substances into the lower layers of the skin (the so-called outside-in 
barrier), and also prevent excessive transepidermal water loss (tewl, Figure 2), the so-
called inside-out barrier38,39. The sc has a ‘brick-and-mortar’ like structure. The ‘bricks’ 
are corneocytes: flattened, terminally differentiated keratinocytes40,41. The sc contains 
around 20 layers of corneocytes and is around 15-20 μm thick42,43. The corneocytes are 
embedded in a lipid matrix that is the ‘mortar’ of the sc barrier. The mortar is formed 
at the interface of the stratum granulosum and sc: The lipid disks stored in the LBs are 
extruded into the intercellular space between the stratum granulosum and sc. These lipid 
disks fuse together and create the highly ordered lipid lamellae. Metabolism, transport 
and extrusion of the sc lipids will be discussed below.
	 The sc is constantly renewed. In human skin this occurs in approximately 2 to 4 weeks. 
At the surface, continuous shedding of the sc takes place at a rate of approximately 5·108 
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cells/day, a process called desquamation44. It is an active process that depends on pH, 
enzyme activity, and also on sc water levels in which kallikreins (KLKs) and cathepsins 
degrade the strong cohesive links between the corneocytes, the corneodesmosomes45-49. 
Friction or sheer stress with the environment enhances the shedding of corneocytes at 
the skin surface.
	 The major penetration pathway of most molecules through the sc is along the intercellular 
pathway (i.e. penetration via the extracellular lipid matrix)50,51. This emphasizes the 
importance of the sc lipids as the primary barrier components of the skin.

Extracellular lipid matrix in human stratum corneum
	 The lipids located in the extracellular matrix of the sc consist primarily of three 
lipid classes: ceramides (cers), free fatty acids (ffas), and cholesterol (chol), in 
approximately equimolar amounts52-55. The former two consist of carbon chains that 
are exceptionally heterogeneous in their molecular structure and are therefore classified 
into subclasses. Under healthy conditions, human sc ffas are predominantly saturated, 
but mono-unsaturated ffas (MUFAs) and trace amounts of poly-unsaturated ffas 
(PUFAs) are present as well53,56,57. ffas with an additional hydroxyl-group (OH-ffas) are 
occasionally reported too57. Moreover, ffas show an extensive variation in their carbon 
chain length. The most predominant ffas have a chain length around 24 carbon atoms, 
but the full chain length distribution varies between 16 and 36 carbon atoms56,57. The 
second lipid class, cers, show even more structural diversity: They consist of a sphingoid 
base linked via an amide bond to a fatty acid (acyl) chain and are classified according 
to the different functional groups they have in both chains (Figure 3)58: The sphingoid 
moiety can either be a sphingosine [S], dihydrosphingosine [dS], phytosphingosine [P] or 
6-hydroxysphingosine [H]. The acyl chain is either non-hydroxylated [N], α-hydroxylated 
[A], or can even be ω-hydroxylated and successively linked to another fatty acid resulting 
in an esterified ω-hydroxylated [EO] acyl chain. The latter [EO] subclass (also named 
acyl-cer subclass) has an exceptionally long carbon chain which is unique for sc lipids. 
Different combinations in both carbon chains lead to the possibility of 12 different cer 
subclasses which have all been observed in human sc except for cer [EOdS]59. In addition 
to their variation in subclasses, cers show a wide distribution in their total chain length 
(that is, the chain length of both the sphingosine base and the acyl chain together). cer 
chain lengths between 34 carbon atoms and 72 carbon atoms have been reported in 
healthy human subjects59,60. 
	 The sc lipid matrix is not only distinctive in its composition, but also shows a unique three-
dimensional ordering (Figure 4)61. Lipids are organized in stacked layers, lamellae62,63. 
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The structures formed by these layers have a repeat distance (d) of approximately 6 nm 
or 13 nm, referred to as the short periodicity phase (SPP) and long periodicity phase 
(LPP), respectively64-66. In particular the LPP is considered to be important for the barrier 
function of the skin, as is demonstrated from in vitro studies using lipid membranes67-69. 
Approximately perpendicular to the lamellar organization, lipids are packed with certain 
density. This lateral lipid packing is also of high importance for a proper sc barrier 
function70. At physiological temperature, human sc lipids are mainly present in a very dense 
orthorhombic organization. However, some lipid domains may be arranged in a less dense, 
hexagonal organization or even liquid organization, making the sc more permeable71-75.

Epidermal lipid metabolism
	 sc lipids (viz. ffas, cers and chol) are either generated in viable keratinocytes by several 
enzymatic reactions (de novo synthesis) or taken up by keratinocytes from extracutaneous 
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Figure 3: Molecular structure and nomenclature of cers. Containing a polar head group and two apolar tails, cers 
are composed of a sphingoid base (depicted in blue) linked via an amide bond to an acyl chain (gray). Both chains can 
vary in their structure at the carbon positions indicated by the red arrows. In human sc, 4 different sphingoid bases 
(dihydrosphingosine [ds], sphingosine [s], phytosphingosine [p], 6-hydroxy sphingosine [h]) and 3 different acyl chains 
(non-hydroxy fatty acid [n], α-hydroxy fatty acid [a] and esterified ω-hydroxy fatty acid [eo]) are present. Together, this 
results in the presence of 12 subclasses of which all but cer [eods] have been identified in human sc.
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sources, such as the dietary lipids (e.g. essential ffas) or lipids synthesized in other 
organs like the liver76. Several enzymatic reactions are required for lipids synthesis and 
the subsequent lipid transport from the keratinocytes into the extracellular matrix of the 
sc, which will be discussed briefly (Figure 5).
	 Fatty acid synthase synthesizes ffas to a chain length of 16 carbon atoms (palmitic 
acid) using acetyl-CoA and malonyl-CoA. Successively, ffas can be elongated over 
16 carbon atoms by a series of 7 elongases (ELOVLs)77-79. This results in a wide chain 
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Figure 4: Descriptive illustration explaining the lamellar and lateral organization in human stratum corneum. 1) The 
uppermost layer of the skin, the stratum corneum (sc), is composed of a ‘brick’ and ‘mortar’ structure of corneocytes and 
a highly ordered lipid matrix 2). 3) The lipids are arranged in stacked layers (lamellae), with two coexisting lamellar 
phases. These lamellar phases have a repeat distance of either 6 nm (spp) or 13 nm (lpp). The lateral organization is the 
plane perpendicular to the direction of the lamellar organization. Three possible arrangements of the lipids are possible: 
a very dense, ordered orthorhombic organization, a less dense, ordered hexagonal organization, or a disordered liquid 
organization. The former is predominantly present in healthy human sc.
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length distribution of ffas. In addition to elongation, ffas can be converted to mono-
unsaturated ffas (MUFAs) and poly-unsaturated ffas (PUFAs) catalyzed by stearoyl-CoA 
desaturases (scDs)80. Subsequently, the synthesized ffas can either be used for synthesis 
of cers (described below) or transformed to phospholipids and stored into LBs. 
	 cer synthesis occurs in the endoplasmatic reticulum81-83. The first step involves the 
enzyme serine palmitoyl transferase that catalyzes the condensation of serine and 
palmitoyl-CoA to form 3-keto-dihydrosphingosine, which is successively reduced to form 
dihydrosphingosine. The next enzymatic step acylates a ffa to dihydrosphingosine. In 
this step, 6 cer synthases are involved84-86. Each of the different cer synthases are more 
specific to certain ffa chain length and degree of unsaturation. The final step involves 
the conversion of the dihydrosphingosine into one of the several sphingoid subclasses 

Figure 5: Schematic overview 
of main enzymatic processes 
involved in the formation 
of sc lipid lamellae. Arrows 
indicate the transport or 
conversion of lipids that are 
catalyzed by enzymes denoted 
by the abbreviations in blue. 
Abbreviations are as follows:  
fas = fatty acid synthase; elovl 
= elongation of very long chain 
fatty acids family (1 to 7); scd 
= stearoyl-coa desaturase; spt = 
serine palmitoyltransferase; ksr 
= 3-ketosphinganine reductase; 
(a)gpat = (acyl)glycerol-3-
phosphate acyltransferase; cers 
= ceramide synthase family (1 
to 6); des = dihydroceramide 
desaturase (1 and 2); gcs = 
glucosylceramide synthase; sms 
= sphingomyelin synthase; sult 
= cholesterol sulfotransferase 
type 2b isoform 1b; csase = 
cholesterol sulfatase; pla-2 
= phospholipase; β-gcase = 
β-glucocerebrosidase; asmase = 
acid sphingomyelinase.
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catalyzed by dihydroceramide desaturase (DES) enzymes. These subclasses of sphingoid 
bases are either sphingosine [S], dihydrosphingosine [dS], phytosphingosine [P], or 
6-hydroxysphingosine [H]59,87. The different cers are then transported to the Golgi 
complex and converted to glucosyl-cers and sphingomyelin, before transported into 
LBs86,88.
	 chol is the third main component of the sc lipid matrix and needs no conversion 
for storage into the LBs. It can also be converted to oxysterol or chol-sulfate, which 
stimulates keratinocyte differentiation and plays a crucial role in the desquamation 
process by inhibiting the activity of proteases that promote the degradation of the 
desmosomes89-91. Moreover, chol-sulfate is highly amphiphillic and can therefore cross 
the keratinocyte membrane and directly enter the stratum corneum where it will be 
partially converted back to chol by cholesterol sulfatase to be incorporated into the lipid 
lamellae76,92.
	 The LBs generated in the stratum spinosum and stratum granulosum contain both the 
lipid precursors (chol, phospholipids, glucocylceramides and sphingomyelin) as well as 
the enzymes that convert the precursor-lipids into the final extracellular barrier lipids31. 
At the interface of the stratum granulosum and sc, secretion of the lipids from the LBs 
into the stratum corneum occurs. This process is called lamellar body extrusion, and is 
triggered by changes in the local calcium concentration76. The lipids are then converted 
to their final substituents by enzymes that are cosecreted in the LBs32,93,94: The 
phospholipids are converted back to ffas (and glycerol) by phospholipases95, whereas 
β-glucocerebrosidase and acidic sphingomyelinase convert respectively glucosylceramides 
and sphingomyelin back into cers96-99.
	 Crucial for an optimal lipid synthesis and successive LB formation is a proper 
differentiation of keratinocytes. Important regulators of keratinocyte proliferation 
and differentiation are the nuclear hormone receptors like peroxisome proliferator-
activated receptors (ppars) and liver X receptor (LXR)92,100. These transcription factors 
are designated as ‘liposensors’, as they can sense cellular lipid levels and adjust gene 
expression accordingly. Ppars are primarily activated by ffas and their metabolic 
products, while LXR is activated by oxysterol metabolites101. Activation of ppars and LXR 
stimulate expression of keratinocyte differentiation markers, such as loricrin, involucrin 
and filaggrin102-106. Consequently, as the amount of ffas and chol necessary for LB 
formation increases, ppar and LXR activation is also increased which stimulate corneocyte 
formation76,100. In addition to their role in the formation of the sc ‘bricks’, ppars and 
LXR also act directly on the sc lipids: They stimulate lipid synthesis, facilitates both LB 
formation and LB secretion, and promote extracellular lipid processing107-110.
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Stratum corneum hydration
	 The permeability, flexibility, and enzymatic activity of the sc is highly dependent on 
its water content. Proper sc hydration is regulated by (derivatives of) amino acids and 
specific salts, commonly referred to as the ‘natural moisturizing factor’ (NMF)111,112. 
Reduced NMF levels in the sc may negatively affect the hydration level, but is also 
suggested to increase the local pH, as NMF are derived from amino acids. Sub-optimal sc 
hydration levels or pH can have an effect on hydrolytic enzymes and the aforementioned 
permeability and flexibility. This may thereby induce a negative effect on many processes 
like desquamation, keratinocyte differentiation, lipid synthesis, cornified envelope 
formation, and the sc barrier function111,113-119. Most of the amino acid derived NMF 
are breakdown products of filaggrin. flg mutations lead to reduced NMF levels which is 
associated with dry skin120,121. This may explain the relation between ae, dry skin and 
flg mutations122. Although loss-of-function mutations in the flg gene are the foremost 
genetic risk factor for developing ae, a relatively large percentage of ae patients around 
50-80% do not carry such a mutation123,124. Besides, there is no convincing data that 
shows a clear relation between flg mutations and a reduced skin barrier function in ae 
patients as measured by transepidermal water loss.  Therefore, the role of filaggrin for an 
impaired sc barrier function remains indistinct, suggesting that other components of the 
epidermis and the skin barrier are likely to be involved as well125-127.
 
The cutaneous immune response in ae
	 The primary cause for inflammation in ae is related to penetration of antigens through 
the disrupted sc barrier. This leads to an acute Th2-driven inflammatory response in the 
early stage of ae, but can develop in a Th1-driven response when the disease becomes 
chronic11,20,128,129. In addition, lesional epidermis (affected skin sites, Figure 1) in ae 
is characterized by infiltration of dermal dendritic cells, memory T cells, eosinophils, 
mast cells, lymphocytes and (IgE coated) macrophages11,130-134. The Th2-response leads 
to increased expression of cytokines which play a crucial role in the cutaneous immune 
response. Among these are the pro-inflammatory interleukins (ILs), like IL-4, IL-5, IL-13, 
IL-17, IL-22 as well as IL-31, the initiator of the itch-response. These cytokines reduce 
the expression of filaggrin, thereby exaggerating ae11,135,136. The production of these 
cytokines occurs in the T-cells, except for thymic stromal lymphopoietin (TSLP), which is 
produced by the keratinocytes. TSLP enhances the production of Th-2 cytokines by mast 
cells and mediates the dendritic cells towards a Th2-response137,138. 
	 The hydration of the skin is also of importance for the immune response. It is 
known that an increase in local pH induces the activity of serine proteases, leading to 
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the generation of primary cytokines, interleukin (IL)-1α and IL-1β139-141. These are 
considered to be important for triggering the cytokine cascade and are related to the skin 
barrier dysfunction142-144.

Studies on the sc barrier lipids in ae
	 The specific role of the lipid composition and organization with respect to ae has yet to 
be elucidated, though several studies show the importance of these aspects regarding ae. 
Concerning the lipid composition, there is conflicting information reported: some studies 
notice no change in the cer composition, whereas others demonstrate a decrease in total 
cer level as well as a decrease of cer subclasses [eos], [eoh] and/or [np], and increase 
in cer [as]54,145-152. A study by Ishikawa et al. tended to show differences in the chain 
length of some cer subclass in lesional skin only. In addition, they show that the levels 
of individual cer subclasses were altered even in non-lesional ae skin153. With respect to 
ffas, little is known on the changes in sc of ae compared to that in sc of control subjects. 
Results on the ffa lipid class in ae are scarce, but two studies report a decrease in sc 
ffas longer than 24 or 26 carbon atoms in ae patients154,155. With respect to the lipid 
organization in ae patients, almost no information is available. Pilgram et al. performed a 
limited study in 3 ae subjects in which they observe a significant increase in hexagonally 
ordered lipids compared to controls, as studied by electron diffraction. Fartasch et al. 
show that LB extrusion is delayed in ae, resulting in diminished delivery of the lipids into 
the intercellular regions156. The metabolic enzymes involved in lipid synthesis have been 
studied as well, since these are involved in the underlying causes for possible changes in 
the sc lipids of ae patients. However, the data are scarce. For example: two studies report 
no changes in enzyme activity of sphingomyelinase and β-glucocerebrosidase in skin of 
ae patients compared to healthy controls157,158. However, this is contradictory to a study 
published by Jensen et al., who reported a reduced activity of sphingomyelinase in both 
lesional and non-lesional skin of ae patients159. Hara et al. report that ceramide deficiency 
is related to another enzyme, sphingomyelin deacylase, which converts sphingomyelin 
into sphingosylphosphorylcholine and ffas instead of cers160,161. Another example of 
important sc lipid modulators which are modified in ae are the ppars. Lesional skin of ae 
patients showed an increased expression of pparβ/δ, while the expression of pparα and 
pparγ was decreased162,163. As discussed before, ppars stimulate keratinocyte expression 
and have a direct effect on lipid synthesis, LB formation and its secretion, and promote 
extracellular lipid processing. Changes in these nuclear receptor proteins are therefore 
suggested to affect the sc lipid barrier. However, the changes in differentiation in relation 
to lipid biosynthesis and lipid composition are not fully established. One of the important 
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pieces in the puzzle is a comprehesive analysis of the barrier lipids, in which not only the 
lipid classes, but also the chain length distribution of the lipids is studied. 

Analysis of the sc lipid composition
	 Analyzing the three main sc lipid classes (chol, ffa, cers) can be challenging, as these 
lipids are very non-polar and show a large diversity164. ffas are most commonly analyzed 
by gas chromatography (gc) or gas liquid chromatography (glc). Although the lipid 
composition can be examined in detail, the main draw-back of these methods is related 
to the labor intensive derivatization of the sample prior to analysis165,166. Despite all 
technological improvements, identification and quantification of sc ffas has only been 
reported twice by Ansari and Norlen in healthy human skin56,57. 
	 The structural variation is the main challenge for analysis of cers. Usually, thin layer 
chromatography (tlc) is used to separate some of the cer subclasses, and quantification or 
additional structural information can be obtained by successive densitometry or nuclear 
magnetic resonance (nmr) spectroscopy58,150,167-170. Main drawbacks are that tlc is 
usually cumbersome, cannot separate all subclasses at once, and has a low linear dynamic 
range in terms of quantification58,164. Better separation of lipids can usually be achieved 
by gc, but cers are non-volatile and unstable in the gas-phase, making gc only compatible 
for analysis of cers when derivatized171-174. Liquid chromatography (lc) in combination 
with light-scattering detection (lsd) has proven its potential for proper sc cer separation 
and analysis, but the inability for quantification is a major disadvantage175-179. Mass 
spectrometry (ms) is currently the most sensitive and powerful tool for identification of 
cers, and although quantification is relatively difficult, technological developments over 
the last decennia have led to improvements on this major issue. In combination with lc, 
it allows for analysis of all cer subclasses and can distinguish between different chain 
lengths as well. Whereas tlc in combination with nmr demonstrates the presence of 9 
cer subclasses, the introduction of lc/ms has led to the discovery and identification of  
2 additional subclasses. ms can be a powerful tool as it gives information on the mass of a 
compound, a unique feature very useful for identification. However, the aforementioned 
quantification issue is a major drawback. Proper quantification is usually difficult as ms 
needs extensive validation, multiple internal standards per sample and quality controls.  
Nevertheless, reported data on sc cers by lc/ms has proven its potential and its high 
sensitivity makes lc/ms the preferred method when small quantities of material are 
used59,60,180-185.
	 The analysis of all lipid classes at once is currently limited to tlc only. This method 
has led to enormous advancements in the understanding of lipids in the sc, and is still 
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frequently used for sc lipid analysis. However, the aforementioned disadvantages makes 
this method not appropriate for detailed analysis, especially when focusing on the lipid 
chain length distribution or when using small lipid amounts. There is currently no method 
for detailed analysis of all sc lipids, in which chain lengths of individual ffas and cers 
as well as all their subclasses can be studied at once. One of the primary challenges that 
will be addressed in this thesis is regarding development of a robust and high-throughput 
method, using straightforward sample preparation that enables detailed analysis 
of all main sc lipid classes in a single setup using very limited sample amounts. lc in 
combination with ms seems most promising, as it can both separate lipid classes based on 
polarity (like tlc), and in addition on a second dimension: molecular mass.
	 The analytical methods reported in literature have also been used to study the sc 
lipids in ae, although the results remain inconclusive. For example, two (relatively 
recently) developed methods report contradictory information regarding ae. Farwanah 
et al. developed a high performance tlc method to compare the cer composition in 
non-lesional skin of 7 ae patients with 7 healthy control subjects146. However, they 
observed no differences in any of the cer subclasses between the two groups. In contrast, 
Masukawa et al. developed an lc/ms method to study 8 ae patients and 7 control 
subjects153. In contrast to Farwanah et al., they observed significant changes in some of 
the cer subclasses of both lesional skin and non-lesional skin. They suggest that besides 
cer subclasses, cer chain length may be of importance for a proper sc lipid composition. 
These contradictory results show that more information is required to fully elucidate the 
lipid composition in these patients. To achieve this, there is a need for proper analytical 
methods enabling the analysis of all lipid classes in sc as well as the lipid chain length.

Analyzing the sc lipid organization
	 The sc lipids are organized in a highly ordered 3D-structure (Figure 4). The lamellar 
lipid organization can be studied by means of small angle X-ray diffraction (saxd). The 
principle of saxd is that X-rays are scattered by a sample (i.e. sc sheets). The scattered 
X-rays are recorded as a function of its scattering vector (q), defined as q = 2π·sin θ/λ, in 
which λ is the wavelength of the X-rays and θ the angle of the scattered X-rays (Figure 6a). 
As the lamellar lipid organization is characterized by repeating lipid layers (periodicity 
phase), a typical saxd profile of human sc (see Figure 6b) shows sequential maxima from 
which the repeat distance (d) of the lpp and spp can be determined, according to the 
equation d = n·2π/qn (n = order of diffraction peak)64-66.
	 The lateral lipid organization can be studied by Fourier transform infrared spectroscopy 
(ftir). An infrared beam is emitted on a sample (i.e. sc sheet), and the amount of ir 
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radiation that is absorbed due to resonating atom bond vibrations is recorded. 
Analyzing specific vibrations in different wavelength regions provide information on the 
3-dimensional sc lipid organization. These are e.g. CH2 symmetric stretching vibrations 
(2848-2053 cm-1) and the CH2 scissoring vibrations (1460-1480 cm-1; Figure 7)71-75. 
The former provides information on the conformational ordering of the lipids, and peak 
positions at a lower frequency (~2848 cm-1) contribute to a higher degree of conformational 
ordering than peak positions located at a higher wavenumber (2853 cm-1). The bandwidth 
of the CH2 scissoring vibrations is indicative for the amount of orthorhombic domains 
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Figure 7: The lateral organization can be 
measured by ftir. a) ch2 stretching vibra-
tions: At a lower frequency (~2848 cm-1), 
ch2 stretching vibrations indicate a high 
degree of conformational ordering of the 
lipids, whereas a high wavenumber (2853 
cm-1) is indicative for a liquid organization 
(low degree of conformational ordering). b) 
ch2 scissoring vibrations (1460-1480 cm-1): 
An orthorhombic organization results in a 
splitting of the scissoring vibrations, while a 
hexagonal packing results in a single vibration.
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Figure 6: a) Principle of saxd. An x-ray beam is scattered at a certain angle (θ) by the sc sheet, resulting in a 2d-saxd 
image, which can be transformed into a typical saxd plot shown in b): A representative saxd profile of human sc. The 
scattering intensity is plotted as a function of q, which is defined by q = 2πsin θ/λ. The x-ray diffraction graph of human 
sc is characterized by a high intensity at low q values due to keratin in the corneocytes and a series of peaks. The peaks 
indicated by I (weak peak), II (strong peak) and III (weak peak) are attributed to the lpp. Peak II is also attributed to the 
spp. The peak indicated by # is due to chol.
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present in human sc. A small, single peak with a limited bandwidth is indicative for the 
presence of a hexagonal organization, whereas an increased bandwidth of the scissoring 
vibrations is indicative for an increased fraction of lipids present as orthorhombic lipid 
domains.

This thesis
	 The rapid increase in prevalence of ae urges for novel treatments, also with respect to sc 
barrier repair. However, the exact role of the sc lipids for the impaired skin barrier function 
in ae is inconclusive. This lack of knowledge hampers the development for restoring the sc 
barrier by e.g. topical treatments. The studies described in this thesis aim in providing detailed 
information on the sc lipid composition, the lipid organization, and the role of sc lipids for the 
skin barrier function. In other words: we want to study the role of the lipids in the impaired 
skin barrier in ae. To study these three basal parameters in a combined study is unique, but 
needs several scientific barriers to be breached before this can be realized. The next chapter 
will describe the objectives and aims that facilitate in realizing the main goal of the study. 

part I chapter 1 
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