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ABSTRACT

Motivation
A recent surge of interest in survival as the primary clinical endpoint of microarray studies has 
called for an extension of the Global Test methodology to survival.

Result 
We present a score test for association of the expression profile of one or more groups of 
genes with a (possibly censored) survival time. Groups of genes may be pathways, areas of 
the genome, clusters from a cluster analysis or all genes on a chip. The test allows one to test 
hypotheses about the influence of these groups of genes on survival directly, without the 
intermediary of single gene testing. The test is based on the Cox proportional hazards model 
and is calculated using martingale residuals. It is possible to adjust the test for the presence of 
covariates. We also present a diagnostic graph to assist in the interpretation of the test result, 
visualizing the influence of genes. The test is applied to a tumour data set, revealing pathways 
from the gene ontology database that are associated with survival of patients.

Availability 
The global test for survival has been incorporated into the R-package globaltest (from version 
3.0), available from http://www.bioconductor.org.



Testing Association of a Pathway with Survival using Gene Expression Data

121

R1
R2
R3
R4
R5
R6
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R40
R41
R42
R43
R44

Introduction

A microarray experiment typically results in many thousands of measurements, each relating 
to the expression level of a single gene. Single genes, however, are often not the primary 
theoretical focus of the researcher, who might be more interested in certain pathways or 
genomic regions that are suspected to be biologically relevant.
For this reason we have introduced the Global Test for groups of genes (1), which allows the 
unit of analysis of the microarray experiment to be shifted from the single gene level to the 
pathway level, where a ”pathway’’ may be any set of genes, e.g. chosen using the Gene Ontology 
database or from earlier experiments. For every pathway, the Global Test can test (with a single 
test) whether the expression profile of that pathway is significantly associated with a clinical 
variable of interest. This allows researchers to immediately test theoretical hypotheses on the 
clinical importance of certain pathways. Even when such hypotheses are not directly available 
from biological theory or past research, the Global Test can significantly reduce the multiple 
testing problem, because there are typically much fewer pathways than genes.
In the original publication of the Global Test, the clinical variable could be either a continuous 
measurement or a 0/1 group indicator. Recently, however, there has been a surge of interest in 
survival time of patients as the primary clinical outcome in a microarray experiment. Many of 
these studies focus on prediction of survival, e.g. in breast cancer (2-4) and in lung cancer (5, 
6). Other studies use multiple testing methods to find genes which are associated with survival 
(7).
The present paper extends the Global Test methodology to survival outcomes. It allows the 
researcher to test whether the expression profile of a given set of genes is associated with 
survival. More precisely it tests whether individuals with a similar gene expression profile 
tend to have similar survival times. A significant pathway may be a mix of genes which are 
upregulated for patients with short survival time, genes which are downregulated for the same 
patients, and other genes that show no association with survival at all.
The test of the present paper is based on the Cox proportional hazards model. Therefore it 
avoids the requirement of many analysis strategies to choose an arbitrary cut-off (e.g. five years 
survival), but uses all survival information that is present in the data. Technically, the test is 
derived from the goodness-of-fit test of (8). The original Global Test was derived in a similar 
way from a goodness-of-fit test for generalized linear models (9). The two Global Tests are 
therefore highly comparable and allow quite similar interpretations.
In this paper we also show how the test can be adjusted for the presence of covariates 
(possible confounders or competing risk factors). This allows better use of the Global Test in 
observational studies. Furthermore, it allows the researcher to establish that the microarray 
really adds something to the predictive performance of known risk factors, showing that it is 
not simply an expensive way to measure risk factors already known. It also allows the test to 
be used on more complex designs than a simple one-sample follow up study.
The new Global Test method presented in this paper has been incorporated into the 
R-package globaltest, version 3.0, which is available from http://www.bioconductor.org.
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The approach will be illustrated on a data set of 17 osteosarcoma patients, testing pathways 
from the Gene Ontology database.

the model

The Global Test exploits the duality between association and prediction. By definition, if 
two things are associated, knowing one improves prediction of the other. Hence, if survival is 
associated with gene expression profile, this means that knowing the gene expression profile 
allows a better prediction of survival than not knowing the expression profile.
With this idea in mind we make a prediction model for prediction of survival from the 
gene expression measurements. The most convenient choice for such a model is the Cox 
proportional hazards model, which is the most widely used model for survival data in medical 
research. The Cox model uses the full empirical distribution of the survival times and it can 
handle censored data, i.e. samples for which the exact survival time is not known, but for 
which it is only known that the patient is still alive at a certain moment (10). The use of the 
Cox model requires a true follow-up study design, meaning that patients were not selected 
on their survival times in any way. If such a patient selection was made, the methods of this 
paper may not be appropriate: in VantVeer (2), for example, where a selected group of early 
metastases was compared to a selected group which was at least five years metastasis-free, the 
original Global Test for a 0/1 outcome is preferable (1).
Suppose the matrix of normalized gene expression measurements for the group of genes of 
interest is given by the n × m matrix X with elements x

ij
, where n is the sample size and m the 

number of genes in the group. Suppose also that there is a number p ≥ 0 of covariates for each 
patient, which we put in an n × p data matrix Z with elements z

ij
. It will be assumed that 

p < n, but no such restriction is put on m.
Cox’s proportional hazards model (10) (chapter 8) assumes the hazard function at time t for 
individual i to relate to the covariates as 
 ,)(=)( iric

i ethth +  (1)

where )(th  is an unknown baseline hazard function and ii rc +  is a linear function of the 
covariates, which is split up in our case into ri = 
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null
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so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
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i , so that the test can be said to be optimal on average against
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i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).
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standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
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of the test statistic.
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but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
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estimator (Klein and Moeschberger, 1997, Section 8.6)
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d − ũ ≈ (I − V )(d − û) (7)
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
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Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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�, û = (û1, . . . , ûn)
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statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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Er
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exp
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fi(ri)
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, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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For the Cox model this becomes
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
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.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that
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i pij = dj and
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j pij = ûi .

The estimated variance of T is
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� diag(tj t
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j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
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p�
j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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From the assumptions on the distribution of β1, . . . , βm, we can
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�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element
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where pj is the j -th column of P and tj = (I − 1pj
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
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p�
j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
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where
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is the contribution to the log-likelihood of individual i for fixed ri ,
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0 h(s) ds is the cumulative baseline hazard.
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derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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the test statistic and writing it in matrix notation, we get the test
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T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
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.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that
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i pij = dj and
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where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
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p�
j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
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The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is
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are not known but must be estimated. Replacing γ1, . . . , γp by their
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j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is
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where pj is the j -th column of P and tj = (I − 1pj
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately
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and
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�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.

1952

 at B
ibliotheek Instituut M

oleculaire Plantkunde on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

For the Cox model this becomes 

 

J.J.Goeman et al.

3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
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statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
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by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
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n × n diagonal matrix with Ûii = ûi .
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is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .
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In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).
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γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by
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vidual i up to time ti . Note that di − ui is the martingale residual of
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Fisher information, calculated from the second derivatives of the log-
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as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
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ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic
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�, û = (û1, . . . , ûn)
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
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and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic
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ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
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pj
� diag(tj t
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j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:
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.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately
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and
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with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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By definition a score test is based on the derivative of the log-
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each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
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matrix τ 2R, where R = XX�. For the general likelihood (2) and an
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element
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where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈
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j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
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The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
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is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .
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are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
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by
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statistic T0 can be approximated as
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with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t
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j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
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j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)
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where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈
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j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.

1952

 at B
ibliotheek Instituut M

oleculaire Plantkunde on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

The estimated variance of T  is 
 

J.J.Goeman et al.

3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


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(∂ri)2 +
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For the Cox model this becomes
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∂τ 2 = 1
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Rij (di − ui)(dj − uj ) −
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Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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likelihood at the value of the parameter to be tested. Suppose for
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
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vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
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is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take
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as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
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In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
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data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
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The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
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�, û = (û1, . . . , ûn)
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n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)
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pij = I{ti≥tj }
dj eci

�
k skj eck

.
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)
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and �Var(T0) = �Var(T ), so that it leads to the same standardized test
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In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈
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j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
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Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .
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with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p
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Using estimated regression coefficients
In general the regression coefficients 

Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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J.J.Goeman et al.

3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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where
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is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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�, û = (û1, . . . , ûn)
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n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is
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where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
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p�
j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci
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.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that
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where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈
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j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT
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= T0 − ÊT0
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.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is
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where
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is the contribution to the log-likelihood of individual i for fixed ri ,
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From the assumptions on the distribution of β1, . . . , βm, we can
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effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp
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fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)
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where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.

1952

 at B
ibliotheek Instituut M

oleculaire Plantkunde on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

with 

J.J.Goeman et al.

3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci
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k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that
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i pij = dj and
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The estimated variance of T is
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j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n
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The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is
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where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈
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with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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For small samples the asymptotic distribution may not be reliable enough. An alternative is 
to calculate Q  for all, or a random sample of many (10,000), permutations of the martingale 
residuals of the n  samples. This randomly redistributes the vectors of gene expression 
measurements over the individuals, while keeping the relationship between the fixed 
covariates and survival the same. The resulting distribution is another approximation to the 
null distribution of Q , which can be used to find the p-value. Use of the permutation null 
distribution requires the assumption that there is no relationship between the gene expressions 
on the one hand and the covariates and the censoring mechanism on the other hand: 
permuting destroys these associations. This makes the permutation null distribution less useful 
when covariates are present.
The main advantage of the permutation-based p-value is that it gives an “exact’’ p-value, 
which is guaranteed to keep the alpha level provided enough permutations are used. This 
is especially useful for smaller sample sizes, where we may not trust the normality of the 
distribution of Q . The advantage of the asymptotic theory p-value---aside from being much 
quicker to calculate---is that it has more power: the permutation based p-value does not 
use the full null distribution, but the null distribution conditional on the set of observed 
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residuals is informative for the parameter 
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
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k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.

1953

 at B
ibliotheek Instituut M

oleculaire Plantkunde on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

Testing association of a pathway with survival

3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.

1953

 at B
ibliotheek Instituut M

oleculaire Plantkunde on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

 is a martingale vector. 
Subtracting the intensities and writing 

Testing association of a pathway with survival

3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0
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Y
dNj = 1{ti≥tj }
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and

mij =
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0
M̂−
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,
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∫ t
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∫ t
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dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,
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∫ t
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(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t
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To evaluate ÊT and V̂ar(T ) we use
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
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eck

and

mij =
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M̂−
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.

1953

 at B
ibliotheek Instituut M

oleculaire Plantkunde on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 
From the integration by parts formula [ ][theorem A.1.2]Fleming91 it follows that, almost 
surely, 

  

Testing association of a pathway with survival

3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,
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∫ t
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+
∫ t
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∫ t
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−
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Because
∫ t
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is − ∫ t
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The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t
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S is therefore �S� = ∫ t
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with
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+
∫ t
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−
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V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
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∫ t
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V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t
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(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector
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S is therefore �S� = ∫ t
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
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∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use
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and
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n∑

k=1
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
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∫ t

0
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and
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,
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∫ t
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∫ t
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+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,
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−
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2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
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0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
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0
M̂−

i dNj = 1{ti<tj }di −
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1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑
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1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
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∫ t

0
diag(KK�)�V1� dN.
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t
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∫ t
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diag(KK�)�V1� dN.
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Writing P for the n × n matrix with elements pij and M for the
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
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0
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Y
dNj = 1{ti≥tj }
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and

mij =
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0
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i dNj = 1{ti<tj }di −
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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interpretAtion

When testing a specific pathway for a specific sample of patients, it is usually not satisfactory 
to only report the resulting p-value. In this section we will discuss some issues related to 
interpretation of the test result. We show how to calculate and visualize the influence of 
individual genes on the test result. We also propose an diagnostic which can be used when 
many genes are associated with survival, to assess whether a gene group is exceptional. We 
only give the theory here; for an example see section 9.

interpretation
The test of this paper is derived from the Cox model in the same way as the Global Test in 
Goeman (1) was derived from the generalized linear model. The functional form of the test 
statistic is therefore quite similar, the martingale residuals taking the place of the residuals from 
the generalized linear model in that paper. Much of the interpretation of the test statistic is 
therefore also quite similar.
Central to all interpretation of the test outcome is the matrix R = XX´ which figures 
prominently in the formula for the test statistic. It is an n × n matrix which can be seen as 
describing the similarities in expression profile between the samples. The entry 

ijR  is relatively 
large if samples i  and j  have a relatively similar expression profile over the pathway of 
interest.
To show the role of the matrix R , we can rewrite the unstandardized test statistic 0T  as 
 

J.J.Goeman et al.

0
1

2
3

4

in
flu

en
ce

20
06

95
_a

t
22

23
51

_a
t

21
32

66
_a

t
20

19
75

_a
t

20
28

85
_s

_a
t

21
61

94
_s

_a
t

21
09

43
_s

_a
t

20
28

83
_s

_a
t

21
54

15
_s

_a
t

20
28

86
_s

_a
t

21
07

16
_s

_a
t

21
13

37
_s

_a
t

21
17

59
_x

_a
t

20
86

52
_a

t
20

28
84

_s
_a

t
55

06
5_

at
22

15
60

_a
t

22
10

47
_s

_a
t

20
35

18
_a

t
20

43
46

_s
_a

t
20

18
04

_x
_a

t

positively associated with survival
negatively associated with survival

5

Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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, with their standard deviation under the null hypothesis (calculated using the 
methods of section 7). An example of such a ‘gene plot’ is given in figure 1. In this plot, large 
positive values indicate genes with a large (positive or negative) association with survival 
and hence genes that make the pathway more significant. As 

J.J.Goeman et al.

0
1

2
3

4

in
flu

en
ce

20
06

95
_a

t
22

23
51

_a
t

21
32

66
_a

t
20

19
75

_a
t

20
28

85
_s

_a
t

21
61

94
_s

_a
t

21
09

43
_s

_a
t

20
28

83
_s

_a
t

21
54

15
_s

_a
t

20
28

86
_s

_a
t

21
07

16
_s

_a
t

21
13

37
_s

_a
t

21
17

59
_x

_a
t

20
86

52
_a

t
20

28
84

_s
_a

t
55

06
5_

at
22

15
60

_a
t

22
10

47
_s

_a
t

20
35

18
_a

t
20

43
46

_s
_a

t
20

18
04

_x
_a

t

positively associated with survival
negatively associated with survival

5

Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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, genes with more 
expression variance tend to carry more weight in the pathway.
Note that the visualized values of the gene influences iT  in the gene plot are essentially 
univariate: they only depend on the gene i  itself. The multivariate nature of the test statistic 

Q  is therefore not visible in the gene plot. It comes in because, although 0T  is the sum of the 

iT  and 0ÊT  is the sum of the iTÊ , the variance of 0T  is generally not the sum of the variances 
of the iT .

the comparative p
The global test tests the null hypothesis that the pathway is not associated with survival. This 
null hypothesis only depends on the observed survival and on the genes in the pathway itself: 
the result is absolute, not relative to the other pathways.
However, there are situations in which one would be more interested in a relative result. 
If the global test on the set of all genes is very significant, we can usually expect a sizeable 
proportion of the genes on the array to be associated with survival. In that case we can 
expect many pathways to show association with survival as well. This will hold especially for 
the larger pathways, which will often include some of the genes which are associated with 
survival.
In such situations we propose a diagnostic called “comparative p’’, which can help interpret 
the p-value that comes out of the test. The comparative p for a pathway of size m  with 
p-value p  is defined as the proportion of randomly selected sets of genes of the size m  that 
have an global test p-value smaller or equal to p . To calculate this comparative p we draw 
1,000 or 10,000 random gene sets from the array without replacement.
The comparative p fulfills a role different from the p-value and should only be used alongside 
it. It is a diagnostic, not a p-value in the statistical sense. It tells whether the p-value of a group 
of genes is much lower than could be expected from a gene group of its size in this data set.

ApplicAtion: osteosArcomA dAtA

We applied the above methodology to a data set of 17 osteosarcoma patients from the Leiden 
University Medical Center.

Data
A genome wide screen of gene expression in osteosarcoma was done using Hu133a gene 
expression chips (Affymetrix, Santa Clara, CA). This chip contains 22,283 genes. A successful 
hybridization was obtained for 17 osteosarcoma biopsies. Three of the samples were amplified, 
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labelled and hybridized in duplicate, one sample in triplicate. These technical replicates were 
averaged after gene expression measures were obtained, which was done using gcrma (15). No 
preselection of genes was made.
The 17 patients were followed up to 10 years. Median survival time was 40 months. Available 
covariates included the presence of metastasis at diagnosis, histology and response to neo-
adjuvant chemotherapy. However, as treatment was not uniform over all patients, these 
covariates were not prognostic and we did not consider them.
Pathway information was obtained from the Gene Ontology (GO) database, using the 
BioConductor GO package (16). Pathways that were considered of specific interest were cell 
cycle (GO: 7049), DNA repair (GO: 6281), Angiogenesis (GO: 1525), Skeletal development 
(GO: 1501) and Apoptosis (GO: 6915).

Analysis
When testing pathways of interest, it is advisable to also test the ‘pathway’ of all genes on the 
chip for association with survival. This shows whether the overall gene expression profile is 
associated with survival. The results for the pathway of all genes and for the five pathways of 
primary interest are given in table 1. We calculated the p-value using both the asymptotic 
theory method and the permutation method (using 100,000 permutations).

Table 1. 

Global Test results for the Osteosarcoma data and the pathways of primary interest. The 

p-values were calculated using the permutation and asymptotic method. The final column 

gives the comparative p (see section 8.3).

pathway  genes  Q   perm. p  asym. p  comp. p

All genes  22283  2.446  0.0120  0.0072  ---

Cell cycle  1115  2.957  0.0042  0.0016  0.006

DNA rep.  271  3.123  0.0006  0.0009  0.011

Angiogen.  66  0.917  0.1429  0.1795  0.774

Skel. dev.  185  0.002  0.4133  0.4992  0.998

Apoptosis  656  2.533  0.0093  0.0057  0.210 

The permutation p-values tend to be somewhat more conservative than the asymptotic 
p-values, reflecting both the slight loss of power for the permutation test and a deviation from 
asymptotic normality due to the small number of samples.
In this data set the expression profile over the set of all genes on the chip is significantly 
associated with survival. Note that this does not mean that every gene on the chip is associated 
with survival. It means that the patients who die early are relatively similar to each other in 
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terms of their overall expression profile, while patients who live long are likewise relatively 
similar. It also means that there is some potential for prediction of survival based on gene 
expression, even before any pre-selection of genes. The cell cycle, DNA repair and apoptosis 
pathways are clearly associated with survival, while there is no evidence for this association in 
angiogenesis and skeletal development.
Because the test for all genes was significant, we expect a sizeable proportion of genes to 
be associated with survival, so that many pathways will be associated with survival. The 
comparative p gives a measure whether the p-value found for the pathway is unusually low 
given that it is a pathway of its size from this data set (see section 8.3). For the results in table 
1 10,000 gene sets were sampled for each pathway. We used the asymptotic p-values for the 
comparative p calculations.
We conclude that cell cycle and DNA repair are more clearly associated than could be 
expected from a gene set of its size in this data set: only around 60 out of 10,000 random 
gene sets of size 1,115 have a lower p-value than the cell cycle pathway. The expression profile 
of the apoptosis pathway is clearly associated with survival, as can be seen from the p-values; 
however it is not exceptional in that: more than 20% of random gene sets have a lower p-value 
than apoptosis. The Skeletal development pathway is interesting in its own way: it is clearly 
not associated with survival ( 0.5=p ) and this is quite exceptional for a pathway of this size 
in this data set: only around 20 in 10,000 random gene sets had a higher p-value. The skeletal 
development pathway seems to include uncommonly few genes which are associated with 
survival.
It can occur in some data sets that the set of all genes is not significant, while some pathways 
(eg. DNA repair) are significant. This occurs in table 1 for example if we use FDR-adjusted 
p-values with a threshold of 0.01 (17). The result for all genes can be seen as a false negative 
test result. However, another valid interpretation is that prediction of survival without 
biological pre-selection of genes is uncertain, but if it is known a priori that the genes in the 
DNA repair pathway are likely to be informative, some prediction of survival is possible.

Mining the GO database
If it is not a priori known which pathways are of specific interest, one can also use a data-
mining approach, trying to find those pathways which are most significantly associated with 
survival.
For the osteosarcoma data we explored the Gene Ontology database. Of all GO terms, 4,032 
matched at least one gene on the hu133a chip. We excluded all terms which matched only 
one gene, because the interesting single genes pathways would already have been found in 
single gene testing. This left 3,080 pathways, which we all tested for association with survival. 
We used the asymptotic p-value, because due to the randomness in the the permutation 
p-value it does not give a unique list. Table 2 gives the ten GO-terms with the smallest 
p-values.
To adjust for multiple testing, one can use the Benjamini and Hochberg FDR (17). All 10 
pathways in table 2 are significant on an FDR of 0.05. The p-values of the pathways tend to 
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have positive correlations because of pathway overlap and pathways being subsets of other 
pathways. A FDR-controlling procedure that would make use of these dependencies would 
potentially gain much power in this situation.

Table 2. 

Global Test results for the Osteosarcoma data on 3,080 Gene Ontology pathways, showing 

the top 10 FDR-adjusted p-values.

 pathway  # genes  Q   FDR-adjusted p 

 GO:0015630  21  4.306  0.016 

GO:0019932  8  4.176  0.016 

GO:0045192  2  4.148  0.016 

GO:0045595  17  4.060  0.016 

GO:0042518  7  4.054  0.017 

GO:0000158  8  3.993  0.018 

GO:0040008  9  3.944  0.018 

GO:0010033  10  3.844  0.023 

GO:0006479  13  3.791  0.026 

GO:0030111  9  3.766  0.026 

The literature confirmed the importance of many of these GO-terms in tumorigenesis. For 
example, both microtubule cytoskeleton (GO:0015630) and phosphorylation of Stat3 protein 
(GO:0042518) are known to be involved in growth and differentiation signaling, processes 
which are often disturbed in tumors. Second-messenger mediated signaling (GO:0019932) is 
a superset of the Stat3 pathway. Protein amino acid methylation (GO:0006479) is involved in 
protein degradation. Alterations in the stability of proteins is often a hallmark of tumors and 
may affect the aggressiveness of a tumor and thereby the patient’s survival.

A diagnostic plot
To learn more about the outcome of the Global Test than just the p-value one can use the 
diagnostic plot described in section 8. We illustrate the use of this plot on the microtubule 
cytoskeleton pathway, which emerged on top of table 2.
The gene plot for the 21 genes in this pathway is given in figure 1. Each bar gives the global 
test statistic for testing whether the gene set containing only that single gene is associated 
with survival. The test statistic for the whole pathway is a weighted average of the bars of the 
genes (see section 8.2). The colour of the bars distinguishes between positive and negative 
association with survival.
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FiGUre 1.

Gene plot of microtubule cytoskeleton pathway, showing the sorted global test 

statistics for testing the 21 single gene pathways which make up the pathway. 

Figure 1 shows that at least only four out of 21 genes in the microtubule cytoskeleton pathway show 

a significant association with survival on their own. Further, the pathway is a mix of genes which are 

positively and negatively associated with survival. Looking more closely at the gene plot can be a basis 

for investigating more deeply into the structure of the pathway, perhaps to formulate hypotheses on 

interesting subpathways.J.J.Goeman et al.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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discussion

It has often been remarked that the key to successful microarray data analysis lies in an 
intelligent integration of advanced statistical methods with the vast domain of biological 
knowledge that is already available. The global test for survival presented in this paper is a 
step forward in this direction, combining known biological pathway information with the 
statistical sophistication of the Cox proportional hazards model.
Due to its complexity the Cox model has been slow to find its way to microarray 
methodology. Most methods require survival to be reduced to a two-valued variable, using 
an arbitrary cut-off, resulting in unnecessary loss of information. By using the Cox model for 
survival, gene expression analysis can improve performance and also become better connected 
to traditional medical statistics.
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Pathway information is available from many databases and is essential for the understanding of 
the outcomes of a microarray experiment. The Global Test methodology allows researchers to 
look directly for important pathways, without first having to go through single gene testing. 
This may lead to a better use of pathway information and more directly interpretable results.
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