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In this thesis 7 chapters are presented, describing clinical, pathological and molecular studies 
related to the most common primary bone tumour, osteosarcoma. Chapter 1, the general 
introduction, is an overview of epidemiology including incidence, age distribution, 
localization in the skeleton, risk factors and survival. The objective of this description is to gain 
more insight in the clinico-pathological behavior of osteosarcoma, based on epidemiologic 
information (1). The incidence pattern is age dependent. Osteosarcoma in children under 5 
years of age is rare, less than 2% of all osteosarcomas occur in this age group. A steep rise in 
incidence occurs during puberty, peaking at an incidence of 8.6 cases/106 population up to 20 
years of age, followed by a low rate of on average 1.7/106 population during adulthood (25–59 
years of age) (2). A non-unified second peak occurs in people of 60+ years, reaching 4.9/106 
new cases yearly. Remarkably, this 2nd incidence peak is absent in the Asian people (3). This 
peak has suggested to be due to secondary osteosarcomas, after radiation or as complication 
of Paget’s disease. The different distribution and histology of osteosarcomas in patients older 
than 60 years of age suggests indeed a distinctive biological behaviour. An adequate treatment 
is of utmost importance for survival of patients that has not improved the past 2-3 decades. 
Contemporary treatment consists of pre-and postoperative (neo-adjuvant) chemotherapy and 
radical surgery. If no clear resection margins can be obtained, the patient has a very high risk 
of being incurable.
With respect to the prognosis of patients with osteosarcoma, the chances for survival after 
incomplete surgery are less than 15% (4). Hence locations where complete resection is 
impossible, for example axial or pelvic site, have strong influence on outcome. Axial site is 
more often present in older patients, therefore age can be biased by the site of the primary 
tumour with respect to prognosis. For resectable disease, metastases at diagnosis, proximal 
site and large (≥ 1/3 extremity length) size of the primary tumour are the most important 
adverse prognostic factors (4-6). Two treatment related factors are also of favourable prognostic 
importance, these are good histologic response on pre-operative chemotherapy and presence 
of chemotherapy induced toxicity (7). Other factors, such as pathological fracture at diagnosis, 
type of surgery, age and gender were of minor prognostic importance. Genetic risk factors, like 
the Li-Fraumeni syndrome, the (heritable or bilateral) Retinoblastoma, the helicase-mutation 
syndromes and other diseases in their context to osteosarcoma are discussed in this chapter.
The pathology of osteosarcoma was discussed, with emphasis on the unconventional subtypes 
of high-grade osteosarcoma and the low-grade osteosarcoma variants. This was chosen because 
these variants contribute to only 5% of all osteosarcomas but, were overrepresented in the 
hands and feet (discussed in chapter 6). 
In chapter 2 the literature of chemotherapeutic treatment of localized, non-metastatic 
osteosarcoma of the extremities was reviewed. One of the main conclusions was that there 
are not more than 4 effective cytostatic drugs, where efficacy is defined as an response rate 
(RR) in phase-II trials of 20% or more. These 4 drugs are doxorubicin (RR 43%), ifosfamide 
(RR 33%), methotrexate (RR 32%) and cisplatin (RR 26%). Meta-analysis demonstrated 
that 2-drug regimens (mainly consisting of doxorubicin and cisplatin) are inferior to regimens 
containing 3 or more drugs. According to this analysis there was no survival benefit of 
4-drug regimens compared to 3-drug regimens. Therefore a 3-drug combination such as 
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methotrexate, doxorubicin (a.k.a. adriamycine) and cisplatin, a regimen referred to as MAP, 
is considered the best induction regimen and should be used as standard treatment for 
osteosarcoma in clinical protocols. The debate remains whether adding a high responsive 
drug, like ifosfamide, to MAP should be reserved for non-responding patients or in cases 
of progressive disease. Furthermore, it was concluded that investigating more of this type of 
conventional drug regimens would not be advantageous. 
Therefore, we started a study in osteosarcomas to investigate if genome wide gene expression 
provides a better insight into the biology of this tumour. Gene expression pattern of 25 
high-grade osteosarcoma biopsies were correlated to the outcome of disease or response to 
neo-adjuvant treatment. In addition we investigated if drug targets from such expression data 
could be determined. The results of this study were presented in chapter 3 and showed that 
nearly 3000 genes were significantly differentially expressed in osteosarcoma, compared with 
non-malignant cells (osteoblastomas, mesenchymal stem cells and mesenchymal stem cells 
differentiated into osteoblasts). Gene expression profiles could not be correlated to either 
response to treatment or survival. Analysis at a single gene level proved to be not useful in 
osteosarcomas, because this tumour has a highly complex karyotype, that diminishes the 
reliability of single genes to predict the clinical determinants of malignant diseases, unless 
thousands of samples are used (8). Therefore, pathway analysis was chosen as a method for 
further analysis of malignant transformation of the mesenchymal stem cell, the presumed 
precursor of osteosarcoma (9). 
At pathway level, we found down-regulation of the Wnt3a/β-catenin signalling (reflected 
by downregulation of Axin and CCND1), upregulation of the Wnt5a/alternative signalling, 
overexpression of the cell cycle genes and a disturbed p53/apoptotic pathway (reflected by 
downregulation of BBC3/PUMA) in osteosarcomas. 
The statistical background for the choice for pathways analysis is described in chapter 4. This 
paper describes the algorithm for the association of the expression of groups of genes with 
clinical variables. The groups of genes can be clustered based on pathways, as defined for 
example in the Gene Ontology data base (http://amigo.geneontology.org) (10). The Global 
Test can test the statistical significance of a certain pathway, attributed to a clinical variable of 
interest, for instance survival. The test is based on the Cox proportional hazards model, with 
the possibility to adjust for the presence of co-variables. In this paper, the expression profile of 
the patients, whose biopsies were analyzed in chapter 3, were tested. Using this model it was 
found that pathways, involving the cell cycle, DNA repair and apoptosis were associated with 
survival. It was further concluded that using the Cox model, survival data are not lost and can 
be adjusted for the presence of co-variates, which allows to improved performance of this test. 
In order to establish molecular targets for osteosarcoma treatment, the epidermal growth 
factor receptor HER2 was mentioned as a candidate and is the subject of research, described 
in chapter 5. Her2 is highly expressed in 25% of the breast cancer patients, and its related 
tumorigenic effects (11, 12) can be reverted by the monoclonal antibody trastuzumab 
(Herceptin®) (13). Based on the presumed overexpression of Her2 in osteosarcomas (14-16), 
a phase-II study with trastuzumab was initiated in osteosarcomas (www.cancer.gov/clinical_
trials: MSKCC-99097/NCI-T98-0083 and COG-AOST0121). However, in our study no 
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membranous (3+) HER2 overexpression was found, which is a prerequisite for tratstuzumab 
treatment (17, 18). Neither HER2 mRNA was overexpressed at the gene level, nor FISH 
analysis showed HER2-gene amplification in the single sample that stained moderate (2+) 
positive membrane staining. We concluded that HER2-gene amplification or membranous 
HER2 protein overexpression is absent in human osteosarcoma, and that we cannot support 
the principle to treat osteosarcomas with Herceptin. 
After we had confirmed the complexity of osteosarcoma at molecular level with the 
gene-expression study, another question was whether there is also clinical evidence for 
heterogeneity of osteosarcomas. To answer this question, we studied the clinico-pathological 
features of osteosarcomas with a rare localization, i.e. the small tubular and flat bones of 
the hands and feet. The results of this study are described in chapter 6. In total 40 patients 
with osteosarcomas of the hands or feet, obtained from the merged Dutch (10/1733) and 
the Rizzoli Institutional databases (30/2488) were described, representing only 0.95% of all 
osteosarcomas, present in both databases. Compared with the usual sites (around the knee 
or humerus), osteosarcomas in hands or feet occurred in older patients (mean age 42 years), 
with a male predominance (male female ratio=1.7:1), patients had a longer delay before 
the definitive diagnoses was made, and had a higher proportion of low grade (30%) and 
intermediate grade (5%) of malignancy compared to osteosarcoma at conventional sites, that 
show low-grade malignancy in 1%-2% (19). Overall cumulative incidence of death (CID) 
of the whole group was 80%, however worse in patients with location in the hands (4y CID 
38%) than in the feet (2.5 CID 11%), and no deaths were observed in patients with low-or 
intermediate grade osteosarcomas. It was concluded that high-grade osteosarcoma of the 
hands or feet are a peculiar subgroup of osteosarcomas, and that high-grade tumours have a 
similar prognosis as osteosarcoma in the long tubular bones of the skeleton. It is recommended 
to treat high-grade osteosarcomas of the distal extremities in the same way as those tumours at 
conventional sites. 
The last part of this thesis, chapter 7, deals with osteosarcoma as systemic disease, which 
occurs as synchronous metastases (metastases at diagnosis, in 16% of the newly diagnosed 
patients (4, 20-24) or as recurrent or relapsed disease (metachronous metastases), which 
occurs in 45% of all patients treated for localized osteosarcoma (4, 20-26). A study was done 
to determine prognostic factors in 88 patients with pulmonary (n=26 synchronic, n=62 
metachronic) metastases from the Leiden University Medical Center data base. Overall survival 
of the patients with resectable metastatic osteosarcoma was 23%, not worse for patients with 
synchronous versus metachronous metastases. Survival was determined only by resectability of 
the metastases, even if surgery was more often than once required. Poor prognostic factors for 
survival in patients who underwent surgery were high (5 or more) number of metastases (HR 
1.29), whereas favorable prognostic factors were necrotic metastases (HR 0.17) and female 
gender (HR 0.41). Although it would suggest that pre-operative chemotherapy could induce 
necrotic metastases, the trend towards better survival for patients who received chemotherapy, 
found in this study was not significant (c2 p=0.04). Overall, it was concluded that cure can be 
achieved in a subset of patients with (synchronous or metachronous) metastases by aggressive 
surgical treatment, but the role of chemotherapy remains elusive. 
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Discussion 

From the above chapters it can be concluded that high-grade osteosarcoma cannot be 
considered as one disease, but is a heterogeneous tumour at clinical, pathological and genomic 
level. This may be the reason that contributes to the lack of improvement in survival during 
the past 3 decades. One of the important findings in this thesis was that there are only 4 
effective drugs against high-grade osteosarcoma, i.e. doxorubicin, methotrexate, cisplatin and 
ifosfamide. After relapse, the treatment options become even more limited, because re-using 
the same drugs questions their efficacy, and adds to the cumulative toxicity of these drugs 
(27), like cardiac (28), hearing loss (29), renal damage (30, 31), fertility problems (32, 33) or 
second malignancies (34). Treatment with the monoclonal antibody Herceptin could not be 
supported by us and others, because there is no membranous HER2-receptor overexpression 
on osteosarcomas, as is shown by us and others (35-38). Array analysis revealed up-regulation 
of cell cycle genes and a disturbed Wnt- and p53/apoptotic signalling as most important 
abnormal pathways in osteosarcomas compared with non-malignant cells. Upregulation of cell 
cycle genes is not surprising in cancer cells, neither disturbance of the apoptotic pathway. In 
order to think of the Wnt-signalling as potential therapeutic target for osteosarcoma, the Wnt-
pathway in general and as far relevant for osteosarcoma will shortly be discussed shortly in the 
next paragraph.

Wnt-pathway
The Wnt signalling plays an important role in developmental biology and in cancer (39, 40). 
Due to the numerous Wnt-ligands (n=19), Wnt-receptors (Frizzled: Fzd’s n=10), co-receptors 
(n=8) and modulators, like Wnt-inhibitors (Dickkopfs, Wnt-inhibiting factors, soluble Fzd-
related proteins and proteoglycans) the downstream signals after ligand-receptor binding are 
pleiotropic and tissue specific, spatial-and time dependent (39, 41, 42). That means that the 
effect of Wnt signalling in the bone marrow niche (reservoir mesenchymal stem cells (MSC) is 
different from Wnt signalling in cartilage of tubular bones or in flat bones, or in other tissues. 
For an extensive discussion about these topics, the reader is referred to some excellent reviews 
(39, 40, 43, 44).
Modern insights in these complexities have replaced the old distinction of canonical and non- 
canonical by β-catenin dependent and β-catenin independent respectively, and an overview of 
both pathways is given in Figure 1. In summary, the β-catenin dependent (or canonical) pathway 
stabilizes cytoplasmatic β-catenin after binding of the Wnt3a (or other “canonical” Wnts) with 
the Fzd2/7 receptor, by inhibiting the proteosomal degradation of the continuously formed 
β-catenin (Fig.1 A) (40). Due to the rising cytoplasmatic concentration, β-catenin shuttles to 
the nucleus, and activates transcription factors for proliferation (de-repression) (45) or induces 
differentiation (co-activation) of for instance Runx2 (46, 47), a master gene for osteogenesis. 
The β-catenin independent signalling is activated after binding of Wnt5a with either Fzd2 
(Fig.1, B) or Fzd4 (Fig.1 C), with or without the co-receptor ROR2 or with ROR2 as a 
single receptor (Fig.1 E). The oncogenic transcription factor Jun-N-terminal kinase (JNK) 
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(48) is activated after Wnt5a-Fzd2 binding mediated by the small GTP-ases Rho and Rac 
(Fig.1 C), and is called the Wnt/PCP pathway (41, 49). The other ß-catenin independent 
signalling, the Wnt/Ca2+ pathway (Fig.1 D), activates the transcription factors NEMO or 
NFAT, which inhibit ß-catenin dependent proliferation (50, 51) and activate osteogenesis 
(52, 53) respectively. Other modulations of the Wnt5a signalling are shown in Fig.1 by the 
red circles and are at the level of competitive inhibition of Wnt3a binding with Fzd receptors 
(Fig.1 F), via the ubiquitin ligase Siah2 (54, 55) or directly via ROR2 activation (56). 
Bone development is an complex process, in which Wnt’s play an important role in multiple 
ways (see Fig.2) (for reviews, see (44, 47, 57)). In the early MSC stage Wnt3a/β-catenin is 
required for lineage fate decision (57-59) and stimulates the proliferation of stem cells to 
maintain an adequate number of progenitor cells. Furthermore, Wnt3a signalling prevents 
osteo-chondrogenic progenitors from developing into cartilage and differentiate into 
osteoblasts (46, 60, 61), but for the definitive differentiation into the osteogenic lineage, Wnt3a 
needs temporary be downregulated (62, 63), which is mediated via Wnt5a and Dkk1 (62-64). 
Finally, the β-catenin pathway is required for definitive differentiation of precursor cells into 
osteocytes (63, 65).   
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Wnt-signalling, cancer and osteosarcoma
In our array study we found evidence for down-regulation of the Wnt3a/β-catenin pathway 
and up-regulation of the alternative, Wnt5a pathway. This is in contrast to the activating 
β-catenin deregulation, which is the driving force for tumourgenesis in most types of 
epithelial cancers, for example in colon cancer (66), ovarian cancer (67), prostate cancer (68) 
or lung cancer (69). Wnt3a/β-catenin overexpression has been reported in osteosarcoma, 
either directly (70, 71) or indirectly by inhibition of the Wnt ligand (72, 73) or due to 
overexpression of the co-receptor LRP5 (74). However, overexpression of β-catenin, as seen in 
the Gardner syndrome, did not result in an increased incidence of osteosarcomas (75), whereas 
in the benign osteoblastomas clear expression of β-catenin was observed (76).
Absent nuclear β-catenin staining was observed in only one other study of osteosarcoma (77). 
Recently, Mathushansky reported that inactivation of the β-catenin dependent Wnt pathway 
was tumorigenic in the high-grade undifferentiated pleomorphic sarcoma (78). It was shown 
that the mesenchymal stem cell was the progenitor of the undifferentiated sarcoma and that 
down-regulation of the Wnt/β-catenin dependent pathway failed to commit the stem cell 
to differentiation into mature connective tissue lineages. In addition Wnt5a was defective in 
regulating a commitment-viability checkpoint, as is known that this non-canonical pathway 
mediates anti-apoptotic signalling (79). In another study the Wnt/β-catenin signalling was 
downregulated in Rhabdomyosarcoma cell line, blocking the normal myogenic differentiation 
and increasing resistance to apoptosis (80). Restoration of the Wnt3a activation resulted in 
myogenic differentiation.
Another example of the contribution of an inactive Wnt3a/β-catenin signalling is reported in 
Retinoblastoma’s (81). Wnt signalling re-activation significantly decreased the viability of the 
retinoblastoma cells by p53-induced cell cycle arrest. The authors concluded that the Wnt-
pathway acted as a tumour suppressor in the retinoblastoma cells lines, and that loss of Wnt 
signalling contributed to the tumorigenesis in the retina. 
Inactivity of the Wnt3a/β-catenin signalling in our study has been confirmed by Cai 
et al. (76). Restoration of the Wnt3a/β-catenin pathway by inhibition of GSK-3β, that 
phosphorylates β-catenin, demonstrated differentiation into bone of 2 of 4 osteosarcoma cell 
lines. 
What exactly the role of the downregulation of the Wnt3a/β-catenin pathway in the 
tumorgenesis of osteosarcoma is, remains difficult to explain. The hypothesis is that, similar 
as in undifferentiated sarcomas and rhabdomyosarcomas, bone-progenitor cells will not be 
able to complete osteogenesis and remain in continuous proliferative state (as was shown 
by the upregulated cell cycle genes). The overexpressed Wnt5a signalling on the other hand 
drives the osteo-progenitor cells into the direction of osteogenesis (82). However, due to the 
disturbed apoptotic regulation these cells lack a differentiation commitment check, that results 
in progressive genomic instability, which is the hallmark of osteosarcoma (83, 84). However, 
this is still hypothesis, and it would be a challenge to study Wnt-signalling in the normal 
osteogenesis and in the disturbed osteogenesis, such as in osteosarcoma, or in other pathologic 
conditions. 
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Wnt signalling and potential therapies
Given the observations that the Wnt3a/β-catenin pathway was inactive in osteosarcomas and 
that 2 of 4 osteosarcoma cell lines differentiated into normal bone after inhibition of GSK3β, 
it could be argued that therapy, aiming to inhibit proteosomal degradation of β-catenin 
might be of advantage in patients with the Wnt-pathway in the off-state. One of the most 
promising compounds to interfere with the proteosomal activity is bortezomib (85, 86). This 
drug has shown to restore normal bone development in Multiple Myeloma patients (87, 
88), irrespective the response on treatment (89). Although the mechanism is not completely 
resolved, it has been suggested in these patients that bortezomib inhibits the Wnt3a antagonist 
Dkk1 (87), induced differentiation of osteoblasts via stabilization of β-catenin (86), or via 
bortezomib induced apoptosis of the tumour cells (90). In mice that were treated with 
bortezomib, inhibition of cell proliferation and increased apoptosis of the osteosarcoma cells 
was obsesrved, resulting in regression of the tumour (85). Bortezomib has been used in clinical 
phase-1 (91), phase-II (92) or phase-III studies (93), is tolerated well with few side effects. 
Even in combination with other drugs, that might be used in (refractory) osteosarcoma, or in 
older patients, bortezomib can be used safely (94-96). Therefore, bortezomib might one of the 
few agents worth for future evaluation in osteosarcoma therapy, preferably in a window phase 
in patients with absent Wnt3a/β-catenin dependent signalling.



Chapter 8

204

R1
R2
R3
R4
R5
R6
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R40
R41
R42
R43
R44

concluding remarks

It can be concluded from this thesis that high-grade osteosarcoma is at clinical, pathological 
and molecular level a heterogeneous disease. To treat high-grade osteosarcoma adequately, neo-
adjuvant chemotherapy should be combined with radical surgery, irrespective the localization 
of the tumour. An adequate chemotherapy regimen for osteosarcoma consists at least of 3 out 
of 4 effective cytostatic agents, i.e. methotrexate, doxorubicin and cis-platin. A fourth active 
agent, ifosfamide, should possibly be reserved for patients with refractory disease or patients 
with relapse. Patients with metastatic pulmonary osteosarcoma should receive surgery in case 
of resectable disease, whereas the use of chemotherapy is these patients can be considered, but 
is not of proven value. Patients with irresectable metastatic osteosarcoma should be offered 
phase-I and phase-II studies, because no response can be expected from other conventional 
cytostatic drug combinations. With respect to new drug developments, the use of the 
monoclonal antibody trastuzumab against HER2 is not supported by us, because we were not 
able to demonstrate overexpression of the HER2 receptor on osteosarcoma cells. At molecular 
level, a disturbed Wnt signalling was found in addition to abnormal cell cycle regulation and a 
disturbed p53/apoptotic pathway. This combination of these pathway abnormalities might be 
oncogenic. Failure of the mesenchymal stem cell to differentiate into the osteoblastic lineage, 
due to abnormal proliferation and lack of differentiation commitment results in chromosomal 
instability, which is the hallmark of osteosarcoma. In patients with an inactive Wnt3a/β-
catenin signalling the proteasome inhibitor bortezomib might be a candidate drug, to explore 
its suggested differentiation inducing properties. More research should be directed to study 
Wnt signalling in normal and disturbed osteogenesis, in order to clarify the mechanisms by 
which Wnt3a has its effects in osteosarcoma. 
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