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Abbreviations and terminology 

A = adriamycin, doxorubicin
M = methotrexate
Ifo = ifosfamide
P = cisplatin
E = etoposide
MAP = methotrexate plus adriamycin plus cisplatin
BCD = bleomycin, cyclofosfamide and actinomycin-D
MTP = liposomal muramyl tripeptide fosfatidylethanolamine or mifamurtide
OSS = high-grade osteosarcoma
CR = complete remission
PR = partial remission
RR = response rate (CR + PR)
COSS = Cooperative Osteosarcoma Studygroup
IOR = Istituto Ortopedico Rizzoli 
IOR/OS = Istituto Ortopedico Rizzoli Osteosarcoma Study
SSG = Scandinavian Sarcoma Group
EOI = European Osteosarcoma Intergroup
FU = follow-up
OAS = overall survival
EFS = event free survival
pGR = pathologic good response
pPR = pathologic poor response
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Introduction

Osteosarcoma is a primary, high-grade malignant spindle cell tumour, in which neoplastic 
osteoid or bone is produced by the proliferating malignant cells (1, 2). In this introduction 
epidemiology, genetics and pathology of osteosarcoma will be discussed against the 
background of this thesis, which focusses on clinical and pathologic aspects.

Epidemiology of Osteosarcoma.
Incidence and gender distribution of Osteosarcoma.
Cancer in general is a major health problem in the world, it is the 2nd leading cause of death 
for all ages (3). Not only primary cancer, but also the increased incidence of secondary 
malignancies (4-7) or side effects after treatment contribute to the health problem (8). 
Osteosarcoma is a rare type of tumour. The proportion of osteosarcoma among all cancers 
varies with age. In children up to 15 years, osteosarcoma comprises 2.3%(1.6%-2.6%) of all 
tumours (9-13), in adolescents 15-25 years, 2.6% (11, 14), but in patients older than 25 years, 
osteosarcoma represents less than 1% of all malignancies (3, 12, 13, 15-21). This variation in 
occurrence of osteosarcoma is reflected in table 1 and figure 1. Table 1 shows the incidence of 
osteosarcoma in patients younger than 25 years of age (14, 15, 18, 22-24).The highest 
incidence is found in children 10-19 year where osteosarcoma accounts for 8.6 new cases per 
106 population per year (10, 14, 16). Conversely, osteosarcoma in children less than 5 years old 
is extremely rare. Among 6023 osteosarcoma patients, 105 (1.7%) children were less than 5 
years old (25-28). In these young patients, osteosarcoma presents more often in the humerus 
(up to 32% of the cases), with the telangiectatic subtype more frequently diagnosed than in 
older patients, suggesting a possible difference in biology compared to osteosarcoma in the 
later age groups.

Table 1.  

Age adjusted incidence rates of osteosarcoma, given as n/106/year-1, as given by different 

authors in non-SEER series for patients to 25 years of age.*Patients 12-14 yr.

Author (ref) 0-4 y 5-9 y 10-14 y 15-19 y 20-24 y

Eyre (24) 0.4 2.6 5.7 - -

van den Berg (23) 0.8 3.6 10.9 13.6 -

Stiller (22) 0.2 2.4 6.8 8.4 -

Birch (14, 18) - - 7.5* 7.7 3.3

McWhirter (15) 0.0 2.0 5.0 - -
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Figure 1 covers the distribution of osteosarcoma throughout all ages and is based on data 
from the National Cancer Institute’s Surveillance, Epidemiology and End Results (SEER) 
program (29). The incidence as number of patients per 106 population per year shows a tri-
phasic pattern. After a steep raise in the age group of 5-14 years old the first peak of 8.4-8.6 
cases per 106 persons per year is present in the age group of 15-20 years. This peak is followed 
by a plateau with a low incidence rate of on average 1.7/106 per year in the age group 25 to 
59 years. After 60 years the incidence gradually increases to a second peak, with an annual 
incidence of 4.9/106 per year in patients of 77-79 years of age. In this age group secondary 
osteosarcoma and osteosarcoma in the context of Paget’s disease contribute for 24% and 9% 
respectively and differ in localisation (see paragraph 1.2) (29). 

Figure 1. 

Incidence of osteosarcoma, showing a triphasic pattern with a peak during adolescence, a plateau during 

adulthood and a second peak in older patients (29).

Consistent with other reports, osteosarcoma in older patients differs from that in the younger 
patients in localization (more non-extremity site), size (larger) and more metastatic disease at 
diagnosis or secondary osteosarcomas (30-35).

Gender and Osteosarcoma. The SEER data showed clear differences in male-female ratios in 
different age groups (17, 29). In patients younger than 15 years, the incidence of osteosarcoma 
in females is higher than in male (figure 2), but after 15 years, this ratio reverses to male 
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predominance (ratio male:female = 1.34:1). In patients 25-59 years still more males are 
affected by osteosarcoma (ratio male:female = 1.2:1), but after 60 years of age, osteosarcoma 
is less common in males (ratio male:female = 0.9:1), except in osteosarcoma in Paget’s disease, 
that affects more males (ratio male:female = 1.58:1).

Figure 2. 

Incidence of osteosarcoma in males and females, showing that in younger patients the incidence in 

females in higher than in males, which is reversed in the age group above the 15 years (17). 

Localization of osteosarcoma
Osteosarcoma in patients is mainly localized in the long tubular bones, as is demonstrated in 
figure 3. The data of this figure are retrieved from more than 6.000 cases reported in 4 large 
studies (36-39) and in 2 atlases of bone tumours (40, 41). As can be seen, nearly 75% of the 
osteosarcomas are located in the long bones of the lower extremity, more than 60% in the 
metaphyseal region around the knee, and 10% in the long bones of the upper extremity. In 
the axial skeleton (vertebral column, sacrum, scapula and clavicle) 3% of all osteosarcomas are 
located, the chest accounts for 1.3%, the pelvis for 6% and the facial bones and skull for 4%. 
The location, found in the epidemiologic study of Mirabello shows different sites in the age 
groups, older than 25 years, whereas in the younger age groups the sites are similar to these in 
the large studies of figure 3.
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Figure 3. 

Distribution of osteosarcoma in the skeleton. Data from 6.454 cases of osteosarcoma (see text for 

references).

The variable distribution of osteosarcoma in the skeleton in the different ages (table 2) and the 
diverse histology of the different subtypes (29) indicates that osteosarcoma is not an uniform 
disease, and behaves different in younger people than in older patients.
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Table 2.  

Difference in osteosarcoma localisation in 3 age groups. This table clearly demonstrates 

more axial and extra-osseous location in older patients, compared to the younger patients 

(29).

site 0-24 yr 25-59 yr ≥ 60 yr

Lower Long bones 75% 43% 27%

Upper long bones 11% 10% 8%

Pelvis 4% 11% 19%

Facial bones/skull 3% 10% 5%

Chest 2% 4% 4%

Vertebral column 1% 4% 5%

Extra-osseal < 1% 7% 19%

Survival in Osteosarcoma
The survival rates shown in figure 4 represent a general trend over the past 4 decades in 
children and adolescents. These American data do not differ from European studies, as is 
demonstrated in table 3. 

Figure 4. 

Five-year survival rates for children and adolescents with osteosarcoma, diagnosed during the period 

1973-2002, and with follow-up until 2006. Data from the SEER-9 registries and Centers for Disease 

Control and Prevention (42).
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Figure 4 shows an substantial increase in 5-year overall survival from the mid 1970-ties 
onwards to the mid 1980-ties, due to the introduction of chemotherapy. Since the mid-
eighties no further improvement in survival was achieved (9, 22, 29, 42-47). The effect of the 
development of chemotherapy on survival is discussed in chapter 2 of this thesis. The mean 
5-year overall survival compiled from these data bases is 62% (53%-77%). Overall survival after 
5 year follow-up does not decrease much, because less than 5% of all osteosarcoma patients 
have a late relapse (48-50).

Table 3.  

Population based studies reporting (5-year or more) overall survival (OAS) in children, 

adolescents or patients less than 40 years of age with osteosarcoma. These studies were 

selected on the basis of large international data bases, like SEER, EUROCARE and ACCIS.

Author (ref) ≥ 5 yr OS

Smith 2010 (42) 68%

Mirabello 2009 (29) 60%

Gatta 2009 (11) 77%

Arndt 2007 (47) 58%

Magnani 2006 (46) 61%

Stiller 2006 (22) 55%

Stiller 2006 (51) 53%

Gatta 2005 (9) 59%

Gatta 2003 (44) 66%

Stiller 2001 (43) 60%

Risk factors in Osteosarcoma from population based data.
Risk factors for osteosarcoma will be discussed as reported in population based data bases and 
in clinical treatment trials. Because this introduction is mainly focussed on the epidemiology 
of osteosarcoma, the patient- and tumour related factors will be discussed in more detail and 
for completeness, the treatment related factors will shortly be listed.

Patient related factors
Age
The age-dependent incidence pattern has been discussed earlier in the paragraph about 
epidemiology of osteosarcoma (paragraph 1.1). With respect to survival, children, younger 
than 5 years old have a survival of 52%-60% (25-27), but patients older than 60 years of age 
have reduced survival (22%-58%), due to secondary or Pagetoid osteosarcomas (30-35). It 
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seems that the presentation of osteosarcoma in the very young and elderly patients is different 
from the age group between puberty and 40 years of age on the bases of underlying biologic 
differences. This observation suggests a different biologic behaviour of osteosarcoma in the 
several age groups. 

Length
The pattern of incidence of osteosarcoma (figure 1) suggests a relationship with pubertal 
growth and development of osteosarcoma. Since Fraumeni reported a relationship between 
large stature and osteosarcoma more than 40 years ago (52), other authors published a similar 
relationship between height and osteosarcoma in young patients (53-56). In a pooled analysis 
taller than average (51th-89th percentile) and very tall (≥ 90th percentile) patients, mainly 
younger than 25 years, had an increased risk on osteosarcoma (57). The risks, expressed as 
odds ratios, were 1.35[(1.18-1.54) 95% CI] and 2.60[(2.19-3.07) 95% CI] respectively. A 
meta-analysis found that patients with osteosarcoma were 0.26 SD[(0.088-0.432) 95% CI] 
taller than the reference population and that 62% [(57%-67%) 95% CI] of the patients had a 
height above the median for the reference group (58). These data may suggest that particularly 
pubertal growth plays a role in the genesis of osteosarcoma. 

Pre-malignant conditions as risk factors: Paget; fibrous dysplasia, chronic 
osteomyelitis and others
Osteosarcomas arising in Paget’s disease and in fibrous dysplasia are more frequently occurring, 
but have to be distinguished from secondary osteosarcoma after radiotherapy or as second 
neoplasm after chemotherapy, because of a different causal relationship. Osteosarcoma arising 
in benign precursors, like chronic osteomyelitis, bone infarction and giant cell tumours of 
bone have rarely been reported (59, 60), and therefore will briefly be listed.

Osteosarcoma in Paget’s disease of bone
Paget’s disease of is a skeletal disorder, characterized by focal increased bone turnover, 
occurring in 1%-3.6% of the Caucasian population above the 55 years of age (61-64). The 
basic defect in Paget’s diseases is an increased osteoclastic bone reabsorbtion, with reactive, 
disorganised bone formation. The cause is unknown, but based on familial history of Paget’s 
disease, which occurs in 5%-40% (65-68), an autosomal dominant inheritance is assumed (63, 
69-71). Other Paget’s disease related syndromes have been recognized (70, 72), connected to 
each other by a activating mutation of the RANK-NF-κB pathway, which is the molecular 
basis of this bone disease (63, 70, 72, 73). 
Osteosarcoma as complication of sporadic cases occurs in 0.4%-5.5% of the cases (56, 74-80). 
Most (80%) of these cases develop in the poly-ostotic form of Paget’s disease (75, 76). Sparse 
case-reports of familial Paget’s disease or related disorders documented the development of 
osteosarcomas (81-84), suggesting a shared susceptibility region on chromosome 18q21-22 
between osteosarcoma and Paget’s disease (83, 85-87). 



Chapter 1

20

R1
R2
R3
R4
R5
R6
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R40
R41
R42
R43
R44

Osteosarcoma complicating Paget’s disease is localized in the deformed bones. Mainly the 
large limb bones (femur, humerus, tibia) or the flat bones (pelvis, skull, scapula) are affected 
in osteosarcoma, secondary to Paget’s disease (59, 76, 78, 80). Survival in Paget related 
osteosarcoma is very low, with a median survival 8-11 months, and a 5-year overall survival of 
around 10% (78, 80). 

Osteosarcoma in Fibrous Dysplasia
Fibrous dysplasia of bone is a focal bone disease where abnormal differentiation of osteoblasts, 
due to a mutation in the α-subunit of the G-protein on chromosome 20q13 (GNAS), causing 
a fibrous displacement of bone tissue (61, 88-90). Sixty percent presents as a mono-ostotic 
form, and 40% as a poly-ostotic disease. In less than 5%, the poly-ostotic form is associated 
with precocious puberty, other endocrine dysfunctions (hyperthyroidism, hypercortisolism, 
hyperprolactinaemia and renal phosphate wasting) and café-au-lait skin pigmentation, an 
entity which is called the McCune Allbright syndrome (89, 91). Symptoms of this bone 
disease are bone pain, deformations of the bones and in some cases pathological fractures, and 
occur in 80% before 15 years of age. Osteosarcoma occurs rarely, in 0.4%-1.6% of the cases 
of fibrous dysplasia in larger series (92, 93), either in the mono-ostotic or poly-ostotic form 
(56, 94-98). However, this proportion might be overestimated because almost the half of the 
patients were irradiated for fibrous dysplasia (93). Several case reports of osteosarcoma in the 
McCune-Allbright (99-102) or in fibrous dysplasia in association with muscular myxoma’s, 
the Mazabraud syndrome have been published (103-106).

Osteosarcoma in other benign conditions
Osteosarcomas have sporadically been reported to occur in chronic osteomyelitis (107, 
108), bone infarcts (109-111), Giant cell tumours (112-115), solitary (116-118) or multiple 
osteochondroma (119, 120), osteogenesis imperfecta (121, 122), aneurysmal bone cysts (108, 
123, 124) or solitary bone cysts (108, 125). There is no explanation for a relationship between 
these benign conditions and the development of osteosarcoma (108).

Prognostic factors in Osteosarcoma
Prognostic factors in osteosarcoma are related to the tumour features (volume, location, 
histological subtype, pathological fracture and the presence of metastases at diagnosis) or related 
to its treatment (chemotherapy regimen, type and timing surgery, completeness of surgery of 
the primary tumour and, chemotherapy induced histologic response of the tumour). In this 
introduction large studies have been chosen to avoid missing significant prognostic factors 
(126)(table 4). In this table the results of the most powerful prognostic factors for overall 
survival are shown, as result from multivariate analysis in these studies (38, 127-132). An 
extensive list of molecular markers is not included in this table, because the emphasis of this 
introduction is clinico-pathological markers. 
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Table 4.  

Clinico-pathologic factors related to overall survival in osteosarcoma found to be relevant 

after multivariate analysis in 7 large studies.

Author (ref) No. patients Prognostic factor HR 95% CI p-value comment

Whelan (132)  1067 early time line surgery 1.80 1.17-2.76 0.007 stage IIb

  female gender 0.79 0.64-0.99 0.036  

    distal site tumour 0.66 0.51-0.87 0.003  

    good histol resp 0.48 0.38-0.61 <0.001  

McTiernan (131) 533 Nausea/vomiting gr 1-2 0.37 0.16-0.85 0.020 stage IIb

  good histol response 0.48 0.38-0.61 <0.001  

    Thrombocytopenia gr 1-2 0.49 0.27-0.87 0.016  

    0ral mucositis gr 3-4 0.51 0.29-0.91 0.023  

    distal site in bone 0.66 0.51-0.87 0.003  

    female gender 0.79 0.64-0.99 0.036  

Pakos (130) 1135 metastatic disease 6.59 4.77-9.09 < 0.001 all stages

  poor histol resp 1.67 1.29-2.16 < 0.001 patients > 1990 

    surgery: amputation 1.56 1.20-2.03 0.001  

    site bone: tibia 0.66 0.51-0.88 0.004 CT (≥2 drugs)

Bacci (128) 789 protocol CT IOR 1/2/3 2.3/1.5/1.6 1.0-3.4 0.008 stage IIb

  AF elevated 2.1 1.6-2.7 <0.0001 stage IIb

    poor histol resp 2.0 1.6-2.6 < 0.0001  

    tumour volume ≥ 200 ml 1.4 1.1-1.8 0.01  

    surg margin inadequate 1.3 1.0-1.7 0.044  

    age ≤ 14 yr 1.3 1.0-1.7 0.044  

Petrilli (129) 225 poor histol resp 3.15 1.61-6.17 0.001 all stages

  metastatic disease 3.02 1.72-5.29 < 0.001  

    size T > 12 cm 1.93 1.20-3.12 0.007  

Smeland (127) 113 gender male 3.7 1.59-8.66 0.002 stage IIb 

  volume T > 190 ml 2.4 1.18-5.05 0.017  

    mean MTXt24
 > 4500 μM 0.4 0.21-0.88 0.017  

Bielack (38) 1702 residual T > surgery 4.01 2.66-6.04 < 0.0001 for all sites

poor histol resp 2.44 1.98-3.01 < 0.0001

    metastatic disease 1.88 1.33-2.65 0.0003  

    axial site 1.87 1.25-1.80 0.002  

    tumour size > 1/3 1.30 1.08-1.56 0.005 only sign for EFS
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The most important patient related prognostic factors for poor overall survival include 
metastatic disease at diagnosis, large tumour volume and proximal or axial tumour site, 
whereas chemotherapy induced toxicity was prognostic favourable .
Treatment related prognostic factors are incomplete surgery resulting in residual disease, 
effectiveness of the chemotherapy regimen and a poor histologic response to pre-operative 
chemotherapy. Axial site is related to the difficulty in getting a complete resection (38), and 
early time-line surgery is often necessary in case of early progressive disease (132), which 
biases the outcome of the disease obviously. Young age as a relevant poor prognostic factor 
was relevant in the study of Bacci et al (128), but not in other studies (38, 132). Males had 
an unfavourable outcome relative to females in 2 studies (127, 132), but not in the 4 others 
(38, 128-130). Although histologic response to preoperative chemotherapy is one of the most 
important prognostic factors for survival of osteosarcoma, a recent trial from the European 
Osteosarcoma Intergroup (EOI) did not find a better event-free or overall survival in patients 
who were treated with a more dose-intensive chemotherapy arm despite the fact that this 
group showed a significant higher proportion of histologic good responders (133). These 
results called the use of histological response as measure for outcome into question. This issue 
will be extensively discussed in chapter 2. 

Secondary malignancies, second malignancies following Osteosarcoma, and Osteosarcoma as 2nd 
malignant disease
Contemporary average survival in cancer in general is about 60% (3). In children the overall 
survival is higher, around 70%-80% (42). Due to the high survival, a growing population 
of survivors is at risk for the development of second malignancies. The cumulative risk for 
a second malignant disease is between 3.1% after 25 years to 7.9% after 30 years (6, 134-
136). After treatment for cancer in childhood, a lifelong risk on a second malignancy was 
between 3.3 to 9.2-fold higher than in the general population (5-7, 134, 135). The cumulative 
incidence of subsequent malignant neoplasms following osteosarcoma is on average 1.3% after 
10 years, 5.2% after 20 years and 6% after 30 years (figure 5) (6, 137-144), representing a 3.5-
fold higher risk of a malignancy than the general population. Radiotherapy, female gender, 
genetic factors, such as the Li-Fraumeni syndrome or Rothmund-Thomson syndrome, young 
age at primary diagnosis and possibly chemotherapy, particularly alkylating agents are risk 
factors for the development of subsequent neoplasms. 
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Figure 5. 

Cumulative incidence of 2nd primary malignancies after osteosarcoma. Blue line is all subsequent 

neoplasms, red line is subsequent malignant neoplasms (SMN). Estimated Cumulative incidence for a 

SMN is after 30 years is 6%(3.9%-8.1%) 95% CI. From ref (6). 

Bone tumours in general account for 6.5% (3.3%-9.9%) of all second malignancies (5-7, 134, 
136), representing a 20-30 fold excess risk compared to the normal population (6, 7, 134). 
Although the exact incidence of osteosarcoma as secondary malignancy is difficult to establish, 
because of the different results in the several data bases, the relative risk on a 2nd osteosarcoma 
after treatment for a previous malignancy is calculated to be 22-133 fold (6, 134, 139, 142, 
143, 145-149).
Irradiation as risk factor for osteosarcoma has been recognized since 1929 in radium dial 
painters osteogenic sarcoma was observed as consequence of their work (150). Osteosarcoma 
after radiotherapy represents about 3.2% (1.0%-5.5%) of all osteosarcomas (40, 41, 147, 148, 
151-161). Radiotherapy-induced osteosarcomas differ from conventional osteosarcomas in 
that the male-female ratio is equal (male:female = 0.98:1), and present more often in axial sites 
or skull, and less in extremity sites. In general, the same rate of metastases as in conventional 
osteosarcoma, around 13% have been reported in 5 studies (147, 154, 155, 157, 161). Two 
other studies documented an higher proportion of metastases rate at diagnosis, more than 20% 
(148, 160).
The average latency time between radiotherapy treatment and the occurrence of the 
subsequent osteosarcoma was 11.5 years but shorter latency times, for example 3-5 years, 
do not rule out radiotherapy induced osteosarcomas (151, 154-157). In most of these cases 
genetic causes, such as hereditary Retinoblastoma or the Li-Fraumeni syndrome contribute 
to the occurrence of these osteosarcomas (153). It also has been suggested that the latency was 



Chapter 1

24

R1
R2
R3
R4
R5
R6
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R40
R41
R42
R43
R44

shorter after concomitant use of chemotherapy than when radiotherapy was used as single 
treatment in some studies (145, 152, 156, 159, 160) or in younger patients (151). 
Despite previous contradicting reports (148, 151, 162), aggressive treatment with neo-
adjuvant chemotherapy and surgery leads to an overall survival of radiotherapy induced 
osteosarcoma between 40%-50% (147, 154, 157, 163), which is close to the outcome in 
primary conventional osteosarcoma. Adequate surgical margins are highly important for 
curative treatment in this subtype of osteosarcomas (147, 154, 160). Due to the localization of 
secondary osteosarcomas in the axial sites, adequate margins often are difficult to be achieved 
(147). Multi-agent chemotherapy has successfully been used in patients with secondary/
radiotherapy induced osteosarcoma despite the modifications that need to be given because of 
prior treatment with cytotoxic agents (147, 154, 160, 161). 

Germline mutations and Osteosarcoma
It has been estimated that 1%-10% of all childhood cancers arise in the context of cancer 
predisposition syndromes (164, 165). Reports of familial clustering of osteosarcoma have been 
restricted to sparse case-reports and small series (table 5) (166-177).
Osteosarcoma is one of the cancers that has been associated with syndromes like the Li-
Fraumeni syndrome, (hereditary) Retinoblastoma, and with RECQL-helicase mutation 
syndromes like the Rothmund-Thomson-, RAPADILINO-, Baller-Gerold-syndrome and 
others, as listed in table 6.



General Introduction

25

R1
R2
R3
R4
R5
R6
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R40
R41
R42
R43
R44

Table 5.  

Case-reports of familial occurrence of osteosarcoma in the literature. Hillmann reviewed 41 

other cases in the literature that were not listed in this table (166).

    Type  

Relation Age (year) Osteosarcoma Author (ref)

sister-brother 11 and 12 (telangiectatic) OS Ottaviani (167)

2 brothers 18 and 21 osteo-/chondroblastic Chin (168)

son-father 13 and 44 HG conventional/osteoblastic Longhi (169)

2 brothers 15 and 21 HG conventional/chondroblastic

brother-sister 14 and 11 osteoblastic (both) Hillmann (166)

brother-sister 11 and 14 osteoblastic/sclerosing Danckwerth (170)

2 cousins 11 and 8 Telangiectatic Nishida (171)

2 sisters 17 and 15 not specified Miller (172)

sister-brother 11 and 9 not specified Schimke (173)

daugther-father; 6 and 25 not specified
Swaney (174)

2 brothers 10 and 4 not specified

daugther-father 13 and 40 (2x) not specified Epstein (175)

2 cousins 22 and 18 not specified Robbins (176)

2 sisters, 2 brothers 11, 15, 20 and 22 HG conventional (3x), fibroblastic Harmon (177)

Li-Fraumeni syndrome
The Li-Fraumeni syndrome (LFS) is a clinical and genetic heterogeneous cancer 
predisposition syndrome with multiple early onset sarcomas and other tumours within an 
individual (proband) and in first and/or second degree relatives in the same lineage (178, 179, 
182); OMIM, MIM ID #151623. The most frequent tumours in LFS are osteosarcomas and 
soft tissue sarcomas, premenopausal breast cancer, brain tumours, adrenocortical carcinoma and 
leukemias (178, 182, 183). 
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Table 7.  

Criteria for classical Li-Fraumeni syndrome (LFS), Li-Fraumeni-like syndrome (LFS-L), 

Chompret and revised Chompret criteria (185).

Classical LFS Proband with sarcoma at age < 45 yr AND

  A first degree relative with any cancer at age <45 yr AND

  Another 1st or 2nd degree relative with either cancer at age < 45y OR

  a sarcoma at any age

Li-Fraumeni like Proband with any childhood cancer or sarcoma, brain- or or adrenal cortical tumour 
at < 45 yr AND

syndrome (Birch) First or 2nd degree relative with a spectrum tumour* at any age AND

  First or 2nd degree relative in the same lineage with any cancer < 60 yr

LFS-Chompret Proband affected by spectrum tumour < 36 yr, AND

Criteria ≥ 1 first or 2nd degree relative with a spectrum tumour** < 46 yr or multiple primary 
tumours OR

Proband with multiple primaries, 2 of which are spectrum tumours and the first at 
< 36 yr OR

  Proband with adreno-cortical tumour at any age

LFS-Chompret Proband with spectrum (incl lung broncho-alveolar) tumour < 46 yr and ≥ 1 first or 
2nd degree relative

criteria revised with an spectrum tumour** < 56 yr or multiple primary tumours OR

  Proband with multiple primary tumours, 2 of which are spectrum tumours and the 
first at < 46 yr OR

  Proband with adreno-cortical tumour or choroid plexus tumour, irrespective family 
history

  * spectrum tumours are: bone or soft tissue sarcoma, pre-menopausal breast cancer, 
brain tumour, adrenal cortical carcinoma (leukemia/lymphoma); narrow spectrum 
cancer with hematologic cancers

  ** other than breast cancer if the proband is affected by breast cancer

The classic criteria of for the LFS (178), the Li-Fraumeni-Like syndrome (LFL) (211), the 
Chompret criteria (212) and revised Chompret criteria (213) are listed in table 7, based on 
Ruijs (185). Birch reduced the age for families that were suspected for LFS (182). Chompret 
studied the incidence of unaffected mutation carriers or patients with multiple primary 
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cancers (212) and Tinat extended the Chompret criteria with respect to age at onset of the 
LFS-spectrum tumours in order to cover families with identified TP53 mutations (213). 
Malkin et al. demonstrated that germline mutations of the p53 gene were responsible for the 
excess of cancers in these families (179). Subsequent studies showed that 50%-85% of the 
families fulfilling the classical criteria for LFS harbour a germ-line TP53 mutation (180, 184). 
TP53 negative cases in classical LFS families are explained by de novo mutations, which occur 
in 7%-20% of the cases (214), posttranslational p53 alterations, abnormalities in regulation or 
modifier genes, or other genes that are of influence on the phenotype (for review see Malkin 
2011(215)). The prevalence of osteosarcoma in families that met the classical LFS-criteria 
varied between 6%-16% (table 8) (178, 179, 183, 216, 217), not different from when other 
criteria are use, like the LFL-syndrome (182, 184, 218) or Chompret-criteria were used (181, 
185). 

Table 8.  

Incidence of osteosarcoma (OS) in Classical Li-Fraumeni syndrome, Li-Fraumeni like 

syndrome (LFS/LFL; Birch criteria) and in the Li-Fraumeni syndrome according to the 

Chompret criteria (LFS-Chompret).

Author (ref) Li-Fraumeni criteria prevelance OS in LFS syndrome

Li (178) Classical LFS 12.0%

Li (216) Classical LFS 15.7%

Malkin (179) Classical LFS 6%

Hisada (217) Classical LFS 12.5%

Nichols (183) classical LFS 12.1%

Varley (180) LFS/LFL (Birch) 12.3%

Birch (182) LFS/LFL 6.8%

Olivier (184) LFS/LFL 14.9%

Chompret (181) Chrompet 17.6%

Ruijs (185) LFS/LFL/Chrompet 8.5%

  LFL/TP53 mut pos 0%

  LFL/TP53 mut neg 3.6%

However, Ruijs found the highest incidence of bone tumours in families with the typical 
Li-Fraumeni syndrome criteria (8,5%), which was higher than using the LFL-criteria of Birch 
(0-3.6%) (185). Mutant TP-53 was found in 26.3% of the sporadic osteosarcoma cases (table 
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9) (219-231), whereas only 4.9% of the investigated patients had a germ-line mutation (232-
234). These germline mutations were often reported in patients without typical LFS history. 
This suggests that although TP53 alterations contribute significantly to the sarcomagenesis of 
osteosarcoma, familial cases are present in less than 5% of the cases. 

Table 9.  

Proportion of osteosarcoma patients with TP53 abnormalities, detected by southern blot 

(SB), (PCR)single strand conformation polymorphism (SSCP), immunehistochemistry 

(IHC), Microsatellite analysis (MSA) or DNA sequencing (DNA-seq). In 2 reports, no 

correlation with clinical features were reported (NR).

Author (ref) Number OS TP53 alteration (%) Technique Clinical correlation

Wunder (231) 196 19.4% SB, SSCP no

Entz-Werle (230) 54 53% MSA, PCR no

Kawaguchi (229) 23 21.7% SSCP, DNA-seq no; older age

Gokgoz (228) 272 22.1% SSCP no

Tsuchiya (227) 30 50% SB, SSCP EFS

Goto (226) 32 40.6%/28.1% MSA, IHC PR

Yokoyama (225) 17 23.5% SSCP no

Lonardo (224) 83 26.5% IHC no

Pellin (223) 19 21.1% IHC and SSCP no; older age

Miller (222) 42 30.1% SB, SSCP NR

Ueda (221) 18 27.7-61.1% IHC no

Toguchida (232) 76 23.7% SB, SSCP no

Miller (219) 60 18.3% SB NR

From table 9 can also be concluded that no relationship could be established between 
abnormalities of the TP53 and clinical features, e.g. progression of disease, survival or response 
on chemotherapy of osteosarcoma. Some authors found that TP53 rearrangements were 
more frequently encountered in older patients. This suggests that the TP53 is an early event 
in tumorigenesis, for example inducing chromosomal instability in osteosarcoma (235), rather 
than an indicator for tumour progression.
The lack of concordance between TP53 mutation and outcome might be related to germ-
line variations in TP53 (215, 236) or polymorphisms in modifier genes, such as the MDM2 
SNP309 variation (237) although most of the reports in table 9 ruled out normal variants. 
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Retinoblastoma and Osteosarcoma
Retinoblastoma (Rb) is a tumour of the retina and occurs in 3% of the childhood cancers 
(238). It occurs in 60% of the cases as a non-heritable and unilateral form, in 10%-15% as an 
unilateral but heritable disease and in 25%-30% as an heritable, bilateral disease (192, 239). 

Table 10.  

Number of patients with a secondary malignancy (SMN) and osteosarcoma (OS) as 

proportion of the 2nd maligancy in heritable Retinoblastoma (her Rb) or in sporadic 

Retinoblastoma (non-her Rb).

        SMN (number) OS as SMN

Author (ref)
No
Rb-pat

Hereditary
RB

No
SMN’s

hereditary 
Rb

non-her 
Rb

hereditary 
Rb

non-her 
Rb

MacCarthy (192) 1927 809 121 108 13 32 2

Marees (191) 668 298 74 62 12 15 0

Acquaviva (190) 1111 408 38 31 7 10 0

Mohney (189) 180 82 20 17 3 4 0

Wong (240) 1604 961 199 190 9 70 0

Fontanesi (186) 172 65 6 6 0 4 0

  5662 2623 (46.3%) 458 (8.1%) 414 (15.8%) 44 (1.4%) 135 (32.6%) 2 (4.5%)

Based on the fact that the Rb-gene is a tumour suppressor gene, mutations in this region 
implicate a higher incidence of cancer. Table 10 shows the 10-fold higher incidence of second 
malignancies in hereditary retinoblastoma than in sporadic retinoblastoma, which is explained 
by the genetic susceptibility of these patients for subsequent cancers. Osteosarcomas comprise 
nearly 1/3 of all second malignancies in long term survivors of retinoblastoma, and all but two 
patients with osteosarcoma fall into the group of hereditary Retinoblastoma. This suggests a 
relation between the genetic defect in hereditary retinoblastoma and osteosarcoma.
The risk of getting an osteosarcoma after hereditary retinoblastoma is around 500-fold (191, 
241). The high risk on secondary osteosarcoma among survivors of retinoblastoma is for 
a part explained by the use of radiotherapy, although patients who were not treated with 
radiotherapy also have an high risk on getting an osteosarcoma during their life (242, 243). 
The different latency periods of osteosarcomas that develop inside and outside the radiation 
field suggest that multiple genes are involved in the radiation induced tumours in these 
patients, but one of these gene is the mutated Rb-gene (242). Retinoblastoma has been a 
model for carcinogenesis since the 2-hit hypothesis has been published by Knudson (244). 
The penetrance of this autosomal dominant disorder is complete in the bilateral disease, but 
not in the unilateral disease (245). Non-sense or frameshift mutations and splice mutations 
account for the most of the gene abnormalities in Retinoblastomas (246-248). Somatic 
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Retinoblastoma and Osteosarcoma
Retinoblastoma (Rb) is a tumour of the retina and occurs in 3% of the childhood cancers 
(238). It occurs in 60% of the cases as a non-heritable and unilateral form, in 10%-15% as an 
unilateral but heritable disease and in 25%-30% as an heritable, bilateral disease (192, 239). 

Table 10.  

Number of patients with a secondary malignancy (SMN) and osteosarcoma (OS) as 

proportion of the 2nd maligancy in heritable Retinoblastoma (her Rb) or in sporadic 

Retinoblastoma (non-her Rb).

        SMN (number) OS as SMN

Author (ref)
No
Rb-pat

Hereditary
RB

No
SMN’s

hereditary 
Rb

non-her 
Rb

hereditary 
Rb

non-her 
Rb

MacCarthy (192) 1927 809 121 108 13 32 2

Marees (191) 668 298 74 62 12 15 0

Acquaviva (190) 1111 408 38 31 7 10 0

Mohney (189) 180 82 20 17 3 4 0

Wong (240) 1604 961 199 190 9 70 0

Fontanesi (186) 172 65 6 6 0 4 0

  5662 2623 (46.3%) 458 (8.1%) 414 (15.8%) 44 (1.4%) 135 (32.6%) 2 (4.5%)

Based on the fact that the Rb-gene is a tumour suppressor gene, mutations in this region 
implicate a higher incidence of cancer. Table 10 shows the 10-fold higher incidence of second 
malignancies in hereditary retinoblastoma than in sporadic retinoblastoma, which is explained 
by the genetic susceptibility of these patients for subsequent cancers. Osteosarcomas comprise 
nearly 1/3 of all second malignancies in long term survivors of retinoblastoma, and all but two 
patients with osteosarcoma fall into the group of hereditary Retinoblastoma. This suggests a 
relation between the genetic defect in hereditary retinoblastoma and osteosarcoma.
The risk of getting an osteosarcoma after hereditary retinoblastoma is around 500-fold (191, 
241). The high risk on secondary osteosarcoma among survivors of retinoblastoma is for 
a part explained by the use of radiotherapy, although patients who were not treated with 
radiotherapy also have an high risk on getting an osteosarcoma during their life (242, 243). 
The different latency periods of osteosarcomas that develop inside and outside the radiation 
field suggest that multiple genes are involved in the radiation induced tumours in these 
patients, but one of these gene is the mutated Rb-gene (242). Retinoblastoma has been a 
model for carcinogenesis since the 2-hit hypothesis has been published by Knudson (244). 
The penetrance of this autosomal dominant disorder is complete in the bilateral disease, but 
not in the unilateral disease (245). Non-sense or frameshift mutations and splice mutations 
account for the most of the gene abnormalities in Retinoblastomas (246-248). Somatic 

abnormalities in the Rb-gene were found in 14%-72% patients with osteosarcoma, using 
either LOH-analysis (234, 249-253), Southern or Northern Blotting (222, 249, 250, 254-256), 
Immunostaining or gel electrophoresis (table 11) (223, 250, 257). Some investigators found 
a correlation between Rb-LOH and clinical parameters as survival (234, 252) or metastases 
formation (257), whereas others could not confirm that (253). 

Table 11.  

Frequency of abnormalities in the Retinoblastoma (Rb) gene in patients with osteosarcoma. 

See table 9 for abbreviations. LOH is loss of heterozygosity. MI is microsatellite instability.

Author (ref) patients technique mutation rate comment

Heinsohn (253) 41 LOH 39% LOH not progn sign

Patiño-Carcia (234) 76 LOH 37% LOH Rb associated with reduced (E)FS 

Benassi (257) 39 IHC; EF 53% pRb- associated with metastases (p<0.05)

Pellin (223) 19 IHC; EF 26% no progn correlation with clinical parameters

Belchis (251) 18 LOH 72% LOH or MI in 14/18; MI in 8/18 (44%); 
LOH in 72%

Feugeas (252) 34 LOH 71% EFS Rb-/- 43%, EFS Rb+/+ 100% (p=0.008) 
and Rb-/+. 

Miller (222) 37 SB 19% 60% had alterations in Rb and/or p53

Wadayama (250) 63 LOH 63% LOH not necessarily correlated with 

    SB 29% inactivation Rb gene at protein level

    IHC 54%  

Scholz (256) 14 SB 14% 1 DNA abn samples also had no prot exp

    NB 4/8 -, 2/8 -/+, 
2/8?

5 prot def samples had no Rb abn

Araki (254) 23 SB; NB 35% 1 SB-/+ had also NB-/+; 4 cases NB-/- were 
SB+/+ 

Wunder (255) 12 SB; NB 50% All Rb-/- or Rb-/+ abnormal Rb-RNA 
expression

Toguchida (249) 30 LOH 64% 40% of the OS patients has Rb abn.

    SB 43% LOH and SB do not correlate 

RECQL-Helicases mutation syndromes
RECQL-helicases are a highly conserved family of genes and proteins that have an important 
role in adapting to cellular stress, and thereby maintaining genomic stability, preventing 
epigenetic drift and early senescence (204, 258-260). Examples of abnormal repair in humans 
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are present in rare genetic disorders of the RECQL genes as listed in table 6. Of the 5 known 
RECQL-genes in humans, 3 are known with a recessive inherited gene mutations, leading to 
the Werner syndrome (RECQL-2 mutations) (261), Bloom syndrome (RECQL-3 mutations) 
(203) and the RECQL-4 mutation spectrum syndromes: Rothmund-Thomson (RTS), 
RAPADILINO and Baller-Gerold syndrome (reviewed in Lindor 2000 (193)). Mutations 
in the RECQL-1 and RECQL-5 genes are not known to cause syndromes or diseases, 
particular no cancer. Particularly in the RTS, the incidence of osteosarcoma is extremely high 
(194-197). Osteosarcoma in patients with RTS behaves almost similar as in non-syndrome 
patients. Age at presentation was lower in some series (195, 262, 263), but location, response 
to pre-operative chemotherapy and outcome was like sporadic osteosarcoma. However the 
proportion metachronous or secondary tumours in RTS patients was 17% compared to the 
2.6%-5.4% in sporadic osteosarcomas, reflecting the genetic basis in syndromatic patients 
(263). 
Not all germline RECQL-mutations have the similar genetic consequences for the 
development of osteosarcoma. In the Werner syndrome (RECQL-2 mutation), the 
incidence of osteosarcoma is 7.6% of 157 cancers (205), the peak age was 35-55 years and 
the osteosarcomas were located in unusual sites in the skeleton, for example the patella, the 
radius or the foot (205-207, 264). The incidence of osteosarcoma in the Bloom syndrome 
(RECQL-3 mutation) was low, not more than 2%, but still higher than in the general 
population (203). Overall, these syndromes with germline mutations in RECQL helicases 2,-3 
and -4 predispose to an increased risk of osteosarcoma (265).

Paget’s disease, Familial Osteosarcoma and the McCune-Allbright/Mazabraud syndrome
For osteosarcoma in Paget’s disease, see paragraph 1.4.2., for familial osteosarcoma see the 
introduction of this paragraph. Osteosarcoma in McCune-Allbright/Mazabraud syndrome, see 
paragraph 1.4.2.2.  

Pathology
The term osteosarcoma historically developed from osteogenic sarcoma (266) which 
encompassed all tumours derived from bone. From the period after 1946 osteosarcoma is 
defined as a primary, intramedullary high-grade bone tumour producing malignant osteoid 
(267, 268). 
Since the first 2 editions of the WHO classification used a similar framework, based on 
histologic criteria (270) progress in biological and genetic understanding of these malignancies 
was made. In 2002 the third revision of the classification of bone and soft tissue tumours 
was published, which integrated morphological data with tumour specific cytogenetic 
and molecular data (269). Table 12 shows the different subtypes of osteosarcoma, based on 
the WHO-classification 2002. The unusual histological forms of high-grade conventional 
osteosarcoma will be discussed here in more detail, because in chapter 6 of this thesis some of 
these rare subtypes are more present among the patients.
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Table 12.  

Subtypes of osteosarcoma according to the site in the bone (269)

SITE IN BONE
GRADE of 
MALIGNANCY TYPE SUBTYPE

Intramedullar High Conventional OS Osteoblastic

      Chondroblastic

      Fibroblastic

    Unconventional OS Osteoblastic-sclerosing

      Osteoblastoma resembling

      Chondromyxoid fibroma-like

      Chondroblastoma-like

      Clear-cell

      Malignant fibrous histiocytoma-like

      Giant cell rich

      Epitheloid

    Teleangiectatic OS  

    Small Cell OS  

    Secondary Osteosarcoma M.Paget

      Post-Irradiation

      In various bone diseases

  Low Low Grade Central OS  

       

Surface High High-Grade Surface OS  

  Intermediate Periosteal (Juxta Cortical Chondroblastic OS)

  Low Parosteal (Juxta-cortical OS)  

       

Intra-cortical High    

Extra-Skeletal High    
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Conventional High-Grade Osteosarcoma
The proportion of high-grade conventional osteosarcoma is between 70%-90% of all 
osteosarcomas in larger studies (2, 269, 271, 272). Histologically, the malignant cells of an 
osteosarcoma consist of anaplastic, pleomorphic spindle cells, although other forms can be 
present like epitheloid, plasmacytoid, ovoid, round or fusiform cells or the tumour may 
contain multinucleated giant cells. The malignant osteoid, formed by the pleomorphic tumour 
cells, is highly variable in thickness and ranges from tiny amounts to a frank ossifying tumour, 
as is visible on a plain radiograph. Besides osteoid, high-grade conventional osteosarcoma can 
also produce cartilage and/or fibrous tissue. Depending on the amount of matrix, conventional 
osteosarcoma is divided into osteoblastic (50%), chondroblastic (25%) and fibroblastic (25%) 
(see also table 12). This subdivision has no prognostic value, because the outcome in these 
three subgroups did not differ, despite a significant better response rate among the fibroblastic 
group (271). 

Unconventional types of high-grade conventional Osteosarcoma
Sclerosing subtype Osteosarcoma
The sclerosing subtype of osteosarcoma has been classified by most authors under multifocal 
osteosarcoma (273-281). This multifocal variant was diagnosed in young patients, age 5-16 
years, and is characterized by multiple foci of high-grade osteosarcoma, sclerotic on the 
radiographs and all localized in the metaphyseal part of the long tubular bones. The clinical 
behaviour of this variant is very aggressive, most patients died within 1 year after diagnosis 
with widespread disease. However, not all sclerosing variants are clinically highly malignant 
(282-289). These variants of sclerosing osteosarcoma are of low to intermediate grade, occur 
generally in older patients, are located predominantly in multiple sites of the axial skeleton 
and skull, either with or without involvement of long bones or occur as recurrent disease. 
This subtype is mentioned here only for completeness to define this subtype of osteosarcoma 
appropriately. 

Osteoblastoma-like subtype of Osteosarcoma
The osteoblastic resembling subtype of osteosarcoma has been estimated to occur in less than 
1.5% of all osteosarcomas (290). The localization in 33 cases differs from HG conventional 
osteosarcoma. Thirty nine percent of the cases are found in the axial skeleton and skull, and 
61% in the appendicular skeleton (290-296). The most common involved bone was the tibia, 
and this subtype presents often in unusual sites like the foot (290, 291, 296) or rare locations 
in the bone, like the condyles of the femur (294, 295). As other high-grade osteosarcoma, 
osteoblastoma-like osteosarcoma has a similar tendency to metastasize as the conventional 
subtype of osteosarcoma (290).
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Chondromyxoid fibroma like Osteosarcoma
This type has been described in 2 case reports (297, 298) and by Mirra (299). Although 
this subtype has been described as a low grade osteosarcoma (297, 299), local and systemic 
recurrences were described in both patients, with an unusual metastases in the left atrium 
(297). 

Chondroblastoma-like Osteosarcoma
Schajowicz published one case of chondroblastoma-like osteosarcoma in the tibia of a 12-year 
old boy with a tumour located in the diaphysis of the femur (300). Clinically, the tumour was 
highly malignant as was demonstrated by a fast local growing and recurrence tendency and the 
development of pulmonary metastases, one months after resection.

Clear Cell type Osteosarcoma
Four cases of the clear cell type osteosarcoma have been described, in 3 children and one adult 
patient (301, 302). All lesions were located around the knee, in the meta-epiphyseal part of the 
distal femur in 3 cases or proximal tibia in one case. Two of the 4 patients died from metastases, 
and the follow up of the other 2 was less than 1 year. 

Malignant Fibrous Histiocytoma type of Osteosarcoma
This subtype of osteosarcoma needs to be distinguished from Malignant Fibrous Histiocytoma 
of bone (MFH) (303-306). Nine patients were reported, aged 8-75 years, with lytic lesions 
in the meta-epiphyseal part of the distal femur (n=6) or the proximal tibia (n=2) (304, 305). 
MFH-like osteosarcoma has no p53 overexpression and a low Ki-67 labelling index compared 
with conventional osteosarcomas or MFH of bone (306). The reports are conflicting with 
respect to clinical aggressiveness. Whereas Ballance reports the development of pulmonary 
metastases in 4 of 6 patients within one year (304), Naka finds an 5-year overall survival of 
67% in 7 cases (306). 

Giant cell rich Osteosarcoma
Giant cell rich osteosarcoma has been reported to occur in 0.6%-3% of all primary 
osteosarcoma and is defined as an undifferentiated sarcoma with scanty tumour osteoid and 
an abundance of osteoclast-like giant cells (41, 307, 308). Fifteen cases were described in detail 
(307-311). All but one showed ill-defined lytic lesions, with a wide zone of transition, located 
in the meta-diaphyseal part of the femur(n=10) or tibia (n=4) and one was located in the 
navicular bone of the foot (311). The mean age was 21(6-41) years, older than in conventional 
high-grade osteosarcoma, but younger than in giant cell tumours of the bone. The differential 
diagnosis is high-grade conventional osteosarcoma with giant cells (more abundant osteoid), 
telangiectatic osteosarcoma (septae with sarcomatous cells), giant cell tumours of bone 
(epiphyseal location in the bone) and aneurysmal bone cyst (no malignant cells) (307, 308, 
311). Prognosis is difficult to give, because the few well documented cases, but seems to be 
similar as in conventional high-grade osteosarcoma (307, 312)
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Epitheloid Osteosarcoma
In the epithelial subtype of osteosarcoma, epitheloid-differentiated osteoblasts are arranged 
in nesting or gland-like structures, admixed with osteoid producing malignant spindle cells, 
forming a biphenotypic tumour (313, 314). The histological picture resembles (metastatic) 
carcinoma (315, 316). Variable immunohistochemical expression of cytokeratins, vimentin or 
epithelial membrane antigen have been reported in these cases (313, 316-320). Overall a male 
predominance is observed, an average age of 29 years, ranging from 4.5-66 years, and most 
often, the osteosarcomas are located in the femur (313, 315-323). Apart from a poor outcome 
in the Rosette-formed epithelial subtype, prognosis is similar as in high-grade conventional 
osteosarcoma (324).

Teleangiectatic Osteosarcoma
This variant of osteosarcoma is defined as a one forming tumour, characterized by large 
spaces, filled with blood with or without septa (325). This type has been reported to occur in 
5% (0.9%-11%) of all cases of osteosarcoma (2, 40, 325-330). Radiologically, it is an aggressive, 
purely lytic lesion, with destruction of the cortex, periosteal reaction, soft tissue invasion and 
a relatively high proportion of pathological fractures (40, 325, 328, 330, 331). Mineralization, 
typical for osteosarcoma, is scant on plain films but can best be shown by CT. MRI is effective 
in distinguishing a telangiectatic osteosarcoma from other types or benign blood filled lesions 
by marrow replacement on T1-, and high signal on T2-weighted images (40, 332). With 
contemporary neoadjuvant chemotherapy, outcome in patients with this variant are similar 
(328, 330, 333) or even better (329) than conventional osteosarcoma.

Small cell Osteosarcoma
The small cell variant of osteosarcoma is composed of small cells with a variable degree of 
osteoid production (334). The mean incidence rate from 4 different studies is 2.2% (1.1%-4%) 
(335-337). Males and female were equally affected in 147 cases, dissimilar like conventional 
osteosarcoma (40, 335-337). Age distribution shows the highest incidence in the adolescent 
and young adult group, and the localization in the skeleton were similar like in conventional 
osteosarcoma, with a relatively a high proportion (18%) located in the humerus. This variant 
of osteosarcoma has to be distinguished from Ewing sarcoma, another small cell tumour of 
bone, which is sensitive for radiotherapy, in contrast to the small cell osteosarcoma. This can be 
done using the characteristic translocation t(11;22) in Ewing sarcoma, which is not present in 
small cell osteosarcoma. Although small cell osteosarcoma seems to be sensitive for platinum 
analogs (335), survival is worse than in HG conventional osteosarcoma, although this is based 
on older reports, with less effective medical treatment (335, 337, 338). 

Low-grade central Osteosarcoma
A low grade central osteosarcoma is a well differentiated subtype, arising from the medullary 
cavity of the long tubular bones (339). This subtype has a better prognosis than its high-grade 
counterpart but also has another location than other non-high-grade subtypes, parosteal and 
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peri-osteal osteosarcoma (339-341) and accounts for approximately 1-2% of all osteosarcomas 
(40, 339-341). The age at presentation is generally around the 3rd decade, and patients have 
a prolonged history of symptoms of on average 1 year of nonspecific pain with or without 
swelling in the diaphyseal site of the femur or tibia. Occasionally, a low grade central 
osteosarcoma is diagnosed in the small bones of the hand or foot (340-342) or in the flat 
bones of the ribs (340, 342, 343) or skull (340, 344). Histological, the low grade osteosarcomas 
are hypo-to moderate cellular spindle cell tumours with slight atypia and occasional mitotic 
figures, irregular bone formation in a parosteal, desmoid or fibrous dysplasia like pattern (340). 
If this tumour is inadequately excised, progression into higher grade of malignancy occurs in 
15% of the patients with recurrence (340, 341, 345, 346) with the potential for developing 
distant metastases and leading to death. Dedifferentiation not only occurs at recurrence, but 
has been reported at diagnosis in rare instances (347-349).

Surface Osteosarcomas
Surface osteosarcomas arise by definition from the surface from the bone, and can be of 
high-grade (high-grade surface osteosarcoma, also known as juxtacortical osteosarcoma), 
intermediate grade (periosteal osteosarcoma; juxtacortical chondroblastic osteosarcoma) or of 
low grade (parosteal osteosarcoma or juxtacortical osteosarcoma) (350-352). 
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Table 13 shows the clinic-pathological differences between the subtypes of surface 
osteosarcoma. As is shown in this table parosteal osteosarcoma is the most frequent type (353-
356), whereas the periosteal osteosarcoma and high-grade surface osteosarcoma accounts for 
1.5% (357, 358) and less than 1% respectively (359, 360).
Despite the lower grade of parosteal and periosteal osteosarcoma, focal dedifferentiated 
areas into higher grade have been described(353, 355, 361-363), which occur more often in 
recurrences in these tumours(355, 356, 364, 365). 

Treatment of Osteosarcoma
Modern treatment of osteosarcoma consists of pre-operative and postoperative (neoadjuvant) 
chemotherapy providing systemic tumour control in conjunction with adequate resection of 
the tumour. Because an extensive meta-analysis of chemotherapy is presented in chapter 2, 
the surgical treatment will only be discussed shortly here.
For local tumor control, limb salvage has replaced ablative surgery as surgical option in 
the majority of patients (figure 6), it became clear that chemotherapy contributes to local 
treatment as well (163, 366-370). 

Figure 6. 

Different types of surgery in subsequent 5-year periods. 
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Limb salvage is a challenge due to the diversity of sites in which the tumours arise, the 
extension of the tumour to adjacent soft tissue, the proximity of neurovascular structures and 
the age (356, 371-373). This raises the question about safety in terms of local recurrence and 
survival after such a procedure. 
Table 14 shows an average rate of local recurrence of 6% among more than three thousand 
three hundred patients, nearly 2x higher after limb salvage (7.8%) than after ablative surgery 
(4.0%) or rotation plasty (3.8%). 

Table 14.  

Local recurrence rate (LR) among osteosarcoma patients who underwent an amputation, 

limb salvage surgery or and rotation plasty.

  No. LR rate (%) after  

Author (ref) patients amputation limb salvage rotation plasty total

Bacci (163) 1126 2.8 6.3 5.6 5.3

Rodriguez-Galindo 2004 397 6.7 6.0 - 6.5

Weeden (374) 559 2.4 10.2 0 7.5

Brosjo (375) 223 3.1 10.5 - 6.3

Bielack (368) 440 2.9 8.8 incl Amp 5.2

Rougraff (376) 227 5.5 10.9 - 7.4

Glasser (366) 279 1.9 9.2 - 6.5

Eckardt (377) 116 7.8 3.8 - 5.2

total 3367 4.0 7.8 3.4 6.1

Survival after local recurrence is poor, on average 21% (5-41%), especially in the presence 
of concurrent systemic metastases (163, 370, 378-380). However, table 15 shows that the 
outcome after limb salvage does not fare worse compared with amputation or rotation plasty, 
indicating limb salvage is a safe procedure. 
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Table 15.  

Five year survival in 5 studies of patients who underwent an amputation, a limb salvage 

procedure or an rotation plasty.

    5-year overall survival  

Author (ref) No pats amputation limb salvage rotation plasty p-value

Bacci (381) 1.148 53% 61% 58% < 0.001

Bielack (38) 1.702 66% 70% - 0.089

Weeden (374) 559 42% 61% 59% < 0.01

Rougraff (376) 227 51% 48% - 0.84

Glasser (366) 279 73% 80% - -

total /mean 3.915 62% 64% 59%  

Factors that significantly relate to the risk of local recurrence were the application of 
chemotherapy (367, 368, 380), histologic response on pre-operative chemotherapy (163, 367, 
368, 379), tumour volume (379) and surgical margin (163, 367, 368, 379, 382). An adequate 
(radical or wide) surgical margin has the lowest risk for local recurrence, whereas inadequate 
(marginal or intralesional) margins have high local recurrence rates in most studies, up to 
24%(163, 383). Poor histological response has a high additional risk for local recurrence. 
Particularly when also inadequate margins are present, local recurrence rates can raise to 16%-
31% (163, 368, 383). In these studies nearly all patients had chemotherapy, which was essential 
in limb salvage.
It can be concluded that limb salvage surgery is feasible in contemporary osteosarcoma 
treatment, but only after pre-operative chemotherapy has been given, and adequate surgical 
margins can be achieved.

Aim of this thesis

Despite the enormous number of papers about osteosarcoma that has appeared last decades, 
there are still many unanswered questions about this bone tumour. One question is whether 
or not osteosarcoma is one disease or has to be considered as a complex of different disease 
entities. If osteosarcoma consists of different disease entities, the consequence of that 
conclusion would be not only a different treatment approach, but it raises then also the 
question how these different forms are related to each other. For example, osteosarcoma is 
considered as a high-grade malignant disease, and modern treatment protocols are based on 
surgical excision of the tumour in combination with neo-adjuvant chemotherapy. However, 
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16% of the patients will survive, despite the fact that they were treated with local treatment 
only (384, 385). Around 20% of the patients with recurrent disease can be cured with surgery 
only (386), while relapsed disease is considered as one of the most disastrous presentations 
of osteosarcoma. These clinical experiences may suggest that there exist some subgroups 
of osteosarcoma, that have a less malignant behavior than others. If indeed a less malignant 
subgroup could be defined, the next question should be whether or not chemotherapy 
could be reduced or even avoided in this group, in order to prevent the serious side effects of 
chemotherapy, stressing the importance of this question.
So far, we are not able to distinguish osteosarcomas with unfavorable or favorable outcome by 
clinical parameters. It might be asked if that would be possible, based on different molecular 
signatures. Questions about the molecular behaviour of osteosarcoma are not only important 
from scientific point of view, but may reveal insight in the development of new treatment 
options. Studies about the pathophysiology of osteosarcoma are hindered by complex genetic 
changes in this tumour (387-393). Although concerns were raised about the use of in vitro 
models in osteosarcoma research (394, 395), recently it was demonstrated that research on 
osteosarcoma cell lines is representative for clinical osteosarcoma (396). However, it remains 
important to understand the complete picture of osteosarcoma that clinical data, filtered by 
statistical systems need to be transferred into the laboratory and the other way around. 
The present study was undertaken to meet some of these questions in order to understand the 
evaluation of treatment for high-grade conventional osteosarcoma at usual and unusual sites in 
an attempt to get evidence from clinical and pathological point of view if therapy can become 
more tailored. Furthermore, we wanted to study a possible relationship between benign 
osseous lesions and high-grade malignant osteosarcoma using a high throughput method. 
To meet these questions, in chapter 2 the background of chemotherapeutic treatment was 
investigated with emphasis on chemotherapy. Evidence was found that the drugs that are 
used in modern treatment protocols indeed are valuable, but are limited to four effective 
drugs. In this study trials in stage IIb osteosarcoma were investigated, in order to get as much 
homogeneity as possible. Treatment in metastatic or relapsed osteosarcoma is poorly defined, 
experience based but no randomized trials were found in these subgroup of patients. In 
this meta-analysis a new statistical tool, a multivariate random effects analysis with survival 
data at several time points (Fiocco et al) was applied, heading the heterogeneity of the used 
studies for this paper. The value of salvage of patients with a poor response the pre-operative 
chemotherapy is also critically reviewed in this chapter. 
Chapter 3 goes deeper to the genetic basis of osteosarcoma. In this study, we tried to 
find a RNA-expression profile which distinguishes histologic response on pre-operative 
chemotherapy and/or outcome of patients. A small size of patient samples was available 
for this study due to the limited amount of tumour tissue at diagnosis, necrosis of tumour 
in patients with good histological response and uniformity of treatment of patients. In 
this study RNA expression of tumour tissue was compared with the expression profile of 
benign osteoblastomas, mesenchymal stem cells that were altered into osteosarcomas and 
mesenchymal stem cells that were altered into osteosarcomas. Being at the start of the this high 
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output techniques, we were faced with problems of the analysis and interpretation of these 
approach. However, some important issues were concluded from this pilot and the technique 
is nowadays more routine.
Chapter 4 deals with the background of the statistical analysis is given in a paper of Goeman 
et al, who is working on the department of biostatistics in the Leiden University. 
Chapter 5 describes the transition from clinical to laboratory investigations. In this chapter, 
the expression of the HER-2 oncogene in osteosarcoma is critically reviewed. The aim of this 
study was to investigate whether or not the HER-2 oncogene can be demonstrated by several 
techniques, as Real-time PCR (RT-PCR), Immunohistochemistry (ICH) and Fluorescent 
in situ Hybridisation (FISH). The importance of this oncogene lies in the fact that treatment 
whit the monoclonal antibody Herceptin, which is regularly used in Breast carcinoma, is 
supported when the results of such an investigation confirm the presence of this receptor on 
the membrane surface of the osteosarcoma cells. 
In Chapter 6 a study is presented which comprises osteosarcoma in rare localizations: the 
hand and the feet. It is not well-known if osteosarcomas in these unusual sites need a similar 
treatment approach than osteosarcoma elsewhere in the body. Is surgery in addition to 
chemotherapy acquired for these sites? The assumption may be that local excision only will 
be sufficient to treat osteosarcomas in the hand and foot, because it can be recognized quite 
early. However, the outcome and factors that influence the outcome of osteosarcomas in these 
locations are not exactly known, and no definite conclusions about appropriate treatment can 
be given before such is better described. 
Chapter 7 is concerned with factors that determine the outcome of patients with pulmonary 
metastasized osteosarcoma. Our questions in this single institute experience were mainly if 
repeated surgery is valuable in these patients and if factors could be defined for resectability 
of the tumours in these patients. Unfortunately the series was too small to make a definite 
conclusion about the role of repeated chemotherapy, but a suggestion was done about the 
value, based on the relationship between vitality of the tumours and the outcome. 
In Chapter 8 a summary of the chapters is given and some concluding remarks about future 
research are made, which is in Dutch in chapter 9. 
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Abstract

Aim
Since the introduction of chemotherapy, survival in localised high-grade osteosarcoma 
has improved considerably. However there is still no worldwide consensus on a standard 
chemotherapy approach. In this systematic review evidence for effectiveness of each single 
drug and the role of response guided salvage treatment of adjuvant chemotherapy are 
addressed, whereas in a meta-analysis the number of drugs in current protocols is considered 

Methods
A systematic literature search for clinical studies in localised high-grade osteosarcoma was 
undertaken, including both randomized and non-randomized trials. Historical clinical studies 
from the pre-chemotherapy era were included for comparison purposes. 

Results
Nine historical studies showed a long-term survival of 16% after only local treatment. Fifty 
single agent phase II studies showed high response rates for adriamycin (A, 43%), ifosfamide 
(Ifo, 33%), methotrexate (M, 32%), cisplatin (P, 26%) but only 4% for etposide (E). In 19 
neo-adjuvant studies the mean 5-year event free survival (EFS) was 48% for 2-drug regimens 
and 58% for ≥ 3 drug regimens, with an 5-year overall survival (OAS) of 62% and 70%, 
respectively. Meta-analysis showed that ≥ 3 drug regimens including MAP(Ifo) had significant 
better outcome (EFS: HR=0.701 (95% CI: 0.615 – 0.799); OAS: HR=0.792 (95% CI: 0.677 
– 0.926) than 2-drug regimens, but there was no significant difference between MAP and 
MAPIfo (or plus etoposide). Salvage of poor responders by changing drugs, or intensifying 
treatment postoperatively has not proven to be useful in this analysis. 

Conclusion
Meta-analysis in patients with localised high-grade osteosarcoma shows that 3-drug regimens, 
for example MAP are the most efficacious drug regimens. 
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Introduction

High-grade osteosarcoma is the most frequent primary malignant bone tumour (1) and occurs 
predominantly during puberty with a second peak in the elderly (2-4). The annual incidence 
rate is on average 4.4 per 106 people aged 0-24 years, 1.7 per 106 people aged 25-59 years and 
4.2 per 106 in people ≥ 60 years. Osteosarcoma typically is a tumour of the extremities: 78% is 
localized in the lower extremity, with 64% around the knee and 10% localized in the humerus 
(5-10). Long term survival in localised osteosarcoma has increased substantially from 10-20% 
when surgery as single treatment was given before the 1980’s up to 50%-60% from 1985 
onwards. However, since then no substantial further improvement of survival is observed (4, 
11-16) (Fig 1). Children have a 5%-10% better survival rate than patients up to 50 years, while 
patients older than 60 years have a survival rate of only 24% (4, 15, 16). The improvement 
in survival has been attributed to the use of intensive multi-agent chemotherapy given in 
combination with advanced surgery. In modern treatment schedules, usually a combination of 
doxorubicine (adriamycin (A)) and cisplatin (P), with or without high-dose methotrexate (M) 
and/or ifosfamide (Ifo) and/or etoposide (E) are being used. 
Our aim is to address several questions. What is the evidence for the effectiveness of each of 
these drugs as single agent? How many drugs should at least be given to accomplish the most 
effective treatment regimen? What is the value of increased dose intensity or salvage treatment 
after a poor pathological response on preoperative chemotherapy? 
Due to the presence of heterogeneous studies including the design, regimen, follow-up or 
definitions of histological response, a random effects meta-analysis was employed on a number 
of selected studies (17). The ultimate goal of the analysis was to define the most efficacious 
treatment in localised osteosarcoma.
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FiGUre 1. 

Reported 5y-overall survival (% OAS) during subsequent periods. Data from Stiller (n=1324) (15) and 

Magnani (n=3502) (14). Overall survival since 1970, when chemotherapy was introduced in addition to 

surgery (historical controls). This curve demonstrates clearly that OAS reaches a plateau phase from 1985 

onwards. 
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

mAteriAls And methods

literature search strategy
To assess the efficacy of the different chemotherapy regimens a Pubmed and EMBASE search 
was performed in January 2010, with osteosarcoma, osteogenic sarcoma, bone sarcoma and 
the drug names methotrexate, doxorubicin, adriamycin, cisplatin, ifosfamide and etoposide 
as search terms. Only papers in the English language were accepted for this review. Letters, 
abstracts or review papers were not included for reason of incomplete data of the studies or 
follow-up or duplication (fig 2). If reports were published more than once on the same patient 
population, the most mature data were used. 
Phase II studies on the aforementioned 5 drugs were included. For the historical pre-
chemotherapy era studies additional studies were retrieved from the references. Only studies 
with an appropriate definition of osteosarcoma and non-metastatic stage were used. Phase 
III studies of patients with localized disease only, were selected to have included at least 50 
patients and with at least 5 years of follow-up. For the included studies, the following data 
were collected: study period, patient number and characteristics, chemotherapeutic regimens 

creo
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(drugs, dose, frequency) as well as type of surgery, histological response, duration of follow-up 
(FU), event free (EFS) and overall survival (OAS). 

FiGUre 2. 

Search strategy for papers in this review.
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
  
  






 

: 
 
 
 
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Definition of results and outcome
Histological response was defined according to the proportion of viable tumour cells after 
induction chemotherapy: good pathological response (pGR) was defined if <10% are viable 
and poor pathological response (pPR) if ≥ 10% of the tumour cells are viable. Response rate, 
event free survival (EFS) and overall survival (OAS) were taken from the original publications. 
In phase II studies, a drug was considered effective when the response rate was > 20%.

Statistical analysis: meta-analysis
The meta-analysis performed here is based on a new methodology for pairs of survival curves 
under heterogeneity and cannot be casted in the classical meta-analysis where the well-known 
forest plot is used to illustrate the results of the meta-analysis. A multivariate random-effects 
model for a joint analysis of survival proportions reported at different times in the different 
studies has been used in this manuscript in order to be able to use all information available in 
each paper included in the meta-analysis. For each study included in the meta-analysis where 
the same two treatments are compared, published EFS and OAS at a predetermined set of 
time points during follow-up and accrual information are known. Data in each study consist 
of disease free survival and overall survival probabilities every 6 months for the first 5 years 
after treatment. Two separate meta-analysis are performed. First the survival rates of patients 
who received a 2-drug regimen are compared with those who received a 3-drug regimen. 
Then the survival rates of patients, treated with 3-drug versus 4-drugs were compared. The 
techniques described by Parmar (18) and Fiocco (19) were used to reconstruct the number 
of patients at risk, the number of deaths and the number of censored patients during the 
time intervals in each arm and each trial. Using these aggregate data, the treatment effect 
and the overall survival curves for the two arms were estimated by applying a Poisson 
correlated gamma frailty model as described in Fiocco (17). Using this model, we were able to 
incorporate also studies with only one arm, while the traditional approach can be applied only 
when information concerning both treatment arms are given. This adds more efficiency to the 
results based on the statistical model. 

Results 

Pre-chemotherapy era studies
Nine historical studies were retrieved from 43 papers on treatment of localised osteosarcoma 
before the chemotherapy era (table 1). 
Long term survival of the combined 1555 patients after local tumour control without 
chemotherapy was 16% (9-23%). The typical course of the disease in these patients is reflected 
by the pattern of metastases, with 85% of patients developing pulmonary metastases, half of 
these within 6-8 months after local treatment (Fig 3). With (neo)-adjuvant chemotherapy, 
survival was higher, time to metastases was on average 1.5-2x longer, less pulmonary 
metastases but more extra-pulmonary metastases were observed compared with the historical 
group (14, 20-26). 
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tABle 1.  

selected studies from treatment of localised osteosarcoma patients before the chemotherapy 

era. Nine papers with the total of 1555 patients with surgery or/and radiotherapy and 

follow-up of at least 5 year or more were selected out of more than 40 papers.

institute
study- 
period

number 
patients

Overall survival 
≥ 5 year (%) reference

Karolinska Hospital Sweden < 1956 86 17 (27)

Westminster Hospital London 1951 - 1962 92 22 (28)

MSKCC New York 1949 - 1966 145 17 (29)

Mayo Clinics Rochester 1900 - 1966 465 18 (30)

Radium Hospital Oslo 1938-1964 102 18 (31)

Bristol Bone Tumor Register 1946 - 1972 149 17 (32)

Rizzoli Bologna 1959 - 1979 127 10 (21)

MD Anderson Cancer Center 1950 - 1974 213 9 (6)

EORTC 1962 - 1969 176 23 (7)

FiGUre 3. 

Pattern of clinical detectable metastases in patients with local treatment only (historical data). In 80-90% 

of all patients with osteosarcoma metastases develop in the lungs, other bones and rarely in lymph nodes 

and other organs. Half of the metastases develop between 6-8 months after local therapy, 75-90% occur 

within 1 year, and after 2-2.5 year the curve of development of metastases flattens.
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Single drug phase II studies
In order to get evidence for responsiveness of drugs, which are commonly used in 
osteosarcoma, phase II studies of M, A, P, Ifo and E as single drugs in pre-treated, relapsed or 
refractory patients were retrieved from literature. Among 140 papers, 50 were selected for this 
review (Table 2). Patients, entered in these studies, had relapsed or refractory disease. The data 
from studies showed high response rates of 43% for A, 33% for Ifo, 32% for M and 26% for 
P, all well above the predefined 20% threshold. E was included because some modern trials 
included this drug. However, E had a response rate of only 4%.

Table 2:  

Drugs with a response rate (CR plus PR) of ≥20%. Etoposide is included to demonstrate the 

response rate in a small number of studies.

  dose range N N responding patients response References

Drug mg/m2/course patients CR PR rate (%)  

Adriamycin 35-90 108 14 32 43 (33-44)

Ifosfamide 5.000-15.000 246 30 50 33 (45-59)

Methotrexate 80-15.000 164 26 26 32 (60-70)

Cisplatin 60-150 174 18 28 26 (69, 71-78)

Etoposide 120-625 27 0 1 4 (79-82)

Description of neo-adjuvant chemotherapy studies 

1.	 American OSS studies (Table 3)
	 a.	 Memorial Sloan Kettering Cancer Center (MSKKC).
The first neoadjuvant (Rosen’s) T-5 protocol enabled limb salvage after shrinkage of the 
tumour by pre-operative MA (83). The M-dose was escalated when no clinical or biochemical 
response were present (84) and based on the excellent results after 2 years, chemotherapy 
was further intensified in T-7 (84, 85) and T-10 (86) by giving M at weekly intervals and 
replacement of cyclophosphamide by BCD. To salvage pPR in the T-10 protocol, drugs post-
operatively differed from those used preoperatively (86, 87). The response rate in T-10 was 
lower than in the previous trial, due to early planning of surgery, but the EFS was similar as in 
T-7 (88). In the last randomized study (T-12), a higher response rate in the more intensified 
arm resulted in a similar EFS (78%) to the control arm (73%) and to the previous (T-10) trial 
(89). Again, despite an increased response rate, no improvement in EFS was achieved.
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	 b.	 MD Anderson Cancer Center
In three subsequent studies (TIOS I-III), the response of preoperative chemotherapy was used 
to design postoperative treatment in 98 patients (90). Sixty seven patients were treated with 
M,A and P containing regimens, depending on the response on preoperative chemotherapy, 
but 31 patients refused surgery and were treated with chemotherapy only. These patients 
had a significant lower 5y-EFS (23%) compared to those who were treated with surgery and 
chemotherapy (5y-EFS 62%) (90, 91), confirming that patients with localized osteosarcoma 
cannot be treated with chemotherapy alone (91) Intra-arterial P was more effective than M in 
a subgroup of these patients (90, 92).

	 c.	 Children’s Cancer Group CCG782.
The objectives of CCG-782 were to improve EFS compared to the adjuvant protocol CCG 
741and to evaluate the value of a grading system for histological response, using a T-10 
based regimen (93, 94). Although the outcome was significantly better than in CCG 741, 
the response rate and survival were lower than in Rosen’s T-10 study (86). However, because 
CCG-741 was less intensive, the conclusion that the neo-adjuvant approach was better than 
adjuvant chemotherapy could not be generalized. pPR was a significant higher risk for an 
adverse event than pGR (relative risk 0.23, p<0.0001). 

	 d.	 Pediatric Oncology Group POG 8561.
This randomized study compared immediate and delayed surgery after an induction of 2 
cycles MAP (95). Outcome was not significantly different between both arms. Patients, who 
had < 10% viable tumour after induction, had a significant better EFS (73%) than patients 
with pPR. It was concluded that timing of surgery did not influence outcome and that a 
better response was not translated into a survival benefit. 

	 e.	S outh West Oncology Group SWOG 9139.
In order to assess the efficacy of additional Ifo, 63 patients were treated with a regimen 
consisting of A and P, alternated with Ifo (96). With a response rate of nearly 50% and 5y-OAS 
of 58%, the authors concluded that this 3-drug regimen did not improve outcome compared 
with prior regimens of A and P alone and that the value of increasing dose intensity by adding 
drugs in osteosarcoma is limited.

	 f.	 Children’s Oncology Group Intergroup study INT0133.
In a randomized 2x2 factorial study INT0133 the value of Ifo as a 4th drug compared with 
MAP and the addition of the immune modulating agent liposomal muramyl-tripeptide 
(MTP) to chemotherapy were investigated (97, 98). Analysis after 4 year follow-up suggested 
an interaction between Ifo and MTP but re-analysis after 6 years FU showed no evidence 
of interaction (98). A significant (p=0.03) improvement of OAS when MTP was added to 
chemotherapy (6y-OAS 78% vs 70% in chemotherapy alone) was observed while outcome 
of MAPIfo vs MAP were similar. Due to the complex design and interaction concerns of this 
study, the relevance of these conclusions have been challenged (99).
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	 f.	 Brazilian studies.
Both the EFS and OAS were lower in a regimen that did not contain M, but Ifo and 
Epirubicin plus Carboplatin (study III) (100), both considered less active drugs in 
osteosarcoma. In Study IV, A was added to the regimen of study III, without better results.

2.	E uropean OSS study groups.
	 a.	 Cooperative Osteosarcoma Study Group (COSS) studies (Table 4).
The first neoadjuvant study of the COSS (COSS-80) demonstrated a significant better 
survival compared with the COSS-77 adjuvant study (101, 102). Randomization in this study 
did not show any difference between P and BCD and Interferon-β was of no additional 
benefit (102). The following trial, COSS-82, investigated the reduction of intensity of pre-
operative chemotherapy and salvage of poor responders. The overall results were worse than 
the previous trial and M-BCD not only showed a significant lower response rate compared 
with AP, but the pPR had also a significant worse survival (103). It was concluded from 
this randomized trial that salvage by changing drugs failed (104). Therefore, in COSS-86, 
chemotherapy was intensified by adding Ifo to an already aggressive regimen of MAP for 
high risk (definition risk groups: see Table 4) patients (105). Furthermore in a controlled way 
the question was addressed whether intra-arterial administration of P would yield a higher 
response rate, hence a better outcome. With a long term EFS of 66%, these results were the 
best published so far by COSS (104, 105). In both high and low risk patients, the response 
rate was nearly similar, and like the previous studies, pGR had a significant better survival than 
pPR. No benefit of the intra-arterial use of P on tumor reponse or survival was seen (105, 
106).
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Table 4.  

COSS results. Overview COSS-studies from 1979 until 1988. The first 2 studies were 

randomized. The subscript figures in the rows with chemotherapy indicate the number of 

courses of the particular drug or drug combinations (drug names see list of abbreviations). 

pGR is pathologic good response, pPR is pathologic poor response. GR is proportion of 

good responders, in most cases ≥ 90% TCN (tumour cell necrosis). The superscript figures in 

the survival rows indicate follow-up period in years.

Study patient Drug Regimen    

period numbers pre-operative post-operative pGR (%) EFS (%) OAS (%)

COSS 80 116     53 5810y 6710y

1979 - 1982   M
x4

+A+BCD M
x10

+A+BCD
x3

 -/+ Ifn   59 69

    M
x4

+A+P M
x10

+A+P
x3

 -/+ Ifn   56 65

COSS 82 125     43 5010y 6410y

1982 - 1984   M
x4

+BCDx2 pGR:M
x4

+BCD
x2

; pPR:AP
x6

26 46 59

    M
x4

+APx2 pGR:M
x4

+AP
x2

; pPR:IfoP
x3

+BCD
x3

60 55 68

COSS 86 171     69 6610y 7110y

1986 - 1988   LR: A+M
x2

+P
x2

pGR:A
x3

+M
x10

+P
x2

;
pPR:A

x4
+M

x12
+PIfo

x3
 68 66 75

    HR: AMx2PIfo x2 A
x4

+M
x12

+PIfo
x3

 69 67 72

	 b.	I stituto Ortopedico Rizzoli (IOR/OS) studies (Table 5).
In the first IOR/OS study it was shown that high-dose M regimens had a significantly 
better outcome than low-dose M and that salvage of pPR by changing drugs failed (107, 
108). Subsequently, a greater response rate and better salvage therapy by more intensive 
pre-operative chemotherapy and the addition of Ifo and E for pPR respectively, resulted 
in a significant better EFS in the next trial, IOR/OS-2 (109, 110). The following trial 
demonstrated that the cumulative dose of A safely could be reduced to 390 mg/m2, and Ifo 
alone instead of Ifo plus E could be used to salvage for pPR (111). IOR/OS-4 succeeded in 
increasing the response rate to 77% by further intensifying pre-operative chemotherapy, which 
was not translated into a better outcome (112). Finally the effect of giving all 4 effective 
drugs at maximum dosages was feasible but did not yield a superior outcome compared 
with standard Ifo dose (113, 114). The value of the intra-arterial administration of P was 
investigated in the IOR-studies as well, but despite a higher response rate in the less intensive 
IOR-OS-3 study, no effect on the EFS or surgical procedure was present (115). In the more 
intensive IOR-OS-4 both administration routes were equally efficient.
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Table 5.  

Istituto Orthopedica Rizzoli (IOR) results. Successive chemotherapeutic protocols of IOR 

(drug names see list of abbreviations). The first study randomized between low dose M 

(0.75 g/m2) and high dose M (7.5 g/m2). M-doses are noted by superscript in pre-operative 

column, and are post-operatively the same. TN is total necrosis, No-TN is group without 

TN. 

Study patient Drug Regimen      

period numbers pre-operative post-operative pGR (%) EFS (%) OAS (%)

IOR/OS 1 127     52 4612y 5312y

1983-1986 MDMTXn=60) M0.75P
x2

pGR: A+MAP
x3

; 
pPR: A-BCD

x5
42 3812y 4512y

  HDMTX (n=67) M7.5P
x2

  62 5212y 6112y

IOR/OS-2 164 M8AP
x2

pGR: A+MAP
x3

; 
pPR A+MAPIfoE

x3
71 635y 755y

1986-1989            

IOR/OS-3 95 M10AP
x2

pGR: A+MAP
x3

; 
pPR: A+MAPIfo

x3
56 547y 697y

1990-1991            

IOR/OS-4 162 M12APIfo
x2

No-TN: MAPIfo
x3

+AM; 
TN: MAPIfo

x2
+AM 77 567y 717y

1993-1995            

ISG/SSG-pilot 68 M12APIfo
x2

pGR: MAPIfo
x2

; 
pPR:MAPIfo

x2
+MIfoP 56 734y 874y

1995-1997            

ISG/SSG-1 182 M12APIfo
x2

pGR: MAPIfo
x2

; 
pPR: MAPIfo

x3
60 645y 775y

1997-2000            

	 c.	S candinavian Sarcoma Group (SSG) studies (Table 6).
In study SSG-II, the results of Rosen’s T-10 protocol could not be confirmed (116, 117). The 
modest response rate (17%) and low outcome of pPR patients indicated an insufficient effect 
of single agent M as induction treatment and the salvage of pPR by changing drugs. The 
next study SSG-VIII was a MAP based induction, with change to IfoE to salvage pPR (117, 
118). The response rate increased to 57%, but long term survival and EFS for pPR were not 
different compared to SSG-II, indicating that a better response rate was not translated into a 
survival advantage and salvage for pPR by changing drugs failed. 
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Table 6.  

Scandinavian Sarcoma Group (SSG) results. Summary of the results of the SSG since 1982 

(drug names see list of abbreviations). 

Study patient Drug Regimen    

period number pre-operative post-operative GR (%) EFS (%) OAS (%)

SSG-II 97 M12/8
x4

pGR:M
x16

+BCD
x4

; 
pPR:M

x4
+AP

x6
BCD

x4
17 565y 665y

1982-1989            

SSGVIII 113 M12
x4

AP
x2

pGR:M
x2

AP
x3

; pPR:IfoE
x5

58 615y 745y

1990-1997            

ISG/SSG-1 182 M12
x2

AP
x2

Ifo
x2

pGR:MAPIfo]
x2

; 
pPR:[MAPIfo]

x2
+[MIfoP] 60 645y 775y

1997-2000            

	 d.	E uropean Osteosarcoma Intergroup (EOI) trials (Table 7).
The EOI compared, in 2 randomized trials, the role of AP based regimens with multidrug 
regimens (119, 120). EFS in the AP-arm of study 80831 was significantly (HR = 0.63; 95% 
CI(0.42-0.94)) better than in the MAP arm, but no difference in OAS was observed (HR = 
0.69; 95% CI(0.43-1.09)) (119). In the next trial (80861) outcome was similar in the AP and 
multi-drug arm and the AP-regimen was preferred because of the better tolerability (120). 
However in the 80831 trial, the total dose intensity of AP in the MAP-arm was reduced to 
2/3 of AP in the 2-drug arm (119). In 80861 the received dose intensity of P and A in the 
multidrug arm were 52% and 62% respectively, whereas in the 2-drug arm this was 78% 
for both drugs (120). In the 80931study it was possible to increase the dose intensity by 
shortening the interval between subsequent cycles of chemotherapy, using G-CSF, by 30% 
(121). This resulted in a significant (p=0.003) higher proportion of pGR. However, outcome 
was similar in both arms, suggesting that the increased histological response rate was reflecting 
the given pre-operative dose and not translated into better survival.

	 e.	 French OSS studies (Table 8).
The first single centre study aimed to reproduce the findings of Rosen’s T-10 protocol and 
showed similar results (122). The next study was MAPIfo based, resulting in a better response 
rate, but no improved survival (123). The last trial SFOP-OS94, was a randomized comparison 
between MIfoE and MA (124) and showed a better response rate in the IfoE arm, but the 
outcome was not statistically different. 
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Table 7.  

EOI results. Summary of results of the 3 randomized EOI trials since 1983 (drug names 

see list of abbreviations). The number of patients in each arm is given between brackets. In 

the column “Patient number” arms C and DI represent the conventional dose and the dose 

intensive regimen respectively. All M doses are 12 g/m2, the number of courses are indicated 

by the subscript figures. 

Study Patient Drug Regimen    

period number pre-opreative post-operative GR (%) EFS (%) OAS (%)

EORTC 80831 179          

1983-1986 AP (n=99) AP
x3

AP
x3

41 575y 645y

  MAP (n=99) MAP
x2

MAP
x2

22 415y 505y

EORTC 80861 391          

1986-1991 AP (n=199) AP
x3

AP
x3

30 445y 555y

  multidrug (n=192) M
x4

A M
x4

A+BCP
x4

AP
x6

29 445y 555y

EORTC 80931 504          

1993-2002 C (250) AP
x2

AP
x4

36 395y 555y

  DI (254) AP
x3

AP
x3

51 415y 585y

Table 8.  

Other European study groups. Studies from France and (former Eastern) Germany (for drug 

names see list of abbreviations). IGR: Institute Gustave Roussy, SFOP: Société Française 

d’Oncologie Pédiatrique, HELP: Holoxan (Ifo), Eldesine (Vindesine, V), Cisplatin (P) with A. 

Study group patient Drug regimen      

period number pre-operative post-operative % GR EFS (%) OS (%)

T-10 IGR-Paris 70 M
x7

+BCD+A
pGR: [M

x4
A-BCD]

x3
; 

pPR:[AP
x2

-BCD]
x3

56 687y 747y

1981-1986      

SFOP-HELP 62 M
x7

+Ifo
x2

+V
x2

+AP
x2

M
x6

+Ifo
x2

+V
x2

+AP
x2

64 595y 775y

1989-1993      

SFOP-OS94 234     625y 765y

1994-2001 MA (n=116) M
x7

+A
x2

pGR: M
x12

+A
x3

; 
pPR: IfoE

x5
43 58 75

  MIfoE (n=118) M
x7

+IfoE
x2

pGR: M
x12

+IfoE
x3

; 
pPR: AP

x5
64 66 76

Berlin 53 [APCtxVc]
x3

[APCtxVc]
x6

45 5910y 6710y

1986-1992            
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	 f.	 Berlin study (Table 8).
Tunn et al. demonstrated in a small cohort of 53 patients that a multidrug regimen without M 
achieves similar survival rates to M-based schedules (125). 

Statistical results and meta-analysis
Two drug, 3-drug and 4-drug regimens as listed in table 9 were used for meta-analysis, 
according to Parmar (18) and Fiocco (17, 19). For each study-arm multiple EFS and OAS 
corresponding to a predetermined set of time points (0.5,1,1.5,2,2.5,3,3.5,4,4.5,5,10 years) 
were known. The meta-analysis on EFS shows an improvement in survival by employing a 
three instead of two-drug regimen, which is significant (HR: 0.701, 95% CI: 0.615 – 0.799; 
fig 4). The same was demonstrated for the OAS as is shown in figure 5 (HR: 0.792, 95% CI: 
0.677 – 0.926). Treatment effect was not significant different between regimens with 3 drugs 
and 4 drugs with respect to either EFS (HR: 0.956; 95% CI: 0.779 – 1.177) or OAS (HR: 
1.043; 95% CI: 0.851 – 1.280). Figure 6 and 7 illustrate the estimated means survival for EFS 
and OAS respectively. 

Table 9.  

Studies included in the meta-analysis to estimate survival (EFS and OS) at different time 

points. From these aggregate survival data, the difference between 2-drug and 3-drug 

regimens was estimated by employing a Poisson correlated frailty model (see text for details 

and reference). Two drug regimens used for analysis were AP from the EOI-80831, EOI-

80861, both AP-arms from study EOI-80931 and the MA-arm from SFOP-OS94. Three drug 

regimens used in the analysis were the MAP regimens from the randomized EOI-80831, 

COSS-80, COSS-82, INT-0133 and SFOP-OS94 studies, as well as the non-randomized IOR/

OS-2 and -3 and SSG-VIII studies. The four-drug regimens which were used in the meta-

analysis were the multi-drug arm of EOI-80861, the high-risk patients of COSS-86, the 

IOR/OS-4, ISG-SSG studies, the 4-drug arms of the randomized INT-0133 study and the 

POG-8651 multidrug study.

2-drug regimens 3-drug regimens 4-drug regimens

EOI-80831 EOI-80831 EOI-80861

EOI-80861 COSS-80 COSS-86

EOI-80931 COSS-82 IOR/OS-4

SFOP-OS94 IOR/OS-2 ISG-SSG-I

IOR/OS-3 INT 0133

SSG-VIII POG 8651

  INT 0133

  SFOP-OS94  
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Figure 4. 

Estimated events free survival (EFS) based on meta-analysis of 5 two-drug regimens versus 8 three-drug 

regimens. Mean values of EFS are estimated along with their confidence intervals: HR = 0.701; 95% 

CI(0.615 – 0.799).
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Figure 5. 

Estimated overall survival (OAS) based on meta-analysis of 5 two-drug regimens versus vs 8 three-drug 

regimens. Mean value of OAS are estimated along with their confidence intervals: HR = 0.792; 95% 

CI(0.677 - 0.926). 
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Figure 6. 

Estimated EFS curve based on the meta-analysis of 8 three-drug regimens versus 7 four-drug regimens. 

As illustrated, the survival curves are completely overlapping. HR = 0.956; 95% CI(0.779 - 1.177).
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Figure 7. 

Estimated OAS curve based on meta-analysis of eight 3-drug regimens versus seven 4-drug regimens. 

Similar as in fig 6,, the survival curves are overlapping, indicating no difference between both arms. 

HR = 1.043; 95% CI(0.851 - 1.280).
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Discussion

Data from single agent phase II studies in osteosarcoma patients for M, A, P and Ifo show 
response rates ≥ 20%, indicating the effectiveness of these drugs. Several investigators 
confirmed the importance of A in a sufficient dose, for example 390-450 mg/m2, to be 
included in regimens for osteosarcoma (103, 104, 107, 111, 126-128). A number of studies 
addressed the question whether or not high-dose M is essential for adequate treatment 
of osteosarcoma (96, 100, 119, 120, 125). Survival outcomes of the SWOG, the Brazilian 
Osteosarcoma Study group and the EOI without M all are around 40% to 55% (96, 100, 
119-121), lagging behind the results of the M containing regimens of the COSS, IOR/OS, 
SSG and INT0133. The conclusion of the EOI that AP was superior (119) or equal (120) to 
M-based regimes must be interpreted with caution because of the inequalities in total dose 
intensity (119, 120, 129). 
To cope with heterogeneity between studies a Poisson correlated gamma frailty model has 
been used in this analysis. The results show a significant (p=0.03) different 5y-EFS in 2-drug 
regimens (46%) compared with 3-drug regimens (54%) (fig. 4). The five year-OAS of the 
2-versus 3 drug regimens were 60% and 66%, respectively (p=0.04; fig. 5), justifying 3-drug 
regimens in current osteosarcoma protocols. Whether or not a fourth drug has to be added 
to MAP remains an unsolved question. The meta-analysis comparing 3-drug regimens (n=9) 
with 4-drug regimens (n=6) did not show a difference in EFS and OAS between the 2 arms 
(fig. 6 and fig. 7). This indicates that there is no benefit of a fourth drug in treatment regimens. 
The question how to salvage patients who respond poorly on preoperative treatment cannot 
simply be answered. Using different drugs and/or intensification after surgery has not shown 
to been beneficial (88, 103, 104, 107, 117). Because in many studies histological response has 
been an highly important prognostic factor, intensifying pre-operative chemotherapy not 
only increases the response rate (104, 105, 107, 118), but also leads to better survival in most 
studies (105, 111, 130). Although getting a higher intratumoral drug concentration by intra-
arterial infusions in possible, resulting in a high fraction of tumour cell necrosis (69, 78, 106, 
115, 131-133), this route of administration does not result in a better survival than when 
given intravenously (78, 105, 106, 115, 134). Therefore, intensifying chemotherapy beyond 
a certain level does not improve outcome, neither for histologic poor responders and for 
salvage histologic poor responders (89, 95, 113, 114, 118, 121). Probably the results of the 
EURAMOS-1 study will give an answer whether or not patients with a pPR benefit from 
Ifo and E, added to MAP (www.euramos.org). As was suggested by Meyers in 1992 (88), 
intensive upfront treatment to increase the proportion of pGR has shown that the response 
rate improves, but this is not necessarily accompanied with better survival, which has been 
shown in other studies as well (89, 105, 112, 114, 118, 121, 123, 130, 135, 136). Limitations 
of treatment due to toxicity (114, 123) and lack of efficacy despite maximal dosages (105, 
114, 121, 123, 137) prevent further improvement in outcome. Therefore, new approaches 
have to be investigated, such as immune modulating agents as MTP (97, 98, 138, 139) or 
interferon (140, 141) as well as molecular approaches (142). International large collaborative 
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randomised studies in the last decennia, did regrettably not result in further improved survival. 
Our opinion is that Bayesian designed rapid turnover trials with biological endpoints should 
be encouraged to explore the field of new ways of treatment of this resistant disease. It is 
emphasized here that this kind of studies only can be successful in international collaboration. 
In summary: early phase-II trials demonstrated that A, M, P and Ifo have a proven single agent 
efficacy against osteosarcoma. Meta-analysis showed an significant advantage of 3-drug over 
2-drug regimens, but the use of a fourth drug is not better than 3 drugs. Whether or not dose 
intensification after a poor response to preoperative chemotherapy improves survival remains 
an open question.
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Abstract

Background
Osteosarcoma is the most prevalent primary malignant bone tumor of children and young 
adults, with poor survival in 40%. In order to identify signaling pathways involved in 
tumorigenesis we compared gene expression in osteosarcoma versus its presumed normal 
counterparts. 

Methods
Genome wide expression profiles were generated from 25 high grade central osteosarcoma 
pre-chemotherapy biopsies, 5 osteoblastomas, 5 MSC populations and these same MSCs 
differentiated to osteoblasts. Genes that were differentially expressed between were analyzed in 
the context of the pathways in which they function using the GenMAPP program. 

Results
MSCs, osteoblasts and osteosarcomas clustered separately and thousands of differentially 
expressed genes were identified. Most significantly altered pathways are involved with cell 
cycle regulation and DNA replication. Several upstream components of the Wnt signaling 
pathway are down regulated in osteosarcoma. Two genes involved in degradation of β-catenin 
protein, the key effectors of Wnt signaling, Axin and GSK3-β show decreased expression, 
suggesting that Wnt signaling is no longer under control of the regular signals. Comparing 
benign osteoblastomas with osteosarcomas identified cell cycle regulation as the most 
prominently changed pathway. 

Conclusion
These results show that up-regulation of the cell cycle and down-regulation of Wnt signaling 
play an important role in osteosarcoma genesis. Gene expression differences between highly 
malignant osteosarcoma and benign osteoblastoma involve cell cycle regulation. 
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Introduction

Osteosarcoma is the most common primary bone malignancy, with a yearly incidence of 
approximately 6 per million children and 2 per million adults (1). The peak incidence occurs 
in late puberty, with 50% of the patients being between 10-20 years, and 60% younger than 
25 years. Osteosarcoma in patients over 40 years of age is in a substantial number of cases 
generally considered secondary, such as after exposure to irradiation, or it arises in areas of 
pre-existing Paget’s disease of bone (2). It might thus be considered as different disease than 
osteosarcoma in young patients. 
Several histological subtypes are distinguished, of which conventional high-grade central 
or intramedullary osteosarcoma is the most common (75%) (3). The etiology of high-grade 
central osteosarcoma in young patients is elusive. No benign-, or malignant precursor lesions 
are known. These tumours recapitulate osteogenesis, compliant with their capacity to produce 
osteoid, alkaline phosphatase, osteocalcin, osterix and bone sialoprotein.
The outcome for patients with high-grade osteosarcoma has improved substantially since the 
introduction of multimodal chemotherapy, with present overall survival rates, ranging 65-75%. 
However, this improvement has reached a plateau despite several trials opting for intensifying 
dose or applying alternative chemotherapy schedules. Increasing the dose of chemotherapy 
prior to surgery only improved response rate, but not survival (4, 5). In order to treat patients 
that are refractory to chemotherapy or those that relapse alternative targets for therapy are 
required which can be identified through knowledge on molecular biological characteristics 
of the tumor. 
Molecular studies on osteosarcoma are greatly hampered by the enormous genetic instability, 
that obscures the identification of genetic loci involved in osteosarcoma genesis (6), 
furthermore by the lack of benign precursors and no certainty on the normal counterpart or 
the progenitor cells. Osteoblastoma is a benign bone tumor occurring at the same site, but 
this tumor has never been reported to progress to osteosarcoma. A potential cell-of-origin of 
osteosarcomas is the mesenchymal stem cell (MSC), the precursor of osteoblasts as has been 
suggested in mouse models (7). Genome wide expression profiling to identify genes that are 
involved in response to chemotherapy and survival of osteosarcoma have been reported (8-10). 
Respectively 104, 44 and 60 differentially expressed genes were reported when comparing 
good and poor responders to chemotherapy. Remarkably these lists of genes do not overlap by 
one single gene. 

Here we report on a genome wide expression profiling study on a homogeneous series of 
high-grade central osteosarcomas of patients younger than 40 years of age. Using strict criteria 
to correct for multiple testing we were not able to identify genes that were significantly 
different when comparing good and poor responders. Comparing the osteosarcoma expression 
profiles with the putative progenitor cells of osteosarcoma, i.e. mesenchymal stemcells (MSCs) 
and the same MSCs differentiated into osteoblasts resulted in the identification of large sets 
of genes that show very significant differential expression. These genes could be grouped 



Chapter 3

100

R1
R2
R3
R4
R5
R6
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R40
R41
R42
R43
R44

according to signal transduction pathways in which they function, thereby identifying possible 
culprit molecular events responsible for osteosarcoma genesis.

MATERIALS & METHODS 

Patient material and Mesenchymal stem cells
Patients and their clinical data are listed in Table 1. All patients were treated at Leiden 
University Medical Center (LUMC). For osteosarcoma patients the difference in response 
to chemotherapy was stratified as good or poor response, using the Huvos criteria (11). 
Good response was defined if less than 10% of the tumor cells are viable after pre-operative 
chemotherapy, poor response if more than 10% of the tumor cells are viable. This response rate 
has been shown to be the best predictive marker for prognosis (12).Chemotherapy protocols 
include both pre- and postoperative treatment and were comparable (4). Osteoblastoma 
patients were treated with surgery only. Difference in survival of osteosarcoma was stratified 
as good if patients were still alive after 5 years follow-up, whereas poor survivors were patients 
who died from their disease within this time window. Disease course for osteoblastoma 
patients was usually without remission, except recurrence in one patient.
RNA was extracted from frozen biopsies, which were obtained before pre-operative 
chemotherapy was administered. For osteosarcoma core biopsies with at least 70% tumor cells 
and with non-necrotic tissue were used in this study. For osteoblastoma the resected tumors 
were used for RNA extraction.
We used human bone-marrow-derived mesenchymal stem cells and osteoblasts derived from 
the same cells upon osteogenic differentiation. Cells were either isolated from bone marrow 
samples as previously described (13). MSC1, MSC2 and FMSC1 were obtained from the 
department of Hematology, Leiden University Medical Center, Leiden, The Netherlands. 220L 
and 240R were purchased from Tulane University, New Orleans. All cells used were derived 
from adult patients, except for FMSC1, which was derived from fetal bone marrow and were 
obtained according to the ethical guidelines of the national organization of scientific societies 
(FEDERA). All cells were characterized either at passage 2 or passage 3 via FACS analysis as 
previously described (14). The phenotypes were uniform among all the different cells tested 
and in agreement with those reported for MSCs: i.e. CD90, CD105, CD166, HLA-A, B,C 
positive (>95%) and CD34, CD 45, CD31,CD80, HLA-DR negative (<5%). Furthermore all 
the cells were tested for their ability to be committed, under the proper conditions, towards 
adipogenesis, chondrogenesis and osteogenesis, as previously described (14). All cells that were 
induced to osteogenic differentiation showed diffuse positive staining for alkaline phosphatase 
activity and alizarin red positive calcium depositions, as previously described (14). 
All tissue samples were handled in a coded fashion, according to National ethical guidelines 
(“Code for Proper Secondary Use of Human Tissue in The Netherlands”, Dutch Federation 
of Medical Scientific Societies, http://www.federa.org). 
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Expression array analysis 
RNA was extracted from frozen tissue sections of 20 mm as described previously (15). 
Generation of cRNA and labeling was performed according to the Affymetrix protocol, 
briefly, 10 mg RNA was used to generate double-stranded cDNA by an oligo-dT primer 
and a T7-RNA polymerase promotor. Reverse transcription and subsequent amplification 
and labeling were done in accordance with protocols recommended by Affymetrix using 
the BioArray HighYield RNA Transcript Labeling kit (ENZO Life Sciences, Farmingdale, 
NY). Every step of the reverse transcription and labeling procedure is monitored by gel 
electrophoresis and spectrophotometry. 
Labeled RNA is hybridized with Hu133A GeneChip Arrays (Affymetrix, Santa Clara, CA) 
according to the manufacturer’s protocol (http://www.affymetrix.com/support/technical/
manuals.affx) and scanned on a Affymetrix GeneChip scanner.
Quality of the hybridization is assessed by calculating the ratio of the 5’ and 3’ features for the 
reference genes GAPDH and actin. When this ratio is greater than 2, this is a measure of poor 
quality and the chip is discarded. 
All expression array data are available at the BJC online supplementary material website.

Data analysis
GeneChip data were normalized using GC-RMA, an algorithm provided by the 
Bioconductor project (http://www.bioconductor.org/) which looks only at perfect match 
values (16). The algorithm runs under statistical language R and was shown to give less false 
positive variance in technical duplicates and has a greater sensitivity and specificity (17) as was 
recently confirmed in our laboratory (18).
The Spotfire decision site for functional genomics was used to perform unsupervised 
hierarchical clustering on all genes with a variance of at least 0.5. 
In order to select genes that can be used as classifiers for histological response on pre-operative 
treatment and survival, Limma (linear models for microarray data) package of Bioconductor 
(http://www.bioconductor.org) was applied to the data set. Limma is a moderated t-statistic 
that detects differentially expressed genes between groups, given the natural variance within 
these groups, corrected for the false discovery rate due to multiple testing (19).
For pathway analysis, the array data were mined with GO-Elite, a tool to identify pathways 
that are most significantly changed between groups (http://www.genmapp.org/go_elite/
go_elite.html and PMID: 15961447). To visualize gene expression data in biological pathways 
GenMAPP was used (20).
Quantitative reverse transcriptase PCR was performed as described previously (21). 
Primers for control genes and Wnt5a have been submitted to the Real Time PCR Primer and 
Probe Database (http://medgen.ugent.be/rtprimerdb/). 
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Table 1.  

Clinical data 

Sample 
ID Chip no. Type Age Gender Subtype1

Adj. 
CT2

Chemo 
Response

Overall 
Survival metastasis

L1370 IB10 osteosarcoma 14 male HG Conv. PIA Good good lung

L1372 IB12 osteosarcoma 10 male HG Conv. AP Good good 0

L1382 IB14 osteosarcoma 16 male Tel. PIA Poor poor lung

L1385 IB16 osteosarcoma 13 female Tel. MA Poor poor lung

L1016 IB19 osteosarcoma 4 male HG Conv. AP Poor good 0

L2620 IB21 osteosarcoma 16 male HG Conv. AP Poor poor lung+bone

L1375 IB22 osteosarcoma 8 male HG Conv. AP Poor good local

L428 IB32 osteosarcoma 16 male HG Conv. AP Poor good lung

L436 IB33 osteosarcoma 18 male HG Conv. MA Poor good 0

L432 IB34 osteosarcoma 17 male HG Conv. AP Poor poor lung

L361 IB35 osteosarcoma 16 female HG Conv. AP Poor good 0

L1368 IB36 osteosarcoma 10 female HG Conv. PIA Good good 0

L1376 IB37 osteosarcoma 9 female HG Conv. AP Good good 0

L1386 IB38 osteosarcoma 12 female HG Conv. AP Poor poor lung

L2702 IB39 osteosarcoma 16 male HG Conv. AP Good poor lung

L2302 IB40 osteosarcoma 19 female HG Conv. AP Poor good 0

L2296 IB41 osteosarcoma 16 male HG Conv. AP Good poor lung+else

L2295 IB42 osteosarcoma 40 female HG Conv. AP Poor good 0

L2611 IB43 osteosarcoma 20 female HG Conv. AP Good good 0

L2300 IB44 osteosarcoma 13 male HG Conv. AP Good good 0

L2294 IB45 osteosarcoma 17 female HG Conv. AP Poor good 0

L2290 IB46 osteosarcoma 36 male HG Conv. AP Poor poor local

L2301 IB47 osteosarcoma 25 male HG Conv. AP Poor poor lung+else

L2281 IB48 osteosarcoma 17 male HG Conv. AP Poor poor lung

L2289 IB54 osteosarcoma 11 male HG Conv. AP Poor good 0

L578 IB55 osteoblastoma 22 male relapse

L579 IB56* osteoblastoma 22 male relapse

L580 IB57 osteoblastoma 13 male remission

L581 IB58 osteoblastoma 16 male remission

L601 IB59 osteoblastoma 44 male remission
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Sample 
ID Chip no. Type Age Gender Subtype1

Adj. 
CT2

Chemo 
Response

Overall 
Survival metastasis

L1370 IB10 osteosarcoma 14 male HG Conv. PIA Good good lung

L1372 IB12 osteosarcoma 10 male HG Conv. AP Good good 0

L1382 IB14 osteosarcoma 16 male Tel. PIA Poor poor lung

L1385 IB16 osteosarcoma 13 female Tel. MA Poor poor lung

L1016 IB19 osteosarcoma 4 male HG Conv. AP Poor good 0

L2620 IB21 osteosarcoma 16 male HG Conv. AP Poor poor lung+bone

L1375 IB22 osteosarcoma 8 male HG Conv. AP Poor good local

L428 IB32 osteosarcoma 16 male HG Conv. AP Poor good lung

L436 IB33 osteosarcoma 18 male HG Conv. MA Poor good 0

L432 IB34 osteosarcoma 17 male HG Conv. AP Poor poor lung

L361 IB35 osteosarcoma 16 female HG Conv. AP Poor good 0

L1368 IB36 osteosarcoma 10 female HG Conv. PIA Good good 0

L1376 IB37 osteosarcoma 9 female HG Conv. AP Good good 0

L1386 IB38 osteosarcoma 12 female HG Conv. AP Poor poor lung

L2702 IB39 osteosarcoma 16 male HG Conv. AP Good poor lung

L2302 IB40 osteosarcoma 19 female HG Conv. AP Poor good 0

L2296 IB41 osteosarcoma 16 male HG Conv. AP Good poor lung+else

L2295 IB42 osteosarcoma 40 female HG Conv. AP Poor good 0

L2611 IB43 osteosarcoma 20 female HG Conv. AP Good good 0

L2300 IB44 osteosarcoma 13 male HG Conv. AP Good good 0

L2294 IB45 osteosarcoma 17 female HG Conv. AP Poor good 0

L2290 IB46 osteosarcoma 36 male HG Conv. AP Poor poor local

L2301 IB47 osteosarcoma 25 male HG Conv. AP Poor poor lung+else

L2281 IB48 osteosarcoma 17 male HG Conv. AP Poor poor lung

L2289 IB54 osteosarcoma 11 male HG Conv. AP Poor good 0

L578 IB55 osteoblastoma 22 male relapse

L579 IB56* osteoblastoma 22 male relapse

L580 IB57 osteoblastoma 13 male remission

L581 IB58 osteoblastoma 16 male remission

L601 IB59 osteoblastoma 44 male remission

FMSC-OB-diff IB49 osteoblasts

MSC1-OB-diff IB50 osteoblasts

220-OB-diff IB51 osteoblasts

240-OB-diff IB52 osteoblasts

MSC2-OB-diff IB53 osteoblasts

MSC1 IB54 MSC

MSC2 IB61 MSC

C220R IB62 MSC

C240R IB63 MSC

FMSC IB64 MSC

1 HG = high grade, 2 Adj. CT = adjuvant chemotherapy; PIA = cisplatinum, ifosfamide and adriamycin; 
AP = adriamycin and cisplatinum; MA = methotrexate and adriamycin; MSC = mesenchymal stem cell; 
HG conv = high grade conventional, Tel. = Telangiectatic
* IB 56 is the recurrence from IB 55

RESULTS

Comparing expression profiles of osteosarcomas
For 25 pre-operative biopsies from high-grade central osteosarcomas we obtained good 
quality genome wide expression data. One sample was repeated twice and three were repeated 
once to test for technical reproducibility. All four samples were most similar to their duplicates 
as demonstrated by hierarchical clustering, since replicates always clustered together (data not 
shown). For further analyses we used only one of the replicates. The entire file containing all 
expression profiling data can be found in supplementary Table 1.
Hierarchical clustering of all osteosarcoma profiles did not result in separation into groups, 
implying no big differences between possible clinical subsets. Previous publications reported 
that there are significantly differentially expressed genes when comparing osteosarcomas 
from patients with good versus poor response to chemotherapy (8, 9). However we could not 
identify any significantly expressed gene when comparing good and poor responders when 
applying a moderated T-statistic, that corrects for multiple testing as described in the methods 
section. 
For all patients at least 5 year of follow up data was available. Poor survivors are defined 
as having less than 5 year survival as compared to good survivors with more than 5 year. 
The same T-statistic was used for the classification in good and poor survival, however no 
significantly differentially expressed genes were acknowledged and thereby no prognostic 
markers identified.
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Genes differentially expressed due to comparing cultured cells and primary tissue
In order to identify biological processes involved in osteosarcoma genesis the expression 
profiles of the 25 osteosarcomas were compared with profiles of the presumed progenitors of 
this tumor, i.e bone marrow derived mesenchymal stem cells (MSC) (n = 5) and osteoblasts 
derived from these MSCs (13). Furthermore profiles of five osteoblastomas were included, 
which are not considered as benign precursors, since these tumors have never been reported 
to progress to osteosarcoma. Hierarchical clustering clearly distinguished the four groups into 
separate clusters (Fig. 1). The t-test in Limma assigned many significant differentially expressed 
genes when doing pair-wise comparisons (table 2). 
The GO-Elite program selected the pathways that are most significantly different when 
comparing groups. GO-Elite ranks pathways with excess of differentially expressed genes. 
One of the most significant pathways when comparing MSCs with osteosarcoma was 
the MHC class II receptor activity pathway, which was upregulated in osteosarcoma. It is 
difficult to understand how the increase of such a pathway could contribute to mesenchymal 
transformation. We hypothesized that some of the genes identified by the T-test are merely 
different because cultured cells (MSCs) are compared with primary tissue. The genes that are 
most likely to belong to this category are those that show similar expression in the cultured 
MSCs and osteoblasts as well as in primary osteosarcoma and osteoblastoma, but significant 
difference between the group of cultured cells and the primary tissues. To identify these genes 
Venn diagrams were made of all differentially expressed genes for all comparisons using the 
limma package from Bioconductor (http://www.bioconductor.org). A final Venn diagram (Fig. 
2) identified 492 genes that are likely to be different because of comparing cultured cells with 
primary tissue. The overlapping category in Fig 2 consists of all genes that are significantly 
different when cultured cells are compared with tissue, for both the highly malignant 
osteosarcomas as well as the benign osteoblastomas. The procedure to construct the VENN 
diagrams is explained in the legend of Fig 2. GennMAPP analysis was performed on the 
entire dataset, with the ‘culture-tissue’ category marked as leading parameter in the expression 
dataset, marked purple. The group of eight genes in the MHC classII receptor pathway that 
had a p-value of less than 0.05 appears to consist of seven genes that were assigned to the 
purple-colored ‘culture-tissue’ category (Fig 3). This suggests that the approach to filter out the 
genes that may be the result of comparing cultured cells and tissue is a valid one. However, this 
approach has its limitations because separate genes can not be validated with a gold standard, 
nor can be excluded that there are genes in this set that are similarly differentially expressed 
between MSCs in vivo versus both osteoblastomas and osteosarcomas.
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Figure 1.

Hierarchical clustering

Hierarchical clustering of expression profiling data clearly shows separate clusters for osteosarcomas, 

osteoblastomas, MSCs and the same MSSCs differentiated to osteoblasts
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Figure 2.

Venn diagram of the ‘culture-tissue’ gene subset 

The circles from these VENN diagram represent the differentially expressed genes when comparing 

two groups of arrays. The overlap between two circles contains the genes that are the same in both 

comparisons. OS = osteosarcomas; OB = osteoblastomas; MS = mesenchymal stem cells; DO = MSCs 

differentiated to osteoblasts. The lower VENN diagram displays the overlap of the 492 differentially 

expressed genes when comparing expression profiles from primary tissue (OS, osteosarcoma and OB, 

osteoblastoma) with cultured cells (MS MSCs and DO, differentiated to osteoblasts). The circle OSMS_

OBMS contains all genes differentially expressed when comparing osteosarcoma and MSC that overlap 

with the differentially expressed genes when comparing osteoblastoma and MSC. OSDO_DOOB is the 

same as OSMS_OBMS, but for MSCs differentiated to osteoblasts. 

Fig 2
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FiGUre 3. 

MHC class ii normal versus tissue cultrure related

MHC classII receptor activity pathway with genes that are differentially expressed between osteosarcoma 

and MSCs colored. Green is upregulated in osteosarcoma, purple indicates that a gene belongs to the 492 

genes of the culture-tissue set. The left panel was analyzed without taking this set into account, the right 

set with the ‘culture-tissue’ gene set as the first parameter

Fig 3
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Table 2. 

Group comparisons and nr of significant genes identified with Benjamini-Hochberg adjusted 

p-value

Comparison
total 
p<0.05 up Down

avg of 100x 
5 OS Presumed process

OS vs MSC 2973 1159 1814 2456
genes that are altered in osteosarcoma (OS) 
progression from MSC

OS vs DO 3041 1144 1897 2586
genes that are altered in OS progression from 
differentiated osteoblasts (DO)

OS vs OB 882 225 657 937
genes involved in malignancy of OS compared to 
benign osteoblastoma (OB)

DO vs MSC 369 175 194
genes involved in MSC differentiation to 
osteoblasts

OB vs MSC 1245 606 639
genes involved in osteoblastoma progression from 
MSC

OB vs DO 1573 770 803
genes involved in osteoblastoma progression from 
osteoblasts

Comparing osteosarcoma with its presumed progenitors 
The 25 osteosarcomas as a single group compared with five cultures of undifferentiated 
mesenchymal stem cells. This resulted in a substantial number of 3300 differentially expressed 
genes (corrected p-value< 0.01), of which 1302 genes are higher expressed in MSCs than 
in osteosarcomas and 1998 lower. We furthermore compared osteosarcomas with the same 
MSC cultures differentiated to osteoblasts. This resulted in 3335 differentially expressed genes 
(p<0.01). Table 2 summarizes the results of all comparisons made. There is a large overlap 
of 1006 genes in the osteosarcoma versus MSC and the osteosarcoma versus differentiated 
osteoblasts (DO). One gene that was significantly over-expressed in osteosarcoma was Wnt5a. 
This gene, involved in non-b-catenin Wnt signaling (22) has been tested with quantitative 
RT-PCR on the same series of RNA that has been used on the microarrays as an alternative 
method to verify the array-data. Correlation between qPCR and arraydata was good, i.e. 92% 
(Fig 4).

Given the high number of significantly differentially expressed genes we did not consider 
it relevant to make a shortlist of the most significant genes. Instead the program GO-Elite 
was used to identify pathways with a high number of differentially expressed genes and 
GENMAPP was used to look specifically at pathways that are known to be involved in 
normal osteoblast differentiation. For the GO-Elite analysis we removed the 492 ‘culture-
tissue’ artifact genes from the significant list. 
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Figure 4. 

q-RT-PCR for Wnt5a

Comparison q-RT-PCR and array data for Wnt5a data shows 92% correlation

Table 3 lists pathways that contain most differentially expressed genes when comparing MSCs 
and osteosarcoma. Pathways in this table have an adjusted p-value smaller than 0.05 upon 
strict statistical criteria i.e. Benjamini Hochberg (23). The significant pathways are associated 
with DNA replication and mitosis, of which several genes involved in positive regulation are 
upregulated in osteosarcoma, such as CCNB when compared to MSC. None of the significant 
genes in these pathways are identified as ‘culture-tissue artifacts’. 
In order to further mine the data we looked at specific pathways that are known or suspected 
to be involved in osteosarcoma genesis. Inactivation of the p53 pathway has been reported 
in osteosarcoma (24) and this is indeed confirmed when comparing expression profiles from 
osteosarcoma with its presumed progenitor, MSCs and osteoblasts. Fig 5 shows the p53 
mediated apoptotic pathway with genes that are downregulated in osteosarcoma (p<0.05) 
in green. Downregulation of p53 mediated signaling is reflected by downregulation of the 
specific downstream gene BBC3/PUMA. 
The Wnt pathway has been shown to play an important role in osteoblast differentiation 
(25) and therefore here we visualized this pathway with the GenMAPP application using the 
expression data. Wnt signaling seems downregulated when comparing MSCs or differentiated 
osteoblasts with osteosarcomas. Fig 6 shows the Wnt pathway when comparing osteosarcoma 
and MSCs. The picture is similar when comparing with osteoblasts, although less prominent. 
Both upstream, the Wnt receptors FZD2 and -7 and LRP5 as downstream CCND1 and 
AXIN are downregulated. 
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Table 3.  

Differentially expressed significant pathways

Pathway Z_score

Comparison OS vs MSC  

macromolecule localization 5.99

mitotic cell cycle checkpoint 5.00

DNA replication 4.57

condensed chromosome, centromeric region 4.04

Comparison OS vs DO  

negative regulation of S phase of mitotic cell cycle 5.34

Comparison OS vs OB  

cell cycle 7.09

spindle 6.34

IgG binding 5.69

cell division 5.43

condensed chromosome\, centromeric region 5.36

proteinaceous extracellular matrix 5.08

chromosome segregation 4.94

DNA replication 4.80

Comparison DO vs MSC  

cadmium ion binding 11.28

trans\-1\,2\-dihydrobenzene\-1\,2\-diol dehydrogenase activity 7.39

acute\-phase response 5.57

steroid biosynthetic process 5.14

sterol metabolic process 5.12

copper ion binding 4.45

Adipogenesis 4.67

Comparison OB vs MSC  

developmental process 7.53

Cholesterol Biosynthesis 7.36

proteinaceous extracellular matrix 5.27

cytokine and chemokine mediated signaling pathway 4.48

Comparison DO vs OB  

negative regulation of transcription\, DNA\-dependent 5.58

amine oxidase activity 4.99

urogenital system development 4.94

Z-score = corrected score as determined by GO-elite. OS = osteosarcoma; MSC = mesenchymal stem cell, DO 
= differentiated osteoblasts, OB = osteoblastoma
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Osteosarcoma versus osteoblastoma
Expression profiles of osteosarcoma were compared with those of five osteoblastomas, a 
benign bone tumour occurring at a similar site, in the long bones, and in a similar age group 
as osteosarcoma. The large difference in disease course is reflected by a large set of significantly 
differentially expressed genes (n = 882) of which 657 are higher in osteoblastoma and 225 
higher in osteosarcoma. Comparing osteoblastomas with MSCs/osteoblasts results in less 
differences (6%/7%) than with osteosarcomas (13%). This may imply that osteoblastomas 
are more similar to MSCs and osteoblasts than osteosarcoma, thereby reflecting the 
difference in malignancy. The pathways that are most significantly altered when comparing 
osteosarcoma and osteoblastoma are the cell cycle, with an upregulation in the malignant 
tumors and pathways associated with cell division, especially regulation of the mitotic spindle. 
The significant pathways are listed in Table 3. To determine whether the larger size of the 
osteosarcoma group (n = 25) underlies this difference in significant genes we repeated the 
comparisons with only 5 osteosarcomas. Calculations were repeated 100 times for different 
combinations of 5 osteosarcomas and the results were averaged. The results are shown in 
Table 2, in the column labeled ‘avg of 100 x 5 OS’. This indeed resulted in a reduction of 
the number of significant genes, but the difference between osteosarcoma versus MSC or 
osteoblasts was still substantial, i.e. 11 % for MSC and osteoblasts, whereas the comparison for 
osteoblastoma was only 6 or 7%.
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Figure 6. 

Wnt signalling pathway downregulated in osteosarcoma

The Wnt signalling pathway when comparing osteosarcoma and MSCs, legend is the same as Fig. 5
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Figure 7. 

Model for osteosarcoma genesis

Proposed model for osteosarcoma genesis. Osteosarcoma and osteoblastoma originate from 

mesenchcymal stemcells that are differentiatiting to osteoblasts. Increase in cell cycle activity and 

overactivity of Wnt/Planar cell polarity signalling and P53 function contribute to malignancy

Discussion
Previous studies on genome wide expression profiling of osteosarcoma have reported lists 
of genes that were found to be differentially expressed when comparing tumors with a 
poor histological response to chemotherapy and those with a good response (8-10). Our 
study, comparing pre-chemotherapy biopsies from 8 good responders with those of 17 poor 
responding patients did not result in a single significantly differentially expressed gene. Size 
and homogeneity of the patient cohort, type of expression profiling platform, and statistical 
analysis may all account for this lack of significant genes. However, patient cohorts did not 
differ a lot in size, i.e. respectively 30, 28 and 13 cases, compared to 25 in our study, so size 
appears to be a highly unlikely explanation for this difference. A long follow-up was available 
for our patient cohort for comparing for outcome of disease, however this did not result in the 
identification of significantly differentially expressed genes. 
Several meta-analysis studies on gene expression profiling provide a clarification for the 
lack of consistent results between different studies. Ein-Dor et al. report that there are many 
genes associated with different clinical behavior, but the differences in expression are quite 
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small and vary with different patient cohorts (26, 27). They conclude that a significant set of 
genes for predicting survival requires thousands of patient samples. For a relatively rare tumor 
like osteosarcoma this is obviously not achievable, especially given the variation in clinical 
presentation and treatment of this tumor.
To identify possible biological characteristics of osteosarcoma, by comparing osteosarcoma 
expression profiles with profiles from their presumed progenitors, i.e. mesenchymal stem 
cells (MSCs) and osteoblasts derived from these MSCs by in vitro differentiation resulted in 
a large set of 3300 differentially expressed genes. This result validates our statistical analysis, 
thereby justifying the negative results obtained with the comparison within the osteosarcoma 
profiles. However, this set of genes is definitely contaminated with a subset that is the result 
of the different source of the primary tumor tissues and the in vitro cultured MSCs and 
osteoblasts. Identification of common differentially expressed genes in osteosarcoma and 
benign osteoblastoma (most probably derived from the same progenitor cells, but with a 
complete different clinical behavior) as compared to the cultured MSCs and osteoblasts 
identified pathways that could most probably be attributed to the different sources of RNA. A 
subset of the 492 genes identified as commonly different in osteoblastoma and osteosarcoma 
when compared to cultured MSCs and osteoblasts could be assigned to specific pathways, 
thereby marking these as possible ‘culture-tissue artifacts’. Especially the most significant 
pathway identified by GenMAPP analysis, i.e. up-regulation of the MHC class II pathway in 
both osteosarcoma and osteoblastoma is the most obvious example, most probably caused by 
infiltrating cells that contaminate the tumor tissue as has been described (28). 
Pathways characterized by an excess of differentially expressed genes between MSCs and 
osteosarcomas, but lacking the possible ‘culture-tissue artifacts’ are most likely involved in 
malignant transformation. The GO-Elite application (http://www.genmapp.org/go_elite/
go_elite.html) generates a non-redundant list of significant signal transduction pathways from 
the Gene Ontology (GO) project from a gene list with specific criteria. The criteria in this 
study included genes with a significant difference in mRNA expression between osteosarcoma 
and MSC or MSCs differentiated to osteoblasts. Criteria were strict and corrected for false 
discovery rate (FDR) due to multiple testing. Upon these restricted p-values the GO-Elite 
algorithm imposes another FDR correction. Table 3 lists the pathways that survive this double 
FDR.
The pathways that subsist the FDR correction are involved with cell cycle regulation, mitosis, 
DNA replication, the ususal suspects when comparing tumors with their progenitor cells. 
Osteosarcoma is especially characterized by high growth rate and numerous mitotic figures 
(29) and chemotherapy protocols are aimed at inhibition of the cell cycle. However, the 
current protocols are not effective in 40% of the cases (4) and this may be due to variable 
expression of certain cell cycle components. 
Of special interest are developmental pathways which are known or suspected to play a role 
in osteosarcomagenesis. The Wnt signaling pathway shows downregulation when comparing 
MSCs or osteoblasts with osteosarcoma. Given the crucial role of this pathway in normal 
osteogenesis (25) and tumorigenesis in general this observation suggests a role for Wnt 
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signaling that differs from that in colorectal cancer, where upregulation of the pathway is 
considered as crucial for tumorigenesis (30). Indeed we have recently shown with a functional 
reporter assay that Wnt/β-catenin signaling seems to be absent in osteosarcoma cell lines 
(31). In addition we showed absence of nuclear b-catenin staining in primary osteosarcomas, 
indicative of inactive Wnt/b-catenin signaling. Also osteoblastoma showed a decrease of genes 
involved in Wnt/b-catenin signaling. The non-canonical Wnt5a ligand, which is involved in 
Wnt/planar cell polarity (32) was overexpressed in osteosarcoma cells. Both observations in 
osteosarcoma and osteoblastoma can be clarified from the fact that Wnt/b-catenin signaling 
is important for maintaining cells in the MSC state (33). Non-canonical Wnt signaling 
mediated by Wnt5a antagonizes this activity and promotes osteoblastogenesis of MSCs (34). 
Thus abnormal Wnt5a expression may be a key event in the malignant transformation in 
osteosarcoma. The findings of this study have led us to propose a model for osteosarcoma 
genesis, which is shown in Fig 7. Increase of Wnt signaling when comparing DO with MSCs 
is not observed. Wnt signaling changes during the process of differentiation and at different 
phases in osteoblastogenesis, different Wnt activities are observed.
The comparison between osteoblastoma and the same presumed progenitor cells MSCs and 
osteoblasts did not result in pathways associated with cell cycle regulation. The profiles of 
osteoblastomas have fulfilled a dual purpose in this study, they were instrumental in identifying 
differentially expressed genes that resulted from a difference in cell culture and primary 
tissue and they helped to recognize the cell cycle pathway as most important for malignant 
transformation of osteosarcoma. 
From this analysis can be concluded that osteosarcoma differs from its presumed progenitor 
cells, MSCs and osteoblasts in terms of cell cycle regulation and developmental pathways. 
Benign osteoblastomas with the same progenitor cells but a much more favorable disease 
course are not characterized by an increase in cell cycle but by a decrease in components of 
canonical Wnt signaling. 
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ABSTRACT

Motivation
A recent surge of interest in survival as the primary clinical endpoint of microarray studies has 
called for an extension of the Global Test methodology to survival.

Result 
We present a score test for association of the expression profile of one or more groups of 
genes with a (possibly censored) survival time. Groups of genes may be pathways, areas of 
the genome, clusters from a cluster analysis or all genes on a chip. The test allows one to test 
hypotheses about the influence of these groups of genes on survival directly, without the 
intermediary of single gene testing. The test is based on the Cox proportional hazards model 
and is calculated using martingale residuals. It is possible to adjust the test for the presence of 
covariates. We also present a diagnostic graph to assist in the interpretation of the test result, 
visualizing the influence of genes. The test is applied to a tumour data set, revealing pathways 
from the gene ontology database that are associated with survival of patients.

Availability 
The global test for survival has been incorporated into the R-package globaltest (from version 
3.0), available from http://www.bioconductor.org.



Testing Association of a Pathway with Survival using Gene Expression Data

121

R1
R2
R3
R4
R5
R6
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R40
R41
R42
R43
R44

Introduction

A microarray experiment typically results in many thousands of measurements, each relating 
to the expression level of a single gene. Single genes, however, are often not the primary 
theoretical focus of the researcher, who might be more interested in certain pathways or 
genomic regions that are suspected to be biologically relevant.
For this reason we have introduced the Global Test for groups of genes (1), which allows the 
unit of analysis of the microarray experiment to be shifted from the single gene level to the 
pathway level, where a ”pathway’’ may be any set of genes, e.g. chosen using the Gene Ontology 
database or from earlier experiments. For every pathway, the Global Test can test (with a single 
test) whether the expression profile of that pathway is significantly associated with a clinical 
variable of interest. This allows researchers to immediately test theoretical hypotheses on the 
clinical importance of certain pathways. Even when such hypotheses are not directly available 
from biological theory or past research, the Global Test can significantly reduce the multiple 
testing problem, because there are typically much fewer pathways than genes.
In the original publication of the Global Test, the clinical variable could be either a continuous 
measurement or a 0/1 group indicator. Recently, however, there has been a surge of interest in 
survival time of patients as the primary clinical outcome in a microarray experiment. Many of 
these studies focus on prediction of survival, e.g. in breast cancer (2-4) and in lung cancer (5, 
6). Other studies use multiple testing methods to find genes which are associated with survival 
(7).
The present paper extends the Global Test methodology to survival outcomes. It allows the 
researcher to test whether the expression profile of a given set of genes is associated with 
survival. More precisely it tests whether individuals with a similar gene expression profile 
tend to have similar survival times. A significant pathway may be a mix of genes which are 
upregulated for patients with short survival time, genes which are downregulated for the same 
patients, and other genes that show no association with survival at all.
The test of the present paper is based on the Cox proportional hazards model. Therefore it 
avoids the requirement of many analysis strategies to choose an arbitrary cut-off (e.g. five years 
survival), but uses all survival information that is present in the data. Technically, the test is 
derived from the goodness-of-fit test of (8). The original Global Test was derived in a similar 
way from a goodness-of-fit test for generalized linear models (9). The two Global Tests are 
therefore highly comparable and allow quite similar interpretations.
In this paper we also show how the test can be adjusted for the presence of covariates 
(possible confounders or competing risk factors). This allows better use of the Global Test in 
observational studies. Furthermore, it allows the researcher to establish that the microarray 
really adds something to the predictive performance of known risk factors, showing that it is 
not simply an expensive way to measure risk factors already known. It also allows the test to 
be used on more complex designs than a simple one-sample follow up study.
The new Global Test method presented in this paper has been incorporated into the 
R-package globaltest, version 3.0, which is available from http://www.bioconductor.org.
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The approach will be illustrated on a data set of 17 osteosarcoma patients, testing pathways 
from the Gene Ontology database.

the model

The Global Test exploits the duality between association and prediction. By definition, if 
two things are associated, knowing one improves prediction of the other. Hence, if survival is 
associated with gene expression profile, this means that knowing the gene expression profile 
allows a better prediction of survival than not knowing the expression profile.
With this idea in mind we make a prediction model for prediction of survival from the 
gene expression measurements. The most convenient choice for such a model is the Cox 
proportional hazards model, which is the most widely used model for survival data in medical 
research. The Cox model uses the full empirical distribution of the survival times and it can 
handle censored data, i.e. samples for which the exact survival time is not known, but for 
which it is only known that the patient is still alive at a certain moment (10). The use of the 
Cox model requires a true follow-up study design, meaning that patients were not selected 
on their survival times in any way. If such a patient selection was made, the methods of this 
paper may not be appropriate: in VantVeer (2), for example, where a selected group of early 
metastases was compared to a selected group which was at least five years metastasis-free, the 
original Global Test for a 0/1 outcome is preferable (1).
Suppose the matrix of normalized gene expression measurements for the group of genes of 
interest is given by the n × m matrix X with elements x

ij
, where n is the sample size and m the 

number of genes in the group. Suppose also that there is a number p ≥ 0 of covariates for each 
patient, which we put in an n × p data matrix Z with elements z

ij
. It will be assumed that 

p < n, but no such restriction is put on m.
Cox’s proportional hazards model (10) (chapter 8) assumes the hazard function at time t for 
individual i to relate to the covariates as 
 ,)(=)( iric

i ethth +  (1)

where )(th  is an unknown baseline hazard function and ii rc +  is a linear function of the 
covariates, which is split up in our case into ri = 
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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model and is closely linked to penalized likelihood methods. It should
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the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
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2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
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In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
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survival from the gene expression measurements. The most conveni-
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of the test. The test that will be derived in the next section will be a
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relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
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diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.

1951

 at B
ibliotheek Instituut M

oleculaire Plantkunde on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

 of the covariates are not assumed to be random.
The Cox model with random coefficients is an empirical Bayesian model and is closely linked 
to penalized likelihood methods. It should be noted that we have not assumed a specific 
distributional form for the regression coefficients; the derivation of our test is invariant to 
the choice of the shape of this distribution. Choosing a Gaussian distribution results in a Cox 
ridge regression model (4); choosing a double exponential distribution results in a LASSO 
model (11). Both models can also be used to predict survival times of patients.
In the context of testing it is most insightful to view the prior distribution of the regression 
coefficients as the focus of the power of the test. The test that will be derived in the next section 
will be a score test, which has the property that it has optimal power against alternatives 
with small values of the parameter 

Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
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i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
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2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).
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likelihood. In this case these calculations are very unpleasant, and it
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the maximum likelihood estimate of H(t) we can take the Breslow
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3.1 The basic score test
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
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where d = (d1, . . . , dn)
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= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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� and Û = diag(û), an
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where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT
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.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately
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and
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n�
j=1

p�
j diag(t̃j t̃

�
j ),
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�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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indicator di , where di = 1 indicates death (the patient died at ti) and
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�, the vector of the linear
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matrix τ 2R, where R = XX�. For the general likelihood (2) and an
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element
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where pj is the j -th column of P and tj = (I − 1pj
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈
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p�
j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
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L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where
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is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element
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where pj is the j -th column of P and tj = (I − 1pj
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately
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and
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ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
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Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .
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In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈
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j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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n × n diagonal matrix with Ûii = ûi .
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is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
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standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
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Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .
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In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
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by
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
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The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
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by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
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d − ũ ≈ (I − V )(d − û) (7)
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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By definition a score test is based on the derivative of the log-
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each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is
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where P is an n × n matrix with i, j -th element
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT
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= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈
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with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .
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The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)
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vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .
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In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as
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with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately
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and
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to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
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The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is
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vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT
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.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately
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�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
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but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)
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
 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element
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.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that
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i pij = dj and
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n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
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p�
j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.

1952

 at B
ibliotheek Instituut M

oleculaire Plantkunde on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

 (5)

where P  is an n × n matrix with ji, -th element 

 

J.J.Goeman et al.

3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
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.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that
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j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
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p�
j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is
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where
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is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take
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statistic:
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In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as
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ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃
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j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


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Rii
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(∂ri)2 +
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For the Cox model this becomes
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 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
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pj
� diag(tj t
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j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:
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In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as
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with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately
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is the contribution to the log-likelihood of individual i for fixed ri ,
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0 h(s) ds is the cumulative baseline hazard.
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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where d = (d1, . . . , dn)
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Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .
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vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:
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In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
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of the test statistic.
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and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic
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n × n diagonal matrix with Ûii = ûi .
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with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p
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ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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For purposes of interpretation it is often easier to take 
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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eck
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and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t
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j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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Er

�
exp
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fi(ri)
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, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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For the Cox model this becomes
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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eck
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and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci
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k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that
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i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
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� diag(tj t
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j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.

1952

 at B
ibliotheek Instituut M

oleculaire Plantkunde on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

, so 
that it leads to the same standardized test statistic: 

 

J.J.Goeman et al.

3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
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with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
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�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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J.J.Goeman et al.

3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log

�
Er

�
exp

�
n�

i=1

fi(ri)

���
, (2)

where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .

The estimated variance of T is

�Var(T ) =
n�

j=1

pj
� diag(tj t

�
j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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�
tj ≤ti

dj�
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eck
, i = 1, . . . , n

and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
dj eci

�
k skj eck

.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that
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i pij = dj and

�
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The estimated variance of T is

�Var(T ) =
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pj
� diag(tj t
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j ), (6)

where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
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is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take
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and �Var(T0) = �Var(T ), so that it leads to the same standardized test
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are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).
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γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
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data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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where d = (d1, . . . , dn)
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� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is
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vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
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is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take
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3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
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statistic T0 can be approximated as
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By definition a score test is based on the derivative of the log-
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indicator di , where di = 1 indicates death (the patient died at ti) and
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r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive

∂L(0)

∂τ 2 = 1
2


�

i

Rii

∂2fi(0)

(∂ri)2 +
�
i,j

Rij

∂fi(0)

∂ri

∂fj (0)

∂rj


 .

For the Cox model this becomes

∂L(0)

∂τ 2 = 1
2


�

i,j

Rij (di − ui)(dj − uj ) −
�

i

Riiui


 , (3)

where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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eck
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and write ûi = eci Ĥ (ti ), i = 1, . . . , n.
Using twice the estimated derivative of the log-likelihood (3) as

the test statistic and writing it in matrix notation, we get the test
statistic

T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element

pij = I{ti≥tj }
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.

Each pij is the increment of the cumulative hazard incurred by
individual i at time tj , so that

�
i pij = dj and

�
j pij = ûi .
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where pj is the j -th column of P and tj = (I − 1pj
�)

[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0

�Var(T0)
.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and

�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is
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0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.
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We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
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the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:
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In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
di = 0 indicates censoring (the patient was lost to follow-up at ti).
The log-likelihood of τ 2 in model (1) is

L(τ 2) = log
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where

fi(ri) = di[log{h(ti)} + ci + ri] − H(ti)eci + ri

is the contribution to the log-likelihood of individual i for fixed ri ,
and H(t) = � t

0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
r of this form, Le Cessie and Van Houwelingen (1995) have used a
Taylor approximation to derive
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)
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the test statistic and writing it in matrix notation, we get the test
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T = (d − û)�R(d − û) − trace(RÛ), (4)
where d = (d1, . . . , dn)

�, û = (û1, . . . , ûn)
� and Û = diag(û), an

n × n diagonal matrix with Ûii = ûi .

The derivation of estimates for the mean and variance of T is quite
technical and is given in Section 3.5. The estimated mean is

Ê(T ) = −trace(RPP �), (5)

where P is an n × n matrix with i, j -th element
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[diag(R) + 2R(mj − pj )]. The diag of a square matrix is the column
vector of its diagonal elements; 1 is an n×1 vector of ones, and mj is
the j -th column of the matrix M = (D − P)B, where D = diag(d)

is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take

T0 = (d − û)�R(d − û)

as the unstandardized test statistic. It has ÊT0 = trace(RÛ − PP �)
and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:

Q = T − ÊT

�Var(T )
= T0 − ÊT0
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.

3.3 Using estimated regression coefficients
In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as

T0 ≈ (d − û)�R̃(d − û)

with R̃ = (I −V )�R(I −V ). The expectation of T0 can be estimated
using the formulas in Section 3.2. They are approximately

ÊT0 ≈ trace(R̃W)

and
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with t̃j = (I − 1p�
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�Var(T0) we replace the parameter values of γ1, . . . , γp by their estim-
ates. Simulations in Verweij et al. (1998) show this approximation
to be quite accurate.
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3.1 The basic score test
By definition a score test is based on the derivative of the log-
likelihood at the value of the parameter to be tested. Suppose for
each individual i we have observed a survival time ti and a status
indicator di , where di = 1 indicates death (the patient died at ti) and
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where
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is the contribution to the log-likelihood of individual i for fixed ri ,
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0 h(s) ds is the cumulative baseline hazard.
From the assumptions on the distribution of β1, . . . , βm, we can

derive the distribution of r = (r1, . . . , rn)
�, the vector of the linear

effects of the gene expressions. This r has mean zero and covariance
matrix τ 2R, where R = XX�. For the general likelihood (2) and an
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where ui = eci H(ti), i = 1, . . . , n, is the hazard incurred by indi-
vidual i up to time ti . Note that di − ui is the martingale residual of
individual i at time ti (Klein and Moeschberger, 1997, Section 11.3).

For known H(t) and known c1, . . . , cn, expression (3) can be
standardized to have unit variance and be used as the score test
statistic. When these parameters are unknown, we must plug in max-
imum likelihood estimates for them under the null model in which
τ 2 = 0. Standardizing the score test is traditionally done using the
Fisher information, calculated from the second derivatives of the log-
likelihood. In this case these calculations are very unpleasant, and it
turns out to be simpler to standardize using the estimated variance
of the test statistic.

3.2 Using estimated baseline hazard
We shall first plug in the estimate for the cumulative hazard H(t),
but still assume that γ1, . . . , γp and hence c1, . . . , cn are known. As
the maximum likelihood estimate of H(t) we can take the Breslow
estimator (Klein and Moeschberger, 1997, Section 8.6)

Ĥ (ti ) =
�
tj ≤ti

dj�
tk≥tj

eck
, i = 1, . . . , n
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is a diagonal matrix with Dii = di and B is an n × n matrix with
elements bij = 1{ti<tj }. The elements mij of M can be interpreted as
the estimated martingale residual of individual i just before time tj .

For purposes of interpretation it is often easier to take
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and �Var(T0) = �Var(T ), so that it leads to the same standardized test
statistic:
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In general the regression coefficients γ1, . . . , γp of the covariates
are not known but must be estimated. Replacing γ1, . . . , γp by their
maximum likelihood estimates will still give a valid score test for
H0, but with a different distribution of the test statistic. We use
the following approximation to this distribution which is derived
by Verweij et al. (1998).

The estimated martingale residuals d − ũ based on the estimated
γ̂1, . . . , γ̂p can be approximated in a first order Taylor approximation
by

d − ũ ≈ (I − V )(d − û) (7)
with V = WZ(ZWZ�)−1Z�, W = diag(û) − PP � and Z the n × p

data matrix of the fixed covariates. Therefore the unstandardized test
statistic T0 can be approximated as
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ÊT0 ≈ trace(R̃W)

and
�Var(T0) ≈

n�
j=1

p�
j diag(t̃j t̃

�
j ),

with t̃j = (I − 1p�
j )[diag(R̃) + 2R̃(mj − pj )]. To evaluate ÊT0 and
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Testing association of a pathway with survival

2 THE MODEL
The Global Test exploits the duality between association and pre-
diction. By definition, if two things are associated, knowing one
improves prediction of the other. Hence, if survival is associated with
gene expression profile, this means that knowing the gene expres-
sion profile allows a better prediction of survival than not knowing
the expression profile.

With this idea in mind we make a prediction model for prediction of
survival from the gene expression measurements. The most conveni-
ent choice for such a model is the Cox proportional hazards model,
which is the most widely used model for survival data in medical
research. TheCoxmodeluses the full empiricaldistributionof thesur-
vival times and it can handle censored data, i.e. samples for which the
exact survival time isnotknown, but forwhich it isonlyknownthat the
patient is still alive at a certain moment (Klein and Moeschberger,
1997). The use of the Cox model requires a true follow-up study
design, meaning that patients are not selected on their survival times
in any way. If such a patient selection was made, the methods of this
paper may not be appropriate: in Van’t Veer et al. (2002), for example,
where a selected group of early metastases was compared to a selec-
ted group which was metastasis-free for at least 5 years, the original
Global Test for a 0/1 outcome is preferable (Goeman et al., 2004).

Suppose the matrix of normalized gene expression measurements
for the group of genes of interest is given by the n × m matrix X

with elements xij , where n is the sample size and m the number of
genes in the group. Suppose also that there is a number p ≥ 0 of
covariates for each patient, which we put in an n × p data matrix
Z with elements zij . It will be assumed that p < n, but no such
restriction is put on m.

Cox’s proportional hazards model (Klein and Moeschberger, 1997,
Chapter 8) assumes the hazard function at time t for individual i to
relate to the covariates as

hi(t) = h(t)eci + ri , (1)

where h(t) is an unknown baseline hazard function and ci + ri is a
linear function of the covariates, which is split up in our case into ri =∑m

k=1 βkxik , relating to the gene expressions, and ci = ∑p

l=1 γlzil ,
relating to the covariates. The hazard function determines the survival
function Si(t), which gives the probability that individual i survives
up to time t , through

Si(t) = e−Hi(t),

where Hi(t) = ∫ t

0 hi(s) ds is the cumulative hazard up to time t .
In this model, showing that the gene expressions are associated

with survival is equivalent to rejecting the null hypothesis

H0 : β1 = · · · = βm = 0

that all regression coefficients relating to the gene expressions are
zero. If m were always small, we could test H0 using classical tests
which were developed for the Cox model. These tests do not work
for general m, however (for an overview of these classical tests see
Klein and Moeschberger, 1997, Section 8.2).

To obtain a test that works whatever the value of m, we put an extra
assumption on the regression coefficients β1, . . . , βm. We assume
that the regression coefficients of the genes are random and a pri-
ori independent with mean zero and common variance τ 2. The null

hypothesis now becomes simply

H0 : τ 2 = 0,

so that the dimension of H0 does not depend on m anymore. Note
that the coefficients γ1, . . . , γp of the covariates are not assumed to
be random.

The Cox model with random coefficients is an empirical Bayesian
model and is closely linked to penalized likelihood methods. It should
be noted that we have not assumed a specific distributional form for
the regression coefficients; the derivation of our test is invariant to
the choice of the shape of this distribution. Choosing a Gaussian
distribution results in a Cox ridge regression model (Pawitan et al.,
2004); choosing a double exponential distribution results in a LASSO
model (Tibshirani, 1997). Both models can also be used to predict
survival times of patients.

In the context of testing it is most insightful to view the prior
distribution of the regression coefficients as the focus of the power
of the test. The test that will be derived in the next section will be a
score test, which has the property that it has optimal power against
alternatives with small values of the parameter τ 2. This property
stems from the fact that the score test is equivalent to the likelihood
ratio test in the limit where the alternative τ 2 → 0 (Cox and Hinkley,
1974). Alternatives with small values of τ 2 tend to have small values
of �β2

i , so that the test can be said to be optimal on average against
alternatives with small values of �β2

i . These alternatives are mainly
alternatives which have all or most regression coefficients non-zero
but small. The test can therefore be said to be optimized against
alternatives in which all or most genes have some association with
the outcome. This alternative is precisely the situation in which we
are interested, because we want to say something about the pathway
as a whole.

Alternative tests can easily be derived for regression coeffi-
cients with a more complex covariance structure. If the vector
β = (β1, . . . , βm)� is assumed a priori to have mean zero and covari-
ance matrix τ 2�, the resulting test of H0 would be optimal against
alternatives with small values of β � � β. The standard choice of
� = Im distributes power equally over all directions of β, while
a different choice will have more power against deviations from H0
in directions which correspond to the larger eigenvalues of �. This
property could be exploited in the derivation of a test for a specific
purpose or to incorporate prior knowledge. In this paper we shall
restrict ourselves to � = Im.

3 DERIVATION OF THE TEST
Testing the association of a group of genes with survival can therefore
be done by testing H0 in the empirical Bayesian model (1) with
random regression coefficients. In this section we will derive the test
statistic for this test. A score test for the same model has also been
studied by Verweij et al. (1998) in the context of testing the fit of the
Cox model. Their derivation was based on the partial likelihood of
the Cox model. In this paper we give an alternative derivation based
on the full likelihood and a simpler martingale argument.

We derive the test in stages. First suppose that all parameters
except τ 2 are known, i.e. the regression coefficients γ1, . . . , γp and
the baseline hazard function h(t) are known. In this simplified situ-
ation it will be relatively easy to derive the score test, which can be
generalized to the situation with unknown parameters later in this
section.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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For small samples the asymptotic distribution may not be reliable enough. An alternative is 
to calculate Q  for all, or a random sample of many (10,000), permutations of the martingale 
residuals of the n  samples. This randomly redistributes the vectors of gene expression 
measurements over the individuals, while keeping the relationship between the fixed 
covariates and survival the same. The resulting distribution is another approximation to the 
null distribution of Q , which can be used to find the p-value. Use of the permutation null 
distribution requires the assumption that there is no relationship between the gene expressions 
on the one hand and the covariates and the censoring mechanism on the other hand: 
permuting destroys these associations. This makes the permutation null distribution less useful 
when covariates are present.
The main advantage of the permutation-based p-value is that it gives an “exact’’ p-value, 
which is guaranteed to keep the alpha level provided enough permutations are used. This 
is especially useful for smaller sample sizes, where we may not trust the normality of the 
distribution of Q . The advantage of the asymptotic theory p-value---aside from being much 
quicker to calculate---is that it has more power: the permutation based p-value does not 
use the full null distribution, but the null distribution conditional on the set of observed 
martingale residuals. With this conditioning the test loses some power, as the set of observed 
residuals is informative for the parameter 
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞
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Y
dNj = 1{ti≥tj }
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and
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∫ ∞
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.

1953

 at B
ibliotheek Instituut M

oleculaire Plantkunde on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

 but estimated )(tH , as given in (5) and (6). For 
this we will use a counting process notation (13, 14). The strategy we will use is common in 
martingale theory: we write our test statistic T  as the limit of a process )(tT  as 

Testing association of a pathway with survival

3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
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1991, Theorem A.1.2) it follows that, almost surely,
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+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,
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∫ t
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−
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Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t
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V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.

1953

 at B
ibliotheek Instituut M

oleculaire Plantkunde on June 28, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

 with 

  

Testing association of a pathway with survival

3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t
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To evaluate ÊT and V̂ar(T ) we use
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
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1991, Theorem A.1.2) it follows that, almost surely,
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+
∫ t
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−
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Because
∫ t
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2(M̂−)�R − V�R is predictable, the compensator of the process T
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S is therefore �S� = ∫ t
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,
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∫ t
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+
∫ t

0
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where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
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∫ t
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−
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Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
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is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t
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V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector
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over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use
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and
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by
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∫ t
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∫ t

0
diag(KK�)�V1� dN.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
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0
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Y
dNj = 1{ti≥tj }
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and

mij =
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0
M̂−

i dNj = 1{ti<tj }di −
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
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and

mij =
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
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Y
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and
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Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
diag(KK�)� d�̂ =

∫ t

0
diag(KK�)�V1� dN.

To evaluate ÊT and V̂ar(T ) we use

pij =
∫ ∞

0

eci Yi

Y
dNj = 1{ti≥tj }

eci dj∑
tk≥tj

eck

and

mij =
∫ ∞

0
M̂−

i dNj = 1{ti<tj }di −
n∑

k=1

1{tk<tj }pik .

Writing P for the n × n matrix with elements pij and M for the
n × n matrix with elements mij , the results (5) and (6) follow.
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t
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V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector
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S is therefore �S� = ∫ t
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3.4 The distribution of the test statistic
There are two ways to calculate the P -value of the test: by asymptotic
theory and by permutation arguments. We outline both the options
and their advantages.

Equation (9) in Section 3.5 it will be shown that the centered test
statistic T − ÊT can be written as a linear combination of n martin-
gales. Therefore by the martingale central limit theorem (Andersen
et al., 1993) the distribution of the standardized Q converges to a
standard normal distribution as n → ∞. This fact motivates the
use of a normal approximation to the distribution of Q to calculate
the one-sided P -value (see also simulation results by Verweij et al.,
1998). Interesting simulations which give insight in to the power
of the score test in a random effects survival model are given in
Andersen et al. (1999).

For small samples the asymptotic distribution may not be reliable
enough. An alternative is to calculate Q for all, or a random sample
of many (10 000), permutations of the martingale residuals of the n

samples. This randomly redistributes the vectors of gene expression
measurements over the individuals, while keeping the relationship
between the fixed covariates and survival the same. The resulting dis-
tribution is another approximation to the null distribution of Q, which
can be used to find the P -value. Use of the permutation null distri-
bution requires the assumption that there is no relationship between
the gene expressions on the one hand and the covariates and the
censoring mechanism on the other hand: permuting destroys these
associations. This makes the permutation null distribution less useful
when covariates are present.

The main advantage of the permutation-based P -value is that it
gives an ‘exact’ P -value, which is guaranteed to keep the alpha level
provided enough permutations are used. This is especially useful
for smaller sample sizes, where we may not trust the normality of
the distribution of Q. The advantage of the asymptotic theory P -
value—aside from being much quicker to calculate—is that it has
more power: the permutation based P -value does not use the full
null distribution, but the null distribution conditional on the set of
observed martingale residuals. With this conditioning the test loses
some power, as the set of observed residuals is informative for the
parameter τ 2.

3.5 Counting process calculations
In this technical section we calculate the mean and variance of the test
statistic T under the null hypothesis for known c1, . . . , cn but estim-
ated H(t), as given in Equations (5) and (6). For this we will use
a counting process notation (Fleming and Harrington, 1991; Ander-
sen et al., 1993). The strategy we will use is common in martingale
theory: we write our test statistic T as the limit of a process T (t) as
t → ∞ and decompose T (t) into a martingale and a compensator.
The limit of the compensator is the estimator of the mean of T and
the limit of the predictable variation process is the estimate of the
variance. For an alternative derivation, see Verweij et al. (1998).

Let Y(t) = (Y1(t), . . . , Yn(t))
� be the vector of at-risk pro-

cesses of individuals 1, . . . , n and N(t) = (N1(t), . . . , Nn(t))
� the

vector of their counting processes. Then N has intensity process
� = CY(t)H(t), where C is a diagonal matrix with Cii = eci ,
i = 1, . . . , n. Write 1 = (1, . . . , 1)�, n × 1 and N(t) = 1�N(t), the
total counting process.

In the counting process notation, d = N(∞) and û = �̂(∞) with
�̂(t) = ∫ t

0 V(s)1� dN(s), where V = CY(1�CY)−1. Wherever

possible we will drop the dependence on time for convenience of
notation.

Note that the compensator of �̂ is �, which is also the compensator
of N. Write M̂ = N − �̂. Then d − û = M̂(∞) and M̂(t) =∫ t

0 (I − V1�) dN is a martingale vector. Subtracting the intensities
and writing M = N − �,

M̂(t) =
∫ t

0
(In − Y1�) dM.

The statistic T is T (∞) with

T (t) = trace[RM̂M̂� − R diag(�̂)].
From the integration by parts formula (Fleming and Harrington,
1991, Theorem A.1.2) it follows that, almost surely,

M̂M̂� =
∫ t

0
M̂− dM̂� +

∫ t

0
dM̂ (M̂−)�

+
∫ t

0
(I − 1V�)diag(dN)(I − V1�), (8)

where M̂−(s) = M̂(s−) is a predictable process. Using Equation (8)
and some linear algebra we can say that, almost surely,

T (t) =
∫ t

0
(diag(R)� + 2(M̂−)�R − V�R)(I − V1�) dN

−
∫ t

0
V�R dN.

Because
∫ t

0 (I − V1�) dN is a martingale and diag(R)� +
2(M̂−)�R − V�R is predictable, the compensator of the process T

is − ∫ t

0 V�R d�, which we can estimate by

ÊT = −
∫ t

0
V�R d�̂ = −

∫ t

0
V�RV1� dN.

The process S = T − ÊT is a martingale. It can be written in the
following way:

S =
∫ t

0
(diag(R)� + 2(M̂− − V)�R)(I − V1�) dM (9)

as the integral of the predictable process vector

K = (diag(R)� + 2(M̂− − V)�R)(I − V1�)

over the martingale vector M. The predictable variation process of
S is therefore �S� = ∫ t

0 diag(KK�)� d�, which we can estimate by

V̂ar(T ) =
∫ t

0
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∫ t
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To evaluate ÊT and V̂ar(T ) we use
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interpretAtion

When testing a specific pathway for a specific sample of patients, it is usually not satisfactory 
to only report the resulting p-value. In this section we will discuss some issues related to 
interpretation of the test result. We show how to calculate and visualize the influence of 
individual genes on the test result. We also propose an diagnostic which can be used when 
many genes are associated with survival, to assess whether a gene group is exceptional. We 
only give the theory here; for an example see section 9.

interpretation
The test of this paper is derived from the Cox model in the same way as the Global Test in 
Goeman (1) was derived from the generalized linear model. The functional form of the test 
statistic is therefore quite similar, the martingale residuals taking the place of the residuals from 
the generalized linear model in that paper. Much of the interpretation of the test statistic is 
therefore also quite similar.
Central to all interpretation of the test outcome is the matrix R = XX´ which figures 
prominently in the formula for the test statistic. It is an n × n matrix which can be seen as 
describing the similarities in expression profile between the samples. The entry 

ijR  is relatively 
large if samples i  and j  have a relatively similar expression profile over the pathway of 
interest.
To show the role of the matrix R , we can rewrite the unstandardized test statistic 0T  as 
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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positive values indicate genes with a large (positive or negative) association with survival 
and hence genes that make the pathway more significant. As 
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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, genes with more 
expression variance tend to carry more weight in the pathway.
Note that the visualized values of the gene influences iT  in the gene plot are essentially 
univariate: they only depend on the gene i  itself. The multivariate nature of the test statistic 

Q  is therefore not visible in the gene plot. It comes in because, although 0T  is the sum of the 

iT  and 0ÊT  is the sum of the iTÊ , the variance of 0T  is generally not the sum of the variances 
of the iT .

the comparative p
The global test tests the null hypothesis that the pathway is not associated with survival. This 
null hypothesis only depends on the observed survival and on the genes in the pathway itself: 
the result is absolute, not relative to the other pathways.
However, there are situations in which one would be more interested in a relative result. 
If the global test on the set of all genes is very significant, we can usually expect a sizeable 
proportion of the genes on the array to be associated with survival. In that case we can 
expect many pathways to show association with survival as well. This will hold especially for 
the larger pathways, which will often include some of the genes which are associated with 
survival.
In such situations we propose a diagnostic called “comparative p’’, which can help interpret 
the p-value that comes out of the test. The comparative p for a pathway of size m  with 
p-value p  is defined as the proportion of randomly selected sets of genes of the size m  that 
have an global test p-value smaller or equal to p . To calculate this comparative p we draw 
1,000 or 10,000 random gene sets from the array without replacement.
The comparative p fulfills a role different from the p-value and should only be used alongside 
it. It is a diagnostic, not a p-value in the statistical sense. It tells whether the p-value of a group 
of genes is much lower than could be expected from a gene group of its size in this data set.

ApplicAtion: osteosArcomA dAtA

We applied the above methodology to a data set of 17 osteosarcoma patients from the Leiden 
University Medical Center.

Data
A genome wide screen of gene expression in osteosarcoma was done using Hu133a gene 
expression chips (Affymetrix, Santa Clara, CA). This chip contains 22,283 genes. A successful 
hybridization was obtained for 17 osteosarcoma biopsies. Three of the samples were amplified, 
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labelled and hybridized in duplicate, one sample in triplicate. These technical replicates were 
averaged after gene expression measures were obtained, which was done using gcrma (15). No 
preselection of genes was made.
The 17 patients were followed up to 10 years. Median survival time was 40 months. Available 
covariates included the presence of metastasis at diagnosis, histology and response to neo-
adjuvant chemotherapy. However, as treatment was not uniform over all patients, these 
covariates were not prognostic and we did not consider them.
Pathway information was obtained from the Gene Ontology (GO) database, using the 
BioConductor GO package (16). Pathways that were considered of specific interest were cell 
cycle (GO: 7049), DNA repair (GO: 6281), Angiogenesis (GO: 1525), Skeletal development 
(GO: 1501) and Apoptosis (GO: 6915).

Analysis
When testing pathways of interest, it is advisable to also test the ‘pathway’ of all genes on the 
chip for association with survival. This shows whether the overall gene expression profile is 
associated with survival. The results for the pathway of all genes and for the five pathways of 
primary interest are given in table 1. We calculated the p-value using both the asymptotic 
theory method and the permutation method (using 100,000 permutations).

Table 1. 

Global Test results for the Osteosarcoma data and the pathways of primary interest. The 

p-values were calculated using the permutation and asymptotic method. The final column 

gives the comparative p (see section 8.3).

pathway  genes  Q   perm. p  asym. p  comp. p

All genes  22283  2.446  0.0120  0.0072  ---

Cell cycle  1115  2.957  0.0042  0.0016  0.006

DNA rep.  271  3.123  0.0006  0.0009  0.011

Angiogen.  66  0.917  0.1429  0.1795  0.774

Skel. dev.  185  0.002  0.4133  0.4992  0.998

Apoptosis  656  2.533  0.0093  0.0057  0.210 

The permutation p-values tend to be somewhat more conservative than the asymptotic 
p-values, reflecting both the slight loss of power for the permutation test and a deviation from 
asymptotic normality due to the small number of samples.
In this data set the expression profile over the set of all genes on the chip is significantly 
associated with survival. Note that this does not mean that every gene on the chip is associated 
with survival. It means that the patients who die early are relatively similar to each other in 
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terms of their overall expression profile, while patients who live long are likewise relatively 
similar. It also means that there is some potential for prediction of survival based on gene 
expression, even before any pre-selection of genes. The cell cycle, DNA repair and apoptosis 
pathways are clearly associated with survival, while there is no evidence for this association in 
angiogenesis and skeletal development.
Because the test for all genes was significant, we expect a sizeable proportion of genes to 
be associated with survival, so that many pathways will be associated with survival. The 
comparative p gives a measure whether the p-value found for the pathway is unusually low 
given that it is a pathway of its size from this data set (see section 8.3). For the results in table 
1 10,000 gene sets were sampled for each pathway. We used the asymptotic p-values for the 
comparative p calculations.
We conclude that cell cycle and DNA repair are more clearly associated than could be 
expected from a gene set of its size in this data set: only around 60 out of 10,000 random 
gene sets of size 1,115 have a lower p-value than the cell cycle pathway. The expression profile 
of the apoptosis pathway is clearly associated with survival, as can be seen from the p-values; 
however it is not exceptional in that: more than 20% of random gene sets have a lower p-value 
than apoptosis. The Skeletal development pathway is interesting in its own way: it is clearly 
not associated with survival ( 0.5=p ) and this is quite exceptional for a pathway of this size 
in this data set: only around 20 in 10,000 random gene sets had a higher p-value. The skeletal 
development pathway seems to include uncommonly few genes which are associated with 
survival.
It can occur in some data sets that the set of all genes is not significant, while some pathways 
(eg. DNA repair) are significant. This occurs in table 1 for example if we use FDR-adjusted 
p-values with a threshold of 0.01 (17). The result for all genes can be seen as a false negative 
test result. However, another valid interpretation is that prediction of survival without 
biological pre-selection of genes is uncertain, but if it is known a priori that the genes in the 
DNA repair pathway are likely to be informative, some prediction of survival is possible.

Mining the GO database
If it is not a priori known which pathways are of specific interest, one can also use a data-
mining approach, trying to find those pathways which are most significantly associated with 
survival.
For the osteosarcoma data we explored the Gene Ontology database. Of all GO terms, 4,032 
matched at least one gene on the hu133a chip. We excluded all terms which matched only 
one gene, because the interesting single genes pathways would already have been found in 
single gene testing. This left 3,080 pathways, which we all tested for association with survival. 
We used the asymptotic p-value, because due to the randomness in the the permutation 
p-value it does not give a unique list. Table 2 gives the ten GO-terms with the smallest 
p-values.
To adjust for multiple testing, one can use the Benjamini and Hochberg FDR (17). All 10 
pathways in table 2 are significant on an FDR of 0.05. The p-values of the pathways tend to 
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have positive correlations because of pathway overlap and pathways being subsets of other 
pathways. A FDR-controlling procedure that would make use of these dependencies would 
potentially gain much power in this situation.

Table 2. 

Global Test results for the Osteosarcoma data on 3,080 Gene Ontology pathways, showing 

the top 10 FDR-adjusted p-values.

 pathway  # genes  Q   FDR-adjusted p 

 GO:0015630  21  4.306  0.016 

GO:0019932  8  4.176  0.016 

GO:0045192  2  4.148  0.016 

GO:0045595  17  4.060  0.016 

GO:0042518  7  4.054  0.017 

GO:0000158  8  3.993  0.018 

GO:0040008  9  3.944  0.018 

GO:0010033  10  3.844  0.023 

GO:0006479  13  3.791  0.026 

GO:0030111  9  3.766  0.026 

The literature confirmed the importance of many of these GO-terms in tumorigenesis. For 
example, both microtubule cytoskeleton (GO:0015630) and phosphorylation of Stat3 protein 
(GO:0042518) are known to be involved in growth and differentiation signaling, processes 
which are often disturbed in tumors. Second-messenger mediated signaling (GO:0019932) is 
a superset of the Stat3 pathway. Protein amino acid methylation (GO:0006479) is involved in 
protein degradation. Alterations in the stability of proteins is often a hallmark of tumors and 
may affect the aggressiveness of a tumor and thereby the patient’s survival.

A diagnostic plot
To learn more about the outcome of the Global Test than just the p-value one can use the 
diagnostic plot described in section 8. We illustrate the use of this plot on the microtubule 
cytoskeleton pathway, which emerged on top of table 2.
The gene plot for the 21 genes in this pathway is given in figure 1. Each bar gives the global 
test statistic for testing whether the gene set containing only that single gene is associated 
with survival. The test statistic for the whole pathway is a weighted average of the bars of the 
genes (see section 8.2). The colour of the bars distinguishes between positive and negative 
association with survival.



Chapter 4

134

R1
R2
R3
R4
R5
R6
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R40
R41
R42
R43
R44

FiGUre 1.

Gene plot of microtubule cytoskeleton pathway, showing the sorted global test 

statistics for testing the 21 single gene pathways which make up the pathway. 

Figure 1 shows that at least only four out of 21 genes in the microtubule cytoskeleton pathway show 

a significant association with survival on their own. Further, the pathway is a mix of genes which are 

positively and negatively associated with survival. Looking more closely at the gene plot can be a basis 

for investigating more deeply into the structure of the pathway, perhaps to formulate hypotheses on 

interesting subpathways.J.J.Goeman et al.
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Fig. 1. Gene plot of microtubule cytoskeleton pathway, showing the sorted Global Test statistics for testing the 21 single gene pathways which make up the
pathway.

4 INTERPRETATION
When testing a specific pathway for a specific sample of patients, it
is usually not satisfactory to report only the resulting p-value. In this
section we will discuss some issues related to the interpretation of
the test result. We show how to calculate and visualize the influence
of individual genes on the test result. We also propose a diagnostic
which can be used when many genes are associated with survival, to
assess whether a gene group is exceptional. We only give the theory
here; for an example, see Section 5.

4.1 Interpretation of the test statistic
The test of this paper is derived from the Cox model in the same
way as the Global Test in Goeman et al. (2004) was derived from the
generalized linear model. The functional form of the test statistic is
therefore quite similar, with the martingale residuals taking the place
of the residuals from the generalized linear model in that paper. Much
of the interpretation of the test statistic is therefore also quite similar.

Central to all interpretation of the test outcome is the matrix R =
XX� which figures prominently in the formula for the test statistic. It
is an n×n matrix which can be seen as describing the similarities in
the expression profile between the samples. The entry Rij is relatively
large if samples i and j have a relatively similar expression profile
over the pathway of interest.

To show the role of the matrix R, we can rewrite the unstandardized
test statistic T0 as

T0 =
n∑

i=1

n∑
j=1

Rij (di − ûi )(dj − ûj ),

which is the sum over the term-by-term product of the entries of
R and the entries of the matrix (d − û)(d − û)�. The i, j -th entry

of the latter matrix is large whenever samples i and j have similar
martingale residuals. The test statistic T0 is therefore relatively large
whenever the entries of the matrices R and (d − û)(d − û)� are
correlated, which is when similarity in gene expressions tends to
coincide with similarity in the martingale residual. Hence, the test
statistic is large if individuals who die sooner than expected tend to
be relatively similar in their gene expression profiles and individuals
who live longer than expected also tend to be similar in their gene
expression profiles.

4.2 Gene plot
To investigate the influence of individual genes on the test outcome
we can rewrite R = ∑m

i=1 xix
�
i , where xi is the i-th column of X

(i = 1, . . . , m), containing the measurements for the i-th gene. The
unstandardized test statistic then becomes

T0 =
m∑

i=1

Ti ,

where Ti = (d−û)�xix
�
i (d−û) is exactly the unstandardized ‘global’

test statistic for testing whether the ‘pathway’ containing only gene
i is associated with survival. The test statistic of a pathway is there-
fore a weighted average of the test statistics for the m genes in the
pathway.

In a plot we can visualize the influence of the individual genes
by showing the values Ti − ÊTi , with their standard deviation under
the null hypothesis (calculated using the methods of Section 3). An
example of such a ‘gene plot’ is given in Figure 1. In this plot, large
positive values indicate genes with a large (positive or negative) asso-
ciation with survival and hence genes that make the pathway more
significant. As Ti ∝ �xi�2, genes with more expression variance
tend to carry more weight in the pathway.
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discussion

It has often been remarked that the key to successful microarray data analysis lies in an 
intelligent integration of advanced statistical methods with the vast domain of biological 
knowledge that is already available. The global test for survival presented in this paper is a 
step forward in this direction, combining known biological pathway information with the 
statistical sophistication of the Cox proportional hazards model.
Due to its complexity the Cox model has been slow to find its way to microarray 
methodology. Most methods require survival to be reduced to a two-valued variable, using 
an arbitrary cut-off, resulting in unnecessary loss of information. By using the Cox model for 
survival, gene expression analysis can improve performance and also become better connected 
to traditional medical statistics.
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Pathway information is available from many databases and is essential for the understanding of 
the outcomes of a microarray experiment. The Global Test methodology allows researchers to 
look directly for important pathways, without first having to go through single gene testing. 
This may lead to a better use of pathway information and more directly interpretable results.
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Abstract

Purpose
The aim of our study was to determine whether or not expression of the tyrosine kinase 
receptor HER2 (also known as ErbB2/Her2/neu) is overexpressed in human osteosarcomas. 
We studied 15 biopsy and 18 resection specimens at the mRNA and protein levels. 

Patients and methods
The HER2 status in the osteosarcoma specimens was assessed by immunohistochemistry 
(IHC) and quantitative Real-Time Polymerase Chain Reaction (PCR). In moderately 
immunopositive cases, fluorescent in situ hybridization (FISH) analysis was used in order to 
identify any possible gene amplification.

Results
Twenty-seven samples were evaluable for IHC, and only one case showed a moderately 
positive membrane staining. The remaining samples showed no staining or focal cytoplasmatic 
staining (2 samples). In the moderately positive case, FISH analysis showed no HER-2 gene 
amplification. There was also no overexpression of HER2 mRNA, suggesting this sample was 
a false positive immunostain. HER2 mRNA expression was present in all samples at a similar 
level to that in the breast cancer cell line MCF7, which does not overexpress HER2 and was 
used a negative control. 

Conclusion
This study shows that HER2 mRNA or membranous HER2 protein overexpression is absent 
in human osteosarcoma. We noted various inconsistencies in previous published studies, with 
regard to methodology and the interpretation of the results based on poor methodology. 
We therefore conclude that the positive data with regard to HER2 overexpression reported 
in these previous studies are not reliable. Our results suggest that the monoclonal antibody 
trastuzumab (Herceptin), directed against the HER2-receptor, is not likely to be an effective 
therapeutic agent in osteosarcoma.  



Overexpression of the HER-2 oncogene does not play a role in high-grade osteosarcomas

139

R1
R2
R3
R4
R5
R6
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R40
R41
R42
R43
R44

Introduction

Osteosarcoma (OS) is the most common primary bone tumour, with an incidence of (on 
average) 6.5 patients per 106 children and 2.1 patients per 106 per year in adults. The peak 
incidence is between 10 and 19 years, and when it occurs after 40 years, it is usually associated 
with a pre-existing condition (1). Metastatic disease, large tumor volume, older age at 
presentation, axial site of the tumour, histological subtype of OS and histological response on 
preoperative treatment all have been associated with poor outcome (2-4). However, apart from 
metastatic disease and axial site, that occur in 10-20% of the cases, none of the other factors 
have been reliable enough to distinguish between high and low risk groups at diagnosis (2, 3). 
Chemotherapy induced tumour cell necrosis can be assessed only after surgery. Consequently, 
there is clearly a need to identify new predictive factors at time of diagnosis (2).
With the recent progress in the understanding of molecular biology of cancer, the cell surface 
receptor HER2 (also called p185HER2) has suggested to be predictive for survival (5-7). 
The HER-2 gene (also known as ERBB2 or neu gene), located on chromosome 17q21 (8) 
encodes for a 185kD transmembrane receptor (9) and belongs to the epidermal growth 
factor (EGF) tyrosine kinase receptor superfamily (10). HER-2 is an oncogene, and HER2 
overexpression in vitro (11) and in human cancers, particularly in 25-30% of breast cancer 
patients, has been associated with disease behavior (12). 
Overexpression of the normal HER2 receptor at the cellular membrane, above a critical level, 
results in cellular transformation and malignant cell proliferation in athymic 
mice (13). This oncogenic effect can be reverted by the use of monoclonal antibodies, directed 
against the HER2 protein (14). Furthermore, both in vitro and clinical studies have reported 
increased response rates to chemotherapeutic drugs when these are combined with anti-
HER2 antibodies (15). Based on these results, and reports that HER-2 is overexpressed in 
osteosarcoma, phase II trials have begun to study the efficacy of Herceptin® (trastuzumab), 
the commercial designation of humanized HER2 monoclonal antibody, in patients with 
relapsed or refractory osteosarcoma (6, 16) (www.cancer.gov/clinical_trials: MSKCC-99097/
NCI-T98-0083 and COG-AOST0121).
Four studies have suggested that HER-2 is overexpressed in osteosarcoma, however they report 
different correlations between HER-2 overexpression and prognosis (5-7, 17). Furthermore, 
other investigators have not been able to confirm their conclusions (16, 18, 19). In order to 
clarify these conflicting results and to investigate whether trastuzumab is a suitable therapy in 
osteosarcoma, we studied the expression of the HER-2 gene by assessing gene amplification, 
mRNA- and protein expressions of HER2 in 30 patients. 
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Patients and Methods

Patients
All patients presented to the Department of Orthopedic Surgery of the Leiden University 
Medical Center with newly diagnosed high-grade osteosarcoma of the limbs (n=32) and the 
os ileum (n=1) from 1991 to 1999 (Table 1). Diagnosis was made on routine haematoxilin-
eosin (HE) staining in 15 pre-treatment Yamshidi core needle biopsy specimens (group A) 
and in 18 resection specimens (group B) of the primary (n=12) or relapsed (n=6) tumour. If 
eligible, patients were offered participation in running European Osteosarcoma Intergroup 
(EOI) studies, such as Europeran Organization for Research and Treatment of Cancer 
80861 (20)and 80871 studies (21), the EOI phase II study of intensive chemotherapy with 
granulocyte-colony stimulating factor (G-CSF) (22) or the recently closed EORTC 80931 
trial (23). Patients who did not enter a trial (either refused or were not eligible) were offered 
short intensive courses of chemotherapy. One patient did not receive chemotherapy because 
of advanced age. Another patient was treated with doxorubicin only as palliative therapy. 
Histological response after pre-operative chemotherapy was determined in the resection 
specimens by a reference pathologist using a modified Huvos grading system. A good 
response was defined if less than 10% viable tumour cells were seen in the post chemotherapy 
specimens, whereas a poor response was present in cases where there were 10% or more viable 
tumour cells. Only patients with a poor response were selected in group B because HER2 
status can only be assessed on viable cells, i.e. chemotherapy-resistant cells, and not on necrotic 
samples. HER2-status was assessed in the biopsy (group A), or resection (group B) specimens.

RNA extraction 
RNA was isolated from 30 sections of 20 μm snap frozen fresh osteosarcoma tissue sections, 
using Trizol reagent (Invitrogen®) according to the manufacturer’s instruction. For isolation of 
mRNA, only tissue containing more than 50% of tumour cells was selected.

Quantification of HER2 transcripts with TaqMan Real-Time PCR
HER2 expression was determined by quantitative real-time PCR (qPCR) using cDNA, 
synthesized from 2.5 mg reverse-transcribed total RNA in a 100 ml reaction containing 
20 ml first-strand RT-PCR buffer (GIBCO), 10 ml 0.1 M dithiothreitol (DTT), 10 ml 10 
mM deoxynucleotide triphosphate (dNTP), 25 ml 50 mM random hexamers (PE/Applied 
Biosystems), 100 U RNAsin (PE/Applied Biosystems), 500 U Superscript II reverse 
transcriptase (GIBCO). Incubation was for 10 min at room temperature, 60 min at 42oC 
and 5 min at 95oC. Porphobilinogen deaminase (PBGD), a housekeeping gene, was used as 
reference in a parallel reaction to quantify the relative results from real-time PCR for HER2. 
The primers and probe for PBGD were described previously (24). Primers for HER-2 
amplification, derived from Genbank accession number X03363, were 5’-GGC CTG CGG 
GAG CTG-3’ (forward) and 5’-TCC GCT GGA TCA AGA CCC-3’ (reverse) resulting in a 
product of 67 base pairs, detected by the probe (5’-TCC TTT CAA GAT CTC TGT GAG 
GCT TCG AAG-3’ labelled with FAM and the quencher TAMRA. A PCR reaction consisted 
of 25 ml and contained 2.5 ml cDNA, 7.5 pMol of forward and reverse primer, 7.5 pMol of 
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TaqMan probe (PE/Applied Biosystems) and 12.5 ml TaqMan Universal PCR Mastermix 
(PE/Applied Biosystems). PCR was performed up to 50 cycles of 15 s 95oC and 1 min 60oC 
on a ABI PRISM® 7700 Sequence Detection System. SKBR3, a breast carcinoma cell line 
with 4-10 fold HER-2 gene amplification and 128 fold over-expression of HER2-mRNA 
(25) was used as reference for HER2 expression. Serial dilutions of cDNA generated from 
SKBR3 mRNA resulted in a calibration curve for HER2 real time PCR values. Real-time 
PCR results from PBGD were used to quantify the amount of cDNA in each sample. The 
cell line MCF7 expresses normal levels of HER2-mRNA (25) and was used as a negative 
control for HER2 overexpression.

Immunohistochemical analysis
Paraffin-embedded, formalin-fixed tissue samples were used for immunohistochemical (IHC) 
analysis. These were retrieved from the department of Pathology. Bony specimens, that were 
resected, were decalcified according to routine laboratory methods, using formic acid. All 
IHC assays were performed on 5 μm tissue sections, mounted on APES coated slides. Plasma 
membrane associated staining for HER2 was performed using DAKO HERCEPTEST® 
(Glostrup, Danmark) according to the manufacturer’s instructions. HER2 staining was scored 
as 0, 1+, 2+ or 3+, according to the scoring system provided with DAKO HERCEPTEST®. 

FISH for HER-2 gene amplification
One of the tumours showed a 2+ staining result for HER2. FISH was performed with a 
section from this specimen using the Vysis® FISH test kit for the detection of HER-2 gene 
amplification, according to the manufacturer’s instructions. Using a fluorescence microscope, 
the HER2 copy numbers and the centromere chromosome 17 copy numbers were counted in 
the tumour cells.

Results

Patients
Patient clinical characteristics and outcome are listed in Table 1. Biopsy samples of 15 
patients (group A) were studied. All 15 samples (ID no 1-15) were from primary tumours, 
three of which later relapsed (nos. 5, 12 and 15). Samples of group B consisted of 12 post 
chemotherapy resection of osteosarcomas or specimens of pulmonary (nos. 21 and 29), distant 
bone (no. 24) or locally (no. 17, 31 and 32) relapsed patients. From the latter 3 patients, biopsy 
samples at primary diagnosis are in the upper panel (nos. 5,12 and 15, respectively). The mean 
age of the patients in group A was lower (mean 22 years, range 7-48 year) than those in group 
B (mean 37 years, range 14-82 year). The localisation of the osteosarcomas was similar in both 
groups, mainly in the femur (in 80% and 72% in group A and B respectively). Other sites 
were the tibia in 2 cases in each group and in the humerus, clavicle and pelvis. Histological 
subtyping was high-grade conventional in all the cases in group A, except one sample that was 
high-grade osteoblastic. In group B, four samples were of the teleangiectatic, and one had a 
malignant fibrous histiocytoma (MFH)-like subtype (see table 1).
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HER2 mRNA expression
HER2 mRNA expression was assessed by real-time PCR, using RNA from the osteosarcoma 
specimens. The mean absolute value for HER2 mRNA expression in group A is 0.017 (range 
0.003 – 0.034) and 0.025 (ranging 0.001 – 0.105) in group B. The values of HER2 expression 
in both groups were similar to the HER2 expression in the breast cancer cell line MCF7 that 
has a HER2 expression value of 0.014. None of the tumour samples had values in the same 
range as the HER2-overexpressing cell line SKBR3, which was set at 1.0 in this study. All 
values fell within the range of normal HER2 expression, similar to the expression observed 
in normal breast tissues. Even the highest value of HER2 expression in group B (0.105) can 
be regarded as not being overexpressed particularly as no protein expression was seen in this 
sample. 

Immunohistochemistry
Three of the 33 samples were lost after immunostaining during retrieval procedures. In an 
additional three samples, no vital tumor was left on the histological section. IHC was not 
repeated in these samples. Nearly all of the samples showed no HER2 plasma membrane- 
associated staining. An example of negative immunostaining is shown in Fig. 1(a). Fig. 1(b) 
shows positive membrane staining in a control breast cancer sample with proven HER-2 gene 
amplification. This represents a 3+ score. Only one osteosarcoma sample (patient no. 4) shows 
moderate positive immunostaining of the membrane, which was scored as 2+ (Fig. 1(c)). 
Focal cytoplasmatic IHC positivity was seen in two other samples, but as discussed previously, 
this was not considered as positive for HER2 overexpression.

FISH
Fluorescent in situ hybridisation (FISH) was performed in the osteosarcoma sample with 2+ 
positive membrane staining, and did not show any HER-2 gene amplification.
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FiGUre 1. 

Immunohistochemical staining for HER-2 protein expression: (a) osteosarcoma negative for HER-2; 

(b) breast cancer sample positive for plasma membrane-associated HER-2 expression (score 3+ ); (c) 

osteosarcoma from patient no. 4 with moderate positive expression of HER-2 (score 2+).

of some of the studies and may be explained by metho-
dological differences.
The HER2 status in the published studies has been

assessed mainly by IHC. These studies differed con-
siderably in their use of antibody and quality controls,
scoring systems, interpretation of positivity of the sam-
ple and validation of the IHC result. In breast cancer,
HER2 testing and standardisation of the method used
has been an important issue, because only patients with
HER2 overexpression are eligible for trastuzumab1

treatment [33]. The quality of the antibody used is
important, since a high rate (up to 40%) of false-posi-
tive tests have been reported, due to variable sensitiv-
ities [34]. False-positive cases are particularly noted
when moderate (e.g. IHC2+) positivity occurs, and in
these cases confirmation of the positive result with other
tests is required [35].
Six different scoring systems to assess HER2 pos-

itivity have been used in OS studies [5–8,18]. Inter-

pretation of the stained samples may have a high
interobserver variability and a low rate of reproduci-
bility [36,37]. This particularly occurs when the staining
is heterogeneous, weakly-positive, in non-malignant
cells, cytoplasmic staining or when retraction artifacts
occur [38]. Cytoplasmic immunostaining is considered
to be an IHC artefact [20,39], and only complete mem-
brane staining should be counted as positive when
interpreting the results [38]. Only one of the five OS
studies that scored membrane staining specifically,
reported any positive results [6]. However, a poorly
characterised antibody, 5B5, was used in this particular
study and this antibody has not been used in any other
studies.
Most of the OS studies included the mandatory posi-

tive and negative controls for IHC, usually a patient
sample with and without known HER2 overexpression.
However, our series was the only one to use positive and
negative cell lines as controls.

Fig. 1. Immunohistochemical staining for HER-2 protein expression: (a) osteosarcoma negative for HER-2; (b) breast cancer sample positive for

membrane-associated HER-2 expression (score 3+); (c) osteosarcoma from patient no. 4 with moderate positive expression of HER-2 (score 2+).

J.K. Anninga et al. / European Journal of Cancer 40 (2004) 963–970 967

discussion.

In this study, a single case of moderately (2+) positive membrane staining was recorded (fig. 
1c). However, quantitative RT-PCR or FISH analysis could not confirm HER2-mRNA 
overexpression or HER-2 gene amplification, respectively, suggesting this was a false- positive 
immunostain.
Usually, the HER2 protein is overexpressed as result of HER-2 gene amplification and 
concomitant elevated mRNA expression (26). Nevertheless, protein overexpression has been 
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reported in the absence of gene amplification (12, 27-29). Interestingly, clinical studies suggest 
that cases with HER-2 gene amplification have a poor outcome, whereas patients who show 
protein expression without gene abnormalities do not have an increased risk for a more 
aggressive disease course and death (30, 31).
HER2 status in osteosarcoma has been investigated in 8 other clinical studies (5-7, 16-19, 
32) (Table 2).In five of these studies, HER2 overexpression was reported to occur in 42%-
63% of the patients with primary non-metastatic osteosarcoma, and in 10%-58% of the cases 
that had pulmonary metastases at diagnosis (6, 7) or had relapsed (5, 17, 32). Three studies 
correlated HER2 overexpression with a poor response to pre-operative chemotherapy and a 
poor outcome (5, 6, 32). Remarkably, two other studies conclude that HER2 overexpression 
predicts better survival and is less frequent in metastatic disease (7, 17).
In four remaining osteosarcoma studies, including ours, no HER2 overexpression could be 
demonstrated (16, 18, 19). These inconsistent findings regarding the HER2 status and its 
significance in osteosarcoma raise questions about the reliability of some studies and may be 
explained by methodological differences. 
The HER2 status in the published osteosarcoma studies has been assessed mainly by IHC. 
These studies differ considerably in use of antibody and quality controls, scoring systems, 
interpretation of positivity of the sample and validation of IHC result. In breast cancer, HER2 
testing and standardization of its method has been an important issue, because only patients 
with HER2 overexpression are eligible for trastuzumab treatment (33). The quality of the 
antibody used is important, since a high rate (up to 40%) of false positive test results has been 
reported, due to a highly variable sensitivities (34). False positive cases are particularly noted 
when moderate (e.g. IHC2+) positivity occurs, and in these cases confirmation of the positive 
result with other tests is required (35). 
Six different scoring systems to assess HER2 positivity have been used in the osteosarcoma 
studies (5-7, 17, 32). Interpretation of stained samples may have a high inter-observer 
variability and low rate of reproducibility (36, 37). This particularly occurs when the staining 
is heterogeneous, weakly positive, in non-malignant cells, cytoplasmatic staining or when 
retraction artifacts occur (38). Cytoplasmatic immunostaining is considered to be an IHC 
artefact (19, 39), and only complete membrane staining should be included when interpreting 
results (38). Only one of the five studies in osteosarcoma that scored membrane staining 
specifically, reported to have positive results (6). However, a poorly characterized antibody, 
5B5, was used in this particular study and this antibody has not been used in other studies.
Most of the ostesarcoma studies included the mandatory positive and negative controls for 
IHC, usually a patient sample with and without known HER2 overexpression. However, our 
series is the only one to use positive and negative cell lines as a control.
Validation of the IHC HER2 results by the use of other assays was done in four out of eight 
studies (5, 18, 19, 32). Validation assays included were immunoblotting (IB), single-stranded 
conformation polymorphism (SSCP) and Southern blotting (SB) (5), RT-PCR (19), and 
Fluorescent In Situ Hybridization (FISH) (18, 32). Except for one study that used FISH (32), 
no evidence for HER2 overexpression was found in the other validation analyses. 
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This confirms the results of our study, that showed no HER2 mRNA overexpression, assessed 
with a quantitative Real-Time-PCR technique, which is the only method, mentioned above 
that quantitatively assess HER2 mRNA expression (40). 
FISH has proven to be an accurate and reproducible assay to detect HER-2 gene amplification 
(41). Zhou and colleagues found HER-2 gene rearrangement in seven of 12 tested samples, 
but unusual criteria were used to define the HER-2 gene amplification (32). Accurate 
determination of low level HER-2 gene amplification using FISH, requires assessment of 
HER-2 copy number relative to chromosome 17 centromere number to distinguish between 
HER2 gene amplification and aneusomy of chromosome 17 (41), which frequently occurs in 
osteosarcoma (42). Furthermore, HER-2 gene amplification in HER2-overexpressing breast 
cancers is usually observed in the most of the tumour cells (41).
Thus to conclude, our results show that HER2 does not play a role in the tumour biology 
of osteosarcoma and that pilot studies, using trastuzumab, as a drug with potential tumour- 
inhibiting properties, are not likely to benefit to patients with this bone tumuor. 
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Abstract

Background. Osteosarcomas of hands or feet are rare and seemingly these cases differ in 
presentation and behavior compared to the usual location. 

Methods and materials. Clinico-pathological presentations of patients with osteosarcomas 
of the hand or foot were studied and compared with published cases. 

Results. Forty osteosarcomas were identified among 4.221 cases, representing 0.95% of all 
osteosarcomas. Thirty of these were well-documented. Mean age at diagnosis was 43 (hands) 
and 36 (feet) years and male-female ratio was 1.2:1 and 2.0:1 respectively. In the hand 62% 
of the osteosarcomas presented in the metacarpals, 23% in the phalanges, and only 2 cases 
occurred in the carpal bones. Distribution in the foot was tarsal bones 56%, metatarsal bones 
33% and phalanges 11%. Of the cases in the hand, 54% were of high-grade, and of those in the 
foot 71%. Survival of osteosarcomas of the hand or foot was 81%. Only patients with high-
grade osteosarcoma died of disease. Histological grade was the only significant variable, related 
to survival. High-grade osteosarcoma of the hand or feet should be treated similar to those in 
conventional sites. 

Conclusion. Osteosarcomas of hands or feet are rare and in a relative high proportion low-
grade. Survival in high-grade cases is comparable to conventional sites.
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Background

Osteosarcoma is rare, accounting for less than 1% of adult malignancies and 3%-6% at the 
pediatric age, with peak incidences in adolescence and after 60 years of age. Of skeletal 
tumours in the hand or foot 13%-15% are malignant, most of these are chondrosarcomas. 
Between 0.3%-2.0% of tumors at these sites are osteosarcoma (1, 2). The incidence of 
osteosarcoma in the bones of the hand and foot has been reported to be low, around 0.9% (2, 
3), and its histology appears to be unusual (4-21). 
Against this background, osteosarcoma of the hand or foot is clinically unexpected and 
the diagnosis is often delayed or initially erroneous (5, 18, 19, 22-28), leading to delayed or 
inappropriate treatment decisions (18, 27, 29). The rarity of osteosarcoma at this site also has 
led to a debate about the appropriate treatment of osteosarcoma, which obviously cannot be 
assessed in large case series. Hand and foot osteosarcomas have been considered prognostic 
favorable (5, 13, 30), but numerous case reports demonstrated fatal outcome (5, 10, 12, 31-33).
To obtain a better insight in hand and foot osteosarcoma, we studied all cases from two large 
case registries and clinical and pathological data of this cohort were compared with the 
combined data from the literature. A treatment recommendation is given based on the results 
of this study. 

METHODS

Patient data
Patient cases were retrieved from the Netherlands Nationwide Computerized Archive for 
Pathology (PALGA) over the period 1984-2010, looking for the search terms “Osteosarcoma” 
and “Hand” or “Foot”. To be included in the data base, a patient had to have been diagnosed 
with an osteosarcoma based on biopsy or resection specimen, according to the WHO-
classification (34) and ESMO Clinical Practice Guidelines for diagnosis, treatment and 
follow-up of bone tumours (35). Staging procedures had been done according to the ESMO 
guidelines, including chest radiographs, Computed Tomograms (CT) of the lungs and 99mTc-
bone scintigraphy. All cases that were not localized in either the hand or foot were excluded, 
as well as those with an incorrect histological diagnosis (Supplemental figure). A similar search 
strategy was executed on the data base of the Netherlands Committee on Bone Tumors 
(NCBT), containing 1.733 osteosarcomas over the period 1953-2010. Double registries were 
identified and reduced to a single entry. The clinical data were updated and the radiology and 
pathology reports of patients were reviewed (JKA, HMJAK, HG).
The clinical and follow-up data, the radiology and pathology reports from the Istituto 
Ortopedica Rizzoli (IOR), in Bologna, Italy were reviewed (PP, MA, DV). This data base 
contains well documented files of 2.240 patients with osteosarcoma of all grades, which had 
been treated in the IOR, as well as and 248 consultation cases covering the period from 1980-
2010.
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Statistical analysis
A competing risk model was employed to estimate the cumulative incidence of death due 
to treatment failure (36, 37). Competing risks are applied to situations where more than one 
competing endpoints are possible. In our situation there are two different endpoints: death 
due to disease and death due to other causes. The occurrence of death due to other causes 
prevents the occurrence of the event of interest (death due to disease). We are interested in the 
probability of death due to disease in the presence of the competing event death. 
All analyses concerning competing risk model have been performed using the mstate library 
(38, 39). SPSS-18 was used for the remaining statistical analysis. 

RESULTS

Patient data
The cohort consists of 10 cases from the Dutch data bases, 20 cases from the IOR and 10 
cases from the IOR consultation files. This adds up to 40 cases of osteosarcoma in the hand or 
foot among a total of 4.221 osteosarcoma cases (0.95%), 13 of which in the hand (0.31%) and 
27 in the foot (0.64%). 

Patient characteristics, clinical and pathologic data
Clinical features (Table 1 and 2)
Gender. The ratio of male (n=25) to female (n=15) patients was 1.67:1. In the hand, an 
almost equal number of male (n=7) and female patients (n=6) is found (ratio male:female 
= 1.16:1, Figure 1a). In the foot more patients were male (n=18) than females (n=9, ratio 
male:female = 2.0:1, Figure 1b).

Age. The age distribution of the patients is shown in Figure 1c. The mean age ± standard 
deviation (SD) of all patients in this series was 38.2 ± 17.6 years, ranging from 9-74 years. 
The mean age of patients with osteosarcoma of the hands was higher than that of patients 
with osteosarcoma of the foot (mean age 42.3 ± 23.6 years [9-74 years] vs. 36.3 ± 16.2 years 
[17-68 years] respectively). 
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Table 1.  

Clinical and radiological data from 30 well document patients. Extracomp = 

extracompartimental, intracomp = intracompartimental, prox = proximal.

Gender 
(F/M)

Age         
(years)

Duration of complaints 
before diagnosis (months)

Tumor 
localization Radiology 

Osteosarcoma Hands

M 39 12 Scaphoid mixed, extracomp, size 3x3x3 cm

F 47 4 Metacarpus 3 mixed, extracomp, size 3,5x2x1,5 cm

F 36 6 Metacarpus 2 lytic, extracomp, size 3x1,5x1,5 cm

F 63 9 Scaphoid mixed, intracomp, size 1,5x1,5x1 cm

F 74 12 Metacarpus 3 
mixed, cortex destruction, soft tissue mass 
with calcification, 6x6x7 cm

M 13 2 Phalanx 3, middle
permeative, cortex destruction, soft mass, 
1x1x2 cm

F 58 36 Phalanx 4, prox
inhomogeneous sclerotic, well defined, 
1.4x1.4x3cm

M 49 NA Metacarpus 2 2.5x2.5x2.5 cm

M 58 12 Metacarpus 3 
sclerotic, cortex destruction, soft tissue 
mass with calcification, 6.5x2x2 cm

M 61 12 Phalanx 5, prox
lytic/osteoblastic destruction, soft tissue 
mass with calcification, 2.5x3x2.5 cm

M 9 3 Metacarpus 3 sclerotic, expansive, 4x2.5x2.5 cm

Osteosarcoma Foot

F 18 16 Calcaneus sclerotic,extracomp, size 6x4x4 cm

M 37 37 Talus lytic, extracomp, size 4x4x3 cm

M 17 3 Cuboid mixed, extracomp, size 8x6x5 cm

M 30 4 Talus lytic, extracomp, size 4x3,5x3,5 cm

F 47 24 Metatarsus 5 lytic, extracomp, size 3x2x2 cm

F 34 9 Cuboid mixed, extracomp, size 4x2,5x2,5 cm

M 57 30 Cuboid mixed, extracomp, size 6x4x3 cm

M 38 6 Cuneiform 2 lytic, extracomp, size 3x2x1,5 cm

F 50 8 Metatarsus 2 mixed, extracomp, size 3x1,5x1,5 cm

M 25 20 Metatarsus 2 mixed, extracomp, size 3x1,5x1 cm

M 20 3 Calcaneus mixed, intracomp, size 5x3x3 cm

M 53 12 Calcaneus mixed, extracomp, size 5x4x4 cm

M 28 6 Metatarsus 2 sclerotic, extracomp, size 1,5x1,5x1 cm

M 20 48 Metatarsus 1 lytic, extracomp, size 2x2x2 cm

F 24 12 Calcaneus lytic, intracomp, size 4x3x2 cm

M 26 3 Metatarsus 2 mixed, intracomp, size 2x1x1 cm
M 37 6 Phalanx 3, prox permeative, cortex destruction, soft tissue 

mass, calcification 3x2.5x2.5 cm

M 19 accidentally Metatarsus 1 lytic, 2x2x4.5 cm

M 18 2 Calcaneus soft tissue mass, 4.5x3x3 cm
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Table 2.  

Clinical and histologic data of 10 patients with osteosarcoma of hand or foot. Data from the 

consultation files from IOR/Rizzoli Orthopedic Institute.

Gender (F/M) Age (years) Localization tumour histology

Osteosarcoma Hand

M 14 Metacarpus 1 Osteoblastic OS

F 39 Metacarpus 2 Peri-osteal OS

Osteosarcoma Foot

M 68 Phalanx I, Prox Osteoblastic OS

F 64 Talus Osteoblastic OS

F 64 Calcaneus Osteoblastic OS

F 17 Cuboid Chondroblastic OS

M 54 Calcaneus LG Central OS

F 46 Metatarsal 2 LG Central OS

M 42 Phalanx I, Prox LG Central OS

M 26 Metatarsal 1 LG Central OS

LG = Low grade, prox = proximal.
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Figure 1. 

Gender distribution of the study patients with an osteosarcoma of the hands (n=13; Figure 1a) or the feet 

(n=27; Figure 1b). Figure 1c shows the age distribution of the patients in this study, divided in decades.

1b1a

1c

Fig. 1.
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Duration of history of symptoms. All patients complained of pain, either with or without 
swelling. One case was an incidental finding. For the 30 cases for which this information was 
available, the average duration of symptoms was 13 months (range 2-48 months), before a 
diagnosis of osteosarcoma was made, shorter in osteosarcoma of the hand (11 months [2-36 
months]) than in those of the foot (14 months [2-48 months]). 

Location of the osteosarcoma in the bones of hand and foot. Figure 2a shows the site 
distribution of our cases of osteosarcoma in the hand compared to the literature. Eight cases 
(62%) were located in the metacarpals, 3 (23%) in the phalanges and 2 (15%) in the scaphoid 
bones. In the foot (Figure 2b), 15 cases (54%) were located in the tarsal bones, 10 (36%) in the 
metatarsals and 3 (11%) in the phalanges. 

Figure 2. 

Distribution of 65 cases of the osteosarcomas of the hand (literature n=52, black balls and this series 

n=13, gray balls; Figure 2a) and 80 cases of osteosarcomas in the foot (literature n=53, black balls, and this 

series n=27, gray balls; Figure 2b). Question marks before a figure means no exact location otherwise than 

type of bone given. 

2a 2b

Fig. 2.
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Localized and metastatic osteosarcoma. Of 29 patients with known disease status, 2 
(6.9%) had pulmonary metastases at the time of diagnosis. One case was from a primary grade 
2 osteosarcoma of the first metatarsus of the foot, the other was from a high-grade osteoblastic 
osteosarcoma of the cuboid.
 
Radiological features (Table 1,Figures 3a-c and Figures 4a-c)
Radiologically, the lesions were mixed lytic and sclerotic or sclerotic on conventional 
radiographs. Pure radiologically sclerotic lesions (Figure 3a) sometimes preceded a definitive 
mixed appearance later in the course of the disease (Figures 3b and 3c). In nearly all cases, 
soft-tissue extension was observed on radiology. In one case, MRI showed minimal cortical 
destruction, but a large soft tissue mass around the abnormal calcaneus (Figures 4a and 4b). 
To differentiate between a primary soft tissue process with secondary bone involvement and 
primary bone disease with secondary soft tissue involvement, a subsequent performed CT-scan 
showed mineralization in the soft tissue mass (Figure 4c), highly suggestive for osteosarcoma.

Histology (Table 2 and 4, Figures 3d-e and Figures 4d-e)
A biopsy was performed in all the patients after radiology indicated malignancy. In 26 cases 
(65%) a high-grade osteosarcoma was diagnosed, in 2 (5%) an intermediate-grade and in 12 
(30%) a low-grade osteosarcoma (Table 3). Of the 13 osteosarcomas of the hand, 7 (54%) 
were high-grade lesions, 6 of which of the high-grade conventional subtype (osteoblastic 
(n=4) or chondroblastic (n=2)) and one small cell osteosarcoma. Two periosteal osteosarcomas 
(intermediate grade) were localized in metacarpal bones and 4 low-grade central 
osteosarcomas in the carpal (n=1), metacarpal (n=2), or phalangeal (n=1) bones of the hand. 
Figures 3d and 3e illustrate a low-grade osteosarcoma of the 4th proximal phalanx from the 
patient with inhomogeneous mineralization of the phalanx.
Of the 27 cases of the foot, 19 (70%) were high-grade, of which 15 high-grade conventional 
osteosarcomas (osteoblastic (n=12), chondroblastic (n=2), fibroblastic (n=1)) and the 4 others 
high-grade unconventional osteosarcomas (osteoblastoma-like (n=1), small cell (n=1), and 
telangiectatic (n=2)). Figures 4d and 4e illustrate an osteoblastic osteosarcoma of the calcaneus. 
Eight (30%) were low-grade central osteosarcomas, but intermediate-grade osteosarcomas 
were not found in the feet. 
In 4 patients a diagnosis of osteomyelitis, osteoblastoma, enchondroma or dedifferentiated 
chondrotumour was made prior to the diagnosis of osteosarcoma, suggesting progression from 
a benign to a malignant lesion.
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FiGUre 3A-e. 

Osteosarcoma of the hand of a 58 years old female patient. 

Figure 3a is the first conventional radiograph in 2006 of a this patient and demonstrates a well-defined, 

predominantly sclerotic lesion of the proximal phalanx of the 4th finger. Figure 3b is the conventional 

radiograph three years later. The lesion shows considerable growth. Figure 3c is the sagitally reformatted 

CT, 4 months later as 3b, showing thickening of the phalanx with inhomogeneous mineralization, a 

solid periosteal reaction but no soft-tissue mass, suggestive of osteosarcoma arising from fibrous dysplasia. 

Figure 3d. Lightmicrograph demonstrating in an overview tumour cells, infiltrating and permeating in the 

cortex (upper part of the image). The tumour is moderately cellular towards the cortex and the osteoid 

producing tumour cells contain round to oval nuclei, some of these containing nucleoli. Figure 3e. In the 

center of the specimen the tumour cells intervene with the pre-existent lamellar bone. There is light to 

moderate cellular pleomorphism. Tor exclude a pre-existing fibrous dysplasia, the characteristic mutation 

analysis of exon 8 and 9 of the GNAS gene was negative.

Fig 3.
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Table 3.  

Clinico-pathological characteristics of cases with OS of the hand or foot. The data 

from literature are retrieved from case reports or larger series. For references, see under 

Discussion. High grade conventional includes osteoblastic, chondroblastic, fibroblastic 

and not otherwise specified subtype. High grade unconventional includes osteoblastoma 

resembling, sclerotic, telangiectatic and small cell osteosarcoma. SD = standard deviation.

HAND FOOT

 
this series 
(n = 13)

literature 
(n = 56)

this series 
(n = 27)

literature 
(n = 53)

Mean age ± SD (years) 42.3 ± 20.3 43.3 ± 23.6 36.3 ± 16.2 28.2 ± 16.6

Male : Female 1.16 : 1 1.38 : 1 2.00 : 1 1.65 : 1

Duration symptoms (range) months 11(2-36) 21(0.1-96) 14(2-48) 22(0.5-144)

Bones affected (%)

   Carpal/talar 15% 8% 56% 72%

    Metacarpal/metatarsal 62% 46% 33% 17%

    Phalanges 23% 46% 11% 11%

Histology (number/%) 13 33 27 51

    High Grade conventional 6 (46%) 19 (58%) 15 (56%) 33 (64%)

    High Grade unconventional 1 (8%) 1 (3%) 4 (15%) 7 (14%)

    High Grade surface - 2 (6%) - -

    Periosteal OS 2 (15%) 2 (6%) - -

    Low grade central 4 (31%) 2 (6%) 8 (29%) 7 (14%)

    Parosteal - 7 (21%) - 4 (8%)



Chapter 6

164

R1
R2
R3
R4
R5
R6
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R40
R41
R42
R43
R44

Table 4.  

Treatment and outcome of 30 cases of OS of hand or foot. LG = low-grade. Dox = 

doxorubicin, CDP = cisplatin, HD-MTX = high-dose methotrexate, Ifo = ifosfamide, Cycl = 

cyclophosphamide, ACT-D = actinomycine-D, Adj = adjuvant, Neo-adj = neo-adjuvant, Pre-

Op = preoperative, DOD = died of disease, DOC = death other cause, NED = no eveidence 

of disease, PD = progressive disease. EURAMOS-1 for chemotherapy: see www.euramos.org.

histology OS surgery chemotherapy
outcome 
(NED/DOD)

duration FU 
(months)

Osteosarcoma Hands

Chondroblastic amputation Dox,CDP HD-MTX-IFO (Adj) DOD 42

LG Central marginal resection no NED 104

LG Central wide resection no NED 64

LG Central wide resection no NED 16

Chondroblastic wide excision no DOC 64

Small Cell amputation Dox,CDP x 4 (Adj) NED 176

LG Central wide resection no NED 10

Osteoblastic marginal resection NA NA NA

Peri-osteal resection no DOC 156

Osteoblastic wide resection no DOD 42

Osteoblastic incomplete (biopsy) no DOD 48

Osteosarcoma Foot

Osteoblastic amputation Dox,CDP HD-MTX (Neo-adj) NED 148

Osteoblastic amputation LD-MTX, CDP (Adj) NED 115

Osteoblastic amputation Dox,CDP,IFO (Adj) NED 248

Telangiectatic amputation Dox,BLEO,CYCL,ACT-D (Adj) DOD 20

Chondroblastic amputation (2-ray) Dox, CDP,IFO (pre-Op) NED 134

Osteoblastic amputation Dox,CDP, IFO (Neo-Adj) DOD 13

Fibroblastic amputation Dox,CDP,IFO (Neo-Adj) DOC 27

Osteoblastic marginal resection Dox,CDP,HD-MTX (+Ifo)(Neo-Adj) NED 34

Osteoblastic wide resection Dox,CDP,IFO (Neo-Adj) NED 24

Osteoblastic wide resection no NED 76

Telangiectatic wide resection Dox,CDP,HD-MTX (Neo-Adj) NED 109

Fibroblastic amputation Dox,CDP,IFO (Adj) NED 171

LG Central wide resection no NED 320

LG Central marginal resection Dox,CDP,MTX (Adj) NED 294

LG Central curettage no NED 86

LG Central wide resection no NED 117

Small Cell OS wide resection EURAMOS-1 (Neo-Adj) NED 37

Osteoblastoma-like amputation EURAMOS-1 (Neo-Adj) PD 85

Osteoblastic wide resection EURAMOS-1 (Neo-Adj) NED 13
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Table 4.  

Treatment and outcome of 30 cases of OS of hand or foot. LG = low-grade. Dox = 

doxorubicin, CDP = cisplatin, HD-MTX = high-dose methotrexate, Ifo = ifosfamide, Cycl = 

cyclophosphamide, ACT-D = actinomycine-D, Adj = adjuvant, Neo-adj = neo-adjuvant, Pre-

Op = preoperative, DOD = died of disease, DOC = death other cause, NED = no eveidence 

of disease, PD = progressive disease. EURAMOS-1 for chemotherapy: see www.euramos.org.

histology OS surgery chemotherapy
outcome 
(NED/DOD)

duration FU 
(months)

Osteosarcoma Hands

Chondroblastic amputation Dox,CDP HD-MTX-IFO (Adj) DOD 42

LG Central marginal resection no NED 104

LG Central wide resection no NED 64

LG Central wide resection no NED 16

Chondroblastic wide excision no DOC 64

Small Cell amputation Dox,CDP x 4 (Adj) NED 176

LG Central wide resection no NED 10

Osteoblastic marginal resection NA NA NA

Peri-osteal resection no DOC 156

Osteoblastic wide resection no DOD 42

Osteoblastic incomplete (biopsy) no DOD 48

Osteosarcoma Foot

Osteoblastic amputation Dox,CDP HD-MTX (Neo-adj) NED 148

Osteoblastic amputation LD-MTX, CDP (Adj) NED 115

Osteoblastic amputation Dox,CDP,IFO (Adj) NED 248

Telangiectatic amputation Dox,BLEO,CYCL,ACT-D (Adj) DOD 20

Chondroblastic amputation (2-ray) Dox, CDP,IFO (pre-Op) NED 134

Osteoblastic amputation Dox,CDP, IFO (Neo-Adj) DOD 13

Fibroblastic amputation Dox,CDP,IFO (Neo-Adj) DOC 27

Osteoblastic marginal resection Dox,CDP,HD-MTX (+Ifo)(Neo-Adj) NED 34

Osteoblastic wide resection Dox,CDP,IFO (Neo-Adj) NED 24

Osteoblastic wide resection no NED 76

Telangiectatic wide resection Dox,CDP,HD-MTX (Neo-Adj) NED 109

Fibroblastic amputation Dox,CDP,IFO (Adj) NED 171

LG Central wide resection no NED 320

LG Central marginal resection Dox,CDP,MTX (Adj) NED 294

LG Central curettage no NED 86

LG Central wide resection no NED 117

Small Cell OS wide resection EURAMOS-1 (Neo-Adj) NED 37

Osteoblastoma-like amputation EURAMOS-1 (Neo-Adj) PD 85

Osteoblastic wide resection EURAMOS-1 (Neo-Adj) NED 13

Treatment and follow-up of the patients
Radical surgery of the lesions was by amputation in 11 (37%) of 30 cases, all high grade 
tumors. Wide resection was performed in 12 cases with involvement of osteosarcoma in the 
small tubular bones (metacarpus/metatarsus or phalanges) and in cases where the calcaneus 
was involved. In 7 cases limb-salvage surgery was done for high-grade osteosarcoma, and in 
5 other cases of low-grade central osteosarcoma. Marginal excision was done in 3 cases with 
low-grade osteosarcoma of the metatarsus and metacarpus, in one case each of an osteoblastic 
osteosarcoma in the cuneiforme bone and one extra-osseous osteosarcoma in the hand, and 
in one case of a periosteal osteosarcoma of the 3rd metacarpal bone in the hand. In 2 cases 
intralesional surgery was done, curettage in one patient with a low-grade central osteosarcoma 
in the calcaneus. 
Chemotherapy as part of the initial treatment was applied in 17 cases of this cohort (59%), 
all in high-grade osteosarcoma (n=16) or low-grade osteosarcoma with metastatic disease at 
diagnosis (n=1). In 4 high-grade osteosarcoma patients no chemotherapy was given while in 
one patient with high-grade osteosarcoma treatment data was not available. 

Disease outcome
Survival of the 29 patients for which this information was available, is summarized in Table 4. 
Overall, 3 patients (10%) died of non-osteosarcoma related causes. Five (19%) of the remaining 
26 patients (7 hand and 19 foot) died of osteosarcoma, one (4%) has progressive, intractable 
disease, 17 (59%) are in first persistent remission and 3 (12%) are in remission after relapse. Of 
one patient no follow-up data was available. 
The cumulative incidence of death due to treatment failure for all patients (hands and feet) at 
5 years was 20% (Figure 5a). The cumulative risk of death was 38% (at 4 years) and 11% (at 
2.5 years) (p=0.57) for patients with osteosarcoma of the hands or feet respectively (Figure 
5b). All patients who died of disease and the one patient with progressive disease, had high-
grade osteosarcoma, while no patient with low-grade osteosarcoma died from disease (Figure 
5c). Figure 5d shows the cumulative incidence of death of patients treated with versus without 
chemotherapy, which was 20% at 4 years, equal for the two groups after correction for tumour 
grade, applying a log-rank type test developed by Gray (40).
Due to the small sample size of the cohort it is not possible to detect any statistical significant 
difference between the two groups. The Fine and Gray hazards’ regression model has been 
employed to assess the effect of covariates like age, duration of symptoms, histology or type 
surgery, but the results were not significant. 
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FiGUre 4A-e.  

example of an osteosarcoma of an 18 years old boy in the calcaneus. 

Figure 4a is a coronal T1-weighted MRI of this patient, that demonstrates a lesion with intermediate 

signal intensity originating in the calcaneus with a considerable soft-tissue mass. The permeative 

cortical destruction and soft-tissue mass suggests malignancy. Figure 4b is a coronally reformatted CT, 

demonstrating mineralization in the soft-tissue mass indicating bone formation by the tumor. Figure 

4c is an axial contrast-enhanced T1-weighted image with fat-suppression that shows inhomogeneous 

enhancement of the mass in and surrounding the calcaneus. The CT demonstrates mineralization more 

readily than the MR. Figure 4d. Low power micrograph shows irregular sized, atypical tumour cells in an 

ossifying matrix. Figure 4e. The more detailed photograph demonstrates clearly the pleomorphic tumor 

cells with atypical nuclei, and intercellular deposition of osteoid.

Fig. 4.
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Figure. 5. 

Outcome of the patients in this study, reflected as cumulative incidence of death for all patients. 

Cumulative incidence of death is explained under the section Statistical Methods in the main text. Figure 

5a shows the cumulative incidence of death for the whole group of patients with an osteosarcoma of 

the hand or foot. Figure 5b demonstrates a better outcome for patients with an osteosarcoma in the foot 

compared to localization in the hand. Figure 5c. Only patients with high-grade osteosarcoma died of their 

disease, none of the patients with low-grade or intermediate grade tumours. Figure 5d. The cumulative 

incidence of death after chemotherapy in patients with high grade tumours was not different from 

patients who were not treated with chemotherapy. 

C

A B

D

Fig. 5
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DISCUSSION

This largest cohort of patients with osteosarcoma in either hand or foot as yet reported 
describes 40 patients, representing 0.95% of a series of 4.221 osteosarcoma patients, an 
incidence consistent with the literature (2, 3, 5). Osteosarcoma of the hand amounts to 0.31% 
of all osteosarcomas, slightly higher than that reported in the literature (0.10%-0.18%) (30, 41). 
Osteosarcoma of the feet in this series represents 0.64% of all osteosarcomas, lower than the 
reported range (0.9% - 1.6%) (8, 9), but in a range similar to the Mayo Clinic series (0.71%) 
(5, 6).

The results of this study demonstrate that patients with osteosarcoma of the distal extremities 
are older, have a different gender distribution, differ in symptom history and grade of 
malignancy, consistent with the literature (42-44). Patients with osteosarcoma of the hands 
presented at any age above the 4th decade (Table 3). Patients with osteosarcoma of the foot 
were on average 6 years younger than those with osteosarcomas in the hand. Earlier reported 
patients were younger, but also around the 3rd decade. This age is higher than the adolescent 
age, when osteosarcomas of long tubular bones have their peak incidence (42-44). 

Regarding gender, we found osteosarcomas of the hand to occur more frequently in 
male patients, with a male:female ratio (2.0:1) lower than reported (Table 3). However, 
the male:female ratio we found for osteosarcoma of the foot was higher than that in the 
literature (ratio 1.65:1). This is different from osteosarcoma at conventional sites, which has a 
male:female ratio of 1.2:1 in the age group of 24-59 years old (42). 

Regarding the duration of the symptom history, this generally is one year or even longer, but 
shorter than reported in the literature, where it is twice as long (Table 3).This might suggest 
that hand and foot osteosarcomas have a slower growth rate than those in the long tubular 
bones, but can also be explained by the high proportion of low-grade osteosarcoma. However, 
the interval between first complaint and diagnosis for our high-grade tumours was still 11.6 
(2-37) months, versus 15.1 (3-48) months for the low-grade osteosarcoma patients. 

Regarding histology, we found an overrepresentation of low grade (30%) subtypes of 
osteosarcomas of the distal extremities. In conventional osteosarcoma, the low-grade central 
subtype comprises around 1% (45, 46) and the parosteal subtype to 4% (47). 
Compared to the 33 cases reported in the literature (10, 12, 15, 28, 33), we found fewer 
high-grade tumours of the hand (Table 3), but a higher proportion of low-grade central 
osteosarcomas in either hand and foot. We found no high-grade surface or (low-grade) 
parosteal osteosarcoma of the hands whereas 2 cases of high-grade surface (18, 48) and 7 cases 
of parosteal osteosarcomas have been reported (7, 10, 11). We found 2 patients with periosteal 
osteosarcomas of intermediate grade with an equal number in the literature (10, 19). 
The 51 published cases in the foot compare well with our 27 cases. As in our series, most 
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(64% compared with our 56%) were of the high-grade conventional type (5, 6, 22, 26, 27, 31, 
32, 49-57), the unconventional high-grade subtypes being infrequent (14% compared to our 
15%) (5, 13, 14, 20, 21, 58) but high in comparison with osteosarcoma in conventional sites. 
Furthermore, a high proportion of the osteosarcomas of the foot were of low grade (22% 
compared with our 29%) (5, 6, 16, 17, 23-26). We conclude that the clinico-pathological 
behavior of osteosarcomas of the hand/foot differs from that of osteosarcomas at the 
conventional sites.
In comparison with the literature (Figure 2) we found osteosarcomas more often in the 
metacarpal (46% compared to our 62%) and carpal bones (8% compared to our 15%) ( Figure 
2a). In the foot 1/3 of all osteosarcomas occurred in the metatarsal bones whereas in the 
literature this was nearly 1/6. We confirm that most osteosarcomas occur in the tarsal bones, 
the calcaneus (26%), the cuboid (15%) and the talus (11%) being more frequently involved 
than the metatarsal bones (33%), but less frequently than reported in the literature (calcaneus 
34%, talus 24% and cuboid 13% respectively; Figure 2b).
Most patients (85%) complained of pain or a painful swelling, and a minority only had a 
swelling as the presenting symptom. In contrast to osteosarcoma of conventional sites, where 
the symptomatic period in 90% of the cases lasts less than 6 months (59), the symptomatic 
period in our cohort was on average one year. Delay in diagnosis in distal extremity 
osteosarcoma has been reported (5, 59), and can be explained in part by benign lesions that 
evolve into osteosarcoma as is in 3 of our cases. Pain, especially during rest or at night with or 
without swelling, should alert the clinician on the possibility of a sarcoma, despite its rarity at 
these sites (5, 60). 
In contrast to the 12%-16% metastatic rate in osteosarcoma at conventional sites (43, 61), 
metastatic osteosarcoma was observed only in 2 patients (7%) in this series. We found a higher 
rate of metastases than the 2.4%-3.8% reported earlier (6, 10). One of our patients with 
metastatic disease had low-grade osteosarcoma, which is exceptional. However, metastases 
in low-grade lesions have been described after recurrence, and are frequently the result of 
incomplete resection of the tumour (45, 62, 63). In 1/3 of the recurrences, dedifferentiation 
had resulted in a higher-grade osteosarcoma (grade 3 or 4) and poor outcome. 
Grade was in this study the only significant co-variable relevant for outcome. In our cohort, 
all patients who died of disease had high-grade osteosarcoma (Figure 5c). Foot osteosarcomas 
show a cumulative death rate of 11% at 2 years, while for hand osteosarcomas this is 38% at 4 
years. 
After correction for grade, there was no significant difference in outcome between patients 
who did or did not receive chemotherapy (p=0.33) (Figure 5d). This might be explained by 
the low number of patients, but given the rarity of the disease prospective studies assessing 
the additional value of chemotherapy are problematic. We also conclude that osteosarcoma in 
the hands has a worse prognosis than those of the foot (Figure 5b), even though high-grade 
osteosarcoma is more frequent in the foot (71%) than in the hand (54%). We suggest that 
osteosarcoma of the hand has a prognosis similar to the long tubular bones of the skeleton, 
justifying treatment with chemotherapy of high-grade lesions of the hand. In the absence of 
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more direct evidence, we recommend (neo-)adjuvant chemotherapy in high-grade lesions of 
the hand and foot.  
Low-grade lesions might be treated sufficiently by surgery alone. There is a debate about the 
margin in low-grade central osteosarcoma, because it was shown that all patients with less than 
wide margins had recurrences (45, 62-64). In our series five of the 9 low-grade tumours were 
treated with wide excision, 3 had marginal resection and one patient underwent curettage. 
All of these patients were alive after a median follow-up of 126 (6-320) months. Based on 
the fact that there were few recurrences in low-grade osteosarcoma, radical surgery without 
chemotherapy is advised in low-grade osteosarcomas of the hand or foot.
In conclusion, hand and foot osteosarcomas are rare (1% of all osteosarcomas) and have a 
biologic behavior which is different from osteosarcoma at conventional sites, when not 
corrected for grade of malignancy. Relatively a high proportion of osteosarcomas in these sites 
are low-grade, and grade is the only significant prognostic variable for risk of death. Grade 
3-4 osteosarcoma should be treated with adequate surgery and neo-adjuvant chemotherapy, 
whereas grade 1-2 lesions should be approached by wide margin surgery only.
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Supplemental Figure. 

Selection flow diagram of cases from the Dutch data bases PALGA and NCBT. For abbreviations see: 

”Methods” section.
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Abstract

Introduction
Resection of pulmonary metastases has previously been reported to improve outcome in 
high-grade osteosarcoma patients. Factors influencing survival in osteosarcoma patients with 
pulmonary metastases are important for clinical decision making.

Methods
All 88 osteosarcoma patients with pulmonary metastases either at diagnosis or during follow-
up treated at the Leiden University Medical Center between January 1, 1990 and January 1, 
2008 under the age of 40 were included in this study, including 79 cases of conventional, 8 
cases of telangiectatic and 1 case of small cell osteosarcoma.

Results
In total, 56 of 88 patients with pulmonary metastases were treated by metastasectomy. 
Resectability of pulmonary metastases was the main prognostic factor. In patients with 
primary non-metastatic osteosarcoma, a longer relapse free interval to pulmonary metastases 
was significantly associated with better survival (p = 0.02). Independent risk factors 
determining worse survival after metastasectomy in multivariate analysis were male sex 
(p = 0.05), higher number of pulmonary nodules (p = 0.03), and non-necrotic metastases 
(p = 0.04). Whether surgery for recurrent pulmonary metastases was performed did not 
influence survival. Histological subtype of the primary tumor, histological response in the 
primary tumor after neo-adjuvant chemotherapy, occurrence of local relapse, local resection or 
amputation of the primary tumor and age at diagnosis did not influence outcome.

Conclusion
This cohort of patients with detailed follow-up data enabled us to identify important 
risk factors determining survival in osteosarcoma patients with pulmonary metastases. We 
demonstrate that after repeated metastasectomies, a subset of patients can be cured. 
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INTRODUCTION

High-grade osteosarcoma is a malignant bone tumor mainly affecting adolescents and young 
adults (1). Since the introduction of (neo-)adjuvant chemotherapy, long-term overall survival 
has improved to about 60%, with failure of therapy mainly attributed to chemoresistant 
metastatic disease. At diagnosis 15–25% of patients present with clinically detectable metastatic 
disease (synchronous pulmonary metastases) and about 40–50% of patients with primary 
non-metastatic disease experience relapse, mainly to the lungs (metachronous pulmonary 
metastases) (2-8).
Resection of pulmonary metastases with or without second-line chemotherapy has been 
reported to improve outcome in osteosarcoma patients with pulmonary metastases and 
surgery is currently standard treatment in many institutions for patients in whom metastases 
are deemed resectable. Despite aggressive surgery, however, many patients still relapse. The 
two largest single-institution studies to date investigating prognostic factors determining 
survival of osteosarcoma patients with lung metastases undergoing metastasectomy have 
had conflicting results. Studies conducted at the Rizzoli Institute concluded that higher 
numbers of pulmonary nodules, bilateral disease, and incomplete resection were independent 
prognostic factors for poor survival after metastasectomy (9-11). This was confirmed in a 
large multi-center study and in several smaller studies (12-15). In contrast, several studies 
concluded that neither number of pulmonary nodules nor other clinical parameters such as 
disease-free interval, bilateral disease or resection margins significantly affect survival (16-
18). In the subgroup of patients with metachronous disease, longer disease-free interval has 
been associated with a favorable outcome, both in smaller single-center studies and in large 
multi-center studies (12, 14, 15, 19). The role of second-line chemotherapy is unclear, with 
only some authors describing a moderate survival benefit when administered in addition to 
metastasectomy (20).
In the current study, we sought to determine factors determining outcome in a cohort 
of patients with extensive follow-up data with high-grade osteosarcoma metastasized to 
the lungs, including 79 cases of conventional osteosarcoma, eight cases of telangiectatic 
osteosarcoma and one case of small cell osteosarcoma.

PATIENTS AND METHODS

Definition of Cohort
Between January 1990 and January 2008, 197 patients under the age of 40 were treated for 
high-grade osteosarcoma at the Leiden University Medical Center. Excluded were patients 
with insufficient follow-up data (n=12) and unresectable primary tumor (n=11). Of the 
remaining 174 patients, all 88 patients who had pulmonary metastases either at diagnosis 
or during follow-up were included in this study (Table I). Patients were treated according 
to one of the consecutive European Osteosarcoma Intergroup (EOI) trials 80861 (8) and 
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80931 (5) (doxorubicin and cisplatinum, with or without high-dose methotrexate, bleomycin, 
cyclophosphamide, actinomycin-D, and vincristin) or according to the Euramos-1 trial 
(www.euramos.org) (doxorubicin, cisplatinum, and high-dose methotrexate with or without 
interferon-alpha or etoposide and ifosfamide).

Table I.  

Overview of Patients With Pulmonary Metastases of High Grade Osteosarcoma Under Age 

40, Treated From 1990 to 2008

 

Pulmonary metastases

Total
Synchronous 
(group A)

Metachronous 
(group B)

No metastasectomy for pulmonary 
metastases (group 1) 1A, 5 (5.7%) 1B, 27 (30.7%) 32 (36.4%)

Metastasectomy for pulmonary 
metastases (group 2) 2A, 21 (23.9%) 2B, 35 (39.8%) 56 (63.6%)

Total 26 (29.5%) 62 (70.5%) 88

Imaging Studies
Pulmonary metastases were diagnosed by routine computed tomography (CT) scans of the 
lungs and additional staging with 99mTc-bone scintigraphy, and if needed magnetic resonance 
imaging (MRI). Follow-up included clinical investigations and X-rays of the primary site 
and lungs. Number and distribution of pulmonary nodules were noted in case of suspected 
pulmonary metastases.

Histopathology
Primary tumors were histologically classified according to the criteria of the World Health 
Organization (1). Resected specimens of primary tumors were evaluated for histological 
response to neo-adjuvant chemotherapy; good response was defined as less than 10% vital 
tumor tissue. Resected specimens of pulmonary metastases were evaluated for number of 
resected nodules and viability of resected tumor tissue. In addition, completeness of resection 
and occurrence of pleural contamination were noted on macroscopic and microscopic 
examination.

Statistical Analysis
Unpaired t-tests, contingency analyses (χ2 method) and univariate survival analyses (Kaplan–
Meier method, log rank test for comparison of survival curves) were performed using 
GraphPad Prism 5.0. Multivariate survival analyses and survival analyses with continuous 
input variables were carried out according to the Cox proportional hazards model in SPSS 
version 16.0. Survival time was calculated from date of diagnosis to date of last follow-up or 
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death (noted as overall survival) or from date of first metastatic event to date of last follow-up 
or death (noted as overall survival since metastasis). Two-sided p-values lower than 0.05 were 
determined to be significant; p-values between 0.05 and 0.10 were defined to be a trend.

RESULTS

Twenty-six of 88 patients had pulmonary metastases at diagnosis (synchronous pulmonary 
metastases, group A in Table I) and 62 patients developed pulmonary metastases during 
follow-up (metachronous pulmonary metastases, group B in Table I). The proportion of high-
grade osteosarcoma patients with clinically detectable pulmonary metastases did not change 
during the study period. About 15% of all high-grade osteosarcoma patients had pulmonary 
metastases at diagnosis and 35% developed pulmonary metastases during follow-up. There 
was a male predominance in our cohort (71.6% males vs. 28.4% females) and there was a 
trend for males to have a worse overall survival (p logrank = 0.08). Most tumours were located 
in the distal femur (43/88, 48.9%), proximal tibia or fibula (18/88, 20.5%), and proximal 
humerus (8/88, 9.1%). Less frequently involved were the axial skeleton (5/88, 5.7%) or the 
other long bones (13/88, 14.8%). One tumour was located in the calcaneus. Histological 
subtype was conventional osteosarcoma in 79 cases (including 17 chondroblastic, 2 fibroblastic 
and 6 unusual histological subtypes), telangiectatic osteosarcoma in 8 cases and small cell 
osteosarcoma in 1 case.
There was no significant difference in overall survival (measured as survival since development 
of metastases to correct for time dependency of the variable) between patients with 
synchronous and metachronous pulmonary disease (group A vs. B p = 0.16). When dividing 
the 62 patients with metachronous lung metastases (group B) into three equal groups of 21 
patients each based on the duration of the disease-free interval, longer disease-free interval 
was associated with better survival, with most deaths occurring in patients in the first tertile 
(metastasis from day 1 to day 310 since diagnosis, Fig. 1) (p = 0.02). Other factors associated 
with poor overall survival for patients with pulmonary metastases were higher numbers 
of pulmonary nodules as determined by CT-scanning (9.3% increase in hazard for each 
additional pulmonary nodule, p = 0.001) and bilateral involvement (p logrank = 0.008). 
Patients with bone or other metastases present at the time of diagnosis of the pulmonary 
metastases had worse overall survival, mainly because in these cases, resection of metastases 
(pulmonary and others) was often not performed. Histological subtype, histological response 
to neo-adjuvant chemotherapy in the primary tumour (<10% viable tumour), location of the 
primary tumour, age at diagnosis, occurrence of local relapse and year of diagnosis did not 
affect survival in this cohort of patients with pulmonary metastasis.
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Figure 1. 

Kaplan–Meier curve of patients with metachronous pulmonary metastases of osteosarcoma (group B), 

divided into three equal groups based on the duration of the disease-free interval (tertiles), demonstrating 

worse overall survival for patients with pulmonary relapse from day 1 to day 310 of diagnosis (solid line, 

p logrank = 0.02).

(doxorubicin, cisplatinum, and high-dose methotrexate with or

without interferon-alpha or etoposide and ifosfamide).

Imaging Studies

Pulmonary metastases were diagnosed by routine computed

tomography (CT) scans of the lungs and additional staging with
99mTc-bone scintigraphy, and if needed magnetic resonance imag-

ing (MRI). Follow-up included clinical investigations and X-rays of

the primary site and lungs. Number and distribution of pulmonary

nodules were noted in case of suspected pulmonary metastases.

Histopathology

Primary tumors were histologically classified according to the

criteria of the World Health Organization [1]. Resected specimens

of primary tumors were evaluated for histological response to neo-

adjuvant chemotherapy; good responsewas defined as less than 10%

vital tumor tissue. Resected specimens of pulmonary metastases

were evaluated for number of resected nodules and viability of

resected tumor tissue. In addition, completeness of resection and

occurrence of pleural contamination were noted on macroscopic

and microscopic examination.

Statistical Analysis

Unpaired t-tests, contingency analyses (w2 method) and uni-

variate survival analyses (Kaplan–Meier method, log rank test for

comparison of survival curves) were performed using GraphPad

Prism 5.0. Multivariate survival analyses and survival analyses with

continuous input variables were carried out according to the Cox

proportional hazardsmodel in SPSS version 16.0. Survival timewas

calculated from date of diagnosis to date of last follow-up or death

(noted as overall survival) or from date of first metastatic event to

date of last follow-up or death (noted as overall survival since

metastasis). Two-sidedP-values lower than 0.05were determined to

be significant; P-values between 0.05 and 0.10 were defined to be

a trend.

RESULTS

Twenty-six of 88 patients had pulmonarymetastases at diagnosis

(synchronous pulmonary metastases, group A in Table I) and

62 patients developed pulmonary metastases during follow-up

(metachronous pulmonary metastases, group B in Table I). The

proportion of high-grade OS patients with clinically detectable

pulmonary metastases did not change during the study period.

About 15% of all high-grade OS patients had pulmonarymetastases

at diagnosis and 35% developed pulmonary metastases during

follow-up. There was a male predominance in our cohort (71.6%

males vs. 28.4% females) and there was a trend for males to have a

worse overall survival (P logrank¼ 0.08). Most tumors were

located in the distal femur (43/88, 48.9%), proximal tibia or fibula

(18/88, 20.5%), and proximal humerus (8/88, 9.1%). Less fre-

quently involved were the axial skeleton (5/88, 5.7%) or the other

long bones (13/88, 14.8%). One tumor was located in the calcaneus.

Histological subtypewas conventional OS in 79 cases (including 17

chondroblastic, 2 fibroblastic and 6 unusual histological subtypes),

telangiectatic OS in 8 cases and small cell OS in 1 case.

Therewas no significant difference in overall survival (measured

as survival since development of metastases to correct for time

dependency of the variable) between patients with synchronous and

metachronous pulmonary disease (group A vs. B P¼ 0.16). When

dividing the 62 patients with metachronous lung metastases (group

B) into three equal groups of 21 patients each based on the duration

of the disease-free interval, longer disease-free interval was

associated with better survival, with most deaths occurring in

patients in the first tertile (metastasis from day 1 to day 310 since

diagnosis, Fig. 1) (P¼ 0.02). Other factors associated with poor

overall survival for patients with pulmonarymetastases were higher

numbers of pulmonary nodules as determined by CT scanning

(9.3% increase in hazard for each additional pulmonary nodule,

P¼ 0.001) and bilateral involvement (P logrank¼ 0.008). Patients

with bone or other metastases present at the time of diagnosis of the

pulmonarymetastases hadworse overall survival,mainly because in

these cases, resection of metastases (pulmonary and others) was

often not performed. Histological subtype, histological response to

neo-adjuvant chemotherapy in the primary tumor (<10% viable

tumor), location of the primary tumor, age at diagnosis, occurrence
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TABLE I. Overview of Patients With Pulmonary Metastases of High Grade Osteosarcoma Under Age 40, Treated From 1990 to 2008

Pulmonary metastases

TotalSynchronous (group A) Metachronous (group B)

No metastasectomy for pulmonary metastases (group 1) 1A, 5 (5.7%) 1B, 27 (30.7%) 32 (36.4%)

Metastasectomy for pulmonary metastases (group 2) 2A, 21 (23.9%) 2B, 35 (39.8%) 56 (63.6%)

Total 26 (29.5%) 62 (70.5%) 88

Fig. 1. Kaplan–Meier curve of patients with metachronous pulmo-

nary metastases of osteosarcoma (group B), divided into three equal

groups based on the duration of the disease-free interval (tertiles),

demonstrating worse overall survival for patients with pulmonary

relapse from day 1 to day 310 of diagnosis (solid line,P logrank¼ 0.02).

Prognostic Factors in Metastasized OS 217

Resection of Pulmonary Metastases
The majority of patients with pulmonary metastases were treated surgically for these 
metastases at least once (56/88, 63.6%). Overall survival of these patients (group 2) was 
significantly better than of patients ineligible for metastasectomy (group 1, Table I and 
Fig. 2, p < 0.0001). Irresectability of disease as determined in multi-disciplinary meetings 
including radiologists, pathologists, thoracic and orthopedic surgeons and clinical oncologists 
was the reason not to perform metastasectomy in most cases (81.3%) (Table II). One patient 
with radiological evidence of lung metastases who did not undergo metastasectomy is a 
long-term survivor (duration of follow-up 18 years). In this patient, three pulmonary nodules 
appeared on CT-scanning 1 year after diagnosis of the primary tumor, ranging in size from 0.5 
to 2 cm. The largest nodule had a high density, suggesting calcification. In the following year, 
lesions progressed in both size and number, after which the lesions stabilized without further 
treatment. All other patients with clinicoradiological evidence for lung metastases who did not 
undergo metastasectomy died. In these other cases with unresectable disease, no other curative 
treatments were available; some patients received palliative chemo- or radiotherapy.
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Figure 2. 

Kaplan–Meier curve comparing overall survival of patients with pulmonary metastases treated surgically 

(group 1) and non- surgically (group 2). Patients not treated surgically have a significantly worse overall 

survival (solid line, p logrank < 0.0001).

of local relapse and year of diagnosis did not affect survival in this

cohort of patients with pulmonary metastasis.

Resection of Pulmonary Metastases

Themajority of patients with pulmonarymetastaseswere treated

surgically for these metastases at least once (56/88, 63.6%). Overall

survival of these patients (group 2) was significantly better than of

patients ineligible for metastasectomy (group 1, Table I and Fig. 2,

P< 0.0001). Irresectability of disease as determined in multi-

disciplinary meetings including radiologists, pathologists, thoracic

and orthopedic surgeons and clinical oncologists was the reason not

to perform metastasectomy in most cases (81.3%) (Table II). One

patient with radiological evidence of lung metastases who did not

undergo metastasectomy is a long-term survivor (duration of

follow-up 18 years). In this patient, three pulmonary nodules

appeared on CT-scanning 1 year after diagnosis of the primary

tumor, ranging in size from 0.5 to 2 cm. The largest nodule had a

high density, suggesting calcification. In the following year, lesions

progressed in both size and number, after which the lesions

stabilized without further treatment. All other patients with

clinicoradiological evidence for lung metastases who did not

undergo metastasectomy died. In these other cases with unresect-

able disease, no other curative treatments were available; some

patients received palliative chemo- or radiotherapy.

Patients not undergoing metastasectomy for pulmonary meta-

stases (group 2) hadmore nodules (mean of six vs. three,P¼ 0.002),

more often had bilateral disease (25% vs. 46%, w2 P¼ 0.06) and

more often poor histological response to neo-adjuvant chemo-

therapy in the primary tumor (78% vs. 64%, w2 P¼ 0.05) than

patients eligible for surgery (group 1). There was no difference

in age.

Male Sex, Higher Numbers of Pulmonary Metastases
and Viability of Resected Metastases Are Independent
Risk Factors After Surgical Treatment of Pulmonary
Metastases (Group 2)

Although patients who were selected for pulmonary metasta-

sectomy (group 2) had improved survival (Fig. 2), overall survival

was still poor at about 23%. The majority of patients (30/56)

underwent thoracotomy just once, but there was no significant

survival difference for patients undergoing metastasectomy once or

more often (P¼ 0.29). This is also reflected in Figure 3, which

demonstrates the possibility of achieving complete remission after

repeated metastasectomies. Males had surgery for metastases more

often than females (70% vs. 48%, w2 P¼ 0.05), but had worse

overall survival (Fig. 4, P¼ 0.04). Almost all of the patients with

pleural disruption evident on histological examination or incom-

plete resection of the metastases in at least one of the metastasec-

tomies died of disease, but this failed to reach significance

(P¼ 0.28). Twenty-nine patients (51.8%) had chemotherapeutic

treatment before at least one of the metastasectomies. This

chemotherapeutic treatment was given to patients either as a part

of their primary (neo-)adjuvant treatment or to patients presenting

with an initially unresectable pulmonary recurrence during follow-

up. Nine patients had completely necrotic metastases removed at

least once (as determined by histological examination) and there

was a trend for better survival in these patients (P¼ 0.09). Whether

or not additional treatment was given before metastasectomy, did

not influence survival, but there was an association between pre-

metastasectomy treatment and subsequent removal of necrotic

metastases (w2 P¼ 0.04).

As was the case in the entire cohort of patients with pulmonary

metastases, higher numbers ofmetastases visible onCT scan prior to

metastasectomy was associated with worse survival in group

2 patients (who underwent metastasectomy at least once,

P¼ 0.04). Similarly, there was a trend for patients with bilateral

disease to have worse overall survival (P¼ 0.07). However, 4 of

15 patients with 5 or more nodules on CT scan did survive

after resection of these lesions (follow-up since first metastasis 18–

38 months). There was a reasonable correlation between number of

metastases as estimated by CT scan and the number of metastases

found at metastasectomy (r2 0.41, slope 0.7, P< 0.0001), which did

not change during the study period. Factors not associated with

outcome were histological subtype of the primary tumor, histo-

logical response in the primary tumor to neo-adjuvant chemo-

therapy, occurrence of local relapse, local resection or amputation of

the primary tumor and age at diagnosis. In contrast to analysis

performed on the entire cohort of 88 patients, disease-free interval

was not associated with prognosis in this subset of 56 patients who

underwent surgery for pulmonary metastases. We used multivariate

Cox regression analysis of risk factors in group 2 patients who
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Fig. 2. Kaplan–Meier curve comparing overall survival of patients

with pulmonary metastases treated surgically (group 1) and non-

surgically (group 2). Patients not treated surgically have a significantly

worse overall survival (solid line, P logrank< 0.0001).

TABLE II. Reasons Not to Undergo Surgical Removal of
Pulmonary Metastases

Number of

patients (%) Reason not to undergo pulmonary metastasectomy

26/32 (81.3) Unresectable disease (including metastases to other

sites (n¼ 6) and rapidly progressive disease

during neo-adjuvant chemotherapy (n¼ 5))

1/32 (3.1) Died before metastasectomy could be performed

2/32 (6.3) Physical or mental condition of the patient did not

allow it

1/32 (3.1) Unknown

2/32 (6.3) Regression of pulmonary metastasis during

(neo-)adjuvant chemotherapy (one patient still

alive after 18 years follow-up, one patient had

unresectable relapse in other organs 2 years later

and died of disease)
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Table II.  
Reasons Not to Undergo Surgical Removal of Pulmonary Metastases

Number of 
patients (%) Reason not to undergo pulmonary metastasectomy

26/32 (81.3)
Unresectable disease (including metastases to other sites (n = 6) and rapidly progressive 
disease during neo-adjuvant chemotherapy (n = 5))

1/32 (3.1) Died before metastasectomy could be performed

2/32 (6.3) Physical or mental condition of the patient did not allow it

1/32 (3.1) Unknown

2/32 (6.3)

Regression of pulmonary metastasis during (neo-)adjuvant chemotherapy (one patient 
still alive after 18 years follow-up, one patient had unresectable relapse in other organs 2 
years later and died of disease)

Patients not undergoing metastasectomy for pulmonary metastases (group 2) had more 
nodules (mean of six vs. three, p = 0.002), more often had bilateral disease (25% vs. 46%, χ2 

p = 0.06) and more often poor histological response to neo-adjuvant chemotherapy in the 
primary tumor (78% vs. 64%, χ2 p = 0.05) than patients eligible for surgery (group 1). There 
was no difference in age.
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Male Sex, Higher Numbers of Pulmonary Metastases and Viability of Resected 
Metastases Are Independent Risk Factors After Surgical Treatment of Pulmonary 
Metastases (Group 2)
Although patients who were selected for pulmonary metastasectomy (group 2) had improved 
survival (Fig. 2), overall survival was still poor at about 23%. The majority of patients (30/56) 

underwent thoracotomy just once, but there was no significant survival difference for patients 

undergoing metastasectomy once or more often (p = 0.29). This is also reflected in Figure 3, which 

demonstrates the possibility of achieving complete remission after repeated metastasectomies. 

Males had surgery for metastases more often than females (70% vs. 48%, χ2 p = 0.05), but had 

worse overall survival (Fig. 4, p = 0.04). Almost all of the patients with pleural disruption evident 

on histological examination or incomplete resection of the metastases in at least one of the 

metastasectomies died of disease, but this failed to reach significance (p = 0.28). Twenty-nine 

patients (51.8%) had chemotherapeutic treatment before at least one of the metastasectomies. This 

chemotherapeutic treatment was given to patients either as a part of their primary (neo-)adjuvant 

treatment or to patients presenting with an initially unresectable pulmonary recurrence during 

follow-up. Nine patients had completely necrotic metastases removed at least once (as determined 

by histological examination) and there was a trend for better survival in these patients (p = 0.09). 

Whether or not additional treatment was given before metastasectomy, did not influence survival, 

but there was an association between pre-metastasectomy treatment and subsequent removal of 

necrotic metastases (χ2 p = 0.04).

As was the case in the entire cohort of patients with pulmonary metastases, higher numbers of 
metastases visible on CT-scan prior to metastasectomy was associated with worse survival in 
group 2 patients (who underwent metastasectomy at least once, p = 0.04). Similarly, there was 
a trend for patients with bilateral disease to have worse overall survival (p = 0.07). However, 
4 of 15 patients with 5 or more nodules on CT-scan did survive after resection of these 
lesions (follow-up since first metastasis 18–38 months). There was a reasonable correlation 
between number of metastases as estimated by CT-scan and the number of metastases found 
at metastasectomy (r2 0.41, slope 0.7, p < 0.0001), which did not change during the study 
period. Factors not associated with outcome were histological subtype of the primary tumor, 
histological response in the primary tumor to neo-adjuvant chemotherapy, occurrence of 
local relapse, local resection or amputation of the primary tumor and age at diagnosis. In 
contrast to analysis performed on the entire cohort of 88 patients, disease-free interval was not 
associated with prognosis in this subset of 56 patients who underwent surgery for pulmonary 
metastases. We used multivariate Cox-regression analysis of risk factors in group 2 patients 
who underwent metastasectomy at least once, entering only variables with a p-value lower 
than 0.10 as determined by univariate analysis. This revealed male sex of the patient, higher 
numbers of pulmonary metastases and viability of resected metastases to be independent risk 
factors for worse outcome in pulmonary metastasized osteosarcoma patients treated surgically 
(Table III).
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Figure 3.  

Flow chart of all patients, demonstrating the possibility of achieving complete remission after repeated 

surgery for pulmonary metastases (including a patient who received surgery for pulmonary metastases 

four times and is still in complete remission almost 8 years since the last surgery).

underwent metastasectomy at least once, entering only variables

with aP-value lower than 0.10 as determined by univariate analysis.

This revealed male sex of the patient, higher numbers of pulmonary

metastases and viability of resected metastases to be independent

risk factors for worse outcome in pulmonary metastasized OS

patients treated surgically (Table III).

DISCUSSION

In this cohort of patients with pulmonary metastasized high-

grade OS, 26/88 patients had clinically detectable pulmonary
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Fig. 3. Flow chart of all patients, demonstrating the possibility of achieving complete remission after repeated surgery for pulmonary metastases

(including a patient who received surgery for pulmonary metastases four times and is still in complete remission almost 8 years since the last

surgery).

Fig. 4. Kaplan–Meier curve of survival after metastasectomy (group

2 patients) formales (dashed line) versus females (solid line).Males had

surgery for metastases more often than females (70% vs. 48%, w2

P¼ 0.05), but had worse overall survival (P logrank¼ 0.04, analysis on

subgroup who underwent surgery for pulmonary metastatic disease).

TABLE III. Multivariate Cox Regression Analysis to Determine
Independent Risk Factors for Survival in Patients Surgically
Treated for Pulmonary Metastasized High-Grade Osteosarcoma
(Group 2 Patients)

Risk factor P-value Hazard ratio

Female sex 0.05 0.409

Completely necrotic metastases 0.03 0.167

Increasing numbers of metastases 0.04 1.293

Prognostic Factors in Metastasized OS 219
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Figure 4.  

Kaplan–Meier curve of survival after metastasectomy (group 2 patients) for males (dashed line) versus 

females (solid line). Males had surgery for metastases more often than females (70% vs. 48%, χ2 

p = 0.05), but had worse overall survival (p logrank = 0.04, analysis on subgroup who underwent surgery 

for pulmonary metastatic disease).
underwent metastasectomy at least once, entering only variables

with aP-value lower than 0.10 as determined by univariate analysis.

This revealed male sex of the patient, higher numbers of pulmonary

metastases and viability of resected metastases to be independent

risk factors for worse outcome in pulmonary metastasized OS

patients treated surgically (Table III).

DISCUSSION

In this cohort of patients with pulmonary metastasized high-

grade OS, 26/88 patients had clinically detectable pulmonary
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Fig. 3. Flow chart of all patients, demonstrating the possibility of achieving complete remission after repeated surgery for pulmonary metastases

(including a patient who received surgery for pulmonary metastases four times and is still in complete remission almost 8 years since the last

surgery).

Fig. 4. Kaplan–Meier curve of survival after metastasectomy (group

2 patients) formales (dashed line) versus females (solid line).Males had

surgery for metastases more often than females (70% vs. 48%, w2

P¼ 0.05), but had worse overall survival (P logrank¼ 0.04, analysis on

subgroup who underwent surgery for pulmonary metastatic disease).

TABLE III. Multivariate Cox Regression Analysis to Determine
Independent Risk Factors for Survival in Patients Surgically
Treated for Pulmonary Metastasized High-Grade Osteosarcoma
(Group 2 Patients)

Risk factor P-value Hazard ratio

Female sex 0.05 0.409

Completely necrotic metastases 0.03 0.167

Increasing numbers of metastases 0.04 1.293

Prognostic Factors in Metastasized OS 219

DISCUSSION

In this cohort of patients with pulmonary metastasized high-grade osteosarcoma, 26/88 
patients had clinically detectable pulmonary metastases at diagnosis (group A, Table I) and 
62/88 relapsed with pulmonary metastases (group B). Metastasectomy was almost invariably 
required for cure, as has been previously described by others (9, 12, 16). Since pulmonary 
metastasectomy is a safe and effective treatment, both in pediatric and adult patients, 
metastasectomy has become standard of care for patients with pulmonary metastasized 
osteosarcoma when these metastases are deemed resectable and there are no other contra-
indications for surgery (including metastasis to other sites) (21, 22). In our well-defined cohort 
of patients with detailed and extensive follow-up data we were able to confirm important 
risk factors determining survival in osteosarcoma patients with pulmonary metastases, that 
is, extent of disease and longer disease-free interval. In addition, we have identified the novel 
independent risk factors male sex and resection of metastases containing viable tumour cells.
The administration of chemotherapeutic agents before metastasectomy is associated with 
a subsequent higher chance of resecting necrotic metastases, which in turn is associated 
with better overall survival. This would suggest a potential beneficial role of second-line 
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chemotherapeutic agents in the treatment of metastasized osteosarcoma, even when these 
lesions are deemed resectable. However, since we did not find a direct association between 
chemotherapeutic treatment and overall survival in the group of patients surgically treated 
for pulmonary metastases, the addition of chemotherapy to the surgical treatment of patients 
with pulmonary metastases remains unproven. In previously published studies it has also 
been difficult to establish what the value of second-line chemotherapeutic treatment is to the 
surgical management of metastasized osteosarcoma (20). This could either mean that the true 
benefit is very small, or that the treatments employed are too heterogeneous to draw definite 
conclusions.
As was found in other studies, large metastatic tumor burden (defined as five or more 
pulmonary nodules or bilateral involvement), has prognostic relevance. It is now well known 
that spiral CT-scanning (1 mm slices) is more sensitive than conventional CT, allowing the 
detection of significantly larger number of nodules and also smaller nodules <5 mm in 
diameter. Even these small pulmonary nodules should be regarded as probable pulmonary 
metastases when other risk factors for pulmonary nodules, such as smoking history or prior 
granulomatous disease, are absent. The proportion of patients diagnosed with pulmonary 
metastases in this study did not change during the study period. Previously, Kayton et 
al. (23) reported that CT-scanning of the chest underestimates the number of metastatic 
lesions in osteosarcoma. In our cohort there was a reasonable correlation between number 
of metastases as predicted by CT-scan and number of metastases as determined at resection. 
However, we feel that the presence of high numbers of pulmonary nodules should not guide 
decisions regarding resection if the nodules are resectable; a third of patients with high tumor 
burden, that is, five or more nodules on CT-scan prior to surgery, survive after resection of the 
lesions with a median duration of follow-up of 25 months. Similarly, patients experiencing 
relapse after first metastasectomy can still benefit from repeated metastasectomies if these 
lesions are resectable and if there is no risk of respiratory compromise.
The reason for the relationship with gender and outcome in our cohort is unclear. There 
was a male predominance in our cohort (71.6% males vs. 28.4% females). Males had their 
metastases significantly more often surgically resected than females. However, men had lower 
overall survival even after resection of metastases. A recently published review of osteosarcoma 
incidence and survival rates from 1973 to 2004 in the United States noted a worse overall 
survival for males over all age groups, concordant with previous smaller studies (7, 24, 25). 
In another study, a strong correlation between male sex and poor histological response 
to pre-operative chemotherapy was found, although this did not result in worse overall 
survival (4). Osteosarcoma cells express sex steroid receptors and it has been observed that 
2-methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol (E2), induces 
cell death in osteosarcoma cells(26, 27). It remains unclear whether direct effects of sex 
steroids on neoplastic cells play a role in the observed better outcome for females, or if other 
mechanisms are underlying this observation.
Patients with osteosarcoma which has a good histological response of the primary tumour 
to neo-adjuvant chemotherapy have better overall survival (28). In our cohort of patients 
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with osteosarcoma and metastatic disease (group A and group B), there was no association 
between response to chemotherapy and survival. Similarly, the previously reported association 
of chondroblastic tumours with good histological response to chemotherapy and better overall 
survival, was not present in this cohort of patients with osteosarcoma and lung metastasis. 
However, when analyzing all patients diagnosed with osteosarcoma in our center, including 
those that did not develop pulmonary metastases the association between poor histological 
response and poor survival was also present in our cohort. This suggests that poor histological 
response to chemotherapy probably determines poor survival through risk of developing 
clinically detectable, pulmonary metastases. However, once these metastases have developed, 
the histological response in the primary tumour was no longer relevant in our series.
Analysis of patients with resectable non-metastatic osteosarcoma treated in three consecutive 
EOI trials demonstrated the association between early recurrence and poor survival (19). In 
the current study, this association was also present in the subgroup of patients presenting with 
metachronous pulmonary metastases, but this association disappeared when patients eligible 
for surgical treatment of the metastases were selected. This indicates that patients presenting 
with relapse roughly within the first year after diagnosis have a higher chance of presenting 
with unresectable pulmonary involvement, but treatment of resectable pulmonary disease 
results in a similar outcome in this group.
In conclusion, this well-defined cohort of osteosarcoma patients with pulmonary metastases 
treated within a single institution allowed us to establish that higher number of pulmonary 
nodules, resection of vital metastases and male sex were associated with poor overall survival. 
In the present study we confirm extent of disease, that is, number of pulmonary nodules, to 
be an important independent risk factor determining survival in osteosarcoma patients with 
pulmonary metastases. In addition we demonstrate that female sex and resection of necrotic 
metastases are associated with better survival after pulmonary metastasectomy. Importantly, 
we demonstrate that even after repeated metastasectomies, cure can be achieved in a subset of 
patients.
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In this thesis 7 chapters are presented, describing clinical, pathological and molecular studies 
related to the most common primary bone tumour, osteosarcoma. Chapter 1, the general 
introduction, is an overview of epidemiology including incidence, age distribution, 
localization in the skeleton, risk factors and survival. The objective of this description is to gain 
more insight in the clinico-pathological behavior of osteosarcoma, based on epidemiologic 
information (1). The incidence pattern is age dependent. Osteosarcoma in children under 5 
years of age is rare, less than 2% of all osteosarcomas occur in this age group. A steep rise in 
incidence occurs during puberty, peaking at an incidence of 8.6 cases/106 population up to 20 
years of age, followed by a low rate of on average 1.7/106 population during adulthood (25–59 
years of age) (2). A non-unified second peak occurs in people of 60+ years, reaching 4.9/106 
new cases yearly. Remarkably, this 2nd incidence peak is absent in the Asian people (3). This 
peak has suggested to be due to secondary osteosarcomas, after radiation or as complication 
of Paget’s disease. The different distribution and histology of osteosarcomas in patients older 
than 60 years of age suggests indeed a distinctive biological behaviour. An adequate treatment 
is of utmost importance for survival of patients that has not improved the past 2-3 decades. 
Contemporary treatment consists of pre-and postoperative (neo-adjuvant) chemotherapy and 
radical surgery. If no clear resection margins can be obtained, the patient has a very high risk 
of being incurable.
With respect to the prognosis of patients with osteosarcoma, the chances for survival after 
incomplete surgery are less than 15% (4). Hence locations where complete resection is 
impossible, for example axial or pelvic site, have strong influence on outcome. Axial site is 
more often present in older patients, therefore age can be biased by the site of the primary 
tumour with respect to prognosis. For resectable disease, metastases at diagnosis, proximal 
site and large (≥ 1/3 extremity length) size of the primary tumour are the most important 
adverse prognostic factors (4-6). Two treatment related factors are also of favourable prognostic 
importance, these are good histologic response on pre-operative chemotherapy and presence 
of chemotherapy induced toxicity (7). Other factors, such as pathological fracture at diagnosis, 
type of surgery, age and gender were of minor prognostic importance. Genetic risk factors, like 
the Li-Fraumeni syndrome, the (heritable or bilateral) Retinoblastoma, the helicase-mutation 
syndromes and other diseases in their context to osteosarcoma are discussed in this chapter.
The pathology of osteosarcoma was discussed, with emphasis on the unconventional subtypes 
of high-grade osteosarcoma and the low-grade osteosarcoma variants. This was chosen because 
these variants contribute to only 5% of all osteosarcomas but, were overrepresented in the 
hands and feet (discussed in chapter 6). 
In chapter 2 the literature of chemotherapeutic treatment of localized, non-metastatic 
osteosarcoma of the extremities was reviewed. One of the main conclusions was that there 
are not more than 4 effective cytostatic drugs, where efficacy is defined as an response rate 
(RR) in phase-II trials of 20% or more. These 4 drugs are doxorubicin (RR 43%), ifosfamide 
(RR 33%), methotrexate (RR 32%) and cisplatin (RR 26%). Meta-analysis demonstrated 
that 2-drug regimens (mainly consisting of doxorubicin and cisplatin) are inferior to regimens 
containing 3 or more drugs. According to this analysis there was no survival benefit of 
4-drug regimens compared to 3-drug regimens. Therefore a 3-drug combination such as 
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methotrexate, doxorubicin (a.k.a. adriamycine) and cisplatin, a regimen referred to as MAP, 
is considered the best induction regimen and should be used as standard treatment for 
osteosarcoma in clinical protocols. The debate remains whether adding a high responsive 
drug, like ifosfamide, to MAP should be reserved for non-responding patients or in cases 
of progressive disease. Furthermore, it was concluded that investigating more of this type of 
conventional drug regimens would not be advantageous. 
Therefore, we started a study in osteosarcomas to investigate if genome wide gene expression 
provides a better insight into the biology of this tumour. Gene expression pattern of 25 
high-grade osteosarcoma biopsies were correlated to the outcome of disease or response to 
neo-adjuvant treatment. In addition we investigated if drug targets from such expression data 
could be determined. The results of this study were presented in chapter 3 and showed that 
nearly 3000 genes were significantly differentially expressed in osteosarcoma, compared with 
non-malignant cells (osteoblastomas, mesenchymal stem cells and mesenchymal stem cells 
differentiated into osteoblasts). Gene expression profiles could not be correlated to either 
response to treatment or survival. Analysis at a single gene level proved to be not useful in 
osteosarcomas, because this tumour has a highly complex karyotype, that diminishes the 
reliability of single genes to predict the clinical determinants of malignant diseases, unless 
thousands of samples are used (8). Therefore, pathway analysis was chosen as a method for 
further analysis of malignant transformation of the mesenchymal stem cell, the presumed 
precursor of osteosarcoma (9). 
At pathway level, we found down-regulation of the Wnt3a/β-catenin signalling (reflected 
by downregulation of Axin and CCND1), upregulation of the Wnt5a/alternative signalling, 
overexpression of the cell cycle genes and a disturbed p53/apoptotic pathway (reflected by 
downregulation of BBC3/PUMA) in osteosarcomas. 
The statistical background for the choice for pathways analysis is described in chapter 4. This 
paper describes the algorithm for the association of the expression of groups of genes with 
clinical variables. The groups of genes can be clustered based on pathways, as defined for 
example in the Gene Ontology data base (http://amigo.geneontology.org) (10). The Global 
Test can test the statistical significance of a certain pathway, attributed to a clinical variable of 
interest, for instance survival. The test is based on the Cox proportional hazards model, with 
the possibility to adjust for the presence of co-variables. In this paper, the expression profile of 
the patients, whose biopsies were analyzed in chapter 3, were tested. Using this model it was 
found that pathways, involving the cell cycle, DNA repair and apoptosis were associated with 
survival. It was further concluded that using the Cox model, survival data are not lost and can 
be adjusted for the presence of co-variates, which allows to improved performance of this test. 
In order to establish molecular targets for osteosarcoma treatment, the epidermal growth 
factor receptor HER2 was mentioned as a candidate and is the subject of research, described 
in chapter 5. Her2 is highly expressed in 25% of the breast cancer patients, and its related 
tumorigenic effects (11, 12) can be reverted by the monoclonal antibody trastuzumab 
(Herceptin®) (13). Based on the presumed overexpression of Her2 in osteosarcomas (14-16), 
a phase-II study with trastuzumab was initiated in osteosarcomas (www.cancer.gov/clinical_
trials: MSKCC-99097/NCI-T98-0083 and COG-AOST0121). However, in our study no 
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membranous (3+) HER2 overexpression was found, which is a prerequisite for tratstuzumab 
treatment (17, 18). Neither HER2 mRNA was overexpressed at the gene level, nor FISH 
analysis showed HER2-gene amplification in the single sample that stained moderate (2+) 
positive membrane staining. We concluded that HER2-gene amplification or membranous 
HER2 protein overexpression is absent in human osteosarcoma, and that we cannot support 
the principle to treat osteosarcomas with Herceptin. 
After we had confirmed the complexity of osteosarcoma at molecular level with the 
gene-expression study, another question was whether there is also clinical evidence for 
heterogeneity of osteosarcomas. To answer this question, we studied the clinico-pathological 
features of osteosarcomas with a rare localization, i.e. the small tubular and flat bones of 
the hands and feet. The results of this study are described in chapter 6. In total 40 patients 
with osteosarcomas of the hands or feet, obtained from the merged Dutch (10/1733) and 
the Rizzoli Institutional databases (30/2488) were described, representing only 0.95% of all 
osteosarcomas, present in both databases. Compared with the usual sites (around the knee 
or humerus), osteosarcomas in hands or feet occurred in older patients (mean age 42 years), 
with a male predominance (male female ratio=1.7:1), patients had a longer delay before 
the definitive diagnoses was made, and had a higher proportion of low grade (30%) and 
intermediate grade (5%) of malignancy compared to osteosarcoma at conventional sites, that 
show low-grade malignancy in 1%-2% (19). Overall cumulative incidence of death (CID) 
of the whole group was 80%, however worse in patients with location in the hands (4y CID 
38%) than in the feet (2.5 CID 11%), and no deaths were observed in patients with low-or 
intermediate grade osteosarcomas. It was concluded that high-grade osteosarcoma of the 
hands or feet are a peculiar subgroup of osteosarcomas, and that high-grade tumours have a 
similar prognosis as osteosarcoma in the long tubular bones of the skeleton. It is recommended 
to treat high-grade osteosarcomas of the distal extremities in the same way as those tumours at 
conventional sites. 
The last part of this thesis, chapter 7, deals with osteosarcoma as systemic disease, which 
occurs as synchronous metastases (metastases at diagnosis, in 16% of the newly diagnosed 
patients (4, 20-24) or as recurrent or relapsed disease (metachronous metastases), which 
occurs in 45% of all patients treated for localized osteosarcoma (4, 20-26). A study was done 
to determine prognostic factors in 88 patients with pulmonary (n=26 synchronic, n=62 
metachronic) metastases from the Leiden University Medical Center data base. Overall survival 
of the patients with resectable metastatic osteosarcoma was 23%, not worse for patients with 
synchronous versus metachronous metastases. Survival was determined only by resectability of 
the metastases, even if surgery was more often than once required. Poor prognostic factors for 
survival in patients who underwent surgery were high (5 or more) number of metastases (HR 
1.29), whereas favorable prognostic factors were necrotic metastases (HR 0.17) and female 
gender (HR 0.41). Although it would suggest that pre-operative chemotherapy could induce 
necrotic metastases, the trend towards better survival for patients who received chemotherapy, 
found in this study was not significant (c2 p=0.04). Overall, it was concluded that cure can be 
achieved in a subset of patients with (synchronous or metachronous) metastases by aggressive 
surgical treatment, but the role of chemotherapy remains elusive. 
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Discussion 

From the above chapters it can be concluded that high-grade osteosarcoma cannot be 
considered as one disease, but is a heterogeneous tumour at clinical, pathological and genomic 
level. This may be the reason that contributes to the lack of improvement in survival during 
the past 3 decades. One of the important findings in this thesis was that there are only 4 
effective drugs against high-grade osteosarcoma, i.e. doxorubicin, methotrexate, cisplatin and 
ifosfamide. After relapse, the treatment options become even more limited, because re-using 
the same drugs questions their efficacy, and adds to the cumulative toxicity of these drugs 
(27), like cardiac (28), hearing loss (29), renal damage (30, 31), fertility problems (32, 33) or 
second malignancies (34). Treatment with the monoclonal antibody Herceptin could not be 
supported by us and others, because there is no membranous HER2-receptor overexpression 
on osteosarcomas, as is shown by us and others (35-38). Array analysis revealed up-regulation 
of cell cycle genes and a disturbed Wnt- and p53/apoptotic signalling as most important 
abnormal pathways in osteosarcomas compared with non-malignant cells. Upregulation of cell 
cycle genes is not surprising in cancer cells, neither disturbance of the apoptotic pathway. In 
order to think of the Wnt-signalling as potential therapeutic target for osteosarcoma, the Wnt-
pathway in general and as far relevant for osteosarcoma will shortly be discussed shortly in the 
next paragraph.

Wnt-pathway
The Wnt signalling plays an important role in developmental biology and in cancer (39, 40). 
Due to the numerous Wnt-ligands (n=19), Wnt-receptors (Frizzled: Fzd’s n=10), co-receptors 
(n=8) and modulators, like Wnt-inhibitors (Dickkopfs, Wnt-inhibiting factors, soluble Fzd-
related proteins and proteoglycans) the downstream signals after ligand-receptor binding are 
pleiotropic and tissue specific, spatial-and time dependent (39, 41, 42). That means that the 
effect of Wnt signalling in the bone marrow niche (reservoir mesenchymal stem cells (MSC) is 
different from Wnt signalling in cartilage of tubular bones or in flat bones, or in other tissues. 
For an extensive discussion about these topics, the reader is referred to some excellent reviews 
(39, 40, 43, 44).
Modern insights in these complexities have replaced the old distinction of canonical and non- 
canonical by β-catenin dependent and β-catenin independent respectively, and an overview of 
both pathways is given in Figure 1. In summary, the β-catenin dependent (or canonical) pathway 
stabilizes cytoplasmatic β-catenin after binding of the Wnt3a (or other “canonical” Wnts) with 
the Fzd2/7 receptor, by inhibiting the proteosomal degradation of the continuously formed 
β-catenin (Fig.1 A) (40). Due to the rising cytoplasmatic concentration, β-catenin shuttles to 
the nucleus, and activates transcription factors for proliferation (de-repression) (45) or induces 
differentiation (co-activation) of for instance Runx2 (46, 47), a master gene for osteogenesis. 
The β-catenin independent signalling is activated after binding of Wnt5a with either Fzd2 
(Fig.1, B) or Fzd4 (Fig.1 C), with or without the co-receptor ROR2 or with ROR2 as a 
single receptor (Fig.1 E). The oncogenic transcription factor Jun-N-terminal kinase (JNK) 
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(48) is activated after Wnt5a-Fzd2 binding mediated by the small GTP-ases Rho and Rac 
(Fig.1 C), and is called the Wnt/PCP pathway (41, 49). The other ß-catenin independent 
signalling, the Wnt/Ca2+ pathway (Fig.1 D), activates the transcription factors NEMO or 
NFAT, which inhibit ß-catenin dependent proliferation (50, 51) and activate osteogenesis 
(52, 53) respectively. Other modulations of the Wnt5a signalling are shown in Fig.1 by the 
red circles and are at the level of competitive inhibition of Wnt3a binding with Fzd receptors 
(Fig.1 F), via the ubiquitin ligase Siah2 (54, 55) or directly via ROR2 activation (56). 
Bone development is an complex process, in which Wnt’s play an important role in multiple 
ways (see Fig.2) (for reviews, see (44, 47, 57)). In the early MSC stage Wnt3a/β-catenin is 
required for lineage fate decision (57-59) and stimulates the proliferation of stem cells to 
maintain an adequate number of progenitor cells. Furthermore, Wnt3a signalling prevents 
osteo-chondrogenic progenitors from developing into cartilage and differentiate into 
osteoblasts (46, 60, 61), but for the definitive differentiation into the osteogenic lineage, Wnt3a 
needs temporary be downregulated (62, 63), which is mediated via Wnt5a and Dkk1 (62-64). 
Finally, the β-catenin pathway is required for definitive differentiation of precursor cells into 
osteocytes (63, 65).   
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Wnt-signalling, cancer and osteosarcoma
In our array study we found evidence for down-regulation of the Wnt3a/β-catenin pathway 
and up-regulation of the alternative, Wnt5a pathway. This is in contrast to the activating 
β-catenin deregulation, which is the driving force for tumourgenesis in most types of 
epithelial cancers, for example in colon cancer (66), ovarian cancer (67), prostate cancer (68) 
or lung cancer (69). Wnt3a/β-catenin overexpression has been reported in osteosarcoma, 
either directly (70, 71) or indirectly by inhibition of the Wnt ligand (72, 73) or due to 
overexpression of the co-receptor LRP5 (74). However, overexpression of β-catenin, as seen in 
the Gardner syndrome, did not result in an increased incidence of osteosarcomas (75), whereas 
in the benign osteoblastomas clear expression of β-catenin was observed (76).
Absent nuclear β-catenin staining was observed in only one other study of osteosarcoma (77). 
Recently, Mathushansky reported that inactivation of the β-catenin dependent Wnt pathway 
was tumorigenic in the high-grade undifferentiated pleomorphic sarcoma (78). It was shown 
that the mesenchymal stem cell was the progenitor of the undifferentiated sarcoma and that 
down-regulation of the Wnt/β-catenin dependent pathway failed to commit the stem cell 
to differentiation into mature connective tissue lineages. In addition Wnt5a was defective in 
regulating a commitment-viability checkpoint, as is known that this non-canonical pathway 
mediates anti-apoptotic signalling (79). In another study the Wnt/β-catenin signalling was 
downregulated in Rhabdomyosarcoma cell line, blocking the normal myogenic differentiation 
and increasing resistance to apoptosis (80). Restoration of the Wnt3a activation resulted in 
myogenic differentiation.
Another example of the contribution of an inactive Wnt3a/β-catenin signalling is reported in 
Retinoblastoma’s (81). Wnt signalling re-activation significantly decreased the viability of the 
retinoblastoma cells by p53-induced cell cycle arrest. The authors concluded that the Wnt-
pathway acted as a tumour suppressor in the retinoblastoma cells lines, and that loss of Wnt 
signalling contributed to the tumorigenesis in the retina. 
Inactivity of the Wnt3a/β-catenin signalling in our study has been confirmed by Cai 
et al. (76). Restoration of the Wnt3a/β-catenin pathway by inhibition of GSK-3β, that 
phosphorylates β-catenin, demonstrated differentiation into bone of 2 of 4 osteosarcoma cell 
lines. 
What exactly the role of the downregulation of the Wnt3a/β-catenin pathway in the 
tumorgenesis of osteosarcoma is, remains difficult to explain. The hypothesis is that, similar 
as in undifferentiated sarcomas and rhabdomyosarcomas, bone-progenitor cells will not be 
able to complete osteogenesis and remain in continuous proliferative state (as was shown 
by the upregulated cell cycle genes). The overexpressed Wnt5a signalling on the other hand 
drives the osteo-progenitor cells into the direction of osteogenesis (82). However, due to the 
disturbed apoptotic regulation these cells lack a differentiation commitment check, that results 
in progressive genomic instability, which is the hallmark of osteosarcoma (83, 84). However, 
this is still hypothesis, and it would be a challenge to study Wnt-signalling in the normal 
osteogenesis and in the disturbed osteogenesis, such as in osteosarcoma, or in other pathologic 
conditions. 
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Wnt signalling and potential therapies
Given the observations that the Wnt3a/β-catenin pathway was inactive in osteosarcomas and 
that 2 of 4 osteosarcoma cell lines differentiated into normal bone after inhibition of GSK3β, 
it could be argued that therapy, aiming to inhibit proteosomal degradation of β-catenin 
might be of advantage in patients with the Wnt-pathway in the off-state. One of the most 
promising compounds to interfere with the proteosomal activity is bortezomib (85, 86). This 
drug has shown to restore normal bone development in Multiple Myeloma patients (87, 
88), irrespective the response on treatment (89). Although the mechanism is not completely 
resolved, it has been suggested in these patients that bortezomib inhibits the Wnt3a antagonist 
Dkk1 (87), induced differentiation of osteoblasts via stabilization of β-catenin (86), or via 
bortezomib induced apoptosis of the tumour cells (90). In mice that were treated with 
bortezomib, inhibition of cell proliferation and increased apoptosis of the osteosarcoma cells 
was obsesrved, resulting in regression of the tumour (85). Bortezomib has been used in clinical 
phase-1 (91), phase-II (92) or phase-III studies (93), is tolerated well with few side effects. 
Even in combination with other drugs, that might be used in (refractory) osteosarcoma, or in 
older patients, bortezomib can be used safely (94-96). Therefore, bortezomib might one of the 
few agents worth for future evaluation in osteosarcoma therapy, preferably in a window phase 
in patients with absent Wnt3a/β-catenin dependent signalling.
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concluding remarks

It can be concluded from this thesis that high-grade osteosarcoma is at clinical, pathological 
and molecular level a heterogeneous disease. To treat high-grade osteosarcoma adequately, neo-
adjuvant chemotherapy should be combined with radical surgery, irrespective the localization 
of the tumour. An adequate chemotherapy regimen for osteosarcoma consists at least of 3 out 
of 4 effective cytostatic agents, i.e. methotrexate, doxorubicin and cis-platin. A fourth active 
agent, ifosfamide, should possibly be reserved for patients with refractory disease or patients 
with relapse. Patients with metastatic pulmonary osteosarcoma should receive surgery in case 
of resectable disease, whereas the use of chemotherapy is these patients can be considered, but 
is not of proven value. Patients with irresectable metastatic osteosarcoma should be offered 
phase-I and phase-II studies, because no response can be expected from other conventional 
cytostatic drug combinations. With respect to new drug developments, the use of the 
monoclonal antibody trastuzumab against HER2 is not supported by us, because we were not 
able to demonstrate overexpression of the HER2 receptor on osteosarcoma cells. At molecular 
level, a disturbed Wnt signalling was found in addition to abnormal cell cycle regulation and a 
disturbed p53/apoptotic pathway. This combination of these pathway abnormalities might be 
oncogenic. Failure of the mesenchymal stem cell to differentiate into the osteoblastic lineage, 
due to abnormal proliferation and lack of differentiation commitment results in chromosomal 
instability, which is the hallmark of osteosarcoma. In patients with an inactive Wnt3a/β-
catenin signalling the proteasome inhibitor bortezomib might be a candidate drug, to explore 
its suggested differentiation inducing properties. More research should be directed to study 
Wnt signalling in normal and disturbed osteogenesis, in order to clarify the mechanisms by 
which Wnt3a has its effects in osteosarcoma. 
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In dit proefschrift worden 7 studies beschreven op het gebied van de meest voorkomende 
maligne primaire bottumor, het osteosarcoom. In hoofdstuk 1 wordt een overzicht 
gegeven over de epidemiologie van het osteosarcoom, zoals de incidentie, leeftijdsverdeling, 
lokalisatie in het skelet, risicofactoren waaronder genetische syndromen, en de overleving. 
Deze uitvoerige beschrijving op basis van epidemiologische studies is bedoeld om meer 
inzicht te krijgen in de oorzaak en het klinisch-biologisch gedrag van het osteosarcoom. 
De incidentie is leeftijdsafhankelijk. Bij jonge kinderen is osteosarcoom zeldzaam, minder dan 
2% van de osteosarcomen komt in die leeftijdsgroep voor. Een eerste piek in incidentie 
(8.6 nieuwe patiënten/1 miljoen bevolking) wordt gezien bij pubers en jong volwassenen, 
gevolgd door een lage incidentie van gemiddeld 1.7/106 in de leeftijdsgroep van 25-59 jaar. 
Er is een 2e incidentie piek (tot 4.9/106) bij mensen van 60 jaar en ouder, die merkwaardig 
genoeg bij mensen van Aziatische origine ontbreekt. Men schrijft deze 2e incidentie piek 
toe aan secundaire osteosarcomen. Het verschil in man-vrouw verdeling en in histologische 
subtypen tussen oudere en jongere patiënten suggereert een verschillend biologisch gedrag 
van osteosarcomen. 
Een adequate behandeling van osteosarcomen is van het allergrootste belang voor de overleving 
van de patient, die echter sinds de laatste 20-30 jaar niet veel verbeterd is. De huidige 
therapie bestaat uit pre-operatieve chemotherapie, radicale chirurgie, en chemotherapie na de 
operatie (neo-adjuvante chemotherapie) waarmee een langdurige overleving van gemiddeld 
60% bereikt wordt. Prognostische factoren voor osteosarcoom kan men verdelen in factoren 
die bij de diagnose aanwezig zijn (uitbreiding van het osteosarcoom, zowel systemisch 
(gemetastaseerde ziekte) als lokaal, en proximale lokalisatie in het bot, metastase bij diagnose) 
en factoren die gerelateerd kunnen worden aan de behandeling (chemotherapie geïnduceerde 
tumorcelnecrose en chemotherapie geïnduceerde toxiciteit). Genetische risicofactoren 
met betrekking tot osteosarcoom worden besproken, zoals het Li-Fraumeni syndroom, 
het (erfelijke/bilaterale) Retinoblastoom, de helicase-mutatie syndromen en enkele andere 
zeldzame aandoeningen. Tevens wordt in de inleiding dieper ingegaan op de onconventionele 
pathologische subtypes van het osteosarcoom, omdat deze subtypes vaker bij osteosarcomen van 
handen en voeten voorkomen (zie hoofdstuk 6). 
In hoofdstuk 2 wordt de literatuur over de chemotherapeutische behandeling van 
gelokaliseerd osteosarcoom van de extremiteiten gereviewd. Uit fase-2 studies blijkt dat er 
maar 4 cytostatische middelen zijn met voldoende effectiviteit, gemeten als response rate (RR) 
van ≥ 20%, te weten doxorubicine (RR 43%), ifosfamide (RR 33%), methotrexaat (RR 32%) 
en cisplatin (RR 26%). Een meta-analyse toonde dat schema’s met 2 middelen een significant 
slechtere overleving hadden (5-jaar event free survival [EFS] 48%, 5-jaar overall survival [OS] 
62%) dan wanneer 3 of 4 cytostatische middelen gebruikt worden (EFS 58%, OS 70%). Maar 
er bleek geen verschil in overleving te zijn tussen schema’s waarbij 3 of 4 middelen gebruikt 
worden. Daarom concluderen we dat de combinatie MAP optimale resultaten oplevert en 
als standaard behandeling voor het osteosarcoom in hedendaagse protocollen beschouwd 
moet worden. Een andere conclusie van deze studie was dat verder klinisch onderzoek met 
dergelijke combinaties cytostatica geen aanvullende waarde heeft, en dat de ontwikkeling van 
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nieuwe therapie gericht tegen het osteosarcoom gebaseerd moet zijn op een beter inzicht in 
het ontstaan en klinisch-biologisch gedrag van deze maligne bottumor.
Mede om deze reden zijn we een studie begonnen naar de gen expressie in osteosarcomen. 
Het doel van deze studie was om moleculaire mechanismen van deze tumor beter te 
kunnen begrijpen en de gen-expressieprofielen te koppelen aan overleving en histologische 
response op chemotherapie. Gen-expressieprofielen van diagnostische biopten van 25 
hooggradige osteosarcomen werden onderling vergeleken en met niet-maligne cellen, 
namelijk mesenchymale stamcellen die beschouwd worden als cellen waar het osteosarcoom 
uit ontstaat, osteoblasten en (benigne) osteoblastomen. De resultaten van deze studie worden 
beschreven in hoofdstuk 3. Het bleek niet mogelijk om de genexpressie profielen te relateren 
aan de overleving of histologische response. Er waren ongeveer 3000 genen, die significant 
verschillend tot expressie kwamen in osteosarcomen vergeleken met de mesenchymale 
stamcellen of met osteoblasten. Op nivo van een signaalcascade (pathway) vonden we dat 
genen die bij de cel cyclus en de Wnt-signalering betrokken waren, significant verschillen 
in osteosarcomen. Zo bleek bij osteosarcomen de Wnt3a/β-catenine (canonical) signalering 
inactief (indirect bewijs: downregulatie van Axin en CCDN1) te zijn, de alternatieve, Wnt5a 
signalering is overactief evenals genen die betrokken zijn bij de (regulatie van de) celcyclus en 
de p53/apoptose pathway is afunctioneel (indirect bewijs: downregulatie BBC3/PUMA). Wat 
deze bevindingen betekenen wordt in de paragraaf “Discussie” besproken. 
Hoofdstuk 4 gaat verder in op de statistische achtergrond van de zojuist genoemde 
array analyse. Dit hoofdstuk beschrijft een algoritme voor de analyse op genoom nivo, 
dat de Global test genoemd wordt. Bij de Global Test worden klinische variabelen, zoals 
histologische respons of overleving gerelateerd aan verschillende expressiepatronen van genen, 
die gegroepeerd worden in signaal transductie pathways. Van het verschil in expressie van 
de signaal pathways van osteosarcomen en niet kwaadaardige cellen wordt vervolgens de 
statistische significantie bepaald. De Global test is gebaseerd op het Cox-proportional hazard 
model en wordt gecorrigeerd voor co-variabelen. De analyse van de osteosarcomen samples 
lieten zien dat celcyclus genen, genen betrokken bij de DNA-repair en bij de apoptose 
geassocieerd waren met de overleving van de patiënten. Tenslotte kon ook nog geconcludeerd 
worden dat met behulp van de Global test gen expressie studies betere statistische resultaten 
lieten zien.
In hoofdstuk 5 wordt een onderzoek naar de aanwezigheid van de epidermale groeifactor 
HER2 beschreven. Aanleiding hiertoe was een fase-2 onderzoek naar de waarde van 
trastuzumab (Herceptin) bij osteosarcomen (www.cancer.gov/clinicaltrials: MSKCC-99097 
en COG-AOST 0121). Deze studie was gestart op grond van enkele publicaties welke HER2 
overexpressie bij het osteosarcoom rapporteerden en daarmee suggereerden behandelen is 
met het monoclonale antilichaam trastuzumab, naar analogie van HER2 overexpressie bij 
mammacarcinoom. In de door ons uitgevoerde studie kon echter immunohistochemisch 
geen membraan overexpressie van de HER2 receptor aangetoond worden. Evenmin was er 
aanwijzing voor mRNA overexpressie (RT-PCR) of amplificatie (FISH) van het HER2-
gen. Op basis van deze resultaten is er volgens ons geen rationale voor het gebruik van 
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trastuzumab. Tot dusver zijn er geen resultaten van de genoemde fase-2 studie gepubliceerd. 
Nadat met de micro-array studies de moleculaire complexiteit bij osteosarcomen was 
aangetoond vroegen we ons af of er op het klinische vlak ook nog aanwijzingen waren voor 
heterogeniteit van osteosarcomen. Om die vraag te beantwoorden wordt in hoofdstuk 6 
een studie beschreven naar de klinische en pathologische kenmerken van osteosarcomen 
van handen en voeten, een uitzonderlijke lokalisatie. In deze studie worden 40 patiënten 
geëvalueerd, waaruit blijkt dat deze lokalisatie slechts in 0.95% van alle osteosarcomen 
voorkomt. Bijzonder was dat deze patiënten ouder zijn bij diagnose (gemiddelde leeftijd van 
42 jaar), vaker voorkomt bij mannen dan bij vrouwen (ratio 1.7:1) en een langere periode 
hebben, voorafgaande aan de definitieve diagnose. Ook is het osteosarcoom van handen en 
voeten in ongeveer 30% van de gevallen laaggradig, terwijl dit in 1-2% van de gevallen zo is 
bij osteosarcomen van de knie. De kans op overlijden na 5-jaar follow-up (FU) bij 30 goed 
gedocumenteerde patiënten was 20%, bij patienten met osteosarcoom van de hand lager 
(38% na 4 jaar FU) dan bij osteosarcomen in de voeten (11% na 2.5 jaar FU). Er waren geen 
patienten overleden in de groep osteosarcomen van lage of intermediaire maligniteitsgraad. 
De enige factor van significant prognostisch belang bleek de maligniteitsgraad te zijn. De 
conclusie was dan ook dat hooggradige osteosarcomen van handen en voeten dezelfde 
prognose hebben als osteosarcomen van de knie of schouder en als zodanig behandeld moeten 
worden.
Hoofdstuk 7 van dit proefschrift gaat over osteosarcoom met pulmonale metastasen. Bij 
diagnose (synchrone metastasen) worden in 16% van de gevallen pulmonale metastasen 
gezien; een recidief (metachrone metastasen) komt vrijwel altijd als eerste in de longen voor. 
De overall survival van patienten die behandeld waren, was 23%. Het bleek dat overleving 
van de patiënten uitsluitend bepaald werd door de operabiliteit van de metastasen, zelfs 
als dit meerdere malen noodzakelijk is. Er bleek geen significant verschil in overleving te 
zijn tussen patiënten met synchrone of metachrone metastasen. Prognostische factoren zijn 
het aantal metastasen (minder dan 5 of 5 en meer), mate van necrose van de metastasen en 
vrouwelijk geslacht. Bij patiënten met metachrone metastasen was het ziektevrij interval nog 
van prognostisch belang. Chemotherapie bleek geen significante prognostische factor te zijn, 
hoewel een trend voor betere overleving na chemotherapie gezien werd. De eindconclusie van 
deze studie is dat genezing bij patiënten met pulmonale metastasen bereikt kan worden met 
herhaalde resectie, en dat de rol van conventionele chemotherapie hierbij nog onvoldoende 
aangetoond is. 
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Discussie

De conclusie die uit de besproken hoofdstukken getrokken kan worden is dat het 
osteosarcoom biologisch een heterogene en complexe tumor is. Doordat er geen eenduidige 
moleculair-biologisch kenmerk is van het osteosarcoom stagneert de ontwikkeling van nieuwe 
medicijnen tegen deze ziekte. Ook het klinisch gebruik van geneesmiddelen bij osteosarcoom 
is gelimiteerd, zoals we hebben gezien, waarbij het repertoire aan chemotherapeutische 
mogelijkheden vooral bij de behandeling van een recidief osteosarcoom ernstig beperkt 
is. Dit wordt mede in de hand gewerkt doordat bij de primaire behandeling alle effectieve 
middelen al gebruikt zijn, en bij opnieuw gebruiken cumulatieve toxiciteit een belangrijke 
rol speelt, zoals cardiale toxiciteit, gehoor- en nierschade en fertiliteitsproblemen. Wij hebben 
geen HER2 overexpressie op osteosarcoomcellen kunnen aantonen, wat noodzakelijk is 
voor de behandeling met de monoclonale antistof trastuzumab (Herceptin). Uit de array 
studie kwamen als moleculaire aangrijpingspunten de cel cyclus regulatie, de p53/apoptose 
signalering en de complexe Wnt-signalering als belangrijkste naar voren. Om iets te begrijpen 
van de rol de deze deregulatie van de Wnt signalering bij osteosarcomen speelt, volgt er een 
korte samenvatting van wat er nu bekend is over Wnt-signalering in mesenchymale stamcellen, 
de voorloper cellen van osteoblasten en osteocyten en bij maligniteiten in het algemeen, en 
osteosaroom in het bijzonder. 

De Wnt-signalering
Wnts (afkorting van Wingless in Drosophila en hetzelfde gen Int1 in muizen) vormen een 
belangrijk signaleringssysteem die een belangrijke rol in de ontwikkeling, differentiatie 
en weefselherstel hebben (zie voor uitgebreide reviews de referenties in de Engelse versie 
samenvatting). Door het groot aantal liganden (signaaleiwitten, n=19), de verscheidenheid 
aan mogelijke receptoren (Frizzled’s (Fzd), n=10) receptoren en co-receptoren (Lrp’s, Ror 
en Ryk, n=8) zijn er talloze reacties mogelijk na ligand-receptor binding. Daar komt nog 
dat Wnt remmers, zoals Dickkopf ’s (Dkk), Wnt-inhibiting factors (WIF’s), soluble Frizzled 
related proteins (sFrp’s) en extracellulaire eiwitten zoals proteoglycanen de respons kunnen 
moduleren afhankelijk van het type weefselcel en het stadium van ontwikkeling (contex-
dependent). Dat betekent dat het effect van Wnt-signalering in de beenmergniche (reservoir 
mesenchymale stamcellen) anders is dan dezelfde signalering in kraakbeen, bijvoorbeeld van 
de metafyse van lange pijpbeenderen (endochondrale botvorming), of de kraakbeenkern 
van platte beenderen (membraneuze botvorming). Door nieuwere inzichten in de Wnt-
signalering is de oudere indeling in canonical versus non-canonical pathway vervangen door 
respectievelijk het β-catenine afhankelijk en β-catenine onafhankelijk of alternatief systeem. 
Figuur 1 geeft een overzicht van beide signaleringssystemen en enkele onderlinge verbanden. 
In het kort komt het erop neer dat het Wnt3a/catenine afhankelijke systeem na Wnt-reptor 
binding het intracellulaire β-catenine stabiliseert, doordat proteosomale afbraak ervan (Fig.1 F) 
verhinderd wordt (Fig.1 A). Door de stijgende cytoplasma concentratie komt het β-catenine 
in de kern, waar het of proliferatie aanzet (de-repression) of differentiatie induceert, door 
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bijvoorbeeld co-activation van de transcriptiefactor Runx2, wat noodzakelijk is voor de 
osteogenese. 
In het β-catenine onafhankelijke (alternatieve) systeem wordt via het ligand Wnt5a de 
transcriptiefactor Jun-N-terminal Kinase (Jnk) geactiveerd, dat een rol speelt bij de groei van 
tumoren (Wnt/PCP pathway). Een tweede activatie route maakt intracellulair calcium (Ca2+) 
vrij, wat vervolgens Ca2+-gemedieerde transcriptie activatie geeft, via NEMO of NFAT (Wnt/
Ca2+ pathway). De alternatieve signalering via Wnt5a kan het catenine afhankelijke systeem 
op een aantal manieren remmen (zie rode cirkels). 
Wnt signalering speelt een grote rol bij de normale botvorming, maar is nog niet tot in 
alle details opgehelderd. De Wnt-signalering heeft een stadium afhankelijke functie in de 
mesenchymale stamcel (MSC), die tegengestelde effecten hebben (Figuur 2). In de MSC is 
de aanwezigheid van β-catenine bepalend voor de daarop volgende richting van de cellijn-
ontwikkeling (fate-decision). Het stimuleert de richting naar bot-/kraakbeen, maar het 
remt de vetcelontwikkeling. Tijdens het daaropvolgende stadium van de osteo-chondrogene 
voorlopercel remt de aanwezigheid van β-catenine de ontwikkeling van de kraakbeenlijn, 
en stimuleert de aanzet tot differentiatie naar osteoblast en osteocyt. Maar voordat deze 
differentiatie definitief kan doorzetten, moet de Wnt3a/β-catenine signalering uitgezet 
worden, wat via de Wnt-antagonist Dkk1 gebeurt. Het Wnt3a/β-catenine heeft dus 3 functies 
bij de botvorming: 1. keuze voor de (osteo-chondrale) cellijn ontwikkeling, 2. proliferatie van 
osteo-chondrale voorlopercellen en 3. definitieve differentiatie inductie tot bot en remming 
van kraakbeenvorming. 
Wnt5a speelt hierbij een rol doordat het de Wnt3a/β-catenine signalering kan remmen, maar 
zowel de proliferatie als differentiatie van osteoblasten stimuleert.  
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Wnt signalering, maligniteit en osteosarcoom
In onze array studie vonden we aanwijzingen voor een ontregeld Wnt signaleringssysteem, 
waarbij de Wnt3a/β-catenine signalering in osteosarcomen verlaagd tot expressie kwam, en 
het alternatieve, Wnt5a/β-catenine onafhankelijk systeem juist tot overactief was, vergeleken 
met mesenchymale stamcellen of benigne bottumoren, osteoblastomen. Dit is precies 
tegenovergesteld dan de activerende, oncogene rol, die β-catenine speelt bij epitheliale 
tumoren, zoals colon carcinoom, ovarium carcinoom, prostaat-of longkanker. Maar ook bij 
osteosarcomen heeft men gevonden dat er β-catenine overactiviteit is, en dus een oncogene 
rol heeft. Men kan zich wel afvragen hoe in andere situaties waarbij wel overactiviteit van 
nucleair β-catenine aanwezig is, zoals het Gardner syndroom of bij osteoblastomen, geen 
osteosarcoom optreedt, als het Wnt3a/β-catenine als een oncogeen gezien moet worden. 
Er is maar 1 studie bij osteosarcoom bekend, waarbij geen nucleair β-catenine gevonden 
werd, dus het Wnt3a/β-catenine inactief is, net als in onze studie. Er zijn andere maligniteiten 
waarbij een inactief β-catenine systeem gecorreleerd wordt aan de pathogenese van 
kanker. Bij een hooggradige ongedifferentieerd pleomorfe sarcomen werd aangetoond dat 
de mesenchymale stamcel de voorlopercel was voor het ongedifferentieerd sarcoom, en 
dat door uitschakeling van het Wnt/β-catenine systeem de voorlopercel niet verder kon 
differentiëren tot bindweefsel. Ook was de Wnt5a isgnalering uitgeschakeld in deze tumoren, 
waardoor een commitment-viability checkpunt uitviel, waardoor cellen ongecontroleerde, 
ongedifferentieerde groei vertonen, wat leidt tot de vorming van het sarcoom. Bij cellijnen 
van het embryonale rhabdomyosarcoom werd gevonden dat de Wnt/β-catenine verlaagd tot 
expressie kwam, en dat re-activatie hiervan tot spiercel differentiatie leidde. Tevens vonden de 
onderzoekers dat de verlaagde Wnt/β-catenine signalering gepaard ging met resistentie tegen 
apoptose, wat de differentiatie tot spiercellen blokkeerde. Een laatste voorbeeld van Wnt/β-
catenine inactivatie is beschreven bij het retinoblastoom en na reactivatie zag men een p53 
gemedieerde proliferatie stop van de retinoblastoomcellen.
Inactiviteit van het β-catenine systeem werd door Cai et al. van ons lab bevestigd, doordat 
geen kernaankleuring van het β-catenine gezien werd en de Wnt-luciferase reporter studies 
van de β-catenine responsieve genen in de osteosarcoom cellijnen negatief waren. 
Als argument dat inactivatie van de Wnt3a/β-catenine signalering bijdraagt aan de 
ontwikkeling van het osteosarcoom, kan aangevoerd worden dat remming van GSK3β, dat 
het β-catenine fosforyleert, waardoor het afgebroken kan worden, in 2 van de 4 osteosarcoma 
cellijnen differentiatie laat zien tot bot. 
Wat dan precies de rol is van de disregulatie van de Wnt-signalering bij het ontstaan van 
osteosarcoom is niet makkelijk te begrijpen. De hypothese is dat door uitschakeling van de 
Wnt3a/catenine signalering geen differentiatie meer geïnduceerd kan worden en de voorloper 
cellen in een permanente proliferatie blijven. Het overactieve Wnt5a leidt tot activatie van 
de osteogenese, die niet tijds-gesynchroniseerd is met de (gestoorde) differentiatie. Omdat 
hierbij geen goede differentiatie commitment controle meer is en de apoptose a-functioneel is 
(zoals uit de pathway analyse is gebleken) ontstaat er in toenemende mate instabiliteit van het 
genoom, wat het kenmerk is van osteosarcoom (zie figuur 2). Bij 75% van de osteosarcomen is 
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overexpressie van het Wnt5a-ROR2 systeem gevonden, die gecorreleerd was met prognostisch 
slechtere ziekte. In cellijnen werd Wnt5a overexpressie gecorreleerd met meer invasieve groei. 
Concluderend zijn er aanwijzingen dat de Wnt3a/β-catenine en het alternatieve Wnt5a-
systeem een belangrijke rol spelen bij de tumorgenese van het osteosarcoom. Deze 
hypothetische voorstelling van de tumorgenese van het osteosarcoom moeten nog wel door 
studies bevestigd worden. Hierbij zouden de Wnt-pathways en andere signaleringssystemen 
bij de normale en abnormale osteogenese, zoals bijvoorbeeld het osteosarcoom, naast elkaar 
bestudeerd moeten worden. De inzichten die hierbij verkregen worden kunnen ons verder 
kunnen helpen om een exacte beschrijving te kunnen geven van de aard van de disregulatie 
van deze systemen bij osteosarcoom. De verwachting is dat hierdoor nieuwe targets voor de 
behandeling van osteosarcoom gevonden worden. 

Wnt signalering en potentiele therapie
Gezien de inactivering van het Wnt3a/β-catenine systeem en de bevinding dat bij re-
activering differentiatie gezien werd in osteosarcoma cellijnen, kan opgevoerd worden dat 
medicamenteuze therapie, gericht op remmen van de proteosoom gemedieerde degradatie 
van β-catenine een effect zou kunnen hebben op patienten met een osteosarcoom, waarbij 
de Wnt signalering uitstaat. Een van de middelen die hiervoor in aanmerking zou komen 
is de proteosoom remmer bortezomib. Dit middel heeft bij multiple myeloom patiënten 
aangetoond herstel van de normale botaanmaak, ongeacht de respons op het myeloom. 
Hoewel het mechanisme achter het botherstel niet geheel opgehelderd is, denkt men dat 
bortezomib de Wnt3a antagonist Dkk1 remt, of differentiatie inductie via stabilisatie van 
β-catenine veroorzaakt, of de tumor cellen in apoptose brengt. Een onderzoeker vond 
regressie van het osteosarcoom in een muizen model, dat behandeld was met bortezomib, 
waarbij de proliferatie van de cellen geremd werd, en de maligne cellen toegenomen apoptose 
vertoonden. bortezomib was veilig in fase-1, fase-2 en fase-3 studies, werd goed verdragen 
en was weinig toxisch. Zelfs in combinatie met andere cytostatische middelen is bortezomib 
veilig gegeven. Daarom zou bortezomib een van de weinige middelen zijn die in de toekomst 
geëvalueerd zouden kunnen worden bij het osteosarcoom met inactieve Wnt/β-catenine 
signalering. 

Samenvattend kan worden geconcludeerd dat hoog-gradig osteosarcoom op klinisch en 
moleculair nivo een heterogene ziekte is. Dit is mede oorzaak dat er de laatste 3 decennia 
geen vooruitgang geboekt is op het gebied van de behandeling. Om deze ziekte goed te 
behandelen is een combinatie van tenminste 3 middelen in de vorm van neo-adjuvante 
chemotherapie noodzakelijk samen met radicale chirurgie. Dit geldt voor alle osteosarcomen, 
ongeacht de lokalisatie in het skelet en of er sprake is van primair gemetastaseerde ziekte. 
Patiënten met een operabel recidief dienen chirurgische resectie als primaire therapie te 
krijgen, waarbij de toegevoegde waarde van neo-adjuvante chemotherapie niet bewezen is. In 
dit proefschrift is aangetoond dat er geen nieuwe ontwikkeling op gebied van conventionele 
cytostatische medicamenten verwacht kan worden, en moet men patiënten met refractaire 
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ziekte fase-I en fase-II studies aanbieden. Patiënten met een hooggradig osteosarcoom van de 
handen of voeten dienen overeenkomstig hooggradige osteosarcomen elders in het lichaam 
behandeld te worden. Bij niet-hooggradige osteosarcomen van deze lokaties kan alleen 
chirurgische resectie overwogen worden. Het gebruik van monoclonale antilichamen tegen 
de HER2 receptor kan op grond van onze onderzoekresultaten niet ondersteund worden. 
Bij de verdere ontwikkeling van nieuwe geneesmiddelen tegen het osteosarcoom neemt 
het onderzoek naar signaleringssystemen zowel bij de normale als verstoorde osteogene 
differentiatie een belangrijke plaats in, zoals bijvoorbeeld de Wnt-signalering. Beter inzicht 
in deze regulatie geeft ook de mogelijkheid osteosarcomen te behandelen op grond van deze 
inzichten, zoals bijvoorbeeld proteosoom remmers. 
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Voordat ik me tot mijn promotoren en co-promotor richt, die ieder hun specifieke bijdrage 
hebben geleverd aan het tot stand komen van dit proefschrift, wil ik degenen bedanken die 
mij op een heel speciale manier hebben bijgestaan. 

Als eerste wil ik Saskia bedanken voor haar rotsvast geloof in een goede afloop en het 
verdragen van mijn buien, als het even niet mee zat. Je bent er altijd geweest om mij te 
ondersteunen, uit te dagen, mijn werk te spiegelen, mijn taal aan te passen en te zorgen dat ik 
verder ging met schrijven. Ik hoop nog lang met jou door te gaan.

Een bijzondere dank wil ik uitspreken aan alle kinderen met een osteosarcoom, die mij hun 
leven hebben toevertrouwd. Die mij hebben leren luisteren naar hun verhaal, over hun ziekte, 
hobbies, sport, scholing en hun angst. Vaak was er hoop, soms blijdschap, maar ook verdriet, 
boosheid, wanhoop en berusting dat hun leven en toekomst niet eindigde, zoals ze gewild 
hadden. Juist dat verhaal is voor mij de bron geweest om nieuwsgierig te onderzoeken wat wij 
als team hen meer konden bieden. Hun verhalen laten mij niet meer los, geven zin aan al mijn 
stappen in de medische wereld. 

Professor dr. Egeler. Beste Maarten, je hebt me binnengehaald in het LUMC en ik wil je 
vooral bedanken voor de kansen die je me hebt gegeven. Het zal je niet meegevallen zijn om 
mijn ongebreidelde zucht naar allerlei andere interessante onderwerpen in te dammen en me 
te helpen focussen op het schrijven. Je hebt me de wegen laten zien die ik moest bewandelen 
om samen te werken aan een gemeenschappelijk doel, dat vind je zo belangrijk in ons vak. 

Professor dr. Hogendoorn. Beste Pancras, ook jou wil ik hartelijk danken voor het vertrouwen 
dat je mij gegeven hebt, ook gedurende een periode, waarin ik veel met andere zaken bezig 
was. Ik ben je zeer erkentelijk voor de wijze waarop je je voor mij hebt ingezet, vooral de 
laatste tijd. Je bent nog steeds een voorbeeld voor mij om het belang te benadrukken van 
een verbintenis tussen kliniek, radiologie, pathologie en degenen, die zich bezighouden met 
wetenschappelijk onderzoek. Dat zal ik niet vergeten.

Dr. Cleton-Jansen. Beste Anne-Marie, je zult je vaak afgevraagd hebben waarom die artsen 
zich niet gewoon alleen maar met mensen bezighouden in plaats van ook zich te mengen 
in moleculair biologische zaken, waarvoor ze helemaal niet in de wieg gelegd zijn. Je hebt 
mij geleerd eerst goed te kijken, te vragen wat je niet weet en dan met gepast enthousiasme 
conclusies te trekken. Ik hoop nog lang met je te kunnen nadenken over bottumoren.

Professor dr. Gelderblom. Beste Hans, jij hebt me met open armen ontvangen op de afdeling 
Medische Oncologie, waar ik heb me de afgelopen 2 jaar steeds welkom heb gevoeld. Ik 
heb genoten van de opbouwende kritiek die je op mijn artikelen gaf, mij daarbij in mijn 
waarde latend. Ik heb gemerkt dat we elkaar kunnen aanvullen, en dat is voor de toekomst 
een waardevolle zaak als het om adolescenten gaat. Ik zie enorm uit naar onze toekomstige 
samenwerking.
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Mijn kinderen, Nina en Lennard, en ook Joke, hun moeder, wil ik bedanken voor het 
geduldig wachten op de afronding van dit proefschrift, dat langer duurde dan jullie hadden 
gedacht. Vaak gingen vakanties niet door vanwege het werken hieraan, maar jullie hebben je 
teleurstelling daarover niet laten merken. Lieverds, ik ben trots op jullie, omdat jullie mij de 
gelegenheid hebben geboden te kunnen schrijven en te blijven vragen wanneer het feest nu 
eindelijk kwam. Ik ben erg blij met de band die ik heb met jullie alle drie.

Mijn dierbare vader, dat je dit nog mee mag maken vind ik een groot voorrecht. Ik deed 
niet altijd wat jij wilde, maar wanneer ik eenmaal mijn weg gekozen had, dan voelde ik me 
gesteund door je. Natuurlijk ook mijn zus en zwager, die vaak extra inzet hebben getoond op 
de momenten dat ik mijzelf weer terugtrok, en dat zonder mopperen.   

Ook wil ik nog een aantal mensen kort bedanken die een speciale bijdrage hebben geleverd 
aan mijn persoonlijke groei en carriere op de afdeling IHOBA. 

Dr. Frans Smiers, mijn kamergenoot en paranimf. Jouw betrokkenheid bij ons vak, bij mijn 
privé leven, je soms overdonderende kritiek, maar ook je waanzinnig enthousiasme over elke 
volgende hobbel die weer genomen was, zijn een warme deken geweest en behulpzaam om 
dit proefschrift te schrijven. Onze discussies waren pittig, maar je oprechtheid blijft voor mij 
een voorbeeld.

Dr. Wouter Kollen, mijn overbuurman en paranimf. Jouw onverstoorbaarheid en visie op 
mijn handelen hebben ertoe geleid dat je een fijne sparring-partner voor me bent. Je laat me 
andere mogelijkheden zien, bent altijd ondersteunend, stimulerend en je waardeert me zoals ik 
ben. 

Professor dr. Antoni Taminiau, je hebt me geleerd dat werken in de orthopedische oncologie 
teamwork is. Jij vertelde vaak de diagnose aan de patiënten, en daarna vertrouwde je mij de 
rest toe. Jij hebt me ook laten zien dat je door je menselijke benadering altijd contact kunt 
krijgen met de patiënten, hoe jong ook of hoe ongunstig jouw boodschap soms moest zijn. Je 
bent voor mij het levend bewijs dat je meesterlijk vakmanschap, enthousiasme voor je werk en 
bemoedigende menselijkheid kunt uitdragen. 

Dr. Peter Bekkering, jouw onvermoeibaar enthousiasme voor de kinderen die je geholpen 
hebt met revalideren is meer dan bemoedigend geweest. De mogelijkheden die je bedenkt om 
hen weer letterlijk op de been te krijgen dwingen mijn respect af.

Verder wil ik iedereen bedanken die niet bij name genoemd is, maar direkt of indirekt een 
bijdrage geleverd heeft door steeds weer belangstelling te tonen, te vragen en uit te dagen. 
Door talloze gesprekken met vrienden, familie, mijn collega’s, verpleegkundigen, ouders van 
patiënten en anderen op de afdeling kinderoncologie,heb ik mijn passie kunnen voeden.  
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Jakob Klaas Anninga werd op 1 april 1955 in Holwierde, Groningen, geboren. Hij ging op het 
Na het behalen van het HBS-B diploma aan het Christelijk Lyceum te Apeldoorn in 1973 
begon hij aan de opleiding fysiotherapie in Deventer, die in 1978 succesvol afgerond werd. 
Na 2 jaar werken als fysiotherapeut begon hij in 1980 aan de studie geneeskunde aan de Vrije 
Universiteit te Amsterdam, waar het doctoraalexamen in 1986 behaald werd, en succesvol 
afgesloten met het artsexamen in 1988. Daarna ging hij onderzoek doen op de afdeling 
nucleaire geneeskunde van het Nederlands Kanker Instituut/Antoni van Leeuwenhoekhuis 
(NKI/AvL) te Amsterdam (Prof.Dr. C.A. Hoefnagel) en kwam hij in contact met Prof.Dr. 
P.A. Voûte, in verband met kinderen met neuroblastoom, die aldaar behandeld werden met 
131I-Meta-iodo-benzylguanidine (131I-MIBG). Na een half jaar werken met deze therapie in 
het Southampton General Hospital in Engeland (prof.Dr. D. Ackery), begon hij in september 
1989 aan de opleiding  algemene kindergeneeskunde in het AMC/EKZ te Amsterdam, 
opleider Prof.Dr. C. de Groot en Prof.Dr. P.A. Voûte. Na het behalen van de specialisatie 
algemene kindergeneeskunde in september 1994 begon hij in maart 1995 aan een fellowship 
kinderoncologie aan de Katholieke Universiteit Nijmegen/het Radboud ziekenhuis. Dit 
fellowship werd in december 1997 afgesloten met een Locum Consultancy post gedurende 
8 maanden in het Yorkshire Regional Center for Paediatric Haematology and Oncology te 
Leeds, Engeland, onder leiding van Prof.Dr. I. Lewis. Na een periode werkzaam geweest te 
zijn als algemeen kinderarts ging hij in maart 2001 werken als kinderoncologische in het 
Leids Universitair Medisch Centrum (LUMC). Behalve betrokken te zijn bij de allogene 
beenmergtransplantaties, was zijn belangstelling vooral gericht was op solide kindertumoren, 
in het bijzonder Beentumoren. Hij was als Principal Investigator voor Nederland betrokken 
bij de introductie en uitvoering van de EURAMOS-1 studie, een multinationale klinische 
trial voor osteosarcomen. Deze belangstelling voor het osteosarcoom was de basis tot het tot 
stand komen van dit proefschrift.
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