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Chapter 1

General introduction

1.1 Systems of self-propelling particles

The dynamics of systems consisting of self-propelling particles (SPP) is of great
interest for physicists as well as for biologists because of the complex and fascinating
phenomenon of the emergence of ordered motion. Examples of such systems found
in nature are: flocks of birds, schools of fishes, groups of bacteria, etc. (see Fi-
gures 1.1,1.2 and Refs. [1]-[5]).

A reason that these systems are interesting is that many aspects of the observed
transition from disordered to ordered motion are as yet not fully understood.

One may distinguish SPP systems of two types. In the first type the systems
consist of particles interacting via the background in which they are moving. The
driving forces are due to the gradients of chemical or physical factors, such as con-
centrations, temperature, light, electric and magnetic fields, etc. (see Figures 1.3,1.4
and Refs. [6, 7]). The absence of conservation of translational and angular momen-
tum (see, e.g. Refs. [8, 9]) is a direct consequence of these external factors.

The second type is formed by systems of particles, which interact via kinematic
constraints imposed on their velocities. An example is a system where particles ad-
just the direction of their velocities to the direction of the average velocity in their
neighbourhood. Realization of such constraints requires instant exchange of infor-
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Figure 1.1: Flock of birds. Figure 1.2: P. Nicklen, A diver de-
scends into a vortex of 50000 farmed
Salmon to check nets.

mation (visual or other sensorial) between the particles and their environment. These
constraints induce coherent motion and the development of ordered patterns in the
dynamics of the biological systems mentioned above, in the dynamics of crowds,
and in the flocking in traffic-like systems [10, 11]. The clustering in these systems
is driven by interparticle interaction of a non-potential character. The tendency of
the particles to align their velocities with their neighbours is the crucial mechanism
for the emergence of collective motion of the SPP. That is why it is often reason-
able to assume that the frictional forces are balanced by the self-propelling forces
so that the particles move with constant absolute speeds. Usual potential gradients
or other physical forces are not so relevant for the collective behaviour, though the
particles need some physical source of energy to sustain the constraints. It means
that the system with such constraints is not closed and therefore its dynamics is not
Hamiltonian. This does not necessarily mean that the energy dissipates; rather, a re-
distribution among the dynamic degrees of freedom takes place. The very form of the
constraint is determined by the information exchange between particle, its neighbours
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Figure 1.3: N. Pavloff, "White dune". Figure 1.4: Live Science Image
Gallery, Hurricane Dora in the Eastern
Pacific.

and the background so that the particle moves accordingly.

The observed complex dynamics of systems of particles subjected to non-potential
interactions remains poorly understood. That is why this phenomenon is presently of
great interest. The absence of a Hamiltonian form of the equations of motion for such
systems, which generally are far from equilibrium, hampers direct application of the
machinery of statistical mechanics.

Numerous attempts have been made to find a model describing the collective
behaviour of self-propelling particles. One may distinguish two main directions of
research: numerical simulations (discrete description) and hydrodynamic (continu-
ous) approaches. The use of continuum models and simulations to describe self-
organization in biological and social systems is an active research field (for examples
see [12]-[16] and references therein).

The first numerical model (discrete algorithm) for coherent motion of SPP was
proposed by Vicsek et al. [17]. For shortness we will call it the Czirók-Vicsek au-
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tomaton or algorithm (CV). In their work a simple kinematic updating rule for the
directions of the velocities of the particles was proposed. Numerical evidence was
given for a transition from a disordered state to ordered collective motion at a low
noise amplitude and high density values. The model by Vicsek et al. describes
such types of motion of SPP as linear flow, [17], and vortical flow depending on
the imposed boundary conditions [18, 19]. Some of their results are shown in Fig-
ures 1.5,1.6.

Figure 1.5: Ordered motion of SPP at
high density and low noise.

1

Figure 1.6: Stationary vortical state
with reflective walls.

1

They seem to have been the first to realize that flocks fall into a broad category
of nonequilibrium dynamical systems with many degrees of freedom and noted the
analogy between flocking and ferromagnetism [20]. The model of Vicsek has become
the "minimal" simulation model in the study of flocking, just like the Ising model is
for systems undergoing a second order phase transition.

There is strong support that the transition from disordered to ordered motion of
SPP observed in Vicsek’s work [17] is of a continuous character [21]. However, in
Ref. [22] it was shown by numerical simulation that the continuous character may be
questioned, and that it depends on the size of the system (i.e. it is driven by finite size

1Reprinted figures with permission from A. Czirók, E. Ben-Jacob, I. Cohen, T. Vicsek, Phys. Rev.
E 54, 1791 (1996). Copyright c© 2007 by the American Physical Society.
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effects). The results in Ref. [22] demonstrate the difference between the influence of
finite size effects for angular noise in the original algorithm, [17], and vectorial noise,
when the random increment of the velocity is chosen and after that the direction is
calculated. For vectorial noise it is distinctly discontinuous [22] even for rather small
systems. For angular noise the discontinuity of the transition is slurred by finite size
effects and it only becomes discontinuous when the size of the system is sufficiently
large.

Recent investigations, [23], of the nature of the transition in the SPP systems con-
firm the results of Ref. [21] using the simulation parameters used in Ref. [22]. It was
shown that the use of an updating rule, slightly different from the original Vicsek’s
model, led to a change in the nature of the transition obtained in the simulations,
[22]. Moreover, it turns out that in the large velocity regime, due to emergence of a
numerical artifact, it is not possible to make any conclusions about the nature of the
transition.

Extensions of Vicsek’s model have been proposed which consider particles with
varying speeds and different types of noise. These extensions include external regular
and stochastic force fields and/or interparticle attractive and repulsive forces [18, 22,
24, 25].

The dynamics of Vicsek’s model was also investigated in the framework of graph
theory. In Ref. [26] the spontaneous emergence of ordered motion has been stud-
ied in terms of so called control laws which govern the dynamics of the particles.
Generalizations of the control laws were considered in Refs. [27, 28]. In Ref. [28] it
was shown that the organized motion of SPP with the control laws depending on the
relative orientations of the velocities and relative spacing, can be of two types only:
parallel and circular motion. The stability properties of these discrete updating rules
(including Vicsek’s model) and the dynamics they describe were considered using
Lyapunov’s theory in Refs. [26, 27, 29, 30].

The discrete description by Vicsek et al. gave an impulse to the development of
continuous approaches. One may distinguish two main classes of approaches. The
first class consists of models which are based on the Navier-Stokes equation for a
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dissipative fluid formed by microorganisms floating in a medium. The models studied
in Refs. [31, 32] include, in addition to the usual pressure term, phenomenological
terms which generate a spontaneous, as opposed to induced by an external field,
transition to a state of ordered motion observed in experiments and in simulations
[21]. Terms describing the self-propelling nature of the system are also added. In
Ref. [21] the pressure and viscous terms are incorporated into the model side by side
with the driving force and the friction caused by the interaction with the environment
and other self-propelling particles. The nature of the terms introduced in such a
continuous description is not clear. The origin of the coherent motion is the alignment
of the directions of particles’ velocities. The driving force and the friction are of
secondary importance in this context.

The inclusion of additional phenomenological terms in [32, 33] breaks the Galli-
lean invariance of the Navier-Stokes equation and generates the spontaneous transi-
tion to a state of ordered motion. Their inclusion od additional terms is based on
the analogy with Landau’s theory of equilibrium continuous phase transitions. In
particular, the total momentum playes the role of an order parameter and is used to
describe the noise-driven transition from an ordered to a disordered state of motion.
A subsequent renormalization group treatment in Ref. [31] supports the existence of
a nontrivial critical regime and gives the derivation of the critical exponents for the
velocity correlation functions. The phenomenological terms included are based on
symmetry considerations. The underlying physical arguments and a specific connec-
tion with the microscopic (discrete) interactions between the particles are not clearly
established. An attempt to derive such phenomenological equations from the kinetic
equation is made in [34].

One of the advantages of continuum models is that analytic solutions can often be
constructed, while this is impossible for the discrete algorithms. This makes it pos-
sible to avoid difficulties in distinguishing physical factors from artificial numerical
ones.

The second class of approaches contains models which describe the swarming
behaviour of SPP by inclusion of attractive and repulsive interactions. Such a model,
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based on the diffusion-advection-reaction equation with nonlocal attractive and re-
pulsive terms, is suggested in Ref. [35]. Their model gives a compact (with sharp
edges) aggregation of SPP with a constant density. This, according to the authors, is
biologically reasonable.

Another continuous model of this class of approaches for the behaviour of liv-
ing organisms with nonlocal social interactions is proposed in Refs. [36, 37]. There
the kinematic rule for the velocity field contains the density dependent drift and the
nonlocal attraction and repulsion contributions. For the 2-dimensional case of an in-
compressible fluid with the motion of the particles normal to the population gradients,
a flow of a constant density with a compact support is obtained.

All the proposed continuum models do not reflect the essence of the CV model
with the proposed rule to update the directions of the velocities. They contain a lot
of additional terms, which are not responsible for the collective behaviour of the self-
propelling particles.

The aim of this thesis is to construct and to study hydrodynamic models for the
dynamics of SPP which only contain terms needed to update the direction of the
velocities, this in analogy with the updating rules used in the original CV model. As
the self-propelling force is chosen such that it cancels frictional energy losses, there
is no need to have either of these terms explicitly in the hydrodynamic model. Such
models are expected to open new opportunities for the understanding of the collective
behaviour of self-propelling particles.

1.2 Outline of the thesis

We have the following aims with the present investigation:
The general aim of the thesis is to construct models to describe the collective

behaviour of self-propelling particles observed in nature using nonholonomic con-
straints. This is quite a challenging task because of the non-potential character of the
interactions, which complicates the problem and excludes the possibility to use the
standard methods of Hamiltonian dynamics.

As it is mentioned above, the pioneering work by Viscek et al. plays an essential
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role in a lot of existing approaches for systems of self-propelling particles. It is
representative for all the models based on the discrete description.

In connection with this, a further aim is to obtain a continuous analogue of the
CV algorithm. There are no known continuous approaches which reflect the essence
of Vicsek’s model.

In the present thesis a continuum model for the collective behaviour of self-
propelling particles, based on the physical properties of the CV model, is proposed.
In this model the number of particles and the magnitudes of the particle velocities is
conserved. A rule to update the orientation of the velocities is formulated.

In this thesis a hydrodynamic model is proposed with conserved total number of
particles and kinetic energy.

In Chapter 2 the hydrodynamic model is formulated and its properties are con-
sidered. In particular, the 2-dimensional stationary linear and vortical flows of self-
propelling particles are obtained. The influence of the presence of non-potential
interactions is shown by calculating the evolution of the vorticity and the velocity
circulation, which is found to be not conserved. The stability of the ordered motion
with respect to noise inclusion is investigated.

In Chapter 3 the class of all possible planar stationary flows is determined. Using
the conformal representation, it is shown that the flows with translational and axial
symmetry are the only flows possible in the model. Finite flocking behaviour for
different models of the angular velocity field is obtained.

In Chapter 4 the stability properties of the obtained linear and vortical stationary
flows with respect to small perturbations are considered.

In Chapter 5 a derivation of the continuous model proposed in Chapter 2 from
the original discrete algorithm by Vicsek et al. is given. The averaging procedure of
the discrete equations of motion is introduced and the corresponding hydrodynamic
equations are obtained.

In Chapter 6 nonstationary flows of the self-propelling particles are considered.
Linear and radial 2-dimensional flows are obtained and their properties are discussed.

In the last section a summary and conclusion are given.



Chapter 2

Hydrodynamics of systems of
self-propelling particles

The dynamics of systems of self-propelling particles with kinematic con-
straints on the velocities is considered. A continuum model for a discrete
algorithm used in works by Vicsek et al. (T. Vicsek, A. Czirók, E. Ben-
Jacob, I. Cohen and O. Shochet, Phys. Rev. Lett., 75, 1226 (1995)) is
proposed. For a case of planar geometry finite flocking behaviour is ob-
tained. The circulation of the velocity field is found not to be conserved.
The stability of ordered motion with respect to noise is discussed.

This chapter is an extension of the paper by V. L. Kulinskii , V. I. Ratushnaya, A. V.
Zvelindovsky, D. Bedeaux, "Hydrodynamic model for a system of self-propelling
particles with conservative kinematic constraints", Europhys. Lett. 71, 207 (2005).
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2.1 Introduction

In this chapter we formulate a hydrodynamic model which can be considered as a
continuous extension of the discrete dynamic automaton proposed in Ref. [17] for
the SPP system. It manifestly takes into account the local conservation laws for the
number of particles and the kinetic energy. The self-propelling force and the fric-
tional force are assumed to balance each other. In the first section of this chapter
we give a brief description of Vicsek’s model and discuss its results. Then we pro-
pose our continuous model with imposed constraints of conservation of kinetic en-
ergy and number of particles. We investigate its physical properties in the following
sections. In particular, we introduce an angular velocity field, which describes the
non-potential (nonholonomic) character of interactions between self-propelling par-
ticles. Using a model for this field, which is linear in the velocity and density fields
and their gradients, we obtain two stationary regimes of motion of self-propelling
particles. The first one is a linear flow with a density distribution changing along the
normal to the flow direction. The second type of stationary flows is an axially sym-
metric or vortical flow. For this flow the velocity profile is found to be determined
by the density distribution, which can be chosen relatively freely. In addition this
solution describes finite flocking behaviour of SPP, when the density is small (zero)
outside some region. In Section 5 we consider the vorticity and the velocity circula-
tion in our model and discuss the differences between the classical ideal fluids and
our hydrodynamic model with non-potential interactions between the particles. In
the last section of this chapter we investigate the influence of noise.

2.2 Discrete description of the behaviour of self-propelling
particles

2.2.1 Vicsek’s model

In order to investigate flocking phenomenon in the biological systems Vicsek et al.
have proposed a numerical algorithm for the velocities of the self-propelling parti-
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cles. Originally their 2-dimensional model consisted of particles moving in a square
box of linear size L with periodic boundary conditions [17]. Each ith particle is char-
acterized by the position vector ri (t) and the velocity vi (t), whose direction is given
by the angle θi = Arg (vi). The absolute value of the velocity of each particle is kept
constant:

| vi |= v0 = const. (2.1)

According to Vicsek’s rule at each time step each particle adjusts the direction of its
velocity to the average velocity in the neighbourhood S (i):

θi (t + ∆t) = 〈θ (t)〉S (i) + ξ, (2.2)

where ∆t is the time between the updates of the positions and velocity directions, and
ξ is a noise contribution with uniform distribution in the interval

[−η/2, η/2]. Here η
is an amplitude of the noise and

〈θ〉S (i) = Arg


∑

j
r j ∈S (i)

v j


. (2.3)

The position of ith particle at each time step is determined as follows:

ri (t + ∆t) = ri (t) + vi (t) ∆t. (2.4)

The local surrounding S (i) is defined either as a circle of radius R or as a lattice cell
of length R, assuming that each particle interacts with all the particles situated in the
same cell and in the eight neighbouring cells of the square lattice [17],[21],[38].

2.2.2 Results

Starting from a random distribution of the positions and the orientations of the ve-
locities (see Figure 2.1 (a)) simulations for N = 300 [17], N = 4000, 16000 [38] and
N = 104−105 [21] particles for varying values of the density and noise amplitude are
performed. At small densities and noise the particles form groups coherently moving
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in random directions (Figure 2.1 (b)). For higher densities and noise there is some
correlation between the particles (Figure 2.1 (c)). At higher density and small noise
a transition to ordered motion is observed (Figure 2.1 (d)).

Figure 2.1: Velocity fields obtained in the CV algorithm at different densities and
noise, [17]. (a) t = 0, L = 7, η = 2; (b) L = 25, η = 0.1; (c) L = 7, η = 2; (d) L =

5, η = 0.1.

2

2.3 Hydrodynamic model

2.3.1 Formulation of the model

The discrete configuration updating algorithm described above works only on the
directions of the particles’ velocities but keeps their absolute value constant. When

2Reprinted figure with permission from T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and
O. Shochet, Phys. Rev. Lett. 75, 1226 (1995). Copyright c© 2007 by the American Physical Society.
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the time is continuous a particle subjected only to centripetal acceleration and also
the number of particles is constant. Thus the proper equation of motion of a particle
in the continuous time version of the CV algorithm is:

d
dt

vi = ωi × vi, (2.5)

where ωi is the ”angular velocity” of i-th particle, which is chosen such that the
velocity aligns with its neighbours.

We formulate a hydrodynamic model corresponding to the CV algorithm that is
based on the following equations:

dN
dt

=
d
dt

∫

V

n (r, t) dV = 0, (2.6)

dT
dt

=
1
2

d
dt

∫

V

n (r, t) v2 (r, t) dV = 0, (2.7)

where n (r, t) and v (r, t) are the number density and the Eulerian velocity respec-
tively. The volume V moves along with the velocity field. The first condition is the
conservation of number of particles N. We can rewrite this condition in the differen-
tial form

∂n (r, t)
∂t

+ div (n (r, t) v (r, t)) = 0. (2.8)

This is a continuity equation. The second constraint, Eq. (2.7), means that the kinetic
energy of a Lagrange particle is conserved. For the co-moving derivative Eq. (2.7),
together with Eq. (2.6), leads to

d
dt
|v (r, t) |2 = 0. (2.9)

For the details see Appendix A.1.
Using Eq. (2.6) and Eq. (2.7), it can be shown that a field ω (r, t) exists such that

the Eulerian velocity, v (r, t) , satisfies:

d
dt

v (r, t) = ω (r, t) × v (r, t) . (2.10)



24 Chapter 2 . Hydrodynamic model

This equation can be considered as the continuous analogue of the conservative dy-
namic rule used by Vicsek et al. [17].

We propose the following "minimal" model for the field of the angular velocity
ω (r, t) which is linear in spatial gradients of the fields n (r, t) and v (r, t):

ω (r, t) =

∫
K1

(
r − r′

)
n
(
r′, t

)
rot v

(
r′, t

)
dr′. (2.11)

There are other possible choices like

ω (r, t) =

∫
K2

(
r − r′

)∇n
(
r′, t

) × v
(
r′, t

)
dr′ (2.12)

and combinations of the two. The ω -field has the proper pseudovector character.
The averaging kernels K1 (r − r′) and K2 (r − r′) should naturally decrease with the
distance in realistic models. They sample the density and the velocity around r in
order to determine ω (r, t). The detailed derivation of the above continuous equations
from the discrete model based on the automaton proposed by Vicsek et al. [17, 18, 21]
will be given in Chapter 5. In this chapter we consider a case when the angular
velocity is determined by the rotation of the velocity field only, i.e. K2 (r − r′) = 0.

2.3.2 Solitary wave solutions

The models based on equations (2.8), (2.10) and (2.11) allow solutions of uniform
motion in the form of a solitary packet:

n (r, t) = n0 (r − v0 t) (2.13)

with v0 independent of position and time and an arbitrary density distribution n0 (r).
Such solutions are obtained from a static solution, v = 0, with an arbitrary n0 (r) by
a Gallilean transformation. The contribution to ω due to K1 is zero for an arbitrary
density distribution n0. The contribution due to K2 is zero for density distributions
n0 which only depend on the position in the v0 direction. In this second case it
follows from the continuity equation that n0 should be everywhere constant. The
density distribution n0 should be chosen to ensure the finiteness of particle number
and, correspondingly, the total kinetic energy.
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Note that solutions of the same kind, with compact support, were found analyt-
ically in Ref. [36] and observed in simulations [22]. Only solutions with constant
population density were discussed in Ref. [36] as a specific case in their nonlocal
model. Note that such solutions exist not only in nonlocal case but also for the lo-
cal model which we consider below. The existence of such solutions in our case is
a direct consequence of the non-potential character of the model. Because of the
correspondence with the CV algorithm, the pressure gradient term caused by the
interparticle forces was not included in Eq. (2.10). The solitary solutions given by
Eq. (2.13) have neutral stability with respect to number density perturbations. To first
order in small deviations of density and velocity fields the static solutions mentioned
above also show neutral stability: the deviations grow linearly for small t.

2.4 Stationary flows in the local hydrodynamic model

2.4.1 Stationary regimes of motion

In general stationary regimes of motion can be determined as follows. We can rewrite
Eq. (2.10) in the following form:

∂ω

∂ t
+
∂W
∂ t

= rot (v ×W) , (2.14)

where W (r, t) = rot v − ω. For the details see Appendix A.2. Thus it follows that
if W (r, t) = 0, then ∂ω/∂ t = 0 and therefore ω = rot v is independent of the time.
Such states are naturally interpreted as stationary translational ω = 0 or rotational
ω , 0 regimes of motion. For model (2.11) together with W = 0 we get the integral
equation: ∫

K
(
r − r′

)
n
(
r′
)

rot v
(
r′
)

d r′ = rot v (r) , (2.15)

which determines such states. Equation (2.15) gives stationary vortical motion, rep-
resented by a vector field with |v| = const. From here it follows that the vorticity of
the velocity field is an eigenstate of the integral operator with n (r) as the correspond-
ing weight factor. It should be noted that these stationary states do not exhaust all
stationary vortical states.
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2.4.2 Local hydrodynamic model

We further scale K1 by dividing by
∣∣∣∫ K1 (r) dr

∣∣∣ and similarly scale the density by
multiplying with the same factor. Furthermore we restrict our discussion to the simple
case of a planar geometry with the averaging kernel in Eq. (2.11) as a δ-functional:

K1
(
r − r ′

)
= s1 δ

(
r − r ′

)
, (2.16)

where K1 is now the scaled kernel which integrates out to plus or minus one, i.e. s1 =

±1. We will call this the local hydrodynamic model (LHM) . In such a case one may
consider such a continuum model as the particular case of the general hydrodynamic
model considered in Ref. [31] obeying the conservation rules of the CV algorithm.
The viscous Navier-Stokes term is absent because of dissipative free character of the
dynamics. In fact for the CV model the energy of the chaotic motion at low noise
level still can be transformed into the ordered motion, while the viscosity for the
ordinary fluid transmits the energy of the ordered motion into the heat. For this case
of the local hydrodynamic model Eqs. (2.8) and (2.10) take the form:

∂n (r, t)
∂t

+ div (n (r, t) v (r, t)) = 0, (2.17)

dv (r, t)
dt

= s1 n (r, t) (rot v (r, t)) × v (r, t) . (2.18)

The last equation, Eq. (2.18), can be obtained as a special case of the corresponding
one in Ref. [31]. Note that the local model with a δ-kernel in Eq. (2.12) may be
identified with the rotor chemotaxis (i.e. caused by chemical field) force introduced
in Ref. [18] if one takes into account a simple linear relation between the attractant
density (field of food concentration) and the number density of particles.

2.4.3 Stationary vortical flow

The parameter s1 of the local model (2.18) distinguishes different physical situations
concerning the microscopic kinematic constraint. Using an electrodynamic analogy,
this parameter can be interpreted as the sign of "charge" which determines the di-
rection of the Lorentz force due to vorticity. From geometrical reasoning following
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from Eq. (2.5) and interpretation of rot v as the local rotational velocity for the vector
field v (r, t) we can conclude that s1 = +1 corresponds to the CV algorithm, where
the velocity tends to align with the local average. The case s1 = −1 corresponds to a
disalignment tendency at the microscopic level.

To see this we search for stationary axially symmetric (vortical) solutions of
Eqs. (2.17) and (2.18) in the form n = n (r), v = vϕ (r) eϕ. We obtain (see Ap-
pendix A.3):

vϕ (r) =
Cst

2πr
exp

s1

r∫

r0

1
r ′ n (r ′)

dr ′

 (2.19)

with the continuity equation (2.17) being satisfied trivially and r0 being the cut-off

radius of the vortex core. The constant Cst is determined by the circulation of the
core ∮

r=r0

v dl = Cst . (2.20)

The spatial character of the solution strongly depends on the parameter s1. If s1 = −1
infinitely extended distributions for n (r) are allowed, e.g. n (r) ∝ r−α , α > 0. They
lead to localized vortices with exponential decay of angular velocity. If s1 = +1 only
compact distributions, i.e. n (r) ≡ 0 outside some compact region, are consistent with
the finiteness of the total kinetic energy and the number of particles. As an example
we give

n (r) =

√
r0

R − r
θ (r − r0) θ (R − r) , (2.21)

where θ (x − x0) is the Heaviside step function. Substituting Eq. (2.21) into Eq. (2.19),
we obtain

vϕ (r) =
Cst

2πr
exp

2
√

R
r0

(√
1 − r

R
− arctanh

√
1 − r

R

) ∣∣∣∣∣∣
r

r0

 . (2.22)

The corresponding component of the velocity v = vϕ eϕ and the density are shown
in Figures 2.2, 2.3. The stability properties of the stationary solutions (2.19) are dis-
cussed in Chapter 4.
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Figure 2.2: Density n (r/R) given by Eq. (2.21) in the vortex of the local model at
r0/R = 1/3.
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Figure 2.3: Velocity V∗ (r/R) = 2πRvϕ (r) /Cst in the vortex of the local model at
r0/R = 1/3.

2.5 Vorticity of the velocity field

The hydrodynamics of the model under consideration differs essentially from the po-
tential dynamics of ideal fluids [39] due to the non-potential character of the equation
of motion (2.10). The circulation in the fluid subjected to the equations (2.17) and
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(2.18) is not conserved. This is not a case for classical ideal fluids where the circula-
tion is an integral of motion. It can be shown that the momentum does not conserve
either. Taking the rotation on both sides of Eq. (2.18), one obtains the following
equation for the vorticity in a case of planar geometry (see Appendix A.4):

rot
dv
dt

= −s1

(
∂ n
∂ t

rot v − n (v · ∇) rot v
)
. (2.23)

This implies that for s1 = +1 the vorticity is damped by compression along the
flow and therefore such a flow is stable with respect to vortical perturbations. For
s1 = −1 the vorticity is damped by expansion. The first term on the right-hand side
of Eq. (2.23) shows the influence of compression on the evolution of the vorticity.
The second term represents the modified spatial transfer of the vorticity along the
flow. Since this term can be excluded locally by the choice of a local reference frame,
which moves along with the flow, we consider the first term as the main source of the
vorticity. In such an approximation we can write

rot
dv
dt

= −s1
∂ n
∂ t

rot v. (2.24)

The circulation is defined by

C (t) =

∮

L
v · dl =

∫

S

rot v · dS, (2.25)

where the integration contour L and the corresponding surface area S move along
with the velocity field. The time derivative of the circulation is

d
dt

C =

∫

S

rot
dv
dt
· dS . (2.26)

Thus the circulation does not conserve in contrast to the ideal fluid model. The details
of the derivation are given in Appendix A.5.

The total momentum P =
∫

n v dV does not conserve in our local model:

d
dt

P =

∫
s1 n2 rot v × v dV . (2.27)
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From Eq. (2.27) it follows that the damping of vortical part of the velocity leads to
the formation of the states of uniform motion with P = const like those given above
by Eq. (2.13) with corresponding kinetic energy.

2.6 Noise

Inclusion of stochastic noise in our model can be done in a way analogous to that
used in Ref. [21]:

ω (r, t) = ω0 (r, t) + δω (r, t) , (2.28)

where ω0 = s1n rot v is the same contribution as before and δω is the stochastic
contribution. These fluctuations lead to fluctuations of the density and velocity fields.
Replacing ∂n/∂t by an average value 1/τ plus a fluctuating contribution δL (t) in
Eq. (2.24) one obtains for the above described local model with s1 = +1:

d
d t

C = −
(
1
τ

+ δL
)

C , (2.29)

We consider the Gaussian white noise approximation:

〈
δL (t) δL

(
t′
) 〉

= 2 Γ δ
(
t − t′

)
. (2.30)

The stochastic equation (2.29) has the solution

C (t) = C0 exp
(
− t
τ

)
exp (−W (t)) , (2.31)

whereW (t) =
t∫

0
δL (t′) dt′ is the Wiener process [40]. Averaging over the realiza-

tions of the stochastic process, we get for the averaged evolution of the vorticity:

〈C (t) 〉 = C0 exp
(
− t
τ̃

)
, τ̃ =

τ

1 − τΓ , (2.32)

where τ̃ is the relaxation time of the circulation in the system. The details of the
derivation are given in Appendix A.6. For large enough noise, τΓ > 1, the system
becomes unstable. For τΓ ≤ 1 the system is stable and the circulation decays to
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zero. When τΓ → 1 the relaxation time τ̃ goes to infinity, a result similar to critical
slowing down near the critical point. The results of Ref. [22] and the results of
the present chapter allow to conclude that the finite size effects are important when
the CV dynamic updating rule is perturbed by noise. Apparently, the reason is the
essential nonlinearity of the system.

2.7 Conclusions

In conclusion we have constructed a continuum SPP model with particle number and
kinetic energy conservation. We found in 2D that vortical solutions exist for the
model and that they show a finite flocking behaviour. The density profile could be
chosen more or less freely. For one of such choices the velocity profiles were found
to resemble those given in Ref. [19], using a different procedure. The kinematic con-
straints were found to lead to a circulation which was not conserved. The influence
of noise on the stability of the ordered state of the system was discussed.





Chapter 3

Stationary regimes of motion in
the local hydrodynamic model

In Chapter 2 we proposed a continuum model for the dynamics of sys-
tems of self-propelling particles with kinematic constraints on the veloc-
ities. In this chapter we prove that the only types of the stationary planar
solutions in the model are either of translational or axial symmetry of
the flow. Within the proposed model we differentiate between finite and
infinite flocking behaviour by the finiteness of the kinetic energy and
number of particles.

This chapter is based on a paper by V. I. Ratushnaya, V. L. Kulinskii, A. V. Zvelin-
dovsky, D. Bedeaux, "Hydrodynamic model for the system of self-propelling parti-
cles with conservative kinematic constraints; Two dimensional stationary solutions",
Physica A 366, 107 (2006).
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3.1 Introduction

In this chapter we determine class of possible stationary flows of the hydrodynamic
model formulated in Chapter 2. Here we consider a general case for the angular
velocity field given by

ω (r, t) =

∫
K1

(
r − r′

)
n
(
r′, t

)
rot v

(
r′, t

)
dr′

+

∫
K2

(
r − r′

)∇n
(
r′, t

) × v
(
r′, t

)
dr′ . (3.1)

As in the previous chapter we consider local hydrodynamic model determined by
averaging kernels as δ-functionals:

K j
(
r − r′

)
= s j δ

(
r − r′

)
, where j = 1 or 2 . (3.2)

In Chapter 2, where we only considered K1, we scaled K1 by dividing by |s1| and the
density n by multiplying with |s1|. This made it then possible to restrict the discussion
to s1 is plus or minus one. The disadvantage of this scaling procedure is that it
changes the dimensionality of K j and n. For two kernels it becomes impractical. We
note that s j is given by

s j =

∫
K j (r) dr. (3.3)

For the local model Eq. (3.1) reduces to:

ω (r, t) = s1 n (r, t) rot v (r, t) + s2∇n (r, t) × v (r, t) . (3.4)

and Eq. (2.10) for the velocity becomes

d
dt

v (r, t) = s1 n (r, t) rot v (r, t) × v (r, t) + s2 (∇n (r, t) × v (r, t)) × v (r, t) . (3.5)

In the following section we will show that the only stationary solutions in the local
hydrodynamic model with ω -field given by Eq. (3.4) are either the solutions of uni-
form motion (see Eq. (2.13)) or the axially symmetric planar solution which will be
considered in detail in the following section.

In the third section we investigate the properties of the stationary axially symmet-
ric solutions of the local hydrodynamic model for some special cases.
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3.2 Possible types of stationary states in the local hydrody-
namic model (LHM)

3.2.1 Conformal representation

The equations of motion to be solved are Eqs. (2.8) and (3.5). In order to find a
class of 2D stationary solutions we consider this problem in a generalized curvilinear
orthogonal coordinate system (u, v), which can be obtained from the Cartesian one
(x, y) by some conformal transformation of the following form:

u + iv = F (z) , (3.6)

where F(z) is an arbitrary analytical function of z = x+ iy. In a curvilinear orthogonal
coordinate system the fundamental tensor has a diagonal form, gik = giiδik, where the
indices i, j are either u or v. The square of linear element in conformal coordinates is

ds2 =
1

D (u, v)

(
du2 + dv2

)
, (3.7)

where

D (u, v) =
∂ (u, v)
∂ (x, y)

=

(
∂u
∂x

)2

+

(
∂u
∂y

)2

=

(
∂v

∂x

)2

+

(
∂v

∂y

)2

=
1√
g

(3.8)

is the Jacobian of the inverse conformal transformation from the arbitrary curvilinear
orthogonal to Cartesian coordinates, (u, v) → (x, y). Furthermore g = guugvv is the
determinant of the metric tensor guv. For a conformal transformation gvv = guu =

1/D.

The differential operations are given by the following expressions [41]:

∇φ =
√

D
(
eu
∂φ

∂u
+ ev

∂φ

∂v

)
, (3.9)

div a = D
[
∂

∂u

(
au√

D

)
+
∂

∂v

(
av√

D

)]
, (3.10)



36 Chapter 3 . Stationary regimes of motion in the LHM

rot a = D
[
∂

∂u

(
av√

D

)
− ∂

∂v

(
au√

D

)]
, (3.11)

∆φ = D
[
∂2φ

∂u2 +
∂2φ

∂v2

]
, (3.12)

where φ and a = aueu + avev are the arbitrary scalar and vector fields respectively.
Here eu and ev are orthonormal base vectors in the directions of increasing u and
v respectively. These base vectors are functions of the coordinates u and v. The
projections of the vector field a on these directions are au = a · eu and av = a · ev.
Using Eqs. (3.9)-(3.12) for the velocity field given by v = vu eu + vv ev, one obtains:

(v · ∇) v =
√

D
[
vu
∂ (vueu)
∂u

+ vv
∂ (vueu)
∂v

+ vu
∂ (vvev)
∂u

+ vv
∂ (vvev)
∂v

]
, (3.13)

(rot v) × v = D
[
∂

∂u

(
vv√
D

)
− ∂

∂v

(
vu√
D

)]
(−vveu + vuev) , (3.14)

(∇n × v) × v =
√

D
[
∂n
∂u

vv − ∂n
∂v
vu

]
(−vveu + vuev) , (3.15)

div (nv) = D
[
∂

∂u

(
n vu√

D

)
+
∂

∂v

(
n vv√

D

)]
= 0. (3.16)

3.2.2 Class of the stationary flows in the LHM

Substituting Eqs. (3.13)-(3.16) into Eqs. (2.8) and (3.5), we obtain the following sys-
tem of equations, which determines all possible stationary flows for the LHM:

vu
∂vu

∂u
+ (1 − s1n) vv

∂vu

∂v
+ vu vv

(
f3 +

s1n
2
∂ ln D
∂v

− s2
∂n
∂v

)

+v2
v

(
f4 − s1n

2
∂ ln D
∂u

+ s2
∂n
∂u

)
+ s1n vv

∂vv
∂u

= 0, (3.17)
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vv
∂vv
∂v

+ (1 − s1n)vu
∂vv
∂u

+ vu vv

(
f2 +

s1n
2
∂ ln D
∂u

− s2
∂n
∂u

)

+v2
u

(
f1 − s1n

2
∂ ln D
∂v

+ s2
∂n
∂v

)
+ s1n vu

∂vu

∂v
= 0, (3.18)

∂

∂u

(
n vu√

D

)
+
∂

∂v

(
n vv√

D

)
= 0, (3.19)

where

f1 (u, v) =
∂eu

∂u
· ev , f2 (u, v) =

∂eu

∂v
· ev,

f3 (u, v) =
∂ev
∂u
· eu , f4 (u, v) =

∂ev
∂v
· eu. (3.20)

Now let us consider the case of ”coordinate flows”, when the flow is directed along
one of the families of coordinate lines u, v for example along u-coordinate lines and is
given by v = vv (u, v) ev, the density distribution is n = n (u, v). The case of a velocity
field v = vu (u, v) eu is equivalent. From Eq. (3.17) we have:

vv = C0 exp
[∫

I (u, v) du
]
, (3.21)

where C0 is constant and

I (u, v) =
1
2
∂ ln D
∂ u

− f4
s1 n
− s2

s1

∂ ln n
∂ u

. (3.22)

Equations (3.18) and (3.19) take the form

∂vv
∂v

= 0, (3.23)

∂

∂v

(
n vv√

D

)
= 0 (3.24)
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and lead to
n (u, v) = h (u)

√
D (u, v), (3.25)

where h(u) is an arbitrary function of u.
Taking into account that

f4 (u, v) =

(
∂ev
∂v
· eu

)
= −D

2
∂ (1/D)
∂u

=
1
2
∂ ln D
∂u

(3.26)

and Eq. (3.25), we obtain:

I (u, v) =
1
2
∂ ln D
∂ u

1 −
1

s1 h (u)
√

D
− s2

s1

2
∂ ln h (u)
∂ u

(
∂ ln D
∂ u

)−1

+ 1


 . (3.27)

Note that as it follows from Eq. (3.23)

vv (u, v) = vv (u) . (3.28)

For the integrand in Eq. (3.21) this implies that

I (u, v) = I (u) . (3.29)

Therefore from Eqs. (3.27) and (3.29) we can conclude that the function D (u, v),
which determines the coordinate system, depends only on one variable, D = D (u).

In the case of conformal coordinates, defined by the metrics in Eq. (3.7), the
Gaussian curvature of the surface is given by [42]:

K =
1
2

D ∆ ln D . (3.30)

For a planar flows the condition K = 0 leads to the following

∆ ln D = 0. (3.31)

Using the expression for the Laplacian in the conformal representation (see Eq. (3.12))
and taking into account a fact that D = D (u), one finds for (3.31):

D = exp [c1u + c2] , (3.32)
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where c1,2 are arbitrary constants. The case c1 = 0 determines a Cartesian coordinate
system, which is related to a linear class of stationary flow. The case c1 , 0 deter-
mines a polar coordinate system [41], which corresponds to an axially symmetric (or
vortical) type of flow.

Finally the velocity field for the LHM, with s1 , 0 takes the form:

vv (u) = C0 exp
[
1
2

∫
∂ ln D
∂ u

[
1 − 1

s1 h(u)
√

D

− s2

s1

2
∂ ln h (u)
∂ u

(
∂ ln D
∂ u

)−1

+ 1


 du

 , (3.33)

Thus it is proved that for the case s1 , 0 the only stationary solutions are those either
with planar or axial symmetry of the flow.

The case s1 = 0 is specific because, as it follows from Eqs. (3.17) and (3.18), the
velocity field vv (u) is arbitrary while the density is given by

n = − 1
2 s2

ln D + n0 . (3.34)

The statement about the symmetry of the stationary solutions for such a model is the
same as that proved above for the case s1 , 0. Note that the parameter λ = s2/s1 can
be considered as the weight factor of the rotor chemotaxis contribution.

3.3 The properties of axially symmetric stationary solutions

3.3.1 Finite flocking behaviour of self-propelling particles

In this section we investigate the stationary axially symmetric solutions for different
cases of the local hydrodynamic models. In Chapter 2 we considered the s2 = 0
case, which we called the local hydrodynamic model one (LHM1). Other models
correspond to cases s1 = 0 and s1 = s2 = s which we will call the LHM2 and
the LHM12 respectively. We distinguish finite and infinite flocking stationary states
for these models. We differentiate between these two cases by the finiteness of two
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integrals of motion - the total number of particles

N =

∫
n (r, t) dV (3.35)

and the kinetic energy

T =
1
2

∫
n (r, t) v2 (r, t) dV. (3.36)

The infinite flocking is associated with N infinite but finite T , while finite flocking
corresponds to both N and T finite. It is natural to consider the finite flocking rather
than infinite flocking behaviour. Note that in the finite flocking behaviour one may
consider two cases with respect to the compactness of the n (r, t). Compactness means
that the density has some upper cut-off beyond which it can be put zero.

3.3.2 The properties of the stationary solutions of the LHM1

For the scaling procedure defined in Section 3.1 the stationary vortical flow in the
LHM1 is given by

vϕ (r) =
C1

2πr
exp


1
s1

r∫

r0

1
r n (r ′)

dr ′

 , (3.37)

where C1 has analogous to Cst physical meaning.

The spatial behaviour of the solution given in Eq. (3.37) strongly depends on
the sign of the parameter s1. The finiteness of integrals of motion Eq. (3.35) and
Eq. (3.36) is guaranteed by either the fast enough decrease of the density n (r) at
r → ∞ or its compactness (n (r) as a function has finite support).

Let us consider the finite flocking behaviour (FFB), which is characterized by
both N and T finite. If at r → ∞ asymptotically n (r) ∼ r−α , where α > 2, the total
number of particles N is finite. Then at such a behaviour of n (r) the total kinetic
energy is finite only if s1 < 0.

In the case s1 > 0 the condition of finiteness for the kinetic energy and the total
number of particles is fulfilled only if n (r) has finite support. The density profile
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considered in the previous chapter is one of the possibilities of the flow with FFB.
For Eq. (3.37) it is given by

n (r) = n1θ (r − r0) θ (R − r)
√

r0

R − r
, n1 > 0 , (3.38)

Substituting Eq. (3.38) into Eq. (3.37), one obtains:

vϕ (r) =
C1

2πr
exp


2

s1n1

√
R
r0

(√
1 − r

R
− arctanh

√
1 − r

R

)∣∣∣∣∣∣
r

r0

 . (3.39)

The corresponding profiles of the velocity v = vφ eφ at different ratios R/r0 are shown
in Figure 3.1.
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Figure 3.1: Velocity profiles for V∗ϕ = 2πRvϕ (r/R) in the LHM1 at different ratios
R/r0 and s1n1 = 1.

Note that for the case considered at R/r0 ≥ 2 we get monotonic profiles of the
velocity which are similar to those observed in nature [4, 5], numerical experiments
[18] and theory using a different approach [19].

The infinite flocking behaviour (IFB) is characterized by N infinite and T finite.
For the case s1 > 0 no physical solutions exist with such a behaviour. For the case
s1 < 0 slowly decaying density distributions n (r) ∝ r−α at r → ∞ with 0 ≤ α ≤ 2 are
consistent with the finiteness of T . These statements are summed up in Table 3.1.
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LHM1 s1 > 0 s1 < 0

FFB (N < ∞, T < ∞) compact support α > 2, no compact support

IFB (N = ∞, T < ∞) no physical solutions 0 ≤ α ≤ 2

Table 3.1: Properties of the stationary solutions of the LHM1.

3.3.3 The properties of the stationary solutions of the LHM2

For the case s1 = 0 and s2 finite one may also construct a stationary planar axially
symmetric solution. In polar coordinates from Eq. (3.34) we obtain:

n (r) =
1
s2

ln
r
r0
, (3.40)

and one can choose the velocity field vϕ (r) arbitrarily. For positive values of s2 this
density is positive for r > r0 and for negative values of s2 it is positive for r < r0.
Thus for positive values of s2 the density profile becomes

n (r) =
1
s2
θ (R − r) ln

r
r0

(3.41)

and for negative values of s2 it is

n (r) =
1
|s2| θ (r0 − r) ln

r0

r
. (3.42)

The results for finite and infinite flocking behaviour are given in Table 3.2.

LHM2 s2 > 0 s2 < 0

FFB (N < ∞, T < ∞) no physical solution compact support

IFB (N = ∞, T < ∞) no physical solution no physical solution

Table 3.2: Properties of the stationary solutions of the LHM2.
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3.3.4 The properties of the stationary solutions of the LHM12

The third case which is expedient to consider is s1 = s2 = s. In this case, according
to Eq. (3.4), the ω -field is coupled to the number density flux j = n v:

ω (r, t) = s rot j (3.43)

so that Eq. (3.5) for the velocity is

d
dt

v (r, t) = s rot j × v (r, t) . (3.44)

For the axially symmetric stationary planar solution v = vϕ (r) eϕ this gives

vϕ (r) = s
d
dr

[
r n (r) vϕ (r)

]
. (3.45)

with

vϕ (r) =
C2

2πr n (r)
exp


1
s

r∫

r0

1
r ′ n (r ′)

dr ′

 . (3.46)

as a solution. The constant C2 is determined by the circulation of the core
∮

r=r0

v · dl =
C2

n (r0)
. (3.47)

The properties of finite and infinite flocking behaviour for this model are the same as
those for the LHM1 (see Table 3.1).

3.4 Conclusions

In this chapter we considered the properties of the 2-dimensional stationary solutions
of the LHM proposed in Chapter 2. We established that the only possible stationary
solutions in the model are those with translational or axial symmetry. In this respect
our continuum model gives results similar with those obtained in the discrete model
of Vicsek [17, 18]. The cases of finite and infinite flocking behaviour are considered
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for different specific types of the LHMs. It is shown that the case s1 = 0 (LHM2) is
specific in a sense that there is only one density distribution, for which many velocity
profiles can be realized. In general case (s1 , 0) one is free to choose axially sym-
metric density distribution, which the velocity profile depends on (Eqs. (3.25) and
(3.33)). Note that in this respect the general case is similar to the LHM1 considered
earlier.



Chapter 4

Stability of hydrodynamic flows of
self-propelling particles

In this chapter we analyze the stability of the stationary linear and vor-
tical (axially symmetric) hydrodynamic flows, described in Chapter 3.
The main result of this chapter is a neutral stability of the stationary solu-
tions within the linear approximation. By comparison of such a situation
with that for the Hamiltonian systems we conclude that the main reason
for the neutral stability is the dissipative free character of the dynamics.

This chapter is based on a paper by V. I. Ratushnaya, D. Bedeaux, V. L. Kulin-
skii, A. V. Zvelindovsky, "Stability properties of the collective stationary motion of
self-propelling particles with conservative kinematic constraints", J. Phys. A: Math.
Theor. 40, 2573 (2007).
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4.1 Introduction

In this chapter we investigate the stability of the obtained regimes of motion with
respect to small perturbations. In the next section we consider the stability of the
planar stationary linear flow with respect to the velocity perturbation directed along
the stationary flow and perpendicular to the flow. We show that in both cases the
evolution of the perturbations has an oscillatory behaviour, which means that they
neither grow nor decay with time. This can be interpreted as neutral stability of the
corresponding stationary flow [44]. Also the external pressure term −∇p/n can be
included into Eq. (2.10) in order to account for potential external forces. In such a
case with s2 = 0 there exists the special case of the incompressible flows, n = const,
when the equations of motion (2.8),(2.10) with (3.4) coincide with those for potential
flow of ideal fluids. As it is known [44], in 2D geometry such motion is stable in the
Lyapunov sense under rather weak restrictions on the initial velocity field profile.

In the third section we consider the stability of the planar vortical motion of SPP
with constant velocity and density fields. We find that in this case the linear analysis
does not lead to a conclusive answer about the stability of the solution.

4.2 Stability of planar stationary linear flow in the local hy-
drodynamic model

4.2.1 Stability with respect to a velocity perturbation along the flow

In this section we consider the stability properties of planar stationary linear flow for
the local hydrodynamic model with s2 = 0 (LHM1). At the end of the section we
will shortly discuss how these results extend to the local hydrodynamic models with
s1 = 0 and s1 = s2. In the LHM1 the stationary linear flow is given by

v0 (r) = v0 ex and n0 (r) = n0, (4.1)

where v0 and n0 are constants.
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We consider velocity and the density perturbations of the following form:

v1 (r, t) = v0 A|| ei k·r eα||t ex and n1 (r, t) = n0 B|| ei k·r eα||t, (4.2)

The velocity perturbation chosen is directed along the stationary linear flow. Here
A||, B|| are constants, k = kxex + kyey is the wave vector and α|| is an exponent, which
determines the time evolution of the perturbation.
Substituting the solution v (r, t) = v0 + v1 (r, t) , n (r, t) = n0 + n1 (r, t) into Eqs. (2.8)
and (2.10), we obtain the linearized system of equations:

∂v1

∂t
+ (v0 · ∇) v1 = s1 n0 (rot v1) × v0, (4.3)

∂n1

∂t
+ ∇ · (n0v1) + ∇ · (n1v0) = 0. (4.4)

For the perturbations (4.2) this system reduces to

∂v1

∂t
+ v0

∂v1

∂x
= 0, (4.5)

∂v1

∂y
= 0, (4.6)

∂n1

∂t
+ v0

∂n1

∂x
+ n0

∂v1

∂x
= 0. (4.7)

Using Eq. (4.2), one may obtain the relation between α|| and the wave number.
From Eq. (4.5) it follows that

α|| = −ikx v0, (4.8)

whereas from the linearized continuity equation (4.7) we have

α|| = −ikx v0

(
A|| + B||

)
B||

. (4.9)

Both the equalities are satisfied only in the case when A|| = 0.
Thus, in the linear stability analysis with respect to small deviations of the veloci-

ty and density fields, we obtain the following perturbed solution

v = v0 ex, n = n0
[
1 + B|| eikyy eikx(x−v0t)

]
. (4.10)
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Taking the real part of the density perturbation, we have

v = v0 ex, n = n0
[
1 + B|| cos (k · r − kxv0t)

]
. (4.11)

The corresponding density field is shown in Figure 4.1
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Figure 4.1: Total density field n (r, t) /n0 and the stationary solution n/n0 = 1 as a
function of x∗ = kxx and t∗ = kxv0t for ky = 0.

This flow, Eq. (4.11), should satisfy the linearized system of the constraints (conser-
vation of the kinetic energy and the number of particles) which are imposed on any
solution of our model. This implies that the following conditions must be fulfilled:

∫
n1 (r, t) dr = 0, (4.12)

∫ [
2n0 (v0 · v1 (r, t)) + n1 (r, t) v2

0

]
dr = 0. (4.13)

Since v1 (r, t) = 0 both conditions reduce to
∫

n1 (r, t) dr = n0 B||
∫

eikyydy
∫

eikx(x−v0t)dx = 0. (4.14)

If one integrates Eq. (4.14) over the period of the integrand, one may see that this
condition is fulfilled.

The obtained perturbed flow is an oscillatory field (perturbation oscillates with
a frequency α|| as t → ∞), which means that the corresponding stationary solution
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is neither stable nor unstable within the first order of the perturbation theory. The
stability analysis of the other possible hydrodynamic models with s1 = 0 or s1 = s2

gives qualitatively similar result.
Thus, we may conclude that in our local hydrodynamic model the stationary lin-

ear flow is neutrally stable with respect to a small density field perturbation.

4.2.2 Stability with respect to a velocity perturbation perpendicular to
the flow

In this section we investigate the stability properties of the stationary linear flow in
the LHM1, Eq. (4.1), with respect to a velocity perturbation normal to the stationary
flow. We consider only a velocity perturbation, which we take in the form of a plane
wave:

v1 = v0 A⊥ eik·reα⊥tey, n1 = 0, (4.15)

where A⊥ is a constant, k is a wave vector and the exponent α⊥ describes the time
evolution of the perturbation.

Substituting this perturbation into the linearized equations (4.3)-(4.4), we obtain

∂v1

∂t
+ v0 (1 − s1n0)

∂v1

∂x
= 0, (4.16)

∂v1

∂y
= 0 and ky = 0, (4.17)

which implies that
α⊥ = ikx v0 (s1n0 − 1) . (4.18)

Thus the time evolution of the perturbed velocity field is determined by the purely
imaginary exponent in Eq. (4.18):

v = v0 + v1 (x, t) = v0
[
ex + A⊥eikx(x+V t)ey

]
, n = n0, (4.19)

where the "phase speed" is given by

V = v0 (s1n0 − 1) . (4.20)
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Taking the real part of the velocity perturbation, we obtain as a final result:

v = v0
[
ex + A⊥ cos [kx (x + Vt)] ey

]
, n = n0. (4.21)

The corresponding velocity profile is shown in Figure 4.2.
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Figure 4.2: Total velocity field v (x, t) /v0 and the stationary solution v0/v0 = 1 as a
function of x∗ = kxx and t∗ = kxVt.

Since the velocity perturbation is taken to be normal to the unperturbed field and
n1 = 0, both of the constraints of the constancy of the kinetic energy and the number
of particles, Eqs. (4.12) and (4.13), are satisfied.

As one may see the time dependent part of the velocity perturbation is a finite os-
cillatory function which means that the corresponding stationary solution is neutrally
stable.

As in the previous section the stability analysis of the other possible hydrody-
namic models with s1 = 0 or s1 = s2 gives qualitatively similar result.

4.3 Stability of planar stationary vortical flow with con-
stant velocity and density in the local hydrodynamic
model

As we have shown in Chapter 3, there are two classes of the stationary flows in the
LHM, linear and axially symmetric or vortical flow. The stationary vortical solution
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of the LHM1 (see Chapter2) is given by v0 (r) = vϕ (r) eϕ, n0 (r) = n0 (r), where

vϕ (r) =
Cst

2πr
exp

s1

r∫

r0

dr ′

r ′ n0 (r ′)

 . (4.22)

We consider small perturbations v1 (r, ϕ, t) of the velocity field and n1 (r, ϕ, t) of the
density field. Linearizing the system of equations of the LHM1, Eqs. (2.17),(2.18),
we obtain

∂v1

∂t
+ (v1 · ∇) v0 + (v0 · ∇) v1 = s1n0 [(rot v1) × v0 + (rot v0) × v1]

+s1n1 (rot v0) × v0, (4.23)

∂ n1

∂t
+ ∇ · (n0v1) + ∇ · (n1v0) = 0. (4.24)

In this section we consider the stability of a particular class of stationary vortical
flow for which the density is constant and is given by n0 = 1/s1. Substitution of this
density into Eq. (4.22) leads to a constant velocity field

v0 = vϕeϕ =
Cst

2πr0
eϕ . (4.25)

We write the small perturbations in a general form

v1 = a (r, ϕ, t) er + b (r, ϕ, t) eϕ and n1 = n0 c1 (r, ϕ, t) . (4.26)

For the projections of the velocity field v = v0 (r) + v1 (r, ϕ, t) together with the
continuity equation for the density field n = n0 + n1 (r, ϕ, t) we have:

∂a
∂t
− 2

b vϕ
r

+
vϕ

r
∂ a
∂ϕ

= −vϕ
r

[
∂rb
∂r
− ∂a
∂ϕ

]
− bvϕ

r
− c1

v2
ϕ

r
, (4.27)

∂b
∂t

+
vϕ

r
∂b
∂ϕ

= 0, (4.28)

∂c1

∂t
+

1
r

[
∂ra
∂r

+
∂b
∂ϕ

]
+
vϕ

r
∂c1

∂ϕ
= 0. (4.29)
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In order to simplify the problem we restrict our discussion to the case with the radial
component of the velocity perturbation being constant, i.e. a (r, ϕ, t) = const.

Then one can transform equations (4.27)-(4.29) into

∂b
∂t

+
vϕ

r
∂b
∂ϕ

= 0, (4.30)

∂b
∂r

= −c1vϕ

r
, (4.31)

∂c1

∂t
+

1
r

(
a +

∂b
∂ϕ

)
+
vϕ

r
∂c1

∂ϕ
= 0. (4.32)

The velocity perturbation must be a periodic functions of the angle ϕ and can there-
fore be written as

b (r, ϕ, t) = vϕB (r) eimϕeβt, (4.33)

where B (r) is a function of r, m is an integer and β is a constant factor, which
describes the time evolution of the perturbation, Eq. (4.26). Substituting this into
Eq. (4.30), one obtains

β = −i m
vϕ

r
(4.34)

and consequently
b (r, ϕ, t) = vϕB (r) exp

[
im

(
ϕ − vϕ

r
t
)]
. (4.35)

From Eq. (4.31) it follows that

c1 (r, ϕ, t) = −r
(
∂B (r)
∂r

+ im
vϕB (r)

r2 t
)

exp
[
im

(
ϕ − vϕ

r
t
)]
. (4.36)

Substituting this into Eq. (4.32), we obtain that a (r, ϕ, t) = 0.
The solutions (4.35) and (4.36) satisfy the linearized system of constraints, Eqs. (4.12)
and (4.13), as one can see, by angular integration.

Thus, we see that the time evolution of the perturbation Eq. (4.26) is determined
by the purely imaginary exponent Eq. (4.34). Taking the real part in Eqs. (4.35) and
(4.36), we obtain

b (r, ϕ, t) = vϕB (r) cos
[
m

(
ϕ − vϕ

r
t
)]
, (4.37)
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n1 (r, ϕ, t) = n0

{
mvϕ B (r)

r
t sin

[
m

(
ϕ − vϕ

r
t
)]

−r
∂B (r)
∂r

cos
[
m

(
ϕ − vϕ

r
t
)]}

. (4.38)

As a result the whole solution for the velocity and the density profiles has the follow-
ing form:

v (r, ϕ, t) = vϕ

{
1 + B (r) cos

[
m

(
ϕ − vϕ

r
t
)]}

eϕ, (4.39)

n (r, ϕ, t) = n0

{
1 +

mvϕ B (r)
r

t sin
[
m

(
ϕ − vϕ

r
t
)]

−r
∂B (r)
∂r

cos
[
m

(
ϕ − vϕ

r
t
)]}

. (4.40)

The velocity field, Eq. (4.39), is shown in Figure 4.3.
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Figure 4.3: Total velocity field v (r, ϕ, t) /vϕ and the stationary solution vϕ/vϕ = 1 as
a function of ϕ and τ∗ = vϕt/r for m = 1 and r = 5 m.

Together with the oscillatory contributions we now also have the contribution pro-
portional to t times an oscillating function. This does not necessarily mean that the
stationary vortical flow is unstable. The linear analysis does not give the definitive an-
swer regarding the stability of the stationary flow and further investigation of higher
order terms is required. Note that such a situation is typical for Hamiltonian systems
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which are conservative by definition and therefore do not display an asymptotic type
of stability [44]. Though the system under consideration is not Hamiltonian one may
suppose that the reason for the neutral stability is the dissipative free character of the
dynamics.

4.4 Conclusions

In this chapter we considered the stability properties of the planar stationary flows of
the local hydrodynamic model constructed in Section 2 for a system of self-propelling
particles. These flows are the linear flow and the axially symmetric flow. Our analy-
sis shows for linear flow, using linear perturbation theory, that the time evolution of
the imposed velocity and density perturbations is oscillatory. It follows that the lin-
ear flow is neutrally stable. For axially symmetric (vortical) flow linear perturbation
theory does not lead to a conclusive result. Although exponential time dependence
of the perturbation has purely imaginary factor, there appears an additional contribu-
tion proportional to t. This does not necessarily mean that the stationary solution is
unstable. A definitive answer about the nature of the stability can only be given by
considering also higher order terms in the perturbation expansion. Such an analysis
is beyond the scope of the present thesis.



Chapter 5

Connection between discrete and
continuous descriptions

In this chapter we derive the continuous hydrodynamic model constructed
in Chapter 2 from the discrete description proposed by Vicsek et al. The
averaging procedure is defined. The similarities and differences between
the resulting model and our hydrodynamic model are discussed. The
results clarify the assumptions used to obtain a continuous description.

This chapter is based on a paper by V. I. Ratushnaya, D. Bedeaux, V. L. Kulinskii,
A. V. Zvelindovsky, "Collective behaviour of self-propelling particles with kinematic
constraints; The relation between discrete and the continuous description", Physica
A 381, 39 (2007).
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5.1 Introduction

In this chapter we obtain the continuous description by coarse-graining the discrete
CV algorithm. In this respect our present results are meant to be a link between
two existing groups of approaches: discrete and continuous. The importance of this
analysis is that it clarifies which of the continuous models we proposed is closest to
be the continuum analog of the CV model.

In the next section we will start with a rule for the velocities formulated by Vicsek
et al. and obtain a discrete equation of motion for each particle. We introduce angular
velocities associated with the rate of change of the direction of the linear velocity
of the particles. These angular velocities contain the information about the non-
potential interactions between a given particle and its local surrounding. We derive an
expression for the angular velocities in the continuous time description. We show that
to a first order in the velocity difference between the time steps the angular velocity
for particle i depends on the average velocity in the neighbourhood of the ith particle
and its rate of change.

In Section 5.3 we obtain the continuous description, with a conserved kinetic
energy and number of particles, using a coarse-graining procedure. We obtain the
angular velocity field which follows from the 2-dimensional CV model and compare
it with the angular velocity fields we proposed in Chapter 2. It turns out that there are
similarities and differences. Both the continuous description that follows from the
CV model and our continuous model give stationary linear and vortical flow fields.
The description of such flow fields is one of the aims of the model.

5.2 Continuum time limit

In this section we derive the equation of motion in continuous time from the CV
algorithm. In the CV model the collective behaviour of self-propelling particles with
respect to a change of the density and the strength of the noise was investigated. In our
analysis the noise will not be considered. We focus on the systematic contribution.
In Chapter 2 we discussed how noise can be added in our approach.
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5.2.1 Angular velocity associated with the particle velocity

According to the CV rule at each discrete time step (labeled by n) the ith particle
adjusts the direction of its velocity vi (n) to the direction of the average velocity ui (n)
in its neighbourhood. The average is calculated over a region with a radius R around
a given particle. Using this radius, we will call particle densities small compared to
R −d, where d is the dimensionality, small. When the density is larger we call it large.
The CV rule implies that

vi (n + 1) × ui (n) = 0, ∀ i, n , (5.1)

where the absolute value of the velocity of each particle is assumed to be constant,
i.e.

| vi (n + 1) |=| vi (n) |= vi . (5.2)

Together with Eq. (5.1) it follows that

vi (n + 1) = vi ui (n) , where | ui (n) |= 1 . (5.3)

Using the fact that vi (n + 1) − vi (n) is perpendicular to vi (n + 1) + vi (n), given the
validity of Eq. (5.2), it can be shown that

vi (n + 1) − vi (n) =
[̂
vi (n) × v̂i (n + 1)

] ×
[

vi (n + 1) + vi (n)
1 + v̂i (n) · v̂i (n + 1)

]
, (5.4)

where v̂i (n) ≡ vi (n) /vi is a unit vector in the direction of the velocity vi (n). For the
details see Appendix C.

It is important to realize that there is a difference between low density regions and
high density regions. In high density regions the velocity of the particles is updated
at every step. In the low density regions the average of the velocity of particles
around and including particle i is equal to the velocity of particle i. It follows that
ui (n) = vi (n) /vi. As a consequence vi (n + 1) = vi (n). Substitution in Eq. (5.4) gives
the equality zero equal to zero. The important conclusion is that in the low density
regions the particles do not change their velocity. We will come back to this point
when this is relevant.
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In order to obtain a continuous description as a function of time, we assume the
steps to be small so that

| v̂i (n + 1) − v̂i (n) |� 1 . (5.5)

One may then write Eq. (5.4) to first order in the velocity difference as

vi (n + 1) − vi (n) =
[̂
vi (n) × v̂i (n + 1)

] × vi (n) =
[̂
vi (n) × ui (n)

] × vi (n) . (5.6)

As we are interested in the rate of change of the velocity we divide this equation by
the time step duration τ. This gives

vi (n + 1) − vi (n)
τ

=

[
v̂i (n) × ui (n)

τ

]
× vi (n) = ωvi × vi , (5.7)

where
ωvi =

1
τ

v̂i × ui (5.8)

is an angular velocity associated with the particle velocity vi.
In view of Eq. (5.5) the left-hand side of Eq. (5.7) gives the continuous time

derivative. In other words we may introduce the following definition:

v̇i (n)←→ vi (n + 1) − vi (n)
τ

. (5.9)

5.2.2 Angular velocity associated with the average velocity

Using that ui (n) = v̂i (n + 1), it follows from Eq. (5.7) that

ui (n + 1) − ui (n) = τωui (n) × ui (n) , (5.10)

where the angular velocity ωui (n) corresponding to the average velocity ui (n) is
defined as

ωui (n) = ωvi (n + 1) . (5.11)

It can be shown that

ωui (n) =
1
τ

[̂
vi (n + 1) × ui (n + 1)

]
=

1
τ

[ui (n) × ui (n + 1)] = ui (n)× u̇i (n) , (5.12)
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where
u̇i (n) =

ui (n + 1) − ui (n)
τ

. (5.13)

Furthermore, one may show that

ωui (n) − ωvi (n) = τ v̂i (n + 1) × ¨̂vi (n) = τui (n) × ¨̂vi (n) , (5.14)

where the second order derivative is defined by

v̈i (n) =
1
τ2

[
vi (n + 2) − 2vi (n + 1) + vi (n)

]
. (5.15)

Combining Eqs. (5.12) and (5.14) results in

ωvi (n) = ωui (n) − τui (n) × ¨̂vi (n) = ui (n) × u̇i (n) − τui (n) × ¨̂vi (n) , (5.16)

which to first order in the velocity difference implies that for the angular velocity
associated with the particle velocity vi we obtain the following expression:

ωvi (n) = ωui (n) − τui (n) × ¨̂ui (n) = ui (n) × u̇i (n) . (5.17)

The second equality follows from the fact that the second derivative üi (n) is parallel
to ui (n) to first order in the difference.

Replacing n by the time t the resulting equation of motion becomes:

dvi (t)
dt

= ωui (t) × vi (t) = [ui (t) × u̇i (t)] × vi (t) . (5.18)

This equation is continuous in time and is derived from the discrete CV rule using
Eq. (5.5). In order to obtain equations for the velocity and the density fields, which are
continuous in space, we will coarse-grain Eqs. (5.17) and (5.18) in the next section.
We note that both dvi (t) /dt and u̇i (t) are zero in the low density regions.

5.3 Continuous transport equations

In this section we introduce the averaging procedure for the discrete model. We
derive continuous equations for the velocity and the density fields by averaging the
discrete equations. We will also discuss how to obtain the introduced in Chapter 2
angular velocity field in terms of the velocity and density fields.
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5.3.1 Definition of the hydrodynamic quantities

In the CV algorithm the direction of the average velocity in the neighbourhood of
particle i is given in the continuous time description by

ui (t) =
∑

j

H
(
ri j (t)

)
v j (t)

∣∣∣∣
∑

j

H
(
ri j (t)

)
v j (t)

∣∣∣∣
−1
, (5.19)

where ri j = |ri − r j|. The dynamics of individual particles therefore reduces the dif-
ference between the direction of its velocity and that of the average velocity of the
surrounding particles. H (r) is an averaging kernel, which we assume to be normal-
ized,

∫
H (r) dr = 1 . (5.20)

It has the characteristic averaging scale R, beyond which the kernel goes to zero
[17, 21]. Usually one uses for H a normalized Heaviside step function.

In order to obtain a continuous description we define the average particle density
(per unit of volume) and velocity fields by

n (r, t) =
∑

j

H
(
r − r j (t)

)
,

n (r, t) v (r, t) =
∑

j

H
(
r − r j (t)

)
v j (t) . (5.21)

Using Eq. (5.21) in Eq. (5.19) for r = ri, it follows that ui (t) = v̂ (ri (t) , t), where
v̂ (ri (t) , t) = v (ri (t) , t) /|v (ri (t) , t) |. Eq. (5.18) can therefore be written as

dvi (t)
dt

=

[
v̂ (ri (t) , t) × d v̂ (ri (t) , t)

dt

]
× vi (t) . (5.22)

By evaluating the time derivative between the square brackets on the right-hand side
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one obtains:

dvi (t)
dt

=
[̂
v (r, t) × (

vi (t) · ∇ v̂ (r, t)
)]

r=ri(t) × vi (t)

+

[
v̂ (r, t) × ∂ v̂ (r, t)

∂t

]

r=ri(t)
× vi (t)

=
[̂
v (r, t) × [

(vi (t) − v (r, t)) · ∇ v̂ (r, t)
)]

r=ri(t) × vi (t)

+

[
v̂ (r, t) × d v̂ (r, t)

dt

]

r=ri(t)
× vi (t) . (5.23)

In view of the fact that the gradient of the direction of the average velocity is of the
first order and that the velocity difference is also of the first order, the first contribu-
tion on the right-hand side is of the second order and can be neglected. Eq. (5.23)
therefore reduces to

dvi (t)
dt

=

[
v̂ (r, t) × d v̂ (r, t)

dt

]

r=ri(t)
× vi (t) . (5.24)

When we now average this equation we can use the fact that the expression be-
tween the square brackets only depends on the coarse-graining functions and there-
fore varies slowly over the range of the averaging function.

5.3.2 Averaging procedure

Given the above definitions of the hydrodynamic density and velocity fields, Eq.(5.21),
one can easily obtain the continuity equation (2.8). For the details see Appendix B.
Averaging the left-hand side of Eq. (5.24) and using the continuity equation, we ob-
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tain:
∑

i

dvi (t)
dt

H (r − ri (t))

=
∂

∂t

∑

i

vi (t) H (r − ri (t)) −
∑

i

vi (t)
∂

∂ri
· vi (t) H (r − ri (t))

=
∂ (n (r, t) v (r, t))

∂t
+
∂

∂r
·
∑

i

vi (t) vi (t) H (r − ri (t))

= n (r, t)
dv (r, t)

dt
− ∇ · [n (r, t) v (r, t) ⊗ v (r, t)]

+∇ ·
∑

i

vi (t) vi (t) H (r − ri (t)) = n (r, t)
dv (r, t)

dt

+∇ ·
∑

i

(v (r, t) − vi (t)) (v (r, t) − vi (t)) H (r − ri (t))

= n (r, t)
dv (r, t)

dt
, (5.25)

where we neglected the term of the second order in the velocity difference. This
term would give a small contribution to the pressure tensor. It is therefore also a
contribution which is in the formulation of the problem assumed to be cancelled by
the self-propelling force.
On the right hand-side of Eq. (5.24) we have

∑

i

[
v̂ (r, t) × d v̂ (r, t)

dt

]

r=ri(t)
× vi (t) H (r − ri (t))

=

[
v̂ (r, t) × d v̂ (r, t)

dt

]
× n (r, t) v (r, t) . (5.26)

This implies that the averaged equation of motion can be written as

dv (r, t)
dt

=

[
v̂ (r, t) × d v̂ (r, t)

dt

]
× v (r, t) . (5.27)
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This gives
dv (r, t)

dt
= ω (r, t) × v (r, t) , (5.28)

where to first order in the velocity difference

ω (r, t) = v̂ (r, t) × d v̂ (r, t)
dt

=
1

v2 (r, t)

[
v (r, t) × dv (r, t)

dt

]
. (5.29)

where v (r, t) ≡ |v (r, t) |.

5.3.3 Averaged angular velocity field

Here we restrict our discussion by considering the 2-dimensional case in order to
make a comparison with the results obtained in the previous chapters. By evaluating
the time derivative in Eq. (5.29) we may rewrite this expression as follows:

ω (r, t) =
1

v2 (r, t)

[
v (r, t) ×

(
∂v (r, t)
∂t

+ (v (r, t) · ∇) v (r, t)
)]

=
1

v2 (r, t)

[
v (r, t) ×

(
∂v (r, t)
∂t

+ ∇v2 (r, t)
2

)]

− 1
v2 (r, t)

v (r, t) × [v (r, t) × rot v (r, t)]

=
v (r, t)
v2 (r, t)

× ∂v (r, t)
∂t

+
v (r, t)
v2 (r, t)

× ∇v2 (r, t)
2

+ rot v (r, t) . (5.30)

This is the angular velocity field obtained from the discrete algorithm used by Vicsek
et al.

One may see that the continuous equation of motion, Eq. (5.28), with the angular
velocity derived from the CV rule, Eq. (5.30), can be written as follows:

dv
dt

=
(
1 − v̂ v̂

) · ∂v
∂t

+
(
1 − v̂ v̂

) · ∇v2

2
+ (rot v) × v. (5.31)
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where 1 is the unit tensor. All three terms on the right-hand side contribute to the
co-moving derivative of the velocity which is orthogonal to the velocity field.

In the low density regions one obtains, as has been pointed out a number of times,
dv/dt = 0. As this is not so clearly visible in Eq. (5.31) it is appropriate to replace
this equation by

dv
dt

=

[(
1 − v̂ v̂

) · ∂v
∂t

+
(
1 − v̂ v̂

) · ∇v2

2
+ (rot v) × v

]
f (n (r, t)) , (5.32)

where f (n (r, t)) is the density dependent factor, which arises due to coarse-graining
procedure. In low density limit it is natural that f (n (r, t)) → 0 as n (r, t) → 0. A
more thorough analysis of this is beyond our present aim, however.

Before comparing this expression to the one we used in Chapters 2 and 3 we first
verify that stationary linear and the vortical solutions are solutions of Eq. (5.31). In
view of their stationarity the first contribution in Eq. (5.31) is equal to zero. For a
linear flow v = v0 ex the other two terms on the left hand-side of Eq. (5.31) are also
zero. Stationary linear flow is therefore a solution. In case of stationary vortical flow,
v = vϕ (r) eϕ (ϕ), the (v · ∇) v term on the left-hand side of Eq. (5.31) cancels the
terms due to the second and the third term. The continuity equation, Eq. (2.8), is
satisfied for each density distribution which varies only in directions normal to the
flow direction. It follows that the continuous analog of the CV model has stationary
linear and vortical solutions.

In Chapters 2 and 3 we used an angular velocity field which was a linear com-
bination of n (r, t) rot v (r, t) and ∇n (r, t) × v (r, t). The resulting equation of motion
was

dv (r, t)
dt

= s1n (r, t) (rot v (r, t)) × v (r, t) + s2 (∇n (r, t) × v (r, t)) × v (r, t) . (5.33)

The first term is analogous to the third term on the right-hand side of Eq. (5.31).
Similar to the CV model this choice leads to stationary linear and vortical solutions.
The linear dependence of our choice on the density leads to a dependence of the
stationary velocity field on the density distribution. We refer to Chapters 2 and 3 for
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a detailed discussion of these solutions. For a small density the right-hand side of
Eq. (5.33) makes dv/dt negligible. This is similar to the behaviour in Eq. (5.32).

When one modifies the updating rule in the CV model, as it was done in Refs. [18,
22, 24], this leads to a modification of the ω (r, t) given in Eq. (5.30). Similarly, the
choice of ω (r, t) we used in Ref. [43, 45] can be modified to include such contribu-
tions. The freedom in the choice ofω (r, t) in the continuous version of the CV model
is one of its strength.

5.4 Conclusions

In this chapter we addressed the problem to derive our continuous description, pro-
posed in Chapter 2, from the discrete model proposed by Vicsek et al. [17]. By
coarse-graining the discrete equations we were able to derive expression for the
angular velocity field used in the continuous model from the updating procedure
used in their model. Modification of the updating rules in this model, as done in
Refs. [18, 22, 24, 25], results in modifications of the resulting angular velocity field.
The angular velocity field used in our work [43, 45] is one of such choices. One of the
contributions in the continuous version of the CV model is very similar to one of the
contributions which we have postulated in our hydrodynamic model, see Chapter2.
Both the continuous CV model and our model lead to the linear and vortical flows of
the self-propelling particles observed in nature and obtained in simulations and con-
tinuum approximations. This shows that they are appropriate for the description of
flocking behaviour, which is one of the aims of the model. An interesting alternative
choice of ω (r, t) in the continuous description is, for instance, ∇cA × v where cA is
the concentration of an attractant. As shown by Czirók et al. in Ref. [18], this choice
can be used to describe rotor chemotaxis. Note that the term ∇n (r, t)× v (r, t), which
we considered in our continuum model, is similar to the one considered by Czirók et
al., when the concentration field is proportional to the concentration of the attractant.

Our analysis shows that one may coarse-grain the discrete updating rule and ob-
tain the corresponding continuous description. This makes a direct comparison be-
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tween discrete and continuous descriptions possible. For our own work it was found
that our continuous description was similar to the continuous version of the original
CV model but not identical. The analysis in this chapter makes it possible to extend
our work on the continuous description such that it is either closer or more different
from the original CV model.



Chapter 6

Nonstationary flows of
self-propelling particles

In this chapter nonstationary hydrodynamic flows of self-propelling par-
ticles are obtained. These flows are found to be linear and radial. The
obtained linear flow describes a collisionless regime of motion, which
also takes place in the CV algorithm.

A paper based on this chapter is in preparation.
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6.1 Introduction

In this chapter we consider 2-dimensional nonstationary flows of the local hydrody-
namic model (LHM) described in the previous chapters.

Finding analytic solutions for nonlinear systems given by Eqs. (2.8),(2.10) is a
very complicated task. We restrict our discussion to those solutions, which describe
the collisionless regime of the CV algorithm. This regime describes inertial motion of
particles with no interactions between each other. On the continuous level the colli-
sionless medium is described by the equation dv/dt = 0, which in our 2-dimensional
LHM corresponds to ω = 0. In particular, such a regime occurs for the linear flow of
the CV algorithm when particles have different speeds (see Figure 6.1).

Figure 6.1: Collisionless regime of motion in the CV algorithm corresponding to the
collisionless continuum medium.

Therefore one can expect that the continuous model analogous to the CV algo-
rithm possesses solutions describing collisionless media. This is indeed the case for
the LHM, when the right-hand side of Eq. (2.10) vanishes and the velocity field de-
couples from the density field.

In the second section we construct nonstationary linear flow and discuss some of
its properties. In the third section of this chapter we construct nonstationary radial
flow. The last section gives our conclusions.
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6.2 Nonstationary linear flow in the LHM1

In this section we obtain 2-dimensional nonstationary linear flow in the LHM1. The
general form of this flow is given by v = v (r, t) ex, n = n (r, t). Equations (2.17),(2.18)
therefore reduce to

∂v

∂t
+ v

∂v

∂x
= 0, (6.1)

−s1 n v
∂v

∂y
= 0, (6.2)

∂n
∂t

+ v
∂n
∂x

+ n
∂v

∂x
= 0. (6.3)

From Eq. (6.2) it follows that v = v (x, t) and one may see that Eq. (6.1) is independent
of the density field and therefore can be solved separately. This equation describes
1-dimensional linear flow of collisionless medium. We consider the following initial
velocity profile

v (x, t = 0) = v0 (x) , (6.4)

where v0 (x) is a continuous differentiable function. The system of characteristics

dt
dξ

= 1,
dx
dξ

= v,
dv
dξ

= 0, (6.5)

where ξ is a parameter of the equation, together with the initial condition gives the
solutions provided that v (x, t) is a single valued function. This is true for all t > 0,
if v0 (x) is a nondecreasing function. Otherwise the solution of shock-wave type
appears, since high-velocity regions will run down the low-velocity ones and overlap
them.

As an example of nonstationary linear flow, which satisfies the imposed initial
condition, Eq. (6.4), we consider the following solution:

v (x, t) =
x − x0

t + t0
, (6.6)

where x0, t0 are constants and initial condition

v0 (x) =
x − x0

t0
. (6.7)
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Given this solution, one can find the density profile from the continuity equation,
Eq. (6.3). The system of characteristics in this case is given by

dt
dξ

= 1,
dx
dξ

= v,
dn
dξ

= − n
t + t0

. (6.8)

Taking as an initial condition a constant density profile, i.e. n (x, t = 0) = n0 = const,
one obtains:

n (t) =
n0t0
t + t0

. (6.9)

The obtained solutions, Eqs. (6.6),(6.9), have to satisfy the conservation of the
kinetic energy and number of particles:

T =

∫
nv2dx =

n0t0
3 (t + t0)3 (X − x0)3 , (6.10)

N =

∫
ndx =

n0t0
t + t0

(X − x0) , (6.11)

where x0 and X are the boundaries of the system.

One may see that the kinetic energy and number of particles are constant, when
the boundary X moves uniformly along with the flow, i.e.

X (t) = x0 + c1 (t + t0) , (6.12)

where c1 is a velocity at the (of the) boundary.

Thus we obtain the following nonstationary linear flow:

v (x, t) =
x − x0

t + t0
ex, (6.13)

n (t) =
n0t0
t + t0

H (x − x0) H (c1 (t + t0) + x0 − x) , (6.14)

where H (x) is a Heaviside step function. The corresponding plot of the velocity field
v (x, t) =| v (x, t) | is shown in Figure 6.2. Velocity profiles at later time have smaller
slopes.
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Figure 6.2: Nonstationary linear velocity field v∗ (x∗) = v t0/x0 as a function of
x∗ = x/x0 for different values of t∗ = t/t0.

6.3 Nonstationary radial flow in the LHM1

In this section we obtain nonstationary hydrodynamic flow of SPP with radial sym-
metry. System (2.17),(2.18) has the following form in the cylindrical coordinates for
the velocity and density fields v = v (r, ϕ, t) er, n (r, ϕ, t)

∂vr

∂t
+ vr

∂vr

∂r
= 0, (6.15)

− s1 vr n
r

∂vr

∂ϕ
= 0, (6.16)

∂n
∂t

+
1
r
∂ (r n vr)
∂r

= 0. (6.17)

From the second equation, Eq. (6.16), it follows that vr = vr (r, t). Eq. (6.15) is
independent of the density and therefore can be solved separately. One may notice
that it is similar to Eq. (6.1), thus, taking a similar initial condition, i.e. vr (r, t = 0) =

v0 (r),we find

vr (r, t) =
r − r0

t + t0
, (6.18)
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where r0, t0 are constants. With this solution we can solve the continuity equation
(6.17)

∂n
∂t

+
r − r0

t + t0

∂n
∂r

= − 1
t + t0

(
2 − r0

r

)
n (6.19)

with the following initial density distribution:

n (r, t = 0) = n0 (r) . (6.20)

The corresponding system of the characteristics is given by

dt
dξ

= 1,
dr
dξ

=
r − r0

t + t0
,

dn
dξ

= − 1
t + t0

(
2 − r0

r

)
n. (6.21)

Solving this system, we obtain the density flow in the following form:

n (r, t) =
crad

r (t + t0)
, (6.22)

where crad = const.
Similarly to the linear flow, the front boundary of the system R moves together

with the flow as
R (t) = r0 + c2 (t + t0) , (6.23)

where c2 is a speed of its motion.
Thus the nonstationary radial flow in the LHM1 is given by

v (r, t) =
r − r0

t + t0
er , (6.24)

n (r, t) =
crad

r (t + t0)
H (r − r0) H (c2 (t + t0) + r0 − r) . (6.25)

The corresponding plot of the density field n (r, t) is shown in Figure 6.3.
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Figure 6.3: Nonstationary radial density field n∗ (r∗) = n r0t0/crad as a function of
r∗ = r/r0 for different values of t∗ = t/t0.

6.4 Conclusions

In this chapter we obtained nonstationary regimes of motion of SPP, which corre-
spond to the collisionless regime of the CV algorithm . For the local hydrodynamic
model the linear and radial flows are obtained. The obtained solutions do not de-
pend on a specific LHM, since the angular velocity field ω = 0 in the collisionless
regime of our 2-dimensional model. Depending on the initial velocity and density
profiles, examples of these flows are considered. In both cases the front boundary
was found to move uniformly along with the velocity field to maintain the constancy
of the number of particles and kinetic energy. Additionally, a similar analysis shows
that there exist 3-dimensional nonstationary radial flows. The results of this chapter
give additional information about the dynamics of self-propelling particles side by
side with the results obtained in the previous chapters for stationary flows. In partic-
ular, they demonstrate a qualitative correspondence between the obtained solutions
of collisionless medium and the collisionless regimes of motion taking place in the
CV model.
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Appendix A

Vorticity and circulation of the
velocity field

A.1 Conservation of the kinetic energy

Imposing the kinematic constraint of the conservation of the kinetic energy, we have

d
dt

∫
nv2 dV = 0, (A.1)

where volume V moves along with the velocity field.
This equation can be rewritten as

d
dt

∫
nv2 dV =

∫
dn
dt

nv2 δV +

∫
n

dv2

dt
δV +

∫
nv2 d δV

dt

=

∫ [
dn
dt

+ n (∇ · v)
]

v2 dV +

∫
n

dv2

dt
dV = 0, (A.2)

where we use δ for the spatial variation. Due to the continuity equation, Eq. (2.8),
the first contribution in Eq. (A.2) vanishes. This implies that the second contribution
equals to zero as well for an arbitrary chosen volume V with n > 0 and we obtain

dv2

dt
= 0. (A.3)
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A.2 Stationary regimes of motion

Taking the rotation on both sides of Eq. (2.10), one obtains:

∂ rot v
∂t

+ rot [(v · ∇) v] = rot (ω × v) . (A.4)

Using known result from vector analysis [47]

v × rot v =
1
2
∇v2 − (v · ∇) v, (A.5)

one can transform Eq. (A.4) into

∂ rot v
∂t

= rot [v × (rot v − ω)] . (A.6)

Introducing the quantity W (r, t) = rot v − ω, one obtains

∂ω

∂t
+
∂W
∂t

= rot [v ×W] . (A.7)

A.3 Stationary vortical flow in the LHM1

In the polar coordinate system the differential operations are given by:

∇ =
∂

∂r
er +

1
r
∂

∂ϕ
eϕ, (A.8)

rot v =
1
r


∂
(
r vϕ

)

∂r
− ∂vr

∂ϕ

 ez. (A.9)

For the vortical flow v = vϕ (r) eϕ from Eq. (2.17) we obtain

dvϕ
dr

=
vϕ

r

(
1

s1n
− 1

)
, (A.10)

which has the following solution:

vϕ =
Cst

2πr
exp

s1

r∫

r0

dr ′

n (r ′) r ′

 . (A.11)
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A.4 Vorticity of the velocity field

In order to investigate the bahaviour of the vorticity of the velocity field in the LHM1,
we apply rotation to Eq. (2.18):

rot
dv
dt

= s1 rot (n rot v × v) . (A.12)

Using an expression from vector analysis [47]

rot (a × b) = (b · ∇) a − (a · ∇) b + a (∇ · b) − b (∇ · a) , (A.13)

one obtains

rot (n rot v × v) = (A.14)

(v · ∇) n rot v − (n rot v · ∇) v + n rot v (∇ · v) − v (∇ · n rot v) .

In a case of a planar geometry the rotation of the velocity field rot v is always per-
pendicular to the plane of the velocity field v. Due to this fact the second and the
fourth contributions on the right-hand side of Eq. (A.14) are equal to zero. Using the
continuity equation (2.17) for the remaining nonzero contributions, we have:

rot (n rot v × v) = n (v · ∇) rot v − ∂n
∂t

rot v. (A.15)

This results in the following expression for the evolution of the vorticity:

rot
dv
dt

= −s1

[
∂n
∂t

rot v − n (v · ∇) rot v
]
. (A.16)

A.5 Velocity circulation

The velocity circulation is defined by a line integral as follows:

C =

∮

L
v · dl , (A.17)
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where the integration is taken along some closed "fluid contour" L.
Differentiating this expression with respect to time, we have

d C
dt

=
d
dt

∮

L
v · dl =

∮

L

dv
dt
· δr +

∮

L
v · d δr

dt
, (A.18)

where the first term takes into account the change of the velocity field and the second
contribution describes the change of the contour as it moves. Here d/dt and δ denote
a substantional derivative and derivative with respect to the coordinates respectively.
The element dl of the contour is performed as a difference δr between the radius-
vectors r at the ends of the element dl. The second contribution on the right-hand
side of Eq. (A.18) can be simplified:

v · d δr
dt

= v · δv =
1
2
δ
(
v2

)
. (A.19)

After integration this contribution gives zero as an integral of the total differential.
From a physical point of view this is a kinetic energy which conserves in the fluid
without dissipations.

Applying Stokes’ theorem to Eq.(A.18), we obtain

dC
dt

=

∫

S

rot
dv
dt
· dS, (A.20)

which implies, according to Eq. (2.23), that circulation does not conserve in the fluid
of self-propelling particles, Eqs. (2.17),(2.18).

A.6 Noise

The time evolution of the circulation has an exponential behaviour:

C (t) = C0 exp
[
−

( t
τ

+W (t)
)]
, (A.21)

where

W (t) =

t∫

0

δL
(
t′
)

dt′ (A.22)
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is a Wiener process.
To calculate the average circulation we expand expression (A.21) into series:

〈C (t)〉 = C0

〈
1 −

( t
τ

+W
)

+
1
2!

( t
τ

+W
)2
− 1

3!

( t
τ

+W
)3

+
1
4!

( t
τ

+W
)4
− . . .

〉

(A.23)
Using Wick’s theorem for Gaussian averages, which states that the average of the

product is equal to the sum of all possible pairings, we can calculate average values〈
W 2n

〉
. In our case this theorem has the following form:

〈
W 2n

〉
=

(2n)!
n!2n

〈
W2

〉
, n ∈ Z , (A.24)

where

〈
W2

〉
=

t∫

0

t2∫

0

〈
δL

(
t′
)
δL

(
t′′

)〉
dt′dt′′ = 2Γ

t∫

0

t2∫

0

δ
(
t′ − t′′

)
dt′dt′′ = 2Γt. (A.25)

This implies that the average circulation is given by

〈C (t)〉 = C0 exp
[
− t
τ̃

]
, where τ̃ =

τ

1 − Γτ
(A.26)

is a relaxation time of the circulation.
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Continuity equation

The averaging procedure is define as follows:

n (r, t) =
∑

i

H (r − ri (t)) , (B.1)

n (r, t) v (r, t) =
∑

i

H (r − ri (t)) vi (t) . (B.2)

Differentiating (B.1) with respect to time, we obtain

∂n (r, t)
∂t

=
∂

∂t

∑

i

H (r − ri (t)) = −
∑

i

∂

∂ri (t)
· (−vi (t)) H (r − ri (t))

= − ∂
∂r
·
∑

i

vi (t) H (r − ri (t)) = − div (n (r, t) v (r, t)) . (B.3)

Thus we obtain the continuity equation:

∂n (r, t)
∂t

+ div (n (r, t) v (r, t)) = 0. (B.4)
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Velocity difference
Since the difference of two vectors of equal absolute values is perpendicular to their
sum, we can write

vi (n + 1) − vi (n) = X × (vi (n + 1) + vi (n)) , (C.1)

where X is an unknown vector.
In order to find X we multiply this equation from the left by vi (n + 1) + vi (n) and
obtain

2 (vi (n) × vi (n + 1)) = X (vi (n + 1) + vi (n))2

− (vi (n + 1) + vi (n)) (X · (vi (n + 1) + vi (n))) . (C.2)

The second term on the right-hand side of Eq. (C.2) equals to zero due to a fact that
X is perpendicular to the plane of 2-dimensional vectors vi (n) and vi (n + 1).
This implies that

X = 2
vi (n) × vi (n + 1)

(vi (n + 1) + vi (n))2 (C.3)

and

vi (n + 1) − vi (n) = 2
[vi (n) × vi (n + 1)]
(vi (n + 1) + vi (n))2 × [vi (n + 1) + vi (n)]

= v̂i (n) × v̂i (n + 1) ×
[

vi (n + 1) + vi (n)
1 + v̂i (n) · v̂i (n + 1)

]
, (C.4)

where v̂i (n) = vi (n) / | vi (n) |.
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Summary
In this thesis I considered the dynamics of self-propelling particles (SPP). Flocking
of living organisms like birds, fishes, ants, bacteria etc. is an area where the the-
ory of the collective behaviour of SPP can be applied. One can often see how these
animals develop coherent motion, amazing the observer by the diversity of its forms
and shapes. Recently the complexity of the nonlinear dynamics of SPP has attracted
a lot of attention. Further theoretical work to describe the observed biological phe-
nomenon is clearly needed. The collective motion of SPP is driven by the presence of
so-called kinematic (or nonholonomic) constraints, which are imposed on the orien-
tations of the velocities of the particles. The tendency of the particles to adjust their
velocity to the ones of the neighbours leads to the emergence of a coherent motion. In
other words, these kinematic constraints can be considered as an interaction of a non-
potential character. Due to these facts the usual methods of Hamiltonian dynamics
cannot be applied to study the behaviour of SPP.

In the middle of 90’s the investigation of SPP systems started to develop in several
directions. The first numerical model describing flocking was proposed by Vicsek et
al. [17]. We further call it the Czirók-Vicsek algorithm (CV algorithm). Introducing
kinematic updating rules for the directions of the velocities of the particles, they ob-
tained a transition from disordered to ordered motion of SPP at a low noise amplitude
and high density.

This work initiated further investigations both on discrete and on continuous lev-
els. These considered extensions of the CV model with different types of noise,
varying absolute velocities, different boundary conditions, etc. [18, 22, 24, 25].

As mentioned above the dynamics of SPP differs from the dynamics of the classi-
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cal systems due to nonholonomic constraints. That is why on a continuous level one
cannot apply the Navier-Stokes equation usually used in hydrodynamics. However,
some of the existing continuous models still use this approach, extending the equa-
tion with additional terms. In Ref. [21], which is proposed as a continuous analog of
the discrete CV model, the self-propelling force and friction are added together with
the pressure gradient and viscosity. The inclusion of the additional terms in Ref. [31]
is based on symmetry consideration. Underlying arguments, taking into account the
physical nature of the system, are not clearly given.

The aim of this thesis is to construct a hydrodynamic model to describe the flock-
ing of SPP observed in nature and, in particular, to find a continuous analog of the
discrete model of Vicsek et al. Our model is based on the physical properties of
the CV algorithm, namely the conservation of the kinetic energy and the number of
particles. In our analysis the constant nature of the absolute velocities of SPP is cru-
cial. The self-propelling force of biological origin and the frictional forces balance
each other. These factors are further not relevant to the swarming of self-propelling
particles.

In Chapter 2 a hydrodynamic model with two integrals of motion (kinematic con-
straints) is proposed. The essential feature and importance of the model is that it has
the essential properties of the CV algorithm. It contains the factors responsible for the
collective motion of SPP and separates them from unnecessary contributions to the
equations of motion proposed earlier in the literature. The imposed constraints de-
termine the hydrodynamic equations. A simple model for the angular velocity field,
appearing in the equations, is introduced. The average of the velocities in the sur-
rounding of a given particle is contained in this angular velocity field. For a special
case of the averaging kernels, which we called the local hydrodynamic model (LHM),
stationary planar flows of two types are obtained: linear flow and vortical hydrody-
namic flow. A remarkable property of the vortical flow obtained is that it has finite
flocking behaviour, where the density and the velocity fields are coupled. This is what
one observes in nature. Moreover, qualitatively these results are similar with those
obtained in Ref. [19]. Because of the lack of experimental data, it is hard to make
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any quantitative comparisons with the motion of self-propelling particles observed in
nature.

In the second part of this chapter the properties of the LHM are investigated. It
is shown that in contrast to the classical ideal fluid, the velocity circulation does not
conserve in a fluid of self-propelling particles due to the presence of non-potential
interactions. Using this result, the stability properties of the ordered state of the
system with respect to noise are investigated in the last part of the second chapter. At
large noise the circulation diverges and the system becomes unstable; for small noise
the system is stable. A similar result was obtained by Vicsek et al. [17].

In Chapter 3 the class of stationary flows of the local model is determined. Us-
ing conformal representation, it is shown that in the local model the 2-dimensional
stationary solutions can be of two types only: linear and vortical flow. Apart from
being mathematically elegant, this result shows that other stationary flows are not
possible in the model proposed in this thesis. Furthermore, some other properties
of the vortical flows corresponding to different models of the angular velocity field
are presented. For different choices of the LHM the finite flocking behaviour with
compact support, in which the density is low (zero) outside some region, is obtained.
From the physical point of view these flows are of interest because of their realization
in nature.

In the next chapter, Chapter 4, the stability properties of the stationary linear
and vortical flows are determined. For different types of velocity and density field
perturbations the system with linear flow of SPP demonstrates a neutral stability.
This means that the time evolution of the perturbation has an oscillatory behaviour,
it neither grows nor decays. Regarding the stationary vortical flow, the flow with
constant velocity and density profiles is considered. The linear analysis does not
give a conclusive answer about the stability of the vortical flow and further stability
analysis of the higher orders is required.

In Chapter 5 the connection between two approaches, the discrete and continu-
ous, is analysed. The averaging procedure is introduced and is used to coarse-grain
the discrete CV algorithm. The CV rule is rewritten in terms of the angular veloc-
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ities associated with the particle velocities and the corresponding expression for the
angular velocity in the continuous time description is derived. It is found to be pro-
portional to the average velocity and acceleration in the neighbourhood of a given
particle. The only approximation used is the smallness of the velocity difference be-
tween the time steps, i.e. | vi (n + 1) − vi (n) |� 1. This is a reasonable assumption
since we are interested in obtaining a continuous description. Then the continuous
equations of motion are derived and the angular velocity field following from the
discrete CV model is obtained.

The similarities and differences between the hydrodynamic model proposed in
this thesis and the coarse-grained CV algorithm are discussed. Both models have as
planar stationary solutions the linear and vortical flows. The analysis of this chapter
shows that the freedom in the modeling of the angular velocity field in our model can
be used to modify the model in such a way that it will be closer to the CV model. Or
alternatively, one may see which of the discrete rules gives the corresponding con-
tinuous description. The importance of the results in this chapter is that they give a
link between the discrete and continuous descriptions and make the comparison be-
tween both approaches possible. The results clarify which of the continuous models
proposed in Chapter 2 is a hydrodynamic analog of the CV algorithm. The analysis
in this chapter clarifies the freedom in the choice of the angular velocity field. The
investigation of alternative choices is an important line of further work.

In the last chapter, Chapter 6, the nonstationary flows of the local hydrodynamic
model are obtained. They are found to be linear and radial. These results demonstrate
a qualitative correspondence between the obtained solutions of collisionless medium
and the collisionless regimes of motion taking place in the CV algorithm.

As a future directions of the investigation, it is important to consider the noise
influence on the ordered motion of self-propelling particles in more detail. One of
the possibilities is to include noise in the angular velocity field. This will lead to a
stochastic contributions in the velocity and the density. Another direction is a further
analysis of the stability of the vortical flow. It would be interesting to obtain a more
definite answer regarding its stability.



Samenvatting

In dit proefschrift heb ik de dynamica beschouwd van zogenaamde zelfaandrijvende
deeltjes (we gebruiken hiervoor de afkorting SPP van "self-propelling particles").
Flocking (zwermen, kuddes) van levende organismen zoals vogels, vissen, mieren en
bacteriën is een situatie waarvoor de theorie over het collectief gedrag van SPP van
toepassing is. Men ziet vaak hoe deze dieren coherente beweging ontwikkelen en
men verbaasd zich over de diversiteit van de patronen. Recent heeft de complexiteit
van de niet-lineaire dynamica van SPP veel aandacht getrokken. Verder theoretisch
werk is kennelijk nodig om de waargenomen biologische verschijnselen te beschrij-
ven. De collectieve beweging van SPP wordt aangedreven door de aanwezigheid
van zogenaamde kinematische (of niet-holonome) restricties voor de oriëntaties van
de snelheden van de deeltjes. De neiging van de deeltjes om hun snelheid aan te
passen aan die van naburige deeltjes leidt tot het ontstaan van coherente beweging.
Met andere woorden, deze kinematische restricties kunnen beschouwd worden als
een interactie van een niet-potentiaal karakter. Vanwege de bovengenoemde feiten
kunnen de gebruikelijke methoden van de Hamilton dynamica niet toegepast worden
om het gedrag van SPP te bestuderen.

In het midden van de jaren ’90 begon het onderzoek naar SPP systemen zich
te ontwikkelen in meerdere richtingen. Het eerste numerieke model om flocking te
beschrijven werd voorgesteld door Vicsek et al. [17]. Dit noemen we het Czirók-
Vicsek algoritme (CV algoritme). Door kinematische regels voor de modificatie van
de richtingen van de deeltjessnelheden te introduceren, verkregen zij een overgang
van wanordelijke naar geordende beweging van SPP bij lage ruis en hoge dichtheid.
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Dit werk heeft verder onderzoek op gang gebracht, zowel op discreet als con-
tinuüm niveau. Hierin worden uitbreidingen van het CV model bestudeerd met ver-
schillende types ruis, variërende absolute snelheden, verschillende randvoorwaarden,
etc. [18, 22, 24, 25].

Zoals boven vermeld onderscheidt de dynamica van SPP zich van de dynamica
van klassieke systemen door de aanwezigheid van niet-holonome restricties. Dit is
de reden dat men, voor een continuümbeschrijving, geen gebruik kan maken van de
Navier-Stokes vergelijking die meestal gebruikt wordt in de hydrodynamica. Echter,
sommige bestaande continuümmodellen gebruiken nog steeds deze benadering en
breiden de vergelijking uit met aanvullende termen. In Ref. [21], voorgesteld als
een continuüm analogon van het discrete CV model, zijn de zelfaandrijvende kracht
en de wrijving bij elkaar opgeteld met de drukgradiënt en de viscositeit. De keuze
van de aanvullende termen in Ref. [31] is gebaseerd op symmetrie overwegingen.
De onderliggende argumenten met betrekking tot de fysische aard van het systeem
worden niet duidelijk gegeven.

Het doel van dit proefschrift is om een hydrodynamische model te ontwikkelen
om de flocking van SPP waargenomen in de natuur te beschrijven en met name een
continuüm analogon te vinden voor het discrete model van Vicsek et al. Ons model is
gebaseerd op de fysische eigenschappen van het CV algoritme, namelijk het behoud
van de kinetische energie en het aantal deeltjes. In onze analyse is de constante aard
van de absolute snelheden van de SPP essentiëel. De zelfaandrijvende kracht van
biologische oorsprong en de wrijvingskrachten balanceren elkaar. Deze factoren zijn
verder niet relevant voor de flocking van SPP.

In Hoofdstuk 2 is een hydrodynamische model met twee integralen van de be-
weging (kinematische restricties) voorgesteld. Het cruciale kenmerk en belang van
dit model is het feit dat het de essentiële kenmerken heeft van het CV algoritme. Het
bevat de factoren verantwoordelijk voor de collectieve beweging van SPP en scheidt
deze van onnodige bijdrages aan de bewegingsvergelijkingen eerder voorgesteld in de
literatuur. De opgelegde restricties bepalen de hydrodynamische vergelijkingen. Een
simpel model voor het hoeksnelheidsveld, van belang in de vergelijkingen, wordt
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geïntroduceerd. Het gemiddelde van de snelheden in de omgeving van een deeltje
bepaald dit hoeksnelheidsveld. Voor een speciaal geval van de integraalkernen, die
we het lokale hydrodynamische model (LHM) noemen, zijn een tweetal soorten sta-
tionaire stromen verkregen: lineaire en roterende (draaiende) hydrodynamische stro-
men. Een opmerkelijke eigenschap van de verkregen roterende stroom is dat het
eindig flocking gedrag vertoont, waarbij het dichtheids- en snelheidsveld zijn gekop-
peld. Dit is wat men inderdaad waarneemt in de natuur. Bovendien zijn deze re-
sultaten, kwalitatief gezien, gelijk aan die verkregen in Ref. [19]. Aangezien gede-
taileerde experimentele data ontbreken, is het moeilijk om kwantitatieve vergelijkin-
gen te maken met de waargenomen beweging van SPP in de natuur.

In het tweede gedeelte van dit hoofdstuk zijn de eigenschappen van het LHM on-
derzocht. Het blijkt dat in tegenstelling tot het klassieke ideale fluïdum, er geen be-
houd is van snelheidscirculatie in een fluïdum van SPP vanwege de aanwezigheid van
niet-potentiële interacties. Gebruikmakend van dit resultaat zijn de stabiliteitseigen-
schappen van de geordende toestand van het systeem onderzocht met betrekking tot
ruis in het laatste gedeelte van het tweede hoofdstuk. Bij veel ruis divergeert de cir-
culatie en wordt het systeem onstabiel; bij weinig ruis is het systeem stabiel. Een
vergelijkbare resultaat is verkregen door Vicsek et al. [17].

In Hoofdstuk 3 is de klasse van stationaire stromen van het lokale model bepaald.
Gebruikmakend van conforme afbeeldingen is het gebleken dat er twee types zijn van
de 2-dimensionale stationaire oplossingen in het lokale model: lineaire en roterende
stromen. Afgezien van mathematische elegantie, toont dit resultaat aan dat andere
stationaire stromen niet mogelijk zijn in het model voorgesteld in dit proefschrift.
Verder, zijn andere karakteristieken van de roterende stromen geïntroduceerd die
overeenkomstig zijn met verschillende modellen van het hoeksnelheidsveld. Voor
verschillende keuzes van het LHM wordt het eindige flocking gedrag verkregen,
waarbij de dichtheid laag (nul) is buiten een bepaald gebied. Vanuit een fysisch
oogpunt zijn deze stromen van belang vanwege hun verwezenlijking in de natuur.
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In het volgende hoofdstuk, Hoofdstuk 4, zijn de stabiliteitseigenschappen bepaald
van de stationaire lineaire en roterende stromen. Voor verschillende typen verstorin-
gen van het snelheids- en dichtheidsveld demonstreert het systeem met lineaire stroom
van SPP een neutrale stabiliteit. Dit betekent dat de ontwikkeling van de verstoring in
de loop van de tijd een oscillerend gedrag vertoont, met een constante amplitude. Ten
opzichte van de stationaire roterende stroom, is de stroom met constante snelheids-
en dichtheidsprofiel beschouwd. De lineaire analyse levert geen definitief antwoord
over de stabiliteit van de roterende stroom. Hiervoor is een verdere stabiliteitsanalyse
van de hogere ordes nodig.

In Hoofdstuk 5 is het verband tussen twee benaderingen, de discrete en de con-
tinue, geanalyseerd. De "coarse-graining" procedure wordt geïntroduceerd en ge-
bruikt om een continue versie van het discrete CV algoritme te verkrijgen. De CV
regel is herschreven in termen van de hoeksnelheden met betrekking tot de deel-
tjessnelheden. De daarbij behorende uitdrukking voor de hoeksnelheid in de con-
tinue tijdsbeschrijving wordt afgeleid. Gevonden wordt dat deze evenredig is met
de gemiddelde snelheid en de versnelling in de omgeving van een bepaald deeltje.
De enige gebruikte benadering is de kleinheid van het snelheidsverschil tussen de
tijdsstappen, oftewel | vi (n + 1)−vi (n) |� 1. Dit is een redelijke aanname aangezien
we geïnteresseerd zijn in het verkrijgen van een continuümbeschrijving. Daarna zijn
de continuüm bewegingsvergelijkingen afgeleid en het hoeksnelheidsveld volgend
uit het discrete CV model verkregen.

De overeenkomsten en verschillen tussen het hydrodynamische model voorgesteld
in dit proefschrift en het "coarse-grained" CV algoritme zijn behandeld. Beide mo-
dellen hebben als planaire stationaire oplossingen de lineaire en roterende stromen.
De analyse van dit hoofdstuk toont aan dat de vrijheid in het modelleren van het
hoeksnelheidsveld in ons model gebruikt kan worden om het model zodanig te mo-
dificeren dat het meer lijkt op het CV model. Of, men kan zien welke van de
discrete regels de daarbij behorende continuümbeschrijving levert. De resultaten
van dit hoofdstuk zijn belangrijk omdat ze een verband leggen tussen de discrete en
continuümbeschrijvingen en een vergelijking tussen de twee benaderingen mogelijk
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maken. De resultaten maken duidelijk welke van de voorgestelde continuümmo-
dellen in Hoofdstuk 2 een hydrodynamische analogon is van het CV algoritme. De
analyse van dit hoofdstuk verduidelijkt de keuzevrijheid van het hoeksnelheidsveld.
Het zoeken naar alternatieve keuzes is een belangrijke richting voor verdere onder-
zoek.

In het laatste hoofdstuk, Hoofdstuk 6, zijn de niet-stationaire stromen van het
lokale hydrodynamische model verkregen. Deze blijken lineair en radiaal te zijn.
Deze resultaten demonstreren een kwalitatieve overeenkomst tussen de verkregen
oplossingen van een botsingsvrij medium en de botsingsvrije bewegingsregimes die
plaatsvinden in het CV algoritme.

Als een richting voor onderzoek in de toekomst, is het van belang om de invloed
van ruis op de geordende beweging van SPP nader te beschouwen. Een mogelijkheid
is om ruis op te nemen in het hoeksnelheidsveld. Dit zal leiden tot stochastische
bijdragen in de snelheid en de dichtheid. Een andere richting is een verdere analyse
van de stabiliteit van de roterende stroming. Het zou interessant zijn om een meer
compleet antwoord te krijgen omtrent haar stabiliteit.
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