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CHAPTER 1

INTRODUCTION

1 STELLAR SYSTEMS

THE universe formed in a ’Big Bang’, after which it began expanding. Places with
more dark matter than their surroundings collapsed under gravity and collected

gas, from which the first stars were born. Depending on the distribution of the dark
matter, these stars ended up in systems of different sizes and shapes. The stars inside
these stellar systems evolve: most stars fade out at the end of their life, but the more
massive stars explode. New stars can be formed from their debris. Also, the systems
themselves evolve by interacting and merging. This leads to the question: Can we find
out how the different stellar systems evolved from the Big Bang to the present day?

One way to answer this question is to observe objects at very large distances.
Since light needs time to travel, by looking at objects very far away, we see how they
were a long time ago. However, with increasing distance, these objects quickly become
smaller and fainter, such that very large telescopes with the ability to make very sharp
images are needed. Another approach is to study nearby stellar systems and try to
uncover, like an archaeologist, the ‘fossil record’ of their formation and evolution.
Because they are close, they are also brighter, and the motions and composition of
the stars in these systems can be observed in great detail. We can try to reconstruct
the three-dimensional stellar system by fitting theoretical models, based on Newton’s
law of gravity, to these observations. In this way, we can ‘look’ inside stellar systems
and search for features, i.e. ‘fossils’, in their structure and internal motions related to
their formation history.

The most suitable stellar systems to study the fossil record are those for which the
stars are not hidden from sight by clouds of gas and dust, and which are not ‘polluted’
by recent star formation. Globular clusters are the cleanest stellar systems, contain-
ing of the order of a million very old stars, which formed from the same collapsing
matter very soon after the Big Bang. In addition, they are simple, nearly spherical
objects and we can observe them from nearby as they also surround our own Milky
Way galaxy. We can resolve many of the individual stars in these clusters and ob-
serve their velocities along the line-of-sight and even in the plane of the sky (‘proper
motions’) by measuring the small changes in their positions with time. Reliable kine-
matic measurements of individual stars are currently only possible for the nearest
objects and for the stars inside the Milky Way.

In the beginning of the twentieth century it became clear that the Milky Way is
just one of the ‘island universes’ that can be seen in the night sky. Photographic
observations showed that these galaxies come in different flavors. This led Hubble
(1936) to classify them into four distinct groups, according to their apparent shape.
In the resulting Hubble sequence (or Hubble diagram or Hubble tuning fork) the Milky
Way belongs to the group of disk-like galaxies which are called spirals according to
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their prominent spiral arms. At the other end of the sequence, we find the elliptical
galaxies that seemingly have little or no structure. Lenticular galaxies are placed
in between, having a disk but no prominent spiral arms, and a spheroidal stellar
distribution. The fourth group consists of galaxies without a regular shape, which
appropriately were named irregulars. At that time, it was thought that the complex
spirals were formed from the simple ellipticals. Although we now know that galaxy
formation and evolution happens the other way around, the spirals are still called
late-type galaxies, and ellipticals and lenticulars are known as early-type galaxies.

The late-type galaxies, including the Milky Way, contain significant amounts of
gas and dust, and this material is converted into stars by continuous, and often
intensive star formation, which makes it very hard to recover their formation history.
Early-type galaxies do not contain much gas and dust, and consequently have no
recent star formation, so that they are well suited to study galaxy formation and
evolution. For the nearby (< 100 Mpc) early-type galaxies, we can investigate the
fossil record of their formation in detail. Although we are in general unable to resolve
their individual stars, we can obtain accurate and spatially-resolved photometric and
kinematic measurements from the integrated light of stars along the line-of-sight.

2 SURFACE BRIGHTNESS

To first order, the surface brightness of early-type galaxies is well described by a sim-
ple function of radius along elliptical isophotes. Although the photometry of early-type
galaxies seems to be rather simple, this does not mean that their intrinsic dynamical
structure can also be derived and described in a straightforward way.

The conversion from a surface brightness measured on the plane of the sky to an
intrinsic luminous density is in general non-unique. This deprojection is unique for
spherical objects, but only very few galaxies have a round appearance, and even then
they need not be intrinsically spherical. In the case of flattened objects with axial
symmetry, the deprojection is only unique for a viewing direction in the plane nor-
mal to the axis of symmetry, better known as an edge-on viewing direction and often
described by an inclination angle i = 90◦ (Rybicki 1987). However, a stellar system
in equilibrium can also be of triaxial shape (Binney 1976). The deprojection then be-
comes highly non-unique, with the viewing direction described by two viewing angles.
In contrast with axisymmetric objects, the orientation of the elliptical isophotes may
vary with radius for triaxial shapes (Stark 1977). Very soon after this was realized,
isophotal twists were indeed observed in real galaxies (e.g., Carter 1978; King 1978;
Williams & Schwarzschild 1979; Leach 1981).

In the case of axisymmetric objects, the flattening might be in part caused by ro-
tation, similar to the flattening of the Earth. Instead of this gravitational support by
ordered motion, random motion, acting as a kind of pressure, can also prevent a stel-
lar system against gravitational collapse. This random motion is measured from the
mean velocity dispersion of the stars. The components in three orthogonal directions,
often referred to as the semi-axis lengths of the velocity ellipsoid, can be different so
that the stellar system is anisotropic, and can vary throughout the stellar system,
even for an axisymmetric or spherical stellar system.

These dynamical properties cannot be inferred from photometry and require kine-
matic measurements, e.g., from spectroscopic observations. The development of tele-
scopes and instruments in the mid-seventies and early eighties of the twentieth cen-
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tury made it possible to measure the ordered-over-random motion ratios, V/σ, of
early-type galaxies. From these kinematic measurements it became clear that these
systems in general rotate too slowly for pure rotational support (e.g., Bertola & Ca-
paccioli 1975; Illingworth 1977). Further observations revealed that lenticulars and
low-luminosity ellipticals have disky isophotes and show clear rotation, while giant
ellipticals seem to have boxy isophotes and often hardly show any rotation (Davies
et al. 1983; Bender 1988). The reason behind this dichotomy is ascribed to the dif-
ferent underlying dynamical structures, with faint early-type galaxies comparable to
isotropic oblate rotators and luminous early-type galaxies consistent with anisotropic
triaxial stellar systems (e.g., Davies et al. 1983; Bender & Nieto 1990; de Zeeuw &
Franx 1991; Faber et al. 1997).

However, recent (N-body) simulations of merging galaxies seem to suggest the op-
posite concerning the degree of anisotropy, producing faint anisotropic and luminous
isotropic early-type galaxies (Burkert & Naab 2005). Based on a detailed study of
the orbital structure inferred from dynamical models of two dozen early-type galaxies,
Cappellari et al. (2005a) come to the same conclusions. It is evident that such detailed
simulations and dynamical models of galaxies are crucial to understand their forma-
tion history. At the same time, the improvement in the determination of the intrinsic
dynamical structure would not have been possible without the aid of two-dimensional
kinematic measurements and realistic dynamical modeling.

3 TWO-DIMENSIONAL KINEMATICS

Early-type galaxies can in general be assumed to be collisionless stellar systems in
equilibrium. Only in the center can the stellar density become high enough for stars
to significantly perturb each other’s orbits; everywhere else the stellar system is col-
lisionless. Except for the outskirts the dynamical time scale of the stars is short
enough for the stellar system to have reached equilibrium in the time passed since
its formation. These assumptions are also valid for many globular clusters, except for
their cores, where two-body relaxation can play an important role. When a stellar sys-
tem is collisionless and in equilibrium, its dynamical state is completely described by
the (time-independent) distribution function (DF) of the stars in the six-dimensional
phase space of positions and velocities.

For stars in the Milky Way and in nearby globular clusters, we can measure the
line-of-sight velocity and proper motions as a function of position on the plane of the
sky. The determination of the sixth dimension, the distance, is in general very difficult
and relatively uncertain. Moreover, due to obscuration by gas and dust and limited
spatial and spectral instrumental resolution, observations are not complete, although
future space missions like GAIA are expected to provide a stereoscopic census of a
significant part of the Milky-Way and its surroundings (Perryman et al. 2001).

Even at astronomically small distances it becomes no longer possible to resolve
individual stars with current telescopes. We can still measure the projected surface
brightness and (for the nearby galaxies) the line-of-sight velocity distribution of the
integrated stellar light as a function of position on the plane of the sky. In the last
two decades a major step forward has been made in the latter observations with
the introduction of integral-field spectrographs. Via an array of lenses, a bundle of
fibers or a set of adjacent slits, the integrated light from different positions on the
plane of the sky is dispersed in the wavelength direction. In this way, integral-field
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spectrographs provide a spectrum at each position within a two-dimensional area,
from which we can simultaneously extract the kinematics of the stars and gas, as
well as line-strength measurements, as a function of position on the plane of the sky.

Due to the high quality of modern spectroscopic observations, it is often possible
to also measure the higher-order line-of-sight velocity moments of the DF, in addition
to the mean velocity and velocity dispersion. These moments are often expressed
in terms of the Gauss-Hermite moments, which are less sensitive to the noise in
the wings than the true velocity moments (van der Marel & Franx 1993; Gerhard
1993). The measurement of these higher-order velocity moments are also important
to break the so called mass-anisotropy degeneracy: a change in the observed line-
of-sight velocity dispersion can be due to (a combination of) a change in the velocity
ellipsoid, i.e., a change in anisotropy, or a change in mass. Since we cannot observe
the velocity dispersion in the plane of the sky, we need the higher order line-of-sight
velocity moments to constrain a possible change in the velocity ellipsoid. On the other
hand, to measure a change in mass we need to know the mass-to-light ratio M/L
to convert the observed surface brightness into a mass distribution. Unfortunately,
we do not know the value of M/L, which moreover may vary throughout the galaxy
due to a change in the properties of the underlying stellar populations, or due to
the presence of non-luminous matter in the form of a central black hole and/or an
extended dark halo. To overcome these problems, realistic and detailed dynamical
models, which make full use of the information that is present in the photometric and
(two-dimensional) kinematic observations, are crucial.

4 DYNAMICAL MODELS

Integral-field spectroscopy has (literally) added a new dimension to observations of
nearby early-type galaxies. The resulting kinematic maps provide us with three-
dimensional information on the DF. Still, taking into account the uncertainties in
the maps due to inevitable noise in the observations, together with the unknown
viewing direction, M/L, and possible dark matter contribution, it seems almost hope-
less to recover the DF in the six-dimensional phase space. Fortunately, for stationary
equilibrium stellar systems the DF depends in general on fewer than six parameters.

4.1 INTEGRALS OF MOTION

According to Jeans (1915) theorem the DF is a function of the isolating integrals of
motion admitted by the potential (Lynden-Bell 1962b; Binney 1982). In a spherical
symmetric potential these integrals of motion are the energy E and the three compo-
nents of the angular momentum vector L. In axisymmetric geometry orbits have two
exact integrals of motion, the energy E and the angular momentum component Lz

parallel to the symmetry z-axis. All regular orbits furthermore obey a third integral
I3, which in general is not known in closed form. In the triaxial case, E is conserved
and all regular orbits have two additional integrals of motion, I2 and I3, both of which
in general are not known explicitly.

If, in addition to the potential, the DF itself is also spherically symmetric, it de-
pends only on the magnitude L of the angular momentum vector and not on its di-
rection, i.e., f = f(E,L2). Such models have anisotropic velocity distributions, but if
f = f(E), the stars are in isotropic equilibrium. Eddington (1916) showed that in this
case f(E) can uniquely be recovered from the intrinsic mass density ρ(r). Although
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anisotropic spherical models can sometimes be found by a similar analytic inversion
(e.g., Dejonghe 1987), most of them are constructed by assumption of a special func-
tional form for f(E,L2) (e.g., Binney & Tremaine 1987). Well-known spherical models
are for example those considered by Osipkov (1979) and Merritt (1985), with a DF of
the form f(E ± L2/r2a), where ra is a constant scale length.

For axisymmetric models with f = f(E,Lz), inversion formulas have been known
for a long time in the case where the density ρ(R, z) can be expressed explicitly in
terms of the underlying gravitational potential V as ρ(R, V ) (e.g., Lynden-Bell 1962;
Hunter 1975; Dejonghe 1986). In spite of the latter limitation, many f(E,Lz) models
have been derived in this way (e.g., de Zeeuw 1994), including for example the exact
DF for the Kuzmin-Kutuzov (1962) model by Dejonghe & de Zeeuw (1988). With the
method derived by Hunter & Qian (1993) it became possible to obtain the two-integral
DF directly from ρ(R, z). While ρ(R, z) constrains only the part of the DF that is even
in the velocities, i.e., f = f(E,L2

z), the odd part can be found once the mean azimuthal
velocity field vφ(R, z) is known. Although these two-integral axisymmetric models have
already significantly improved our understanding of the dynamical structure of stellar
systems (e.g., Qian et al. 1995), for more realistic models we need to include the third
integral of motion. How to do this is not evident because this third integral of motion
is in general unknown. The construction of triaxial models with two non-classical
integrals of motion is even more complex.

An exception is provided by the special family of models with a gravitational po-
tential of Stäckel form, for which all three integrals of motion are exact and known
explicitly. The associated densities have a large range of possible shapes, but they
all have cores rather than central cusps, and hence are inadequate for describing the
central parts of galaxies with massive black holes. Even so, their kinematic properties
are as rich as those seen in the main body of early-type galaxies (Statler 1991, 1994a;
Arnold et al. 1994). Several (numerical and analytic) DFs have been constructed for
these separable models (e.g., Bishop 1986; Dejonghe & de Zeeuw 1988; Hunter & de
Zeeuw 1992). These also include the Abel models, first introduced by Dejonghe & Lau-
rent (1991) and extended by Mathieu & Dejonghe (1999), which generalize the spher-
ical Osipkov-Merritt models and axisymmetric Kuzmin-Kutuzov models (Chapter 4).

4.2 VELOCITY MOMENTS

A way to avoid the unknown non-classical integrals of motion and even the DF is
to solve the continuity equation and Jeans equations that follow by taking velocity
moments of the collisionless Boltzmann equation. The continuity equation connects
the first moments (mean streaming) and the Jeans equations connect the second
moments (or the velocity dispersions, if the mean streaming is known) directly to the
density and the gravitational potential, without the need to know the DF.

Unfortunately, in nearly all cases there are fewer equations than velocity moments,
so that additional assumptions have to be made about the degree of anisotropy. The
Jeans equations in the spherical case with a simple form for the anisotropy parameter
(e.g., Binney & Tremaine 1987) are widely used to model a large variety of dynamical
systems. Kinematic measurements of stellar systems have also been successfully
fitted by using the solution of the Jeans equation in axisymmetric geometry with the
DF assumed to be independent of the third integral of motion, f(E,Lz), corresponding
to isotropy in the meridional (R, z)-plane (e.g., Hunter 1977; Satoh 1980; Binney,
Davies & Illingworth 1990; van der Marel 1991).
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Such ad-hoc assumptions are not needed in the case of separable Stäckel mod-
els. For each orbit in a Stäckel potential, at most one component of the streaming
motion is non-zero and all mixed second moments vanish in the coordinate system in
which the equations of motion separate. Consequently, the continuity equation can
be readily solved for the one non-vanishing first moment (Statler 1994a), and used to
provide constraints on the intrinsic shapes of individual galaxies (e.g., Statler 1994b,
2001; Statler et al. 2004). The Jeans equations form a closed system with as many
equations as non-vanishing second moments. The solution of these equations in ax-
isymmetric geometry has been known for a while (e.g., Evans & Lynden-Bell 1989),
and the solution for the triaxial case is presented in Chapter 5.

4.3 EQUATIONS OF MOTION

Although much has been learned about the dynamical structure of stellar systems by
modeling their observed surface brightness and kinematics with solutions of the con-
tinuity equation and the Jeans equations (e.g., Binney & Tremaine 1987), the results
need to be interpreted with care since the moment solutions may not correspond to
a physical distribution function f ≥ 0. A non-physical DF can be avoided, without
actually specifying the DF, by solving directly the equations of motions in a given
potential, and fitting the resulting density and velocity distribution to the observed
surface brightness and kinematics. Analytically this is only possible for (very) special
choices of the potential or in an approximate way by restricting to the lower-order
(linear) terms in the equations of motions (e.g., Binney & Tremaine 1987; Chapter 3).
Numerically, a very powerful tool is provided by Schwarzschild’s (1979, 1982) orbit
superposition method, originally designed to reproduce triaxial mass distributions.

Schwarzschild’s method allows for an arbitrary gravitational potential, with pos-
sible contributions from dark components. The equations of motion are integrated
for a representative library of orbits, and then the orbital weights are determined
for which the combined and projected density and higher order velocity moments of
the orbits best fit the observed surface brightness and (two-dimensional) kinematics.
The resulting best-fit distribution of (positive) orbital weights represents the DF (cf.
Vandervoort 1984), which is thus guaranteed to be everywhere non-negative.

A number of groups have developed independent numerical implementations of
Schwarzschild’s method in axisymmetric geometry and determined black hole masses,
mass-to-light ratios, dark matter profiles as well as the DF of early-type galaxies by
fitting in detail their projected surface brightness and line-of-sight velocity distribu-
tions (see § 1 of Chapter 4 for an overview and references). By including proper motion
measurements the distance and dynamical structure of nearby globular clusters can
be determined (Chapter 2; van den Bosch et al. 2005). The non-trivial extension of
Schwarzschild’s method to triaxial geometry (Chapter 4; van den Bosch et al. 2006)
allows the modeling of giant ellipticals with significant features of triaxiality both in
their observed photometry (isophotal twist) and in their observed kinematics (kine-
matic misalignment, kinematically decoupled components, etc.).

5 DYNAMICAL STRUCTURE AND EVOLUTION

Above we presented three different approaches to model stellar systems: analytically
computing the DF specified as a function of the known integrals of motion; solving
the continuity equation and Jeans equations for the velocity moments; and integrating
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the equations of motion. In this order, the approaches show an increase in freedom
and flexibility, but at the same time an increase in complexity and a corresponding
increase in (computational) effort to find the best-fit dynamical model. For triaxial
geometries in particular, the first two approaches can be very useful to constrain the
large parameter space before applying the more general but computational expensive
Schwarzschild method. Such a combination of modeling techniques applied to two-
dimensional observations provides a very powerful tool to investigate the fossil record
of formation in nearby globular clusters and early-type galaxies.

The gravitational potential forms the basis of all dynamical models, and in general
is inferred from the observed surface brightness. This involves a deprojection and
a conversion from light to mass, for given viewing angle(s) and mass-to-light ratio
M/L, which enter the model as free parameters. The deprojection is nearly always
non-unique and mass does not have to follow light, because of varying properties of
the underlying stellar population or the presence of dark matter, so that M/L does
not have to be constant. Although the inferred gravitational potential might thus be
different from the true one, various tests seem to suggest that the parameters as well
as the DF are recovered well, as long as there are enough accurate photometric and
kinematic constraints (Chapters 2 and 4).

A unique way to get a more direct handle on the gravitational potential is via
strong gravitational lensing. The mass of a foreground galaxy bends the light of a dis-
tant quasar behind it, resulting in multiple images. From the separation and relative
fluxes of the images the total mass distribution (including possible dark matter) of
the lens galaxy, and hence the potential, can be constrained. Next, by constructing a
dynamical model of the lens galaxy that fits the observed surface brightness and kine-
matics, the dark matter distribution in the lens galaxy can be studied. Only very few
of the known lens galaxies are close enough to obtain sufficient photometric and (two-
dimensional) kinematic measurements for a detailed dynamical study (Chapter 6).

At higher redshift, measurements of stellar systems are limited to their global
properties. Often only photometric properties such as luminosity, color and size are
readily accessible, because kinematic measurements from spectra become very chal-
lenging due to the dimming of the light. Strong gravitational lensing provides a way
out here: since the velocity dispersion of the lens galaxy is related to its mass, the
(central) velocity dispersion can be estimated from the separation of the quasar images
(e.g., Schneider et al. 1992). Once the global properties of several stellar systems are
known, these stellar systems can be linked and their evolution investigated by means
of scaling relations such as the Fundamental Plane. The change with redshift of the
latter tight relation between the structural parameters and velocity dispersion of early-
type galaxies, provides a measurement of the M/L evolution (Chapter 7). Comparing
such measurements of the change in the global (dynamical) properties of early-type
galaxies with time, with the detailed determinations of the (dynamical) properties of
nearby early-type galaxies, allows a better understanding of the dynamical structure
and evolution of stellar systems from the Big Bang to the present day.

6 THIS THESIS

In CHAPTER TWO, we determine the dynamical distance D, inclination i, mass-to-light
ratio M/L and intrinsic orbital structure of the Milky Way globular cluster ω Centauri,
by fitting axisymmetric dynamical models to the ground-based proper motions of van
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Leeuwen et al. (2000) and line-of-sight velocities from four independent data-sets. We
correct the observed velocities for perspective rotation caused by the space motion of
the cluster, and show that the residual solid-body rotation component in the proper
motions can be taken out without any modeling other than assuming axisymmetry.
This also provides a tight constraint on D tan i. The corrected mean velocity fields are
consistent with regular rotation, and the velocity dispersion fields display significant
deviations from isotropy.

We model ω Centauri with an axisymmetric implementation of Schwarzschild’s or-
bit superposition method. We bin the individual measurements on the plane of the sky
to search efficiently through the parameter space of the models. Tests on an analytic
model demonstrate that this approach is capable of measuring the cluster distance
to an accuracy of about 6 per cent. Application to ω Centauri reveals no dynamical
evidence for a significant radial dependence of M/L, in harmony with the relatively
long relaxation time of the cluster. The best-fit dynamical model has a stellar V -band
mass-to-light ratio M/LV = 2.5 ± 0.1 M�/L� and an inclination i = 50◦ ± 4◦, which
corresponds to an average intrinsic axial ratio of 0.78 ± 0.03. The best-fit dynamical
distance D = 4.8 ± 0.3 kpc (distance modulus 13.75 ± 0.13 mag) is significantly larger
than obtained by means of simple spherical or constant-anisotropy axisymmetric dy-
namical models, and is consistent with the canonical value 5.0 ± 0.2 kpc obtained
by photometric methods. The total mass of the cluster is (2.5 ± 0.3) × 106 M�. The
best-fit model is close to isotropic inside a radius of about 10 arcmin and becomes
increasingly tangentially anisotropic in the outer region, which displays significant
mean rotation. This phase-space structure may well be caused by the effects of the
tidal field of the Milky Way. The cluster contains a separate disk-like component in
the radial range between 1 and 3 arcmin, contributing about 4% to the total mass.

In CHAPTER THREE, we analyze spatially resolved SAURON kinematic maps of the
inner kpc of the nearby early-type barred spiral galaxy NGC 5448. The observed mor-
phology and kinematics of the emission-line gas are patchy and perturbed, indicating
clear departures from circular motion. The kinematics of the stars are more regular,
and display a small inner disk-like system embedded in a large-scale rotating struc-
ture. We focus on the [O III] gas, and use a harmonic decomposition formalism to an-
alyze the gas velocity field. The higher-order harmonic terms and the main kinematic
features of the observed data are consistent with a simple bar model. We construct
a bar model by solving the linearized equations of motion, considering an m = 2 per-
turbation mode, and with parameters which are consistent with the large-scale bar
detected via imaging. Optical and near infra-red images reveal asymmetric extinction
in NGC 5448, and we recognize that some of the deviations between the data and the
analytical bar model may be due to these complex dust features. Our study illus-
trates how the harmonic decomposition formalism can be used as a powerful tool to
quantify non-circular motions in observed gas velocity fields.

In CHAPTER FOUR, we construct axisymmetric and triaxial galaxy models with a
phase-space distribution function that depends on linear combinations of the three
exact integrals of motion for a separable potential. For these Abel models the density
and higher velocity moments can be calculated efficiently, and they capture much
of the rich internal dynamics of early-type galaxies. We use these models to mimic
the two-dimensional kinematics obtained with integral-field spectrographs such as
SAURON. We fit the simulated observations with axisymmetric and triaxial dynam-
ical models obtained with our numerical implementation of Schwarzschild’s orbit-
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superposition method, while varying the viewing direction and the mass-to-light ra-
tio. We find that Schwarzschild’s method is able to recover the internal dynamical
structure of early-type galaxies and to accurate determine the mass-to-light ratio, but
additional information is needed to constrain better the viewing direction.

In CHAPTER FIVE, we continue our analysis of galaxy models with separable po-
tentials and derive the general solution of the Jeans equations. The Jeans equations
relate the second-order velocity moments to the density and potential of a stellar sys-
tem, without making any assumptions about the distribution function. For general
three-dimensional stellar systems, there are three equations and six independent mo-
ments. By assuming that the potential is triaxial and of separable Stäckel form, the
mixed moments vanish in confocal ellipsoidal coordinates. Consequently, the three
Jeans equations and three remaining non-vanishing moments form a closed system of
three highly-symmetric coupled first-order partial differential equations in three vari-
ables. These equations were first derived by Lynden–Bell (1960), but have resisted
solution by standard methods for a long time. We present the general solution here.

We consider the two-dimensional limiting cases first. We solve their Jeans equa-
tions by a new method which superposes singular solutions. The resulting solutions
of the Jeans equations give the second moments throughout the system in terms of
prescribed boundary values of certain second moments. The two-dimensional solu-
tions are applied to non-axisymmetric disks, oblate and prolate spheroids, and also
to the scale-free triaxial limit. We then extend the method of singular solutions to the
triaxial case, and obtain a full solution, again in terms of prescribed boundary values
of second moments. The general solution can be expressed in terms of complete (hy-
per)elliptic integrals which can be evaluated in a straightforward way, and provides
the full set of second moments which can support a triaxial density distribution in a
separable triaxial potential.

In CHAPTER SIX, we investigate the total mass distribution in the inner parts of
the strong gravitational lens system QSO 2237+0305, well-known as the Einstein
Cross.In this system, a distant quasar is lensed by the bulge of an early-type spiral at
a redshift z ∼ 0.04 (i.e., at a distance of about 160 Mpc). We obtain a realistic luminos-
ity density of the lens galaxy by deprojecting its observed surface brightness, and we
construct a lens model that accurately fits the positions and relative fluxes of the four
quasar images. We combine both to build axisymmetric dynamical models that fit
preliminary two-dimensional stellar kinematics derived from recent observations with
the integral-field spectrograph GMOS. We find that the stellar velocity dispersion mea-
surements with a mean value of 167± 10 km s−1 within the Einstein radius RE = 0.90′′,
are in agreement with predictions from our and previous lens models. From the best-
fit dynamical model, with I-band mass-to-light ratio M/L = 3.6 M�/L�, the Einstein
mass is consistent with ME = 1.60 × 1010 M� from our lens model. The shapes of the
density inferred from the lens model and from the surface brightness are very similar,
but further improvement on the preliminary kinematic data is needed, before firm
conclusions on the total mass distribution can be drawn.

In CHAPTER SEVEN, we consider in addition to the Einstein Cross twenty-five strong
gravitational lens galaxies with redshifts up to z ∼ 1. At such large distances, we are
limited to the global properties of these lens galaxies, which effectively form a mass-
selected sample of early-type galaxies in environments of relatively low density. We
analyze their Fundamental Plane and use it, under the assumption that early-type
galaxies are a homologous family, to measure the M/L ratio evolution.
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If we assume that the M/L ratios of field early-type galaxies evolve as power-laws,
we find for the lens galaxies an evolution rate d log(M/L)/dz = −0.62 ± 0.13 in the rest-
frame B-band for a flat cosmology with ΩM = 0.3 and ΩΛ = 0.7. For a Salpeter (1955)
Initial Mass Function and Solar metallicity, these results correspond to a mean stellar
formation redshift of 〈z?〉 = 1.8+1.4

−0.5. After correction for maximum progenitor bias, van
Dokkum & Franx (2001) find for cluster galaxies 〈zcl

? 〉 = 2.0+0.3
−0.2, which is not signif-

icantly different from that found for the lens galaxies. However, without progenitor
bias correction and imposing the constraint that lens and cluster galaxies that are of
the same age have equal M/L ratios, the difference is significant and the stellar pop-
ulations of the lens galaxies are 10–15 % younger than those of the cluster galaxies.
Furthermore, we find that both the M/L ratios as well as the restframe colors of the
lens galaxies show significant scatter. About half of the lens galaxies are consistent
with an old cluster-like stellar population, but the other galaxies are bluer and best
fit by single burst models with stellar formation redshifts as low as z? ∼ 1. Moreover,
the scatter in color is correlated with the scatter in M/L ratio. We interpret this as
evidence of a significant age spread among the stellar populations of lens galaxies,
whereas those in cluster galaxies are well approximated by a single formation epoch.

7 FUTURE PROSPECTS

An important part of the work presented in this thesis concerns the extension of dy-
namical modeling to triaxial geometry. This is in particular important for the giant
ellipticals, many of which show clear signatures of non-axisymmetry in their kine-
matics as observed with integral-field spectrograph such as SAURON (Emsellem et al.
2004). Triaxial models of these giant ellipticals, together with axisymmetric models
of other ellipticals and lenticulars (Cappellari et al. 2005b), will allow us to study in
detail the clean fossil record of their formation.

Because SAURON typically observes the bright inner parts of galaxies, we need ad-
ditional information to investigate the extended dark matter distribution predicted by
current theories of galaxy formation (e.g., Kauffmann & van den Bosch 2002). We saw
that strong gravitational lensing can place constraints on the dark matter, but only
very few lens galaxies are close enough for detailed dynamical modeling. Currently we
are investigating the use of the large field-of-view of SAURON to obtain stellar kinematic
measurements in the faint outer parts. Further kinematic constraints are provided
by H I and X-ray observations as well as velocities of globular clusters and planetary
nebulae at large radii. We have started extending our modeling software to allow the
inclusion of both integrated and discrete kinematics. This is also important for the
dynamical modeling of stars and stellar systems in the Milky Way.

For nearby globular clusters such as ω Centauri, such discrete modeling software
will enable us to fit directly the three-dimensional velocity measurements of the in-
dividual stars, and even incorporate measurements of their age and metallicity. By
fitting an orbit-based model simultaneously to all these observations, different stellar
populations can be separated in phase-space, after which their structure and dynam-
ics can be studied separately. This will be important for solving the puzzle of the
multiple stellar populations in ω Centauri (e.g., Freeman & Rodgers 1975; Bedin et al.
2004) and to reveal its formation history. Moreover, fitting directly the proper motion
measurements in the very center of globular clusters, provided by observations with
the Hubble Space Telescope (e.g., King & Anderson 2002), will allow us to investigate
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the presence of a possible intermediate-mass black hole.
The modeling of the stars in the Milky Way is complicated by dust extinction and

the presence of a rotating bar, which requires a non-trivial extension of our existing
steady-state modeling software. In a preliminary study (Habing et al. 2005), we use
the very accurate line-of-sight velocities of more than a thousand OH/IR and SiO
masers to show that with such an extension we can model the dynamical structure
in the inner Milky Way and provide direct evidence for the existence of a bar. More-
over, this extension will make it possible to model other rotating and barred galaxies,
including the early-type and late-type spirals observed with SAURON (Falcón–Barroso
et al. 2005; Ganda et al. 2005), and link the stellar and gas kinematics.

The large amount of already available photometric and kinematic data will grow
rapidly with existing and future instruments and space missions, such as RAVE, GAIA
and SIM, which will provide data for millions of stars, as well as VIMOS, SINFONI,
MUSE and other integral-field spectrographs, which will provide two-dimensional data
for many nearby galaxies. At the same time, the rapid increase of telescope size and
instrument sensitivity will allow an ever deeper look into the universe, with a direct
view on the evolution and even formation of stellar systems. The work presented in
this thesis provides a step forward in the development and application of dynamical
models to deduce from this wealth of data how the different stellar systems evolved
from the Big Bang to the present day.
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CHAPTER 2

THE DYNAMICAL DISTANCE AND INTRINSIC STRUCTURE
OF THE GLOBULAR CLUSTER ω CENTAURI

ABSTRACT
We determine the dynamical distance D, inclination i, mass-to-light ratio M/L and
the intrinsic orbital structure of the globular cluster ω Cen, by fitting axisymmet-
ric dynamical models to the ground-based proper motions of van Leeuwen et al.
(2000) and line-of-sight velocities from four independent data-sets. We bring the
kinematic measurements onto a common coordinate system, and select on cluster
membership and on measurement error. This provides a homogeneous data-set
of 2295 stars with proper motions accurate to 0.20 mas yr−1 and 2163 stars with
line-of-sight velocities accurate to 2 km s−1, out to about half the tidal radius.
We correct the observed velocities for perspective rotation caused by the space mo-
tion of the cluster, and show that the residual solid-body rotation component in the
proper motions (caused by relative rotation of the photographic plates from which
they were derived) can be taken out without any modeling other than assuming
axisymmetry. This also provides a tight constraint on D tan i. The corrected mean
velocity fields are consistent with regular rotation, and the velocity dispersion fields
display significant deviations from isotropy.
We model ω Cen with an axisymmetric implementation of Schwarzschild’s orbit
superposition method, which accurately fits the surface brightness distribution,
makes no assumptions about the degree of velocity anisotropy in the cluster, and
allows for radial variations in M/L. We bin the individual measurements on the
plane of the sky to search efficiently through the parameter space of the models.
Tests on an analytic model demonstrate that this approach is capable of measur-
ing the cluster distance to an accuracy of about 6 per cent. Application to ω Cen
reveals no dynamical evidence for a significant radial dependence of M/L, in har-
mony with the relatively long relaxation time of the cluster. The best-fit dynamical
model has a stellar V -band mass-to-light ratio M/LV = 2.5 ± 0.1 M�/L� and an
inclination i = 50◦ ± 4◦, which corresponds to an average intrinsic axial ratio of
0.78 ± 0.03. The best-fit dynamical distance D = 4.8 ± 0.3 kpc (distance modulus
13.75± 0.13 mag) is significantly larger than obtained by means of simple spherical
or constant-anisotropy axisymmetric dynamical models, and is consistent with the
canonical value 5.0 ± 0.2 kpc obtained by photometric methods. The total mass of
the cluster is (2.5± 0.3) × 106 M�.
The best-fit model is close to isotropic inside a radius of about 10 arcmin and
becomes increasingly tangentially anisotropic in the outer region, which displays
significant mean rotation. This phase-space structure may well be caused by the
effects of the tidal field of the Milky Way. The cluster contains a separate disk-like
component in the radial range between 1 and 3 arcmin, contributing about 4% to
the total mass.

G. van de Ven, R.C.E. van den Bosch, E.K. Verolme, P.T. de Zeeuw
A&A, in press (2005)
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1 INTRODUCTION

THE globular cluster ω Cen (NGC 5139) is a unique window into astrophysics (van
Leeuwen, Hughes & Piotto 2002). It is the most massive globular cluster of our

Galaxy, with an estimated mass between 2.4×106M� (Mandushev, Staneva & Spasova
1991) and 5.1×106M� (Meylan et al. 1995). It is also one of the most flattened globular
clusters in the Galaxy (e.g., Geyer, Nelles & Hopp 1983) and it shows clear differential
rotation in the line-of-sight (Merritt, Meylan & Mayor 1997). Furthermore, multiple
stellar populations can be identified (e.g., Freeman & Rodgers 1975; Lee et al. 1999;
Pancino et al. 2000; Bedin et al. 2004). Since this is unusual for a globular cluster,
a whole range of different formation scenarios of ω Cen have been suggested, from
self-enrichment in an isolated cluster or in the nucleus of a tidally stripped dwarf
galaxy, to a merger between two or more globular clusters (e.g., Icke & Alcaino 1988;
Freeman 1993; Lee et al. 2002; Tsuchiya, Korchagin & Dinescu 2004).

ω Cen has a core radius of rc = 2.6 arcmin, a half-light (or effective) radius of rh = 4.8
arcmin and a tidal radius of rt = 45 arcmin (e.g., Trager, King & Djorgovski 1995). The
resulting concentration index log(rt/rc) ∼ 1.24 implies that ω Cen is relatively loosely
bound. In combination with its relatively small heliocentric distance of 5.0 ± 0.2 kpc
(Harris 1996)1. This makes it is possible to observe individual stars over almost the
entire extent of the cluster, including the central parts. Indeed, line-of-sight velocity
measurements2 have been obtained for many thousands of stars in the field of ω Cen
(Suntzeff & Kraft 1996, hereafter SK96; Mayor et al. 1997, hereafter M97; Reijns et
al. 2005, hereafter Paper II; Xie, Gebhardt et al. in preparation, hereafter XGEA). Re-
cently, also high-quality measurements of proper motions of many thousands of stars
in ω Cen have become available, based on ground-based photographic plate observa-
tions (van Leeuwen et al. 2000, hereafter Paper I) and Hubble Space Telescope (HST)
imaging (King & Anderson 2002).

The combination of proper motions with line-of-sight velocity measurements al-
lows us to obtain a dynamical estimate of the distance to ω Cen and study its internal
dynamical structure. While line-of-sight velocity observations are in units of km s−1,
proper motions are angular velocities and have units of (milli)arcsec yr−1. A value for
the distance is required to convert these angular velocities to km s−1. Once this is
done, the proper motion and line-of-sight velocity measurements can be combined
into a three-dimensional space velocity, which can be compared to kinematic observ-
ables that are predicted by dynamical models. By varying the input parameters of
these models, the set of model parameters (including the distance) that provides the
best-fit to the observations can be obtained. Similar studies for other globular clus-
ters, based on comparing modest numbers of line-of-sight velocity and proper motion
measurements with simple spherical dynamical models, were published for M3 (Cud-
worth 1979), M22 (Peterson & Cudworth 1994), M4 (Peterson, Rees & Cudworth 1995;
see also Rees 1997), and M15 (McNamara, Harrison & Baumgardt 2004).

A number of dynamical models which reproduce the line-of-sight velocity measure-
ments have been published. As no proper motion information was included in these
models, the distance could not be fitted and had to be assumed. Furthermore, all

1Throughout this chapter we use this distance of 5.0 ± 0.2 kpc, obtained with photometric methods,
as the canonical distance.

2Instead of the often-used term radial velocities, we adopt the term line-of-sight velocities, to avoid
confusion with the decomposition of the proper motions in the plane of the sky into a radial and tangen-
tial component.
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these models were limited by the flexibility of the adopted techniques and assumed
either spherical geometry (Meylan 1987, Meylan et al. 1995) or an isotropic veloc-
ity distribution (Merritt et al. 1997). Neither of these assumptions is true for ω Cen
(Geyer et al. 1983; Merrifield & Kent 1990). Recent work, using an axisymmetric im-
plementation of Schwarzschild’s (1979) orbit superposition method, shows that it is
possible to fit anisotropic dynamical models to (line-of-sight) kinematic observations
of non-spherical galaxies (van der Marel et al. 1998; Cretton et al. 1999; Cappellari
et al. 2002; Verolme et al. 2002; Gebhardt et al. 2003; Krajnović et al. 2005). Here,
we extend Schwarzschild’s method in such a way that it can deal with a combination
of proper motion and line-of-sight velocity measurements of individual stars. This al-
lows us to derive an accurate dynamical distance and to improve our understanding
of the internal structure of ω Cen.

It is possible to incorporate the discrete kinematic measurements of ω Cen directly
in dynamical models by using maximum likelihood techniques (Merritt & Saha 1993;
Merritt 1993; Merritt 1997; Romanowsky & Kochanek 2001; Kleyna et al. 2002),
but these methods are non-linear, are not guaranteed to find the global best-fitting
model, and are very CPU-intensive for data-sets consisting of several thousands of
measurements. We therefore decided to bin the measurements instead and obtain
the velocity moments in a set of apertures on the plane of the sky. While this method
is (in principle) slightly less accurate, as some information in the data may be lost
during the binning process, it is much faster, which allows us to make a thorough
investigation of the parameter space of ω Cen in a relatively short time. It should
also give a good starting point for a subsequent maximum likelihood model using the
individual measurements.

This chapter is organized as follows. In Section 2, we describe the proper motion
and line-of-sight velocity measurements and transform them to a common coordinate
system. The selection of the kinematic measurements on membership and measure-
ment error is outlined in Section 3. In Section 4, we correct the kinematic measure-
ments for perspective rotation and show that a residual solid-body rotation compo-
nent in the proper motions can be taken out without any modeling other than assum-
ing axisymmetry. This also provides a tight constraint on the inclination of the cluster.
In Section 5, we describe our axisymmetric dynamical modeling method, and test it in
Section 6 on an analytical model. In Section 7, we construct the mass model for ω Cen,
bin the individual kinematic measurements on the plane of the sky and describe the
construction of dynamical models that we fit to these observations. The resulting
best-fit parameters for ω Cen are presented in Section 8. We discuss the intrinsic
structure of the best-fit model in Section 9, and draw our conclusions in Section 10.

2 OBSERVATIONS

We briefly describe the stellar proper motion and line-of-sight velocity observations of
ω Cen that we use to constrain our dynamical models (see Table 1). We then align
and transform them to a common coordinate system.

2.1 PROPER MOTIONS

The proper motion study in Paper I is based on 100 photographic plates of ω Cen,
obtained with the Yale-Columbia 66 cm refractor telescope. The first-epoch observa-
tions were taken between 1931 and 1935, for a variable star survey of ω Cen (Martin
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Source Extent Observed Selected Precision
(arcmin) (#stars) (#stars) (km s−1)

proper motions
Paper I 0–30 9847 2295 < 4.7

line-of-sight velocities
SK96 3–23 360 345 2.2
M97 0–22 471 471 0.6
Paper II 0–38 1966 1588 2.0
XGEA 0–3 4916 1352 1.1
Merged 0–30 2163 < 2.0

TABLE 1 — Overview of the proper motions and line-of-sight velocity data-sets for ω Cen. The
last row describes the four different line-of-sight velocity data-sets merged together, using the
stars in common. The precision is estimated as the median of the (asymmetric) velocity error
distribution. If a selection on the velocity errors is applied (§ 3), the upper limit is given. For the
proper motions, we assume a canonical distance of 5 kpc to convert from mas yr−1 to km s−1.

1938). Second-epoch plates, specifically meant for the proper motion study, were
taken between 1978 and 1983. The plates from both periods were compared and
proper motions were measured for 9847 stars. The observations cover a radial range
of about 30 arcmin from the cluster center.

2.2 LINE-OF-SIGHT VELOCITIES

We use line-of-sight velocity observations from four different data-sets: the first two,
by SK96 and M97, from the literature, the third is described in the companion Paper II
and the fourth (XGEA) was provided by Karl Gebhardt in advance of publication.

SK96 used the ARGUS multi-object spectrograph on the CTIO 4 m Blanco telescope
to measure, from the Ca II triplet range of the spectrum, the line-of-sight velocities
of bright giant and subgiant stars in the field of ω Cen. They found respectively
144 and 199 line-of-sight velocity members, and extended the bright sample to 161
with measurements by Patrick Seitzer. The bright giants cover a radial range from
3 to 22 arcmin, whereas the subgiants vary in distance between 8 and 23 arcmin.
From the total data-set of 360 stars, we remove the 6 stars without (positive) velocity
error measurement together with the 9 stars for which we do not have a position (see
§ 2.3.1), leaving a total of 345 stars.

M97 published 471 high-quality line-of-sight velocity measurements of giants in
ω Cen, taken with the photoelectric spectrometer CORAVEL, mounted on the 1.5 m
Danish telescope at Cerro La Silla. The stars in their sample are located between 10
arcsec and 22 arcmin from the cluster center.

In Paper II, we describe the line-of-sight velocity measurements of 1966 individual
stars in the field of ω Cen, going out to about 38 arcmin. Like SK96, we observed with
ARGUS, but used the Mgb wavelength range. We use the 1589 cluster members, but
exclude the single star for which no positive velocity error measurement is available.

Finally, the data-set of XGEA contains the line-of-sight velocities of 4916 stars in
the central 3 arcmin of ω Cen. These measurements were obtained in three epochs
over a time span of four years, using the Rutgers Imaging Fabry-Perot Spectropho-
tometer on the CTIO 1.5 m telescope. During the reduction process, some slightly
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smeared out single stars were accidentally identified as two fainter stars. Also, con-
taminating light from surrounding stars can lead to offsets in the line-of-sight velocity
measurements. To exclude (most of) these misidentifications (Gebhardt, priv. comm.),
we select the 1352 stars with a measured (R-band) magnitude brighter than 14.5.

2.3 COORDINATE SYSTEM: POSITIONS

We constrain our dynamical models by merging all the above data-sets. We convert all
stellar positions to the same projected Cartesian coordinates and align the different
data-sets with respect to each other by matching the stars in common between the
different data-sets. Next, we rotate the coordinates over the observed position angle
of ω Cen to align with its major and minor axis, and give the relation with the intrinsic
axisymmetric coordinate system we assume for our models.

2.3.1 Projected Cartesian coordinates (x′′, y′′)
The stellar positions in Paper I are given in equatorial coordinates α and δ (in units of
degrees for J2000), with the cluster center at α0 = 201.◦69065 and δ0 = −47 .◦47855. For
objects with small apparent sizes, these equatorial coordinates can be converted to
Cartesian coordinates by setting x′′ = −∆α cos δ and y′′ = ∆δ, with x′′ in the direction
of West and y′′ in the direction of North, and ∆α ≡ α − α0 and ∆δ ≡ δ − δ0. However,
this transformation results in severe projection effects for objects that have a large
angular diameter or are located at a large distance from the equatorial plane. Since
both conditions are true for ω Cen, we must project the coordinates of each star on
the plane of the sky along the line-of-sight vector through the cluster center

x′′ = −r0 cos δ sin∆α,
(2.1)

y′′ = r0 (sin δ cos δ0 − cos δ sin δ0 cos ∆α) ,

with scaling factor r0 ≡ 10800/π to have x′′ and y′′ in units of arcmin. The cluster
center is at (x′′, y′′) = (0, 0).

The stellar observations by SK96 are tabulated as a function of the projected radius
to the center only. However, for each star for which its ROA number (Woolley 1966)
appears in the Tables of Paper I or M97, we can reconstruct the positions from these
data-sets. In this way, only nine stars are left without a position. The positions of
the stars in the M97 data-set are given in terms of the projected polar radius R ′′ in
arcsec from the cluster center and the projected polar angle θ ′′ in radians from North
to East, and can be straightforwardly converted into Cartesian coordinates x ′′ and y′′.
For Paper II, we use the Leiden Identification (LID) number of each star, to obtain the
stellar positions from Paper I. The stellar positions in the XGEA data-set are already
in the required Cartesian coordinates x′′ and y′′.

2.3.2 Alignment between data-sets
Although for all data-sets the stellar positions are now in terms of the projected Carte-
sian coordinates (x′′, y′′), (small) misalignments between the different data-sets are
still present. These misalignments can be eliminated using the stars in common be-
tween the different data-sets. As the data-set of Paper I covers ω Cen fairly uniformly
over much of its extent, we take their stellar positions as a reference frame.

All the positions for the Paper II data-set and most of the positions for the SK96
data-set come directly from Paper I, and hence are already aligned. For the M97 and
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XGEA data-set, we use the DAOMASTER program (Stetson 1992), to obtain the trans-
formation (horizontal and vertical shift plus rotation) that minimizes the positional
difference between the stars that are in common with those in Paper I: 451 for the
M97 data-set and 1667 for the XGEA data-set.

2.3.3 Major-minor axis coordinates (x′, y′)
With all the data-sets aligned, we finally convert the stellar positions into the Carte-
sian coordinates (x′, y′), with the x′-axis and y′-axis aligned with respectively the ob-
served major and minor axis of ω Cen. Therefore we have to rotate (x′′, y′′) over the
position angle of the cluster. This angle is defined in the usual way as the angle be-
tween the observed major axis and North (measured counterclockwise through East).

To determine the position angle, we fit elliptic isophotes to the smoothed Digital
Sky Survey (DSS) image of ω Cen, while keeping the center fixed. In this way, we find
a nearly constant position angle of 100◦ between 5 and 15 arcmin from the center
of the cluster. This is consistent with an estimate by Seitzer (priv. comm.) from a U-
band image, close to the value of 96◦ found by White & Shawl (1987), but significantly
larger than the position angle of 91.3◦ measured in Paper I from star counts.

2.3.4 Intrinsic axisymmetric coordinates (x, y, z)

Now that we have aligned the coordinates in the plane of the sky (x′, y′) with the
observed major and the major axis, the definition of the intrinsic coordinate system of
our models and the relation between both becomes straightforward. We assume the
cluster to be axisymmetric and express the intrinsic properties of the model in terms
of Cartesian coordinates (x, y, z), with the z-axis the symmetry axis. The relation
between the intrinsic and projected coordinates is then given by

x′ = y,

y′ = −x cos i+ z sin i, (2.2)
z′ = −x sin i− z cos i.

The z′-axis is along the line-of-sight in the direction away from us3, and i is the
inclination along which the object is observed, from i = 0◦ face-on to i = 90◦ edge-on.

2.4 COORDINATE SYSTEM: VELOCITIES

After the stellar positions have been transformed to a common coordinate system,
we also convert the proper motions and line-of-sight velocities to the same (three-
dimensional) Cartesian coordinate system. We center it around zero (mean) velocity
by subtracting the systemic velocity in all three directions, and relate it to the intrinsic
axisymmetric coordinate system.

2.4.1 Proper motions
The proper motions (in mas yr−1) of Paper I are given in the directions East and North,
i.e., in the direction of −x′′ and y′′ respectively. After rotation over the position angle of
100◦, we obtain the proper motion components µx′ and µy′ , aligned with the observed
major and minor axis of ω Cen, and similarly, for the proper motion errors.

3In the common (mathematical) definition of a Cartesian coordinate system the z ′-axis would point
towards us, but here we adopt the astronomical convention to have positive line-of-sight away from us.
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2.4.2 Multiple line-of-sight velocity measurements

In Paper II, the measured line-of-sight velocities are compared with those of SK96
and M97 for the stars in common. A systematic offset in velocity between the differ-
ent data-sets is clearly visible in Fig. 1 of that paper. We measure this offset with
respect to the M97 data-set, since it has the highest velocity precision and more than
a hundred stars in common with the other three data-sets: 129 with SK96, 312 with
Paper II4 and 116 with XGEA. As in Paper II, we apply four-sigma clipping, i.e., we
exclude all stars for which the measured velocities differ by more than four times the
combined velocity error. This leaves respectively 117, 284 and 109 stars in common
between M97 and the three data-sets of SK96, Paper II and XGEA. The (weighted5)
mean velocity offsets of the data-set of M97 minus the three data-sets of SK96, Pa-
per II and XGEA, are respectively −0.41± 0.08 km s−1, 1.45± 0.07 km s−1 and 0.00± 0.12
km s−1. For each of the latter three data-sets, we add these offsets to all observed
line-of-sight velocities.

Next, for each star that is present in more than one data-set, we combine the
multiple line-of-sight velocity measurements. Due to non-overlapping radial coverage
of the data-set of SK96 and XGEA, there are no stars in common between these two
data-sets, and hence no stars that appear in all four data-sets. There are 138 stars
with position in common between three data-sets and 386 stars in common between
two data-sets.

For the 138 stars in common between three data-sets, we check if the three pair-
wise velocity differences satisfy the four-sigma clipping criterion. For 6 stars, we find
that two of the three pairs satisfy the criterion, and we select the two velocities that
are closest to each other. For 7 stars, we only find a single pair that satisfies the
criterion, and we select the corresponding two velocities. Similarly, we find for the
386 stars in common between two data-sets, 13 stars for which the velocity differ-
ence does not satisfy the criterion, and we choose the measurement with the smallest
error. This means from the 524 stars with multiple velocity measurements, for 26
stars (5%) one of the measurements is removed as an outlier. This can be due to a
chance combination of large errors, a misidentification or a binary; Mayor et al. (1996)
estimated the global frequency of short-period binary systems in ω Cen to be 3–4%.

As pointed out in § 2.6 of Paper II, we can use for the stars in common between
(at least) three data-sets, the dispersion of the pairwise differences to calculate the
external (instrumental) dispersion for each of the data-sets. In this way, we found
in Paper II that the errors tabulated in SK96 are under-estimated by about 40%
and hence increased them by this amount, whereas those in M97 are well-calibrated.
Unfortunately, there are too few stars in common with the XGEA data-set for a similar
(statistically reliable) external error estimate.

In the final sample, we have 125 stars with the weighted mean of three velocity
measurements and 373 stars with the weighted mean of two velocity measurements.
Together with the 2596 single velocity measurements, this gives a total of 3094 cluster
stars with line-of-sight velocities.

4In Paper II, we report only 267 stars in common with the data-set of M97. The reason is that there
the comparison is based on matching ROA numbers, and since not all stars from Paper II have a ROA
number, we find here more stars in common by matching in position.

5To calculate the mean and dispersion of a sample, we use the weighted estimators and corresponding
uncertainties as described in Appendix A of Paper II.
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2.4.3 Systemic velocities
To center the Cartesian velocity system around zero mean velocity, we subtract from
both the proper motion data-sets and the merged line-of-sight data-set the (remaining)
systemic velocities. In combination with the cluster proper motion values from Table
4 of Paper I, we find the following systemic velocities

µsys
x′ = 3.88 ± 0.41 mas yr−1,

µsys
y′ = −4.44 ± 0.41 mas yr−1, (2.3)
vsys
z′ = 232.02 ± 0.03 km s−1.

2.4.4 Intrinsic axisymmetric coordinate system
In our models, we calculate the velocities in units of km s−1. If we assume a distance
D (in units of kpc), the conversion of the proper motions in units of mas yr−1 into
units of km s−1 is given by

vx′ = 4.74Dµx′ and vy′ = 4.74Dµy′ . (2.4)

The relation between observed (vx′ , vy′ , vx′) and intrinsic (vx, vy, vz) velocities is the
same as in eq. (2.2), with the coordinates replaced by the corresponding velocities.

In addition to Cartesian coordinates, we also describe the intrinsic properties of
our axisymmetric models in terms of the usual cylindrical coordinates (R,φ, z), with
x = R cosφ and y = R sinφ. In these coordinates the relation between the observed and
intrinsic velocities is

vx′ = vR sinφ+ vφ cosφ,

vy′ = (−vR cosφ+ vφ sinφ) cos i+ vz sin i, (2.5)
vz′ = (−vR cosφ+ vφ sinφ) sin i+ vz cos i.

3 SELECTION

We discuss the selection of the cluster members from the different data-sets, as well
as some further removal of stars that cause systematic deviations in the kinematics.

3.1 PROPER MOTIONS

In Paper I, a membership probability was assigned to each star. We use the stars for
which we also have line-of-sight velocity measurements to investigate the member-
ship determination. Furthermore, in Paper I the image of each star was inspected
and classified according to its separation from other stars. We study the effect of the
disturbance by a neighboring star on the kinematics. Finally, after selection of the
undisturbed cluster members, we exclude the stars with relatively large uncertainties
in their proper motion measurements, which cause a systematic overestimation of the
mean proper motion dispersion.

3.1.1 Membership determination
The membership probability in Paper I was assigned to each star in the field by as-
suming that the distribution of stellar velocities is Gaussian. In most studies, this
is done by adopting one common distribution for the entire cluster. However, this
does not take into account that the internal dispersion, as well as the relative number
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of cluster stars decreases with radius. To better incorporate these two effects, the
membership probability in Paper I was calculated along concentric rings.

By matching the identification numbers and the positions of stars, we find that
there are 3762 stars for which both proper motions and line-of-sight velocities are
measured. This allows us to investigate the quality of the membership probability
assigned in Paper I, as the separation of cluster and field stars is very clean in line-
of-sight velocities (see e.g. Paper II, Fig. 4).

From the line-of-sight velocities, we find that of the 3762 matched stars, 3385 are
cluster members. Indeed, most of these cluster stars, 3204 (95%), have a membership
probability based on their proper motions of at least 68 per cent. Based on the latter
criterion, the remaining 181 (5%) cluster stars are wrongly classified as field stars in
Paper I. From the 3762 matched stars, 377 stars are field stars from the line-of-sight
velocity data-set of Paper II. Based on a membership probability of 68 per cent, 54
(14%) of these field stars are wrongly classified as cluster members in Paper I. This
fraction of field stars misclassified as cluster stars is an upper limit, since the obvious
field stars are already removed from the proper motion data-set of Paper I.

Wrongly classifying cluster stars as field stars is relatively harmless for our pur-
pose, since it only reduces the total cluster data-set. However, classifying field stars
as members of the cluster introduces stars from a different population with different
(kinematical) properties. With a membership probability of 99.7 per cent the fraction
of field stars misclassified as cluster stars reduces to 5%. However, at the same time
we expect to miss almost 30% of the cluster stars as they are wrongly classified as
field stars. Taking also into account that the additional selections on disturbance by
neighboring stars and velocity error below remove (part of) the field stars misclassified
as cluster stars, we consider stars with a membership probability of at least 68 per
cent as cluster members.

While for the 3762 matched stars, the line-of-sight velocities confirm 3385 stars as
cluster members, from the remaining 6084 (unmatched) stars of Paper I, 4597 stars
have a proper motion membership probability of at least 68 per cent. From the result-
ing proper motion distribution, we remove 83 outliers with proper motions five times
the standard deviation away from the mean, leaving a total of 7899 cluster stars.

3.1.2 Disturbance by neighboring stars
In Paper I, each star was classified according to its separation from other stars on a
scale from 0 to 4, from completely free to badly disturbed by a neighboring star. In
Fig. 1, we show the effect of the disturbance on the proper motion dispersion. The
(smoothed) profiles are constructed by calculating the mean proper motion dispersion
of the stars binned in concentric rings, taking the individual measurement errors into
account (Appendix A). The proper motions in the x′-direction give rise to the veloc-
ity dispersion profiles σx′ in the left panel. The proper motions in the y ′-direction
yield the dispersion profiles σy′ in the right panel. The thickest curves are the disper-
sion profiles for all 7899 cluster stars with proper motion measurements. The other
curves show how, especially in the crowded center of ω Cen, the dispersion decreases
significantly when sequentially stars of class 4 (severely disturbed) to class 1 (slightly
disturbed) are removed. We select the 4415 undisturbed stars of class 0.

The membership determination is cleaner for undisturbed stars, so that above
fraction of 5% of the cluster stars misclassified as field stars becomes smaller than
3% if only stars of class 0 are selected. The dispersion profiles σx′ and σy′ in Fig. 1
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FIGURE 1 — Velocity dispersion profiles, calculated along concentric rings, from the proper
motions of Paper I. The dispersion profiles from the proper motions in the x′-direction (y′-
direction) are shown in the left (right). The error bar at the bottom-left indicates the typical
uncertainty in the velocity dispersion. The thickest curves are the dispersion profiles for all
7899 cluster stars with proper motion measurements. The other curves show how the dis-
persion decreases significantly, especially in the crowded center of ω Cen, when sequentially
stars of class 4 (severely disturbed) to class 1 (slightly disturbed) are removed. We select the
4415 undisturbed stars of class 0.

are systematically offset with respect to each other, demonstrating that the velocity
distribution in ω Cen is anisotropic. We discuss this further in § 4.6 and § 9.2.

3.1.3 Selection on proper motion error
After selection of the cluster members that are not disturbed by neighboring stars, it
is likely that the sample of 4415 stars still includes (remaining) interlopers and stars
with uncertain proper motion measurements, which can lead to systematic deviations
in the kinematics. Fig. 2 shows that the proper motion dispersion profiles decrease
if we sequentially select a smaller number of stars by setting a tighter limit on the
allowed error in their proper motion measurements.

Since the proper motion errors are larger for the fainter stars (see also Fig. 11 of
Paper I), a similar effect happens if we select on magnitude instead. The decrease
in dispersion is most prominent at larger radii as the above selection on disturbance
by a neighboring star already removed the uncertain proper motion measurements
in the crowded center of ω Cen. All dispersion profiles in the above are corrected for
the broadening due to the individual proper motion errors (cf. Appendix A). The effect
of this broadening, indicated by the dotted curve, is less than the decrease in the
dispersion profiles due to the selection on proper motion error.

Since the kinematics do not change anymore significantly for a limit on the proper
motion errors lower than 0.20 mas yr−1, we select the 2295 stars with proper mo-
tion errors below this limit. The preliminary HST proper motions of King & Anderson
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FIGURE 2 — Proper motion dispersion profiles as in Fig. 1. Starting with all undisturbed
(class 0) cluster stars (thickest solid curve), sequentially a smaller number of stars is selected
by setting a tighter limit on the allowed error in their proper motion measurements. The
dispersion decreases if the stars with uncertain proper motion measurements are excluded.
This effect is significant and larger than the dispersion broadening due to the individual
velocity errors, indicated by the dotted curve. We select the 2295 stars with proper motion
error smaller than 0.20 mas yr−1, since below this limit the kinematics stay similar.

(2002) in the center of ω Cen (R′ ∼ 1 arcmin) give rise to mean proper motion dis-
persion σx′ = 0.81 ± 0.08 mas yr−1 and σy′ = 0.77 ± 0.08 mas yr−1, depending on the
magnitude cut-off. In their outer calibration field (R′ ∼ 14 arcmin), the average dis-
persion is about 0.41±0.03 mas yr−1. These values are consistent with the mean proper
motion dispersion of the 2295 selected stars at those radii. We are therefore confident
that the proper motion kinematics have converged.

The spatial distribution of the selected stars is shown in the left panel of Fig. 4. In
the two upper panels of Fig. 5, the distributions of the two proper motion components
(left panels) and the corresponding errors (right panels) of the Nsel = 2295 selected
stars are shown as shaded histograms, on top of the histograms of the Nmem = 7899
cluster members. The selection removes the extended tails, making the distribution
narrower with an approximately Gaussian shape.

3.2 LINE-OF-SIGHT VELOCITIES

For each of the four different line-of-sight velocity data-sets separately, the velocity
dispersion profiles of the selected (cluster) stars (§ 2.2 and Table 1) are shown in
Fig. 3. The dotted curve is the dispersion profile of all the 4916 stars observed by
XGEA, whereas the dotted-dashed curve is based on the 1352 selected stars with
a measured magnitude brighter than 14.5, showing that fainter misidentified stars
lead to an under-estimation of the line-of-sight velocity dispersion. Although the
dispersion profile of the M97 data-set (long dashed curve) seems to be systematically
higher than those of the other data-sets, it is based on a relatively small number of
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FIGURE 3 — Velocity dispersion profiles, calculated along concentric rings, for the four dif-
ferent line-of-sight velocity data-sets separately and after they have been merged. The dotted
curve shows the under-estimated dispersion for the XGEA data-set if also the faint stars are
included. From the merged data-set of 3094 stars we select the 2163 stars with line-of-sight
velocity errors smaller than 2.0 km s−1, resulting in a dispersion profile (thick dashed curve)
that is not under-estimated due to uncertain line-of-sight velocity measurements.

stars, similar to the SK96 data-set, and the differences are still within the expected
uncertainties indicated by the error bar.

The thick solid curve is the dispersion profile of the 3094 stars after merging the
four line-of-sight velocity data-sets (§ 2.4.2). Due to uncertainties in the line-of-sight
velocity measurements of especially the fainter stars, the latter dispersion profile is
(slightly) under-estimated in the outer parts. By sequentially lowering the limit on
the line-of-sight velocity errors, we find that below 2.0 km s−1 the velocity dispersion
(thick dashed curve) converges. Hence, we select the 2163 stars with line-of-sight
velocity errors smaller than 2.0 km s−1.

The spatial distribution of these stars is shown in the right panel Fig. 4. In the
bottom panels of Fig. 5, the distribution of the line-of-sight velocities (left) and corre-
sponding errors (right) of the Nsel = 2163 selected stars are shown as filled histograms,
on top of the histograms of the Nmem = 3094 cluster members in the merged data-set.

4 KINEMATICS

We compute the mean velocity fields for the selected stars and correct the kinematic
data for perspective rotation and for residual solid-body rotation in the proper mo-
tions. At the same time, we place a tight constraint on the inclination. Finally, we
calculate the mean velocity dispersion profiles from the corrected kinematic data.
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FIGURE 4 — The stars in ω Cen with proper motion measurements (left) and line-of-sight
velocity measurements (right), that are used in our analysis. The stellar positions are plotted
as a function of the projected Cartesian coordinates x′ and y′, with the x′-axis aligned with
the observed major axis and the y′-axis aligned with the observed minor axis of ω Cen. The
excess of stars with line-of-sight velocities inside the central 3 arcmin in the bottom panel is
due to the XGEA data-set.

4.1 SMOOTHED MEAN VELOCITY FIELDS

The left-most panels of Fig. 6 show the smoothed mean velocity fields for the 2295
selected stars with proper motion measurements and the 2163 selected stars with
line-of-sight velocity measurements. This adaptive kernel smoothening is done by
selecting for each star its 200 nearest neighbors on the plane of the sky, and then
calculating the mean velocity (and higher order velocity moments) from the individual
velocity measurements (Appendix A). The contribution of each neighbor is weighted
with its distance to the star, using a Gaussian distribution with zero mean and the
mean distance of the 200 nearest neighbors as the dispersion.

The top-left panel shows the mean proper motion (in mas yr−1) in the major axis
x′-direction, i.e., the horizontal component of the streaming motion on the plane of
the sky. The grey scale is such that white (black) means that the stars are moving on
average to the right (left) and the dashed curve shows the region where the horizon-
tal component of the mean proper motion vanishes. Similarly, the middle-left panel
shows the mean proper motion in the minor axis y ′-direction, i.e. the vertical com-
ponent of the streaming motion on the plane of the sky, with white (black) indicating
average proper motion upwards (downwards). Finally, the lower-left panel shows the
mean velocity (in km s−1) along the line-of-sight z ′-axis, where white (black) means
that the stars are on average receding (approaching). The (dashed) zero-velocity curve
is the rotation axis of ω Cen.

Apart from a twist in the (dashed) zero-velocity curve, the latter line-of-sight ve-
locity field is as expected for a (nearly) axisymmetric stellar system. However, both
proper motion fields show a complex structure, with an apparently dynamically de-
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FIGURE 5 — Histograms of measured velocities (left panels) and corresponding velocity errors
(right panels). The proper motion components µx′ (top panels) and µy′ (middle panels), in
the direction of the observed major and minor axis of ω Cen respectively, come from the
photographic plate observations in Paper I. The line-of-sight velocities (lower panels) are taken
from four different data-sets (§ 2.2). The shaded histograms for the Nsel selected stars (§ 3) are
overlayed on the histograms of the Nmem cluster member stars.

coupled inner part, far from axisymmetric. We now show that it is, in fact, possible to
bring these different observations into concordance.

4.2 PERSPECTIVE ROTATION

The non-axisymmetric features in the observed smoothed mean velocity fields in the
left-most panels of Fig. 6, might be (partly) caused by perspective rotation. Because
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FIGURE 6 — The mean velocity fields of ω Cen corrected for perspective and solid-body rota-
tion. The individual measurements are smoothed using adaptive kernel smoothening. From
top to bottom: The mean ground-based proper motion in the major axis x′-direction and in the
minor axis y′-direction, and the mean line-of-sight velocity. From left to right: Observed veloc-
ity fields of ω Cen, contribution from perspective rotation, contribution from solid-body rota-
tion and the velocity fields after correcting for both. The perspective rotation is caused by the
space motion of ω Cen. The solid-body rotation in the proper motions is due to relative rotation
of the first and second epoch photographic plates by an amount of 0.029 mas yr−1 arcmin−1.
(See p. 249 for a color version of this figure.)

ω Cen has a large extent on the plane of the sky (with a diameter about twice that of
the full moon), its substantial systemic (or space) motion (eq. 2.3) produces a non-
negligible amount of apparent rotation: the projection of the space motion onto the
principal axis (x′, y′, z′) is different at different positions on the plane of the sky (Feast,
Thackeray & Wesselink 1961). We expand this perspective rotation in terms of the
reciprocal of the distance D. Ignoring the negligible terms of order 1/D2 or smaller,
we find the following additional velocities

µpr
x′ = −6.1363 ×10−5 x′vsys

z′ /D mas yr−1,

µpr
y′ = −6.1363 ×10−5 y′vsys

z′ /D mas yr−1, (4.1)

vpr
z′ = 1.3790 ×10−3

(

x′µsys
x′ + y′µsys

y′

)

D km s−1,
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with x′ and y′ in units of arcmin and D in kpc. For the canonical distance of 5 kpc,
the systemic motion for ω Cen as given in eq. (2.3) and the data typically extending
to 20 arcmin from the cluster center, we find that the maximum amplitude of the
perspective rotation for the proper motions is about 0.06 mas yr−1 and for the line-of-
sight velocity about 0.8 km s−1. These values are a significant fraction of the observed
mean velocities (left panels of Fig. 6) and of the same order as the uncertainties in the
extracted kinematics (see Appendix B). Therefore, the perspective rotation as shown
in the second column panels of Fig. 6, cannot be ignored and we correct the observed
stellar velocities by subtracting it. Since we use the more recent and improved values
for the systemic proper motion from Paper I, our correction for perspective rotation is
different from that of Merritt et al. (1997). The amplitude of the correction is, however,
too small to explain all of the complex structure in the proper motion fields and we
have to look for an additional cause of non-axisymmetry.

4.3 RESIDUAL SOLID-BODY ROTATION

Van Leeuwen & Le Poole (2002) already showed that a possible residual solid-body ro-
tation component in the ground-based proper motions of Paper I can have an impor-
tant effect on the kinematics. The astrometric reduction process to measure proper
motions removes the ability to observe an overall rotation on the plane of the sky (e.g.,
Vasilevskis et al. 1979). This solid-body rotation results in a transverse proper motion
vt = ΩR′, with Ω the amount of solid-body rotation (in units of mas yr−1 arcmin−1) and
R′ the distance from the cluster center in the plane of the sky (in units of arcmin).
Decomposition of vt along the observed major and minor axis yields

µsbr
x′ = +Ω y′ mas yr−1,

(4.2)
µsbr

y′ = −Ωx′ mas yr−1.

Any other reference point than the cluster center results in a constant offset in the
proper motions, and is removed by setting the systemic proper motions to zero. Also
an overall expansion (or contraction) cannot be determined from the measured proper
motions, and results in a radial proper motion in the plane of the sky. Although both
the amount of overall rotation and expansion are in principle free parameters, they
can be constrained from the link between the measured (differential) proper motions
to an absolute proper motion system, such as defined by the Hipparcos and Tycho-2
catalogues (Perryman et al. 1997; Høg et al. 2000). In Paper I, using the 56 stars
in common with these two catalogues, the allowed amount of residual solid-body
rotation was determined to be no more than Ω = 0.02 ± 0.02 mas yr−1 arcmin−1 and no
significant expansion was found.

As the amplitude of the allowed residual solid-body rotation is of the order of
the uncertainties in the mean proper motions already close to the center, and can
increase beyond the maximum amplitude of the mean proper motions in the outer
parts, correcting for it has a very important effect on the proper motions. We use
a general relation for axisymmetric objects to constrain Ω, and at the same find a
constraint on the inclination.

4.4 THE RESIDUAL SOLID-BODY ROTATION DIRECTLY FROM THE MEAN VELOCITIES

For any axisymmetric system, there is, at each position (x′, y′) on the plane of the sky,
a simple relation between the mean proper motion in the y ′-direction 〈µy′〉 and the
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FIGURE 7 — Constraints on the amount of residual solid-body body rotation Ω and via D tan i,
on the distance D (in kpc) and inclination i (in degrees), using the general relation (4.3) for
axisymmetric objects. The left panel shows the contour map of the goodness-of-fit parameter
∆χ2. The inner three contours are drawn at the 68.3%, 95.4% and 99.7% (thick contour) lev-
els of a ∆χ2-distribution with two degrees of freedom. Subsequent contours correspond to a
factor of two increase in ∆χ2. The overall minimum is indicated by the cross. The middle panel
shows the mean line-of-sight velocity 〈vz′〉 and mean short-axis proper motion 〈µy′〉 within
the same polar apertures, before (open circles) and after (filled circles) correction for residual
solid-body rotation with the best-fit value of Ω = 0.029 ± 0.004 mas yr−1 arcmin−1. The best-fit
value for D tan i = 5.6 (+1.9/−1.0) kpc gives rise to the relation in the right panel (sold line),
bracketed (at the 68.3%-level) by the dashed lines. Given the canonical distance of D = 5.0±0.2
kpc, the dotted lines indicate the constraint on inclination of i = 48 (+9/−7) degrees.

mean line-of-sight velocity 〈vz′〉 (see e.g. Appendix A of Evans & de Zeeuw 1994, here-
after EZ94). Using relation (2.5), with for an axisymmetric system 〈vR〉 = 〈vz〉 = 0, we
see that, while the mean velocity component in the x′-direction includes the spatial
term cosφ, those in the y′-direction and line-of-sight z ′-direction both contain sinφ.
The latter implies that, by integrating along the line-of-sight to obtain the observed
mean velocities, the expressions for 〈vy′〉 and 〈vz′〉 only differ by the cos i and sin i
terms. Going from 〈vy′〉 to 〈µy′〉 via eq. (2.4), we thus find the following general relation
for axisymmetric objects

〈vz′〉(x′, y′) = 4.74 D tan i 〈µy′〉(x′, y′), (4.3)

with distance D (in kpc) and inclination i.
This relation implies that, at each position on the plane of the sky, the only dif-

ference between the mean short-axis proper motion field and the mean line-of-sight
velocity field should be a constant scaling factor equal to 4.74 D tan i. Comparing the
left-most middle and bottom panel in Fig. 6 (Vobserved), this is far from what we see, ex-
cept perhaps for the inner part. We ascribe this discrepancy to the residual solid-body
rotation, which causes a perturbation of 〈µy′〉 increasing with x′ as given in eq. (4.2).
In this way, we can objectively quantify the amount of solid body rotation Ω needed to
satisfy the above relation (4.3), and at the same time find the best-fit value for D tan i.

To compute uncorrelated values (and corresponding errors) for the mean short-
axis proper motion 〈µy′〉 and mean line-of-sight velocity 〈vz′〉 at the same positions on
the plane of the sky, we bin the stars with proper motion and line-of-sight velocity
measurements in the same polar grid of apertures (see also Appendix B). We plot the
resulting values for 〈vz′〉 against 〈µy′〉 and fit a line (through the origin) by minimizing
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the χ2, weighted with the errors in both directions (§ 15.3 of Press et al. 1992).
By varying the amount of solid-body rotation Ω and the slope of the line, which

is proportional to D tan i (eq. 4.3), we obtain the ∆χ2 = χ2 − χ2
min contours in the

left panel of Fig. 7. The inner three contours are drawn at the levels containing
68.3%, 95.4% and 99.7% (thick contour) of a ∆χ2-distribution with two degrees of
freedom6. Subsequent contours correspond to a factor of two increase in ∆χ2. The
overall minimum χ2

min, indicated by a cross, implies (at the 68.3%-level) a best-fit
value of Ω = 0.029 ± 0.004 mas yr−1 arcmin−1. This is fully consistent with the upper
limit of Ω = 0.02 ± 0.02 mas yr−1 arcmin−1 from Paper I.

The middle panel of Fig. 7 shows that without any correction for residual solid-
body rotation, the values for 〈vz′〉 and 〈µy′〉 are scattered (open circles), while they are
nicely correlated after correction with Ω = 0.029 mas yr−1 arcmin−1 (filled circles). The
resulting solid-body rotation, shown in the third column of Fig. 6, removes the cylin-
drical rotation that is visible in the outer parts of the observed proper motion fields
(first column). After subtracting this residual solid-body rotation, together with the
perspective rotation (second column), the complex structures disappear, resulting in
(nearly) axisymmetric mean velocity fields in the last column. Although the remain-
ing non-axisymmetric features, such as the twist of the (dashed) zero-velocity curve,
might indicate deviations from true axisymmetry, they can also be (partly) artifacts of
the smoothening, which, especially in the less dense outer parts, is sensitive to the
distribution of stars on the plane of the sky.

This shows that the application of eq. (4.3) to the combination of proper motion and
line-of-sight measurements provides a powerful new tool to determine the amount of
solid body rotation. At the same time, it also provides a constraint on the inclination.

4.5 CONSTRAINT ON THE INCLINATION

From the left panel of Fig. 7 we obtain (at the 68.3%-level) a best-fit value for D tan i
of 5.6 (+1.9/−1.0) kpc. The right panel shows the resulting relation (solid line) between
the distance D and the inclination i, where the dashed lines bracket the 68.3%-level
uncertainty. If we assume the canonical value D = 5.0 ± 0.2 kpc, then the inclination
is constrained to i = 48 (+9/−7) degrees.

Although we apply the same polar grid to the proper motions and line-of-sight
velocities, the apertures contain different (numbers of) stars. To test that this does not
significantly influence the computed average kinematics and hence the above results,
we repeated the analysis but now only include the 718 stars for which both the proper
motions and line-of-sight velocity are measured. The results are equivalent, but less
tightly constrained due to the smaller number of apertures.

Van Leeuwen & Le Poole (2002) compared, for different values for the amount of
residual solid-body rotation Ω, the shape of the radial profile of the mean transverse
component of proper motions from Paper I, with that of the mean line-of-sight veloci-
ties calculated by Merritt et al. (1997) from the line-of-sight velocity data-set of M97.
They found that Ω ∼ 0.032 mas yr−1 arcmin−1 provides a plausible agreement. Next,
assuming a distribution for the density and the rotational velocities in the cluster,
they computed projected transverse proper motion and line-of-sight velocity profiles,

6For a Gaussian distribution with dispersion σ, these percentages correspond to the 1σ, 2σ and 3σ
confidence intervals respectively. For the (asymmetric) χ2-distribution there is in general no simple
relation between dispersion and confidence intervals. Nevertheless, the 68.3%, 95.4% and 99.7% levels
of the χ2-distribution are often referred to as the 1σ, 2σ and 3σ levels.
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and by comparing them to the observed profiles, they derived a range for the incli-
nation i from 40 to 60 degrees. Their results are consistent with our best-fit val-
ues Ω = 0.029 ± 0.004 mas yr−1 arcmin−1 and i = 48 (+9/−7) degrees. Our method is
based on a general relation for axisymmetric objects, without any further assump-
tions about the underlying density and velocity distribution. Moreover, instead of
comparing shapes of mean velocity profiles, we actually fit the mean velocity fields.

In the above analysis, we assume that all of the solid-body rotation in the proper
motion is the result of a (non-physical) residual from the photographic plate reduction
in Paper I. This raises the question what happens if a (physical) solid-body rotation
component is present in ω Cen. Such a solid-body rotation component is expected to
be aligned with the intrinsic rotation axis, inclined at about 48◦, and therefore also
present in the line-of-sight velocities. Except for the perspective rotation correction,
we leave the mean line-of-sight velocities in the above analysis unchanged, so that
any such solid-body rotation component should also remain in the proper motion.

Still, since we are fitting the residual solid-body rotation Ω and the slope D tan i
simultaneously, they can become (partly) degenerate. Combining eq. (4.2) with (4.5),
we obtain the best-fit values for D tan i and Ω by minimizing

χ2 =

n
∑

j

[

〈vobs
z′ 〉j − 4.74D tan i

(

〈µobs
y′ 〉j + Ωx′j

)]2

[

∆〈vobs
z′ 〉j

]2
+
[

4.74D tan i∆〈µobs
y′ 〉j

]2 , (4.4)

where 〈vobs
z′ 〉j and 〈µobs

y′ 〉j are respectively the observed mean line-of-sight velocity and
the observed mean proper motion in the y ′-direction, measured in aperture j of a
total of n apertures, with their centers at x′j. ∆〈vobs

z′ 〉j and ∆〈µobs
y′ 〉j are the correspond-

ing measurement errors. Suppose now the extreme case that all of the observed
mean motion is due to solid-body rotation: an amount of Ω0 residual solid-body ro-
tation in the plane of the sky, and an amount of ω0 intrinsic solid-body rotation,
around the intrinsic z-axis in ω Cen, which we assume to be inclined at i0 degrees.
At a distance D0, the combination yields per aperture 〈vobs

z′ 〉j = 4.74D0ω0 sin i0x
′
j and

〈µobs
y′ 〉j = (ω0 cos i0 − Ω0)x

′
j. Substitution of these quantities in the above eq. (4.4), and

ignoring the (small) variations in the measurements errors, yields that χ2 = 0 if

D tan i = D0 tan i0

[

1 +
Ω − Ω0

ω0 cos i0

]−1

. (4.5)

This implies a degeneracy between D tan i and Ω, which in the left panel of Fig. 7,
would result in the same minimum all along a curve. However, in the case the motion
in ω Cen consists of more than only solid-body rotation, this degeneracy breaks down
and we expect to find a unique minimum. The latter seems to be the case here, and
we conclude that the degeneracy and hence the intrinsic solid-body rotation are not
dominant, if present at all.

4.6 MEAN VELOCITY DISPERSION PROFILES

In Fig. 8, we show the mean velocity dispersion profiles of the radial σR′ (dotted) and
tangential σθ′ (dashed) components of the proper motions, together with the line-of-
sight velocity dispersion σz′ (solid). The dispersions are calculated along concentric
rings from the selected sample of 2295 stars with proper motions corrected for per-
spective and residual solid-body rotation and 2163 stars with line-of-sight velocities
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FIGURE 8 — Mean velocity dispersion profiles calculated along concentric rings. Assuming
the canonical distance of 5 kpc, the profiles of the radial σR′ (dotted curve with diamonds) and
tangential σθ′ (dashed curve with triangles) components of the proper motion dispersion are
converted into the same units of km s−1 as the profile of the line-of-sight velocity dispersion σz′

(solid curve with crosses). The horizontal lines indicate the corresponding scale in mas yr−1.
The mean velocity error per ring is indicated below the profiles by the corresponding sym-
bols. The diamonds and triangles mostly overlap, as the errors of the radial and tangential
components are nearly similar.

corrected for perspective rotation. We obtain similar mean velocity dispersion profiles
if we only use the 718 stars for which both proper motions and line-of-sight veloc-
ity are measured. We assume the canonical distance of 5 kpc to convert the proper
motion dispersion into units of km s−1, while the black horizontal lines indicate the
corresponding scale in units of mas yr−1. Below the profiles, the symbols represent
the corresponding mean velocity error per ring, showing that the accuracy of the line-
of-sight velocity measurements (crosses) is about four times better than the proper
motion measurements (diamond and triangles, which mostly overlap since the errors
for the two components are similar).

In § 3.1, we already noticed that since the (smoothed) profile of the major-axis
proper motion dispersion σx′ lies on average above that of the minor-axis proper mo-
tion dispersion σy′ (Fig. 1 and 2), the velocity distribution of ω Cen cannot be fully
isotropic. By comparing in Fig. 8 the radial (dotted) with the tangential (dashed)
component of the proper motion dispersion, ω Cen seems to be radial anisotropic
towards the center, and there is an indication of tangential anisotropy in the outer
parts. Moreover, if ω Cen would be isotropic, the line-of-sight velocity dispersion pro-
file (blue) would have to fall on top of the proper motion dispersion profiles if scaled
with the correct distance. A scaling with a distance lower than the canonical 5 kpc
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is needed for the line-of-sight dispersion profile to be on average the same as those of
both proper motion components.

Hence, it is not surprising that we find a distance as low as D = 4.6 ± 0.2 kpc
from the ratio of the average line-of-sight velocity dispersion and the average proper
motion dispersion (Appendix C). This often used simple distance estimate is only valid
for spherical symmetric objects. Whereas the averaged observed flattening for ω Cen
is already as low as q′ = 0.879 ± 0.007 (Geyer et al. 1983), an inclination of around 48◦

(§ 4.5), implies an intrinsic axisymmetric flattening q < 0.8.
A model with a constant oblate velocity ellipsoid as in Appendix C, allows for offsets

between the mean velocity dispersion profiles. However, the model is not suitable to
explain the observed variation in anisotropy with radius. Therefore, we use in what
follows Schwarzschild’s method to build general axisymmetric anisotropic models.

5 SCHWARZSCHILD’S METHOD

We construct axisymmetric dynamical models using Schwarzschild’s (1979) orbit su-
perposition method. This approach is flexible and efficient and does not require any
assumptions about the degree of velocity anisotropy. The only crucial approximations
are that the object is collisionless and stationary. While these assumptions are gener-
ally valid for a galaxy, they may not apply to a globular cluster. The central relaxation
time of ω Cen is a few times 109 years and the half-mass relaxation time a few times
1010 years (see also Fig. 21 below). The collisionless approximation should therefore
be fairly accurate.

The implementation that we use here is an extension of the method presented in
Verolme et al. (2002). In the next subsections, we outline the method and describe
the extensions.

5.1 MASS MODEL

Schwarzschild’s method requires a mass parameterization, which we obtain by using
the Multi-Gaussian Expansion method (MGE; Monnet, Bacon & Emsellem 1992; Em-
sellem, Monnet & Bacon 1994; Cappellari 2002). The MGE-method tries to find the
collection of two-dimensional Gaussians that best reproduces a given surface bright-
ness profile or a (set) of images. Typically, of the order of ten Gaussians are needed,
each with three free parameters: the central surface brightness Σ0,j, the dispersion
along the observed major axis σ′

j and the observed flattening q′j. Even though Gaus-
sians do not form a complete set of functions, in general the surface brightness is well
fitted (see also Fig. 12). Moreover, the MGE-parameterization has the advantage that
the deprojection can be performed analytically once the viewing angles (in this case
the inclination) are given. Also many intrinsic quantities such as the potential and
accelerations can be calculated by means of simple one-dimensional integrals.

5.2 GRAVITATIONAL POTENTIAL

We deproject the set of best-fitting Gaussians by assuming that the cluster is axisym-
metric and by choosing a value of the inclination i. The choice of a distance D to the
object then allows us to convert angular distances to physical units, and luminosities
are transformed to masses by multiplying with the mass-to-light ratio M/L.

The latter quantity is often assumed to be independent of radius. In the inner
regions of most galaxies, where two-body relaxation does not play an important role,
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this often is a valid assumption. Generally, globular clusters have much shorter re-
laxation times and may therefore show significant M/L-variations. This has been
confirmed for post core-collapse clusters such as M15 (e.g., Dull et al. 1997; van den
Bosch et al. 2006). However, ω Cen has a relatively long relaxation time of > 109 years,
implying that little mass segregation has occurred and the mass-to-light ratio should
be nearly constant with radius. In our analysis we assume a constant M/L, but we
also investigate possible M/L-variations.

The stellar potential is then calculated by applying Poisson’s equation to the intrin-
sic density. The contribution of a dark object such as a collection of stellar remnants
or a central black hole may be added at this stage. On the basis of the relation be-
tween the black hole mass and the central dispersion (e.g., Tremaine et al. 2002),
globular clusters might be expected to harbor central black holes with intermediate
mass of the order 103–104 M� (e.g., van der Marel 2004). With a central dispersion
of nearly 20 km s−1, the expected black hole mass for ω Cen would be ∼ 104 M�.
The spatial resolution that is required to observe the kinematical signature of such a
black hole is of the order of its radius of influence, which is around 5 arcsec (at the
canonical distance of 5 kpc). This is approximately an order of magnitude smaller
than the resolution of the ground-based observations we use in our analysis, so that
our measurements are insensitive to such a small mass. Hence, we do not include a
black hole in our dynamical models of ω Cen.

5.3 INITIAL CONDITIONS AND ORBIT INTEGRATION

After deriving the potential and accelerations, the next step is to find the initial con-
ditions for a representative orbit library. This orbit library must include all types of
orbits that the potential can support, to avoid any bias. This is done by choosing
orbits through their integrals of motion, which, in this case, are the orbital energy E,
the vertical component of the angular momentum Lz and the effective third integral I3.

For each energy E, there is one circular orbit in the equatorial plane, with radius Rc

that follows from E = Φ+ 1
2Rc∂Φ/∂Rc for z = 0, and with Φ(R, z) the underlying (axisym-

metric) potential. We sample the energy by choosing the corresponding circular radius
Rc from a logarithmic grid. The minimum radius of this grid is determined by the res-
olution of the data, while the maximum radius is set by the constraint that ≥ 99.9 per
cent of the model mass should be included in the grid. Lz is sampled from a linear
grid in η = Lz/Lmax, with Lmax the angular momentum of the circular orbit. I3 is pa-
rameterized by the starting angle of the orbit and is sampled linearly between zero and
the initial position of the so-called thin tube orbit (see Fig. 3 of Cretton et al. 1999).

The orbits in the library are integrated numerically for 200 times the period of a
circular orbit with energy E. In order to allow for comparison with the data, the in-
trinsic density, surface brightness and the three components of the projected velocity
are stored on grids. During grid storage, we exploit the symmetries of the projected
velocities by folding around the projected axes and store the observables only in the
positive quadrant (x′ ≥ 0, y′ ≥ 0). Since the sizes of the polar apertures on which the
average kinematic data is computed (Fig. 13) are much larger than the typical seeing
FWHM (1–2 arcsec), we do not have to store the orbital properties on an intermediate
grid and after orbit integration convolve with the point spread function (PSF). Instead,
the orbital observables are stored directly onto the polar apertures.
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5.4 FITTING TO THE OBSERVATIONS

After orbit integration, the orbital predictions are matched to the observational data.
We determine the superposition of orbits whose properties best reproduce the obser-
vations. If Oij is the contribution of the jth orbit to the ith constraint point, this
problem reduces to solving for the orbital weights γj in

NO
∑

j

γj Oij = Ci, i = 1, . . . , NC , (5.1)

where NO is the number of orbits in the library, NC is the number of constraints to
be reproduced and Ci is the ith constraint. Since γj determines the mass of each
individual orbit in this superposition, it is subject to the additional condition γj ≥ 0.

Eq. (5.1) can be solved by using linear or quadratic programming (e.g., Schwarz-
schild 1979, 1982, 1993; Vandervoort 1984; Dejonghe 1989), maximum entropy
methods (e.g., Richstone & Tremaine 1988; Gebhardt et al. 2003) or with a lin-
ear least-squares solver [e.g., Non-Negative Least-Squares (NNLS), Lawson & Hanson
1974], which was used in many of the spherical and axisymmetric implementations
(e.g., Rix et al. 1997; van der Marel et al. 1998; Cretton et al. 1999; Cappellari et al.
2002; Verolme et al. 2002; Krajnović et al. 2005), and is also used here. NNLS has
the advantage that it is guaranteed to find the global best-fitting model and that it
converges relatively quickly.

Due to measurement errors, incorrect choices of the model parameters and nu-
merical errors, the agreement between model and data is never perfect. We therefore
express the quality of the solution in terms of χ2, which is defined as

χ2 =

Nc
∑

i=1

(

C?
i − Ci

∆Ci

)2

. (5.2)

Here, C?
i is the model prediction of the constraint Ci and ∆Ci is the associated error.

The value of χ2 for a single model is of limited value, since the true number of degrees
of freedom is generally not known. On the other hand, the difference in χ2 between a
model and the overall minimum value, ∆χ2 = χ2−χ2

min, is statistically meaningful (see
Press et al. 1992, § 15.6), and we can assign the usual confidence levels to the ∆χ2

distribution. The probability that a given set of model parameters occurs can be mea-
sured by calculating ∆χ2 for models with different values of these model parameters.
We determine the overall best-fitting model by searching through parameter space.

The orbit distribution for the best-fitting model may vary rapidly for adjacent or-
bits, which corresponds to a distribution function that is probably not realistic. This
can be prevented by imposing additional regularization constraints on the orbital
weight distribution. This is usually done by minimizing the nth-order partial deriva-
tives of the orbital weights γj(E,Lz, I3), with respect to the integrals of motion E, Lz

and I3. The degree of smoothing is determined by the order n and by the maximum
value ∆ that the derivatives are allowed to have, usually referred to as the regulariza-
tion error. Since the distribution function is well recovered by minimizing the second
order derivatives (n = 2) and smoothening with ∆ = 4 (e.g., Verolme & de Zeeuw 2002;
Krajnović et al. 2005; Chapter 4), we adopt these values.
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6 TESTS

Before applying our method to observational data, we test it on a theoretical model,
the axisymmetric power-law model (EZ94).

6.1 THE POWER-LAW MODEL

The potential Φ of the power-law model is given by

Φ(R, z) =
Φ0R

β
c

(

R2
c +R2 + z2q−2

Φ

)β/2
, (6.1)

in which (R, z) are cylindrical coordinates, Φ0 is the central potential, Rc is the core
radius and qΦ is the axial ratio of the spheroidal equipotentials. The parameter β
controls the logarithmic gradient of the rotation curve at large radii.

The mass density that follows from applying Poisson’s equation to eq. (6.1) can be
expanded as a finite sum of powers of the cylindrical radius R and the potential Φ.
Such a power-law density implies that the even part of the distribution function is a
power-law of the two integrals energy E and angular momentum Lz. For the odd part
of the distribution function, which defines the rotational properties, a prescription for
the stellar streaming is needed. We adopt the prescription given in eq. (2.11) of EZ94,
with a free parameter k controlling the strength of the stellar streaming, so that the
odd part of the distribution function is also a simple power-law of E and Lz. Due to the
simple form of the distribution function, the calculation of the power-law observables
is straightforward. Analytical expressions for the surface brightness, the three compo-
nents of the mean velocity and velocity dispersion are given in eqs (3.1)–(3.8) of EZ94.

6.2 OBSERVABLES

We choose the parameters of the power-law model such that its observable properties
resemble those of ω Cen. We use Φ0 = 2500 km2 s−2, which sets the unit of velocity of
our models, and a core radius of Rc = 2.5 arcmin, which sets the unit of length. For
the flattening of the potential we take qΦ = 0.95 and we set β = 0.5, so that the even
part of the distribution function is positive (Fig. 1 of EZ94). The requirement that
the total distribution function (even plus odd part) should be non-negative places an
upper limit on the (positive) parameter k. This upper limit kmax is given by eq. (2.22) of
EZ947. Their eq. (2.24) gives the value kiso for which the power-law model has a nearly
isotropic velocity distribution. In our case kmax = 1.38 and kiso = 1.44. We choose k = 1,
i.e., a power-law model that has a (tangential) anisotropic velocity distribution.

Furthermore, we use an inclination of i = 50◦, a mass-to-light ratio of M/L = 2.5
M�/L� and a distance of D = 5 kpc. At this inclination the projected flattening of
the potential is q′Φ = 0.97. The isocontours of the projected surface density are more
flattened. Using eq. (2.9) of Evans (1994), the central and asymptotic axis ratios of
the isophotes are respectively q′0 = 0.96 and q′∞ = 0.86, i.e., bracketing the average
observed flattening of ω Cen of q′ = 0.88 (Geyer et al. 1983).

Given the above power-law parameters, we calculate the three components of the
mean velocity V and velocity dispersion σ on a polar grid of 28 apertures, spanning
a radial range of 20 arcmin. Because of axisymmetry we only need to calculate the
observables in one quadrant on the plane of the sky, after which we reflect the results

7The definition of χ has a typographical error and should be replaced by χ = (1 − β/2)/|β|.



SECTION 6. TESTS 37

FIGURE 9 — Mean velocity and velocity dispersion calculated from a power-law model (first
and third column) and from the best-fit dynamical Schwarzschild model (second and fourth
column). The parameters of the power-law model are chosen such that its observables re-
semble those of ω Cen, including the level of noise, which is obtained by randomizing the
observables according to the uncertainties in the measurements of ω Cen (see § 6.2 and Ap-
pendix B for details). The average proper motion kinematics in the x′-direction (top row) and
y′-direction (middle row), and the average mean line-of-sight kinematics (bottom row), calcu-
lated in polar apertures in the first quadrant, are unfolded to the other three quadrants to
facilitate the visualization.

to the other quadrants. Next, we use the relative precisions ∆V/σ ∼ 0.11 and ∆σ/σ ∼
0.08 as calculated for ω Cen (Appendix B), multiplied with the calculated σ for the
power-law model, to attach an error to the power-law observables in each aperture.
Finally, we perturb the power-law observables by adding random Gaussian deviates
with the corresponding errors as standard deviations.

Without the latter randomization, the power-law observables are as smooth as
those predicted by the dynamical Schwarzschild models, so that the goodness-of-fit
parameter χ2 in eq. (5.2), approaches zero. Such a perfect agreement never happens
for real data. Including the level of noise representative for ω Cen, allows us to use
χ2 to not only investigate the recovery of the power-law parameters, but, at the same
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time, also asses the accuracy with which we expect to measure the corresponding
parameters for ω Cen itself.

The resulting mean velocity Vobserved and velocity dispersion σobserved fields for the
power-law model are shown in respectively the first and third column of Fig. 9. They
are unfolded to the other three quadrants to facilitate the visualization.

6.3 SCHWARZSCHILD MODELS

We construct axisymmetric Schwarzschild models based on the power-law potential
(6.1). We calculate a library of 2058 orbits by sampling 21 energies E, 14 angular
momenta Lz and 7 third integrals I3. In this way, the number and variety of the library
of orbits is large enough to be representative for a broad range of stellar systems, and
the set of eqs (5.1) is still solvable on a machine with 512 Mb memory (including
regularization constraints).

The resulting three-integral Schwarzschild models include the special case of de-
pendence on only E and Lz like for the power-law models. Schwarzschild’s method
requires that the orbits in the library are sampled over a range that includes most
of the total mass, whereas all power-law models have infinite mass. To solve this
problem at least partially, we ensure that there are enough orbits to constrain the
observables at all apertures. We distribute the orbits logarithmically over a radial
range from 0.01 to 100 arcmin (five times the outermost aperture radius) and fit the
intrinsic density out to a radius of 105 arcmin. The orbital velocities are binned in
histograms with 150 bins, at a velocity resolution of 2 km s−1.

To test whether and with what precision we can recover the input distance of
D = 5 kpc, the inclination of i = 50◦ and the mass-to-light ratio M/L = 2.5 M�/L�, we
calculate models for values of D between 3.5 and 6.5 kpc, i between 35◦ (the asymptotic
isophotal axis ratio q′∞ = 0.86 implies that i > 30◦) and 70◦, and M/L between 1.5 and
3.5 M�/L�. Additionally, to test how strongly the best-fitting parameters depend on
the underlying mass model, we also vary the flattening of the power-law potential qΦ

between 0.90 and 1.00. We then fit each of the dynamical models simultaneously to
the calculated observables of the power-law model (with qΦ = 0.95). Comparing these
calculated observables with those predicted by the Schwarzschild models, results
for each fitted Schwarzschild model in a goodness-of-fit parameter χ2. We use this
value to find the best-fit Schwarzschild model and to determine the accuracy of the
corresponding best-fit parameters.

Calculating the observables for all orbits in the library requires about an hour on
a 1 GHz machine with 512 MB memory and the NNLS-fit takes about half an hour.
No distinct models need to be calculated for different values of M/L, as a simple
velocity scaling prior to the NNLS-fit is sufficient. Making use of (a cluster of) about 30
computers, the calculations for the full four-parameter grid of Schwarzschild models
takes a few days.

6.4 DISTANCE, INCLINATION AND MASS-TO-LIGHT RATIO

The Schwarzschild model that best fits the calculated power-law observables is the
one with the (overall) lowest χ2-value. After subtraction of this minimum value, we
obtain ∆χ2 as function of the three parameters D, i and M/L (with qΦ = 0.95 fixed).
To visualize this three-dimensional function, we calculate for a pair of parameters,
say D and i, the minimum in ∆χ2 as function of the remaining parameter, M/L in
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FIGURE 10 — The (marginalized) goodness-of-fit parameter ∆χ2 as a function of distance D,
inclination i and mass-to-light ratio M/LV , for different Schwarzschild model fits (indicated
by the dots) to an axisymmetric power-law model with observables resembling those of ω Cen
(see text for details). The χ2-values are offset such that the overall minimum, indicated by
the cross, is zero. The contours are drawn at the confidence levels for a ∆χ2-distribution with
three degrees of freedom, with inner three contours corresponding to the 68.3%, 95.4% and
99.7% (thick contour) confidence levels. Subsequent contours correspond to a factor of two
increase in ∆χ2. The input parameters D = 5.0 kpc, i = 50◦ and M/L = 2.5 M�/L�, indicated
by the open square, are recovered within the 68.3% confidence levels.

this case. The contour plot of the resulting marginalized ∆χ2 is shown in the left
panel of Fig. 10. The dots indicate the values at which Schwarzschild models have
been constructed and fitted to the power-law observables. The contours are drawn
at the confidence levels for a ∆χ2-distribution with three degrees of freedom, with
inner three contours corresponding to the 68.3%, 95.4% and 99.7% (thick contour)
confidence levels. Subsequent contours correspond to a factor of two increase in ∆χ2.
The minimum (∆χ2 = 0) is indicated by the cross. Similarly, we show in the middle
and left panel the contour plots of ∆χ2 marginalized for respectively the pair D and
M/L and the pair i and M/L.

The input parameters D = 5.0 kpc, i = 50◦ and M/L = 2.5 M�/L�, indicated by
the open square, are well recovered. The mean velocity Vmodel and velocity dispersion
σmodel predicted by the best-fit Schwarzschild model are shown in the second and
fourth column of Fig. 9. The corresponding power-law observables are well repro-
duced within the error bars.

Since the parameters of the power-law model are chosen such that its observables
and corresponding errors resemble those of ω Cen, the contours in Fig. 10 provide an
estimate of the precision with which we expect to measure the best-fitting parameters
for ω Cen. At the 68.3%-level (99.7%-level) the distance D, inclination i and mass-to-
light ratio M/L are retrieved with an accuracy of respectively 6 (11), 9 (18), 13 (28)
per cent. Due the additional complication of infinite mass in the case of the power-
law models, these estimates most likely are upper limits to the precision we expect to
achieve for ω Cen. This holds especially for the inclination and the mass-to-light ratio
as they are sensitive to how well the mass model is fitted. The distance is mainly con-
strained by the kinematics, so that the corresponding accuracy is probably an accu-
rate estimate of the precision with which we expect to measure the distance to ω Cen.
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FIGURE 11 — The (marginalized) goodness-of-fit parameter ∆χ2 as a function of distance D,
inclination i and mass-to-light ratio M/L against the flattening qΦ of the underlying potential,
for different Schwarzschild model fits (indicated by the dots) to the observables of an axisym-
metric power-law model resembling those of ω Cen. The contours are as in Fig. 10, but for a
∆χ2-distribution with four degrees of freedom. The cross indicates the overall best-fit model
(∆χ2 = 0). The input parameters of the power-law model, qΦ = 0.95, D = 5.0 kpc, i = 50◦ and
M/L = 2.5 M�/L�, are indicated by the open square. The input parameters are recovered
within the 68.3% confidence levels, even for mass models that assume a (slightly) incorrect
value for the flattening. However, spherical models (qΦ = 1.0) are strongly ruled out.

6.5 FLATTENING

The above investigation of the recovery of the global parameters D, i and M/L is for a
known mass model, given by the power-law potential (6.1). In general, we obtain the
mass model from a MGE-parameterization of the observed surface brightness (§ 5.1).
There is no guarantee that the resulting MGE model provides an accurate description
of the true mass distribution. We tested the effect of an incorrect mass model on
the best-fit parameters by varying the flattening qΦ of the power-law potential while
keeping the calculated observables (for the power-law model with qΦ = 0.95) fixed.

Since we use these same values for the other power-law parameters (Φ0 = 2500
km2 s−2, Rc = 2.5 arcmin, β = 0.5 and k = 1), we have to be careful that by varying
qΦ the model is still physical, i.e., that the underlying distribution function is non-
negative. For these parameters and qΦ between 0.9 and 1.0 this is the case (EZ94).

As before, for all Schwarzschild models we calculate ∆χ2, which is now a function
of the four parameters D, i, M/L and qΦ. In the three panels of Fig. 11, we show
∆χ2 marginalized for respectively D, i and M/L against qΦ. The symbols and contours
are as in Fig. 10, but now for a ∆χ2-distribution with four degrees of freedom. The
input parameters of the power-law model (indicated by an open square) are qΦ = 0.95,
D = 5.0 kpc, i = 50◦ and M/L = 2.5 M�/L�.

The distance D is well constrained around the input value, even at qΦ value that
are different from the true value of 0.95. This implies that the best-fitting distance is
accurate even for mass models that assume a (slightly) incorrect value for the flat-
tening. Whereas a potential with a flattening as low as 0.90 still (just) falls within the
contour at the 99.7%-level, we conclude, as in § 4.6, that spherical models (qΦ = 1)
are strongly ruled out. The middle and right panel of Fig. 11 show that the results for
respectively the mass-to-light M/L and inclination i are similar, although, as before,
they are less well constrained due to the infinite mass of the power-law models.
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FIGURE 12 — The Multi-Gaussian Expansion (MGE) of the V -band surface brightness profile
of ω Cen. The filled circles represent the measurements by Meylan (1987), the dotted curves
correspond to the eight Gaussians in the expansion and the solid curve represents their sum.
The left panel shows the surface brightness Σ as a function of projected radius R′ (in arcmin).
Kalnajs (1999) has shown that the quantity R′Σ in the right panel is a good diagnostic of the
mass that is enclosed at each radius.

7 DYNAMICAL MODELS FOR ω CEN

We use our method as described in § 5, to construct dynamical models for ω Cen. We
obtain the mass model from a MGE-parameterization of the observed surface bright-
ness. We compute the mean velocity and velocity dispersion of both proper motion
components and along the line-of-sight in polar apertures on the plane of the sky. For
a range of distances, inclinations and (constant) mass-to-light ratios, we then simul-
taneously fit axisymmetric Schwarzschild models to these observations. Additionally,
we also allow for radial variation in the mass-to-light ratio.

7.1 MGE MASS MODEL

An MGE-fit is best obtained from a two-dimensional image, which gives direct infor-
mation about the flattening and any radial variations in the two-dimensional struc-
ture of the object. Unfortunately, no such image is available to us, and the only
published surface brightness observations of ω Cen consist of radial surface bright-
ness profiles, and an ellipticity profile by Geyer et al. (1983). We therefore perform a
one-dimensional MGE-fit to the radial surface brightness profile, and after that use
the ellipticity profile to include flattening in the mass model.

We use the V -band surface brightness data from Meylan (1987), who combined
various published measurements (Gascoigne & Burr 1956; Da Costa 1979; King et
al. 1968). Their data consists of individual measurements along concentric rings,
while the MGE-algorithm developed by Cappellari (2002) requires a regular (logarith-
mic) spacing of the surface brightness measurements. We therefore first describe the
profile in terms of a fourth-order polynomial and then fit a set of one-dimensional
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j Σ0V σ′ q′

(L� pc−2) (arcmin)
1 2284.7077 0.15311 1.000000
2 3583.7901 1.47715 0.934102
3 3143.2029 2.52542 0.876713
4 1670.8477 3.69059 0.848062
5 840.86244 5.21905 0.849760
6 262.69433 7.53405 0.835647
7 46.995893 11.0685 0.866259
8 3.3583961 17.5470 0.926328

TABLE 2 — The parameters of the 8 Gaussians from the MGE-fit to the V -band surface bright-
ness profile of ω Cen as derived by Meylan (1987). The second column gives the central surface
brightness (in L� pc−2) of each Gaussian component, the third column the dispersion (in ar-
cmin) along the major axis and the fourth column the observed flattening.

Gaussians to this polynomial. Eight Gaussians with different central surface bright-
ness Σ0V,j and dispersion σ′j are required by the MGE-fit (second and third column of
Table 2). Fig. 12 shows that this MGE-model provides an excellent fit, not only to the
surface brightness Σ, but also to R′Σ (cf. Kalnajs 1999).

The MGE-parameterization is converted into a two-dimensional luminosity distri-
bution by assigning an observed flattening q ′j to each Gaussian in the superposition.
We take into account that the observed flattening of ω Cen varies as a function of
radius (cf. Geyer et al. 1983). This is done by assuming that the flattening of the jth
Gaussian q′j is equal to the observed flattening at a projected radius R′ = σ′j. This
is justified by the fact that a given Gaussian contributes most at radii close to its
dispersion σ′j. Although small deviations from the true two-dimensional light distri-
bution in ω Cen may still occur, we showed in § 6.5 that this approximation does not
significantly influence the derived intrinsic parameters for ω Cen. Moreover, a two-
dimensional MGE-fit to the combination of the surface brightness profile from Meylan
(1987) and the ellipticity profile from Geyer et al. (1983), yields nearly equivalent MGE
parameters as those in Table 2, although the fit to the observed surface brightness
profile is less good.

To conserve the total luminosity, we increase the central surface brightness of
each Gaussian by 1/q′j. Taking into account a reddening of E(B − V ) = 0.11 for ω Cen
(Lub 2002), the total V -band luminosity of our mass model, at the canonical distance
of 5.0 ± 0.2 kpc, is LV = 1.0 ± 0.1 × 106 L�. This compares well with other estimates
of the total luminosity of ω Cen of 0.8 × 106 L� (Carraro & Lia 2000), 1.1 × 106 L�
(Seitzer 1983) and 1.3 × 106 L� (Meylan 1987). The most flattened Gaussian in the
superposition (j = 7) places a mathematical lower limit on the inclination of 33◦. This
is safely below the constraint of 41–57 degrees found in § 4.5.

7.2 MEAN VELOCITY AND VELOCITY DISPERSION

We construct a polar aperture grid for the proper motions and line-of-sight velocities,
as shown in Fig. 13. The dots in the left panel represent the positions, folded to
the first quadrant, of the 2295 selected stars with ground-based proper motions.
The overlayed polar grid, extending to about 20 arcmin, consists of 28 apertures.
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FIGURE 13 — The polar aperture grid for the proper motions (left panel) and for the line-of-
sight velocities (right panel). The dots represent the individual stars, with positions folded to
the first quadrant, while the solid lines indicate the locations of the apertures. The number
of stars included are indicated in each aperture. An enlargement of the inner part of the
line-of-sight polar grid is shown in the top-right corner of the right panel.

Per aperture, the number of stars is indicated, adding up to a total of 2223 stars.
Similarly, the right panel shows the 2163 selected stars with line-of-sight velocities.
The different number of stars and spatial distribution results in a polar grid of 27
apertures, which includes in total 2121 stars.

For each aperture, we use the maximum likelihood method (Appendix A) to com-
pute the mean velocity V and velocity dispersion σ for both proper motion components
on along the line-of-sight. We calculate corresponding errors by means of the Monte
Carlo bootstrap method.

Each aperture contains around 50 to 100 stars. In Appendix B, we find that this
is a good compromise between precision in the observables and spatial resolution.
Including more stars per aperture by increasing its size decreases the uncertainties
in the observables (and hence makes the resulting kinematic fields smoother). At the
same time, since the apertures should not overlap to assure uncorrelated observables,
this means less apertures in the polar grid and hence a loss in spatial resolution.

The properties of the apertures and corresponding mean kinematics are given in
Table 3 for the proper motions and in Table 4 for the line-of-sight velocities. The mean
velocity Vobserved and velocity dispersion σobserved fields are shown in the first and third
column of Fig. 14 respectively. Although the average kinematics are only calculated
in the first quadrant, we use the assumed axisymmetric geometry to unfold them to
the other three quadrants to facilitate the visualization.
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FIGURE 14 — Mean velocity and velocity dispersion calculated from the observations of ω Cen
(first and third column) and from the best-fit dynamical model with D = 4.8 kpc, i = 50◦

and M/LV = 2.5 M�/L� (second and fourth column). The mean proper motion kinematics in
the x′-direction (top row) and y′-direction (middle row), and the mean line-of-sight kinematics
(bottom row), calculated in polar apertures in the first quadrant, are unfolded to the other
three quadrants to facilitate the visualization.

7.3 CONSTRUCTING DYNAMICAL MODELS

First, we calculate models for a range of values in distance D, inclination i and con-
stant V -band mass-to-light ratio M/LV . Next, fixing D and i at their measured best-fit
values, we calculate a large set of models in which we allow M/LV to vary with radius.

We sample the orbits on a grid of 21 × 14 × 7 values in (E,Lz , I3) on a radial range
from 0.01 to 63 arcmin. This grid extends beyond the tidal radius of 45 arcmin
(Trager et al. 1995), so that all mass is included. No PSF-convolution is used and the
observables are stored directly onto the apertures.

We (linearly) sample D between 3.5 and 6.5 kpc in steps of 0.5 kpc, and addition-
ally we refine the grid between 4.0 and 5.5 kpc to steps of 0.1 kpc. We vary i between
35 (close to the lower limit of 33 degrees imposed by the flattening, see § 7.1) and 90
degrees in steps of five degrees, and we refine between 40 and 50 degrees to steps of
one degree. We choose the constant M/LV values between 2.0 and 4.0 M�/L� with
steps 0.5 M�/L�, and we refine between 2.0 and 3.0 M�/L� to steps of 0.1 M�/L�.
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n? r0 θ0 ∆r ∆θ Vx′ ∆Vx′ σx′ ∆σx′ Vy′ ∆Vy′ σy′ ∆σy′

1 80 1.14 45.0 2.28 90.0 -0.15 0.09 0.80 0.07 -0.01 0.09 0.70 0.05
2 99 3.04 15.0 1.53 30.0 -0.16 0.07 0.66 0.04 0.23 0.07 0.64 0.05
3 67 3.04 45.0 1.53 30.0 0.03 0.12 0.90 0.07 0.06 0.08 0.62 0.05
4 74 3.04 75.0 1.53 30.0 -0.15 0.08 0.64 0.07 -0.08 0.09 0.71 0.06
5 85 4.59 11.2 1.57 22.5 -0.27 0.06 0.57 0.03 0.19 0.06 0.57 0.05
6 77 4.59 33.7 1.57 22.5 -0.08 0.07 0.63 0.05 0.13 0.06 0.57 0.08
7 76 4.59 56.2 1.57 22.5 -0.20 0.07 0.55 0.05 0.13 0.08 0.69 0.06
8 82 4.59 78.7 1.57 22.5 -0.19 0.05 0.55 0.04 0.07 0.07 0.66 0.06
9 105 6.31 9.0 1.86 18.0 0.00 0.06 0.60 0.04 0.26 0.05 0.50 0.04

10 88 6.31 27.0 1.86 18.0 -0.13 0.07 0.61 0.04 0.13 0.05 0.48 0.05
11 70 6.31 45.0 1.86 18.0 -0.28 0.07 0.58 0.07 0.23 0.06 0.50 0.06
12 72 6.31 63.0 1.86 18.0 -0.25 0.05 0.45 0.04 -0.01 0.06 0.53 0.05
13 65 6.31 81.0 1.86 18.0 -0.25 0.07 0.58 0.05 0.05 0.06 0.45 0.03
14 95 8.49 7.5 2.52 15.0 -0.04 0.05 0.56 0.04 0.22 0.04 0.38 0.02
15 88 8.49 22.5 2.52 15.0 -0.09 0.05 0.46 0.04 0.10 0.07 0.53 0.07
16 91 8.49 37.5 2.52 15.0 -0.15 0.05 0.49 0.04 0.14 0.04 0.41 0.03
17 73 8.49 52.5 2.52 15.0 -0.31 0.06 0.51 0.06 0.19 0.05 0.44 0.03
18 72 8.49 67.5 2.52 15.0 -0.35 0.05 0.44 0.04 0.14 0.06 0.54 0.05
19 61 8.49 82.5 2.52 15.0 -0.40 0.07 0.58 0.05 -0.03 0.07 0.48 0.04
20 88 11.54 9.0 3.56 18.0 0.02 0.05 0.44 0.04 0.20 0.05 0.46 0.04
21 95 11.54 27.0 3.56 18.0 -0.17 0.04 0.42 0.04 0.17 0.05 0.49 0.04
22 64 11.54 45.0 3.56 18.0 -0.24 0.05 0.44 0.04 0.18 0.05 0.41 0.03
23 85 11.54 63.0 3.56 18.0 -0.41 0.05 0.44 0.03 0.05 0.04 0.43 0.03
24 68 11.54 81.0 3.56 18.0 -0.36 0.05 0.43 0.03 0.05 0.05 0.46 0.03
25 58 16.64 11.2 6.64 22.5 -0.02 0.06 0.40 0.04 0.19 0.06 0.41 0.05
26 74 16.64 33.7 6.64 22.5 -0.14 0.06 0.48 0.05 -0.01 0.06 0.45 0.04
27 79 16.64 56.2 6.64 22.5 -0.17 0.05 0.46 0.03 0.04 0.04 0.41 0.04
28 92 16.64 78.7 6.64 22.5 -0.21 0.05 0.43 0.03 -0.05 0.04 0.35 0.03

TABLE 3 — The mean velocity and velocity dispersion calculated in polar apertures on the
plane of sky from the proper motion observations. Per row the information per aperture is
given. The first column labels the aperture and the second column gives the number of stars
n? that fall in the aperture. Columns 3–6 list the polar coordinates r (in arcmin) and the angle
θ (in degrees) of the centroid of the aperture and the corresponding widths ∆r (in arcmin)
and ∆θ (in degrees). The remaining columns present the average proper motion kinematics
in units of mas yr−1. The mean velocity V with error ∆V and velocity dispersion σ with error
∆σ are given in columns 7–10 for the proper motion component in the x′-direction and in
columns 11–14 for the proper motion component in the y′-direction.

To investigate possible variation in M/LV with radius, we make use of the eight
Gaussian components of the MGE mass model (§ 7.1). In case of constant M/LV ,
we obtain the intrinsic density by multiplying all the (deprojected) components with
the same constant M/LV value. To construct a mass model with a radial M/LV

profile, we multiply each component with its own M/LV value, as in this way the
calculation of the potential is still efficient. However, to reduce the number of free
parameters (to make a search through parameter space feasible) and to enforce a
continuous profile, we only vary the M/LV values for the first, second, fourth and
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n? r0 θ0 ∆r ∆θ Vz′ ∆Vz′ σz′ ∆σz′

1 80 0.31 45.0 0.61 90.0 2.4 2.2 19.0 1.5
2 82 0.87 22.5 0.52 45.0 -3.1 2.1 20.9 1.4
3 78 0.87 67.5 0.52 45.0 0.2 1.9 19.5 1.4
4 77 1.46 11.2 0.66 22.5 0.0 1.9 16.7 1.3
5 85 1.46 33.7 0.66 22.5 -1.8 1.7 14.4 0.8
6 78 1.46 56.2 0.66 22.5 1.0 1.8 15.6 1.5
7 80 1.46 78.7 0.66 22.5 -0.7 1.7 16.2 1.2
8 86 2.12 9.0 0.66 18.0 -7.6 1.5 12.8 1.1
9 78 2.12 27.0 0.66 18.0 -6.4 1.6 14.3 0.8

10 66 2.12 45.0 0.66 18.0 -3.8 1.9 16.8 1.2
11 78 2.12 63.0 0.66 18.0 -3.0 1.7 15.9 1.0
12 92 2.12 81.0 0.66 18.0 -0.3 1.7 14.5 1.0
13 89 3.13 9.0 1.37 18.0 -7.6 1.6 15.3 1.0
14 79 3.13 27.0 1.37 18.0 -2.2 1.5 14.6 1.0
15 83 3.13 45.0 1.37 18.0 -1.0 1.4 14.1 0.8
16 87 3.13 63.0 1.37 18.0 -2.6 1.4 15.0 0.8
17 62 3.13 81.0 1.37 18.0 -2.9 1.9 13.4 1.3
18 100 5.45 15.0 3.27 30.0 -5.0 1.2 12.0 1.0
19 69 5.45 45.0 3.27 30.0 -3.1 1.3 10.9 1.1
20 71 5.45 75.0 3.27 30.0 -1.4 1.2 11.8 1.0
21 92 9.57 11.2 4.98 22.5 -6.2 1.0 10.0 0.9
22 91 9.57 33.7 4.98 22.5 -5.5 1.1 10.3 1.0
23 74 9.57 56.2 4.98 22.5 -2.4 1.2 10.3 0.9
24 63 9.57 78.7 4.98 22.5 0.2 1.3 9.8 0.9
25 62 15.96 15.0 7.80 30.0 -4.1 1.2 9.6 1.1
26 80 15.96 45.0 7.80 30.0 -1.9 1.2 9.8 0.7
27 59 15.96 75.0 7.80 30.0 -0.6 1.2 8.8 0.9

TABLE 4 — The mean velocity and velocity dispersion calculated in polar apertures on the
plane of sky from the line-of-sight velocity observations. Columns 1–6 are as in Table 3 and
the remaining columns present the average line-of-sight kinematics in km s−1.

sixth component. For the third and fifth component, we interpolate between the M/L
values of the neighboring components. To the outer two components we assign the
same M/LV value as the sixth component, because their individual M/LV values are
not well constrained due to the small number of kinematic measurements at these
radii. With the distance and inclination fixed at their best-fit values from the case
of constant mass-to-light ratio, we are left with a four-dimensional space to search
through, requiring again a few days on (a cluster of) about 30 computers.

All dynamical models are fitted simultaneously to the two-dimensional light distri-
bution of ω Cen (§ 7.1), and to the mean velocity and velocity dispersion of both proper
motions components and along the line-of-sight, calculated in polar apertures on the
plane of the sky (Fig. 14). Comparing the predicted values with the observations, re-
sults for each fitted model in a goodness-of-fit parameter χ2, which we use to find the
best-fit model and to determine the accuracy of the corresponding best-fit parameters.
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FIGURE 15 — The (marginalized) goodness-of-fit parameter ∆χ2 as a function of distance D,
inclination i and mass-to-light ratio M/LV , for different dynamical model fits (indicated by the
dots) to the kinematics of ω Cen. The contours are as in Fig. 10. The best-fit dynamical model
is at D = 4.8 kpc, i = 50◦ and M/LV = 2.5 M�/L�, indicated by the cross The dashed curve
shows the D tan i = 5.6 kpc constraint from the mean velocities (§ 4.5).

8 BEST -FIT PARAMETERS

In Fig. 15, we show ∆χ2 as a (marginalized) function of the distance D, inclination
i and constant mass-to-light ratio M/LV . The dots represent the values at which
dynamical models have been constructed and fitted to the two-dimensional (photo-
metric and kinematic) observations of ω Cen. The cross indicates the over-all best-fit
model. The contours show that all three parameters are tightly constrained, with at
the 68.3%-level (99.7%-level): D = 4.8 ± 0.3 (±0.5) kpc, i = 50 ± 3 (±5) degrees and
M/LV = 2.5±0.1 (±0.2) M�/L�. As an illustration that our best-fit model indeed repro-
duces the observations, the mean velocity and velocity dispersion in polar apertures
on the plane of the sky as they follow from this model are shown in respectively the
second and fourth column of Fig. 14. The model fits the observations within the
uncertainties given in Table 3 and 4.

After the discussion on the set of models where we allow the mass-to-light ratio
M/LV to vary with radius, we compare our best-fit values for the (constant) mass-to-
light ratio, inclination and distance with results from previous studies.

8.1 MASS-TO-LIGHT RATIO VARIATION

Fig. 16 summarizes the results from fitting models in which we allowed the mass-
to-light ratio M/LV to vary with radius in the way described in § 7.3. The filled
circles represent the eight Gaussian components, with the best-fit M/LV value of
each component plotted against their dispersions along the major axis (see column
three of Table 2). The error bars represent the 68.3% confidence level.

The uncertainty on the innermost point around 0.15 arcmin is relatively large since
at that small radius there are only a few observations (see Fig. 13) to constrain the
M/LV value. Nevertheless, the resulting M/LV profile only shows a small variation,
which is not significantly different from the best-fit constant M/LV of 2.5 M�/L�.

In the above experiment, we fixed the distance and inclination at the best-fit values
of D = 4.8 kpc and i = 50◦ from the case of constant M/LV . Although an important
constraint is that all eight Gaussian components have to be at the same distance,
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FIGURE 16 — Variation in mass-to-light ratio M/LV with projected radius R′. The filled circles
represent the eight Gaussian components of the MGE mass model, with the best-fit M/LV

value of each component plotted against its dispersion along the major axis. With the distance
and inclination fixed at D = 4.8 kpc and i = 50 degrees, we allowed variation in the M/LV

values for the four inner points with error bar, while the two outer points were shifted vertically
similar to the fourth point, and the remaining two points were interpolated between the two
neighboring points. Each of the models was simultaneously fitted to the photometric and
kinematic observations of ω Cen. The error bars represent the 68.3% confidence level for the
corresponding ∆χ2-distribution with four degrees of freedom. The variation in the resulting
M/LV profile is small with no significant deviation from the best-fit constant M/LV of 2.5
M�/L� (horizontal dashed line).

its precise value, as well as that of the inclination, is not crucial. We tested that a
reasonable variation in these fixed values (within the 99.7% confidence level in Fig. 15)
does not significantly change the best-fit M/LV profile. We conclude that a constant
mass-to-light ratio for ω Cen is a valid assumption.

8.2 MASS-TO-LIGHT RATIO

Our best-fit mass-to-light ratio of M/LV = 2.5 ± 0.1 M�/L� lies in between the esti-
mates by Seitzer (1983) of 2.3 M�/L� and by Meylan (1987) of 2.9 M�/L�. Meylan
et al. (1995) derived a value of 4.1 M�/L�, based on a spherical, radial anisotropic
King-Michie dynamical model, while we find that ω Cen is flattened and outwards
tangentially anisotropic (see § 9.2). Moreover, their adopted central value of the line-
of-sight velocity dispersion is significantly higher than ours, even if we use the same
data-set by M97.

Meylan et al. (1995) estimated the total mass of ω Cen to be 5.1 × 106 M�, which
is also significantly higher than what we derive. After multiplication with the total
luminosity of our mass model of L = 1.0×106 L� (at the best-fit distance of D = 4.8±0.3
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kpc), we find a total mass of M = (2.5± 0.3)× 106 M�. This is consistent with the value
by Mandushev et al. (1991) of 2.4 × 106 M� and Seitzer (1983) of 2.8 × 106 M�. The
estimate by Meylan (1987) of 3.9 × 106 M� is higher, but again based on a spherical
King-Michie model.

8.3 INCLINATION

The dashed curve in the left panel of Fig. 15 shows theD tan i = 5.6 kpc constraint from
the mean velocities derived in § 4.5. This constraint can be used to eliminate either
the distance or the inclination and hence reduce the parameter space. Although we
do not use this constraint in the dynamical models, it is clear that the above best-fit
D and i yield D tan i = 5.6 ± 0.2 kpc, which is consistent with the value derived from
the mean velocities.

The best-fit inclination of i = 50 ± 3 degrees falls within the range of 30–60 degrees
that was derived in Paper I from the amplitude of the proper motions, but is slightly
higher than the estimate by van Leeuwen & Le Poole (2002) between 40 and 60 degrees.
However, as discussed in § 4.5, they used models of modest complexity and freedom
which require strong assumptions, whereas our method is more general and robust.

Our best-fit inclination implies that ω Cen is intrinsically even more non-spherical
than the average observed flattening of q ′ = 0.879 ± 0.007 (Geyer et al. 1983) already
indicates. Using the relation q2 sin2 i = q′2 − cos2 i for axisymmetric objects, we find an
average intrinsic axial ratio q = 0.78 ± 0.03.

8.4 DISTANCE

Adopting a reddening of E(B − V ) = 0.11 for ω Cen (Lub 2002), the best-fit dynam-
ical distance corresponds to a distance modulus of (m − M)V = 13.75 ± 0.13 (±0.22
at the 99.7%-level). This is consistent with the (canonical) distance modulus of
(m −M)V = 13.84 by photometric methods, as given in the globular cluster catalog
of Harris (1996), together with the uncertainty estimate of about 0.1 magnitude by
Benedict et al. (2002), using the absolute magnitude of RR Lyrae stars. Using the
infrared color versus surface brightness relation for the eclipsing binary OGLEC 17,
Thompson et al. (2001) find a larger distance modulus of (m−M)V = 14.05±0.11. How-
ever, their distance modulus estimates based on the measured bolometric luminosity
of the binary components, are on average lower, ranging from 13.66 to 14.06.

Although our dynamical distance estimate is consistent with that by other meth-
ods, it is at the lower end. A lower value for the distance is expected if the proper mo-
tion dispersion is over-estimated and/or the line-of-sight velocity dispersion under-
estimated (see also Appendix C, eq. C.1). As we saw in § 3, both are likely in the
case of ω Cen if the kinematic data is not properly selected. The correction in § 4 for
perspective rotation and especially for the residual solid-body rotation is crucial for
the construction of a realistic dynamical model and a reliable distance estimate.

An impression of the effect of the selection and correction of the kinematic data
on the distance estimate follows from the range of dynamical models we constructed
for ω Cen. Before any selection and correction, the kinematics of the cluster stars
give rise to a best-fit dynamical model at a distance as low as ∼ 3.5 kpc. After re-
moving from the proper motion data-set the stars disturbed by their neighbors, i.e.,
only selecting class 0 stars, the best-fit distance becomes ∼ 4.0 kpc. The correction
for perspective and solid-body rotation increase the best-fit distance to ∼ 4.5 kpc. Fi-
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nally, after the additional selection on velocity errors, we find our best-fit dynamical
distance of 4.8 ± 0.3 kpc.

An even tighter selection does not significantly change the best-fit dynamical model
and corresponding distance. The same is true if we use a different polar grid, with
fewer or more stars per aperture, and if we restrict to only fitting the average kinemat-
ics in the inner or outer parts. Still, e.g. remaining interlopers in the proper motion
data-set can cause a (small) under-estimation of the distance. Moreover, Platais et al.
(2003) argue that possibly a (non-physical) residual proper motion color/magnitude
dependence in the data-set of Paper I causes the systematic offset between the proper
motions of the metal-rich RGB-a stars and those of the dominant HB and metal-poor
RGB stars, noticed by Ferraro, Bellazzini & Pancino (2002). Since we do not correct for
this possible systematic offset, the proper motion dispersion might be over-estimated
and hence our distance estimate can be systematically too low. However, the effect
is expected to be small since the number of RGB-a stars in the data-set is small. A
deeper proper motion catalog, like that of King & Anderson 2002) obtained with the
HST, is needed to better quantify (non-physical and physical) differences in the proper
motions among the multiple stellar populations observed in ω Cen.

Although the distance and inclination are tightly linked through the mean veloc-
ities (§ 4.5), a small under-estimation of the distance only results in a slight over-
estimation of the inclination (see also the solid curve in the right panel of Fig. 7). Sim-
ilarly, the mass-to-light ratio is nearly insensitive to small changes in the distance.

9 INTRINSIC STRUCTURE

We use the intrinsic velocity moments of our best-fit dynamical model to investigate
the importance of rotation and the degree of anisotropy in ω Cen. Additionally, the
distribution of the orbital weights allows us to study the phase-space distribution
function of ω Cen.

9.1 ROTATION

We calculate the intrinsic velocity moments of our best-fit model by combining the ap-
propriate moments of the orbits that receive weight in the superposition. We consider
the first and second order velocity moments, for which 〈vR〉 = 〈vθ〉 = 〈vRvφ〉 = 〈vθvφ〉 = 0
because of axisymmetry. We define the radial, angular and azimuthal velocity disper-
sion respectively as σ2

R = 〈v2
R〉, σ2

θ = 〈v2
θ〉, σ2

φ = 〈v2
φ〉 − 〈vφ〉2. The only non-vanishing

cross-term is σ2
Rθ = 〈vRvφ〉. The average root-mean-square velocity dispersion σRMS is

given by σ2
RMS = (σ2

R + σ2
θ + σ2

φ)/3.
A common way to establish the importance of rotation in elliptical galaxies and

bulges of disk galaxies, is to determine their position in the (V/σ, ε)-diagram (e.g.,
Davies et al. 1983). The observational quantities that are used for V , σ and ε are
respectively the maximum (line-of-sight) velocity along the major axis, the average
velocity dispersion within half the effective radius and the ellipticity at the effective
radius. We obtain for ω Cen the observational quantities V ∼ 8 km s−1 (at a radius
of ∼ 8 arcmin), σ ∼ 16 km s−1 and ε ∼ 0.15 (Geyer et al. 1983). These values result in
(V/σ, ε) ∼ (0.5, 0.15), placing ω Cen just above the curve for isotropic oblate rotators.

On the other hand, the intrinsic velocity moments from our best-fit dynamical
model for ω Cen, allow us to investigate intrinsically the importance of rotation. The
grey scale in Fig. 17 show the ratio of the mean (azimuthal) rotation 〈vφ〉 over the
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FIGURE 17 — The grey scale represents the mean azimuthal rotation 〈vφ〉 in the meridional
plane as a function of equatorial plane radius R and height z, and normalized by σRMS (exclud-
ing the axes to avoid numerical problems). The white curves are contours of constant mass
density in steps of one magnitude, from the mass model (solid) and from the best-fit model
(dashed), showing that the mass is well fitted. (See p. 250 for a color version of this figure.)

average root-mean-square velocity dispersion σRMS, as function of the position in the
meridional plane. Near the equatorial plane and between radii of about 5 to 15 arcmin,
this ratio is > 0.5. The maximum of ∼ 0.7 around 8 arcmin coincides with the peak in
the mean line-of-sight velocity field. Within this region in the meridional plane rota-
tional support is important. However, more inwards and further outwards this ratio
rapidly drops below 0.5 and ω Cen is at least partly pressure supported. We conclude
that rotation is important in ω Cen, but it is not a simple isotropic oblate rotator.

9.2 ANISOTROPY

For the velocity distribution in ω Cen to be isotropic all three velocity dispersion com-
ponents σR, σθ and σφ have to be equal and the cross-term σRθ has to vanish. Fig. 18
shows that this is not the case.

In the top panels, we show the degree of anisotropy in the meridional plane. The
top-left panel shows the radial over the angular velocity dispersion σR/σθ. This ratio
does however not include the non-zero cross-term σRθ. The latter causes the velocity
ellipsoid to be rotated with respect to the R and θ coordinates. Taking this into ac-
count the semi-axis lengths of the velocity ellipsoid in the meridional plane are given
by σ2

± = (σ2
R + σ2

θ)/2 ±
√

(σ2
R − σ2

θ)
2/4 + σ4

Rθ. In the top-right panel, we show the ratio
of this minor σ− and major σ+ semi-axis length of the velocity ellipsoid (which is by
definition in the range from zero to unity). This demonstrates that the velocity distri-
bution of ω Cen is nearly isotropic near the equatorial plane, but becomes increasingly
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FIGURE 18 — Degree of anisotropy as function of the equatorial plane radius R and height
z (excluding the axes to avoid numerical problems). The top panels show the degree of
anisotropy in the meridional plane: left the radial over the angular velocity dispersion and
right the minor σ− over the major σ+ semi-axis length of the velocity ellipsoid, taking into
account the cross-term σRθ. The bottom panels include the azimuthal velocity dispersion: left
the radial over the tangential velocity dispersion, with σ2

t = (σ2
θ +σ2

φ)/2, and right the minimum
over the maximum of the three semi-axis lengths σ+, σ− and σφ of the velocity ellipsoid. See
text for further details.

tangential anisotropic towards the symmetry axis.
In the bottom panels we also include the azimuthal velocity dispersion σφ. The

bottom-left panel shows the radial over the tangential velocity dispersion, where the
latter is defined as σ2

t = (σ2
θ + σ2

φ)/2. Again this ratio does not take into account
the cross-term σRθ. The actual degree of anisotropy is given by the three semi-axis
lengths σ+, σ− and σφ of the velocity ellipsoid. In the bottom-right panel, we show, as
a function of the position in the meridional plane, the minimum over the maximum
of these three semi-axis lengths. Except for the region near the equatorial plane and
within 10 arcmin, the best-fit model for ω Cen is clearly not isotropic. Even within this
region, between about 3 and 5 arcmin, it is (slightly) radially anisotropic. Outside this
region ω Cen becomes increasingly tangentially anisotropic.

Clearly, isotropic models are not suitable to model ω Cen. Also dynamical models
with a two-integral distribution function of the form F (E,Lz), with Lz = R〈vφ〉 the
angular momentum component along the symmetry z-axis, are not able to describe
the complex dynamical structure of ω Cen. For these models the solution of the
Jeans equations can be used to construct dynamical models in a straightforward way
(e.g., Satoh 1980; Binney, Davies & Illingworth 1990) and they allow for azimuthal
anisotropy. However, for these models σR = σθ and σRθ = 0, i.e., isotropy in the
full meridional plane, which is not the case for ω Cen (top panels of Fig. 18). Our
axisymmetric dynamical models do not have these restrictions as they are based on a
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FIGURE 19 — The orbital weight distribution for our best-fit model of ω Cen. From left to
right, the panels show the orbital weight distribution at increasing distance from the center,
which corresponds to increasing energy. The radius Rc (in arcmin) of the circular orbit at the
corresponding energy is given above each panel. The radial range that is shown is constrained
by the observations and contains more than 90% of the total cluster mass. The vertical axis
represents the angular momentum Lz in units of Lmax, the angular momentum of the circular
orbit. The horizontal axis represents the third integral I3, parameterized by the number of
the (linearly sampled) starting angle of the orbit. Black shading corresponds to zero orbital
weights, and white corresponds to the maximum orbital weight in each panel. At the bottom of
each panel the fraction (in %) of the included mass with respect to the total mass is indicated.
(See p. 250 for a color version of this figure.)

general three-integral distribution function F (E,Lz , I3), which we investigate next for
our best-fit model.

9.3 DISTRIBUTION FUNCTION

Each orbit in our models is characterized by the three integrals of motion E, Lz and
I3. As function of these three integrals, we show in Fig. 19 for our best-fit model of
ω Cen the distribution of the (mass) weights that were assigned to the different orbits
in the NNLS-fit. The energy E is sampled through the radius Rc (in arcmin) of the
circular orbit (different panels), of which we show the range that is constrained by the
observations and that contains more than 90% of the total cluster mass. The angular
momentum Lz (vertical) is in units of Lmax, the angular momentum of the circular or-
bit. The third integral I3 (horizontal) is parameterized by the linearly sampled starting
angle of the orbit, from the equatorial plane towards the symmetry axis, and of which
the number is given.

In each panel, the orbital weights are scaled with respect to the maximum orbital
weight in that panel, indicated by the white color, whereas black corresponds to zero
orbital weight. The fraction of the sum of the mass weights in each panel with respect
to total mass in all panels is given at the bottom of each panel (in %). To avoid an
unrealistic orbital weight distribution that fluctuates rapidly for adjacent orbits, we
regularize our models (§ 5.4). For values of the smoothening parameter below ∆ = 4
and even without regularization, we find the same best-fit parameters and although
the distribution function becomes spiky, the main features of Fig. 19 remain.

Most of the mass in the orbital weight distribution is in the component that is
prominent in all panels. With increasing radius, the average angular momentum
Lz of this component increases from nearly zero to a significant (positive) value in
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the outer parts. This reflects the outwards increasing tangential anisotropy already
seen in the bottom-left panel of Fig. 18. An almost non-rotating part is still present
beyond 5 arcmin, attached to the rotating component, which becomes the dominant
component (in mass). There is also a separate component at Lz/Lmax ∼ 1 that is
clearly visible between about 1 and 3 arcmin. Within this radial range, this maximum
rotating component contributes almost 20% of the mass, and it includes about 4% of
the total mass, i.e., its mass is of the order of 105 M�.

In the right-most panels of Fig. 19 there is a (weak) signature of a component
with Lz/Lmax ∼ −1, which we expect to be a spurious feature due to insufficient
observational constraints. Whereas (nearly) circular orbits (|Lz|/Lmax ∼ 1) are confined
in radius to Rc, orbits with lower |Lz| can go further inwards, so that they have most
of their contribution (their cusps) at a smaller radius than Rc (e.g., Cappellari et
al. 2004). Hence, the apparent feature at Lz/Lmax ∼ −1 in the most-right panel is
only constrained by data around and beyond the radius Rc = 13.6 arcmin, where the
coverage of the data is sparse with only a few polar bins (see Fig. 13). The main
component in this panel at Lz/Lmax ∼ 0.5 is (mostly) constrained by data at smaller
radii, where there is good data coverage. The separate maximum rotating component
between 1 and 3 arcmin is constrained by only a few proper motion apertures, but is
strongly constrained by the line-of-sight velocity data.

Due to the difference in spatial coverage between the proper motion and line-of-
sight velocity data, the two data-sets (better) constrain different parts of the orbital
weight distribution. By fitting besides the light distribution of ω Cen the mean ve-
locity and velocity dispersion of only the proper motion components, we find a less
prominent separate component between 1 and 3 arcmin, but it is still present. In
the case of only fitting the mean line-of-sight velocity and velocity dispersion, this
separate component is clearly visible and even extends into the outer rotating main
component. The transition between the main non-rotating and rotating component
is in the case of only line-of-sight data more abrupt than in Fig. 19. However, the
proper motion data, which has a better coverage in the outer parts, shows a similar
smooth transition. We conclude that, although the spatial coverage is different, both
data-sets give rise to the same main features in the orbital weight distribution.

9.4 DYNAMICAL SUBSTRUCTURES

Within 5 arcmin the main component has on average a high value of I3. In combina-
tion with the low value of Lz, we interpret this as a non-rotating spheroidal structure.
Beyond 5 arcmin, Lz increases and I3 decreases, and the main component flattens
and rotates faster. The smaller component attached to it may well be the signature of
the fading non-rotating spheroidal component.

For the separate component between 1 and 3 arcmin, Lz approaches its maximum
value. As a result, the zero-velocity curve shrinks towards the circular orbit in the
equatorial plane, and the corresponding orbits are all flat, irrespective of the (high)
value of I3 (see also Fig. 3 of Cretton et al. 1999). Hence, this fast-rotating component
is likely to be an inner disk, which fades away into the more massive main rotating
component at larger radius.

We compute the spatial distribution and average kinematics of these possible sub-
structures in the phase-space of ω Cen. To this end we select the orbits from our
best-fit model that contribute non-zero weight to three different parts of the distribu-
tion function in Fig. 19. We select the inner main component in the 7 left-most panels,
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FIGURE 20 — Kinematics of different components in the distribution function of our best-fit
model for ω Cen. From left to right: full distribution function, main inner component, main
outer component and separate disk component between 1 and 3 arcmin (see text for details).
From top to bottom: spatial distribution, mean velocity fields in the direction of the major
x′-axis, the minor y′-axis and the line-of-sight z′-axis, and mean velocity dispersion profiles.
The radial dispersion σR′ (dotted) and tangential dispersion σθ′ (dashed) are on the plane of the
sky and σz′ (solid) is the line-of-sight dispersion. (See p. 251 for a color version of this figure.)
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excluding the separate disk component in the 5 left-most panels, and the outer main
component in the 3 right-most panels (excluding the weak feature in the bottom). For
each orbit with non-zero weight, we then randomly draw points along its numerically
integrated orbit, with the number of drawings proportional to its relative weight. In
this way, we make an (N-body) realization of our best-fit model consisting of a couple
of tens of thousands of particles, representing the stars in ω Cen. For each of these
stars, we determine the position on the plane of the sky and the three velocity compo-
nents; the two proper motion components in the plane of the sky and the line-of-sight
velocity. For the stars that belong to a certain part or substructure of phase-space,
we then calculate the spatial distribution and mean kinematics.

Fig. 20 shows the results for all stars, those in the inner and outer main component
and those in the separate disk component, respectively, per column from left to right.
The first row shows the spatial distribution. The flattening of the spatial distribution
of all stars and of the outer main component are both about 0.88, similar to the average
observed flattening for ω Cen. The inner main component, going out to a radius of
about 6 arcmin, is rounder with a flattening of about 0.94. The spatial distribution
of the disk component only extends to a radius of about 3 arcmin, has an average
flattening as lows as 0.60 and is less dense in the center as this maximum rotating
disk consists of stars on (nearly) circular orbits which avoid the center. The second
to fourth row show the mean velocity fields in respectively the direction of the major
x′-axis and the minor y′-axis on the plane of the sky and the line-of-sight z ′-axis. In
each panel the axes are scaled with respect to the spatial extent of each component.
Whereas the inner main component indeed hardly shows any rotation, the outer main
component clearly rotates and the separate disk component rotates even faster. In the
last row, the velocity dispersion profiles are presented, radial (dotted) and tangential
(dashed) on the plane of the sky and along the line-of-sight (solid). Even though the
outer main component is flatter and rotates faster than the inner main component, it
is not kinematically colder due to the mixture of orbits with different Lz values. On
the other hand, the maximum rotating disk is the kinematically coldest component.
Whereas the inner main component is nearly isotropic, the outer main component is
anisotropic and the disk component is even stronger anisotropic.

The presence of dynamical substructures implies that the formation history of
ω Cen is more complicated than expected for a typical globular cluster. However,
the interpretation of these different components in the distribution function is very
difficult. In what follows we investigate the possible effects due to the tidal interac-
tion between ω Cen and the Milky Way (§ 9.5), and the possible link to the observed
multiple stellar populations in ω Cen (§ 9.6).

9.5 TIDAL INTERACTION

Based on its current position and motion in the Milky Way (MW), Dinescu, Girard &
van Altena (1999) simulated the orbit of ω Cen around the Galactic Center (GC). They
found that the average orbit is inclined by only 17◦ with respect to the Galactic plane,
has a period of P ∼ 122 Myr and an angular momentum of about 406 kpc km s−1.
Assuming that the average orbit of ω Cen is circular, we thus find a radius ROC ∼ 2.8
kpc and a velocity of about 143 km s−1, of which the component perpendicular to
Galactic plane v⊥ ∼ 42 km s−1. Since the scale height of the MW disk is typically
250 pc, it takes about tenc ∼ 12 Myr for ω Cen to cross the MW disk. This means
that for nearly 10% of its time ω Cen is immersed in the disk and feels the additional
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FIGURE 21 — Timescales as function of the projected radius R′. The solid curve represents
the timescale on which shocks, caused by successive passages of ω Cen through the MW
disk, change the mean-squared velocity of a cluster star by the order of the (local) velocity
dispersion of the cluster. The dotted and dashed curves show respectively the dynamical time
tdyn and relaxation time trelax. The vertical dashed lines indicate with increasing distance the
core radius rt, the half-light radius rh and the tidal radius rt of ω Cen.

gravitational field.
To investigate what effect the MW tidal field has on the stars in ω Cen, we use the

impulse approximation as described by Binney & Tremaine (1987, p. 446), with the
typical properties of the MW from their Tables 1-1 and 1-2. We assume a Cartesian
coordinate system with its origin at the center of ω Cen and the z-axis perpendicular to
the MW disk. If ω Cen goes through the MW disk, the effect on the velocity component
perpendicular to the disk is the largest. Hence, the velocity of a cluster star changes
on average by |∆v| ∼ z|gz(R)|/v⊥, where gz is the z-component of the gravitational field
of the MW disk. The cumulative effect of successive passages through the MW disk
becomes of the order of the (local) velocity dispersion σ of the cluster on a timescale
of tshock ∼ Pσ2v2

⊥/(8z
2g2

z).
An infinite disk with surface density Σ generates a gravitational field gz = 2πGΣ.

In the solar neighborhood the MW disk has a surface density of Σ� ∼ 75 M� pc−2.
Assuming that the MW disk falls off as exp(−R/Rd) in the radial coordinate, with
Rd = 3.5 kpc , we find that at the mean circular radius R = ROC of ω Cen’s orbit
around the GC, gz ∼ 2.9 × 10−13 km s−2. For a spherical shell of stars of radius r,
we have that on average z2 = r2/3. We thus find that the timescale on which disk
shocking becomes important is

tshock ∼ 21

(

σ

km s−1

)2
( r

arcmin

)−2
Myr. (9.1)
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Fig. 21 shows tshock (solid curve) as function of the projected radius R′ (in arcmin).
We used the line-of-sight velocity dispersion as given in Fig. 8, smoothed and ex-
trapolated to larger radii using measurements by Scarpa, Marconi & Gilmozzi (2003)
between about 20 and 30 arcmin8. In the same figure we have also plotted the dynami-
cal time tdyn (dotted curve; Binney & Tremaine 1987, eq. 2-30) and the relaxation time
trelax (dashed curve; Spitzer & Hart 1971; Binney & Tremaine 1987, eq. 8-71). The
three vertical dashed lines indicate respectively the core radius rc = 2.6 arcmin, the
half-light radius rh = 4.8 arcmin and the the tidal radius rt = 45 arcmin (e.g., Trager
et al. 1995).

Clearly, the impulse approximation is not valid near the center of ω Cen, where the
period of the stellar orbits T ≡ 4 tdyn is much smaller than the duration of the passage
through the disk tenc ∼ 12 Myr. Disk shocking is thus unimportant at the center
of ω Cen: the orbits evolve adiabatically and emerge unharmed from the encounter.
Around a radius of 16 arcmin, where T is about twice tenc, disk shocks begin to play
an important role since the disk shocking time becomes of the order of the dynamical
time tshock ∼ tdyn ∼ 6 Myr. At the tidal radius of 45 arcmin, the MW disk gravitational
field becomes dominant.

The effect that the MW tidal field has on the internal dynamics of ω Cen also
strongly depends on the relative orientation and spinning direction of the angular
momentum vector of the stars in ω Cen (internal) and the angular momentum vector
of its orbit around the GC (external). We found that the rotation axis is about 50◦

inclined with respect the line-of-sight (the z ′-axis) in the direction South9. On the
plane of sky, the rotation axis projects onto the minor y ′-axis, which makes an angle
of about 10◦ away from North in the direction East. The equatorial coordinates of
ω Cen are α0 = 13h26m46s and δ0 = −47◦28′43′′ (J2000), which correspond to a Galactic
longitude and latitude of l = 309◦ and b = 15◦. Hence, the rotation axis is nearly
parallel (angle < 3◦) to the equatorial plane, and makes an angle of about 65◦ with
respect to the Galactic plane. Seen from the North Galactic pole, ω Cen is moving in
anti-clockwise direction around the GC. The rotation inside ω Cen is dominated by
orbits with positive Lz values in Fig. 19, which correspond to clockwise rotation.

We thus find that the internal and external angular momentum vector are for more
than 90% parallel with respect to each other with opposite spinning direction. From
mergers of spinning galaxies it is well known that if the spins are anti-parallel as in
this case, the orbital disruption is much less than in the case of parallel spins (e.g.,
Toomre & Toomre 1972). Hence, in the past ω Cen might have contained a significant
number of stars on orbits with negative Lz (parallel spin), which then were removed
from the cluster during its successive passages through the MW disk. Stars on orbits
with positive Lz (anti-parallel spin) had a bigger chance to survive.

Furthermore, the stars on more radial orbits (those with smaller values of Lz) cover
a broader range in radius, with the influence of the MW tidal field becoming stronger
at increasing radius. In the course of time, these radial orbits thus have a bigger
chance of being disrupted than the more tangential orbits with similar mean radius.

8Taking into account the measurement error of about 1 km s−1 and the perspective rotation that can
be as large as 1.5 km s−1 at those radii (eq. 4.1).

9This means that in the common definition of the inclination, as in eq. (2.2), the best-fit inclination
is -50◦. This also explains the sign difference of 〈vz′ 〉 in eq. (4.3) and along the vertical axis of the plot in
the middle panel of Fig. 7. However, we decided to adopt the usual convention to take the value for the
inclination in the range from 0◦ (face-on) to 90◦ (edge-on).
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Both effects (together) might explain the prominent rotating main component in
the distribution function in Fig. 19 beyond a radius of 10 arcmin, while the non-
rotating main component that dominates inwards, fades away. The removal of the
more radial orbits also naturally explains the outwards increasing tangential anisotropy
in our best-fit model of ω Cen (§ 9.2).

The above analysis shows that the frequent passages of ω Cen through the MW
disk most likely have played a crucial role in the evolution of this cluster. At least
part of the phase-space structure of ω Cen may well be caused by the tidal field of the
MW. Detailed (N-body) simulations are needed to further quantify this.

9.6 MULTIPLE STELLAR POPULATIONS

Among the Galactic globular clusters, ω Cen especially stands out because of its
chemical inhomogeneity, first revealed in photometric investigations by Dickens &
Woolley (1967) and spectroscopically confirmed by Freeman & Rodgers (1975). Be-
sides the main population of metal-poor stars (∼ 65 % of all stars with [Ca/H]∼ −1.4)
and an intermediate population (∼ 30 %, [Ca/H]∼ −1.0), recently also a separate metal-
rich population (∼ 5 %, [Ca/H]∼ −0.5) has been identified (Lee et al. 1999; Pancino et
al. 2000), and even the main sequence of ω Cen is bifurcated (Bedin et al. 2004).

Theses different stellar populations also appear to have a different spatial distribu-
tion. Whereas the metal-poor stars seems to follow the observed flattening of ω Cen in
the East-West direction, the more metal-rich stars are elongated in the North-South
direction and also more centrally concentrated (e.g., Pancino et al. 2003). There are
also indications of differences in the kinematics of the stellar populations. Norris et al.
(1997) find that the metal-poor populations have on average a higher line-of-sight ve-
locity dispersion and exhibit a well-defined line-of-sight rotation, while the metal-rich
populations show no significant rotation. Ferraro et al. (2002) claim that the separate
metal-rich population has a coherent bulk proper motion significantly different from
the other cluster stars.

We use the empirical relation in eq. (15) of Paper I to estimate the [Ca/H] abun-
dances of stars in our analysis with V -band magnitude and B−V color measurements
consistent with the top of the red giant branch (V < 13.5 and B − V > 0.7). The result-
ing [Ca/H] histograms for the proper motion and line-of-sight velocity stars both show
a distribution with a broad peak around [Ca/H]∼ −1.2 and a long tail extending be-
yond [Ca/H]∼ −0.5. In both cases the peak shows a small dip, so that we might divide
the stars into a metal-poor population with [Ca/H]≤ −1.2 and a metal-rich population
with [Ca/H]> −1.2, similar to Norris et al. (1997).

Comparing the mean line-of-sight kinematics of the metal-poor and metal-rich
stars, we confirm the result of Norris et al. (1997) that the more centrally concentrated
metal-rich stars are on average kinematically cooler and nearly non-rotating. The
line-of-sight velocity dispersion profile is steeper for the metal-richer stars than for the
metal-poor stars, such that that in the center the metal-richer stars are even (slightly)
kinematically warmer. The proper motions seems to imply a similar difference in the
slope of the velocity dispersion profiles. However, with the proper motion errors on
average four times larger than those of the line-of-sight velocities (see also Fig. 8),
there are no significant differences between the kinematics of the metal-poor and
metal-rich stellar populations.

The above correlations between the kinematics and chemical properties of stars
in ω Cen, are expected to show up in the distribution function (see also Freeman
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2002). The centrally concentrated non-rotating metal-rich stars would lie near the
bottom of the potential well at the lower values of E found in the cluster, symmetrically
distributed over positive and negative values of Lz, and towards higher values of I3.
The rotating metal-poor stars would span the entire range of E, with an asymmetric
distribution in Lz and towards lower I3.

These expectations are consistent with the orbital weight distribution of our best-
fit dynamical model of ω Cen (Fig. 19 and 20). Whereas the metal-richer stars might
well be associated with the inner non-rotating part of the main component, we might
see the kinematical signatures of the metal-poorer stars becoming dominant when
the main component flattens and rotates faster in the outer parts. Still, we have to
be careful as these are (indirect) indications of a link between substructures in the
distribution function and the different stellar populations.

To investigate directly the distribution function of the different stellar populations,
once can try to construct separate dynamical (Schwarzschild) models. However, since
the separation into different stellar populations is not evident, separate mass models
are needed and the separate kinematic constraints are based on much fewer stars,
this is very difficult with the current data-set. A more feasible approach is to model
together, in a consistent way, the observed kinematics and physical properties of the
stars. For example, by labeling the orbits in the model with different colors, the ob-
served color (averaged per aperture) can be used to constrain the model in addition to
the photometry and kinematics. On the other hand, now that we have constrained the
global parameters (distance, inclination and mass-to-light ratio) considerably, it has
become feasible to use non-linear maximum likelihood techniques to directly incor-
porate discrete stellar measurements. In this way, for the model that best fits (simul-
taneously) the measured kinematics and age and metallicity indicators of individual
stars, the different stellar populations can be cleanly separated in phase-space. This
extension, which we leave for a future paper, will provide an important contribution
to solving the stellar population puzzle in ω Cen, and clarify its formation history.

10 CONCLUSIONS

We used an extension of Schwarzschild’s (1979) orbit superposition method to con-
struct realistic axisymmetric dynamical models for ω Cen with an arbitrary anisotropic
velocity distribution. By fitting these models simultaneously to proper motion and
line-of-sight velocity measurements, we measured the radial mass-to-light profile, the
inclination and the distance to ω Cen, which is needed to convert the proper motions
to physical units. This dynamical distance estimate can provide a useful calibration
for the photometric distance ladder.

We used the ground-based proper motions from Paper I and the line-of-sight veloc-
ities from four independent data-sets. We brought the kinematic measurements onto
a common coordinate system and carefully selected on cluster membership and on
measurement error. This provided a homogeneous data-set of 2295 stars with proper
motions accurate to 0.20 mas yr−1 and 2163 stars with line-of-sight velocities accu-
rate to 2 km s−1, covering a radial range out to about half the tidal radius of the clus-
ter. We corrected the kinematic measurements for perspective rotation and removed
a residual solid-body rotation component in the proper motions. We showed that the
latter can be measured without any modeling other than assuming axisymmetry and
at the same time we obtained a tight constraint on D tan i of 5.6 (+1.9/−1.0) kpc, pro-
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viding a unique way to estimate the inclination i of a nearly spherical object once the
distance D is known. The corrected mean velocity fields are consistent with regular ro-
tation, and the mean velocity dispersions display significant deviations from isotropy.

We binned the individual measurements on the plane of the sky to search ef-
ficiently through the parameter space of the models. Tests on an analytic model
demonstrated that our approach is capable of measuring the cluster distance to an
accuracy of about 6 per cent. Application to ω Cen revealed no dynamical evidence
for a significant radial dependence of the (V -band) stellar mass-to-light ratio M/LV ,
in harmony with the relatively long relaxation time of the cluster. We found that
our best-fit dynamical model has M/LV = 2.5 ± 0.1 M�/L� and i = 50◦ ± 4◦, which
corresponds to an average intrinsic axial ratio of 0.78 ± 0.03. The best-fit dynamical
distance D = 4.8 ± 0.3 kpc (distance modulus 13.75 ± 0.13 mag) is significantly larger
than obtained by means of simple spherical or constant-anisotropy axisymmetric dy-
namical models, and is consistent with the canonical value 5.0 ± 0.2 kpc obtained by
photometric methods. The total mass of the cluster is (2.5 ± 0.3) × 106 M�.

Schwarzschild’s approach also provides an insight into the intrinsic orbital struc-
ture of the cluster. Our best-fit model implies that ω Cen is close to isotropic inside
a radius of about 10 arcmin and becomes increasingly tangentially anisotropic in the
outer region, which displays significant mean rotation. We found that this may well
be caused by the effects of the tidal field of the Milky Way. Furthermore, the best-fit
model contains a separate disk-like component between 1 and 3 arcmin, contributing
about 4% to the total mass. This phase-space structure, which might be linked to
the multiple stellar populations observed in ω Cen, is expected to provide important
constraints on its formation history.

We might improve our best-fit dynamical model of ω Cen and better constrain the
distance and the other parameters, by extending the data-set with e.g. proper motions
derived from HST images. Whereas with the ground-based proper motions we were
unable to probe the center of ω Cen due to crowding, the high spatial resolution and
high sensitivity of HST, results in many proper motion measurements in the very cen-
ter, which allows the investigation of a possible central mass concentration in ω Cen.

We may also increase the kinematic constraints on our dynamical models by in-
cluding mean correlated and higher-order velocity moments. With the parameter
range considerably constrained, it now becomes also feasible to use non-linear max-
imum likelihood techniques to directly incorporate the discrete kinematic measure-
ments. These techniques not only allow correlated and higher-order velocity moments
to be included in a straightforward way, but also provide a natural way to incorpo-
rate measurements of age and metallicity indicators of individual stars in addition to
their photometry and kinematics. By fitting an orbit-based model simultaneously to
all these observations, different stellar populations can be separated in phase-space,
after which their structure and dynamics can be studied separately.

We have shown that with the method described in this paper, we were able to
measure the global parameters of ω Cen, including its distance, and investigate its
intrinsic orbital structure. This method can also be applied to study other globular
clusters and stellar clusters in the Milky Way, provided that accurate velocity mea-
surements are available. With the amount of (photometric and kinematic) data quickly
increasing, we expect this method to become an important tool to model these stellar
systems and gain insight in their formation and evolution.
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APPENDIX A MAXIMUM LIKELIHOOD ESTIMATION VELOCITY MOMENTS

We use the average kinematics of stars that fall within apertures on the plane of the
sky. This is comparable to the kinematics from the integrated spectra of galaxies in an
aperture. A very important difference is, however, that we have to take into account
the errors on the individual velocity measurements.

A possible way to measure the mean velocity and velocity dispersion, is to fit a
Gaussian distribution to the velocity histogram of the stars that fall within an aper-
ture. Whereas the mean velocity V is well estimated, the best-fit mean velocity dis-
persion σfit is too large, as the Gaussian distribution is broadened due to the velocity
errors. This additional ’instrumental’ dispersion σins can be estimated by the mean
of the velocity errors. The corrected mean velocity dispersion σ then follows from
σ2 = σ2

fit − σ2
ins. Since this is only an approximate correction, we use a maximum

likelihood estimate of the velocity moments that at the same time corrects for each
individual velocity error.

Suppose L(v) is the (intrinsic) velocity distribution of the stars in an aperture, in
one of the three principal directions. We can consider each stellar velocity measure-
ment vi in that aperture as drawn from this distribution, or alternatively, the product
of L(v) with a delta function around vi, integrated over all velocities. Due to (instru-
mental) uncertainties this delta-function is broadened, and we assume that it can
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be described by a Gaussian around vi, with the corresponding velocity error σi as
the standard deviation. For a sufficient number of draws N , i.e. velocity measure-
ments in the aperture, we can then recover the (unknown) velocity distribution L(v)
by maximizing the likelihood

L(V, σ, . . . ) =

N
∏

i=1

∫ ∞

−∞
L(v)

e
− 1

2

“

vi−v

σi

”2

√
2πσi

dv, (A.1)

or, equivalently, minimizing Λ ≡ −2 ln(L), with respect to the mean velocity V , mean
velocity dispersion σ and possible higher-order velocity moments.

It is possible to recover L(v) in a non-parametric way using (extensions of) Lucy’s
(1974) method, but exploiting the fact that Gaussians are good low-order approxima-
tions, the velocity distribution is often parameterized by a Gauss-Hermite (GH) series
(van der Marel & Franx, 1993; Gerhard, 1993). It has the advantage that it only re-
quires the storage of the velocity moments (V , σ, h3, h4, . . . ) instead of the full velocity
distribution. Furthermore, it allows a simple velocity scaling of the model, which is
useful when investigating the effect of a change in the stellar mass-to-light ratio.

Another advantage of parameterizing L(v) comes from the observation that the
integral in (A.1) is the convolution of the velocity distribution and the Gaussian of
each velocity measurement. For a Gaussian velocity distribution this convolution
is straightforward, but also in the case that L(v) is described by a GH series, the
convolution can be carried out analytically. This makes it feasible to apply the method
to a large number of discrete measurements and to estimate the uncertainties on the
extracted velocity moments by means of the Monte Carlo bootstrap method (§ 15.6 of
Press et al. 1992).

In the case of no measurement errors, the maximum likelihood estimator of the
standard deviation σ, given by

σ̂ =

√

√

√

√

1

n

n
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i=1

(vi − v)2, with v =

n
∑

i=1

vi, (A.2)

is a biased estimator, underestimating the true σ by a factor (see also e.g. Kenney &
Keeping 1951, p. 171)

b(n) =

√

2

n

Γ
(

n
2

)

Γ
(

n−1
2
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4n
− 7

32n2
− . . . . (A.3)

where Γ is the gamma function. When we consider the measurement errors σi, there
is no such simple analytical bias correction as (A.3). However, we can use the latter
result to derive the following approximate corrected standard deviation estimator

σ̃ ≈ 1

b(n)

√

σ̂2 + [1 − b2(n)]σ2, (A.4)

where σ̂ is the maximum likelihood estimated dispersion and σ2 = 1
n

∑n
i=1 σ

2
i the av-

erage measurement error.
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APPENDIX B POLAR GRID OF APERTURES

We use Monte Carlo simulations of the observed stellar velocities and corresponding
errors to investigate the recovery of their average kinematics. We mimic the stellar ve-
locity observations by randomly drawing from an assumed intrinsic Gaussian velocity
distribution, with given mean velocity V0 and velocity dispersion σ0. This set of intrin-
sic velocities, is then ’instrumentally’ broadened by adding to each velocity a random
drawing from a Gaussian with zero mean and the velocity error as standard deviation.
These velocity errors are simulated by randomly drawing from the observed velocity
error distribution (right panels of Fig. 5). For the latter we use the rejection method
(§ 7.3 of Press et al. 1992), with a Lorentzian distribution as comparison function. In
this way, we create, for a given number of stars, 500 sets of simulated velocities and
corresponding errors.

Next, we use the maximum likelihood method of Appendix A to calculate the mean
velocity and velocity dispersion for each simulated set separately. In Fig. B.1, we
compare the (biweight10) mean (filled circles) of these 500 mean velocity and veloc-
ity dispersion measurements with V0 and σ0 (horizontal lines) of the given intrinsic
Gaussian velocity distribution. The error bars are the (biweight) standard deviation
of the kinematic measurements, and indicate the precision with which the kinemat-
ics can be measured, given the observed velocity error distribution. The precision
increases with increasing number of stars per bin. The precision also increases with
decreasing intrinsic mean velocity dispersion σ0. To remove the latter dependency, we
give relative kinematic measurements and corresponding errors, i.e., divided by the
(arbitrarily) chosen value for σ0.

Both the mean velocity and velocity dispersion are recovered well. To obtain a
better precision, we can increase the number of stars per aperture, but at the same
time the spatial resolution decreases, as we have to increase the size of the apertures.
We find that between 50 and 100 stars per aperture is a good compromise. For
the proper motions this implies a (relative) precision for the mean velocity V and
velocity dispersion σ of respectively ∆V/σ ∼ 0.12 and ∆σ/σ ∼ 0.09. For the line-of-sight
velocities we find similar values, respectively ∆V/σ ∼ 0.12 and ∆σ/σ ∼ 0.08.

Given the average proper motion dispersion of about 0.5 mas yr−1 for ω Cen (§ 7.2),
this means we expect to measure the mean proper motion and dispersions with an
average (absolute) precision of respectively 0.06 mas yr−1 and 0.05 mas yr−1. Simi-
larly, with an average line-of-sight velocity dispersion of about 14 km s−1 for ω Cen,
we expect to measure the mean line-of-sight velocity and dispersion with an average
precision of respectively 1.7 km s−1 and 1.1 km s−1.

Indeed, the average of the uncertainties in the kinematics given in Table 3 and 4
are consistent with these expectations. Moreover, as predicted, the decrease in the
uncertainties with radius is proportional to the decrease in dispersion. In other words,
if we divide the uncertainties by the corresponding dispersions, we find nearly con-
stant (relative) precisions, ∆V/σ ∼ 0.11 and ∆σ/σ ∼ 0.08 for both proper motions and
line-of-sight velocities, consistent with the above simulated precisions.

To enhance the signal-to-noise of the observations, we first reflect all measure-
ments back to the first quadrant (x′ ≥ 0, y′ ≥ 0). We exploit the fact that for an axisym-

10The biweight mean and biweight standard deviation (e.g., Andrews et al. 1972; Beers, Flynn &
Gebhardt 1990) are robust estimators for a broad range of non-Gaussian underlying populations and
are less sensitive to outliers than other moment estimators.
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FIGURE B.1 — Recovery of maximum-likelihood-estimated kinematics from proper motions
(left panel) and line-of-sight velocities (right panel). For a given number of stars per aperture,
velocities and corresponding errors are simulated by randomly drawing from an intrinsic
Gaussian distribution with mean velocity V0 and velocity dispersion σ0, broadened by velocity
errors randomly drawn from the observed velocity error distributions (left panels Fig. 5). Each
filled circle with error bar shows the mean and standard deviation of the measured kinematics
from 500 such simulations. As a compromise between lower precision (larger error bars) for
a small number of stars per aperture, and lower spatial resolution (larger bins) for a larger
number of stars, we choose to have between 50 and 100 stars per bin.

metric object, the proper motions in the x′-direction are symmetric in the projected
minor axis, while the proper motions in the y ′-direction as well as the line-of-sight ve-
locities are symmetric in the projected major axis. Since our models are intrinsically
axisymmetric, it is equivalent to fit either to the original or to the reflected data.

We use a polar grid of apertures on (the first quadrant of) the plane of the sky
to better approximate the shape of photometric and kinematic observations. Every
aperture is characterized by its central radius r0 > 0 and angle 0◦ < θ0 < 90◦, together
with its radial and angular width, denoted by ∆r and ∆θ, respectively. We construct
the polar grids such that each aperture has (at least) 50 stars, together with the
requirement that the apertures are as ’round’ as possible in the sense that ∆r ≈ r0∆θ.
The latter avoids (very) radial or angular elongated apertures, which would include
stars from (very) different positions, with probably different (kinematical) properties
than the stars near the center of the aperture.
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APPENDIX C SIMPLE DISTANCE ESTIMATE

The most straightforward way to obtain a dynamical distance estimate is from the ra-
tio of the line-of-sight velocity dispersion σlos and the proper motion velocity dispersion
σpm for spherically symmetric objects (e.g., Binney & Tremaine 1987, p. 280)

D (kpc) =
σlos (km s−1)

4.74σpm (mas yr−1)
. (C.1)

Using, from the 2295 selected stars with proper motions and 2163 selected stars with
line-of-sight velocities, the 718 stars for which all three velocity components are mea-
sured, we find for the two mean proper motion dispersion components σx′ = 0.58±0.02
mas yr−1 and σy′ = 0.55 ± 0.02 mas yr−1, and for the mean line-of-sight velocity disper-
sion σz′ = 12.3 ± 0.3 km s−1. Substituting the latter value together with the average
proper motion dispersion in (C.1), we obtain a distance of D = 4.6 ± 0.2 kpc.

This value is below the canonical distance D = 5.0 ± 0.2 (Harris et al. 1996). The
above simple distance estimate is not valid for ω Cen, which is not spherically sym-
metric. Moreover, although the above average values for σx′ and σy′ are just consistent
with each other, from the left panel of Fig. C.1 it is clear that the profile of the mean
proper motion dispersion profile of σx′ (dotted) lies systematically above that of σy′

(dashed). A non-spherical anisotropic model is needed to explain these observations.
Here we consider a simple model with constant anisotropy.

If we make the (ad-hoc) assumption that the velocity ellipsoid is oblate with intrin-
sic semi-axis lengths σx = σy ≡ σ and σz = qve σ (all in km s−1), where qve is the average
intrinsic flattening, the observed velocity dispersions are given by

σx′ = σ / 4.74D mas yr−1,

σy′ = q′ve σ / 4.74D mas yr−1, (C.2)

σz′ =
[

1 − (1 − q′ 2ve) cot2 i
]1/2

σ km s−1,

where we have used eq. (2.2) and the relation q2 sin2 i = q′2 − cos2 i. Using the best-
fit value for D tan i of 5.6 kpc (§ 4.5), we eliminate the inclination i. Next, by fitting
the ratios of the line-of-sight velocity dispersion over the proper motion dispersion
components, σz′/σx′ and σz′/σy′ , to the observations in the left panel of Fig. 8, we
determine the best-fit values for the remaining two free parameters: the distance D
and the (projected) flattening of the velocity ellipsoid q ′ve.

Since we use the full dispersion profiles and we allow for an anisotropic velocity
distribution, this simple way to obtain a dynamical distance estimate goes beyond the
above spherical symmetric approach. If q ′ve = 1 in eq. (C.2), we recover this approach
in which both ratios are equal and the distance follows from eq. (C.1).

We show in the right panel of Fig. C.1 the ∆χ2 contours for a range of q′ve and
D. The overall minimum, indicated by a cross, corresponds to the best-fit values
q′ve = 0.92 ± 0.05 and D = 4.54 ± 0.14 kpc. The isotropic case (q ′ve = 1) is excluded at
about the 95.4%-level. The best-fit (projected) flattening of the velocity ellipsoid is
less than the average observed flattening q ′ = 0.879 ± 0.007 (hashed region) from the
stellar photometry of ω Cen (Geyer et al. 1983), although an equivalent value is not
excluded (at the 68.3%-level). The velocity distribution is expected to be less flattened,
since it traces more directly the potential, which in general is rounder than the light
distribution (see e.g. p. 48 of Binney & Tremaine 1987).
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FIGURE C.1 — Left panel: velocity dispersion profiles calculated along concentric rings. As-
suming the canonical distance of 5 kpc, the profiles of the proper motion components in the
x′-direction (dotted curve with diamonds) and y′-direction (dashed curve with triangles) are
converted into the same units of km s−1 as the line-of-sight profile in the z′-direction (solid
curve with crosses). The black horizontal lines indicate the corresponding scale in mas yr−1.
Below the profiles, the mean velocity error per ring is indicated by the corresponding symbols.
Right panel: Assuming an oblate velocity ellipsoid with constant (projected) flattening, the ra-
tio of the line-of-sight over the proper motion velocity dispersion profiles yields an estimate for
the dynamical distance D. The best-fit values correspond to the minimum (cross) in the ∆χ2

contour plot, where the inner three contours are drawn at the 68.3%, 95.4% and 99.7% (thick
contour) levels, and subsequent contours correspond to a factor of two increase in ∆χ2. For
increasing flattening of the velocity ellipsoid, starting with the isotropic case on the left axis,
the dotted (dashed) curve shows the corresponding best-fit distance if only the profile of the
proper motion in the x′-direction (y′-direction) is used, and the dotted-dashed curve if both
are used. The observed flattening from the stellar photometry (Geyer et al. 1983) is indicated
by the hashed region.

If we only fit the ratio σz′/σx′ , the dotted curve shows the best-fit distance at given
flattening. While in this case the distance increases with flattening, almost exactly
the opposite happens if we only fit the ratio σz′/σy′ (dashed curve). Simultaneously
fitting both ratios does not provide a good fit (the χ2 value is larger than the number
of degrees of the freedom) and the resulting best-fit distance (dotted-dashed curve) of
about 4.5 kpc is significantly below the canonical distance of 5.0 kpc.

We conclude that both the simple distance estimate (C.1) and the above constant-
anisotropy axisymmetric model are not valid for ω Cen and underestimate its dis-
tance. To explain the observed kinematics of ω Cen and obtain a reliable distance
estimate, one needs a non-spherical dynamical model with varying anisotropy, like
the Schwarzschild modeling technique used here.





CHAPTER 3

A BAR SIGNATURE AND CENTRAL DISK IN THE GASEOUS
AND STELLAR VELOCITY FIELDS OF NGC 5448

ABSTRACT
We analyze SAURON kinematic maps of the inner kpc of the early-type (Sa) barred
spiral galaxy NGC 5448. The observed morphology and kinematics of the emission-
line gas is patchy and perturbed, indicating clear departures from circular motion.
The kinematics of the stars is more regular, and display a small inner disk-like
system embedded in a large-scale rotating structure. We focus on the [O III] gas,
and use a harmonic decomposition formalism to analyze the gas velocity field. The
higher-order harmonic terms and the main kinematic features of the observed data
are consistent with an analytically constructed simple bar model. The bar model is
derived using linear theory, considering an m = 2 perturbation mode, and with bar
parameters which are consistent with the large-scale bar detected via imaging. We
also study optical and near infra-red images to reveal the asymmetric extinction
in NGC 5448, and we recognize that some of the deviations between the data and
the analytical bar model may be due to these complex dust features. Our study
illustrates how the harmonic decomposition formalism can be used as a powerful
tool to quantify non-circular motions in observed gas velocity fields.

K. Fathi, G. van de Ven, R.F. Peletier, E. Emsellem,
J. Falcón-Barroso, M. Cappellari, P.T. de Zeeuw

MNRAS, in press (2005)
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1 INTRODUCTION

DYNAMICAL studies of spiral galaxies often make the distinction between the bulge
and the disk: the bulge is associated with the hot ‘spheroidal’ component which

mainly contains stars, and the disk is a rapidly rotating thin structure which also
contains a substantial fraction of the total amount of interstellar gas. Line-of-sight
velocity distributions are efficient probes of the dynamical structures of these sys-
tems, and can be used to derive the mass distribution, structural properties, and
perturbations of the gravitational potential linked to m = 1 or m = 2 modes, or to
external triggers such as interactions. These can be obtained with classical long-slit
spectrography, although it requires a-priori assumptions for the orientation of the
slits. A time-consuming way to obtain velocity fields through single slits is to spa-
tially scan the galaxy with successive individual exposures (e.g., Statler 1994; Ohtani
1995). Integral field spectrography in the optical (IFS, Adam et al. 1989; Afanasiev et
al. 1990; Bacon et al. 1995; Davies et al. 1997; Garcı́a-Lorenzo, Arribas & Mediavilla
2000; Roth, Laux & Heilemann 2000; Bacon et al. 2001; Bershady et al. 2004) was
designed to uniformly cover the field of view which makes it possible to study these
systems in a much improved way: the analysis is not constrained by a priori choices
of slit position, and the gaseous and stellar components can be observed simulta-
neously. Optical IFS is often used complementary to H I and Fabry-Perot scanning
interferometers, (e.g., van Gorkom et al. 1986; Plana & Boulesteix 1996) as the latter
usually have excellent spatial coverage but a limited spectral domain, only probing a
couple of lines (mostly in emission).

Although circular rotation is the dominant kinematic feature of the disk compo-
nent, previous observational as well as theoretical studies have shown the presence of
non-circular motions (e.g., Freeman 1965; Combes & Gerin 1985; Shlosman, Frank
& Begelman 1989; Athanassoula 1994; Shlosman & Noguchi 1993; Moiseev 2000;
Regan & Teuben 2004; Wong, Blitz & Bosma 2004). Cold disk-like systems are more
prone than bulges to perturbations and instabilities, the dissipative gaseous compo-
nent being more responsive than the stellar component (e.g., Thielheim & Wolff 1982).
Perturbations of the gas dynamics can lead to significant galaxy evolution via, e.g.,
redistribution of the angular momentum, triggering of star formation, or building of a
central mass concentration.

Bars are potential actors in this context as they can drive mass inwards or out-
wards, and may participate in the complex process which eventually leads to the
fueling of an active nucleus (e.g., Simkin, Su & Schwarz 1980, Sakamoto, Baker &
Scoville 2000). The presence of large-scale bars has been correlated with starbursts
(e.g., Martinet & Friedli 1997) and nuclear rings (Shlosman 1999), but only weakly if
at all with nuclear activity (e.g., Knapen et al. 2000). This may not be so surprising as
the fueling of an active galactic nucleus (AGN), i.e., gas accretion onto a massive black
hole, involves rather small spatial and short time-scales, so might not be related to
the kpc scale bar. Inner small bars (Shlosman et al. 1989) may sometimes help to link
the different spatial scales (Emsellem, Goudfrooij & Ferruit 2003), but they probably
cannot serve as a universal mechanism. AGN activity is short-lived and occurs in
the central astronomical units of galaxies, whereas current studies have focused on
long-lived phenomena influencing the central kpc scale. In order to properly study the
influence of a bar on the redistribution of mass in the central kpc of a galaxy, we need
to obtain constraints both on the source of the underlying gravitational potential and
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Field of View 41′′×33′′

Pixel Size 0.′′8
Instrumental Disp. 108km s−1

Spectral Range [4820 - 5280]Å
Spectral Features Hβ, [O III], Fe5015, Mgb, [N I], Fe5270

TABLE 1 — SAURON data characteristics.

on some tracer of the on-going perturbations. This can be achieved by simultaneously
studying the stellar and gas dynamics.

We have observed 24 early-type spiral (Sa) galaxies with the SAURON Integral Field
Spectrograph (Bacon et al. 2001), mounted at the 4.2m William Herschel Telescope
of the Observatorio del Roque de los Muchachos at La Palma (de Zeeuw et al. 2002).
Most of these galaxies are found to have gas velocity fields that strongly deviate from
that of a simple rotating disk. For the present study, we selected NGC 5448 out of the
Sa SAURON sample which shows a clear sign of the presence of a bar in its photometry
and which has a significant amount of ionized-gas (Falcón-Barroso et al. 2005). In
this chapter, we analyze both the stellar and gas kinematics obtained with SAURON,
and quantify the non-circular gaseous motions in NGC 5448. To this aim, we build
models with elliptical streaming motion and compare the resulting velocity structures
with our observational data, using a harmonic decomposition technique. In Section 2,
we present our data. Section 3 outlines our analysis method of the gas kinematics.
In Section 4, we build a bar model for NGC 5448, and we present and discuss the
corresponding results in Sections 5 and 6.

2 THE DATA

NGC 5448 is a barred Sa active galaxy with prominent irregular dust lanes at different
spatial scales. The RC3 classification of NGC 5448 is (R)SAB(r)a, with inclination of
64◦, systemic velocity of 1971 km s−1, position angle (PA) of 115◦, and total B-band
magnitude of 11.93. Photometry shows that this galaxy hosts a large-scale bar with
two well-defined spiral arms emerging near the ends of the bar (Eskridge et al. 2002).
The inner parts of the arms are somewhat patchy and form a broken ring, the outer
parts of the arms being smoother (Sandage & Bedke 1994). This galaxy has a nuclear
elongated feature of about 10′′ (Fathi & Peletier 2003) with bluer V − H color than
its surroundings (Carollo et al. 2002). Ho, Filippenko, & Sargent (1995) classified the
nucleus as an AGN: its central aperture spectrum exhibits a clear broad-line emitting
region. Laine et al. (2002) classified NGC 5448 as a non-Seyfert.

2.1 SAURON OBSERVATIONS

We observed NGC 5448 with SAURON on April the fourteenth 2004. Detailed spec-
ifications for the instrument, data, reduction procedure, and the data preparation
procedure can be found in Bacon et al. (2001), de Zeeuw et al. (2002), and Emsellem
et al. (2004). A brief summary of the instrument and data characteristics is presented
in Table 1. We obtained 4 exposures of 1800 s each, producing a total of 1431 si-
multaneous galaxy spectra per frame, together with 146 sky spectra 1.′9 away from
the main field. We also observed standard stars to be used for accurate velocity, flux,
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FIGURE 1 — Top Left: Digitized Sky Survey image of NGC 5448 with SAURON footprint and
north-east orientation arrow. All other panels show the SAURON data. The stellar flux map
and unsharp-masked SAURON image are given in mag arcsec−2 with arbitrary zero point, and
north-east direction as indicated. The titles are indicated at the bottom right corner of each
panel, and the plotting ranges are given at the top. All SAURON maps have the same orientation
with overplotted stellar contours in magnitude steps of 0.25, and all velocities and velocity
dispersions are given in km s−1. (See p. 252 for a color version of this figure.)

and line-strength calibration of our observed galaxy. Wavelength calibration was done
using arc lamp exposures taken before and after each target exposure. The standard
reduction was performed using the XSauron software package developed at the CRAL
(Lyon), providing a fully calibrated datacube for each individual exposure. We merged
the 4 spatially dithered exposures after a resampling to a common spatial scale of
0.′′8 × 0.′′8 per pixel, leading to a total of 1973 spectra within our field.

2.2 STELLAR AND GASEOUS KINEMATIC MAPS

The signal-to-noise (S/N ) ratio of individual spectra varies considerably throughout
the field: in order to homogenize the S/N we applied the adaptive spatial 2D-binning
scheme of Cappellari & Copin (2003). We have set a target S/N value of 60 to be able
to derive reliable higher-order moments of the stellar velocity distribution. Penalized
Pixel Fitting (pPXF, Cappellari & Emsellem 2004) was used to derive the stellar line-of-
sight velocity distribution parametrized by a Gauss-Hermite series up to and including
the fourth order (van der Marel & Franx 1993; Gerhard 1993). The optimal stellar
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template in pPXF was built with a combination of stellar spectra from Jones (1997)
and synthesis spectra from Vazdekis (1999) as in Emsellem et al. (2004). The derived
stellar mean velocity V , mean velocity dispersion σ, and higher order velocity moments
h3 and h4 maps, are presented in bottom row of Fig. 1. We discuss the maps in
Section 5.

The method which we have applied to derive the emission-line kinematics is de-
scribed and validated in Sarzi et al. (2005) and Falcón-Barroso et al. (2005). It consists
of iteratively searching for the emission-line velocities and velocity dispersions, while
solving at each step for both their amplitudes and the optimal combination of the
stellar templates over the full SAURON wavelength range. No masking of the regions
affected by emission is thus required.

Our binning scheme was optimized for the derivation of reliable stellar kinematics,
but is not necessarily well adapted to analyze the emission-line gas. Since the gaseous
component commonly rotates faster than the stellar component, to obtain reliable
gas kinematics, in general a lower S/N is required. Moreover, gas and stars do not
necessarily share the same spatial distributions. As a consequence, the stellar bins
are often larger than necessary for the gas, implying a loss of spatial information for
analyzing the gaseous component (Fathi 2004). Accordingly, the data that we present
here has a minimum stellar S/N of 60 and a minimum emission-line amplitude-over-
noise of 3.

Finally, we have carefully inspected the emission-line profiles to search for pos-
sible asymmetric profiles but have not found any significant deviation from a pure
Gaussian, nor any significant indication for more than one component being present
in the profiles, at least at the instrumental resolution of SAURON. We know from other
SAURON studies of e.g., NGC 1068 (Emsellem et al. 2005) that we can resolve several
components in very strong AGNs.

3 ANALYZING GAS VELOCITY FIELDS

3.1 CIRCULAR AND NON-CIRCULAR KINEMATICS

In this section we start with a simple mathematical model, and then add complexity
as required by the observational constraints. In the simplest model, the galactic
disk is purely rotational, has negligible velocity dispersion, and is infinitesimally thin.
In the presence of axisymmetric radial and vertical velocities, and when taking into
account the effect of projection and the convention that positive line-of-sight velocities
correspond to recession, the line-of-sight velocities Vlos can be represented by

Vlos(R,ψ, i) = Vsys + Vrot(R) cosψ sin i+ Vrad(R) sinψ sin i+ Vz(R) cos i, (3.1)

where Vsys is the systemic velocity of the galaxy, Vrot and Vrad are the rotational and ra-
dial velocities, and Vz is the vertical velocity component, which we set to zero through-
out this chapter. The inclination i of the galaxy ranges from i = 0◦ for a face-on viewing
and i = 90◦ for an edge-on viewing. Furthermore, (R,ψ) are polar coordinates in the
plane of the galaxy related to observable Cartesian coordinates x and y (in the plane
of the sky) by

{

R cosψ = −(x−Xcen) sinφ0 + (y − Ycen) cos φ0,

R sinψ cos i = −(x−Xcen) cos φ0 − (y − Ycen) sinφ0,
(3.2)
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where Xcen and Ycen are the coordinates for the center, and φ0 is the PA of the projected
major axis of the disk, measured with respect to north in counterclockwise direction.
This simple model cannot explain most observed velocity fields. The gas kinematics
in real galaxies exhibits radial and/or vertical motions due to, e.g., the presence of
bars, spiral arms, which create angle-dependent velocities which cannot be explained
using eq. (3.1), and hence additional ingredients in the analysis method are required.

Several attempts have been made to investigate more complex velocity fields (Sakhi-
bov & Smirnov 1989; Canzian 1993; Schoenmakers, Franx & de Zeeuw 1997 [here-
after SFdZ]; Fridman & Khoruzhii 2003; Wong et al. 2004; Krajnović et al. 2005). The
main idea of these techniques is to deal separately with the ‘unperturbed’ underlying
component and the residual velocity field, obtained by subtracting the reconstructed
unperturbed velocity field from the data. To solve the problem, as stated, one would
have to know the unperturbed velocity component at a given radius. Unfortunately
we do not know beforehand the unperturbed velocity field. A powerful technique for
unveiling the perturbations makes use of the expansion of the velocity information in
Fourier harmonic components. Following the terminology of SFdZ (see their appendix
for the detailed derivation), given that the line-of-sight velocity can be expressed as a
two-dimensional analytic function of galactocentric coordinates, it can be written as
a Fourier series:

Vlos = Vsys +

k
∑

n=1

[cn(R) cos nψ + sn(R) sin nψ] sin i, (3.3)

where k is the number of harmonics, and cn and sn give us information about the
nature of the perturbations, and they are tightly connected to the underlying poten-
tial. Note that c1 = Vrot and s1 = Vrad. Furthermore, numerical simulations by Burlak
et al. (2000) have shown that this formalism is very stable and its results are rather
insensitive to the presence of holes in the velocity field.

3.2 TILTED-RING AND HARMONIC DECOMPOSITION

Our quantitative analysis uses the formalism of eq. (3.3) combined with the tilted-ring
method (Rogstad, Lockart & Wright 1974; Rogstad, Wright & Lockart 1976), inspired
from the ROTCUR routine in the GIPSY package (Begeman 1987; van der Hulst et
al. 1992). Accordingly, we divide the galaxy disk into concentric ellipses within which
we fit the rotation velocity and the set of geometric parameters of eq. (3.3). The method
assumes that each pixel in the velocity field is identified with a unique position in
the galaxy and that circular rotation is the dominant feature. We assume that our
measurements refer to positions on a single inclined disk, i.e., that we do not expect
a strong warp and/or overlapping spiral arms within the observed field. Accounting
for harmonic perturbations up to order 3, this method results in a large parameter-
space problem, and it requires some additional assumptions to obtain a physically
meaningful solution. We obtain the parameters by proceeding as follows:

i. We start from a simple inclined two-dimensional disk. In case of erroneous
inclination, one would detect systematics in the residual field as explained in
Section 3.3. Using a two-dimensional disk produces a robust model, in the sense
that warps and other deviations from this basic model should be prominent in
the residual maps.
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ii. Secondly, we fix the dynamical center of the galaxy to coincide with the photo-
metric center. The photometric center is obtained by fixing the center of the H
band image, since the H-band image is less affected by dust. The HST V -band
image and the SAURON image are then aligned with the HST H-band image.

iii. At every radius, we fit Vlos = c0 + c1 cosψ sin i, varying c0, PA, and c1. The result is
used to fix the systemic velocity (Vsys= c0) simply as the mean value over radius,
using Tukey’s bi-weight mean formalism (Mosteller & Tukey 1977), which is
particularly advantageous for being non-sensitive to outliers. After Vsys, we fit
the PA and c1, followed by fixing the PA in the same way as the Vsys was fixed.

iv. For each ring, we import the values derived according to the recipe above, and fit
the rotation curve and the higher harmonic components (up to order 3) applying
a χ2-minimization scheme. The results are presented in Fig. 2.

Analyzing the first, second, and third harmonic components only, is an efficient
way to analyze specific elements of the perturbations on the underlying potential.
A perturbation of order m creates m − 1 and m + 1 line-of-sight velocity terms (see
e.g., Canzian 1993 and SFdZ). As a result, our fitted c1, s1, c3, and s3 terms contain
information about possible m = 2 perturbations.

When sectioning the field into concentric rings, the radial extent of each ring is a
free parameter which has to be pre-determined. For a range of possible ring radii, we
have examined the fitted velocity information. Determination of the radial thickness
of the rings becomes a trade-off between smoothness of the fitted velocity field, and
robustness of the fit. Radially thin rings result in smooth fits, and thus smooth resid-
ual (Data - Fit) fields, whereas radially thick rings result in lower errors for the fitted
parameters. Patchy gas distribution causes non-uniform distribution of points, and it
is important to make sure that all the rings include enough points to fit harmonic pa-
rameters to reasonable accuracy. This is particularly important in the innermost and
outermost points. We adopt a geometric increase of the ring radii (meaning that the
radial width of the rings is increased by a factor 1 + step). Here, we adopt a step of 0.2,
and only fit the inner 30′′ of the SAURON velocity field, since rings larger than this ra-
dius are not sufficiently covered and hence do not deliver reliably derived parameters.
Finally, since we are simultaneously fitting 6 harmonic components, we make sure
that each ellipse contains at least 25 data points, in order to obtain reliable errors.

3.3 ERRORS

Warner et al. (1973) and van der Kruit & Allen (1978) showed that assuming wrong
input disk parameters could cause recognizable signatures in the residual velocity
fields. SFdZ quantified these signatures in terms of harmonic expansion, and showed
that the Fourier components due to non-circular motions will mix with those due to
erroneous disk parameters Xcen, Ycen, i, and PA. Errors in the kinematic center trans-
late to the c0, c2 and s2 terms, while PA errors appear in the s1 and s3 terms, and in-
clination errors in the c1 and c3 terms. In the case of erroneous kinematic center, the
c0 and the c2 terms fall off as 1

R whereas the presence of a radius-independent m = 1
mode shows the relation c0 ∼ 3c2 (Schoenmakers 1999). Our chosen center coordi-
nates do not deliver any of these situations. Another source of error is ‘pixel sampling’
for which errors propagate onto the c1 (as the rotation curve rises more gradually) and
the c3 term (as if inclination changes). This effect may also propagate onto the s1 and
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FIGURE 2 — Top row, from left to right: observed SAURON gas velocity field of NGC 5448;
reconstruction based on the harmonic decomposition of the SAURON gas velocity field; residual
field (data - harmonic reconstruction); and the analytic bar model, which reproduces best
the main kinematic features of the observed gas velocity field. Middle and bottom row: the
harmonic parameters as a function of outer radius of each ring, and v∗ = c1 sin i. The over-
plotted filled circles are the analytically calculated first and third harmonic terms for the bar
model (the second terms are zero by construction), with the error bars corresponding to the
99.7% confidence level (see Section 4 for details). The orientation of the maps is the same as
in Fig. 1, and the mean PA value is given in the north-east direction.

s3 parameters, although not significantly (Wong 2000). Our data and analysis does
not require consideration of this effect since our spatial resolution is high enough.

Our data extraction code delivers error measurements for each individual pixel
(Falcón-Barroso et al. 2005). We calculate the errors for the tilted-ring and harmonic
parameters by means of Monte Carlo simulations. Repeated application of the tilted-
ring method to the Gaussian randomized gas velocity field yields the uncertainties
on the harmonic parameters. Our 500 simulations show that choosing geometrically
increasing ring radii with steps of 0.2 indeed yields satisfactory errors. The errors are
low, and the parameter profiles are represented by an adequate number of points.

4 A BAR MODEL FOR NGC 5448
The SFdZ formalism is a very powerful tool for analyzing velocity fields. One can
analytically derive the higher-order harmonic parameters for potentials of desired
form. Schoenmakers (1999) derived the harmonic parameters for a lopsided potential,
and a more extensive expansion was done by Wong et al. (2004), who derived the
higher-order harmonics for simple bar and two-armed spiral perturbations.
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We import their model for a globally elongated gravitational potential, which, in
the plane of the galaxy, consists of an axisymmetric component Φ0(R) from Kuijken &
Tremaine (1994), with a bi-symmetric potential of the form Φ2(R) cos 2θ added to it. In
the case of flat rotation curve, the potential is written as

{

Φ0(R) = v2
c lnR,

Φ2(R) = −ε v2
c / 2,

(4.1)

where vc is the circular velocity and ε is the elongation of the potential. Introducing a
constant damping term into the equations of motion and considering only the m = 2
perturbation term (Lindblad & Lindblad 1994; Wada 1994), linear epicyclic approxi-
mation of Lin & Shu (1964) was applied to obtain an analytical solution for gaseous
orbits in this barred potential. Since this model is restricted to m = 2 perturbation,
it affects only the first and third harmonic parameters (c1, s1, c3, and s3). These de-
pend on the amplitude of the damping term (λ), the ellipticity of the potential (ε), the
corotation radius (CR), and the viewing angle of the bar (θ), where θ = 0 corresponds
to end-on view.

We use these analytic harmonic parameters to reconstruct the signatures of promi-
nent non-circular motions in the observed velocity fields. We build a library of models
with varying bar parameters (0 < ε < 0.5, 0 < λ < 0.5 and a range of bar sizes), viewed
from different angles (0◦≤ θ ≤ 180◦). The effects of λ and ε on the velocity field are
predictable. The bar signature is weaker for a larger damping factor and/or a smaller
flattening of the potential. However, the effect of varying θ is not straightforward.

Investigating our library of dissipative bar models, we find that only for a certain
combination of parameters the model exhibits a strong twist of the gas zero-velocity
curve similar to our data (Fig. 1). We quantify the comparison by calculating, for each
bar model in our library, the discrepancy between the reconstructed velocity field and
the observed velocity field, in terms of the goodness-of-fit parameter χ2. Care has to
be taken at the inner Lindblad resonance (ILR), since there the linear epicyclic theory
breaks down. At the ILR the weak-bar model is not expected to reproduce the velocity
field, due to the presence of non-linear terms, which are not accounted for by the
analytic epicyclic theory. Hence, for a small region around the ILR, we interpolate the
bar models.

The minimum goodness-of-fit parameter χ2
min yields the best-fit bar model, for

which we show in Fig. 2 the reconstructed velocity field and harmonic terms (filled
circles). The best-fit model accounts for an m = 2 perturbation of a single bar, with po-
tential ellipticity ε = 0.15± 0.02, damping term λ = 0.12± 0.03, viewing angle θ = 19± 3◦,
and CR = 37 ± 4′′. The errors on the bar parameters follow from the bar models for
which the difference between the corresponding χ2 and χ2

min is below the 99.7% level.
From the harmonic terms of these bar models, we also obtain an estimate on the
uncertainty in c1, s1, c3 and s3, indicated by the error bars on the corresponding filled
circles in Fig. 2. Given the significant second harmonic term and the simplicity of the
analytic bar model, it is not surprising that it cannot provide a perfect fit to the data.
Still, this generic bar model does reproduce the main features in the observed velocity
field, as well as the overall behavior of the first and third harmonic terms. This sup-
ports the case of a bar as the main driver behind the observed non-circular motions.
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FIGURE 3 — A thin isothermal disk model for the stellar velocity field of NGC 5448. The circle
marks the 7′′ region within which we find a disk-like structure. The disk model, fitted to the
field outside this region, implies for the outer disk a scale length of 18′′, Vsys= 2002 km s−1,
and PA= 91◦. The orientation of the maps is the same as in Fig. 1. (See p. 252 for a color
version of this figure.)

5 RESULTS

The gas velocity field decomposition of Section 3.2 provides the radial profiles for the
primary disk parameters and the higher order harmonic terms. Assuming the inclina-
tion i = 64◦ from the RC3 catalog (de Vaucouleurs et al. 1991), we apply this method
to our observed gas velocity field in an iterative manner by first varying the Vsys and
PA. We then fix these parameter to their mean values and we proceed by deriving the
Vrot and higher harmonic terms (see Fig. 2). We detect a varying zeroth harmonic term
(Vsys) with variation amplitude up to 40 km s−1 in the central 10′′. We find a strong
PA twist of about 30◦ in the central 10′′, and outside this radius the PA goes back
to the central values. The circular velocity component c1 rises steeply and peaks at
5′′ radius, followed by a very slow decline out to the outer radii. We find that the
behavior of the s1 term could be compared with the Vsys or the PA: the s1 term changes
sign at around 12′′, and at the same galactocentric radius, the Vsys and the PA change
sign around their mean values. The s1 exhibits amplitudes of the order of 0.2 c1 sin i.
The bottom row in Fig. 2 shows that, apart from the s2 term, the higher harmonic
terms significantly deviate from zero, and indeed account for the considerable devia-
tion of the velocity field of NGC 5448 from pure rotation. In the following sections, we
describe the distinct features that we find in our kinematic maps.

5.1 THE STELLAR COMPONENT

The SAURON flux map in Fig. 1 displays a smooth stellar distribution and the presence
of prominent dust lanes to the south of the nucleus. The stellar kinematics shows
a prominent regular disk-like rotation with a smaller inner stellar disk within the
central 7′′ radius. The stellar velocity dispersion decreases towards the center, and
at the location of the maximum line-of-sight velocities for the central structure, h3

anti-correlates with V which supports the argument that the central component of
NGC 5448 is a central disk. We approximate the stellar velocity field with that of an
exponential thin disk (Freeman 1970) to emphasize the kinematic signatures of the
central disk. Fig. 3 shows this simple inclined disk model, where the inner stellar
disk rotates faster than the outer disk. The best-fit model for the outer stellar disk,
omitting the central 7′′ and assuming an inclination fixed to the RC3 catalog value,
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FIGURE 4 — First and third sinusoidal harmonic terms normalized to v∗ = c1 sin i. Both the
data and the bar model show a negative slope (dashed and solid line respectively), indicating
that elliptical streaming, due to the bar potential, is the main driver of the radial motions
observed in the gas velocity field of NGC 5448.

yields Vsys= 2002 km s−1, a disk scale length 18′′, and a disk PA=91◦. Repeating the
same exercise for the region inside 7′′, we find that the central disk is misaligned with
respect to the outer disk by ∼13◦.

5.2 GAS DISTRIBUTION AND KINEMATICS

Fig. 1 demonstrates that along the strong dust lanes, the gas shows a patchy distribu-
tion, with an asymmetric elongation of [O III] gas towards the east as well as the galac-
tic poles. The Hβ distribution is more regular. All kinematic features of the [O III] gas
are accompanied by Hβ emitting gas. The [O III]/Hβ map in Fig. 1 displays a promi-
nent ring-like structure at 5′′–15′′, indicating high ionization of the gas in this region.

The gas velocity map clearly shows very prominent ‘S’-shaped zero-velocity curve
with very sharp edges indicating very strong non-circular gas motions (Peterson &
Huntley 1980). This ‘S’-shaped gaseous zero-velocity curve is confirmed by the PA
variation derived by the tilted-ring decomposition in Fig. 2. Zero-velocity curve twists
can be indicative of strong radial motions, created by, e.g., interactions, mergers or
elliptical streaming due to a barred potential. Wong (2000) distinguished differences
between radial motion mechanisms by comparing the s3 versus s1 harmonic terms,
and found that the behavior of s3 versus s1 is different between a bar model and a pure
axisymmetric or warped model. As demonstrated in Wong et al. (2004, Fig. 5) the s3

versus s1 of a warped disk lie on a positive slope. Moreover in case of an externally trig-
gered radial flow, the points in the s3 versus s1 graph should lie on a zero-slope. Set-
ting up the same diagnostics, in Fig. 4, we find that for our data the s3 versus s1 curve
has a negative slope very similar to that of the bar model presented in Fig. 2. This
confirms the signature of elliptical streaming in the gas velocity field of NGC 5448.
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FIGURE 5 — Zooming into the central few arcseconds of the stellar and gaseous velocity maps
of NGC 5448, using the same velocity range as in Fig. 1. Indicated are the north-east direction
(arrow), the photometric PA (straight line) and the photometric center (cross). The over-plotted
circle indicates the 7′′ radius for comparison with Fig. 3. In the right panel, we present the
stellar rotation curve (extracted along the photometric PA) together with the gas rotation curve
derived from tilted-ring decomposition. (See p. 253 for a color version of this figure.)

Comparing the stellar maps with the gas maps, we find that the gas velocities
are considerably higher: This is confirmed by the rotation curve presented in Fig. 5.
We find that the gaseous σ map displays some features comparable to the stellar σ
map. Although the stellar velocity dispersion is more steeply rising toward the center,
both maps show a prominent dip in the center. This supports the hypothesis of the
presence of a central dynamically cold disk-like structure, present both in the stellar
and gaseous component. Both maps also show a dispersion increase in bi-polar
directions just a few arcseconds from the center. This is much more prominent in the
gas map, as its σ reaches values ' 250 km s−1. This may be indicative of significant
outflows in this AGN host.

5.3 POSITION ANGLE VALUES

The projected and deprojected PA profiles from Laine et al. (2002) in Fig. 6 display
strong variations in the central few arcseconds. The HST images display asymmet-
rically distributed dust within the central few arcseconds, which may cause these
strong central PA variations (also found by Kornreich et al. 2001). At larger radii, we
find that the PA profile shows a variation of the order of 10◦, but overall it stays fairly
constant around the nominal RC3 value, i.e. 115◦. Our tilted-ring decomposition of
the gaseous velocity field, yields a mean gas kinematic PA of 119±5◦, which is con-
sistent with the photometric PA from RC3. In the case of the large stellar disk, as
described in Section 5.1, we find an offset of ∼25◦ between the stellar kinematic PA
and the photometric mean PAs. This misalignment could be due to the effect of the
bar on the observed stellar velocity field.

5.4 THE INNER FEW ARCSECONDS

In Fig. 5 we zoom into the central few arcseconds of the stellar and the gaseous
velocity fields of NGC 5448 to emphasize the observed kinematic differences between
the two components. The gaseous component exhibits a strongly twisting (dashed)
zero-velocity curve, and the gas rotates faster than the stars. We find that the inner
stellar disk not only is misaligned with the outer stellar disk, but is also slightly
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FIGURE 6 — The top panels show HST/NICMOS H-band (F160W) and WFPC2 V -band (F606W)
images of NGC 5448. The bottom left panel is the V −H map obtained by convolving the H-
band image with the V -band image PSF and vice versa, and subtracting one from the other. All
maps have pixel-size of 0.′′0455, and the same orientation as the DSS image. The bottom right
profiles are the observed (open symbols) and deprojected (filled symbols) ellipticity and PA pro-
files from Laine et al. (2002). Circles represent values derived from the NICMOS image, and tri-
angles show the values derived using the DSS image. Here we focus on the region beyond 1′′.

shifted to the south-east. In contrast, we find from the photometric profiles in Fig. 6,
that the ellipticity of the central disk is similar to that of the outer disk (∼ 0.55), as well
as their PAs. The prominent dust lanes at the south of this galaxy may explain the
kinematic misalignment between the outer and inner stellar disks. In the central ∼ 4 ′′

the gas isovelocity contours are comparatively straight and parallel. The tilted-ring
decomposition of the gas velocity field provides the gas rotation curve illustrated in
Fig. 5. The gas rotates about 70 km s−1 faster than the stars outside ∼ 4′′, with some
indication that outside this radius the negative velocities reach lower values than the
positive line-of-sight velocities. This asymmetry could be caused by complex dust
distribution or attributed to a signature of lopsidedness.

5.5 DUST EFFECTS OR LOPSIDEDNESS?
Although the unsharp-masked SAURON image shows strong signature of dust-lanes in
the region south of the nucleus, the central dust distribution is easier to study when
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FIGURE 7 — Residual field after subtracting the best-fit rotational model from the observed
gas velocity field. This map reveals the strong non-circular motions in NGC 5448, however,
no ring-like feature is found.

looking at the HST images and the V − H color map in Fig. 6. The color map shows
a strong dust lane about 1′′ at the south-east of the galaxy nucleus as well as an
asymmetrically distributed overall dust distribution. The larger scale WFPC2 image
shows that this central dust lane is accompanied by several other dust lanes further
away from the nucleus. Using the Galactic extinction law of Rieke & Lebofsky (1985),
the HST images yield an average extinction value of AV ' 0.5 over the central 3′′, with
a maximum value of 1.5. The extinction increases significantly towards the center,
with a prominent peak a few arcseconds south of the nucleus (see Fig. 6).

Some of the observational effects of the asymmetrical dust distribution could be
interpreted as signatures of lopsidedness. Lopsidedness in galaxies has been investi-
gated by e.g., Baldwin, Lynden-Bell & Sancisi (1980) and Swaters et al. (1999). The
amplitude of this effect may depend on galactocentric radius, and viewed from dif-
ferent viewing angles will produce different signatures in the observed velocity field.
These studies have shown that the residuals are dominated by the zeroth harmonic
term for viewing angle of 90◦, and by the second harmonic term for viewing angle of
0◦. In the special case of radius-dependent lopsidedness c0 ∼ 3c2. NGC 5448 has a
large inclination, thus the zeroth term dominates, and we find no correlation between
the c0 and the c2 terms. Our harmonic decomposition results display strongly vary-
ing zeroth and second terms. This was shown by SFdZ to be a possible indication
of an m = 1 perturbation, i.e. lopsidedness (c.f., Fig 2. in SFdZ). In this case, sub-
tracting the rotational component from the perturbed velocity field, one should find a
ring-like feature. In Fig. 7, we present this residual field for NGC 5448 and find no
ring-like feature. Therefore, not lopsidiness, but dust is most likely the cause for the
asymmetric features that we observe in NGC 5448.

5.6 THE LARGE-SCALE BAR

In Fig 2, we find that the harmonic parameters derived from the data are consistent
with the bar model outlined in Section 4. Our simple model is limited to an m = 2 per-
turbation. Complicated flow patterns in bars studied by, e.g., Lindblad (1999), imply
a significant contribution from m = 4 and higher-order modes. The third harmonic
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FIGURE 8 — Observed (left) and deprojected (right) DSS image of NGC 5448. The inclination
of 64◦ and PA of 115◦ from the RC3 catalog have been used to deproject the image according
to the two-dimensional deprojection of a circular thin disk.

terms are also influenced by m = 4, which could explain the differences between our
model bar and the data for these parameters, but a detailed model is beyond the scope
of the current analysis.

We now compare the modeled bar with the deprojected Digitized Sky Survey (DSS)
image. The inclination from the RC3 and the PA from our tilted-ring model were used
to deproject the DSS image in a simple way by assuming that the galaxy disk is thin.
The outer spiral arms are clearly emphasized in the deprojected DSS image (Fig. 8).

It is somewhat difficult to identify the size of the large-scale bar from the image.
From our bar model we find a CR of about 37′′. In practice, this is done by assuming
that at CR the circular frequency of the axisymmetric potential is identical to bar an-
gular frequency. According to this definition and since we use a flat rotation curve,
the ILR is located at 1 − 1/

√
2 of the CR, i.e., at about 11′′. If we assume that the bar

in NGC 5448 ends close to the starting point of the spiral arms (Sanders & Huntley
1976), we can associate its CR with the inner radius of the arms. Fig. 8 shows that our
analytic bar model is of reasonable size. The assumed CR radius is confirmed by the
ellipticity profile presented in Fig. 6, since the high ellipticity plateau starts at around
this radius. At around the ILR (i.e., 11′′), there is a good agreement between the s1

profiles from the data and the model, with in both cases a change in sign at the ILR.

6 DISCUSSION AND CONCLUSIONS

We have used linear theory to construct a bar model (m = 2 mode) for NGC 5448.
The best-fit model considers the effects of a single weak bar with a potential ellipticity
ε = 0.15 and a damping amplitude of λ = 0.12. We compare the harmonic terms of the
model with those derived from the data and find an overall consistency (see Fig. 2).
Using this model, we have been able to associate the radial motion of gas with that of
the large-scale bar (see Fig. 4).

NGC 5448 exhibits clear signatures of the presence of other components than a
single bar, which affect the observed velocity field. Inspecting the photometry and
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the central parts of the gaseous and stellar velocity field, we have detected a central
rotating disk-like stellar component embedded in the larger disk (see Fig. 3). The
WFPC2 image shows one very sharp dust lane 1′′ from the center of this galaxy. This
image also shows three more fuzzy and almost parallel dust lanes further out in the
south-east direction. The dusty center is also apparent in the V −H image in Fig. 6.
Dust is inhomogeneously distributed and continues down to the very bright nucleus.
Light from the central light source is absorbed by the dust asymmetrically and the
center appears to be located at the north-west of its actual position.

Investigating the projected and deprojected ellipticity profiles derived from the H-
band data from Laine et al. (2002) confirms the presence of a central disk in the
inner 7′′. Although the projected ellipticity profile decreases at ∼ 4′′ and outwards, we
cannot pin down the exact size of the central disk. The observed ellipticity decrease
could be partly caused by the strongly asymmetric dust distribution. The stellar
kinematic maps show that the central disk rotates faster than the main disk, and our
observed gas distribution and kinematics indicate that this central disk also hosts gas
which rotates faster than its stellar counterpart. This is not unexpected, since due to
its dissipative nature, the gas is not slowed down by asymmetric drift. It is important
to note that, in NGC 5448, the gas velocities are well ordered but larger in magnitude
than the stellar velocities. However, Fig. 5 indicates that this velocity difference dies
out at larger radii. The difference between the stellar and gas velocities can be easily
explained as due to the fact that the stars are in a thicker structure (bulge) in the
central regions, while at larger radii both the gas and the stars are in a flatter disk,
and both move closer to the circular velocity.

It is known that bars are efficient in transferring mass towards the inner regions
of their host galaxies. The centrally concentrated matter may be able to form a central
disk (Yuan & Yen 2004), or an inner bar (e.g., Maciejewski & Sparke 2000, Englmaier
& Shlosman 2004). Our analysis has shown that the non-circular gas kinematics in
NGC 5448 could be driven by the large-scale bar. The central disk could then have
been formed as a result of the gas accumulation at the center.

To conclude, we have been able to analytically model the bar signatures in the
AGN host NGC 5448. We have unveiled a central disk, and have distinguished the
effects of a lopsided perturbation from strong dust features. NGC 5448 hosts consid-
erable amounts of dust which is asymmetrically distributed all the way to the center,
resembling the ‘Evil Eye’ galaxy (Braun, Walterbos & Kennicutt 1992). This study
shows the power of the harmonic decomposition formalism to quantify non-circular
motions in observed velocity fields, and we plan to apply this approach to the full set
of Sa galaxies observed with SAURON.
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CHAPTER 4

RECOVERY OF THREE-INTEGRAL GALAXY MODELS

ABSTRACT
We construct axisymmetric and triaxial galaxy models with a phase-space distri-
bution function that depends on linear combinations of the three exact integrals of
motion for a separable potential. These Abel models, first introduced by Dejonghe
& Laurent and subsequently extended by Mathieu & Dejonghe, are the axisymmet-
ric and triaxial generalizations of the well-known spherical Osipkov–Merritt mod-
els. Their density and higher velocity moments can be calculated efficiently and we
show that they capture much of the rich internal dynamics of early-type galaxies.
We use these models to mimic the high-quality two-dimensional kinematic obser-
vations that are obtained with integral-field spectrographs such as SAURON. We fit
the simulated observations with axisymmetric and triaxial dynamical models ob-
tained with our numerical implementation of Schwarzschild’s orbit-superposition
method, while varying the viewing direction and the mass-to-light ratio. We find
that Schwarzschild’s method is able to recover the internal dynamical structure
of early-type galaxies and to accurate determine the mass-to-light ratio, but addi-
tional information is needed to constrain better the viewing direction.
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1 INTRODUCTION

THE equilibrium state of a collisionless stellar system such as an elliptical or lentic-
ular galaxy is completely described by its distribution function (DF) in the six-

dimensional phase space of positions and velocities. The recovery of the DF from
observations is difficult, as for galaxies other than our own, we can usually only mea-
sure the projected surface brightness and the line-of-sight velocity distribution of the
integrated light as a function of position on the plane of the sky. Moreover, we gen-
erally do not know the intrinsic shape of the galaxy, nor the viewing direction, or the
contribution to the gravitational potential provided by a supermassive central black
hole and/or an extended halo of dark matter. By Jeans (1915) theorem, the DF is a
function of the isolating integrals of motion admitted by the potential, but it is not
evident how to take advantage of this property other than for the limiting case of
spherical systems. Orbits in axisymmetric geometry have two exact integrals of mo-
tion, the energy E and the angular momentum component Lz parallel to the symmetry
axis, but the third effective or non-classical integral I3 obeyed by all regular orbits is
generally not known in closed form. In stationary triaxial geometry E is conserved,
but regular orbits now have two additional effective integrals of motion, I2 and I3,
which are not known explicitly.

Schwarzschild (1979, 1982) devised a numerical method which sidesteps our ig-
norance about the non-classical integrals of motion. It allows for an arbitrary gravita-
tional potential, which may include contributions from dark components, integrates
the equations of motion for a representative library of orbits, computes the density
distribution of each orbit, and then determines the orbital weights such that the com-
bined orbital densities reproduce the density of the system. The best-fitting orbital
weights represent the DF (cf. Vandervoort 1984). Pfenniger (1984) and Richstone &
Tremaine (1984) included kinematic moments in this method, and Rix et al. (1997)
showed how to include the line-of-sight velocity profiles. A number of groups have de-
veloped independent numerical implementations of Schwarzschild’s method for axi-
symmetric geometry which fit the projected surface brightness and line-of-sight ve-
locity distributions of early-type galaxies in detail (van der Marel et al. 1998; Cretton
et al. 1999; Gebhardt et al. 2000, Cappellari et al. 2002; Valluri, Merritt & Emsellem
2004; Thomas et al. 2004). Applications include the determination of central black
hole masses (see also van der Marel et al. 1997; Cretton & van den Bosch 1999;
Verolme et al. 2002; Gebhardt et al. 2003; Copin, Cretton & Emsellem 2004), very ac-
curate global dynamical mass-to-light ratios (Cappellari et al. 2005), as well as dark
matter profiles as a function of radius (Cretton, Rix & de Zeeuw 2000; Thomas et al.
2005), and recovery of the DF (Krajnović et al. 2005). Finally, van de Ven et al. (2005)
included proper motion measurements in order to model nearby globular clusters,
and Verolme et al. (2003) and van den Bosch et al. (2006) describe an extension to
triaxial geometry that includes all line-of-sight kinematics.

Although Schwarzschild models have significantly increased our understanding
of the dynamical structure and evolution of early-type galaxies, questions remain
about the uniqueness and the accuracy with which they are able to recover the global
parameters as well as the internal dynamics of these galaxies. Many tests have been
done to establish how the axisymmetric code recovers known input models, but these
generally have been limited to spherical geometry or to an input axisymmetric DF
that is a function of E and Lz only (van der Marel et al. 1998; Cretton et al. 1999;
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Verolme & de Zeeuw 2002; Valluri et al. 2004; Cretton & Emsellem 2004; Thomas et
al. 2004; Krajnović et al. 2005). The code for triaxial geometry so far has been tested
for densities consistent with a DF that depends on E only.

One could construct a numerical galaxy model with Schwarzschild’s method itself,
compute the observables, and then use these as input for the code and determine
how well it recovers the input model. This is useful, but does not provide a fully
independent test of the software. An alternative is to consider the special family of
models with gravitational potential of Stäckel form, for which all three integrals of
motion are exact and known explicitly. The potentials of these models have a core
rather than a central cusp, so the models cannot include a central black hole, and
are inadequate for describing galactic nuclei. However, they can be constructed for
a large range of axis ratios (Statler 1987), and their observed kinematic properties
are as rich as those seen in the main body of early-type galaxies (Statler 1991, 1994;
Arnold, de Zeeuw & Hunter 1994).

A small number of analytic DFs have been constructed for triaxial separable mod-
els. The ‘thin-orbit’ models (Hunter & de Zeeuw 1992) have the maximum possible
streaming motions, but their DF contains delta functions, and they are therefore not
particularly useful for a test of general-purpose numerical machinery. Dejonghe &
Laurent (1991, hereafter DL91) constructed separable triaxial models in which the
DF depends on a single parameter S = E +wI2 + uI3, which is a linear combination of
the three exact integrals E, I2 and I3 admitted by these potentials, and is quadratic
in the velocity components. For a given radial density profile, the DF follows by sim-
ple inversion of an Abel integral equation. These so-called Abel models have no net
mean streaming motions, and are the axisymmetric and triaxial generalizations of
the well-known spherical Osipkov–Merritt models (Osipkov 1979; Merritt 1985), for
which the observables can be calculated easily (Carollo, de Zeeuw & van der Marel
1995). Mathieu & Dejonghe (1999, hereafter MD99) generalized the results of DL91
by including two families of DF components with net internal mean motions around
the long and the short axis, respectively, and compared the resulting models with
observations of Centaurus A. Although the Abel character of the non-rotating compo-
nents is no longer conserved, the expressions for the velocity moments in these more
general models can still be evaluated in a straightforward way. When the entire DF
depends on the same single variable S the famous ellipsoidal hypothesis (e.g., Edding-
ton 1915; Chandrasekhar 1940) applies, so that self-consistency is only possible in
the spherical case (Eddington 1916; Camm 1941). This does not hold for Abel models
with a DF that is a sum of components for which the variable S has different values
of the parameters w and u. Such multi-component Abel models can provide (nearly)
self-consistent models with a large variety of shapes and dynamics.

Here, we construct axisymmetric and triaxial Abel models to test our numerical im-
plementation of Schwarzschild’s method. We assume a convenient form for the gravi-
tational potential, and construct the DF that reproduces a realistic surface brightness
distribution. We compute the resulting intrinsic moments of the models, and then de-
rive two-dimensional maps of the observed kinematics. We show that, despite the
simple form of the DF, these models display the large variety of features observed
in early-type galaxies with integral-field spectrographs such as SAURON (Emsellem et
al. 2004). We fit axisymmetric and triaxial Schwarzschild dynamical models to the
resulting simulated observables to investigate the accuracy of the recovery of the in-
ternal dynamics and the DF, and determine how well the intrinsic shape, orientation
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and mass-to-light ratio are constrained. The oblate limiting case provides a new and
convenient three-integral test for the axisymmetric code. We find that Schwarzschild’s
method is able to recover the internal dynamical structure of early-type galaxies and
is able to accurately measure the mass-to-light ratio, but the viewing angles are only
weakly constrained.

This chapter is organized as follows. In Section 2 we summarize the properties of
the triaxial Abel models of DL91 and MD99 in a form which facilitates their numer-
ical implementation. In Section 3 we describe the conversion to observables, and in
Section 4 we construct a specific triaxial galaxy model. In Section 5 we consider the
axisymmetric limit and construct a three-integral oblate galaxy model. In Section 6
and 7 we fit the observables of both Abel models with our numerical Schwarzschild
models, and investigate how well the intrinsic moments and three-integral DF as well
as the values of the global parameters are recovered. We summarize our conclusions
in Section 8. In Appendix A we describe the simpler Abel models for the elliptic disk,
large distance and spherical limit, and link them to the classical Osipkov–Merritt solu-
tions for spheres. Readers who are mainly interested in the tests of the Schwarzschild
method may skip Sections 2–5 on the first reading.

2 TRIAXIAL ABEL MODELS

The triaxial Abel models introduced by DL91 have gravitational potentials of Stäckel
form, for which the equations of motion separate in confocal ellipsoidal coordinates.
We briefly describe these potentials, and refer for further details to de Zeeuw (1985a).
We then make a specific choice for the DF, for which the velocity moments simplify.

2.1 STÄCKEL POTENTIALS

We define confocal ellipsoidal coordinates (λ, µ, ν) as the three roots for τ of

x2

τ + α
+

y2

τ + β
+

z2

τ + γ
= 1, (2.1)

with (x, y, z) the usual Cartesian coordinates, and with constants α, β and γ such that
−γ ≤ ν ≤ −β ≤ µ ≤ −α ≤ λ. From the inverse relations

x2 =
(λ+ α)(µ+ α)(ν + α)

(α− β)(α− γ)
, (2.2)

and similarly for y2 and z2 by cyclic permutation of α → β → γ → α, it follows that
a combination (λ, µ, ν) generally corresponds to eight different points (±x,±y,±z). In
these coordinates, the Stäckel potentials have the following form (Weinacht 1924)

VS(λ, µ, ν) =
U(λ)

(λ− µ)(λ− ν)
+

U(µ)

(µ− ν)(µ− λ)
+

U(ν)

(ν − λ)(ν − µ)
, (2.3)

where U(τ) is an arbitrary smooth function (τ = λ, µ, ν). The right-hand side of eq. (2.3)
can be recognized as the second order divided difference of U(τ). Henceforth, we
denote it with the customary expression U [λ, µ, ν], which is symmetric in its arguments
(see Hunter & de Zeeuw 1992, eqs 2.1–2.3, 2.13 and 2.14). Addition of an arbitrary
linear function of τ to U(τ) does not change VS.

The density ρS that corresponds to VS can be found from Poisson’s equation

4πGρS(λ, µ, ν) = ∇2VS(λ, µ, ν), (2.4)
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or alternatively by application of Kuzmin’s (1973) formula (see de Zeeuw 1985b). This
formula shows that, once we have chosen the confocal coordinate system and the
density along the short axis, the mass model is fixed everywhere by the requirement
of separability1. For centrally concentrated mass models, VS has the x-axis as long-
axis and the z-axis as short-axis. In most cases this is also true for the associated
density (de Zeeuw, Peletier & Franx 1986).

2.2 ORBITAL STRUCTURE

The Hamilton-Jacobi equation separates in (λ, µ, ν) for the potentials (2.3), so that
every orbit has three exact integrals of motion (cf. de Zeeuw & Lynden-Bell 1985)

E = 1
2

(

v2
x + v2

y + v2
z

)

+ U [λ, µ, ν],

I2 = 1
2TL

2
y + 1

2L
2
z + 1

2(α− β)v2
x − (β − α)x2U [λ, µ, ν,−α], (2.5)

I3 = 1
2L

2
x + 1

2 (1 − T )L2
y + 1

2(γ − β)v2
z + (γ − β)z2U [λ, µ, ν,−γ],

where vx, vy and vz are the velocity components in the Cartesian coordinate system,
and from Lx = yvz−zvy, the component of the angular momentum vector parallel to the
x-axis, Ly and Lz follow by cyclic permutation of x→ y → z → x and vx → vy → vz → vx.
Furthermore, T is a triaxiality parameter defined as

T = (β − α)/(γ − α), (2.6)

and U [λ, µ, ν, σ] is the third-order divided difference of U(τ). All models for which
U ′′′(τ) > 0, have similar orbital structure and support four families of regular orbits:
boxes (B) with no net rotation, inner (I) and outer (O) long-axis tubes with net rota-
tion around the x-axis, and short-axis (S) tubes with net rotation around the z-axis
(Kuzmin 1973; de Zeeuw 1985a; Hunter & de Zeeuw 1992).

According to Jeans (1915) theorem the phase-space distribution function (DF) is a
function f(E, I2, I3) of the isolating integrals of motion (cf. Lynden-Bell 1962; Binney
1982). The velocity moments of the DF are defined as

µlmn(λ, µ, ν) =

∫∫∫

vl
λv

m
µ v

n
ν f(E, I2, I3) dvλ dvµ dvν, (2.7)

where l, m and n are non-negative integers, and vλ, vµ and vν are the velocity com-
ponents in the confocal ellipsoidal coordinate system. Many of the velocity moments
vanish due to the symmetry of the orbits in these coordinates. The zeroth-order ve-
locity moment is the mass density that corresponds to the DF

ρ?(λ, µ, ν) = µ000(λ, µ, ν). (2.8)

In self-consistent models, ρ? must equal ρS given in eq. (2.4), the mass density that is
related to the potential VS by Poisson’s equation.

1A third method for the calculation of the density is to use ρS = H[λ, λ, µ, µ, ν, ν], where the fifth-order
divided difference is of the function H(τ ) = 4a(τ )U ′(τ ) − 2a′(τ )U(τ ) with a(τ ) = (τ + α)(τ + β)(τ + γ) and
U(τ ) defines the potential as in eq. (2.3). This result was obtained by Hunter in 1989 (priv. comm.), and
by Mathieu & Dejonghe (1996). Similar expressions exist for the related families of potential-density
pairs introduced in de Zeeuw & Pfenniger (1988).
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2.3 ABEL DISTRIBUTION FUNCTION

Following DL91, we choose the DF to be a function of the three integrals of motion E,
I2 and I3 as given in eq. (2.5) through one variable

f(E, I2, I3) = f(S), with S = −E + w I2 + u I3, (2.9)

and w and u are two parameters2. This choice for the DF is equivalent to the celebrated
ellipsoidal hypothesis (e.g., Eddington 1915; Chandrasekhar 1940). Self-consistency
is only possible in the spherical case (Eddington 1916; Camm 1941). On the other
hand, these DFs can produce realistic (luminous) mass densities ρ?, which differ from
the (total) mass density ρS, as in galaxies with dark matter (but see § 3.4 below when
we combine DFs of the form [2.9] with different values for w and u.)

DL91 and MD99 divided the DF into three types of components. The non-rotating
(NR) type is made of box orbits and tube orbits with both senses of rotation populated
equally. The two rotating types, LR and SR, consist of tube orbits, and have net
rotation around either the long axis or the short axis.

2.3.1 Velocity moments
Due to the choice (2.9) of the DF, the general expression (2.7) for the velocity moments
can be simplified, as shown by DL91 for the non-rotating component and by MD99
for the rotating components. We recast their results into a different form to facilitate
the numerical implementation. The resulting velocity moments are given by

µlmn(λ, µ, ν) =

√

2l+m+n+3

H l+1
µν Hm+1

νλ Hn+1
λµ

Smax
∫

Smin

Tlmn [Stop(λ, µ, ν) − S](l+m+n+1)/2 f(S) dS, (2.10)

and set to zero at positions for which Smax ≤ Smin. The terms Hµν, Hνλ and Hλµ in the
square root in front of the integral are defined as

Hστ = 1 +
(σ + α)(τ + α)

γ − α
w +

(σ + γ)(τ + γ)

α− γ
u, (2.11)

with σ, τ = λ, µ, ν. Orbits are confined to the region of space for which all three terms
are non-negative. In general, this condition will not be satisfied for all points, so that
the Abel components have finite extent. From the requirement that at least the origin
(λ, µ, ν) = (−α,−β,−γ) should be included, we find the following limits on w and u

w ≥ − 1

β − α
and u ≤ 1

γ − β
. (2.12)

The factor Tlmn in the integrand as well as the upper limit Smax of the integral are
different for each of the three Abel component types NR, LR and SR, and are discussed
in §§ 2.3.2–2.3.4 below. The lower limit of the integral Smin has to be at least as large
as the smallest value possible for the variable S. This limiting value Slim depends on
the choice of the DF parameters w and u (eq. 2.9), as is shown in Fig. 2 (cf. Fig. 7 of
DL91). The boundaries follow from (2.12) and the separatrices L1 and L2 are given by

L1 : w =
u2 U( 1

u − γ)

(β − α)[1 − (γ − α)u]
, L2 : w =

u

1 − (γ − α)u
. (2.13)

2In contrast with DL91 and MD99, we choose VS ≤ 0 and E ≤ 0, consistent with e.g. de Zeeuw (1985a).



SECTION 2. TRIAXIAL ABEL MODELS 95

FIGURE 1 — The tetrahedron shows all accessible points in integral space (E, I2, I3) for a given
position (λ, µ, ν). The tetrahedron is bounded by the planes for which v2

λ = 0, v2
µ = 0, v2

ν = 0
and E = 0, respectively. The two shaded planes, which are given by v2

λ = v2
µ = 0 at λ = µ = −α

and v2
µ = v2

ν = 0 at µ = ν = −β, divide the tetrahedron into the parts corresponding to the four
general orbit families in a triaxial separable potential: box (B) orbits, inner (I) and outer (O)
long-axis tube orbits and short-axis (S) tube orbits.

At a given position (λ, µ, ν), orbits with different values of the integrals of motion E,
I2 and I3, and hence different values of S, can contribute to the integral (2.10). The
restriction to bound orbits (E ≤ 0) together with the requirement that v2

λ, v2
µ and v2

ν

all three have to be non-negative determines the part of the integral space that is
accessible by orbits that go through (λ, µ, ν). An example of the resulting tetrahedron
in the (E, I2, I3)-space is shown in Fig. 1 (cf. Fig. 1 of MD99). The largest possible
value of S is given by the top of this tetrahedron

Stop(λ, µ, ν) = −U [λ, µ, ν] − w
(λ+ α)(µ+ α)(ν + α)

γ − α
U [λ, µ, ν,−α]

− u
(λ+ γ)(µ+ γ)(ν + γ)

α− γ
U [λ, µ, ν,−γ], (2.14)

which is thus a function of the position (λ, µ, ν). At the origin Stop(−α,−β,−γ) =
U [−α,−β,−γ], which is the central value of the potential VS. In what follows, we
normalize VS by setting U [−α,−β,−γ] = −1, so that 0 ≤ Stop ≤ 1.

2.3.2 Non-rotating components (NR)
Since the non-rotating component type can exist everywhere in the accessible integral
space (the tetrahedron in Fig. 1), we simply have that Smax = Stop(λ, µ, ν). Spatially the
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FIGURE 2 — The limiting value Slim of the variable S = −E + w I2 + u I3 as function of the
parameters w and u. The physical region is bounded by the relations (2.12), indicated by the
thick solid lines. The dashed curves divide this region into three parts, each with a different
expression for Slim. The relations for the separatrices L1 and L2 are given in eq. (2.13).

NR components are thus bounded by the surface Stop(λ, µ, ν) = Smin.
The factor Tlmn follows from the cross section of the S-plane within the tetrahedron

and can be written in compact form as (cf. DL91)

TNR
lmn = B( l+1

2 , m+1
2 , n+1

2 ), (2.15)

where B is the beta function of three variables3. Since TNR
lmn is independent of S it

can be taken out of the integral, which then becomes of Abel form. Unfortunately,
the inversion of eq. (2.10) for any chosen moment µlmn(λ, µ, ν), including the case
l = m = n = 0, is generally impossible, as the left-hand side is a function of three
variables, while the DF depends on only one variable, S. The density ρ? specified
along any given curve will define a different f(S). A case of particular interest is to
choose the density along the short axis to be ρ?(0, 0, z) = ρS(0, 0, z). This defines a
unique f(S), and hence gives ρ? everywhere. Kuzmin’s formula applied to ρS(0, 0, z)
similarly defines the density ρS everywhere. For single Abel DF components these will
not be the same, except in the spherical limit (see Appendix A.3)

Since the orbits have no net rotation, the velocity moments µNR
lmn are only non-zero

when l, m and n are all three even, and vanish in all other cases.

3The beta function of k variables is defined in terms of the complete gamma function Γ as
B(β1, . . . , βk) = Γ(β1) · · ·Γ(βk)/Γ(β1 + · · · + βk).
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2.3.3 Long-axis rotating components (LR)
The long-axis rotating component type only exists in the part of the integral space that
is accessible by the (inner and outer) long-axis tube orbits. Within the tetrahedron
for all orbits this is the region for which v2

ν ≥ 0 at ν = −β. It follows that Smax =
Stop(λ, µ,−β) ≤ Stop(λ, µ, ν), so that the spatial extent of the LR components is generally
smaller than the NR components.

The term Tlmn follows from the cross section of the S-plane within the tetrahedron
and with the above boundary plane v2

ν = 0 at ν = −β, resulting in

TLR
lmn =

(−2)(l+m+4)/2
√

al+1
0 bm+1

0 MLR
0

(s+ 1)(s− 1) . . . (s+ 1 − (l +m))
, (2.16)

with s = l +m+ n, the parameters a0 and b0 defined as

a0 =
(λ+ β)Hµν [Stop(λ, µ,−β) − S]

(λ− ν)Hµ(−β) [Stop(λ, µ, ν) − S]
, b0 =

(µ+ β)Hνλ [Stop(λ, µ,−β) − S]

(µ− ν)H(−β)λ [Stop(λ, µ, ν) − S]
, (2.17)

and

MLR
0 =

{

M(s, l
2 ,

m
2 ; a0, b0,

π
2 ), a0 ≤ b0,

M(s, m
2 ,

l
2 ; b0, a0,

π
2 ), a0 > b0.

(2.18)

The function M is defined in Appendix B, where we evaluate it in terms of elementary
functions (odd s) and elliptic integrals (even s).

The orbits have net rotation around the long axis, but the motion parallel to the
intermediate axis and short axis cancels. As a result, the velocity moments µLR

lmn

vanish when l or m are odd. To invert the net rotation around the long-axis, µLR
lmn has

to be multiplied with (−1)n, i.e. the non-zero odd velocity moments have opposite sign.

2.3.4 Short-axis rotating components (SR)
The short-axis component type reaches the part of integral space accessible by the
short-axis tube orbits. Within the tetrahedron for all orbits this is the region for
which v2

µ ≥ 0 both at µ = −β and µ = −α (Fig. 1). The latter requirement is equivalent
to I2 ≥ 0. In this case, Smax = Stop(λ,−α, ν) ≤ Stop(λ, µ, ν), and the spatial extent of the
SR components is generally smaller than the NR components.

The form of the term Tlmn depends on the cross section of the S-plane within the
tetrahedron and with the above two boundary planes. It is given by

T SR
lmn =

(−2)(l+n+4)/2
∑2

i=1

√

al+1
i bn+1

i MSR
i

(s+ 1)(s− 1) . . . (s+ 1 − (l + n))
. (2.19)

The parameters a1 and b1 follow from a0 and b0 defined in (2.17) by interchanging
ν ↔ µ, and in turn a2 and b2 follow from a1 and b1 by interchanging β ↔ α. For the
terms MSR

i we have two possibilities, I and II,

MSR
I =

{

M(s, l
2 ,

n
2 ; aI, bI, θI), aI ≤ bI,

M(s, n
2 ,

l
2 ; bI, aI,

π
2 ) −M(s, n

2 ,
l
2 ; bI, aI,

π
2 −θI), aI > bI,

(2.20)

MSR
II =

{

M(s, l
2 ,

n
2 ; aII, bII,

π
2 ) −M(s, l

2 ,
n
2 ; aII, bII, θII), aII ≤ bII,

M(s, n
2 ,

l
2 ; bII, aII,

π
2 −θII), aII > bII,

(2.21)
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where M is given in Appendix B, and θI and θII follow from

tan2 θI =
bII (aI − aII)

aII (bII − bI)
and tan2 θII =

bI (aII − aI)

aI (bI − bII)
. (2.22)

For the assignment of the labels I and II, we discriminate between four cases

a1 ≤ a2, b1 ≥ b2 : I → 1, II → 2,

a1 ≥ a2, b1 ≤ b2 : I → 2, II → 1,
(2.23)

a1 ≤ a2, b1 ≤ b2 : I → 1, θI = π/2, CSR
2 = 0,

a1 ≥ a2, b1 ≥ b2 : I → 2, θI = π/2, CSR
1 = 0.

The orbits only have net rotation around the short axis, so that the velocity moments
µSR

lmn vanish when l or n are odd. Multiplying µSR
lmn with (−1)m results in net rotation

around the short axis in the opposite direction.

3 OBSERVABLES

We now describe how to convert the intrinsic velocity moments µlmn(λ, µ, ν) to observ-
able quantities on the plane of the sky: the surface brightness (SB) and the mean
line-of-sight velocity V , velocity dispersion σ, as well as higher-order moments of the
line-of-sight velocity distribution.

3.1 FROM INTRINSIC TO OBSERVER’S COORDINATE SYSTEM

In order to calculate the projected velocity moments, we introduce a new Cartesian
coordinate system (x′′, y′′, z′′), with x′′ and y′′ in the plane of the sky and the z ′′-axis
along the line-of-sight. Choosing the x′′-axis in the (x, y)-plane of the intrinsic coordi-
nate system (cf. de Zeeuw & Franx 1989 and their Fig. 2), the transformation between
both coordinate systems is known once two viewing angles, the polar angle ϑ and
azimuthal angle ϕ, are specified. The intrinsic z-axis projects onto the y ′′-axis, which
for an axisymmetric galaxy model aligns with the short axis of the projected surface
density Σ. However, for a triaxial galaxy model the y ′′-axis in general lies at an angle
ψ with respect to the short axis of Σ. This misalignment ψ can be expressed in terms
of the viewing angles ϑ and ϕ and the triaxiality parameter T (defined in eq. 2.6) as
follows (cf. eq. B9 of Franx 1988)

tan 2ψ = − T sin 2ϕ cos ϑ

sin2 ϑ− T
(

cos2 ϕ− sin2 ϕ cos2 ϑ
) (3.1)

with sin 2ψ sin 2ϕ cos ϑ ≤ 0 and −π/2 ≤ ψ ≤ π/2. A rotation over ψ transforms the
coordinate system (x′′, y′′, z′′) to (x′, y′, z′), with the x′-axis and y′-axis aligned with
respectively the major and minor axis of Σ, whereas z ′ = z′′ is along the line-of-sight.

The expressions in § 2.3 involve the velocity components in the confocal coordinate
system (λ, µ, ν). The conversion to line-of-sight quantities can be done by four suc-
cessive matrix transformations. First, we obtain the velocity components in the first
octant of the intrinsic Cartesian coordinate system (x, y, z) by applying the matrix Q,
of which the first element is given by (cf. DL91)

Q11 = sign(λ+ α)

√

(µ+ α)(ν + α)(λ + β)(λ+ γ)

(α− β)(α − γ)(λ− µ)(λ− ν)
, (3.2)
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and the other elements follow horizontally by cyclic permutation of λ → µ → ν → λ
and vertically by cyclic permutation of α → β → γ → α. The second matrix uses the
symmetries of the orbits to compute the appropriate signs of the intrinsic Cartesian
velocities in the other octants. The result depends on whether or not the orbit has
a definite sense of rotation in one of the confocal coordinates. For the three types of
Abel components this results in the following matrices

NR : S = diag[sgn(x), sgn(y), sgn(z)]

LR : S = diag[sgn(xyz), sgn(z), sgn(y)] (3.3)
SR : S = diag[sgn(y), sgn(x), sgn(xyz)]

Finally, the conversion from the intrinsic to the observer’s Cartesian velocities involves
the same projection and rotation as for the coordinates. We represent these two
coordinate transformations respectively by the projection matrix

P =





− sinϕ cosϕ 0
− cosϑ cosϕ − cosϑ sinϕ sinϑ
sinϑ cosϕ sinϑ sinϕ cosϑ



 , (3.4)

and the rotation matrix

R =





cosψ − sinψ 0
sinψ cosψ 0

0 0 1



 . (3.5)

In this way, we arrive at the following relation




vx′

vy′

vz′



 = M





vλ

vµ

vν



 , with M ≡ SPQR, (3.6)

where the full transformation matrix M is thus a function of (λ, µ, ν), the constants
(α, β, γ) and the viewing angles (ϑ, ϕ, ψ).

We can now write each velocity moment in the observer’s Cartesian coordinate
system (x′, y′, z′) as a linear combination of the velocity moments in the confocal ellip-
soidal coordinate system

µijk(x
′, y′, z′) =

∑

l,m,n

cl,m,n µlmn(λ, µ, ν), (3.7)

with i + j + k = l + m + n. The coefficients cl,m,n are combinations of elements of M,
and can be obtained recursively as

cl,m,n = cl−1,m,n + cl,m−1,n + cl,m,n−1, (3.8)

with the first order expressions given by

c1,0,0 = Mes1, c0,1,0 = Mes2, c0,0,1 = Mes3, (3.9)

and the index es is the sth element (s = l +m+ n) of the vector e = [1, .., 1, 2, .., 2, 3, .., 3].
The number of integers 1 (#1) is equal to the value of the velocity moment index i,
and similarly #2 = j and #3 = k. For the density µ000 we have c0,0,0 = 1.
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3.2 LINE-OF-SIGHT VELOCITY MOMENTS

Spectroscopic observations of the integrated light of galaxies provide the line-of-sight
velocity distribution (LOSVD) as a function of position on the sky plane:

L(x′, y′, vz′) =

∫∫∫

f(E, I2, I3) dvx′ dvy′ dz′. (3.10)

The velocity moments of the LOSVD are

µk(x
′, y′) =

∫ ∞

−∞
vk
z′L(x′, y′, vz′)dvz′ (3.11)

=

∫ ∞

−∞
µ00k(x

′, y′, z′) dz′. (3.12)

The latter form follows upon substitution of the definition (3.10), rearranging the
sequence of integration and using the definition of the intrinsic velocity moments of
the DF. The lowest order velocity moments µ0, µ1 and µ2 provide the surface mass
density Σ, the mean line-of-sight velocity V and dispersion σ by

Σ = µ0, V =
µ1

µ0
, and σ2 =

µ0 µ2 − µ2
1

µ2
0

, (3.13)

as a function of (x′, y′).
The triple integral on the right-hand side of (3.10) can be evaluated relatively eas-

ily for the Abel DF (2.9), but is numerically cumbersome. On the other hand, the
moments of the LOSVD follow by the single integration (3.12) and can be computed
efficiently, even though the expressions for µ00k are somewhat lengthy.

Whereas Σ, V and σ can be measured routinely, determinations of the higher order
moments (µ3, µ4, . . . ), are in general more uncertain as they depend significantly
on the wings of the LOSVD, which become quickly dominated by the noise in the
observations. Instead of these true higher-order moments, one often uses the Gauss-
Hermite moments (h3, h4, . . . ), which are much less sensitive to the wings of the
LOSVD (van der Marel & Franx 1993; Gerhard 1993).

There is no simple (analytic) relation between the true moments (3.13) and the
Gauss-Hermite moments, including the lower order moments ΣGH, VGH and σGH (but
see eq. 18 of van der Marel & Franx 1993 for approximate relations to lowest order
in h3 and h4). For this reason, we derive the Gauss-Hermite moments numerically.
One way is to find the Gauss-Hermite LOSVD of which the numerically calculated
true moments best-fit those from the Abel model. In Appendix C, we show however
that this direct fitting of the true moments has various (numerical) problems, which
can cause the resulting Gauss-Hermite moments to be significantly different from
their true values. Instead, we (re)construct the LOSVD from the true moments by
means of an Edgeworth expansion and then fit a Gauss-Hermite series to it. With
this alternative method the Gauss-Hermite moments can be computed accurately
and efficiently.

3.3 SURFACE BRIGHTNESS

The surface brightness follows upon integration of the luminosity density along the
line-of-sight. The luminosity density in turn is related to the mass density ρ? via the
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stellar mass-to-light ratio M?/L. Whereas ρ? is the zeroth-order velocity moment of the
DF (eq. 2.8) that describes the distribution of the luminous matter, ρS is associated to
the potential VS and hence contains all matter, including possible dark matter. This
means that in general the surface brightness cannot be obtained from ρS (or from VS)
and vice versa, without knowing (or assuming) the distribution of the dark matter.
However, when the dark matter fraction is assumed to be constant, we only have to
multiply ρS by a constant factor (<1) to obtain ρ?. This means that ρS is related to
the luminosity density via a total mass-to-light ratio M/L which is M?/L multiplied by
the same factor. When in addition M?/L does not change (e.g., due to variation in the
underlying stellar populations), M/L is constant, i.e., mass follows light.

While in the outer parts of late-type galaxies the presence of dark matter, as pre-
dicted by the cold dark matter paradigm for galaxy formation (e.g., Kauffmann & van
den Bosch 2002), was demonstrated convincingly already more than two decades ago
(e.g., van Albada et al. 1985), the proof in the outer parts of early-type galaxies re-
mains uncertain (e.g., Romanowsky et al. 2003), mainly due to a lack of kinematic
constraints. As a consequence, in the outer parts of galaxies, commonly a simple
functional form for the dark matter distribution is assumed, often the universal pro-
file from the CDM paradigm (Navarro, Frenk & White 1997).

The dark matter distribution in the inner parts of galaxies is probably even more
poorly understood (e.g., Primack 2004). Comparing the (total) M/L from dynamical
modeling with the (stellar) M?/L from color and absorption line-strength measure-
ments can constrain the dark matter distribution (e.g., Cappellari et al. 2005). But
due to uncertainties in the stellar population models, even the dark matter fraction
is uncertain, let alone the shape of the dark matter distribution. The use of strong
gravitational lensing to constrain the total mass distribution, in combination with dy-
namical modeling seems to be a promising way to study in detail the fraction and
shape of the dark matter in the inner parts of galaxies (e.g., Treu & Koopmans 2004;
see also Chapter 6 of this thesis). However, in current dynamical studies of the central
parts of early-type galaxies, it is commonly assumed that mass follows light. As we
saw above, after deprojection of the observed surface brightness for a given viewing
direction, a simple scaling with the constant M/L then yields the total mass density
ρS, from which the potential can be determined by solving Poisson’s equation.

In the case of a constant mass-to-light ratio, we can also first multiply the surface
brightness with this mass-to-light ratio and then deproject the resulting surface mass
density to obtain the intrinsic mass density. The surface mass density that corre-
sponds to the DF is Σ, defined in eq. (3.13). The surface mass density ΣS related to the
potential VS has concentric isodensity contours that show no twist (e.g., Franx 1988).

3.4 COMBINATION OF MULTIPLE DF COMPONENTS

Until now, we have chosen the Abel DF to be a function of a single variable S =
−E + wI2 + uI3, and we have separated it in three component types, non-rotating
(NR), long-axis rotating (LR) and short-axis rotating (SR), but we have not made any
assumption about the form of the DF (apart from the obvious requirement that it has
to be non-negative everywhere and that it decreases to zero at large radii). Following
MD99, we choose the DF to be a linear combination of basis functions of the form

fδ(S) =

(

S − Smin

1 − Smin

)δ

, (3.14)
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with δ a positive constant and Slim ≤ Smin ≤ S ≤ 1, and Slim given in Fig. 2.
Once the potential VS is known, we use the relations from § 2.3 together with the

expressions in Appendix B, to compute the intrinsic velocity moments for the NR, SR
and LR components in an efficient way, where at most the integral over S has to be
evaluated numerically. For the NR components this integral can even be evaluated
explicitly, resulting in

µNR
lmn,δ(λ, µ, ν) =

√

[2(Smax − Smin)]l+m+n+3

H l+1
µν Hm+1

νλ Hn+1
λµ

(

Smax − Smin

1 − Smin

)δ

B( l+1
2 , m+1

2 , n+1
2 , δ+1), (3.15)

where Smax = Stop(λ, µ, ν) (cf. eq. 2.14). For a given viewing direction and mass-to-light
ratio, we can then convert the intrinsic velocity moments to observable quantities as
described in § 3.1–3.3. The observables depend on the choice of the DF parameters w,
u and δ, they are different for each component type, and for the rotating components
(LR and SR), they also depend on the sense of rotation around the axis of symmetry4.
By combining the observables for a set of such DF components, we can construct
realistic galaxy models. Since the mean line-of-sight velocity, velocity dispersion and
higher order Gauss-Hermite velocity moments, are non-linear functions of the DF, we
cannot directly combine these observables in a linear way.

Instead, we use the projected velocity moments (eq. 3.12) of the DF components,
which we add together after multiplying each of them with a constant weight. We
convert the resulting combined projected velocity moments to observables. Since the
mass included in each DF component is different, we multiply the weights with the
mass of the corresponding DF component, divided by the total (luminous) mass. In
this way, we obtain the mass fractions per DF component.

4 TRIAXIAL THREE-INTEGRAL GALAXY MODELS

After choosing a Stäckel potential, we investigate the shape of the density generated
by the Abel DF components, and use these components to construct a triaxial galaxy
model with three integrals of motion.

4.1 ISOCHRONE POTENTIAL AND DENSITY

There are various choices for the potential and density that provide useful test mod-
els for comparison with the kinematics of triaxial elliptical galaxies (e.g., Arnold et
al. 1994). One option is to consider the so-called perfect ellipsoid, for which Statler
(1987) already computed numerical Schwarzschild models and Hunter & de Zeeuw
(1992) investigated the maximum streaming thin orbit models. It has a density dis-
tribution stratified on similar concentric ellipsoids, but the potential function U(τ)
contains elliptic integrals, which slows down numerical calculations. An alternative
is to consider the set of models introduced by de Zeeuw & Pfenniger (1988), which
have nearly ellipsoidal density figures, and have a potential and density that are eval-
uated easily and swiftly. They are defined by the choice:

U(τ) = −GM(
√
τ −

√
−α)(

√
τ −√−γ)

(√
τ +

√
αγ − β√−α+

√−γ

)

, (4.1)

4To change only the sense of rotation, the observables do not have to be recomputed, as a simple
change in the sign of the odd velocity moments is sufficient.
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so that the triaxial Stäckel potential has the elegant form

VS(λ, µ, ν) =
−GM

(√
λµ+

√
µν +

√
νλ− β

)

(
√
λ+

√
µ)(

√
µ+

√
ν)(

√
ν +

√
λ)
, (4.2)

where we set GM =
√−γ +

√
−α to normalize VS to -1 in the center. In the oblate

axisymmetric limit this potential is that of the Kuzmin-Kutuzov (1962) models of De-
jonghe & de Zeeuw (1988), and in the spherical limit it reduces to Hénon’s (1959)
isochrone. For all these models, VS along the short z-axis is identical to the isochrone
potential −GM/(

√
τ +

√−α). We therefore refer to models with U(τ) of the form (4.1)
as isochrone models. Since the potential falls of as 1/r at large radii, all these models
have finite total mass.

The expressions for the integrals of motion are given in (2.5), where U [λ, µ, ν] = VS

and the third order divided difference U [λ, µ, ν, σ] is given by the symmetric expression

U [λ, µ, ν, σ] = −GM
√
λµν +

√
µνσ +

√
νσλ+

√
σλµ− β(

√
λ+

√
µ+

√
ν +

√
σ)

(
√
λ+

√
µ)(

√
λ+

√
ν)(

√
λ+

√
σ)(

√
µ+

√
ν)(

√
µ+

√
σ)(

√
ν+

√
σ)
. (4.3)

These isochrone models have the convenient property that the expressions for the po-
tential and the integrals of motion contain only elementary functions of the (confocal
ellipsoidal) coordinates and have no singularities.

The same is true for the associated mass density ρS, of which the expression is
given in Appendix C of de Zeeuw & Pfenniger (1988), and a contour plot of ρS in the
(x, z)-plane is shown in their Fig. 2. These authors also derive the axis ratios of ρS in
the center (their eq. C7) and at large radii (their eq. C11), in terms of the axis ratios ζ
and ξ of the confocal ellipsoidal coordinate system, defined as

ζ2 = β/α, ξ2 = γ/α. (4.4)

Although ρS becomes slightly rounder at larger radii, its axis ratios remain smaller
than unity (for ξ < ζ < 1) because at large radii ρS ∼ 1/r4. Characteristic values for
the axis ratios can be obtained from the (normalized) moments of inertia along the
principal axes of the density,

a2 =

∫

x2ρ(x, 0, 0) dx
∫

ρ(x, 0, 0) dx
, (4.5)

where the intermediate and short semi-axis length, b and c, of the inertia ellipsoid
follow from the long semi-axis length a by replacing x with y and z respectively. Taking
for example ζ = 0.8 and ξ = 0.64, the semi-axis lengths of the inertia ellipsoid result
in the characteristic axis ratios bS/aS = 0.89 and cS/aS = 0.82 for the density ρS. The
contours of the projected density are nearly elliptic with slowly varying axis ratios.

4.2 THE SHAPE OF THE LUMINOUS MASS DENSITY

Whereas the shape of the (total) mass density ρS is fixed by the choice of the potential
VS, and ζ and ξ (4.4), the shape of the (luminous) density ρ?, which is the zeroth order
velocity moment of the DF (eq. 2.8), also depends on the DF parameters w, u and
δ, and the type of component. For ζ = 0.8 and ξ = 0.64, we show in Fig. 3 for non-
rotating DF components the characteristic axis ratios of the corresponding density, as
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FIGURE 3 — The characteristic axis ratios of the luminous mass density for a non-rotating
Abel component, as function of the DF parameters w and u, and δ = 1. The axis ratios of the
confocal ellipsoidal coordinate system are ζ = 0.8 and ξ = 0.64. The thick contours are drawn
at the levels that correspond to the characteristic axis ratios of the total mass density ρS,
associated with the underlying isochrone Stäckel potential (4.2). The intermediate-over-long
axis ratio b/a depends mainly on w, the short-over-intermediate axis ratio c/b depends mainly
on u, and c/a is the product of the previous two.

function of w and u. We have set δ = 1, but the axis ratios depend only weakly on it,
with ρ? becoming slightly flatter for increasing δ. The thick contours are drawn at the
levels that correspond to the values of the characteristic axis ratios of ρS, respectively
aS/bS = 0.89, cS/bS = 0.91 and cS/aS = 0.82. These values are independent of w and u
(as well as the other DF parameters).

While the intermediate-over-long axis ratio b/a increases with increasing w, its
value is nearly independent of u. By contrast, the short-over-intermediate axis ratio
c/b, is nearly independent of w, and increases with increasing u. The short-over-long
axis ratio c/a is the product of the previous two axis ratios and thus depends on both
w and u. When both w and u are negative, the density ρ? has its long-axis along the
x-axis and its short-axis along the z-axis, in the same way as the potential VS and the
associated density ρS. Above certain positive values of either w or u, the axis ratios
become larger than unity, which means that ρ? is no longer aligned with the underly-
ing coordinate system in the same way as VS and ρS. For example, when w = −0.5 and
u = 0.5, b/a < 1 but c/b > 1, so that in this case ρ? has its short axis along the y-axis.

A change in the sign of w and u has a strong effect on the radial slope of ρ?. In
Fig. 4, the radial profiles of ρ? along the principal axes are shown for four combi-
nations of w and u. The density is normalized to the central value ρ0. To set the
dimension of the radius r, we have set the scale length lα, defined as

lα =
√
−α, (4.6)

to 10′′. For given axis ratios ζ and ξ of the confocal ellipsoidal coordinate system,
we calculate all quantities with respect to unit scale length. At the end we scale
the resulting Abel model, depending on the value of lα (in arcsec) and the assumed
distance D (in Mpc). The profiles along the y-axis (dotted curves) and along the z-axis
(dashed curves) are arbitrarily offset vertically with respect to the profile along the
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FIGURE 4 — Principal axes profiles of the luminous mass density ρ? for a non-rotating Abel
component, normalized to the central value ρ?,0. Each panel is for a different combination of
the DF parameters w and u, while the grey scale indicates variation in δ from zero (darkest
curve) to four (lightest curve), in unity steps. The profiles along the y-axis (dotted curves)
and along the z-axis (dashed curves) are arbitrarily offset vertically with respect to the profile
along the x-axis (solid curves) to enhance the visualization. The thick black curves show
the profiles for the (total) mass density ρS, associated with the underlying isochrone Stäckel
potential (4.2), with ζ = 0.8 and ξ = 0.64, and scale length a = 10′′. When the value of either w
or u is positive (bottom panels), the profiles show a break at around the scale-length, so that
these compact components may be used to represent kinematically decoupled components.

x-axis (solid curves) to enhance the visualization. The thin curves are the profiles
of the (luminous) mass density ρ? for varying δ, from δ = 0 (darkest curve) to δ = 4
(lightest curve), in unit steps. The thick black curves show the profiles for the (total)
mass density ρS, which is independent of w, u and δ.

The profiles of ρ? become steeper for increasing δ and for increasing absolute values
of w and u. In particular, when either w or u becomes positive (bottom panels), the
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profiles suddenly become much steeper and drop to zero already at relatively small
radii. The resulting Abel components are thus compact and, as we saw above, can be
different in shape and orientation from the main body of the galaxy model. Therefore,
they can be used to represent kinematically decoupled components. When both w ≤ 0
and u ≤ 0 (top panels), ρ? falls off much more gently and the Abel components cover a
larger region. When w = u = 0 (top left panel), so that the DF only depends on energy,
the profiles as well as the shape (Fig. 3) of ρ? can even be flatter than those of ρS.
However, already for small non-zero values of w and u, generally ρ? ≤ ρS everywhere
in the galaxy model, and ρ? < ρS in the outer parts. Although self-consistency ρ? = ρS

is only possible in the spherical case (for fixed values of w and u, see § 2.3), we can
choose the parameters w, u and δ so that ρ? ∼ ρS. At the same time, having ρ? < ρS

in the outer parts of the galaxy model, allows us to take into account a dark halo
contribution.

The shape of ρ? can furthermore change due to the additional contribution from
long-axis rotating and short-axis rotating components. Although these components
have no density along respectively the long-axis and short-axis, the behavior of their
overall shape as function of w, u and δ is similar as above for the corresponding
non-rotating components.

The above analysis shows that, given the triaxial isochrone potential (4.2), we
can use Abel components to construct a galaxy model with a realistic density. De-
pending on the choice of w, u and δ, the galaxy model can contain compact (kine-
matically decoupled) components and account for possible dark matter (in the outer
parts). Furthermore, we show below that even with a small number DF components,
enough kinematic variation is possible to mimic the two-dimensional kinematic maps
of early-type galaxies provided by observations with integral-field spectrographs such
as SAURON. This means that we can construct simple but realistic galaxy models to
test our Schwarzschild software (§ 6 and 7).

4.3 A TRIAXIAL ABEL MODEL

As before, we choose the isochrone Stäckel potential (4.2), we take ζ = 0.8 and ξ = 0.64
for the axis ratios of the coordinate system (4.4), resulting in a triaxiality parameter
(2.6) of about T = 0.61, and we set the scale length (4.6) to lα = 10′′. Assuming a dis-
tance of D = 20 Mpc and a total mass of 1011 M� results in a central value for the poten-
tial V0 ∼ 2.5 × 106 km2 s−2, which also sets the unit of velocity. We restrict the number
of DF components to three, one of each type. For the first component of type NR we set
w = −0.5, u = −0.5 and δ = 1, so that the shape of the corresponding density is similar
to that of ρS, except in the outer parts where a steeper profile mimics the presence of
dark matter (see Figs. 3 and 4). For the second and third component, respectively of
type LR and SR, we adopt the same parameters, expect that we take u = 0.5 for the
SR component, which therefore is more compact than the NR and LR component.

For each DF component, we calculate the intrinsic true velocity moments up to
fifth (s = 5) order and integrate them along the line-of-sight, which we set by choosing
ϑ = 70◦ and ϕ = 30◦ for the viewing angles. After rotation over the misalignment angle
ψ = 101◦ (3.1), we obtain the projected true velocity moments µk (k = 0, . . . , 5) shown in
Fig. 5. The parameters of each DF component are given on the right. The grey scale
indicates the range of the true velocity moment in each panel, from minimum (black)
to maximum value (white). The NR component has zero odd velocity moments. For
the LR and SR component, the even velocity moments show a decrease in the center,



SECTION 4. TRIAXIAL THREE-INTEGRAL GALAXY MODELS 107

FIGURE 5 — From left to right: Projected true moments µk (k = 0, . . . , 5) of Abel DF components
for a model with the triaxial separable isochrone potential (4.2) with ζ = 0.8 and ξ = 0.64
(T = 0.61), and scale length a = 10′′. The model is placed at a distance of D = 20 Mpc and
the adopted viewing angles are ϑ = 70◦and ϕ = 30◦. From top to bottom: A non-rotating (NR),
long-axis rotating (LR) and short-axis rotating (SR) Abel component, with the corresponding
DF parameters w, u and δ given on the right.

because these components have zero density along respectively the intrinsic long and
short axis. We add the true velocity moments of the NR, LR and SR components,
weighted with mass fractions of respectively 80%, 10% and 10%. From the resulting
combined true velocity moments, we construct the Edgeworth LOSVD and fit a Gauss-
Hermite series (see Appendix C), to obtain maps of the mean line-of-sight surface
mass density Σ, velocity V , velocity dispersion σ and higher-order moments h3 and
h4. We convert Σ to the surface brightness by dividing by a constant stellar mass-to-
light ratio of M?/L = 4 M�/L�.

To convert these ‘perfect’ kinematics to ‘realistic’ observations, similar to those
obtained with SAURON (Bacon et al. 2001), we finally apply the following steps. Each
of the maps consist of 30 by 40 square pixels of 1′′ in size. Using the adaptive spatial
2D-binning scheme of Cappellari & Copin (2003), we bin the pixels according to the
criterion that each of the resulting (Voronoi) bins contains a minimum in signal-to-
noise (S/N), which we take proportional to the square root of the surface brightness.
For the mean errors in the kinematics we adopt the typical values of 10 km s−1 for V
and σ and 0.03 for h3 and h4 in the kinematics of a representative sample of early-type
galaxies observed with SAURON (Emsellem et al. 2004). We then weigh these values
with the S/N in each bin to mimic the observed variation in measurement errors
across the field. Finally, we use the computed measurement errors to (Gaussian)
randomize the kinematic maps. In this way, we include the randomness that is always
present in real observations. The resulting kinematic maps are shown in the top
panels of Fig. 6. Because of the eight-fold symmetry of the triaxial model, the maps
are always point-symmetric, apart from the noise added.

4.4 REALISTIC GALAXY MODELS WITH MULTIPLE DF COMPONENTS

In the above triaxial Abel model we only use three DF components to obtain a trans-
parent (test) galaxy model, but with rich enough internal dynamics to provide observ-
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FIGURE 6 — Kinematic maps for a triaxial Abel model (top; see § 4.3) and for the best-fit triaxial
Schwarzschild model (bottom; see § 6). From left to right: mean line-of-sight velocity V (in
km s−1), velocity dispersion σ (in km s−1) and Gauss-Hermite moments h3 and h4. The line-
of-sight kinematics of the input Abel model have been converted to observables with realistic
measurement errors as described in the text. Isophotes of the surface brightness of the Abel
model are overplotted in each map. At the right side of each map, the (linear) scale of the
corresponding kinematics is indicated by the grey scale bar, and the limits are given below.
(See p. 253 for a color version of this figure.)

ables that mimic the kinematics of real early-type galaxies. More general Abel models
can be obtained by a (linear) combination of more DF components, with varying func-
tional forms of the variable S and different values of the parameters w and u. We saw
in § 4.2 that by changing w and u the DF components can have a large range in dif-
ferent shapes, and the same is true for the corresponding intrinsic velocity moments
(see also Fig. 9–11 of DL91).

By summing a series of DF components over w and u [with possibly different func-
tional dependences of f(S)], one might expect to cover a large fraction of all physical
DFs. Due to the different values of w and u, such a sum of DF components is no longer
a function of the same, single variable S, so that the ellipsoidal hypothesis does not
apply. Consequently, it becomes possible to construct (nearly) self-consistent dynam-
ical models, with the (combined) luminous mass density ρ? equal (or close) to the mass
density ρS associated to the potential.

This combination of DF components provides an elegant way to (numerically) build
three-integral galaxy models. Nuyten (2005, MSc thesis) used thirty DF components
to fit the kinematic maps of the decoupled core galaxy NGC 4365 provided by obser-
vations with the integral-field spectrograph SAURON (Davies et al. 2001). The best-fit
is reasonable, but deviates especially in the center due to the presence of a massive
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black hole. We find constraints on the viewing direction and mass-to-light ratio, as
well as a first estimate of the masses and a description of the intrinsic dynamical
structure of the different orbital components, consistent with an independent deter-
mination by Statler et al. (2004). This preliminary investigation shows that Abel mod-
els with a few DF components, as in § 4.3, already provide quite a good representation
of real early-type galaxies (see also MD96 for a similar application to Centaurus A).

5 AXISYMMETRIC THREE-INTEGRAL GALAXY MODELS

We now consider three-integral galaxy models in the axisymmetric limit. Various
groups have successfully developed independent axisymmetric implementations of
Schwarzschild’s method and verified their codes in a number of ways. The published
tests to recover a known (analytical) input model have been limited to spherical geom-
etry or to an axisymmetric DF that is a function of the two integrals of motion E and
Lz only. Here we present the velocity moments of the three-integral Abel DF in the ax-
isymmetric limit and we choose again the isochrone form (4.1) for the potential. The
properties of the resulting three-integral Kuzmin-Kutuzov models can be expressed
explicitly in cylindrical coordinates. In § 7, we fit Schwarzschild models to the result-
ing observables to test our axisymmetric implementation of Schwarzschild’s method.

5.1 VELOCITY MOMENTS OF AXISYMMETRIC ABEL MODELS

When two of the three constants α, β or γ are equal, the confocal ellipsoidal coordi-
nates (λ, µ, ν) reduce to spheroidal coordinates and the triaxial Stäckel potential (2.3)
becomes axisymmetric.

When β = α 6= γ, we cannot use µ as a coordinate and replace it by the azimuthal
angle φ, defined as tanφ = y/x. The relation between (λ, φ, ν) and the usual cylindrical
coordinates (R,φ, z) is given by

R2 =
(λ+ α)(ν + α)

α− γ
, z2 =

(λ+ γ)(ν + γ)

γ − α
. (5.1)

The Stäckel potential VS(λ, ν) = U [λ,−α, ν] is oblate axisymmetric. The corresponding
integrals of motion follow by substitution of µ = −β = −α in the expressions (2.5). The
second integral of motion reduces to I2 = 1

2L
2
z and the triaxiality parameter T = 0.

With the choice (2.9) for the DF, the expression for the velocity moments becomes

µlmn(λ, ν) =

√

√

√

√

2l+m+n+3

H l+1
(−α)νH

m+1
νλ Hn+1

λ(−α)

Smax
∫

Smin

Tlmn [Stop(λ,−α, ν) − S](l+m+n+1)/2 f(S) dS, (5.2)

where Hστ is defined in eq. (2.11) and Smin ≥ Slim, which follows from Fig. 2 for β = α.
The lower limit on w vanishes, so that it can have any value.

For the NR type of components Smax = Stop(λ,−α, ν), defined in eq. (2.14), and the
expression for TNR

lmn is as in eq. (2.15). The NR velocity moments µNR
lmb(λ, ν) vanish when

either l, m or n is odd. Since the only family of orbits that exists are the short-axis
tube orbits, we can introduce net rotation (around the z-axis) by setting the DF to
zero for Lz < 0, so that µSR

lmn(λ, ν) = 1
2µ

NR
lmn(λ, ν). These SR velocity moments vanish

when either l or n is odd, but are non-zero if m is odd. They should be multiplied with
(−1)m for net rotation in the opposite direction.
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In the conversion to observables described in § 3, the matrix Q, which transforms
the velocity components (vλ, vφ, vν) to (vx, vy, vz), reduces to

Q =





A cosφ − sinφ −B cosφ
A sinφ cosφ −B sinφ
B 0 A



 , (5.3)

where A and B are defined as

A2 =
(λ+ γ)(ν + α)

(λ− ν)(α− γ)
, B2 =

(λ+ α)(ν + γ)

(λ− ν)(γ − α)
. (5.4)

Because of the symmetry around the short-axis, the azimuthal viewing angle ϕ looses
its meaning and the misalignment angle ψ = 0◦. We are left with only the polar viewing
angle ϑ, which is commonly referred to as the inclination i. As a consequence, the
projection matrix P is a function of i only and follows by substituting ϑ = i and ϕ = 0
in eq. (3.4), while the rotation matrix R in eq. (3.5) reduces to the identity matrix.

When β = γ 6= α, we replace the coordinate ν by the angle χ, defined as tanχ = z/y.
The resulting coordinates (λ, µ, χ) follow from the above coordinates (λ, φ, ν) by taking
ν → µ, φ→ χ, and γ → α→ β. The Stäckel potential VS(λ, µ) = U [λ, µ,−γ] is now prolate
axisymmetric, and for the integrals of motion we set ν = −β = −γ in the expressions
(2.5), so that I3 = 1

2L
2
x and T = 1. The intrinsic velocity moments µlmn(λ, µ) follow

from eq. (5.2) by interchanging ν ↔ µ, γ ↔ α and m ↔ n. Taking β = γ in Fig. 2,
we see that now the upper limit on u vanishes. In this case, Smax = Stop(λ, µ,−γ)
for the NR components, and since we only have the long-axis tube orbits, we can
introduce net rotation (around the x-axis) by setting the DF to zero for Lx < 0, so that
µLR

lmn(λ, µ) = 1
2µ

NR
lmn(λ, µ). The LR velocity moments vanish if either l or m is odd and

multiplication with (−1)n yields net rotation in the opposite direction. The matrix Q,
which transforms (vλ, vµ, vχ) to (vx, vy, vz), in this case reduces to

Q =





C −D 0
D cosχ C cosχ − sinχ
D sinχ C sinχ cosχ



 , (5.5)

where C and D follow from respectively A and B in (5.4) by replacing ν by µ. We
substitute ϑ = π/2 − i and ϕ = 0 in eq. (3.4) to obtain the projection matrix P. The
rotation matrix R again reduces to the identity matrix.

5.2 KUZMIN-KUTUZOV POTENTIAL AND DENSITY

In the axisymmetric limit, the form (4.1) for U(τ) results in the Kuzmin-Kutuzov (1962)
potential. We give the properties relevant for our analysis, while further details can
be found in Dejonghe & de Zeeuw (1988), including expressions and plots of the mass
density ρS, its axis ratios, and the two-integral DF f(E,L2

z) consistent with ρS [see also
Batsleer & Dejonghe (1993), who also corrected a typographical error in f(E,L2

z)].
When β = α, the oblate axisymmetric potential VS(λ, ν) = U [λ,−α, ν] and the third

order divided difference U [λ,−α, ν, σ], which both appear in the expressions for the
integral of motions (2.5), have the simple forms

VS(λ, ν) =
−GM√
λ+

√
ν
, (5.6)

U [λ,−α, ν, σ] =
−GM

(
√
λ+

√
ν)(

√
λ+

√
σ)(

√
ν +

√
σ)
, (5.7)
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FIGURE 7 — Kinematic maps for an oblate axisymmetric Abel model (top; see § 5.3) and for
the fitted axisymmetric Schwarzschild model (bottom; see § 7). Parameters and grey scale are
as in Fig. 6. (See p. 255 for a color version of this figure.)

where again GM =
√−γ+

√−α, so that VS = −1 in the center. By means of the relations

λ+ ν = R2 + z2 − α− γ, λν = αγ − γR2 − αz2, (5.8)

and (
√
λ+

√
ν)2 = λ+ ν + 2

√
λν and (

√
λ+

√
σ)(

√
ν +

√
σ) =

√
λν +

√
σ(
√
λ+

√
ν) + σ, we

can write the potential and integrals of motion explicitly as elementary expressions in
the usual cylindrical coordinates.

When β = γ, the prolate potential VS(λ, µ) = U [λ, µ,−γ] and the third order divided
difference U [λ, µ,−γ, σ] follow respectively from (5.6) and (5.7) by replacing ν by µ.

5.3 AN AXISYMMETRIC ABEL MODEL

The above constructed triaxial Abel model (§ 4.3) transforms into an oblate axisym-
metric Abel model if we let ζ approach unity, while keeping ξ = 0.64 fixed. We keep
the NR component with the same parameters, u = w = −0.5 and δ = 1, but we exclude
the LR component since long-axis tube orbits do not exist in an oblate axisymmetric
galaxy. We include two SR components, one with the same parameters as the NR
component, and for the other we set u = 0.5 and choose the sense of rotation in the
opposite direction. The latter implies a compact counter-rotating component, which
is clearly visible in the kinematic maps shown in the top panels of Fig. 7. The inclina-
tion is the same value as the polar angle ϑ for the triaxial Abel model, i.e. i = 70◦, and
the mass fractions of the three DF components are respectively 20%, 60% and 20%.
Due to axisymmetry all maps are bi-symmetric and the velocity field shows a straight
zero-velocity curve. The signatures of the counter-rotation are similar in the velocity
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field and h3 (but anti-correlated), and result in a decrease of σ and an increase of h4

in the center.

6 RECOVERY OF TRIAXIAL GALAXY MODELS

We briefly describe our numerical implementation of Schwarzschild’s method in tri-
axial geometry (see van den Bosch et al. 2006 for a full description), which we then
use to fit the observables of the triaxial Abel model constructed in § 4.3. We inves-
tigate the recovery of the intrinsic velocity moments and, through the distribution of
the orbital mass weights, the recovery of the three-integral DF. We also determine the
constraints placed on the viewing direction and the mass-to-light ratio.

6.1 TRIAXIAL SCHWARZSCHILD MODELS

The first step is to infer the gravitational potential from the observed surface bright-
ness. This is done by means of the Multi-Gaussian Expansion method (MGE; e.g.,
Cappellari 2002), which allows for possible position angle twists and ellipticity varia-
tions in the surface brightness. For a given set of viewing angles (ϑ, ϕ, ψ) (see § 3.1),
the surface brightness is deprojected and multiplied by a mass-to-light ratio M/L to
yield the intrinsic mass density, from which the gravitational potential then follows
by solving Poisson’s equation. Orbits are calculated numerically in the resulting grav-
itational potential. To obtain a representative library of orbits, the integrals of motion
have to be sampled well. The energy can be sampled directly, but since the other
integrals of motion are generally not known, we start, at a given energy, orbits from a
polar grid in the (x, z)-plane, which is crossed perpendicularly by all families of (reg-
ular) orbits. To have enough box orbits to support the triaxial shape, we also start
orbits by dropping them from the equipotential surface (Schwarzschild 1979, 1993).

Assigning a mass weight γj to each orbit j from the library, we compute their
combined properties and find the weighted superposition that best fits the observed
surface brightness and (two-dimensional) kinematics. However, the resulting orbital
weight distribution may vary rapidly, and hence probably corresponds to an unreal-
istic DF. To obtain a smoothly varying DF, we both dither the orbits by considering
a bundle of integrated orbits that were started close to each other, and we regularize
when looking for the best-fit set of orbital weights by requiring them to vary smoothly
between neighboring orbits (in integral space). The best-fit Schwarzschild model fol-
lows from the minimum in

χ2 =

NO
∑

i=1

(

Oi −O?
i

∆Oi

)2

, (6.1)

where NO is the number of (photometric and kinematic) observables Oi with associ-
ated error ∆Oi and O?

i is the corresponding model prediction.
In this case, we can use directly the isochrone Stäckel potential VS of the triaxial

Abel model. However, to closely simulate the Schwarzschild modeling of real galaxies,
we infer the potential from a deprojection of an MGE fit of the surface mass density
ΣS generated by VS. The resulting potential reproduces VS to high precision.

We compute a library of orbits by sampling 21 energies E via a logarithmic grid in
radius from 1′′ to 224′′ that contains ≥99.9 per cent of the total mass. At each energy,
we construct a uniform polar grid of 7 radii by 8 angles within the region in the first
quadrant of the (x, z)-plane that is enclosed by the equipotential and the thin orbit
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FIGURE 8 — The (x, z)-plane for a triaxial isochrone potential (4.2) with ζ = 0.8 and ξ = 0.64,
at a given energy E (cf. Schwarzschild 1993). The region inside the equipotential (solid curve)
is crossed perpendicularly by the four general orbit families: box (B) orbits, inner (I) and
outer (O) long-axis tube orbits and short-axis (S) tube orbits. They are separated by the focal
hyperbola of the ellipsoidal coordinate system in which the equations of motion separate, and
the curve on which the second integral of motion I2 is zero. The thin orbits with maximum
streaming divide the regions of the tube orbits in two parts, each of which is crossed once by
each tube orbit. By considering only the grey region, we sample all orbits without duplication.

curves (Fig. 8). In addition, we drop box orbits from a similar uniform polar grid on
the equipotential surface in the first octant. This results in a total of 21×7×8×2 = 2352
starting positions, from each of which a bundle of 63 orbits are started. Taking into
account the two senses of rotation of the tube orbits, this results in a total 762048
orbits that are numerically integrated in the potential.

The velocities of each bundle of orbits are summed in histograms with 201 bins, at
a velocity resolution of 10 km s−1. The weighted sum of the velocity histograms is fitted
to the intrinsic density ρ? and simultaneously their projected values are fitted to the
observed surface brightness and higher-order velocity moments. At the same time,
the orbital weights are regularized in E and in the starting positions by minimizing
their second order derivatives and requiring that these derivatives are smaller than
the smoothening parameter (e.g., Cretton et al. 1999), which we set to ∆ = 4.

6.2 INTRINSIC MOMENTS

We calculate the intrinsic first and second order velocity moments of the Schwarz-
schild model by combining the appropriate moments of the orbits that receive weight
in the superposition, and investigate how well they compare with the intrinsic veloc-
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FIGURE 9 — The grey scale represents the mean motion 〈vy〉 perpendicular to the (x, z)-plane,
normalized by σRMS (excluding the axes to avoid numerical problems), for a triaxial Abel model
(left) and for the best-fit triaxial Schwarzschild model (right). The ellipses are cross sections
of the velocity ellipsoid with the (x, z)-plane. The black curves are contours of constant mass
density in steps of one magnitude, for the input Abel model (solid) and for the fitted Schwarz-
schild model (dashed). See § 6.2 for details. (See p. 254 for a color version of this figure.)

ity moments of the Abel model. In general, there are three first 〈vt〉 and six second
order velocity moments 〈vsvt〉 (s, t = x, y, z). Combining them yields the six dispersion
components σst of the velocity ellipsoid, where σ2

st ≡ 〈vsvt〉 − 〈vs〉〈vt〉.
To facilitate visualization, we restrict the analysis to a single plane. We choose the

(x, z)-plane, as it is crossed perpendicularly by all four (major) orbit families. Because
〈vx〉 = 〈vz〉 = σxy = σyz = 0, we are left with 〈vy〉 perpendicular to the (x, z)-plane
as the only non-vanishing mean motion and σzx in the (x, z)-plane as the only non-
vanishing cross-term. The average root-mean-square velocity dispersion σRMS is given
by σ2

RMS = (σ2
x + σ2

y + σ2
z)/3, where σx ≡ σxx, σy ≡ σyy and σz ≡ σzz.

The ratio 〈vy〉/σRMS of ordered over random motion is a measure of the importance
of rotation for the gravitational support of a galaxy. In Fig. 9, the grey scale shows
the values of this ratio in the (x, z)-plane, for the triaxial Abel model (left panel) and
for the fitted triaxial Schwarzschild model (right panel). The ellipses show the cross
sections of the velocity ellipsoid with the (x, z)-plane. In a Stäckel potential the axes of
the velocity ellipsoid are aligned with the confocal ellipsoidal coordinate system (e.g.,
Eddington 1915; van de Ven et al. 2003). As a result, one of the axes of the velocity
ellipsoid is perpendicular to the (x, z)-plane, with semi-axis length σy. The other two
axes lie in the (x, z)-plane and have semi-axis lengths given by

σ2
± = 1

2(σ2
x + σ2

y) ±
√

1
4 (σ2

x − σ2
y)

2 + σ4
xy. (6.2)

The ellipses are radially elongated, corresponding to a radial anisotropic velocity dis-
tribution. Finally, the black curves are contours of constant luminous mass density
in steps of one magnitude.
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The density of the triaxial Abel model (solid curve) is well fitted by the triaxial
Schwarzschild model (dashed curve). In both the Abel model and the fitted Schwarz-
schild model 〈vy〉/σRMS is relatively low. The Abel model shows an increase to a value
of 0.3 near the x-axis, caused by the decoupled core (Fig. 6). This enhancement is not
well reproduced by the Schwarzschild model, which moreover shows a slight decrease
of 〈vy〉/σRMS towards the z-axis. In this region the ellipses are also rounder than in the
Abel model, but towards the equatorial plane the ellipses are very similar. The orien-
tation of the ellipses agrees over most of the (x, z)-plane. This shows that, although
there is still room for improvement by refining for example the orbit sampling, the
main intrinsic dynamical properties of the Abel model are recovered reasonably well.

6.3 DISTRIBUTION FUNCTION

The fitted triaxial Schwarzschild model results in a mass weight γ per orbit. These
mass weights are a function of the three integrals of motion (E, I2, I3). In general, only
the energy is exact, but for a separable potential I2 and I3 are also known explicitly
and given by (2.5). The orbital mass weights are related to the DF f(E, I2, I3) via the
phase-space volume (see Vandervoort 1984)

γ(E, I2, I3) =

∫∫∫

cell

f(E, I2, I3) ∆V (E, I2, I3) dEdI2dI3, (6.3)

where the integration is over the cell in integral space represented by the orbit. The
DF of the input Abel model is given in § 2.3. We first calculate ∆V and the integration
volume, and then return to the comparison of the orbital mass weights.

6.3.1 Phase-space volume
The expression for the phase-space volume ∆V (E, I2, I3) can be deduced from the
relations in § 7.1 of de Zeeuw (1985a). It is given by

∆V (E, I2, I3) =
γ − α

2
√

2

∫∫∫

Ω

√

(λ+ β)(µ+ β)(ν + β)

[E − Veff(λ)] [E − Veff(µ)] [E − Veff(ν)]

× (λ− µ)(µ− ν)(ν − λ) dλdµdν

(λ+ α)(λ + β)(λ+ γ)(µ+ α)(µ+ β)(µ+ γ)(ν + α)(ν + β)(ν + γ)
, (6.4)

where the effective potential Veff is defined as5

Veff(τ) =
I2

τ + α
+

I3
τ + γ

+
U(τ)

(τ + α)(τ + γ)
, (6.5)

and Ω is the configuration space volume accessible by the orbit in the triaxial separa-
ble potential that obeys the three integrals of motion (E, I2, I3).

Because of the separability of the equations of motion, each orbit in a triaxial sep-
arable potential can be considered as a sum of three independent motions. Each of
these one-dimensional motions is either an oscillation of rotation in one of the three

5U(τ ) is defined up to an arbitrary linear function, and can always be written as −(τ + α)(τ + γ)G(τ ),
with −G(τ ) the potential along the intermediate axis, so that the third term in (6.5) is well defined. The
sign convention here is consistent with de Zeeuw (1985a)
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orbit I2 E λ µ ν

B < 0 Veff(−β) . . . 0 [−α, λmax] [−β, µmax] [−γ, νmax]

I < 0 min [Veff(µ)] . . . Veff(−β) [−α, λmax] [µmin, µmax] [−γ,−β]

O > 0 min [Veff(λ)] . . . Veff(−β) [λmin, λmax] [µmin,−α] [−γ,−β]

S > 0 max {Veff(−β),min [Veff(λ)]} . . . 0 [λmin, λmax] [−β,−α] [−γ, νmax]

TABLE 1 — Configuration space Ω for the four families of regular orbits.

confocal ellipsoidal coordinates (λ, µ, ν), such that the configuration space volume Ω
is bounded by the corresponding coordinate surfaces. The values of (λ, µ, ν) that cor-
respond to these bounding surfaces can be found from Table 1 for the four families
of regular orbits: boxes (B), inner (I) and outer (O) long-axis tubes, and short-axis (S)
tubes. Whereas α, β and γ are the limits on (λ, µ, ν) set by the foci of the confocal el-
lipsoidal coordinate system, the other limits are the solutions of E = Veff(τ) (see Fig. 7
of de Zeeuw 1985a). In the case of the triaxial isochrone Stäckel potential (4.2), we
can write this equation as a fourth-order polynomial in

√
τ . The solutions are then the

squares of three of the four roots of this polynomial (the fourth root is always negative).
For each orbit in our Schwarzschild model, we compute (E, I2, I3) by substituting

the starting position and velocities of the orbit into the expressions (2.5). From the
value of E and the sign of I2 (while always I3 ≥ 0), we determine to which orbit
family it belongs. The corresponding configuration space volume Ω is then given by
the boundaries for λ, µ and ν in the last three columns of Table 1. The phase-space
volume ∆V (E, I2, I3) follows by numerical evaluation of the right-hand side of eq. (6.4).

The integrand in (6.4) contains singularities at the integration limits, which can be
removed for a triaxial isochrone potential. We write the integrand completely in terms
of (

√
σ±√

τ)1/2, where σ, τ = λ, µ, ν or a constant value. Suppose now that the integral
over λ ranges from λ0 to λ1 and the terms (

√
λ −

√
λ0)

1/2 and (
√
λ1 −

√
λ)1/2 appear in

the denominator. The substitution
√
λ =

√
λ0 + (

√
λ1 −

√
λ0) sin2 η then removes both

singularities since dλ/[(
√
λ−

√
λ0)(

√
λ1 −

√
λ)]1/2 = 4

√
λ dη.

6.3.2 Cell in integral space

We approximate the triple integration over the cell in integral space in eq. (6.3) by the
volume ∆E∆(I2,3 ). Here ∆E is the (logarithmic) range in E between subsequent sets
of orbits at different energies (see § 6.1), with outer boundaries given by the central
potential and E = 0. Because we do not directly sample I2 and I3 in our implemen-
tation of Schwarzschild’s method, as their expressions are in general unknown, we
cannot directly calculate the area ∆(I2,3 ). Instead, we compute the Voronoi diagram
of the points in the (I2, I3)-plane that correspond to the starting position and velocities
of each orbit, at a given energy E. An example is given in the left panel of Fig. 10. The
area of the Voronoi bins approximates the area ∆(I2,3 ) for each orbit.

The four families of regular orbits are separated by two lines that follow from
I2 = 0 and E = Veff(−β). The latter provides also part of the boundary on I2 and
I3. The remainder is given by the positivity constraint on I3 and by the solution of
E = Veff(κ0) and dVeff(κ0)/dκ = 0, with κ0 ≥ −β (cf. eqs 64 and 65 of de Zeeuw 1985a).
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FIGURE 10 — Three quantities involved in the calculation of the orbital mass weights for a
triaxial Abel model with an isochrone potential. For a given energy E, in each panel, the
values of the second and third integral of motion, I2 and I3, are shown that correspond to
the orbital starting position and velocities in the triaxial Schwarzschild model that is fitted
to the observables of this triaxial Abel model. The circles refer to orbits started in the (x, z)-
plane and the triangles represent the additional set of orbits dropped from the equipotential
surface (see § 6.1). The grey scale in the left panel indicates the value of the DF f(E, I2, I3)
for each orbit. The grey scale in the middle panel represents the values of the phase-space
volume ∆V (E, I2, I3). The area of each Voronoi bin in the right panel, multiplied by the range
in energy E, approximates the cell ∆E∆(I2, I3) in integral space for each orbit. The product of
these three values provides an estimate of the mass weight γ(E, I2, I3) for each orbit. The solid
curves bound and separate the regions of the box (B) orbits, inner (I) and outer (O) long-axis
tube orbits and short-axis (S) tube orbits.

For −β ≤ κ0 ≤ −α the solution describes the boundary curve for which I2 ≤ 0 and
corresponds to the thin I tube orbits. For κ0 ≥ −α we find the boundary curve for
which I2 ≥ 0, corresponding to the thin O and S tube orbits.

There are limits on the values of κ0 depending on the value of E, and sometimes
there are no valid solutions for κ0, which implies that the corresponding tube orbits
do not contribute at that energy. These limits can be obtained from the thin orbit
curves in the (x, z)-plane (Fig. 8). From the expressions for the integrals of motion
(2.5) in this plane, we find that the thin orbit curves follow by solving E = U [λ, κ0, κ0]
for I tubes and E = U [κ0, κ0, κ], with κ = µ for O tubes and κ = ν for S tubes. In
general these equations have to be solved numerically, but in the case of the triaxial
isochrone potential (4.2), they reduce to a second order polynomial in √

κ0 and the
solutions simply follow from the roots of the polynomial.

6.3.3 Orbital mass weight distribution
Once we have computed for each orbit the DF f(E, I2, I3), the phase-space volume
∆V (E, I2, I3) and the cell ∆E∆(I2,3 ) in integral space (Fig. 10), its (approximate) mass
weight γ(E, I2, I3) follows by multiplication of these three quantities. The resulting
orbital mass weight distribution of the input triaxial Abel model is shown in the top
panels of Fig. 11, and that of the fitted triaxial Schwarzschild model in the bottom
panels. The energy E increases from left to right, which corresponds to increasing
distance from the center as is indicated by the radius RE (in arcsec) at the top of each
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FIGURE 11 — The orbital mass weight distribution for the input triaxial Abel model (top) and
for the fitted triaxial Schwarzschild model (bottom). From left to right the energy increases,
corresponding to increasing distance from the center, indicated by the radius RE (in arcsec)
of the thin short-axis tube orbit on the x-axis. The vertical and horizontal axes represent
respectively the second and third integral of motion, I2 and I3, normalized by their maximum
amplitude (for given E). Between the two rows of panels, the fraction (in %) of the included
mass with respect to the total mass is indicated. (See p. 254 for a color version of this figure.)

panel. For this representative radius we use the radius of the corresponding thin
(S) tube orbit on the long x-axis (Fig. 8). The values of I2 and I3 on the horizontal
and vertical axes respectively, are both normalized with respect to their maximum
amplitude at the given energy. In each panel the mass weight values are normalized
with respect to the maximum in that panel. Between the two rows of panels, the
fraction of the summed values in each panel with respect to the total mass weight in
all panels is given as a percentage.

The four panels with the largest fraction in mass, with RE between about 15′′ and
30′′, are best constrained by the kinematic observables, taking into account that even
orbits that extend beyond the maximum radius covered by the data can contribute
significantly at lower radii. In these panels, the main features of the orbital mass
weight distribution of the triaxial Abel model are recovered reasonably well. In the
inner panels the orbital mass weight distribution in the Schwarzschild model is rela-
tively noisy, which is mostly the consequence of the discreteness of the orbit library
as well as the numerical nature of the method. In the outer parts the Schwarzschild
model is still constrained by the mass model, which extends to a radius of about hun-
dred arcseconds, but the orbital mass weight distribution deviates from that of the
input Abel model due to the lack of kinematic constraints.

6.4 GLOBAL PARAMETERS

In the experiments described in the above, we computed the best-fit Schwarzschild
model for the viewing angles (ϑ, ϕ, ψ) = (70◦, 30◦, 101◦) and mass-to-light ratio M/L =
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FIGURE 12 — The (marginalized) goodness-of-fit parameter ∆χ2 as a function of viewing an-
gles (ϑ, ϕ, ψ) and mass-to-light ratio M/L, for different triaxial Schwarzschild model fits to
a triaxial Abel model (see text for details). The χ2-values are offset such that the overall
minimum, indicated by the cross, is zero. The contours are drawn at the confidence levels
for a ∆χ2-distribution with four degrees of freedom, with inner three contours correspond-
ing to the 68.3%, 95.4% and 99.7% (thick contour) confidence levels. Subsequent contours
correspond to a factor of two increase in ∆χ2. The parameters of the input Abel model,
(ϑ, ϕ, ψ) = (70◦, 30◦, 101◦) and M/L = 4 M�/L�, are indicated by the open square.

4 M�/L� for which the simulated observables of the triaxial Abel model were ob-
tained. We recalculated the best-fit Schwarzschild model for a range of these param-
eters, and compared the resulting χ2-values (6.1) in order to establish which models
(still) provide an acceptable fit. We quantify the quality of each fit by the difference
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∆χ2(ϑ, ϕ, ψ,M/L) with respect to the overall minimum χ2 value. To visualize this four-
dimensional function, we calculate for a pair of parameters, say ϑ and ϕ, the minimum
in ∆χ2 as function of the remaining parameters, ψ and M/L in this case. The contour
plots of the resulting marginalized ∆χ2 for all different pairs of parameters are shown
in Fig. 12. The contours are drawn at the confidence levels for a ∆χ2-distribution with
four degrees of freedom, with the inner three contours corresponding to the 68.3%,
95.4% and 99.7% (thick contour) confidence levels. Subsequent contours correspond
to a factor of two increase in ∆χ2. In each panel, the overall minimum (∆χ2 = 0) is
indicated by the cross, while the open square corresponds to the parameters of the
input Abel model.

A range of viewing angles is excluded as they lead to nonphysical deprojections
of the MGE fit to the projected luminosity density (or surface brightness). Since the
observables depend in a non-linear way on the viewing angles, we do not sample the
viewing angles uniformly. Instead, we sample uniformly in the characteristic (4.5) axis
ratios b/a, c/a and a′/a for a given observed flattening b′/a′, resulting in an irregular
grid in the viewing angles. In this way, we keep the number of viewing angles rela-
tively low and still have a representative sampling. Since the Schwarzschild method
is computationally expensive, such an optimization allows a full search through para-
meter space within a reasonable time. A parallel search on thirty desktop computers
through three hundred combinations of viewing angles and ten different M/L values,
currently takes about one week. To calculate the marginalized ∆χ2 we need to interpo-
late (linearly) in the irregular grid of viewing angles. The dots in Fig. 12 show the corre-
sponding (regular) grid of viewing angles, together with the (regular) sampling in M/L.

We find that the input M/L is well recovered, with a typical uncertainty of order
10 %. The viewing angles of the input model are recovered to within 10 degrees, but the
allowed range in ϑ is about 35 degrees, and for ϕ and ψ it is almost 20 degrees. While
Schwarzschild models with global parameters in this range provide an acceptable fit
to the observables, their intrinsic moments and orbital mass weight distribution can
deviate significantly from those of the input Abel model. We return to this apparent
degeneracy in the viewing direction in § 8.

7 RECOVERY OF AXISYMMETRIC GALAXY MODELS

We now describe the application of our axisymmetric implementation of Schwarz-
schild’s method to the observables of the oblate Abel model of § 5.3, while highlighting
the differences with the above application in triaxial geometry.

7.1 AXISYMMETRIC SCHWARZSCHILD MODELS

Our implementation of Schwarzschild’s method in axisymmetric geometry is described
in detail in Cappellari et al. (2005). The main differences with respect to our triaxial
implementation are certain simplifications due to the extra symmetry. There are no
twists in the surface brightness. We use the same set-up as in the triaxial case,
but since the box orbits are not present, the additional dropping of orbits from the
equipotential surface is not needed.

7.2 INTRINSIC MOMENTS

It is convenient to analyze the intrinsic velocity moments of (oblate) axisymmetric
models in cylindrical coordinates (R,φ, z). Because of axisymmetry the models are
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FIGURE 13 — The mean azimuthal motion 〈vφ〉 perpendicular to the meridional plane, nor-
malized by σRMS, for an oblate axisymmetric Abel model (left) and for the best-fit axisymmetric
Schwarzschild model (right). Parameters and grey scale are as in Fig. 9. (See p. 255 for a color
version of this figure.)

independent of the azimuthal angle φ, and it is sufficient to consider the meridional
(R, z)-plane. The analysis of the intrinsic velocity moments in the (R, z)-plane is sim-
ilar to that for the triaxial case in the (x, z)-plane (§ 6.2). In this case, the mean az-
imuthal rotation 〈vφ〉, perpendicular to the meridional plane, is the only non-vanishing
first order velocity moment. In Fig. 13, we compare the values of 〈vφ〉/σRMS, indicated
by the grey scale, for the Abel model (left panel) with those for the fitted Schwarz-
schild model (right panel). The root-mean-square velocity dispersion σRMS is defined
as σ2

RMS = (σ2
R + σ2

φ + σ2
z)/3. The azimuthal axis of the velocity ellipsoid, with semi-axis

length σφ defined as σ2
φ = 〈v2

φ〉 − 〈vφ〉2, is perpendicular to the meridional plane. The
cross sections with the meridional plane are indicated by the ellipses in Fig. 13, where
the semi-axis lengths follow from (6.2) by replacing (x, z) with (R, z).

As in the triaxial case the density (solid curve) is well fitted by the axisymmetric
Schwarzschild model (dashed curve). The Abel model shows a strong gradient in
〈vφ〉/σRMS, which is accurately recovered by the axisymmetric Schwarzschild model.
The absolute difference is on average less than 0.07, except near the symmetry z-axis.
This is likely the result of numerical difficulties due to the small fraction of mass
contributed in this region by the short-axis tube orbits. The shape and orientation of
the ellipses are nearly identical, indicating that the anisotropic velocity distribution of
the Abel model is recovered to high accuracy. The lengths of the axes of the velocity
ellipsoid deviate on average by only 5 km s−1, i.e., well within the typical error of 10
km s−1 assigned to the simulated velocity dispersion of the Abel model (§ 5.3).
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FIGURE 14 — The mass weight distribution for an oblate axisymmetric Abel model (top) and
for the fitted axisymmetric Schwarzschild model (bottom). Parameters and grey scale are the
same as in Fig. 11. In this case, the second integral of motion I2 = 1

2
L2

z, where Lz is the
component of the angular momentum parallel to the symmetry z-axis. (See p. 256 for a color
version of this figure.)

7.3 DISTRIBUTION FUNCTION

In the oblate axisymmetric case, all (regular) orbits are short-axis tube orbits with
I2 = 1

2L
2
z and energy E ranging from min [Veff(λ)] to zero. The expression (6.4) for the

phase-space volume reduces to

∆V (E,Lz, I3) =
π

2 |Lz|

νmax
∫

−γ

λmax
∫

λmin

√

(λ+α)(ν+α)

[E−Veff(λ)] [E−Veff(ν)]

(ν−λ) dλdν

(λ+α)(λ+γ)(ν+α)(ν+γ)
, (7.1)

where as before νmax, λmin and λmax are the solutions of E = Veff(τ) (see Fig. 23 of de
Zeeuw 1985a). The factor in front of the double integral includes the factor 2π from
the integration over the azimuthal angle φ. In Fig. 14, we show in the top panels the
orbital mass weight distribution of the oblate axisymmetric Abel model, and in the
bottom panels that of the fitted axisymmetric Schwarzschild model.

The three-integral mass weight distributions are very similar, even in the panels
with a relatively low mass content. The average fractional error is around 20 %, and
if we consider in each panel the mass weights above the mean value, which together
contribute nearly half of the total mass, the fractional error decreases to around 15 %.
A similar good recovery was found by Krajnović et al. (2005) for the case of a two-
integral DF f(E,Lz), which implies an isotropic velocity distribution in the meridional
plane. Thomas et al. (2005) showed that their independent axisymmetric numerical
implementation of Schwarzschild’s method is similarly able to recover an analytical
f(E,Lz). Our results show that the orbital mass weight distribution that follows from
a fully three-integral DF f(E,Lz, I3) can be recovered with high accuracy as well.
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FIGURE 15 — The goodness-of-fit parameter ∆χ2 as a function of inclination i and mass-to-
light ratio M/L, for different axisymmetric Schwarzschild model fits (indicated by the dots) to
an oblate axisymmetric Abel model (see text for details). The contours are as in Fig. 12, but
for a ∆χ2-distribution with two degrees of freedom. The cross indicates the overall best-fit
model (∆χ2 = 0). The parameters of the input Abel model, i = 70◦ and M/L = 4 M�/L�, are
indicated by the open square.

7.4 GLOBAL PARAMETERS

In the axisymmetric case we only have the inclination i as viewing angle, so that,
together with the mass-to-light ratio, there are two global parameters. For a range of
these global parameters, we fit axisymmetric Schwarzschild models to the simulated
observables of the oblate axisymmetric Abel model, and compare the corresponding
goodness-of-fit χ2-values. In Fig. 15, we show the resulting differences ∆χ2 with re-
spect to the overall best-fit Schwarzschild model, indicated by the cross. The contours
are now for a ∆χ2-distribution with two degrees of freedom. The M/L = 4 M�/L� of
the input Abel model is recovered accurately, with an average fractional error of less
than 10 %. However, for the inclination nearly all values within the allowed range by
the flattening (i > 60) are allowed, including the value of i = 70◦ used to compute the
observables of the Abel models. Krajnović et al. (2005) and Cappellari et al. (2005)
found similar evidence for a possible degeneracy in the inclination.

8 DISCUSSION AND CONCLUSIONS

We have extended the Abel models introduced by DL91 and generalized by MD99, and
used them to construct realistic axisymmetric and triaxial galaxy models to test the
accuracy of Schwarzschild’s orbit superposition method.

Although Abel models have separable potentials with a central core and assume
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a specific functional form for the (three-integral) DF, they can have a large range
of shapes and their observables, which can be calculated easily, include many of the
features seen in the kinematic maps of early-type galaxies. We have used an isochrone
Stäckel potential that in the axisymmetric limit reduces to the Kuzmin-Kutuzov model
and becomes Hénon’s isochrone in the spherical limit. Because of the simple form of
the isochrone potential, the resulting Abel models are ideally suited to test numerical
implementations of the Schwarzschild orbit superposition method. The calculation of
the phase-space volume, needed when comparing the orbital mass weight distribution
of the Schwarzschild models with the three-integral DF of the Abel models, simplifies
significantly for this case.

Integral-field observations in principle provide the LOSVD as a function of position
on the sky, so that it is a function L(x′, y′, vz′) that depends on three variables. Our
oblate axisymmetric and triaxial model galaxies have a DF which is a sum of Abel
components f(S) = f(−E +wI2 + uI3) with different values of the parameters w and u,
so that the DF is a function of three variables as well, namely the integrals of motion
E, I2 and I3. We have shown that by fitting Schwarzschild models to the simulated
observables of these models, f(E, I2, I3) is well recovered for the input value of the
mass-to-light ratio M/L and the correct viewing angle(s). By varying these global
parameters, we have found that the best-fit M/L is close to the input value, but the
viewing direction is less well determined.

First consider three-integral oblate models, i.e., with a DF that is a function
f(E,Lz, I3) and the viewing direction defined by the inclination. The value of M/L is
recovered to within 10% for all models, but the inclination is poorly constrained. Since
we assume M/L is constant, the total luminosity of the model is fixed, and the total
mass follows from the virial theorem, it is not surprising that the value of M/L is in-
sensitive to a change in inclination. If the inclination is wrong, then, in order to fit the
observed surface brightness, the deprojected mass model requires a different intrinsic
flattening. Our results show that there is sufficient freedom in f(E,Lz, I3) to still fit
the observed (moments of) L(x′, y′, vz′), so that the inclination is not well-determined.

The observed ellipticity of the surface brightness places a lower limit on the incli-
nations that provide a physical deprojection. In some galaxies the presence of a gas
or dust disk provides a further constraint. An embedded disk of stars, which is not
directly visible in the observed surface brightness (e.g., Rix & White 1992), might con-
strain the inclination as well. This can be tested by fitting the observables of an Abel
model that contains a disk-like DF component. Work along these lines is in progress.

If, instead of having a three-integral DF f(E,Lz, I3), a galaxy happens to be well
approximated by a two-integral DF f(E,Lz), the range of inclinations that leads to
an acceptable fit of the three-parameter L(x′, y′, vz′) is expected to shrink. The density
ρ(R, z) of an axisymmetric model uniquely determines the even part of f(E,Lz) and the
mean streaming ρ〈vφ〉 in the meridional plane fixes the part of f(E,Lz) that is odd in Lz

(Dejonghe 1986). Ignoring non-uniqueness in the deprojection of the surface density
Σ (Rybicki 1987) and the mean streaming motion V on the plane of the sky, these
two quantities define a two-integral DF completely. The observed velocity dispersion
and higher moments of L(x′, y′, vz′) will not be fitted, except at the correct inclination.
In this way, e.g. by fitting a two-integral Jeans model [i.e., solution of the Jeans
equations assuming the DF is of the form f(E,Lz)] to the observed velocity dispersion
field of a galaxy, an apparent best fit at a certain inclination can be found (e.g.,
Cappellari et al. 2005). However, the reliability of the derived best-fit inclination,
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of course, depends on the correctness of the assumption of a two-integral DF.
In the triaxial case, the DF is again a function of three integrals of motion, but the

orbital structure in these models is substantially richer than in the oblate axisym-
metric models, with four major orbit families, instead of only one. This introduces a
fundamental non-uniqueness in the recovery of the DF. Whereas in the oblate axisym-
metric case ρ(R, z) uniquely defines the even part of f(E,Lz), in the (separable) triaxial
case the density ρ(x, y, z) does not uniquely determine the even part of f(E, I2, I3), al-
though both of these are functions of three variables (Hunter & de Zeeuw 1992). It is
not known whether specification of L(x′, y′, vz′) can narrow down the range of possible
DFs further, even ignoring the non-uniqueness caused by the required deprojection
of the surface brightness. Our results show that the Schwarzschild method recovers
the correct orbital mass weight distribution for the input values of the three viewing
angles (ϑ, ϕ, ψ) and the mass-to-light ratio M/L. Given the very large freedom in or-
bit choice for this case, the modest resolution of our orbit library, and the resulting
approximations in the evaluation of the phase space volume, the agreement between
the orbital mass weights found in § 6.3 is in fact remarkable. It may be possible
to improve the DF recovery further by refining the sampling of the orbits and the
regularization of the orbital mass weights.

By varying the four global parameters, we have seen that the M/L value is again
well-determined. A range of (ϑ, ϕ, ψ) is excluded as they lead to nonphysical depro-
jections of the observed surface brightness. In particular the presence of twists in
the position angle of the isophotes can substantially constrain the viewing direction.
But given the availability of four major orbit families, it is not surprising that, within
the allowed space of viewing angles, there is sufficient freedom to adapt f(E, I2, I3) to
fit the observables, even if the viewing angles are wrong. This degeneracy is similar
to that in the axisymmetric case. As before, in some galaxies the presence of a disk
might provide a constraint on the viewing direction. Furthermore, assuming the po-
tential is nearly separable, which might be appropriate outside the nuclear region,
and use of the continuity equation (as done by Statler 1994), or the Jeans equation
solutions of van de Ven et al (2003), might appear to constrain the viewing angles,
but at the expense of assuming a mean streaming field or dispersion field in the (x, z)-
plane. If this happens to be (very close to) the right choice, then the inferred viewing
angles (and intrinsic structure) are correct, but this is not known a priori. A similar
conclusion applies to model fits with a limited number of Abel DF components. By
including the full range of Abel DF components, one would presumably recover the
larger range of allowed viewing angles also found by Schwarzschild’s method.

We conclude that Schwarzschild’s method is able to recover the internal dynamical
structure of early-type galaxies and allows an accurate determination of the mass-to-
light ratio, but additional information is needed to constrain better the viewing direc-
tion. The axisymmetric Schwarzschild method has already been successfully applied
by us and other groups to determine the black hole mass, mass-to-light ratio, dark
matter profile as well as the (three-integral) DF of early-type galaxies. With our ex-
tension to triaxial geometry we are now able to model early-type galaxies — and in
particular the giant ellipticals — which show clear signatures of non-axisymmetry,
including isophote twist, kinematic misalignment and kinematic decoupled compo-
nents. Moreover, since triaxial galaxies may appear axisymmetric (or even spherical)
in projection, we can investigate the effect of intrinsic triaxiality on the measurements
of e.g. black hole masses based on axisymmetric model fits to observations of galaxies.
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APPENDIX A LIMITING CASES

When two or all three of the constants α, β or γ that define the confocal coordinate
system are equal, the triaxial Abel models reduce to limiting cases with more sym-
metry and thus with fewer degrees of freedom. The oblate and prolate axisymmetric
limits are described in § 5.1. DL91 derived the non-rotating Abel models for elliptic
disks and in the spherical limit. We summarize their results and give the rotating
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Abel models for these limiting cases. At the same time, we also derive the properties
of the non-rotating and rotating Abel models in the limit of large radii.

A.1 ELLIPTIC DISK POTENTIAL

The two-dimensional analogues of the triaxial Abel models are the elliptic Abel disks
with Stäckel potential VS(λ, µ) = U [λ, µ] in confocal elliptic coordinates (λ, µ). The
relations with (x, y) follow from those in § 2.1 by setting z = 0 and ν = −β = −γ.
Choosing the DF as f(E, I2) = f(S), with S = −E + w I2, with the two integrals of
motion

E = 1
2

(

v2
x + v2

y

)

+ U [λ, µ], I2 = 1
2L

2
x + 1

2(β − α)v2
x + (β − α)x2U [λ, µ,−α], (A.1)

the velocity moments can be evaluated as

µlm(λ, µ) =

√

2l+m+2

[1−(λ+α)w]l+1[1−(µ+α)w]m+1

Smax
∫

Smin

Tmn [Stop(λ, µ) − S](l+m)/2 f(S) dS, (A.2)

As in the general triaxial case, Smin ≥ Slim, where the expression of the latter is given
along the w-axis (u = 0) in Fig. 2. The accessible part of the (E, I2)-integral space is
now a triangle, the top of which is Stop(λ, µ) = −U [λ, µ] + w(λ+ α)(µ+ α)U [λ, µ,−α].

For the NR part Smax = Stop(λ, µ) and TNR
lm = B( l+1

2 , m+1
2 ). Of the two possible orbit

families, the box orbits have no net rotation and the tube orbits rotate around the
axis perpendicular to the disk (the z-axis). Since this is similar to the short-axis tube
orbits in the general triaxial case, we refer to the rotating part as the SR part. This SR
part reaches the region of the accessible integral space (the triangle) for which v2

µ ≥ 0
at µ = −α (or I2 ≥ 0). Therefore, Smax = Stop(λ,−α) and

T SR
lm = 2

∫ arcsin(
√

a0)

0
sinl θ cosm θ dθ, a0 =

(λ+α) [1−(µ+α)w] [Stop(λ,−α)−S]

(λ−µ) [Stop(λ, µ)−S]
. (A.3)

The integral can be evaluated in terms of elementary functions (see e.g. Gradshteyn
& Ryzhik 1994, relations 2.513 on p.160–162).

The NR velocity moments µNR
lm (λ, µ) vanish when either l or m is odd, and the SR

velocity moments µSR
lm (λ, µ) only when l is odd. The latter should be multiplied with

(−1)m for net rotation in the opposite direction. Further information on elliptic Stäckel
disks can be found in Teuben (1987) and de Zeeuw, Hunter & Schwarzschild (1987).

A.2 LARGE DISTANCE LIMIT

At large radii, λ → r2 � −α, so that the confocal ellipsoidal coordinates of § 2.1
reduce to conical coordinates (r, µ, ν), with r the usual distance to the origin, i.e.,
r2 = x2 + y2 + z2 and µ and ν angular coordinates on the sphere. In these coordinates
the Stäckel potential is of the form VS(r, µ, ν) = V (r) + U [µ, ν]/r2, where V (r) is an
arbitrary smooth function of r. The corresponding integrals of motion are given by

E = 1
2

(

v2
x + v2

y + v2
z

)

+ VS(r, µ, ν),

I2 = 1
2TL

2
y + 1

2L
2
z − (β − α)x2

r2U [µ, ν,−α], (A.4)

I3 = 1
2L

2
x + 1

2 (1 − T )L2
y + (γ − β) z2

r2U [µ, ν,−γ].
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With the choice (2.9) for the DF, the expression for the velocity moments becomes

µlmn(r, µ, ν) =
1

rm+n+2

√

2l+m+n+3

Fm+1
ν F n+1

µ

Smax
∫

Smin

Tlmn [Stop(r, µ, ν) − S](l+m+n+1)/2 f(S) dS, (A.5)

where Fµ and Fν are defined as

Fτ =
1

r2
+

(τ + α)w − (τ + γ)u

γ − α
, τ = µ, ν. (A.6)

As in the general triaxial case, Smin ≥ Slim, where Slim can be obtained from Fig. 2.
The expressions of Smax and Tlmn for the NR, LR and SR parts are those given in
§§ 2.3.2–2.3.4 respectively, but with Stop(λ, µ, ν) (eq. 2.14) replaced by

Stop(r, µ, ν) = −VS(r, µ, ν) − w
(µ+α)(ν+α)

γ−α U [µ, ν,−α] − u
(µ+γ)(ν+γ)

α−γ U [µ, ν,−γ] (A.7)

and the parameters a0 and b0 (2.17) reduce to

a0 =
Stop(r, µ,−β) − S

Stop(r, µ, ν) − S
, b0 =

(µ+ β)Fν [Stop(r, µ,−β) − S]

(µ− ν)F(−β) [Stop(r, µ, ν) − S]
, (A.8)

which by interchanging ν ↔ µ become a1 and b1, and in turn a2 and b2 follow by
β ↔ α. The conversion to observables follows from § 3, with vλ replaced by vr and in
the matrix Q all terms λ+σ (σ = −α,−β,−γ, µ, ν) cancel out (cf. eq. 25 of Statler 1994).

Suppose now that at large radii r, the function V (r) in the Stäckel potential de-
creases and we keep in the above expressions only the dominant terms. In this case,
Fµ, Fν and Stop reduce to functions of µ and ν only. As a result, the velocity moments
(A.5) are independent of r, except for the prefactor 1/rm+n+2, and therefore are scale-
free. Once we have calculated the velocity moments at a radius r, those at radius
r′ = qr, with q a constant, follow by a simple scaling, µlmn(r′, µ, ν) = µlmn(r, µ, ν)/qm+n+2.

A.3 SPHERICAL POTENTIAL

When α = β = γ, both µ and ν loose their meaning and we replace them by the
customary polar angle θ and azimuthal angle φ. The expressions for the Abel models
in these spherical coordinates (r, θ, φ) follow in a straightforward way from those in
§ A.2 for the large distance limit in conical coordinates (r, µ, ν).

The Stäckel potential VS = V (r) is spherical symmetric. The expressions for the
integrals of motion follow from (A.4), where for I2 and I3 the right-most terms van-
ish. The triaxiality parameter T is now a free parameter, so that, together with the
parameters w and u, we can rewrite S = −E + w I2 + u I3 as

S = −E + 1
2uL

2
x + 1

2 [(1 − T )u+ Tw]L2
y + 1

2wL
2
z. (A.9)

This means that with the choice (2.9) for the DF, we cover the most general homoge-
neous quadratic form in the velocities that is allowed by the integrals of motion in a
spherical symmetric potential, i.e., the energy E and all three components of the an-
gular momentum vector L (cf. DL91). These include the models considered by Osipkov
(1979) and Merritt (1985) with the DF of the from f(E ± L2/r2a) and those studied by
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Arnold (1990) with a more general DF of the form f(E ± L2/r2a ± L2
z/r

2
b ). These models

follow by setting u = ±2/r2
a, and w = u or w = u± 2/r2

b respectively.
The velocity moments follow from eq. (A.5), with

Fτ = 1
2(w − u)

[

cos2 θ + T (sin2 θ sin2 φ− 1) ±
√

Λ
]

− 1
2(w + u) + 1

r2 . (A.10)

where the positive and negative sign are for Fµ and Fν respectively, and

Λ =
[

sin2 θ + T (sin2 θ sin2 φ− 1)
]2

+ 4T sin2 θ cos2 θ sin2 φ. (A.11)

Taking α = β = γ in Fig. 2, we see that the boundaries on w and u both vanish. The
separatrices L1 and L2, defined in eq. (2.13), reduce to the negative w-axis and the
line w = u, respectively. Furthermore, Smax = Stop = V (r), and for Tlmn we use the
expression (2.15). The resulting velocity moments µlmn(r, θ, φ), which are in general
not spherical symmetric, vanish when either l, m or n is odd.

The latter implies no net rotation, which is the case when the (conserved) angular
momentum vectors L for the orbits are randomly oriented. We can introduce net
rotation if we assume that (a fraction of) the orbits have a preferred sense of rotation
around an angular momentum vector L0 that points in a specific direction given by θ0

and φ0. Using the projection matrix P in § 3.1 with ϑ = θ0 and ϕ = φ0, we transform
to the coordinate system (r′ = r, θ′, φ′), in which L0 is aligned with the z′-axis. If
we next set the DF to zero for Lz′ < 0, we find µ′lmn(r, θ′, φ′) = 1

2µlmn(r, θ′, φ′), which
does still vanish when l or m is odd, but is non-zero when n is odd, resulting in net
rotation (and after multiplication with (−1)n in opposite direction). With the inverse of
the projection matrix, we can then transform these velocity moments to the original
coordinates system (r, θ, φ). In this way, we can build spherical Abel models, which
in addition to a non-rotating part consist of a component or several components with
a preferred rotation axis. Mathieu, Dejonghe & Hui (1996) used this approach to
construct a spherical model of Centaurus A, including DF components with rotation
around the apparent long and short axis.

APPENDIX B THE FUNCTION M(s, i, j; a, b, φ)

The function M that appears in the velocity moments of the rotating Abel components
is defined as

M(s, i, j; a, b, φ) =

φ
∫

0

(

∂

∂a

)i( ∂

∂b

)j

[

1 −
√

[1 − p(θ)]s+1

]

p(θ)
dθ, (B.1)

with p(θ) ≡ a cos2 θ + b sin2 θ. For odd s, corresponding to odd velocity moments, the
integral can be evaluated in a straightforward way in terms of elementary functions.
In Table B.1, we give the resulting expressions for s = 1, 3, 5.

For even s, the integral can be evaluated in terms of the (incomplete) elliptic inte-
grals. To simplify the numerical evaluation we use Carlson’s (1977) symmetrical forms
RF , RD and RJ (for the relations between both forms see e.g. de Zeeuw & Pfenniger
1988). In Table B.2, we give the expressions for s = 0, 2, 4, where we have introduced
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s i j M(s, i, j; a, b, φ)

100 φ

300 1
2(4 − a− b)φ+ 1

4(b− a) sin 2φ

310 −1
2φ− 1

4 sin 2φ

301 −1
2φ+ 1

4 sin 2φ

500 1
8(24 − 12a− 12b + 3a2 + 3b2 + 2ab)φ

+1
4(b− a)(3 − a− b) sin 2φ+ 1

32(b− a)2 sin 4φ

510 −1
4(6 − 3a− b)φ− 1

4(3 − 2a) sin 2φ− 1
16(b− a) sin 4φ

501 −1
4(6 − 3b− a)φ+ 1

4(3 − 2b) sin 2φ+ 1
16(b− a) sin 4φ

520 3
4φ+ 1

2 sin 2φ+ 1
16 sin 4φ

511 1
4φ− 1

16 sin 4φ

502 3
4φ− 1

2 sin 2φ+ 1
16 sin 4φ

TABLE B.1 — The function M for odd s.

the following quantities based on these symmetric elliptic integrals

F =

√
1 − a sinφ

a
RF (cos2 φ,∆2, 1),

D =
sin3 φ

3
√

1 − a
RD(cos2 φ,∆2, 1), (B.2)

J =
(b− a) sin3 φ

3a2
√

1 − a
RJ(cos2 φ,∆2, 1,

p(φ)

a
),

with ∆2 = [1 − p(φ)]/(1 − a), and we have defined the terms

A =
1√
ab

arctan

(
√

b

a
tanφ

)

,

P = sinφ cos φ
√

1 − p(φ), (B.3)

Q = sinφ cos φ
1 −

√

1 − p(φ)

p(φ)
.

In Fig. B.1, we show the M(s, i, j; a, b, φ) as function of φ for the case that a = 0.5 and
b = 0.8, up to order s = 5.

We now consider some special cases. When either a or b is zero, the corresponding
velocity moments vanish (eqs 2.16 and 2.19), and when ai > bi the arguments of the
function M are interchanged (eqs 2.18, 2.20 and 2.21). This means we only have to
consider the range 0 < a ≤ b, together with 0 < φ ≤ π/2, since M vanishes when φ = 0.

When a = b, it follows that p(θ) = a in eq. (B.1), and henceforth we can separate
M(s, i, j; a, a, φ) = M1(s, i, j; a)M2(i, j;φ), where

M1(s, i, j; a) =
di+j

dai+j

[

1 −
√

(1 − a)s+1
]

a
, M2(i, j;φ) =

∫ φ

0
cos2i θ sin2j θdθ. (B.4)
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s i j M(s, i, j; a, b, φ)

000 A− F + J

200 A− (1 − a)F − (b− a)D + J

210 − 1
2a [A+Q− (1 + a)F + (1 − a)D + J ]

201 − 1
2b [A−Q− F − (1 − b)D + J ]

400 A+ 1
3 (b− a)P − 1

3(2a2 + ab− 6a+ 3)F + 1
3 (2a+ 2b− 7)(b − a)D + J

410 − 1
2a

[

A+ aP +Q− (1 + 2a)(1 − a)F + (2a2 − 2a− ab+ 1)D + J
]

401 − 1
2b

[

A− b P −Q− (1 − ab)F − (2b2 − 2b− ab+ 1)D + J
]

420 3
4a2

{

A+ a2 p(φ)−ab
3(b−a)p(φ) P + 5a cos2 φ+3b sin2 φ

3p(φ) Q+ 2a3−3a2b+4a2+3a−3ab−3b
3(b−a) F

− (2a2+5a−4ab−3b)(1−a)
3(b−a) D + J

}

411 1
4ab

{

A+ ab−ab p(φ)
(b−a)p(φ) P + b sin2 φ−a cos2 φ

p(φ) Q+ a2b−ab+a−b
b−a F + a2b+ab2−4ab+a+b

b−a D + J
}

402 3
4b2

{

A+ b2 p(φ)−ab
3(b−a)p(φ) P − 3a cos2 φ+5b sin2 φ

3p(φ) Q− 3b−3a−ab+ab2

3(b−a) F

− (2b2+5b−4ab−3a)(1−b)
3(b−a) D + J

}

TABLE B.2 — The function M for even s.

For a = 1, the expression for M1 simplifies to (−1)i+j(i+j)!. The integral in the expres-
sion for M2 can be evaluated explicitly using e.g. the relations 2.513 of Gradshteyn &
Ryzhik (1994). For φ = π/2, it reduces to the beta function B(i+ 1/2, j + 1/2).

When a < b = 1, the elliptic integrals become elementary, so that the quantities F ,
D and J in eq. (B.2) reduce to

F =

√
1−a
a

ln

[

tan

(

π

4
+
φ

2

)]

, D=
a

1−a F − sinφ√
1−a

, J=F− 1√
a

arctan

(

√

1−a
a

sinφ

)

. (B.5)

Although F diverges when φ → π/2, substitution of these reduced quantities in the
expressions of M for even s (Table B.2), shows that all terms with F cancel. For
φ = π/2, the function M is thus everywhere finite, with A = π/(2

√
ab) and P = Q = 0.

APPENDIX C CONVERSION FROM TRUE MOMENTS TO GAUSS-HERMITE MOMENTS

We describe the conversion from the true moments of a line-of-sight velocity distri-
bution (LOSVD) to the moments of its expansion as a Gauss-Hermite series. These
Gauss-Hermite moments are used to parameterize observed LOSVDs as they are less
sensitive to the often noise-dominated wings than the true moments. Because there
is no simple (analytic) relation between both, we convert the projected true moments
of the Abel distribution function (3.12) to Gauss-Hermite moments numerically.

One possible way is to proceed as follows: For a given set of Gauss-Hermite mo-
ments {ΣGH, VGH, σGH, h3, h4, . . . , hN} construct the corresponding LOSVD LGH

N (v) (us-
ing e.g. eq. 9 of van der Marel & Franx 1993), and (numerically) calculate its moments
µGH

k =
∫∞
−∞ vkLGH

N (v) dv. Then find the set of Gauss-Hermite moments for which µGH
k
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FIGURE B.1 — The function M(s, i, j; a, b, φ) defined in eq. (B.1) plotted against φ, for a = 0.5 and
b = 0.8, up to order s = 5. The curves in the top panels are for odd values of s corresponding
to the odd velocity moments, whereas the curves in the bottom panels are for even values of
s. The indices of the labels Msij refer to the first three parameters of the function M.

(k = 0, . . . ,K) best fit the K true moments µk (3.12). This fit can be done e.g. by mini-
mizing χ2 =

∑K
k=1

[

(µk − µGH
k )/(Σσk)

]2. A good initial start for the set of Gauss-Hermite
moments is to set the lower-order moments equal to the true moments, ΣGH = Σ,
VGH = V , σGH = σ, and the higher order moments h3, h4, . . . , hN to zero.

However, in practice several problems occur with the above direct fitting of the true
moments. As illustrated in the right panel of Fig. C.1, the goodness-of-fit parameter
χ2 shows (many) local minima. This means it is very hard for a minimization routine
to find the global minimum. It can take long before the routine converges and even
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FIGURE C.1 — Derivation of the Gauss-Hermite moments of the Scorza & Bender (1995)
LOSVD by fitting to its true moments. The solid curve in the left panel shows the double
Gaussian representation of their LOSVD. The dotted curve is the Gauss-Hermite LOSVD of
which the true moments best fit those of the double Gaussian LOSVD. This corresponds to
the minimum in the goodness-of-fit parameter χ2, shown in the right panel. The change
in grey scale from black to white represents the increase in χ2, as function of the higher
order moments h3 and h4, while minimized over the lower-order moments ΣGH, VGH and σGH.
Besides this (global) minimum around (h3, h4) ∼ (−0.15, 0.07), there are various (broader) local
minima. Hence, starting from (h3, h4) = (0, 0), a minimization routine easily ends up in e.g. the
local minimum around (h3, h4) ∼ (−0.05,−0.05), resulting in Gauss-Hermite LOSVD indicated
by the dashed curve in the left panel.

then the probability is high that it ends up in one of the (in general broader) local
minima. Moreover, since the higher order true moments are sensitive to the wings
of the LOSVD, small (numerical) errors in the true moments can lead to (very) wrong
estimates of Gauss-Hermite moments. Instead of fitting directly the true moments,
an alternative method is to (re)construct the LOSVD from the true moments and then
fit a Gauss-Hermite series to it.

For the (re)construction of the LOSVD from the true velocity moments, one can
use the well-known Gram-Charlier series, the terms of which are simple functions of
the true moments (see e.g. Appendix B2 of van der Marel & Franx 1993), but it has
poor convergence properties. The terms in the Edgeworth (1905) expansion are also
directly related to the true moments, but since it is a true asymptotic expansion its
accuracy is controlled, so that, unlike the Gauss-Hermite and Gram-Charlier expan-
sions, convergence plays no role (see Blinnikov & Moessner 1998 for a comparison
between the expansions and for further references).

The Edgeworth expansion of the LOSVD up to order N is given by

LED
N (v) = Σ

e−
1

2
w2

√
2πσ

[

1 +

N
∑

n=3

Dn

]

, (C.1)
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FIGURE C.2 — Derivation of the Gauss-Hermite moments of the Scorza & Bender (1995) dou-
ble Gaussian LOSVD (solid curve) by fitting to the reconstructed Edgeworth LOSVD (dashed
curve) from its true moments. The Gaussian and the higher order terms of the Edgeworth
expansion (C.1) are shown by the dotted curves. The best-fit Gauss-Hermite LOSVD to the
Edgeworth LOSVD is indicated by the filled circles.

with w = (v − V )/σ and
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∑
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The Hermite polynomials Hm are related to those defined by van der Marel & Franx
(1993) as Hm(w) =

√
m!Hm(w/

√
2). We have defined l =

∑n−2
j=1 lj, where the sets {lj} are

the non-negative integer solutions of the Diophantine equation lj+2lj+· · ·+(n−2)ln−2 =
n− 2. Substituting these solutions, we find up to order N = 5
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The lower-order moments Σ, V and σ are equivalent to those in eq. (3.13), while the
higher-order moments di (i ≥ 3) are cumulants of the true moments

di =
i!

σn

∑

{lk}
(−1)l−1(l−1)!

i
∏

k=1

1

lk!

(µk

k!

)lk
, (C.4)

so that
d3 = ξ1, d4 = ξ2 − 3, and d5 = ξ3 − 10ξ1. (C.5)
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The central moments ξ1 (skewness), ξ2 (kurtosis) and ξ3 are related to the true mo-
ments respectively as

(µ0σ)3 ξ1 = µ2
0 µ3 − 3µ0 µ1 µ2 + 2µ3

1, (C.6)
(µ0σ)4 ξ2 = µ3

0 µ4 − 4µ2
0 µ1 µ3 + 6µ0 µ

2
1 µ2 − 3µ4

1, (C.7)
(µ0σ)5 ξ3 = µ4

0 µ5 − 5µ3
0 µ1 µ4 + 10µ2

0 µ
2
1 µ3 − 10µ0 µ

3
1 µ2 + 4µ5

1. (C.8)

Substituting the line-of-sight true moments µk for k = 0, . . . ,K, we can compute LED
K (v)

at each position on the plane of the sky. By fitting a Gauss-Hermite series to LED
K (v),

we then obtain the observables ΣGH, VGH, σGH and higher order moments h3, h4, . . . ,
as function of (x′, y′). This method (Fig. C.2) is more accurate (and faster) than fitting
the true moments directly. Still, (numerical) errors in the higher order moments
might result in large (nonphysical) fluctuations in the reconstructed LOSVD. To avoid
this we truncate the expansion when higher order terms exceed the lower order terms.
Tests reveal that the truncation only happens in a few cases, when the Gauss-Hermite
moments reach unrealistic large values.



CHAPTER 5

GENERAL SOLUTION OF THE JEANS EQUATIONS FOR
TRIAXIAL GALAXIES WITH SEPARABLE POTENTIALS

ABSTRACT
The Jeans equations relate the second-order velocity moments to the density and
potential of a stellar system. For general three-dimensional stellar systems, there
are three equations and six independent moments. By assuming that the potential
is triaxial and of separable Stäckel form, the mixed moments vanish in confocal
ellipsoidal coordinates. Consequently, the three Jeans equations and three re-
maining non-vanishing moments form a closed system of three highly-symmetric
coupled first-order partial differential equations in three variables. These equa-
tions were first derived by Lynden–Bell, over 40 years ago, but have resisted solu-
tion by standard methods. We present the general solution here.
We consider the two-dimensional limiting cases first. We solve their Jeans equa-
tions by a new method which superposes singular solutions. The singular so-
lutions, which are new, are standard Riemann–Green functions. The resulting
solutions of the Jeans equations give the second moments throughout the system
in terms of prescribed boundary values of certain second moments. The two-
dimensional solutions are applied to non-axisymmetric disks, oblate and prolate
spheroids, and also to the scale-free triaxial limit. There are restrictions on the
boundary conditions which we discuss in detail. We then extend the method of
singular solutions to the triaxial case, and obtain a full solution, again in terms
of prescribed boundary values of second moments. There are restrictions on these
boundary values as well, but the boundary conditions can all be specified in a
single plane. The general solution can be expressed in terms of complete (hy-
per)elliptic integrals which can be evaluated in a straightforward way, and provides
the full set of second moments which can support a triaxial density distribution in
a separable triaxial potential.

G. van de Ven, C. Hunter, E.K. Verolme, P.T. de Zeeuw
MNRAS, 342, 1056–1082 (2003)
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1 INTRODUCTION

MUCH has been learned about the mass distribution and internal dynamics of
galaxies by modeling their observed kinematics with solutions of the Jeans equa-

tions (e.g., Binney & Tremaine 1987). These are obtained by taking velocity moments
of the collisionless Boltzmann equation for the phase-space distribution function f ,
and connect the second moments (or the velocity dispersions, if the mean streaming
motion is known) directly to the density and the gravitational potential of the galaxy,
without the need to know f . In nearly all cases there are fewer Jeans equations than
velocity moments, so that additional assumptions have to be made about the degree
of anisotropy. Furthermore, the resulting second moments may not correspond to a
physical distribution function f ≥ 0. These significant drawbacks have not prevented
wide application of the Jeans approach to the kinematics of galaxies, even though the
results need to be interpreted with care. Fortunately, efficient analytic and numer-
ical methods have been developed in the past decade to calculate the full range of
distribution functions f that correspond to spherical or axisymmetric galaxies, and
to fit them directly to kinematic measurements (e.g., Gerhard 1993; Qian et al. 1995;
Rix et al. 1997; van der Marel et al. 1998). This has provided, for example, accurate
intrinsic shapes, mass-to-light ratios, and central black hole masses (e.g., Verolme et
al. 2002; Gebhardt et al. 2003).

Many galaxy components are not spherical or axisymmetric, but have triaxial
shapes (Binney 1976, 1978). These include early-type bulges, bars, and giant el-
liptical galaxies. In this geometry, there are three Jeans equations, but little use
has been made of them, as they contain six independent second moments, three of
which have to be chosen ad-hoc (see, e.g., Evans, Carollo & de Zeeuw 2000). At the
same time, not much is known about the range of physical solutions, as very few
distribution functions have been computed, and even fewer have been compared with
kinematic data (but see Zhao 1996).

An exception is provided by the special set of triaxial mass models that have a grav-
itational potential of Stäckel form. In these systems, the Hamilton–Jacobi equation
separates in orthogonal curvilinear coordinates (Stäckel 1891), so that all orbits have
three exact integrals of motion, which are quadratic in the velocities. The associated
mass distributions can have arbitrary central axis ratios and a large range of density
profiles, but they all have cores rather than central density cusps, which implies that
they do not provide perfect fits to galaxies (de Zeeuw, Peletier & Franx 1986). Even so,
they capture much of the rich internal dynamics of large elliptical galaxies (de Zeeuw
1985a, hereafter Z85; Statler 1987, 1991; Arnold, de Zeeuw & Hunter 1994). Numer-
ical and analytic distribution functions have been constructed for these models (e.g.,
Bishop 1986; Statler 1987; Dejonghe & de Zeeuw 1988; Hunter & de Zeeuw 1992,
hereafter HZ92; Mathieu & Dejonghe 1999), and their projected properties have been
used to provide constraints on the intrinsic shapes of individual galaxies (e.g., Statler
1994a, b; Statler & Fry 1994; Statler, DeJonghe & Smecker-Hane 1999; Bak & Statler
2000; Statler 2001).

The Jeans equations for triaxial Stäckel systems have received little attention.
This is remarkable, as Eddington (1915) already knew that the velocity ellipsoid
in these models is everywhere aligned with the confocal ellipsoidal coordinate sys-
tem in which the motion separates. This means that there are only three, and not
six, non-vanishing second-order velocity moments in these coordinates, so that the
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Jeans equations form a closed system. However, Eddington, and later Chandrasekhar
(1939, 1940), did not study the velocity moments, but instead assumed a form for the
distribution function, and then determined which potentials are consistent with it.
Lynden–Bell (1960) was the first to derive the explicit form of the Jeans equations for
the triaxial Stäckel models. He showed that they constitute a highly symmetric set
of three first-order partial differential equations (PDEs) for three unknowns, each of
which is a function of the three confocal ellipsoidal coordinates, but he did not de-
rive solutions. When it was realized that the orbital structure in the triaxial Stäckel
models is very similar to that in the early numerical models for triaxial galaxies with
cores (Schwarzschild 1979; Z85), interest in the second moments increased, and the
Jeans equations were solved for a number of special cases. These include the axisym-
metric limits and elliptic disks (Dejonghe & de Zeeuw 1988; Evans & Lynden–Bell
1989, hereafter EL89), triaxial galaxies with only thin tube orbits (HZ92), and, most
recently, the scale-free limit (Evans et al. 2000). In all these cases the equations sim-
plify to a two-dimensional problem, which can be solved with standard techniques
after recasting two first-order equations into a single second-order equation in one
dependent variable. However, these techniques do not carry over to a single third-
order equation in one dependent variable, which is the best that one could expect to
have in the general case. As a result, the general case has remained unsolved.

Here, we first present an alternative solution method for the two-dimensional limit-
ing cases which does not use the standard approach, but instead uses superpositions
of singular solutions. We show that this approach can be extended to three dimen-
sions, and provides the general solution for the triaxial case in closed form, which we
give explicitly. We will apply our solutions in a follow-up paper, and will use them
together with the mean streaming motions (Statler 1994a) to study the properties of
the observed velocity and dispersion fields of triaxial galaxies.

In Section 2, we define our notation and derive the Jeans equations for the triaxial
Stäckel models in confocal ellipsoidal coordinates, together with the continuity condi-
tions. We summarize the limiting cases, and show that the Jeans equations for all the
cases with two degrees of freedom correspond to the same two-dimensional problem.
We solve this problem in Section 3, first by employing a standard approach with a
Riemann–Green function, and then via the singular solution superposition method.
We also discuss the choice of boundary conditions in detail. We relate our solution to
that derived by EL89 in Appendix A, and explain why it is different. In Section 4, we
extend the singular solution approach to the three-dimensional problem, and derive
the general solution of the Jeans equations for the triaxial case. It contains complete
(hyper)elliptic integrals, which we express as single quadratures that can be numeri-
cally evaluated in a straightforward way. We summarize our conclusions in Section 5.

2 THE JEANS EQUATIONS FOR SEPARABLE MODELS

We first summarize the essential properties of the triaxial Stäckel models in confocal
ellipsoidal coordinates. Further details can be found in Z85. We show that for these
models the mixed second-order velocity moments vanish, so that the Jeans equations
form a closed system. We derive the Jeans equations and find the corresponding
continuity conditions for the general case of a triaxial galaxy. We then give an overview
of the limiting cases and show that solving the Jeans equations for the various cases
with two degrees of freedom reduces to an equivalent two-dimensional problem.
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FIGURE 1 — Confocal ellipsoidal coordinates. Surfaces of constant λ are ellipsoids, surfaces
of constant µ are hyperboloids of one sheet and surfaces of constant ν are hyperboloids of two
sheets.

2.1 TRIAXIAL STÄCKEL MODELS

We define confocal ellipsoidal coordinates (λ, µ, ν) as the three roots for τ of

x2

τ + α
+

y2

τ + β
+

z2

τ + γ
= 1, (2.1)

with (x, y, z) the usual Cartesian coordinates, and with constants α, β and γ such
that −γ ≤ ν ≤ −β ≤ µ ≤ −α ≤ λ. For each point (x, y, z), there is a unique set
(λ, µ, ν), but a given combination (λ, µ, ν) generally corresponds to eight different points
(±x,±y,±z). We assume all three-dimensional Stäckel models in this chapter to be
likewise eightfold symmetric.

Surfaces of constant λ are ellipsoids, and surfaces of constant µ and ν are hyper-
boloids of one and two sheets, respectively (Fig. 1). The confocal ellipsoidal coordi-
nates are approximately Cartesian near the origin and become a conical coordinate
system at large radii with a system of spheres together with elliptic and hyperbolic
cones (Fig. 3). At each point, the three coordinate surfaces are perpendicular to each
other. Therefore, the line element is of the form ds2 = P 2dλ2 +Q2dµ2 +R2dν2, with the
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metric coefficients

P 2 =
(λ− µ)(λ− ν)

4(λ+ α)(λ+ β)(λ+ γ)
,

Q2 =
(µ− ν)(µ− λ)

4(µ+ α)(µ + β)(µ+ γ)
, (2.2)

R2 =
(ν − λ)(ν − µ)

4(ν + α)(ν + β)(ν + γ)
.

We restrict attention to models with a gravitational potential VS(λ, µ, ν) of Stäckel
form (Weinacht 1924)

VS = − F (λ)

(λ− µ)(λ− ν)
− F (µ)

(µ− ν)(µ− λ)
− F (ν)

(ν − λ)(ν − µ)
, (2.3)

where F (τ) is an arbitrary smooth function.
Adding any linear function of τ to F (τ) changes VS by at most a constant, and

hence has no effect on the dynamics. Following Z85, we use this freedom to write

F (τ) = (τ + α)(τ + γ)G(τ), (2.4)

where G(τ) is smooth. It equals the potential along the intermediate axis. This choice
will simplify the analysis of the large radii behavior of the various limiting cases.1

The density ρS that corresponds to VS can be found from Poisson’s equation or by
application of Kuzmin’s (1973) formula (see de Zeeuw 1985b). This formula shows
that, once we have chosen the central axis ratios and the density along the short axis,
the mass model is fixed everywhere by the requirement of separability. For centrally
concentrated mass models, VS has the x-axis as long axis and the z-axis as short axis.
In most cases this is also true for the associated density (de Zeeuw et al. 1986).

2.2 VELOCITY MOMENTS

A stellar system is completely described by its distribution function (DF), which in
general is a time-dependent function f of the six phase-space coordinates (x,v). As-
suming the system to be in equilibrium (df/dt = 0) and in steady-state (∂f/∂t = 0),
the DF is independent of time t and satisfies the (stationary) collisionless Boltzmann
equation (CBE). Integration of the DF over all velocities yields the zeroth-order veloc-
ity moment, which is the density ρ of the stellar system. The first- and second-order
velocity moments are defined as

〈vi〉(x) =
1

ρ

∫∫∫

vif(x,v) d3v,

(2.5)
〈vivj〉(x) =

1

ρ

∫∫∫

vivjf(x,v) d3v,

where i, j = 1, 2, 3. The streaming motions 〈vi〉 together with the symmetric second-
order velocity moments 〈vivj〉 provide the velocity dispersions σ2

ij = 〈vivj〉 − 〈vi〉〈vj〉.
The continuity equation that results from integrating the CBE over all velocities,

relates the streaming motion to the density ρ of the system. Integrating the CBE over
1Other, equivalent, choices include F (τ ) = −(τ +α)(τ + γ)G(τ ) by HZ92, and F (τ ) = (τ +α)(τ +β)U(τ )

by de Zeeuw et al. (1986), with U(τ ) the potential along the short axis.
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all velocities after multiplication by each of the three velocity components, provides
the Jeans equations, which relate the second-order velocity moments to ρ and V , the
potential of the system. Therefore, if the density and potential are known, we in gen-
eral have one continuity equation with three unknown first-order velocity moments
and three Jeans equations with six unknown second-order velocity moments.

The potential (2.3) is the most general form for which the Hamilton–Jacobi equa-
tion separates (Stäckel 1890; Lynden–Bell 1962b; Goldstein 1980). All orbits have
three exact isolating integrals of motion, which are quadratic in the velocities (e.g.,
Z85). It follows that there are no irregular orbits, so that Jeans’ (1915) theorem is
strictly valid (Lynden–Bell 1962a; Binney 1982) and the DF is a function of the three
integrals. The orbital motion is a combination of three independent one-dimensional
motions — either an oscillation or a rotation — in each of the three ellipsoidal coor-
dinates. Different combinations of rotations and oscillations result in four families of
orbits in triaxial Stäckel models (Kuzmin 1973; Z85): inner (I) and outer (O) long-axis
tubes, short (S) axis tubes and box orbits. Stars on box orbits carry out an oscil-
lation in all three coordinates, so that they provide no net contribution to the mean
streaming. Stars on I- and O-tubes carry out a rotation in ν and those on S-tubes a
rotation in µ, and oscillations in the other two coordinates. The fractions of clockwise
and counterclockwise stars on these orbits may be unequal. This means that each of
the tube families can have at most one nonzero first-order velocity moment, related to
ρ by the continuity equation. Statler (1994a) used this property to construct velocity
fields for triaxial Stäckel models. It is not difficult to show by similar arguments (e.g.,
HZ92) that all mixed second-order velocity moments also vanish

〈vλvµ〉 = 〈vµvν〉 = 〈vνvλ〉 = 0. (2.6)

Eddington (1915) already knew that in a potential of the form (2.3), the axes of the
velocity ellipsoid at any given point are perpendicular to the coordinate surfaces, so
that the mixed second-order velocity moments are zero. We are left with three second-
order velocity moments, 〈v2

λ〉, 〈v2
µ〉 and 〈v2

ν〉, related by three Jeans equations.

2.3 THE JEANS EQUATIONS

The Jeans equations for triaxial Stäckel models in confocal ellipsoidal coordinates
were first derived by Lynden–Bell (1960). We give an alternative derivation here, using
the Hamilton equations.

We first write the DF as a function of (λ, µ, ν) and the conjugate momenta

pλ = P 2 dλ

dt
, pµ = Q2dµ

dt
, pν = R2dν

dt
, (2.7)

with the metric coefficients P , Q and R given in (2.2). In these phase-space coordi-
nates the steady-state CBE reads

dτ

dt

∂f

∂τ
+
dpτ

dt

∂f

∂pτ
= 0, (2.8)

where we have used the summation convention with respect to τ = λ, µ, ν. The Hamil-
ton equations are

dτ

dt
=
∂H

∂pτ
,

dpτ

dt
=
∂H

∂τ
, (2.9)
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with the Hamiltonian defined as

H =
p2

λ

2P 2
+

p2
µ

2Q2
+

p2
ν

2R2
+ V (λ, µ, ν). (2.10)

The first Hamilton equation in (2.9) defines the momenta (2.7) and gives no new in-
formation. The second gives

dpλ

dt
=
p2

λ

P 3

∂P

∂λ
+
p2

µ

Q3

∂Q

∂λ
+
p2

ν

R3

∂R

∂λ
− ∂V

∂λ
, (2.11)

and similar for pµ and pν by replacing the derivatives with respect to λ by derivatives
to µ and ν, respectively.

We assume the potential to be of the form VS defined in (2.3), and we substitute
(2.7) and (2.11) in the CBE (2.8). We multiply this equation by pλ and integrate over
all momenta. The mixed second moments vanish (2.6), so that we are left with

3〈fp2
λ〉

P 3

∂P

∂λ
+

〈fp2
µ〉

Q3

∂Q

∂λ
+

〈fp2
ν〉

R3

∂R

∂λ
− 1

P 2

∂

∂λ
〈fp2

λ〉 − 〈f〉∂VS

∂λ
= 0, (2.12)

where we have defined the moments

〈f〉 ≡
∫

fd3p = PQRρ,

(2.13)
〈fp2

λ〉 ≡
∫

p2
λfd3p = P 3QRTλλ,

with the diagonal components of the stress tensor

Tττ (λ, µ, ν) ≡ ρ〈v2
τ 〉, τ = λ, µ, ν. (2.14)

The moments 〈fp2
µ〉 and 〈fp2

ν〉 follow from 〈fp2
λ〉 by cyclic permutation λ → µ → ν → λ,

for which P →Q →R →P . We substitute the definitions (2.13) in eq. (2.12) and carry
out the partial differentiation in the fourth term. The first term in (2.12) then cancels,
and, after rearranging the remaining terms and dividing by PQR, we obtain

∂Tλλ

∂λ
+
Tλλ − Tµµ

Q

∂Q

∂λ
+
Tλλ − Tνν

R

∂R

∂λ
= −ρ∂VS

∂λ
. (2.15)

Substituting the metric coefficients (2.2) and carrying out the partial differentiations
results in the Jeans equations

∂Tλλ

∂λ
+
Tλλ − Tµµ

2(λ− µ)
+
Tλλ − Tνν

2(λ− ν)
= −ρ∂VS

∂λ
, (2.16a)

∂Tµµ

∂µ
+
Tµµ − Tνν

2(µ− ν)
+
Tµµ − Tλλ

2(µ− λ)
= −ρ∂VS

∂µ
, (2.16b)

∂Tνν

∂ν
+
Tνν − Tλλ

2(ν − λ)
+
Tνν − Tµµ

2(ν − µ)
= −ρ∂VS

∂ν
, (2.16c)

where the equations for µ and ν follow from the one for λ by cyclic permutation. These
equations are identical to those derived by Lynden–Bell (1960).
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In self-consistent models, the density ρ must equal ρS, with ρS related to the po-
tential VS (2.3) by Poisson’s equation. The Jeans equations, however, do not require
self-consistency. Hence, we make no assumptions on the form of the density other
than that it is triaxial, i.e., a function of (λ, µ, ν), and that it tends to zero at infinity.
The resulting solutions for the stresses Tττ do not all correspond to physical distribu-
tion functions f ≥ 0. The requirement that the Tττ are non-negative removes many
(but not all) of the unphysical solutions.

2.4 CONTINUITY CONDITIONS

We saw in §2.2 that the velocity ellipsoid is everywhere aligned with the confocal
ellipsoidal coordinates. When λ → −α, the ellipsoidal coordinate surface degenerates
into the area inside the focal ellipse (Fig. 2). The area outside the focal ellipse is
labeled by µ = −α. Hence, Tλλ is perpendicular to the surface inside and Tµµ is
perpendicular to the surface outside the focal ellipse. On the focal ellipse, i.e. when
λ = µ = −α, both stress components therefore have to be equal. Similarly, Tµµ and Tνν

are perpendicular to the area inside (µ = −β) and outside (ν = −β) the two branches
of the focal hyperbola, respectively, and have to be equal on the focal hyperbola itself
(µ = ν = −β). This results in the following two continuity conditions

Tλλ(−α,−α, ν) = Tµµ(−α,−α, ν), (2.17a)

Tµµ(λ,−β,−β) = Tνν(λ,−β,−β). (2.17b)

These conditions not only follow from geometrical arguments, but are also precisely
the conditions necessary to avoid singularities in the Jeans equations (2.16) when λ =
µ = −α and µ = ν = −β. For the sake of physical understanding, we will also obtain
the corresponding continuity conditions by geometrical arguments for the limiting
cases that follow.

2.5 LIMITING CASES

When two or all three of the constants α, β or γ are equal, the triaxial Stäckel models
reduce to limiting cases with more symmetry and thus with fewer degrees of freedom.
We show in §2.6 that solving the Jeans equations for all the models with two degrees
of freedom reduces to the same two-dimensional problem. EL89 first solved this
generalized problem and applied it to the disk, oblate and prolate case. Evans et al.
(2000) showed that the large radii case with scale-free DF reduces to the problem
solved by EL89. We solve the same problem in a different way in §3, and obtain a
simpler expression than EL89. In order to make application of the resulting solution
straightforward, and to define a unified notation, we first give an overview of the
limiting cases.

2.5.1 Oblate spheroidal coordinates: prolate potentials
When γ = β, the coordinate surfaces for constant λ and µ reduce to oblate spheroids
and hyperboloids of revolution around the x-axis. Since the range of ν is zero, it
cannot be used as a coordinate. The hyperboloids of two sheets are now planes
containing the x-axis. We label these planes by an azimuthal angle χ, defined as
tanχ = z/y. In these oblate spheroidal coordinates (λ, µ, χ) the potential VS has the
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FIGURE 2 — Special surfaces inside (λ = −α) and outside (µ = −α) the focal ellipse in the plane
x = 0, and inside (µ = −β) and outside (ν = −β) the two branches of the focal hyperbola in the
plane y = 0 and the plane z = 0 (ν = −γ).

form (cf. Lynden–Bell 1962b)

VS = −f(λ) − f(µ)

λ− µ
− g(χ)

(λ+ β)(µ+ β)
, (2.18)

where the function g(χ) is arbitrary, and f(τ) = (τ + α)G(τ), with G(τ) as in eq. (2.4).
The denominator of the second term is proportional to y2 + z2, so that these potentials
are singular along the entire x-axis unless g(χ) ≡ 0. In this case, the potential is
prolate axisymmetric, and the associated density ρS is generally prolate as well (de
Zeeuw et al. 1986).

The Jeans equations (2.16) reduce to

∂Tλλ

∂λ
+
Tλλ − Tµµ

2(λ− µ)
+
Tλλ − Tχχ

2(λ+ β)
= −ρ∂VS

∂λ
,

∂Tµµ

∂µ
+
Tµµ − Tλλ

2(µ− λ)
+
Tµµ − Tχχ

2(µ+ β)
= −ρ∂VS

∂µ
, (2.19)

∂Tχχ

∂χ
= −ρ∂VS

∂χ
.

The continuity condition (2.17a) still holds, except that the focal ellipse has become a
focal circle. For µ = −β, the one-sheeted hyperboloid degenerates into the x-axis, so
that Tµµ is perpendicular to the x-axis and coincides with Tχχ. This gives the following
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two continuity conditions

Tλλ(−α,−α, χ) = Tµµ(−α,−α, χ),
(2.20)

Tµµ(λ,−β, χ) = Tχχ(λ,−β, χ).

By integrating along characteristics, Hunter et al. (1990) obtained the solution of
(2.19) for the special prolate models in which only the thin I- and O-tube orbits are
populated, so that Tµµ ≡ 0 and Tλλ ≡ 0, respectively (cf. §2.5.6).

2.5.2 Prolate spheroidal coordinates: oblate potentials
When β = α, we cannot use µ as a coordinate and replace it by the azimuthal angle
φ, defined as tanφ = y/x. Surfaces of constant λ and ν are confocal prolate spheroids
and two-sheeted hyperboloids of revolution around the z-axis. The prolate spheroidal
coordinates (λ, φ, ν) follow from the oblate spheroidal coordinates (λ, µ, χ) by taking
µ→ ν, χ→ φ and β → α→ γ. The potential VS(λ, φ, ν) is (cf. Lynden–Bell 1962b)

VS = −f(λ) − f(ν)

λ− ν
− g(φ)

(λ+ α)(ν + α)
. (2.21)

In this case, the denominator of the second term is proportional to R2 = x2+y2, so that
the potential is singular along the entire z-axis, unless g(φ) vanishes. When g(φ) ≡ 0,
the potential is oblate, and the same is generally true for the associated density ρS.

The Jeans equations (2.16) reduce to

∂Tλλ

∂λ
+
Tλλ − Tφφ

2(λ+ α)
+
Tλλ − Tνν

2(λ− ν)
= −ρ∂VS

∂λ
,

∂Tφφ

∂φ
= −ρ∂VS

∂φ
. (2.22)

∂Tνν

∂ν
+
Tνν − Tλλ

2(ν − λ)
+
Tνν − Tφφ

2(ν + α)
= −ρ∂VS

∂ν
.

For λ = −α, the prolate spheroidal coordinate surfaces reduce to the part of the z-axis
between the foci. The part beyond the foci is reached if ν = −α. Hence, in this case,
Tλλ is perpendicular to part of the z-axis between, and Tνν is perpendicular to the
part of the z-axis beyond the foci. They coincide at the foci (λ = ν = −α), resulting in
one continuity condition. Two more follow from the fact that Tφφ is perpendicular to
the (complete) z-axis, and thus coincides with Tλλ and Tνν on the part between and
beyond the foci, respectively:

Tλλ(−α, φ,−α) = Tνν(−α, φ,−α),

Tλλ(−α, φ, ν) = Tφφ(−α, φ, ν), (2.23)
Tνν(λ, φ,−α) = Tφφ(λ, φ,−α).

For oblate models with thin S-tube orbits (Tλλ ≡ 0, see §2.5.6), the analytical solution
of (2.22) was derived by Bishop (1987) and by de Zeeuw & Hunter (1990). Robijn &
de Zeeuw (1996) obtained the second-order velocity moments for models in which the
thin tube orbits were thickened iteratively. Dejonghe & de Zeeuw (1988, Appendix D)
found a general solution by integrating along characteristics. Evans (1990) gave an
algorithm for solving (2.22) numerically, and Arnold (1995) computed a solution using
characteristics without assuming a separable potential.
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2.5.3 Confocal elliptic coordinates: non-circular disks
In the principal plane z = 0, the ellipsoidal coordinates reduce to confocal elliptic
coordinates (λ, µ), with coordinate curves that are ellipses (λ) and hyperbolae (µ), that
share their foci on the symmetry y-axis. The potential of the perfect elliptic disk,
with its surface density distribution stratified on concentric ellipses in the plane z = 0
(ν = −γ), is of Stäckel form both in and outside this plane. By a superposition of
perfect elliptic disks, one can construct other surface densities and corresponding
disk potentials that are of Stäckel form in the plane z = 0, but not necessarily outside
it (Evans & de Zeeuw 1992). The expression for the potential in the disk is of the form
(2.18) with g(χ) ≡ 0:

VS = −f(λ) − f(µ)

λ− µ
, (2.24)

where again f(τ) = (τ + α)G(τ), so that G(τ) equals the potential along the y-axis.
Omitting all terms with ν in (2.16), we obtain the Jeans equations for non-circular

Stäckel disks
∂Tλλ

∂λ
+
Tλλ − Tµµ

2(λ− µ)
= −ρ∂VS

∂λ
,

(2.25)
∂Tµµ

∂µ
+
Tµµ − Tλλ

2(µ− λ)
= −ρ∂VS

∂µ
,

where now ρ denotes a surface density. The parts of the y-axis between and beyond
the foci are labeled by λ = −α and µ = −α, resulting in the continuity condition

Tλλ(−α,−α) = Tµµ(−α,−α). (2.26)

2.5.4 Conical coordinates: scale-free triaxial limit
At large radii, the confocal ellipsoidal coordinates (λ, µ, ν) reduce to conical coordinates
(r, µ, ν), with r the usual distance to the origin, i.e., r2 = x2+y2+z2 and µ and ν angular
coordinates on the sphere (Fig. 3). The potential VS(r, µ, ν) is scale-free, and of the form

VS = −F̃ (r) +
F (µ) − F (ν)

r2(µ− ν)
, (2.27)

where F̃ (r) is arbitrary, and F (τ) = (τ + α)(τ + γ)G(τ), as in eq. (2.4).
The Jeans equations in conical coordinates follow from the general triaxial case

(2.16) by going to large radii. Taking λ → r2 � −α ≥ µ, ν, the stress components
approach each other and we have

Tλλ − Tµµ

2(λ− µ)
,
Tλλ − Tνν

2(λ− ν)
∼ 1

r
→ 0,

∂

∂λ
→ 1

2r

∂

∂λ
. (2.28)

Hence, after multiplying (2.16a) by 2r, the Jeans equations for scale-free Stäckel mod-
els are

∂Trr

∂r
+

2Trr − Tµµ − Tνν

r
= −ρ∂VS

∂r
,

∂Tµµ

∂µ
+
Tµµ − Tνν

2(µ− ν)
= −ρ∂VS

∂µ
, (2.29)

∂Tνν

∂ν
+
Tνν − Tµµ

2(ν − µ)
= −ρ∂VS

∂ν
.
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FIGURE 3 — Behavior of the confocal ellipsoidal coordinates in the limit of large radii r. The
surfaces of constant λ become spheres. The hyperboloids of constant µ and ν approach their
asymptotic surfaces, and intersect the sphere on the light and dark curves, respectively.
These form an orthogonal curvilinear coordinate system (µ, ν) on the sphere. The black dots
indicate the transition points (µ = ν = −β) between both sets of curves.

The general Jeans equations in conical coordinates, as derived by Evans et al. (2000),
reduce to (2.29) for vanishing mixed second moments. At the transition points be-
tween the curves of constant µ and ν (µ = ν = −β), the tensor components Tµµ and Tνν

coincide, resulting in the continuity condition

Tλλ(r,−β,−β) = Tφφ(r,−β,−β). (2.30)

2.5.5 One-dimensional limits
There are several additional limiting cases with more symmetry for which the form of
VS (Lynden–Bell 1962b) and the associated Jeans equations follow in a straightfor-
ward way from the expressions that were given above. We only mention spheres and
circular disks.

When α = β = γ, the variables µ and ν loose their meaning and the ellipsoidal
coordinates reduce to spherical coordinates (r, θ, φ). A steady-state spherical model
without a preferred axis is invariant under a rotation over the angles θ and φ, so that
we are left with only one Jeans equation in r, and Tθθ = Tφφ. This equation can readily
be obtained from the CBE in spherical coordinates (e.g., Binney & Tremaine 1987).
It also follows as a limit from the Jeans equations (2.16) for triaxial Stäckel models
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or from any of the above two-dimensional limiting cases. Consider for example the
Jeans equations in conical coordinates (2.29), and take µ → θ and ν → φ. The stress
components Trr and Tµµ = Tνν = Tφφ = Tθθ depend only r, so that we are left with

dTrr

dr
+

2(Trr − Tθθ)

r
= −ρdVS

dr
, (2.31)

the well-known result for non-rotating spherical systems (Binney & Tremaine 1987).
In a similar way, the one Jeans equation for the circular disk-case follows from,

e.g., the first equation of (2.25) by taking µ = −α and replacing Tµµ by Tφφ, where φ is
the azimuthal angle defined in §2.5.2. With λ+ α = R2 this gives

dTRR

dR
+
TRR − Tφφ

R
= −ρdVS

dR
, (2.32)

which may be compared with Binney & Tremaine (1987), their eq. (4.29).

2.5.6 Thin tube orbits
Each of the three tube orbit families in a triaxial Stäckel model consists of a rotation
in one of the ellipsoidal coordinates and oscillations in the other two (§2.2). The I-
tubes, for example, rotate in ν and oscillate in λ and µ, with turning points µ1, µ2 and
λ0, so that a typical orbit fills the volume

−γ ≤ ν ≤ −β, µ1 ≤ µ ≤ µ2, −α ≤ λ ≤ λ0. (2.33)

When we restrict ourselves to infinitesimally thin I-tubes, i.e., µ1 = µ2, there is no
motion in the µ-coordinate. The second-order velocity moment in this coordinate
is zero, and thus also the corresponding stress component T I

µµ ≡ 0. As a result,
eq. (2.16b) reduces to an algebraic relation between T I

λλ and T I
νν. This relation can be

used to eliminate T I
νν and T I

λλ from the remaining Jeans equations (2.16a) and (2.16c)
respectively.

HZ92 solved the resulting two first-order PDEs (their Appendix B) and showed that
the same result is obtained by direct evaluation of the second-order velocity moments,
using the thin I-tube DF. They derived similar solutions for thin O- and S-tubes, for
which there is no motion in the λ-coordinate, so that T O

λλ ≡ 0 and T S
λλ ≡ 0, respectively.

In Stäckel disks we have – besides the flat box orbits – only one family of (flat)
tube orbits. For infinitesimally thin tube orbits Tλλ ≡ 0, so that the Jeans equations
(2.25) reduce to two different relations between Tµµ and the density and potential. In
§3.4.4, we show how this places restrictions on the form of the density and we give
the solution for Tµµ. We also show that the general solution of (2.25), which we obtain
in §3, contains the thin tube result. The same is true for the triaxial case: the general
solution of (2.16), which we derive in §4, contains the three thin tube orbit solutions
as special cases (§4.6.6).

2.6 ALL TWO-DIMENSIONAL CASES ARE SIMILAR

EL89 showed that the Jeans equations in oblate and prolate spheroidal coordinates,
(2.19) and (2.22), can be transformed to a system that is equivalent to the two Jeans
equations (2.25) in confocal elliptic coordinates. Evans et al. (2000) arrived at the
same two-dimensional form for Stäckel models with a scale-free DF. We introduce a
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transformation which differs slightly from that of EL89, but has the advantage that it
removes the singular denominators in the Jeans equations.

The Jeans equations (2.19) for prolate potentials can be simplified by introducing
as dependent variables

Tττ (λ, µ) = (λ+ β)
1

2 (µ+ β)
1

2 (Tττ − Tχχ), τ = λ, µ, (2.34)

so that the first two equations in (2.19) transform to

∂Tλλ

∂λ
+

Tλλ − Tµµ

2(λ− µ)
= −(λ+ β)

1

2 (µ+ β)
1

2

[

ρ
∂VS

∂λ
+
∂Tχχ

∂λ

]

,

(2.35)
∂Tµµ

∂µ
+

Tµµ − Tλλ

2(µ− λ)
= −(µ+ β)

1

2 (λ+ β)
1

2

[

ρ
∂VS

∂µ
+
∂Tχχ

∂µ

]

.

The third Jeans eq. (2.19) can be integrated in a straightforward fashion to give the
χ-dependence of Tχχ. It is trivially satisfied for prolate models with g(χ) ≡ 0. Hence if,
following EL89, we regard Tχχ(λ, µ) as a function which can be prescribed, then equa-
tions (2.35) have known right hand sides, and are therefore of the same form as those
of the disk case (2.25). The singular denominator (µ + β) of (2.19) has disappeared,
and there is a boundary condition

Tµµ(λ,−β) = 0, (2.36)

due to the second continuity condition of (2.20) and the definition (2.34).
A similar reduction applies for oblate potentials. The middle equation of (2.22)

can be integrated to give the φ-dependence of Tφφ, and is trivially satisfied for oblate
models. The remaining two equations (2.22) transform to

∂Tλλ

∂λ
+

Tλλ − Tνν

2(λ− ν)
= −(λ+ α)

1

2 (−α− ν)
1

2

[

ρ
∂VS

∂λ
+
∂Tφφ

∂λ

]

,

(2.37)
∂Tνν

∂ν
+

Tνν − Tλλ

2(ν − λ)
= −(−α− ν)

1

2 (λ+ α)
1

2

[

ρ
∂VS

∂ν
+
∂Tφφ

∂ν

]

,

in terms of the dependent variables

Tττ (λ, ν) = (λ+ α)
1

2 (−α− ν)
1

2 (Tττ − Tφφ), τ = λ, ν. (2.38)

We now have two boundary conditions

Tλλ(−α, ν) = 0, Tνν(λ,−α) = 0, (2.39)

as a result of the last two continuity conditions of (2.23) and the definitions (2.38).
In the case of a scale-free DF, the stress components in the Jeans equations in

conical coordinates (2.29) have the form Tττ = r−ζTττ (µ, ν), with ζ > 0 and τ = r, µ, ν.
After substitution and multiplication by rζ+1, the first equation of (2.29) reduces to

(2 − ζ)Trr + Tµµ + Tνν = rζ+1ρ
∂VS

∂r
. (2.40)

When ζ = 2, Trr drops out, so that the relation between Tµµ and Tνν is known and the
remaining two Jeans equations can be readily solved (Evans et al. 2000). In all other
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cases, Trr can be obtained from (2.40) once we have solved the last two equations
of (2.29) for Tµµ and Tνν. This pair of equations is identical to the system of Jeans
equations (2.25) for the case of disk potentials. The latter is the simplest form of
the equivalent two-dimensional problem for all Stäckel models with two degrees of
freedom. We solve it in the next section.

Once we have derived the solution of (2.25), we may obtain the solution for prolate
Stäckel potentials by replacing all terms −ρ ∂Vs/∂τ (τ = λ, µ) by the right-hand side
of (2.35) and substituting the transformations (2.34) for Tλλ and Tµµ. Similarly, our
unified notation makes the application of the solution of (2.25) to the oblate case and
to models with a scale-free DF straightforward (§3.4).

3 THE TWO-DIMENSIONAL CASE

We first apply Riemann’s method to solve the Jeans equations (2.25) in confocal el-
liptic coordinates for Stäckel disks (§2.5.3). This involves finding a Riemann–Green
function that describes the solution for a source point of stress. The full solution is
then obtained in compact form by representing the known right-hand side terms as a
sum of sources. In §3.2, we introduce an alternative approach, the singular solution
method. Unlike Riemann’s method, this can be extended to the three-dimensional
case, as we show in §4. We analyze the choice of the boundary conditions in de-
tail in §3.3. In §3.4, we apply the two-dimensional solution to the axisymmetric and
scale-free limits, and we also consider a Stäckel disk built with thin tube orbits.

3.1 RIEMANN’S METHOD

After differentiating the first Jeans equation of (2.25) with respect to µ and eliminat-
ing terms in Tµµ by applying the second equation, we obtain a second-order partial
differential equation (PDE) for Tλλ of the form

∂2Tλλ

∂λ∂µ
− 3

2(λ− µ)

∂Tλλ

∂λ
+

1

2(λ− µ)

∂Tλλ

∂µ
= Uλλ(λ, µ). (3.1)

Here Uλλ is a known function given by

Uλλ = − 1

(λ− µ)
3

2

∂

∂µ

[

(λ− µ)
3

2 ρ
∂VS

∂λ

]

− ρ

2(λ− µ)

∂VS

∂µ
. (3.2)

We obtain a similar second-order PDE for Tµµ by interchanging λ↔ µ. Both PDEs can
be solved by Riemann’s method. To solve them simultaneously, we define the linear
second-order differential operator

L =
∂2

∂λ∂µ
− c1
λ− µ

∂

∂λ
+

c2
λ− µ

∂

∂µ
, (3.3)

with c1 and c2 constants to be specified. Hence, the more general second-order PDE

LT = U, (3.4)

with T and U functions of λ and µ alone, reduces to those for the two stress compo-
nents by taking

T = Tλλ : c1 = 3
2 , c2 = 1

2 , U = Uλλ,
(3.5)

T = Tµµ : c1 = 1
2 , c2 = 3

2 , U = Uµµ.
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In what follows, we introduce a Riemann–Green function G and incorporate the left-
hand side of (3.4) into a divergence. Green’s theorem then allows us to rewrite the
surface integral as a line integral over its closed boundary, which can be evaluated
if G is chosen suitably. We determine the Riemann–Green function G which satisfies
the required conditions, and then construct the solution.

3.1.1 Application of Riemann’s method
We form a divergence by defining a linear operator L?, called the adjoint of L (e.g.,
Copson 1975), as

L? =
∂2

∂λ∂µ
+

∂

∂λ

(

c1
λ− µ

)

− ∂

∂µ

(

c2
λ− µ

)

. (3.6)

The combination GLT − TL?G is a divergence for any twice differentiable function G
because

GLT − TL?G = ∂L/∂λ+ ∂M/∂µ, (3.7)
where

L(λ, µ) =
G
2

∂T

∂µ
− T

2

∂G
∂µ

− c1 G T
λ− µ

,

(3.8)
M(λ, µ) =

G
2

∂T

∂λ
− T

2

∂G
∂λ

+
c2 G T
λ− µ

.

We now apply the PDE (3.4) and the definition (3.6) in zero-subscripted variables λ0

and µ0. We integrate the divergence (3.7) over the domain D = {(λ0, µ0): λ ≤ λ0 ≤ ∞,
µ ≤ µ0 ≤ −α}, with closed boundary Γ (Fig. 4). It follows by Green’s theorem that

∫∫

D

dλ0dµ0

(

GL0T − TL?
0G
)

=

∮

Γ

dµ0 L(λ0, µ0) −
∮

Γ

dλ0M(λ0, µ0), (3.9)

where Γ is circumnavigated counter-clockwise. Here L0 and L?
0 denote the operators

(3.3) and (3.6) in zero-subscripted variables. We shall seek a Riemann–Green function
G(λ0, µ0) which solves the PDE

L?
0G = 0, (3.10)

in the interior ofD. Then the left-hand side of (3.9) becomes
∫∫

D dλ0dµ0G(λ0, µ0)U(λ0, µ0).
The right-hand side of (3.9) has a contribution from each of the four sides of the rect-
angular boundary Γ. We suppose that M(λ0, µ0) and L(λ0, µ0) decay sufficiently rapidly
as λ0 → ∞ so that the contribution from the boundary at λ0 = ∞ vanishes and the
infinite integration over λ0 converges. Partial integration of the remaining terms then
gives for the boundary integral

∞
∫

λ

dλ0

[( ∂G
∂λ0

− c2 G
λ0 − µ0

)

T
]

µ0=µ

+

−α
∫

µ

dµ0

[( ∂G
∂µ0

+
c1 G

λ0 − µ0

)

T
]

λ0=λ

+

∞
∫

λ

dλ0

[( ∂T

∂λ0
+

c2 T

λ0 − µ0

)

G
]

µ0=−α

+ G(λ, µ)T (λ, µ). (3.11)

We now impose on G the additional conditions

G(λ, µ) = 1, (3.12)
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FIGURE 4 — The (λ0, µ0)-plane. The total stress at a field point (λ, µ), consists of the weighted
contributions from source points at (λ0, µ0) in the domain D, with boundary Γ.

and
∂G
∂λ0

− c2 G
λ0 − µ0

= 0 on µ0 = µ,

(3.13)
∂G
∂µ0

+
c1 G

λ0 − µ0
= 0 on λ0 = λ.

Then eq. (3.9) gives the explicit solution

T (λ, µ) =

∞
∫

λ

dλ0

−α
∫

µ

dµ0 G(λ0, µ0)U(λ0, µ0) −
∞
∫

λ

dλ0

[( ∂T

∂λ0
+

c2 T

λ0 − µ0

)

G
]

µ0=−α

, (3.14)

for the stress component, once we have found the Riemann–Green function G.

3.1.2 The Riemann–Green function
Our prescription for the Riemann–Green function G(λ0, µ0) is that it satisfies the PDE
(3.10) as a function of λ0 and µ0, and that it satisfies the boundary conditions (3.12)
and (3.13) at the specific values λ0 = λ and µ0 = µ. Consequently G depends on two
sets of coordinates. Henceforth, we denote it as G(λ, µ;λ0, µ0).

An explicit expression for the Riemann–Green function which solves (3.10) is (Cop-
son 1975)

G(λ, µ;λ0, µ0) =
(λ0 − µ0)

c2(λ− µ0)
c1−c2

(λ− µ)c1
F (w), (3.15)

where the parameter w is defined as

w =
(λ0 − λ)(µ0 − µ)

(λ0 − µ0)(λ− µ)
, (3.16)

and F (w) is to be determined. Since w = 0 when λ0 = λ or µ0 = µ, it follows from
(3.12) that the function F has to satisfy F (0) = 1. It is straightforward to verify that
G satisfies the conditions (3.13), and that eq. (3.10) reduces to the following ordinary
differential equation for F (w)

w(1 − w)F ′′ + [1 − (2 + c1 − c2)w]F ′ − c1(1 − c2)F = 0. (3.17)



154 CHAPTER 5. GENERAL SOLUTION OF THE JEANS EQUATIONS

This is a hypergeometric equation (e.g., Abramowitz & Stegun 1965), and its unique
solution satisfying F (0) = 1 is

F (w) = 2F1(c1, 1 − c2; 1;w). (3.18)

The Riemann–Green function (3.15) represents the influence at a field point at (λ, µ)
due to a source point at (λ0, µ0). Hence it satisfies the PDE

LG(λ, µ;λ0, µ0) = δ(λ0 − λ)δ(µ0 − µ). (3.19)

The first right-hand side term of the solution (3.14) is a sum over the sources in D
which are due to the inhomogeneous term U in the PDE (3.4). That PDE is hyperbolic
with characteristic variables λ and µ. By choosing to apply Green’s theorem to the
domain D, we made it the domain of dependence (Strauss 1992) of the field point
(λ, µ) for (3.4), and hence we implicitly decided to integrate that PDE in the direction
of decreasing λ and decreasing µ.

The second right-hand side term of the solution (3.14) represents the solution to
the homogeneous PDE LT = 0 due to the boundary values of T on the part of the
boundary µ = −α which lies within the domain of dependence. There is only one
boundary term because we implicitly require that T (λ, µ) → 0 as λ → ∞. We verify in
§3.1.4 that this requirement is indeed satisfied.

3.1.3 The disk solution
We obtain the Riemann–Green functions for Tλλ and Tµµ, labeled as Gλλ and Gµµ,
respectively, from expressions (3.15) and (3.18) by substitution of the values for the
constants c1 and c2 from (3.5). The hypergeometric function in Gλλ is the complete
elliptic integral of the second kind2, E(w). The hypergeometric function in Gµµ can
also be expressed in terms of E(w) using eq. (15.2.15) of Abramowitz & Stegun (1965),
so that we can write

Gλλ(λ, µ;λ0, µ0) =
(λ0 − µ0)

3

2

(λ− µ)
1

2

2E(w)

π(λ0 − µ)
, (3.20a)

Gµµ(λ, µ;λ0, µ0) =
(λ0 − µ0)

3

2

(λ− µ)
1

2

2E(w)

π(λ− µ0)
, (3.20b)

Substituting these into (3.14) gives the solution of the stress components throughout
the disk as

Tλλ(λ, µ) =
2

π(λ− µ)
1

2

{

∞
∫

λ

dλ0

−α
∫

µ

dµ0
E(w)

(λ0 − µ)

{

∂

∂µ0

[

−(λ0 − µ0)
3

2 ρ
∂VS

∂λ0

]

− (λ0 − µ0)
1

2

2
ρ
∂VS

∂µ0

}

−
∞
∫

λ

dλ0

[

E(w)

(λ0 − µ)

]

µ0=−α

(λ0 + α)
d

dλ0

[

(λ0 + α)
1

2 Tλλ(λ0,−α)
]

}

, (3.21a)

2We use the definition E(w) =
R π

2

0
dθ

p

1 − w sin2 θ
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Tµµ(λ, µ) =
2

π(λ− µ)
1

2

{

∞
∫

λ

dλ0

−α
∫

µ

dµ0
E(w)

(λ− µ0)

{

∂

∂λ0

[

−(λ0 − µ0)
3

2 ρ
∂VS

∂µ0

]

+
(λ0 − µ0)

1

2

2
ρ
∂VS

∂λ0

}

−
∞
∫

λ

dλ0

[

E(w)

(λ− µ0)

]

µ0=−α

d

dλ0

[

(λ0 + α)
3

2 Tµµ(λ0,−α)
]

}

. (3.21b)

This solution depends on ρ and VS, which are assumed to be known, and on Tλλ(λ,−α)
and Tµµ(λ,−α), i.e., the stress components on the part of the y-axis beyond the foci.
Because these two stress components satisfy the first Jeans equation of (2.25) at
µ = −α, we are only free to choose one of them, say Tµµ(λ,−α). Tλλ(λ,−α) then
follows by integrating this first Jeans equation with respect to λ, using the continuity
condition (2.26) and requiring that Tλλ(λ,−α) → 0 as λ→ ∞.

3.1.4 Consistency check
We now investigate the behavior of our solutions at large distances and verify that our
working hypothesis concerning the radial fall-off of the functions L and M in eq. (3.8)
is correct. The solution (3.14) consists of two components: an area integral due to the
inhomogeneous right-hand side term of the PDE (3.4), and a single integral due to the
boundary values. We examine them in turn to obtain the conditions for the integrals
to converge. Next, we parameterize the behavior of the density and potential at large
distances and apply it to the solution (3.21) and to the energy eq. (2.10) to check if
the convergence conditions are satisfied for physical potential-density pairs.

As λ0 → ∞, w tends to the finite limit (µ0 − µ)/(λ− µ). Hence E(w) is finite, and so,
by (3.20), Gλλ = O(λ

1/2
0 ) and Gµµ = O(λ

3/2
0 ). Suppose now that Uλλ(λ0, µ0) = O(λ−l1−1

0 )
and Uµµ(λ0, µ0) = O(λ−m1−1

0 ) as λ0 → ∞. The area integrals in the solution (3.14) then
converge, provided that l1 > 1

2 and m1 > 3
2 . These requirements place restrictions

on the behavior of the density ρ and potential VS which we examine below. Since
Gλλ(λ, µ;λ0, µ0) is O(λ−1/2) as λ → ∞, the area integral component of Tλλ(λ, µ) behaves
as O(λ−1/2

∫∞
λ λ

−l1−1/2
0 dλ0) and so is O(λ−l1). Similarly, with Gµµ(λ, µ;λ0, µ0) = O(λ−3/2)

as λ→ ∞, the first component of Tµµ(λ, µ) is O(λ−m1

0 ).
To analyze the second component of the solution (3.14), we suppose that the

boundary value Tλλ(λ0,−α) = O(λ−l2
0 ) and Tµµ(λ0,−α) = O(λ−m2

0 ) as λ0 → ∞. A similar
analysis then shows that the boundary integrals converge, provided that l2 > 1

2 and
m2 > 3

2 , and that the second components of Tλλ(λ, µ) and Tµµ(λ, µ) are O(λ−l2) and
O(λ−m2) as λ→ ∞, respectively.

We conclude that the convergence of the integrals in the solution (3.14) requires
that Tλλ(λ, µ) and Tµµ(λ, µ) decay at large distance as O(λ−l) with l > 1

2 and O(λ−m)
with m > 3

2 , respectively. The requirements which we have imposed on U(λ0, µ0) and
T (λ0,−α) cause the contributions to

∮

Γ dµ0L(λ0, µ0) in Green’s formula (3.9) from the
segment of the path at large λ0 to be negligible in all cases.

Having obtained the requirements for the Riemann–Green function analysis to be
valid, we now investigate the circumstances in which they apply. Following Arnold
et al. (1994), we consider densities ρ that decay as N(µ)λ−s/2 at large distances. We
suppose that the function G(τ) introduced in eq. (2.4) is O(τ δ) for −1

2 ≤ δ < 0 as τ → ∞.
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The lower limit δ = − 1
2 corresponds to a potential due to a finite total mass, while the

upper limit restricts it to potentials that decay to zero at large distances.
For the disk potential (2.24), we then have that f(τ) = O(τ δ+1) when τ → ∞. Using

the definition (3.2), we obtain

Uλλ(λ, µ) =
f ′(µ) − f ′(λ)

2(λ− µ)2
ρ+

VS + f ′(λ)

(λ− µ)

∂ρ

∂µ
, (3.22a)

Uµµ(λ, µ) =
f ′(λ) − f ′(µ)

2(λ− µ)2
ρ− VS + f ′(µ)

(λ− µ)

∂ρ

∂λ
, (3.22b)

where ρ is the surface density of the disk. It follows that Uλλ(λ, µ) is generally the
larger and is O(λδ−s/2−1) as λ → ∞, whereas Uµµ(λ, µ) is O(λ−2−s/2). Hence, for the
components of the stresses (3.21) we have Tλλ = O(λδ−s/2) and Tµµ = O(λ−1−s/2). This
estimate for Uλλ assumes that ∂ρ/∂µ is also O(λ−s/2). It is too high if the density
becomes independent of angle at large distances, as it does for disks with s < 3
(Evans & de Zeeuw 1992). Using these estimates with the requirements for integral
convergence that were obtained earlier, we obtain the conditions s > 2δ + 1 and s > 1,
respectively, for inhomogeneous terms in Tλλ(λ, µ) and Tµµ(λ, µ) to be valid solutions.
The second condition implies the first because δ < 0.

With VS(λ, µ) = O(λδ) at large λ, it follows from the energy eq. (2.10) for bound orbits
that the second-order velocity moments 〈v2

τ 〉 cannot exceed O(λδ), and hence that
stresses Tττ = ρ〈v2

τ 〉 cannot exceed O(λδ−s/2). This implies for Tλλ(λ, µ) that s > 2δ + 1,
and for Tµµ(λ, µ) we have the more stringent requirement that s > 2δ + 3. This last
requirement is unnecessarily restrictive, but an alternative form of the solution is
needed to do better. Since that alternative form arises naturally with the singular
solution method, we return to this issue in §3.2.6.

Thus, for the Riemann–Green solution to apply, we find the conditions s > 1 and
−1

2 ≤ δ < 0. These conditions are satisfied for the perfect elliptic disk (s = 3, δ = − 1
2),

and for many other separable disks (Evans & de Zeeuw 1992).

3.1.5 Relation to the EL89 analysis
EL89 solve for the difference ∆ ≡ Tλλ − Tµµ using a Green’s function method which is
essentially equivalent to the approach used here. EL89 give the Fourier transform of
their Green’s function, but do not invert it. We give the Riemann–Green function for
∆ in Appendix A, and then rederive it by a Laplace transform analysis. Our Laplace
transform analysis can be recast in terms of Fourier transforms. When we do this,
we obtain a result which differs from that of EL89.

3.2 SINGULAR SOLUTION SUPERPOSITION

We have solved the disk problem (2.25) by combining the two Jeans equations into
a single second-order PDE in one of the stress components, and then applying Rie-
mann’s method to it. However, Riemann’s method and other standard techniques do
not carry over to a single third-order PDE in one dependent variable, which is the
best that one could expect to have in the general case. We introduce an alternative
but equivalent method of solution, also based on the superposition of source points.
In contrast to Riemann’s method, this singular solution method is applicable to the
general case of triaxial Stäckel models.
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3.2.1 Simplified Jeans equations
We define new independent variables

Sλλ(λ, µ) = |λ− µ| 12 Tλλ(λ, µ),
(3.23)

Sµµ(λ, µ) = |µ− λ| 12 Tµµ(λ, µ),

where |.| denotes absolute value, introduced to make the square root single-valued
with respect to cyclic permutation of λ→ µ→ λ. The Jeans equations (2.25) can then
be written in the form

∂Sλλ

∂λ
− Sµµ

2(λ− µ)
= −|λ− µ| 12 ρ ∂VS

∂λ
≡ g1(λ, µ), (3.24a)

∂Sµµ

∂µ
− Sλλ

2(µ− λ)
= −|µ− λ| 12 ρ ∂VS

∂µ
≡ g2(λ, µ). (3.24b)

For given density and potential, g1 and g2 are known functions of λ and µ. Next, we
consider a simplified form of (3.24) by taking for g1 and g2, respectively

g̃1(λ, µ) = 0, g̃2(λ, µ) = δ(λ0 − λ)δ(µ0 − µ), (3.25)

with −β ≤ µ ≤ µ0 ≤ −α ≤ λ ≤ λ0. A similar set of simplified equations is obtained by
interchanging the expressions for g̃1 and g̃2. We refer to solutions of these simplified
Jeans equations as singular solutions.

Singular solutions can be interpreted as contributions to the stresses at a fixed
point (λ, µ) due to a source point in (λ0, µ0) (Fig. 4). The full stress at the field point
can be obtained by adding all source point contributions, each with a weight that
depends on the local density and potential. In what follows, we derive the singular
solutions, and then use this superposition principle to construct the solution for the
Stäckel disks in §3.2.6.

3.2.2 Homogeneous boundary problem
The choice (3.25) places constraints on the functional form of Sλλ and Sµµ. The pres-
ence of the delta-functions in g̃2 requires that Sµµ contains a term −δ(λ0 −λ)H(µ0 −µ),
with the step-function

H(x− x0) =

{

0, x < x0,

1, x ≥ x0.
(3.26)

Since H′(y) = δ(y), it follows that, by taking the partial derivative of −δ(λ0−λ)H(µ0−µ)
with respect to µ, the delta-functions are balanced. There is no balance when Sλλ

contains δ(λ0 − λ), and similarly neither stress components can contain δ(µ0 − µ). We
can, however, add a function of λ and µ to both components, multiplied by H(λ0 −
λ)H(µ0 − µ). In this way, we obtain a singular solution of the form

Sλλ = A(λ, µ)H(λ0 − λ)H(µ0 − µ),
(3.27)

Sµµ = B(λ, µ)H(λ0 − λ)H(µ0 − µ) − δ(λ0 − λ)H(µ0 − µ),

in terms of functions A and B that have to be determined. Substituting these forms in
the simplified Jeans equations and matching terms gives two homogeneous equations

∂A

∂λ
− B

2(λ− µ)
= 0,

∂B

∂µ
− A

2(µ− λ)
= 0, (3.28)
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and two boundary conditions

A(λ0, µ) =
1

2(λ0 − µ)
, B(λ, µ0) = 0. (3.29)

Two alternative boundary conditions which are useful below can be found as fol-
lows. Integrating the first of the equations (3.28) with respect to λ on µ = µ0, where
B(λ, µ0) = 0, gives the boundary condition

A(λ, µ0) =
1

2(λ0 − µ0)
. (3.30)

Similarly, integrating the second of equations (3.28) with respect to µ on λ = λ0 where
A is known gives

B(λ0, µ) =
µ0 − µ

4(λ0 − µ0)(λ0 − µ)
. (3.31)

Even though expressions (3.30) and (3.31) do not add new information, they will be
useful for identifying contour integral formulas in the analysis which follows.

We have reduced the problem of solving the Jeans equations (2.25) for Stäckel
disks to a two-dimensional boundary problem. We solve this problem by first deriving
a one-parameter particular solution (§3.2.3) and then making a linear combination of
particular solutions with different values of their free parameter, such that the four
boundary expressions are satisfied simultaneously (§3.2.4). This gives the solution of
the homogeneous boundary problem.

3.2.3 Particular solution
To find a particular solution of the homogeneous equations (3.28) with one free pa-
rameter z, we take as an Ansatz

A(λ, µ) ∝ (λ− µ)a1(z − λ)a2(z − µ)a3 ,
(3.32)

B(λ, µ) ∝ (λ− µ)b1(z − λ)b2(z − µ)b3 ,

with ai and bi (i = 1, 2, 3) all constants. Hence,
∂A

∂λ
= A

(

a1

λ− µ
− a2

z − λ

)

=
1

2(λ− µ)

(

2a1A
z − µ

z − λ

)

,

(3.33)
∂B

∂µ
= B

(

b1
µ− λ

− b3
z − µ

)

=
1

2(µ− λ)

(

2b1B
z − λ

z − µ

)

,

where we have set a2 = −a1 and b3 = −b1. Taking a1 = b1 = 1
2 , the homogeneous

equations are satisfied if
z − λ

z − µ
=
A

B
=

(z − λ)−
1

2
−b2

(z − µ)−
1

2
−a3

, (3.34)

so, a3 = b2 = −3
2 . We denote the resulting solutions as

AP (λ, µ) =
|λ− µ| 12

(z − λ)
1

2 (z − µ)
3

2

, (3.35a)

BP (λ, µ) =
|µ− λ| 12

(z − µ)
1

2 (z − λ)
3

2

. (3.35b)

These particular solutions follow from each other by cyclic permutation λ→ µ→ λ, as
is required from the symmetry of the homogeneous equations (3.28).
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FIGURE 5 — Contours Cµ and Cλ in the complex z-plane which appear in the solution (3.37).
The two cuts running from µ to µ0 and one from λ to λ0 make the integrands single-valued.

3.2.4 The homogeneous solution
We now consider a linear combination of the particular solution (3.35) by integrating it
over the free parameter z, which we assume to be complex. We choose the integration
contours in the complex z-plane, such that the four boundary expressions can be
satisfied simultaneously.

We multiply BP (λ, µ) by (z−µ0)
1

2 , and integrate it over the closed contour Cµ (Fig. 5).
When µ = µ0, the integrand is analytic within Cµ, so that the integral vanishes by
Cauchy’s theorem. Since both the multiplication factor and the integration are inde-
pendent of λ and µ, it follows from the superposition principle that the homogeneous
equations are still satisfied. In this way, the second of the boundary expressions
(3.29) is satisfied.

Next, we also multiply BP (λ, µ) by (z−λ0)
− 1

2 , so that the contour Cλ (Fig. 5) encloses
a double pole when λ = λ0. From the Residue theorem (e.g., Conway 1973), it then
follows that

∮

Cλ

(z − µ0)
1

2

(z − λ0)
1

2

BP (λ0, µ) dz =

∮

Cλ

(z − µ0)
1

2 (λ0 − µ)
1

2

(z − µ)
1

2 (z − λ0)2
dz

= 2πi(λ0 − µ)
1

2

[

d

dz

(

z − µ0

z − µ

)
1

2

]

z=λ0

=
πi(µ0 − µ)

(λ0 − µ0)
1

2 (λ0 − µ)
, (3.36)

which equals the boundary expression (3.31), up to the factor 4πi(λ0 − µ0)
1

2 .
Taking into account the latter factor, and the ratio (3.34) of A and B, we postulate

as homogeneous solution

A(λ, µ) =
1

4πi

|λ− µ| 12
|λ0 − µ0|

1

2

∮

C

(z − µ0)
1

2 dz

(z − λ)
1

2 (z − µ)
3

2 (z − λ0)
1

2

, (3.37a)

B(λ, µ) =
1

4πi

|µ− λ| 12
|λ0 − µ0|

1

2

∮

C

(z − µ0)
1

2 dz

(z − µ)
1

2 (z − λ)
3

2 (z − λ0)
1

2

, (3.37b)
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FIGURE 6 — Integration along the contour Cτ . The contour is wrapped around the branch
points τ and τ0 (τ = λ, µ), and split into four parts. Γ1 and Γ3 run parallel to the real axis in
opposite directions. Γ2 and Γ4 are two arcs around τ and τ0, respectively.

with the choice for the contour C still to be specified.
The integrands in (3.37) consist of multi-valued functions that all come in pairs

(z − τ)1/2−m(z − τ0)
1/2−n, for integer m and n, and for τ being either λ or µ. Hence, we

can make the integrands single-valued by specifying two cuts in the complex z-plane,
one from µ to µ0 and one from λ to λ0. The integrands are now analytic in the cut
plane away from its cuts and behave as z−2 at large distances, so that the integral over
a circular contour with infinite radius is zero3. Connecting the simple contours Cλ

and Cµ with this circular contour shows that the cumulative contribution from each
of these contours cancels. As a consequence, every time we integrate over the contour
Cλ, we will obtain the same result by integrating over −Cµ instead. This means we
integrate over Cµ and take the negative of the result or, equally, integrate over Cµ in
clockwise direction.

For example, we obtained the boundary expression for B in (3.36) by applying the
Residue theorem to the double pole enclosed by the contour Cλ. The evaluation of
the integral becomes less straightforward when we consider the contour −C µ instead.
Wrapping the contour around the branch points µ and µ0 (Fig. 6), one may easily verify
that the contribution from the two arcs vanishes if their radius goes to zero. Taking
into account the change in phase when going around the two branch points, one may
show that the contributions from the two remaining parts of the contour, parallel to
the real axis, are equivalent. Hence, we arrive at the following (real) integral

B(λ0, µ) =
1

2π

(λ− µ0)
1

2

(λ0 − µ0)
1

2

µ0
∫

µ

dt

(λ0 − t)2

√

µ0 − t

t− µ
. (3.38)

The substitution
t = µ0 +

(µ0 − µ)(λ0 − µ0) sin2 θ

(µ0 − µ) sin2 θ − (λ0 − µ)
(3.39)

then indeed gives the correct boundary expression (3.31).
3We evaluate the square roots as (z − τ )

1

2 = |z − τ | exp i arg(z − τ ) with | arg(z − τ )| ≤ π.
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When we take µ = µ0 in (3.37b), we are left with the integrand (z−λ)−3/2(z−λ0)
−1/2.

This is analytic within the contour Cµ and hence it follows from Cauchy’s theorem that
there is no contribution. However, if we take the contour −Cλ instead, it is not clear
at once that the integral indeed is zero. To evaluate the complex integral we wrap the
contour Cλ around the branch points λ and λ0 (Fig. 6). There will be no contribution
from the arc around λ0 if its radius goes to zero. However, since the integrand involves
the term z − λ with power − 3

2 , the contribution from the arc around λ is of the order
ε−1/2 and hence goes to infinity if its radius ε > 0 reduces to zero. If we let the two
remaining straight parts of the contour run from λ + ε to λ0, then their cumulative
contribution becomes proportional to tan θ(ε), with θ(ε) approaching π

2 when ε reduces
to zero. Hence, both the latter contribution and the contribution from the arc around
λ approaches infinity. However, careful investigation of their limiting behavior shows
that they cancel when ε reaches zero, as is required for the boundary expression
B(λ, µ0) = 0.

We have shown that the use of Cλ and −Cµ gives the same result, but the effort to
evaluate the contour integral varies between the two choices. The boundary expres-
sions for A(λ, µ), (3.29) and (3.30) are obtained most easily if we consider C λ when
λ = λ0 and −Cµ when µ = µ0. In both cases the integrand in (3.37a) has a single pole
within the chosen contour, so that the boundary expressions follow by straightforward
application of the Residue theorem.

We now have proven that the homogeneous solution (3.37) solves the homogeneous
equations (3.28), satisfies the boundary values (3.29)–(3.31) separately and, from the
observation that Cλ and −Cµ produce the same result, also simultaneously.

3.2.5 Evaluation of the homogeneous solution
The homogeneous solution (3.37) consists of complex contour integrals, which we
transform to real integrals by wrapping the contours Cλ and Cµ around the corre-
sponding pair of branch points (Fig. 6). To have no contribution from the arcs around
the branch points, we choose the (combination of) contours such that the terms in the
integrand involving these branch points have powers larger than −1. In this way, we
can always evaluate the complex integral as a (real) integral running from one branch
point to the other.

In the homogeneous solution (3.37a) for A we choose C = Cλ and in (3.37b) for B
we take C = −Cµ. Taking into account the changes in phase when going around the
branch points, we obtain the following expressions for the homogeneous solution

A(λ, µ) =
1

2π

|λ− µ| 12
|λ0 − µ0|

1

2

λ0
∫

λ

dt

t− µ

√

t− µ0

(t− λ)(t− µ)(λ0 − t)
, (3.40a)

B(λ, µ) =
1

2π

|λ− µ| 12
|λ0 − µ0|

1

2

µ0
∫

µ

dt

λ− t

√

µ0 − t

(λ− t)(t− µ)(λ0 − t)
. (3.40b)

By a parameterization of the form (3.39), or by using an integral table (e.g., Byrd
& Friedman 1971), expressions (3.40) can be written conveniently in terms of the
complete elliptic integral of the second kind, E, and its derivative E ′

A(λ, µ;λ0, µ0) =
E(w)

π(λ0 − µ)
, (3.41a)
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B(λ, µ;λ0, µ0) = − 2wE′(w)

π(λ0 − λ)
. (3.41b)

with w defined as in (3.16). The second set of arguments that were added to A and B
make explicit the position (λ0, µ0) of the source point which is causing the stresses at
the field point (λ, µ).

3.2.6 The disk solution
The solution of equations (3.24) with right hand sides of the simplified form

g̃1(λ, µ) = δ(λ0 − λ)δ(µ0 − µ), g̃2(λ, µ) = 0, (3.42)

is obtained from the solution (3.27) by interchanging λ↔ µ and λ0 ↔ µ0. It is

Sλλ = B(µ, λ;µ0, λ0)H(λ0 − λ)H(µ0 − µ) − δ(µ0 − µ)H(λ0 − λ),
(3.43)

Sµµ = A(µ, λ;µ0, λ0)H(λ0 − λ)H(µ0 − µ).

To find the solution to the full equations (3.24) at (λ, µ), we multiply the singular
solutions (3.27) and (3.43) by g1(λ0, µ0) and g2(λ0, µ0) respectively and integrate over D,
the domain of dependence of (λ, µ). This gives the first two lines of the two equations
(3.44) below. The terms in the third lines are due to the boundary values of Sµµ at
µ = −α. They are found by multiplying the singular solution (3.27) evaluated for
µ0 = −α by −Sµµ(λ0,−α) and integrating over λ0 in D. It is easily verified that this
procedure correctly represents the boundary values with singular solutions. The final
result for the general solution of the Jeans equations (3.24) for Stäckel disks, after
using the evaluations (3.41), is

Sλλ(λ, µ) = −
∞
∫

λ

dλ0 g1(λ0, µ)

+

∞
∫

λ

dλ0

−α
∫

µ

dµ0

[

−g1(λ0, µ0)
2wE′(w)

π(µ0 − µ)
+ g2(λ0, µ0)

E(w)

π(λ0 − µ)

]

−
∞
∫

λ

dλ0 Sµµ(λ0,−α)

[

E(w)

π(λ0 − µ)

]

µ0=−α

, (3.44a)

Sµµ(λ, µ) = −
−α
∫

µ

dµ0 g2(λ, µ0)

+

∞
∫

λ

dλ0

−α
∫

µ

dµ0

[

−g1(λ0, µ0)
E(w)

π(λ− µ0)
− g2(λ0, µ0)

2wE′(w)

π(λ0 − λ)

]

+ Sµµ(λ,−α) −
∞
∫

λ

dλ0 Sµµ(λ0,−α)

[

− 2wE′(w)

π(λ0 − λ)

]

µ0=−α

. (3.44b)

The terms (µ0−µ)−1 and (λ0−λ)−1 do not cause singularities because they are canceled
by components of w. In order to show that equations (3.44) are equivalent to the
solution (3.21) given by Riemann’s method, integrate the terms in E ′(w) by parts, and
use the definitions of Sττ , g1 and g2.
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3.2.7 Convergence of the disk solution
We now return to the convergence issues first discussed in §3.1.4, where we assumed
that the density ρ decays as N(µ)λ−s/2 at large distances and the Stäckel potential as
O(λδ). For the physical reasons given there, the assigned boundary stress Tµµ(λ,−α)
cannot exceed O(λδ−s/2) at large λ, giving an Sµµ(λ,−α) of O(λδ−s/2+1/2). It follows that
the infinite integrals in Sµµ(λ0,−α) in the solution (3.44) require only that s > 2δ + 1
for their convergence. This is the less restrictive result to which we referred earlier.

The terms in the boundary stress are seen to contribute terms of the correct order
O(λδ−s/2+1/2) to Sλλ(λ, µ) and Sµµ(λ, µ). The formulas for the density and potential show
that g1(λ, µ) = O(λδ−s/2−1/2) while g2(λ, µ) is larger and O(λ−s/2−1/2) as λ → ∞. The λ0

integrations with g1 and g2 in their integrands all converge provided s > 2δ+1. Hence,
both Sλλ(λ, µ) and Sµµ(λ, µ) are O(λδ−s/2+1/2), so that the stress components Tττ (λ, µ)
(τ = λ, µ) are O(λδ−s/2), which is consistent with the physical reasoning of §3.1.4.

Hence, all the conditions necessary for (3.44) to be a valid solution of the Jeans
equations (3.24) for a Stäckel disk are satisfied provided that s > 2δ+1. We have seen
in §3.1.4 that δ must lie in the range [− 1

2 , 0). When δ → 0 the models approach the
isothermal disk, for which also s = 1 when the density is consistent with the potential.
Only then our requirement s > 2δ + 1 is violated.

3.3 ALTERNATIVE BOUNDARY CONDITIONS

We now derive the alternative form of the general disk solution when the boundary
conditions are not specified on µ = −α but on µ = −β, or on λ = −α rather than in the
limit λ → ∞. While the former switch is straightforward, the latter is non-trivial, and
leads to non-physical solutions.

3.3.1 Boundary condition for µ
The analysis in §3.1 and §3.2 is that needed when the boundary conditions are im-
posed at large λ and at µ = −α. The Jeans equations (2.25) can be solved in a
similar way when one or both of those conditions are imposed instead at the opposite
boundaries λ = −α and/or µ = −β. The solution by Riemann’s method is accom-
plished by applying Green’s theorem to a different domain, for example D ′ = {(λ0, µ0):
λ ≤ λ0 ≤ ∞,−β ≤ µ0 ≤ µ} when the boundary conditions are at µ = −β and as λ→ ∞.
The Riemann–Green functions have to satisfy the same PDE (3.10) and the same
boundary conditions (3.12) and (3.13), and so again are given by equations (3.20a)
and (3.20b). The variable w is negative in D ′ instead of positive as in D, but this is
unimportant. The only significant difference in the solution of eq. (3.4) is that of a
sign due to changes in the limits of the line integrals. The final result, in place of
eq. (3.14), is

T (λ, µ) = −
∞
∫

λ

dλ0

µ
∫

−β

dµ0G(λ0, µ0)U(λ0, µ0) −
∞
∫

λ

dλ0

[( ∂T

∂λ0
+

c2 T

λ0 − µ0

)

G
]

µ0=−β

. (3.45)

To apply the method of singular solutions to solve for the stresses when the bound-
ary stresses are specified at µ = −β rather than at µ = −α, we modify the singular
solutions (3.27) by replacing the step-function H(µ0 − µ) by −H(µ − µ0) throughout.
No other change is needed because both functions give −δ(µ − µ0) on partial differ-
entiation with respect to µ. The two-dimensional problem for A and B remains the
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same, and so, as with Riemann’s method, its solution remains the same. Summing
over sources in D′ now gives

Sλλ(λ, µ) = −
∞
∫

λ

dλ0 g1(λ0, µ)

−
∞
∫

λ

dλ0

µ
∫

−β

dµ0

[

−g1(λ0, µ0)
2wE′(w)

π(µ0 − µ)
+ g2(λ0, µ0)

E(w)

π(λ0 − µ)

]

−
∞
∫

λ

dλ0 Sµµ(λ0,−β)

[

E(w)

π(λ0 − µ)

]

µ0=−β

, (3.46a)

Sµµ(λ, µ) =

µ
∫

−β

dµ0 g2(λ, µ0)

−
∞
∫

λ

dλ0

µ
∫

−β

dµ0

[

−g1(λ0, µ0)
E(w)

π(λ− µ0)
− g2(λ0, µ0)

2wE′(w)

π(λ0 − λ)

]

+ Sµµ(λ,−β) −
∞
∫

λ

dλ0 Sµµ(λ0,−β)

[

− 2wE′(w)

π(λ0 − λ)

]

µ0=−β

. (3.46b)

as an alternative to equations (3.44).

3.3.2 Boundary condition for λ
There is a much more significant difference when one assigns boundary values at
λ = −α rather than at λ → ∞. It is still necessary that stresses decay to zero at large
distances. The stresses induced by arbitrary boundary data at the finite boundary
λ = −α do decay to zero as a consequence of geometric divergence. The issue is that
of the rate of this decay. We find that it is generally less than that required by our
analysis in §3.1.4.

To isolate the effect of boundary data at λ = −α, we study solutions of the two-
dimensional Jeans equations (2.25) when the inhomogeneous right hand side terms
are set to zero and homogeneous boundary conditions of zero stress are applied at
either µ = −α or µ = −β. These solutions can be derived either by Riemann’s method
or by singular solutions. The solution of the homogeneous PDE LT = 0 is

T (λ, µ) = −
−α
∫

µ

dµ0

[( ∂T

∂µ0
− c1 T

λ0 − µ0

)

G(λ, µ;λ0, µ0)
]

λ0=−α

, (3.47)

for the case of zero stress at µ = −α, and

T (λ, µ) =

µ
∫

−β

dµ0

[( ∂T

∂µ0
− c1 T

λ0 − µ0

)

G(λ, µ;λ0, µ0)
]

λ0=−α

, (3.48)

for the case of zero stress at µ = −β.
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The behavior of the stresses at large distances is governed by the behavior of the
Riemann–Green functions G for distant field points (λ, µ) and source points at λ0 = −α.
It follows from equations (3.20) that Tλλ(λ, µ) = O(λ−1/2) and Tµµ(λ, µ) = O(λ−3/2). As
a result, the radial stresses dominate at large distances and they decay as only the
inverse first power of distance. Their rate of decay is less than O(λδ−s/2) – obtained
in §3.1.4 from physical arguments – if the requirement s > 2δ + 1 is satisfied. This
inequality is the necessary condition which we derived in §3.2.6 for (3.44) to be a valid
solution of the disk Jeans equations (3.24). It is violated in the isothermal limit.

There is a physical implication of radial stresses which decay as only the inverse
first power of distance. It implies that net forces of finite magnitude are needed at
an outer boundary to maintain the system, the finite magnitudes arising from the
product of the decaying radial stresses and the increasing length of the boundary
over which they act. That length grows as the first power of distance. Because this
situation is perhaps more naturally understood in three dimensions, we return to it
in our discussion of oblate models in §3.4.2. For now, lacking any physical reason
for allowing a stellar system to have such an external constraint, we conclude that
boundary conditions can be applied only at large λ and not at λ = −α.

3.3.3 Disk solution for a general finite region

We now apply the singular solution method to solve equations (3.24) in some rectangle
µmin ≤ µ ≤ µmax, λmin ≤ λ ≤ λmax, when the stress Sµµ is given a boundary in µ, and Sλλ

is given on a boundary in λ. This solution includes (3.44) and (3.46) as special cases.
It will be needed for the large-radii scale-free case of §3.4.3.

As we saw in §3.3.1, singular solutions can easily be adapted to alternative choices
for the domain of dependence of a field point (λ, µ). Originally this was D, the first
of the four quadrants into which (λ0, µ0)-space is split by the lines λ0 = λ and µ0 = µ
(Fig. 4). It has the singular solution (3.27). We then obtained the singular solution
for the fourth quadrant D′ simply by replacing H(µ0 − µ) by −H(µ − µ0) in (3.27).
We can similarly find the singular solution for the second quadrant λmin ≤ λ0 ≤ λ,
µ ≤ µ0 ≤ µmax by replacing H(λ0 − λ) by −H(λ − λ0), and for the third quadrant
λmin ≤ λ0 ≤ λ, µmin ≤ µ0 ≤ µ by replacing H(λ0 − λ) by −H(λ − λ0) and H(µ0 − µ) by
−H(µ− µ0). We find the part of the solution of equations (3.24) due to the right hand
side g terms by multiplying the first and second terms of the singular solutions by
g1(λ0, µ0) and g2(λ0, µ0), respectively, and integrating over the relevant domain. We
use λ = λe and µ = µe to denote the boundaries at which stresses are specified. We
find the part of the solution generated by the boundary values of Sµµ by multiplying
the singular solution (3.27), modified for the domain and evaluated at µ0 = µe, by
±Sµµ(λ0, µe) and integrating over λ0 in the domain. The plus sign is needed when
µe = µmin and the minus when µe = µmax. Similarly, the part of the solution generated
by the boundary values of Sλλ is obtained by multiplying the singular solution (3.43),
modified for the domain and evaluated at λ0 = λe, by ±Sλλ(λe, µ0) and integrating over
µ0 in the domain. The sign is plus if λe = λmin and minus if λe = λmax. The final
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solution is

Sλλ(λ, µ) = Sλλ(λe, µ) −
λe
∫

λ

dλ0 g1(λ0, µ)

+

λe
∫

λ

dλ0

µe
∫

µ

dµ0 [ g1(λ0, µ0)B(µ, λ;µ0, λ0) + g2(λ0, µ0)A(λ, µ;λ0, µ0) ]

−
λe
∫

λ

dλ0 Sµµ(λ0, µe)A(λ, µ;λ0, µe) −
µe
∫

µ

dµ0 Sλλ(λe, µ0)B(µ, λ;µ0, λe), (3.49a)

Sµµ(λ, µ) = Sµµ(λ, µe) −
µe
∫

µ

dµ0 g2(λ, µ0)

+

λe
∫

λ

dλ0

µe
∫

µ

dµ0 [ g1(λ0, µ0)A(µ, λ;µ0, λ0) + g2(λ0, µ0)B(λ, µ;λ0, µ0) ]

−
λe
∫

λ

dλ0 Sµµ(λ0, µe)B(λ, µ;λ0, µe) −
µe
∫

µ

dµ0 Sλλ(λe, µ0)A(µ, λ;µ0, λe). (3.49b)

This solution is uniquely determined once g1 and g2 are given, and the boundary val-
ues Sµµ(λ0, µe) and Sλλ(λe, µ0) are prescribed. It shows that the hyperbolic equations
(3.24) can equally well be integrated in either direction in the characteristic variables
λ and µ. Solutions (3.44) and (3.46) are obtained by taking λe → ∞, Sλλ(λe, µ0) → 0,
setting µe = −α and µe = −β respectively, and evaluating A and B by equations (3.41).

3.4 APPLYING THE DISK SOLUTION TO LIMITING CASES

We showed in §2.6 that the Jeans equations for prolate and oblate potentials and
for three-dimensional Stäckel models with a scale-free DF all reduce to a set of two
equations equivalent to those for the Stäckel disk. Here we apply our solution for the
Stäckel disk to these special three-dimensional cases, with particular attention to the
behavior at large radii and the boundary conditions. This provides further insight in
some of the previously published solutions. We also consider the case of a Stäckel
disk built with thin tube orbits.

3.4.1 Prolate potentials
We can apply the disk solution (3.46) to solve the Jeans equations (2.35) by setting
Sλλ(λ, µ) = |λ− µ| 12Tλλ(λ, µ) and Sµµ(λ, µ) = |µ− λ| 12Tµµ(λ, µ), and taking

g1(λ, µ) = −|λ− µ| 12 (λ+ β)
1

2 (µ+ β)
1

2

[

ρ
∂VS

∂λ
+
∂Tχχ

∂λ

]

,

(3.50)
g2(λ, µ) = −|µ− λ| 12 (λ+ β)

1

2 (µ+ β)
1

2

[

ρ
∂VS

∂µ
+
∂Tχχ

∂µ

]

.

The boundary terms in Sµµ(λ,−β) vanish because of the boundary condition (2.36).
As before, we regard the azimuthal stress Tχχ as a variable that can be arbitrarily
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assigned, provided that it has the correct behavior at large λ (§3.1.4). The choice of
Tχχ is also restricted by the requirement that the resulting solutions for the stresses
Tλλ and Tµµ must be non-negative (see §2.3).

The analysis needed to show that the solution obtained in this way is valid requires
only minor modifications of that of §3.2.7. We suppose that the prescribed azimuthal
stresses also decay as O(λδ−s/2) as λ→ ∞. As a result of the extra factor in the defini-
tions (3.50), we now have g1(λ, µ) = O(λδ−s/2) and g2(λ, µ) = O(λ−s/2) as λ→ ∞. The λ0

integrations converge provided s > 2δ + 2, and Sλλ and Sµµ are O(λδ−s/2+1). Hence the
stresses Tλλ and Tµµ, which follow from Tττ = Tχχ+Sττ/

√

(λ− µ)(λ+ β)(µ+ β), are once
again O(λδ−s/2). The requirement s > 2δ + 2 is no stronger than the requirement s >
2δ + 1 of §3.2.7; it is simply the three-dimensional version of that requirement. It also
does not break down until the isothermal limit. That limit is still δ → 0, but now s→ 2.

3.4.2 Oblate potentials

The oblate case with Jeans equations (2.37) differs significantly from the prolate case.
Now Sλλ(λ, ν) = |λ−ν| 12 Tλλ(λ, ν) vanishes at λ = −α and Sνν(λ, ν) = |ν−λ| 12Tνν(λ, ν) van-
ishes at ν = −α. If one again supposes that the azimuthal stresses Tφφ can be assigned
initially, then one encounters the problem discussed in §3.3.2 of excessively large ra-
dial stresses at large distances. To relate that analysis to the present case, we use the
solution (3.44) with µ replaced by ν, and with zero boundary value Sνν(λ,−α), and for
g1 and g2 the right hand side of (2.37) multiplied by |λ− ν| 1

2 and |ν − λ| 12 , respectively.
The estimates we obtained for the prolate case are still valid, so the stresses Tλλ

and Tνν are O(λδ−s/2). Difficulties arise when this solution for Sλλ does not vanish
at λ = −α, but instead has some nonzero value κ(ν) there. To obtain a physically
acceptable solution, we must add to it a solution of the homogeneous equations (2.37)
with boundary values Tλλ(−α, ν) = −κ(ν)/

√
−α− ν and Tνν(λ,−α) = 0. This is precisely

the problem we discussed in §3.3.2 where we showed that the resulting solution gives
Tλλ(λ, µ) = O(λ−1/2), and hence Tλλ(λ, µ) = O(λ−1). This is larger than O(λδ−s/2) when
the three-dimensional requirement s > 2δ + 2 is met. We therefore conclude that
the approach in which one first selects the azimuthal stress Tφφ and then calculates
the other two stresses will be unsuccessful unless the choice of Tφφ is fortunate, and
leads to κ(ν) ≡ 0. Otherwise, it leads only to models which either violate the continuity
condition Tλλ − Tφφ = 0 at λ = −α, or else have radial stresses which require external
forces at large distances.

The physical implication of radial stresses which decay as only O(λ−1), or the in-
verse second power of distance, is that net forces of finite magnitude are needed at an
outer boundary to maintain the system. This finite magnitude arises from the prod-
uct of the decaying radial stresses and the increasing surface area of the boundary
over which they act, which grows as the second power of distance. This situation is
analogous to that of an isothermal sphere, as illustrated in problem 4–9 of Binney &
Tremaine (1987), for which the contribution from an outer surface integral must be
taken into account in the balance between energies required by the virial theorem.

There are, of course, many physical models which satisfy the continuity condition
and whose radial stresses decay in the physically correct manner at large distances,
but some strategy other than that of assigning Tφφ initially is needed to find them. In
fact, only Evans (1990) used the approach of assigning Tφφ initially. He computed a
numerical solution for a mass model with s = 3 and VS ∝ O(λ−1/2 lnλ) for large λ, so
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that the stresses there should be O(λ−2 lnλ). He set Tφφ = −1
3ρVS, which is of this mag-

nitude, and integrated from λ = −α in the direction of increasing λ for a finite range.
Evans does not report on the large λ behavior, and it is possible that his choice of
Tφφ gives κ(ν) = 0, but his Figure 2 especially shows velocity ellipsoids which become
increasingly elongated in the radial direction, consistent with our prediction that Tλλ

generally grows as O(λ−1) when the boundary value of Tλλ is assigned at λ = −α.
A more common and effective approach to solve the Jeans equations for oblate

models has been to specify the ratio Tλλ/Tνν , and then to solve for one of those
stresses and Tφφ (Bacon, Simien & Monnet 1983; Dejonghe & de Zeeuw 1988; Evans &
Lynden–Bell 1991; Arnold 1995). This leads to a much simpler mathematical problem
with just a single first-order PDE. The characteristics of that PDE have non-negative
slopes dλ/dν, and therefore cut across the coordinate lines of constant λ and ν. The
solution is obtained by integrating in along the characteristics from large λ. The conti-
nuity conditions (2.23) are taken care of automatically, the region −γ ≤ ν ≤ −α ≤ ∞ is
covered, and it is easy to verify that the stresses so obtained are everywhere positive.

3.4.3 Large radii limit with scale-free DF
We found in §2.5.4 that the first of the Jeans equations in conical coordinates (2.29)
reduces to an algebraic relation for the radial stress Trr. The problem that remains is
that of solving the second and third Jeans equations for Tµµ and Tνν. Those equations
are exactly the same as those of the disk case after we apply the coordinate permu-
tation λ → µ → ν, and the physical domain is −γ ≤ ν ≤ −β ≤ µ ≤ −α with finite
ranges of both variables. Hence, the solution (3.49) can be applied with Tµµ assigned
at either µe = −α or µe = −β, and Tνν at either νe = −β or νe = −γ. For g1 and g2 we
take the same expressions as for the disk case, i.e., the right-hand side of (3.24), but
with λ → µ → ν and multiplied by rζ. To obtain Tµµ and Tνν from the Sλλ and Sµµ

respectively, we use the transformation

Sττ = (µ− ν)
1

2 rζ Tττ , τ = µ, ν, (3.51)

with ζ > 0 the scaling factor. We can choose to specify the stress components on the
two boundaries µ = −β and ν = −β. For a given radius r these boundaries cover the
circular cross section with the (x, z)-plane (Fig. 3). We can consider the (x, z)-plane
as the starting space for the solution. It turns out that the latter also applies to the
triaxial solution (§4.6.3) and compares well with Schwarzschild (1993), who used the
same plane to start his numerically calculated orbits from.

3.4.4 Thin tube orbits
For infinitesimally thin tube orbits in Stäckel disks we have that Sλλ ≡ 0 (§2.5.6), so
that equations (3.24) reduce to

− Sµµ

2(λ− µ)
= g1(λ, µ),

∂Sµµ

∂µ
= g2(λ, µ). (3.52)

A solution is possible only if the right hand side terms satisfy the subsidiary equation

g2(λ, µ) = −2
∂

∂µ
[(λ− µ)g1(λ, µ)] . (3.53)
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We find below that this equation places restrictions on the form of the (surface) density
ρ, and we use this relation between g1 and g2 to show that the disk solution (3.44)
yields the right results for the stress components.

If we write the disk potential (2.24) as a divided difference, VS = −f [λ, µ], we have

g1 = (λ− µ)
1

2 ρ f [λ, λ, µ], g2 = (λ− µ)
1

2 ρ f [λ, µ, µ]. (3.54)
Upon substitution of these expressions in (3.53) we obtain a PDE in µ, of which the
solution implies the following form for the density

ρ(λ, µ) =
f̃(λ)

(λ− µ)
√

f [λ, λ, µ]
, (3.55)

where f̃(λ) is an arbitrary function independent of µ. From (3.52) and the definition
(3.23) it then follows that Tµµ(λ, µ, ν) = −2f̃(λ)

√

f [λ, λ, µ]. The tube density that de
Zeeuw, Hunter & Schwarzschild (1987) derive from the DF for thin tube orbits in the
perfect elliptic disk (their eq. [4.25]) is indeed of the form (3.55).

To show that the general disk solution (3.44) gives Sλλ(λ, µ) = 0, we substitute
eq. (3.53) for g2(λ, µ) in (3.44a). After partial integration and using

2(λ0 − µ0)
∂

∂µ0

E(w)

π(λ0 − µ)
=

2wE′(w)

π(µ0 − µ)
, (3.56)

we find that the area integral reduces to
∞
∫

λ

dλ0

{

g1(λ0, µ) − 2(λ0 + α) g1(λ0,−α)

[

E(w)

π(λ0 − µ)

]

µ0=−α

}

. (3.57)

The first part cancels the first line of (3.44a) and since from (3.52) we have that
−2(λ0 + α)g1(λ0,−α) = Sµµ(λ0,−α), the second part cancels the third line. Hence,
we have Sλλ(λ, µ) = 0 as required. To see that the general disk solution also yields
Sµµ(λ, µ) correctly, we apply similar steps to (3.44b), where we use the relation

−2(λ0 − µ0)
∂

∂µ0

2wE′(w)

π(λ0 − λ)
=

E(w)

π(λ− µ0)
. (3.58)

We are finally left with

Sµµ(λ, µ) = Sµµ(λ,−α) −
−α
∫

µ

dµ0 g2(λ, µ0), (3.59)

which is just the second equation of (3.52) integrated with respect to µ.

4 THE GENERAL CASE

We now solve the system of three Jeans equations (2.16) for triaxial Stäckel models by
applying the singular solution superposition method, introduced in §3.2 for the two-
dimensional case. Although the calculations are more complex for a triaxial model,
the step-wise solution method is similar to that in two dimensions. Specifically, we
first simplify the Jeans equations and show that they reduce to a three-dimensional
homogeneous boundary problem. We then find a two-parameter particular solution
and apply contour integration to both complex parameters to obtain the general ho-
mogeneous solution. The latter yields the three singular solutions of the simplified
Jeans equations, from which, by superposition, we construct the general solution.
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4.1 SIMPLIFIED JEANS EQUATIONS

We start by introducing the functions

Sττ (λ, µ, ν) =
√

(λ− µ)(λ− ν)(µ− ν)Tττ (λ, µ, ν), (4.1)

with τ = λ, µ, ν, to write the Jeans equations for triaxial Stäckel models (2.16) in the
more convenient form

∂Sλλ

∂λ
− Sµµ

2(λ− µ)
− Sνν

2(λ− ν)
= g1(λ, µ, ν), (4.2a)

∂Sµµ

∂µ
− Sνν

2(µ− ν)
− Sλλ

2(µ− λ)
= g2(λ, µ, ν), (4.2b)

∂Sνν

∂ν
− Sλλ

2(ν − λ)
− Sµµ

2(ν − µ)
= g3(λ, µ, ν), (4.2c)

where the function g1 is defined as

g1(λ, µ, ν) = −
√

(λ− µ)(λ− ν)(µ− ν) ρ
∂VS

∂λ
, (4.3)

and g2 and g3 follow by cyclic permutation λ → µ → ν → λ. We keep the three terms
λ− µ, λ− ν and µ− ν under one square root. With each cyclic permutation two of the
three terms change sign, so that the combination of the three terms is always positive
real. Therefore. the square root of the combination is always single-valued, whereas
in the case of three separate square roots we would have a multi-valued function.

We simplify equations (4.2) by substituting for g1, g2 and g3, respectively

g̃1(λ, µ, ν) = 0,

g̃2(λ, µ, ν) = δ(λ0 − λ) δ(µ0 − µ) δ(ν0 − ν), (4.4)
g̃3(λ, µ, ν) = 0,

with
−γ ≤ ν ≤ ν0 ≤ −β ≤ µ ≤ µ0 ≤ −α ≤ λ ≤ λ0. (4.5)

We obtain two similar systems of simplified equations by cyclic permutation of the
left-hand side of (4.2). Once we have obtained the singular solutions of the simplified
system with the right-hand side given by (4.4), those for the other two systems follow
via cyclic permutation.

4.2 HOMOGENEOUS BOUNDARY PROBLEM

The choice (4.4) implies that the functions Sττ (λ, µ, ν) (4.1) have the following forms

Sλλ = A(λ, µ, ν)H(λ0 − λ)H(µ0 − µ)H(ν0 − ν)

+ F (λ, µ) δ(ν0 − ν)H(λ0 − λ)H(µ0 − µ),

Sµµ = B(λ, µ, ν)H(λ0 − λ)H(µ0 − µ)H(ν0 − ν)

+ G(λ, µ) δ(ν0 − ν)H(λ0 − λ)H(µ0 − µ)
(4.6)

+ H(µ, ν) δ(λ0 − λ)H(µ0 − µ)H(ν0 − ν)

− δ(λ0 − λ)δ(ν0 − ν)H(µ0 − µ),

Sνν = C(λ, µ, ν)H(λ0 − λ)H(µ0 − µ)H(ν0 − ν)

+ I(µ, ν) δ(λ0 − λ)H(µ0 − µ)H(ν0 − ν),
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with A, B, C and F , G, H, I yet unknown functions of three and two coordinates,
respectively, and H the step-function (3.26). After substituting these forms into the
simplified Jeans equations and matching terms we obtain 14 equations. Eight of them
comprise the following two homogeneous systems with two boundary conditions each















∂F

∂λ
− G

2(λ− µ)
= 0, F (λ0, µ) =

1

2(λ0 − µ)
,

∂G

∂µ
− F

2(µ− λ)
= 0, G(λ, µ0) = 0,

(4.7)

and














∂H

∂µ
− I

2(µ− ν)
= 0, H(µ0, ν) = 0,

∂I

∂ν
− H

2(ν − µ)
= 0, I(µ, ν0) =

1

2(ν0 − µ)
.

(4.8)

We have shown in §3 how to solve these two-dimensional homogeneous boundary
problems in terms of the complete elliptic integral of the second kind E and its deriva-
tive E′. The solutions are

F (λ, µ) =
E(w)

π(λ0 − µ)
, G(λ, µ) = − 2wE′(w)

π(λ0 − λ)
,

(4.9)
H(µ, ν) = − 2uE′(u)

π(ν0 − ν)
, I(µ, ν) = − E(u)

π(µ− ν0)
,

where u and similarly v, which we will encounter later on, follow from w (3.16) by
cyclic permutation λ→ µ→ ν → λ and λ0 → µ0 → ν0 → λ0, so that

u =
(µ0 − µ)(ν0 − ν)

(µ0 − ν0)(µ− ν)
, v =

(ν0 − ν)(λ0 − λ)

(λ0 − ν0)(λ− ν)
. (4.10)

The remaining six equations form a three-dimensional homogeneous boundary prob-
lem, consisting of three homogeneous Jeans equations

∂A

∂λ
− B

2(λ− µ)
− C

2(λ− ν)
= 0,

∂B

∂µ
− C

2(µ− ν)
− A

2(µ− λ)
= 0, (4.11)

∂C

∂ν
− A

2(ν − λ)
− B

2(ν − µ)
= 0.

and three boundary conditions, specifically the values of A(λ0, µ, ν), B(λ, µ0, ν), and
C(λ, µ, ν0). As in §3.2.2, it is useful to supplement these boundary conditions with
the values of A, B, and C at the other boundary surfaces. These are obtained by
integrating the pairs of equations (4.11) which apply at those surfaces, and using the
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boundary conditions. This results in the following nine boundary values

A(λ0, µ, ν) =
1

2π

[

E(u)

(λ0 − ν)(µ− ν0)
+

2uE′(u)
(λ0 − µ)(ν0 − ν)

]

,

A(λ, µ0, ν) =
1

2π

[

E(v)

(λ0 − ν)(µ0 − ν0)
+

2vE′(v)
(λ0 − µ0)(ν0 − ν)

]

,

A(λ, µ, ν0) =
E(w)

4π(λ0 − µ)

[

λ− µ

(λ− ν0)(µ− ν0)
+

λ0 − µ0

(λ0 − ν0)(µ0 − ν0)

]

,

B(λ0, µ, ν) =
uE′(u)

2π(ν0 − ν)

[

µ0 − µ

(λ0 − µ0)(λ0 − µ)
− ν0 − ν

(λ0 − ν0)(λ0 − ν)

]

,

B(λ, µ0, ν) = 0, (4.12)

B(λ, µ, ν0) =
wE′(w)

2π(λ0 − λ)

[

µ0 − µ

(µ0 − ν0)(µ− ν0)
− λ0 − λ

(λ0 − ν0)(λ− ν0)

]

,

C(λ0, µ, ν) =
E(u)

4π(µ− ν0)

[

µ− ν

(λ0 − µ)(λ0 − ν)
+

µ0 − ν0

(λ0 − µ0)(λ0 − ν0)

]

,

C(λ, µ0, ν) =
1

2π

[

E(v)

(λ0 − µ0)(λ− ν0)
− 2vE′(v)

(µ0 − ν0)(λ0 − λ)

]

,

C(λ, µ, ν0) =
1

2π

[

E(w)

(λ0 − µ)(λ− ν0)
− 2wE′(w)

(µ− ν0)(λ0 − λ)

]

.

If we can solve the three homogeneous equations (4.11) and satisfy the above nine
boundary expressions (4.12) simultaneously, we obtain the singular solutions (4.6).
By superposition, we can then construct the solution of the Jeans equations for tri-
axial Stäckel models.

4.3 PARTICULAR SOLUTION

By analogy with the two-dimensional case, we look for particular solutions of the
homogeneous equations (4.11) and by superposition of these particular solutions we
try to satisfy the boundary expressions (4.12) simultaneously, in order to obtain the
homogeneous solution for A, B and C.

4.3.1 One-parameter particular solution
By substitution one can verify that

AP (λ, µ, ν) =

√

(λ− µ)(λ− ν)(µ− ν)

(λ− µ)(λ− ν)

(z − λ)

(z − µ)(z − ν)
, (4.13)

with BP and CP following from AP by cyclic permutation, solves the homogeneous
equations (4.11). To satisfy the nine boundary expressions (4.12), we could integrate
this particular solution over its free parameter z, in the complex plane. From §3.2.4,
it follows that, at the boundaries, this results in simple polynomials in (λ, µ, ν) and
(λ0, µ0, ν0). This means that the nine boundary expressions (4.12) cannot be satisfied,
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since in addition to these simple polynomials they also contain E and E ′. The latter
are functions of one variable, so that at least one extra freedom is necessary. Hence,
we look for a particular solution with two free parameters.

4.3.2 Two-parameter particular solution

A particular solution with two free parameters z1 and z2 can be found by splitting the
z-dependent terms of the one-parameter solution (4.13) into two similar parts and
then relabelling them. The result is the following two-parameter particular solution

AP =

√

(λ− µ)(λ− ν)(µ− ν)

(λ− µ)(λ− ν)

2
∏

i=1

(zi − λ)
1

2

(zi − µ)
1

2 (zi − ν)
1

2

,

BP =

√

(λ− µ)(λ− ν)(µ− ν)

(µ− ν)(µ− λ)

2
∏

i=1

(zi − µ)
1

2

(zi − ν)
1

2(zi − λ)
1

2

, (4.14)

CP =

√

(λ− µ)(λ− ν)(µ− ν)

(ν − λ)(ν − µ)

2
∏

i=1

(zi − ν)
1

2

(zi − λ)
1

2 (zi − µ)
1

2

.

These functions are cyclic in (λ, µ, ν), as is required from the symmetry of the homo-
geneous equations (4.11). The presence of the square roots, such as occurred earlier
in the solution (3.32) for the disk case, allows us to fit boundary values that contain
elliptic integrals.

To show that this particular solution solves the homogeneous Jeans equations, we
calculate the derivative of AP (λ, µ, ν) with respect to λ:

∂AP

∂λ
=
AP

2

(

1

λ− z1
+

1

λ− z2
− 1

λ− µ
− 1

λ− ν

)

. (4.15)

This can be written as

∂AP

∂λ
=

1

2(λ− µ)

[

−(z1 − µ)(z2 − µ)(λ− ν)

(z1 − λ)(z2 − λ)(µ− ν)
AP

]

(4.16)

+
1

2(λ− ν)

[

(z1 − ν)(z2 − ν)(λ− µ)

(z1 − λ)(z2 − λ)(µ− ν)
AP

]

.

From the two-parameter particular solution we have

BP

AP
= −(z1 − µ)(z2 − µ)(λ− ν)

(z1 − λ)(z2 − λ)(µ− ν)
,

(4.17)
CP

AP
=

(z1 − ν)(z2 − ν)(λ− µ)

(z1 − λ)(z2 − λ)(µ− ν)
,

so that, after substitution of these ratios, the first homogeneous equation of (4.11), is
indeed satisfied. The remaining two homogeneous equations can be checked in the
same way.
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4.4 THE HOMOGENEOUS SOLUTION

In order to satisfy the four boundary expressions of the two-dimensional case, we
multiplied the one-parameter particular solution by terms depending on λ0, µ0 and
the free complex parameter z, followed by contour integration over the latter. Sim-
ilarly, in the triaxial case we multiply the two-parameter particular solution (3.35)
by terms depending on λ0, µ0, ν0 and the two free parameters z1 and z2, in such
a way that by contour integration over the latter two complex parameters the nine
boundary expressions (4.12) can be satisfied. Since these terms and the integration
are independent of λ, µ and ν, it follows from the superposition principle that the
homogeneous equations (4.11) remain satisfied.

The contour integrations over z1 and z2 are mutually independent, since we can
separate the two-parameter particular solution (4.14) with respect to these two pa-
rameters. This allows us to choose a pair of contours, one contour in the z1-plane and
the other contour in the z2-plane, and integrate over them separately. We consider the
same simple contours as in the disk case (Fig. 5) around the pairs of branch points
(λ, λ0) and (µ, µ0), and a similar contour around (ν, ν0). We denote these contours by
Cλ

i , Cµ
i and Cν

i respectively, with i = 1, 2 indicating in which of the two complex planes
we apply the contour integration.

4.4.1 Boundary expressions for B
It follows from (4.12) that B = 0 at the boundary µ = µ0. From Cauchy’s theorem, B
would indeed vanish if, in this case, in either the z1-plane or z2-plane the integrand
for B is analytic within the chosen integration contour. The boundary expression for
B at ν = ν0 follows from the one at λ = λ0 by taking ν ↔ λ and ν0 ↔ λ0. In addition
to this symmetry, also the form of both boundary expressions puts constraints on
the solution for B. The boundary expressions can be separated in two parts, one
involving the complete elliptic integral E ′ and the other consisting of a two-component
polynomial in τ and τ0 (τ = λ, µ, ν). Each of the two parts follows from a contour
integration in one of the two complex planes. For either of the complex parameters,
z1 or z2, the integrands will consist of a combination of the six terms zi − τ and zi − τ0
with powers that are half-odd integers, i.e., the integrals are of hyperelliptic form. If
two of the six terms cancel on one of the boundaries, we will be left with an elliptic
integral. We expect the polynomial to result from applying the Residue theorem to a
double pole, as this would involve a first derivative and hence give two components.
This leads to the following Ansatz

B(λ, µ, ν) ∝
√

(λ− µ)(λ− ν)(µ− ν)

(µ− ν)(µ− λ)
×

∮

C1

(z1 − µ)
1

2 (z1 − λ0)
1

2 dz1

(z1 − ν)
1

2 (z1 − λ)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

×

∮

C2

(z2 − µ)
1

2 (z2 − ν0)
1

2 dz2

(z2 − ν)
1

2 (z2 − λ)
1

2 (z2 − µ0)
1

2 (z2 − λ0)
3

2

. (4.18)

Upon substitution of µ = µ0, the terms involving µ0 cancel in both integrals, so that
the integrands are analytic in both contours Cµ

1 and Cµ
2 . By choosing either of these

contours as integration contour, the boundary expression B(λ, µ0, ν) = 0 is satisfied.
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When λ = λ0, the terms with λ0 in the first integral in (4.18) cancel, while in the
second integral we have (z2 − λ0)

−2. The first integral is analytic within Cλ
1 , so that

there is no contribution from this contour. However, the integral over Cµ
1 is elliptic

and can be evaluated in terms of E ′ (cf. §3.2.5). We apply the Residue theorem to the
second integral, for which there is a double pole inside the contour Cλ

2 . Considering
Cµ

1 and Cλ
2 as a pair of contours, the expression for B at λ = λ0 becomes

B(λ, µ, ν) ∝ −16π2

√

(λ0 − µ0)(λ0 − ν0)(µ0 − ν0)

(µ0 − ν0)(µ0 − λ0)
×

uE′(u)
2π(ν0 − ν)

[

µ0 − µ

(λ0 − µ0)(λ0 − µ)
− ν0 − ν

(λ0 − ν0)(λ0 − ν)

]

, (4.19)

which is the required boundary expression up to a scaling factor. As before, we keep
the terms λ0 − µ0, λ0 − ν0 and µ0 − ν0 under one square root, so that it is single-valued
with respect to cyclic permutation in these coordinates.

The boundary expression for B at ν = ν0 is symmetric with the one at λ = λ0, so
that a similar approach can be used. In this case, for the second integral, there is no
contribution from Cν

2 , whereas it can be expressed in terms of E ′ if C2 = Cµ
2 . The first

integrand has a double pole in Cν
1 . The total contribution from the pair (Cν

1 ,Cµ
2 ) gives

the correct boundary expression, up to a scaling factor that is the same as in (4.19).
Taking into account the latter scaling factor, this shows that the Ansatz (4.18) for B

produces the correct boundary expressions and hence we postulate it as the homoge-
neous solution for B. The expressions for A and C then follow from the ratios (4.17).
Absorbing the minus sign in (4.19) into the pair of contours, i.e., either of the two
contours we integrate in clockwise direction, we postulate the following homogeneous
solution

A(λ, µ, ν) =
(µ0 − ν0)(µ0 − λ0)

16π2(λ− µ)(λ− ν)

√

(λ− µ)(λ− ν)(µ− ν)

(λ0 − µ0)(λ0 − ν0)(µ0 − ν0)
×

∮

C1

(z1 − λ)
1

2 (z1 − λ0)
1

2 dz1

(z1 − µ)
1

2 (z1 − ν)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

×

∮

C2

(z2 − λ)
1

2 (z2 − ν0)
1

2 dz2

(z2 − µ)
1

2 (z2 − ν)
1

2 (z2 − µ0)
1

2 (z2 − λ0)
3

2

, (4.20)

B(λ, µ, ν) =
(µ0 − ν0)(µ0 − λ0)

16π2(µ− ν)(µ− λ)

√

(λ− µ)(λ− ν)(µ− ν)

(λ0 − µ0)(λ0 − ν0)(µ0 − ν0)
×

∮

C1

(z1 − µ)
1

2 (z1 − λ0)
1

2 dz1

(z1 − ν)
1

2 (z1 − λ)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

×

∮

C2

(z2 − µ)
1

2 (z2 − ν0)
1

2 dz2

(z2 − ν)
1

2 (z2 − λ)
1

2 (z2 − µ0)
1

2 (z2 − λ0)
3

2

, (4.21)
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C(λ, µ, ν) =
(µ0 − ν0)(µ0 − λ0)

16π2(ν − λ)(ν − µ)

√

(λ− µ)(λ− ν)(µ− ν)

(λ0 − µ0)(λ0 − ν0)(µ0 − ν0)
×

∮

C1

(z1 − ν)
1

2 (z1 − λ0)
1

2 dz1

(z1 − λ)
1

2 (z1 − µ)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

×

∮

C2

(z2 − ν)
1

2 (z2 − ν0)
1

2 dz2

(z2 − λ)
1

2 (z2 − µ)
1

2 (z2 − µ0)
1

2 (z2 − λ0)
3

2

. (4.22)

The above integrands consist of multi-valued functions that all come in pairs of the
form (z − τ)

1

2
−m(z − τ0)

1

2
−n, for integers m and n, with τ equal to λ, µ or ν. Completely

analogous to our procedure in §3.2.4, we can make the integrands single-valued by
specifying, in the complex z1-plane and z2-plane, three cuts running between the three
pairs (λ, λ0), (µ, µ0), (ν, ν0) of branch points, that are enclosed by the simple contours.
The integrands are now analytic in the cut plane away from its cuts and behave again
as z−2

i at large distances, so that the integral over a circular contour with radius going
to infinity, will be zero. Hence, connecting the simple contours Cλ

i , Cµ
i and Cν

i with
this circular contour, shows that their cumulative contribution cancels

Cν
i + Cµ

i + Cλ
i = 0, i = 1, 2. (4.23)

This relation allow us to make a combination of contours, so that the nine boundary
expressions (4.12) are satisfied simultaneously (§4.4.3). Before doing so, we first es-
tablish whether, with the homogeneous solution for A and C given by (4.20) and (4.22),
respectively, we indeed satisfy their corresponding boundary expressions separately.

4.4.2 Boundary expressions for A and C

The boundary expressions and the homogeneous solution of C, follow from those of
A by taking λ ↔ ν and λ0 ↔ ν0. Henceforth, once we have checked the boundary
expressions for A, those for C can be checked in a similar way.

Upon substitution of λ = λ0 in the expression for A (4.20), the first integrand is pro-
portional to z1 −λ′ and thus is analytic within the contour Cλ

1 . The contribution to the
boundary expression therefore needs to come from either Cµ

1 or Cν
1 . The substitution

z1 − λ0 =
λ0 − ν

µ− ν
(z1 − µ) − λ0 − µ

µ− ν
(z1 − ν), (4.24)

splits the first integral into two complete elliptic integrals

λ0 − ν

µ− ν

∮

C1

(z1 − µ)
1

2 dz1

(z1 − ν)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

− λ0 − µ

µ− ν

∮

C1

(z1 − ν)
1

2 dz1

(z1 − µ)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

. (4.25)

Within the contour Cµ
1 , the integrals can be evaluated in terms of E ′(u) and E(u)

respectively. When λ = λ0, the second integral in (4.20) has a single pole contribution
from the contour Cλ

2 . Together, −Cµ
1C

λ
2 , exactly reproduces the boundary expression

A(λ0, µ, ν) in (4.12).
When µ = µ0, both integrands in the expression for A have a single pole within

the contour Cµ
i . However, the combination Cµ

1C
µ
2 does not give the correct boundary
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expression. We again split both integrals to obtain the required complete elliptic
integrals. In the first we substitute

z1 − λ0 =
λ0 − ν0

µ0 − ν0
(z1 − µ0) −

λ0 − µ0

µ0 − ν0
(z1 − ν0). (4.26)

For the contour Cλ
1 , the first integral after the split can be evaluated in terms of E ′(v).

The second integral we leave unchanged. For the integral in the z2-plane we substitute

z2 − ν0 =
λ0 − ν0

λ0 − µ0
(z2 − µ0) −

µ0 − ν0

λ0 − µ0
(z2 − λ0). (4.27)

We take Cν
2 as contour, and evaluate the first integral after the split in terms of E(v).

We again leave the second integral unchanged. Except for the contour choice, it is of
the same form as the integral we left unchanged in the z1-plane.

To obtain the required boundary expression for A at µ = µ0, it turns out that
we have to add the contribution of three pairs of contours, Cλ

1C
µ
2 , Cµ

1C
ν
2 and Cµ

1C
µ
2 .

With the above substitutions (4.26) and (4.27), the first two pairs together provide the
required boundary expression, but in addition we have two similar contour integrals

i/8π

(λ0− ν0)
1

2 (λ− ν)
1

2

∮

Cτ

(z − λ)
1

2 dz

(z − ν)
1

2 (z − λ0)
1

2 (z − ν0)
1

2 (z − µ0)
, (4.28)

with contours Cλ and Cν, respectively. The third pair, Cµ
1C

µ
2 , involves the product of

two single pole contributions. The resulting polynomial

i/8π

(λ0− ν0)
1

2 (λ− ν)
1

2

2πi (λ− µ0)
1

2

(µ0 − ν)
1

2 (λ0 − µ0)
1

2 (µ0 − ν0)
1

2

, (4.29)

can be written in the same form as (4.28), with contour Cµ. As a result, we now have
the same integral over all three contours, so that from (4.23), the cumulative result
vanishes and we are left with the required boundary expression.

The expression for A at ν = ν0 resembles the one for B at the same boundary. This
is expected since their boundary expressions in (4.12) are also very similar. The first
integral now has a contribution from a double pole in the contour C ν

1 . The second
integral has no contribution from the contour C ν

2 . However, within Cµ
2 , the second

integral can be evaluated in terms of E(w). We obtain the correct boundary expression
A(λ, µ, ν0) by considering the pair −Cν

1C
µ
2 .

4.4.3 Combination of contours

In the previous paragraphs we have constructed a homogeneous solution for A, B and
C, and we have shown that with this solution all nine boundary expressions can be
satisfied. For each boundary expression separately, we have determined the required
pair of contours and also contours from which there is no contribution. Now we have
to find the right combination of all these contours to fit the boundary expressions
simultaneously.
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We first summarize the required and non-contributing pairs of contours per bound-
ary expression

A(λ0, µ, ν) : −Cµ
1C

λ
2 ± Cλ

1C
τ
2 ,

A(λ, µ0, ν) : +Cµ
1C

ν
2 + Cλ

1C
µ
2 + Cµ

1C
µ
2 ,

A(λ, µ, ν0) : −Cν
1C

µ
2 ± Cτ

1C
ν
2 ,

B(λ0, µ, ν) : −Cµ
1C

λ
2 ± Cλ

1C
τ
2 ,

B(λ, µ0, ν) : ±Cµ
1C

τ
2 ± Cτ

1C
µ
2 , (4.30)

B(λ, µ, ν0) : −Cν
1C

µ
2 ± Cτ

1C
ν
2 ,

C(λ0, µ, ν) : −Cµ
1C

λ
2 ± Cλ

1C
τ
2 ,

C(λ, µ0, ν) : +Cµ
1C

ν
2 + Cλ

1C
µ
2 + Cµ

1C
µ
2 ,

C(λ, µ, ν0) : −Cν
1C

µ
2 ± Cτ

1C
ν
2 ,

where τ can be λ, µ or ν. At each boundary separately, λ = λ0, µ = µ0 and ν = ν0,
the allowed combination of contours matches between A, B and C. This leaves the
question how to relate the combination of contours at the different boundaries.

From (4.23), we know that in both the complex z1-plane and z2-plane, the cumula-
tive contribution of the three simple contours cancels. As a consequence, each of the
following three combinations of integration contours

Cµ
1 C

µ
2 = −Cµ

1 (Cλ
2 + Cν

2 ) = − (Cλ
1 + Cν

1 )Cµ
2 , (4.31)

will give the same result. Similarly, we can add to each combination the pairs C λ
1C

µ
2

and Cµ
1C

ν
2 , to obtain

Cµ
1 C

ν
2 + Cλ

1 C
µ
2 + Cµ

1 C
µ
2 = Cλ

1 C
µ
2 − Cµ

1 C
λ
2 = Cµ

1 C
ν
2 − Cν

1 C
µ
2 . (4.32)

The first combination of contour pairs matches the allowed range for µ = µ0 in (4.30)
and the second and third match the boundary expressions λ = λ0 and ν = ν0. This
completes the proof that the expressions (4.20)–(4.22) for A, B and C solve the homo-
geneous equations (4.11) and satisfy the nine boundary expressions (4.12) simultane-
ously when the integration contour is any of the three combinations (4.32). We shall
see below that the first of these combinations is preferred in numerical evaluations.

4.5 EVALUATION OF THE HOMOGENEOUS SOLUTIONS

We write the complex contour integrals in the homogeneous solutions A, B and C
(4.20–4.22) as real integrals. The resulting complete hyperelliptic integrals are ex-
pressed as single quadratures, which can be easily evaluated numerically. We also
express the complete elliptic integrals in the two-dimensional homogeneous solutions
F , G, H and I (4.9) in this way to facilitate their numerical evaluation.

4.5.1 From complex to real integrals
To transform the complex contour integrals in (4.20)–(4.22) in real integrals we wrap
the contours Cλ, Cµ and Cν around the corresponding pair of branch points (Fig. 6).
The integrands consist of terms z− τ and z− τ0, all with powers larger than −1, except
z1−ν0 and z2−λ0, both of which occur to the power − 3

2 . This means that for all simple
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contours Cτ
i (τ = λ, µ, ν; i = 1, 2), except for Cν

1 and Cλ
2 , the contribution from the

arcs around the branch points vanishes. In the latter case, we are left with the parts
parallel to the real axis, so that we can rewrite the complex integrals as real integrals
with the branch points as integration limits. The only combination of contours of the
three given in (4.32) that does not involve both C ν

1 and Cλ
2 , is

S ≡ Cµ
1 C

ν
2 + Cλ

1 C
µ
2 + Cµ

1 C
µ
2 . (4.33)

We have to be careful with the changes in phase when wrapping each of the simple
contours around the branch points. One can verify that the phase changes per con-
tour are the same for all three the homogeneous solutions A, B and C, and also that
the contribution from the parts parallel to the real axis is equivalent. This gives a
factor 2 per contour and thus a factor 4 for the combination of contour pairs in S. In
this way, we can transform the double complex contour integration into the following
combination of real integrals

∫∫

S

dz1dz2 = 4(

λ0
∫

λ

dt1

µ0
∫

µ

dt2 +

µ0
∫

µ

dt1

ν0
∫

ν

dt2 −
µ0
∫

µ

dt1

µ0
∫

µ

dt2), (4.34)

with ti the real part of zi.
We apply this transformation to (4.20)–(4.22), and we absorb the factor of 4 left in

the denominators into the integrals, so that we can write

A(λ, µ, ν;λ0, µ0, ν0) =
(µ0 − ν0)(µ0 − λ0)Λ

π2(λ− µ)(λ− ν)
(A1A2 +A3A4 −A2A3) ,

B(λ, µ, ν;λ0, µ0, ν0) =
(µ0 − ν0)(µ0 − λ0)Λ

π2(µ− ν)(µ− λ)
(B1B2 +B3B4 −B2B3) , (4.35)

C(λ, µ, ν;λ0, µ0, ν0) =
(µ0 − ν0)(µ0 − λ0)Λ

π2(ν − λ)(ν − µ)
(C1C2 + C3 C4 − C2 C3) ,

where Ai, Bi and Ci (i = 1, 2, 3, 4) are complete hyperelliptic integrals, for which we give
expressions below, and

Λ2 =
(λ− µ)(λ− ν)(µ− ν)

(λ0 − µ0)(λ0 − ν0)(µ0 − ν0)
. (4.36)

The second set of arguments added to A, B and C make explicit the position (λ0, µ0, ν0)
of the source point which is causing the stresses at the field point (λ, µ, ν).

4.5.2 The complete hyperelliptic integrals
With the transformation described in the previous section the expression for, e.g., the
complete hyperelliptic integral A2 is of the form

A2 =
1

2

µ0
∫

µ

dt

λ0 − t

√

(λ− t)(t− ν0)

(µ0 − t)(t− µ)(λ0 − t)(t− ν)
. (4.37)

The integrand has two singularities, one at the lower integration limit t = µ and one
at the upper integration limit t = µ0. The substitution t = µ + (µ0 − µ) cos2 θ removes
both singularities, since dt/

√

(µ0 − t)(t− µ) = 2(µ0 − µ)dθ.
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All complete hyperelliptic integrals Ai, Bi and Ci (i = 1, 2, 3, 4) in (4.35) are of the
form (4.37) and have at most two singularities at either of the integration limits.
Hence, we can apply a similar substitution to remove the singularities. This results
in the following expressions

A1 = (λ0 − λ)2
π/2
∫

0

sin2 θ cos2 θdθ

x3 ∆x
, A2 =

π/2
∫

0

y1y4dθ

y3 ∆y
,

A4 = (ν0 − ν)

π/2
∫

0

z2 sin2 θdθ

z1 ∆z
, A3 =

π/2
∫

0

y3y4dθ

y1 ∆y
,

B1 = (λ0 − λ)

π/2
∫

0

x2 sin2 θdθ

x3 ∆x
, B2 = (µ0 − µ)

π/2
∫

0

y1 cos2 θdθ

y3 ∆y
,

(4.38)

B4 = (ν0 − ν)

π/2
∫

0

z4 sin2 θdθ

z1 ∆z
, B3 = (µ0 − µ)

π/2
∫

0

y3 cos2 θdθ

y1 ∆y
,

C1 = (λ0 − λ)

π/2
∫

0

x4 sin2 θdθ

x3 ∆x
, C2 =

π/2
∫

0

y1y2dθ

y3 ∆y
,

C4 = (ν0 − ν)2
π/2
∫

0

sin2 θ cos2 θdθ

z1 ∆z
, C3 =

π/2
∫

0

y2y3dθ

y1 ∆y
,

where we have defined

∆2
x = x1x2x3x4, ∆2

y = y1y2y3y4, ∆2
z = z1z2z3z4, (4.39)

and the factors xi, yi and zi (i = 1, 2, 3, 4) are given by

x1 = (λ− µ0) + (λ0 − λ) cos2 θ, x2 = (λ− µ) + (λ0 − λ) cos2 θ,

x3 = (λ− ν0) + (λ0 − λ) cos2 θ, x4 = (λ− ν) + (λ0 − λ) cos2 θ,

y1 = (µ− ν0) + (µ0 − µ) cos2 θ, y2 = (µ− ν) + (µ0 − µ) cos2 θ, (4.40)
y3 = (µ− λ0) + (µ0 − µ) cos2 θ, y4 = (µ− λ) + (µ0 − µ) cos2 θ,

z1 = (ν − λ0) + (ν0 − ν) cos2 θ, z2 = (ν − λ) + (ν0 − ν) cos2 θ,

z3 = (ν − µ0) + (ν0 − ν) cos2 θ, z4 = (ν − µ) + (ν0 − ν) cos2 θ.

For each i these factors follow from each other by cyclic permutation of λ→ µ→ ν → λ
and at the same time λ0 → µ0 → ν0 → λ0. Half of the factors – all xi, y1 and y2 – are
always positive, whereas the other factors are always negative. The latter implies
that one has to be careful with the signs of the factors under the square root when
evaluating the single quadratures numerically.

4.5.3 The complete elliptic integrals
The two-dimensional homogeneous solutions F , G, H and I are given in (4.9) in terms
of the Legendre complete elliptic integrals E(m) and E ′(m) = [E(m) −K(m)]/2m. Nu-
merical routines for E(m) and K(m) (e.g., Press et al. 1992) generally require the
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argument to be 0 ≤ m < 1. In the allowed range of the confocal ellipsoidal coordinates,
the arguments u (4.10) and w (3.16) become larger than unity. In these cases we can
use transformations to express E(m) and K(m) in terms of E(1/m) and K(1/m) (e.g.,
Byrd & Friedman 1971).

We prefer, however, to write the complete elliptic integrals as single quadratures
similar to the above expressions for the hyperelliptic integrals. These quadratures
can easily be evaluated numerically and apply to the full range of the confocal ellip-
soidal coordinates. The resulting expressions for the two-dimensional homogeneous
solutions are

F (λ, µ;λ0, µ0) =
1

π

√

λ− µ

λ0 − µ0

π/2
∫

0

x1 dθ

x2
√
x1 x2

,

G(λ, µ;λ0, µ0) =
1

π

√

λ− µ

λ0 − µ0
(µ0 − µ)

π/2
∫

0

sin2 θ dθ

y4
√
y3 y4

,

H(µ, ν;µ0, ν0) =
1

π

√

µ− ν

µ0 − ν0
(µ0 − µ)

π/2
∫

0

sin2 θ dθ

y2
√
y1 y2

,

I(µ, ν;µ0, ν0) =
1

π

√

µ− ν

µ0 − ν0

π/2
∫

0

z3 dθ

z4
√
z3 z4

. (4.41)

Again we have added two arguments to make the position of the unit source explicitly.
We note that the homogeneous solutions A(λ, µ;λ0, µ0) and B(λ, µ;λ0, µ0) for the disk
case (3.41) are equivalent to F and G respectively.

4.6 GENERAL TRIAXIAL SOLUTION

We now construct the solution of the Jeans equations for triaxial Stäckel models
(4.2), by superposition of singular solutions, which involve the homogeneous solution
derived in the above. We match the solution to the boundary conditions at µ = −α and
ν = −β, and check for convergence of the solution when λ → ∞. Next, we consider
alternative boundary conditions and present the triaxial solution for a general finite
region. We also show that the general solution yields the correct result in the case of
thin tube orbits and the triaxial Abel models of Dejonghe & Laurent (1991). Finally,
we describe a numerical test of the triaxial solution to a polytrope model.

4.6.1 Superposition of singular solutions

Substitution of the functions A, B, C (4.35) and the functions F , G, H, I (4.41)
in expression (4.6), provides the three singular solutions of the system of simplified
Jeans equations, with the right-hand side given by (4.4). We denote these by S ττ

2

(τ = λ, µ, ν). The singular solutions of the two similar simplified systems, with the
triplet of delta functions at the right-hand side of the first and third equation, S ττ

1 and
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Sττ
3 then follow from Sττ

2 by cyclic permutation. This gives

Sλλ
1 = B(ν, λ, µ; ν0, λ0, µ0) +G(ν, λ; ν0, λ0)δ(µ0 − µ)

+H(λ, µ;λ0, µ0)δ(ν0 − ν) − δ(µ0 − µ)δ(ν0 − ν),

Sµµ
1 = C(ν, λ, µ; ν0, λ0, µ0) + I(λ, µ;λ0, µ0)δ(ν0 − ν)

Sνν
1 = A(ν, λ, µ; ν0, λ0, µ0) + F (ν, λ; ν0, λ0)δ(µ0 − µ), (4.42a)

Sλλ
2 = A(λ, µ, ν;λ0, µ0, ν0) + F (λ, µ;λ0, µ0)δ(ν0 − ν),

Sµµ
2 = B(λ, µ, ν;λ0, µ0, ν0) +G(λ, µ;λ0, µ0)δ(ν0 − ν)

+H(µ, ν;µ0, ν0)δ(λ0 − λ) − δ(ν0 − ν)δ(λ0 − λ),

Sνν
2 = C(λ, µ, ν;λ0, µ0, ν0) + I(µ, ν;µ0, ν0)δ(λ0 − λ) (4.42b)

Sλλ
3 = C(µ, ν, λ;µ0, ν0, λ0) + I(ν, λ; ν0, λ0)δ(µ0 − µ),

Sµµ
3 = A(µ, ν, λ;µ0, ν0, λ0) + F (µ, ν;µ0, ν0)δ(λ0 − λ)

Sνν
3 = B(µ, ν, λ;µ0, ν0, λ0) +G(µ, ν;µ0, ν0)δ(λ0 − λ)

+H(ν, λ; ν0, λ0)δ(µ0 − µ) − δ(λ0 − λ)δ(µ0 − µ). (4.42c)

These singular solutions describe the contribution of a source point in (λ0, µ0, ν0) to
(λ, µ, ν). To find the solution of the full equations (4.2), we multiply the singular
solutions (4.42a), (4.42b) and (4.42c) by g1(λ0, µ0, ν0), g2(λ0, µ0, ν0) and g3(λ0, µ0, ν0),
respectively, so that the contribution from the source point naturally depends on the
local density and potential (cf. eq. [4.3]). Then, for each coordinate τ = λ, µ, ν, we add
the three weighted singular solutions, and integrate over the volume Ω, defined as

Ω = {(λ0, µ0, ν0) : λ ≤λ0 <∞, µ ≤ µ0 ≤ −α, ν ≤ ν0 ≤ −β} , (4.43)

which is the three-dimensional extension of the integration domain D in Fig. 4. The
resulting solution solves the inhomogeneous Jeans equations (4.2), but does not give
the correct values at the boundaries µ = −α and ν = −β. They are found by multiply-
ing the singular solutions (4.42b) evaluated at µ0 = −α, and, similarly, the singular
solutions (4.42c) evaluated at ν0 = −β, by −Sµµ(λ0,−α, ν0) and −Sνν(λ0, µ0,−β), re-
spectively, and integrating in Ω over the coordinates that are not fixed. One can verify
that this procedure represents the boundary values correctly. The final result for the
general solution of the Jeans equations (4.2) for triaxial Stäckel models is

Sττ (λ, µ, ν) =

∞
∫

λ

dλ0

−α
∫

µ

dµ0

−β
∫

ν

dν0

3
∑

i=1

gi(λ0, µ0, ν0)S
ττ
i (λ, µ, ν;λ0, µ0, ν0)

−
−β
∫

ν

dν0

∞
∫

λ

dλ0 Sµµ(λ0,−α, ν0)S
ττ
2 (λ, µ, ν;λ0,−α, ν0)

−
∞
∫

λ

dλ0

−α
∫

µ

dµ0 Sνν(λ0, µ0,−β)Sττ
3 (λ, µ, ν;λ0, µ0,−β), (4.44)
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where τ = (λ, µ, ν). This provides the stresses everywhere, once we have specified
Sµµ(λ,−α, ν) and Sνν(λ, µ,−β). At both boundaries µ = −α and ν = −β, the three
stress components are related by a set of two Jeans equations, i.e., (4.2) evaluated
at µ = −α and ν = −β respectively. From §3, we know that the solution of these
two-dimensional systems both will involve a (boundary) function of one variable. We
need this latter freedom to satisfy the continuity conditions (2.17). This means it is
sufficient to specify any of the three stress components at µ = −α and ν = −β.

4.6.2 Convergence of the general triaxial solution
As in §§3.1.4, 3.2.7 and 3.4 we suppose G(τ) = O(τ δ) when τ → ∞, with δ in the range
[−1

2 , 0). This implies that the potential VS (2.3) is also O(τ δ). We assume that the
density ρ, which does not need to be the density ρS which generates VS, is of the form
N(µ, ν)λ−s/2 when λ → ∞. In the special case where ρ = ρS, we have s ≤ 4 except pos-
sibly along the z-axis. When s = 4 the models remain flattened out to the largest radii,
but when s < 4 the function N(µ, ν) → 1 in the limit λ→ ∞ (de Zeeuw et al. 1986).

From the definition (4.3), we find that g1(λ0, µ0, ν0) = O(λ
δ−s/2
0 ) as λ0 → ∞, while

g2(λ0, µ0, ν0) and g3(λ0, µ0, ν0) are larger and both O(λ
−s/2
0 ). To investigate the behav-

ior of the singular solutions (4.42) at large distance, we have to carefully analyze the
complete hyperelliptic (4.38) and elliptic (4.41) integrals as λ0 → ∞. This is simplified
by writing them as Carlson’s R-functions (Carlson 1977). We finally find for the sin-
gular solutions that Sττ

1 = O(1) when λ0 → ∞, whereas Sττ
2 and Sττ

3 are smaller and
O(λ−1

0 ), with τ = λ, µ, ν. This shows that for the volume integral in the triaxial solution
(4.44) to converge, we must have δ− s/2 + 1 < 0. This is equivalent to the requirement
s > 2δ + 2 we obtained in §3.4 for the limiting cases of prolate and oblate potentials
and for the large radii limit with scale-free DF. From the convergence of the remaining
two double integrals in (4.44), we find that the boundary stresses Sµµ(λ,−α, ν) and
Sνν(λ, µ,−β) cannot exceed O(1) when λ→ ∞.

This is in agreement with the large λ behavior of Sττ (λ, µ, ν) that follows from the
volume integral. The singular solutions Sλλ

i = O(1) (i = 1, 2, 3) when λ→ ∞, larger than
Sµµ

i and Sνν
i , which are all O(λ−1). Evaluating the volume integral at large distance

gives Sττ (λ, µ, ν) = O(λδ−s/2+1), i.e., not exceeding O(1) if the requirement s > 2δ + 2 is
satisfied. We obtain the same behavior and requirement from the energy, eq. (2.10).

We conclude that for the general triaxial case, as well as for the limiting cases
with a three-dimensional shape, the stress components Tττ (λ, µ, ν) are O(λδ−s/2) at
large distance, with the requirement that s > 2δ + 2 for − 1

2 ≤ δ < 0. We obtained the
same result for the stresses in the disk case, except that then s > 2δ + 1. Both the
three-dimensional and two-dimensional requirements are met for many density dis-
tributions ρ and potentials VS of interest. They do not break down until the isothermal
limit δ → 0, with s = 1 (disk) and s = 2 (three-dimensional) is reached.

4.6.3 Alternative boundary conditions
Our solution for the stress components at each point (λ, µ, ν) in a triaxial model with a
Stäckel potential consists of the weighted contribution of all sources outwards of this
point. Accordingly, we have integrated with respect to λ0, µ0 and ν0, with lower limits
the coordinates of the chosen point and upper limits ∞, −α and −β, respectively.
To obtain the correct expressions at the outer boundaries, the stresses must vanish
when λ→ ∞ and they have to be specified at µ = −α and ν = −β.
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The integration limits λ, µ and ν are fixed, but for the other three limits we can,
in principle, equally well choose −α, −β and −γ respectively. The latter choices also
imply the specification of the stress components at these boundaries instead. Each
of the eight possible combinations of these limits corresponds to one of the octants
into which the physical region −γ ≤ ν0 ≤ −β ≤ µ0 ≤ −α ≤ λ0 < ∞ is split by the
lines through the point (λ, µ, ν). By arguments similar to those given in §3.3, one
may show that in all octants the expressions (4.35) for A, B, C, and (4.9) for F ,
G, H, I are equivalent. Hence, again the only differences in the singular solutions
are due to possible changes in the sign of the step-functions, but the changes in
the integration limits cancel the sign differences between the corresponding singular
solutions. However, as in §3.3 for the two-dimensional case, it is not difficult to show
that while switching the boundary conditions µ and ν is indeed straightforward, the
switch from λ → ∞ to λ = −α again leads to solutions which generally have the
incorrect radial fall-off, and hence are non-physical.

4.6.4 Triaxial solution for a general finite region
If we denote non-fixed integration limits by λe, µe and νe respectively, we can write the
triaxial solution for a general finite region as

Sττ (λ, µ, ν) =

λe
∫

λ

dλ0

µe
∫

µ

dµ0

νe
∫

ν

dν0

3
∑

i=1

gi(λ0, µ0, ν0)S
ττ
i (λ, µ, ν;λ0, µ0, ν0)

−
µe
∫

µ

dµ0

νe
∫

ν

dν0 Sλλ(λe, µ0, ν0)S
ττ
1 (λ, µ, ν;λe, µ0, ν0)

−
νe
∫

ν

dν0

λe
∫

λ

dλ0 Sµµ(λ0, µe, ν0)S
ττ
2 (λ, µ, ν;λ0, µe, ν0)

−
λe
∫

λ

dλ0

µe
∫

µ

dµ0 Sνν(λ0, µ0, νe)S
ττ
3 (λ, µ, ν;λ0, µ0, νe), (4.45)

with, as usual, τ = λ, µ, ν. The weight functions gi (i = 1, 2, 3) are defined in (4.3)
and the singular solutions Sττ

i are given by (4.42). The non-fixed integration limits
are chosen in the corresponding physical ranges, i.e., λe ∈ [−α,∞], µe ∈ [−β,−α] and
νe ∈ [−γ,−β], but λe 6= −α (see §4.6.3). The solution requires the specification of the
stress components on the boundary surfaces λ = λe, µ = µe and ν = νe. On each
of these surfaces the three stress components are related by two of the three Jeans
equations (4.2) and the continuity conditions (2.17). Hence, once one of the stress
components is prescribed on three boundary surfaces, the solution (4.44) yields all
three stresses everywhere in the triaxial Stäckel galaxy. The stresses on the remaining
three boundary surfaces then follow as the limits of the latter solution.

4.6.5 Physical solutions
Statler (1987) and HZ92 showed that many different DFs are consistent with a triaxial
density ρ in the potential VS. Specifically, the boundary plane ν = −β, i.e., the area
outside the focal hyperbola in the (x, z)-plane (Fig. 2), is only reached by inner (I) and
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outer (O) long-axis tube orbits. A split between the contribution of both orbit families
to the density in this plane has to be chosen, upon which the DF for both the I and O
orbits is fixed in case only thin tubes are populated, but many other possibilities exist
when the full set of I- and O-orbits is included. For each of these DFs, the density pro-
vided by the I- and O-tubes can then in principle be found throughout configuration
space. In the area outside the focal ellipse in the (y, z)-plane (µ = −α), only the O-tubes
and S-tubes contribute to the density. Subtracting the known density of the O-orbits
leaves the density to be provided by the S-tubes in this plane, from which their DF
can be determined. This is again unique when only thin orbits are used, but is non-
unique otherwise. The density that remains after subtracting the I-, O-, and S-tube
densities from ρ must be provided by the box (B) orbits. Their DF is now fixed, and can
be found by solving a system of linear equations, starting from the outside (λ→ ∞).

The total DF is the sum of the DFs of the four orbit families, and is hence highly
non-unique. All these DFs give rise to a range of stresses Tλλ, Tµµ, Tνν , and our solution
of the Jeans equations must be sufficiently general to contain them as a subset. This
is indeed the case, as we are allowed to choose the stresses on the special surfaces
ν = −β and µ = −α. However, not all choices will correspond to physical DFs. The
requirement Tττ ≥ 0 is necessary but not sufficient for the associated DF to be non-
negative everywhere.

4.6.6 The general solution for thin tube orbits

For each of the three tube families in case of infinitesimally thin orbits one of the
three stress components vanishes everywhere (see §2.5.6). We are left with two non-
zero stress components related to the density and potential by three reduced Jeans
equations (4.2). We thus have subsidiary conditions on the three right hand side
terms g1, g2 and g3.

HZ92 solved for the two non-trivial stresses and showed that they can be found
by single quadratures (with integrands involving no worse than complete elliptic inte-
grals), once the corresponding stress had been chosen at ν = −β (for I- and O-tubes)
or at µ = −α (for S-tubes).

By analogy with the reasoning for the thin tube orbits in the disk case (§3.4.4),
we can show that for each of the three tube families in the case of thin orbits the
general triaxial solution (4.45) gives the stress components correctly. Consider, e.g.,
the thin I-tubes, for which Sµµ ≡ 0. Apply the latter to (4.45), substitute for g1, g2
and g3 the subsidiary conditions that follow from the reduced Jeans equations (4.2)
and substitute for the singular solutions the expressions (4.42). After several partial
integrations, we use that the homogeneous solutions A, B and C solve a homoge-
neous system similar to (4.11), but now with respect to the source point coordinates
(λ0, µ0, ν0)

∂B(ν, λ, µ; ν0, λ0, µ0)

∂λ0
=
A(λ, µ, ν;λ0, µ0, ν0)

2(λ0 − µ0)
+
C(µ, ν, λ;µ0, ν0, λ0)

2(λ0 − ν0)
, (4.46)

where other relations follow by cyclic permutation of λ → µ → ν → λ and λ0 → µ0 →
ν0 → λ0. And similar for the two-dimensional homogeneous solutions F , G, H and I
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the relations follow from

∂G(µ, λ;µ0, λ0)

∂λ0
=

F (λ, µ;λ0, µ0)

2(λ0 − µ0)
,

(4.47)
∂H(µ, ν;µ0, ν0)

∂µ0
=

I(ν, µ; ν0, µ0)

2(µ0 − ν0)
.

It indeed turns out that for Sµµ(λ, µ, ν) all terms cancel on the right hand side of (4.45).
The terms that are left in the case of Sλλ and Sνν are just eq. (4.2a) integrated with
respect to λ and eq. (4.2c) integrated with respect to ν, respectively, and using that
Sµµ ≡ 0. A similar analysis as above shows that also for thin O- and S-tubes — for
which Sλλ ≡ 0 in both cases — the general triaxial solution yields the correct result.

4.6.7 Triaxial Abel models
For a galaxy with a triaxial potential of Stäckel form, the DF is a function of the three
exact isolating integrals of motion, f(x,v) = f(E, I2, I3) (see also §2.2). The expressions
for E, I2 and I3 in terms of the phase-space coordinates (x,v) can be found in e.g. Z85.
We can thus write the velocity moments of the DF as a triple integral over E, I2 and
I3. Assuming that the DF is function of only one variable

S ≡ E + wI2 + uI3, (4.48)

with w and u constants, Dejonghe & Laurent (1991) show that the triple integration
simplifies to a one-dimensional Abel integration over S. Even though a DF of this form
can only describe a self-consistent model in the spherical case (ellipsoidal hypothesis,
see, e.g., Eddington 1915), the Jeans equations do not require self-consistency.

The special Abel form results in a simple analytical relation between the three
stress components (Dejonghe & Laurent 1991, their eq. [5.6])

Tµµ = Tλλaµν/aλν , Tνν = Tλλaµν/aµλ, (4.49)

with
aστ = (γ − α) + (σ + α) (τ + α)w − (σ + γ) (τ + γ)u, (4.50)

and σ, τ = λ, µ, ν. With these relations we find that

Tλλ − Tµµ

λ− µ
=
Tλλ

aλν

∂ aλν

∂λ
,

Tλλ − Tνν

λ− ν
=
Tλλ

aλµ

∂ aλµ

∂λ
. (4.51)

The first Jeans eq. (2.16a) now becomes a first-order partial differential equation for
Tλλ. This equation can be solved in a straightforward way and provides an elegant
and simple expression for the radial stress component

Tλλ(λ, µ, ν) =

√

aλeµ aλeν

aλµ aλν
Tλλ(λe, µ, ν) +

λe
∫

λ

dλ0

√

aλ0µ aλ0ν

aλµ aλν
ρ
∂VS

∂λ0
(4.52)

The expressions for Tµµ and Tνν follow by application of the ratios (4.49). If we let the
boundary value λe → ∞, the first term on the right-hand side of (4.52) vanishes.

The density ρ, which does not need to be the density ρS which generates VS, is of
the Abel form as given in eq. (3.11) of Dejonghe & Laurent (1991). If we substitute
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this form in (4.52), we obtain, after changing the order of integration and evaluating
the integral with respect to λ, again a single Abel integral that is equivalent to the ex-
pression for Tλλ that follows from eq. (3.10) of Dejonghe & Laurent (1991). Using the
relations (4.49) and the corresponding subsidiary conditions for g1, g2 and g3, it can be
shown that the general triaxial solution (4.45) gives the stress components correctly.

4.6.8 Numerical test
We have numerically implemented the general triaxial solution (4.45), and tested it
on a polytrope dynamical model, for which the DF depends only on energy E as
f(E) ∝ En−3/2, with n > 1

2 . Integration of this DF over velocity v, with E = −V − 1
2v

2 for
a potential V ≤ 0, shows that the density ρ ∝ (−V )n (e.g., Binney & Tremaine 1987, p.
223). This density is not consistent with the Stäckel potentials we use but, as noted in
§2.3, the Jeans equations do not require self-consistency. The first velocity moments
and the mixed second moments of the DF are all zero. The remaining three moments
all equal −V/(n+1), so that the isotropic stress of the polytrope model Tpol ∝ (−V )n+1.

We take the potential V to be of Stäckel form VS (2.3), and consider two different
choices for G(τ) in (2.4). The first is the simple form G(τ) = −GM/(

√
τ +

√
−α) that

is related to Hénon’s isochrone (de Zeeuw & Pfenniger 1988). The second is the form
for the perfect ellipsoid, for which G(τ) is given in Z85 in terms of complete elliptic
integrals. The partial derivatives of VS(λ, µ, ν), that appear in the weights g1, g2 and g3,
can be obtained in terms of G(τ) and its derivative in a straightforward way by using
the expressions derived by de Zeeuw et al. (1986).

The calculation of the stresses is done in the following way. We choose the poly-
trope index n, and fix the triaxial Stäckel model by choosing α, β and γ. This gives
Tpol. Next, we obtain successively the stresses Tλλ, Tµµ and Tνν from the general tri-
axial solution (4.45) by numerical integration, where the relation between Sττ and Tττ

is given by (4.1). We first fix the upper integration limits λe, µe and νe. All integrands
contain the singular solutions (4.42), that involve the homogeneous solutions A, B, C,
F , G, H and I, for which we numerically evaluate the single quadratures (eq. [4.35],
[4.38] and [4.41]). The weights g1, g2 and g3 (4.3) involve the polytrope density and
Stäckel potential. This leaves the boundary stresses in the integrands, for which we
use the polytrope stress Tpol that follows from the choice of the DF, evaluated at the
corresponding boundary surfaces. We then evaluate the general solution away from
these boundaries, and compare it with the known result.

We carried out the numerical calculations for different choices of n, α, β and γ and
at different field points (λ, µ, ν). In each case the resulting stresses Tλλ, Tµµ and Tνν –
independently calculated – were equivalent to high precision and equal to Tpol. This
agreement provides a check on the accuracy of both our formulae and their numerical
implementation, and demonstrates the feasibility of using our methods for computing
triaxial stress distributions. That will be the subject of a follow-up paper.

5 DISCUSSION AND CONCLUSIONS

Eddington (1915) showed that the velocity ellipsoid in a triaxial galaxy with a sep-
arable potential of Stäckel form is everywhere aligned with the confocal ellipsoidal
coordinate system in which the equations of motion separate. Lynden–Bell (1960)
derived the three Jeans equations which relate the three principal stresses to the po-
tential and the density. They constitute a highly-symmetric set of first-order partial
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differential equations in the three confocal coordinates. Solutions were found for the
various two-dimensional limiting cases, but with methods that do not carry over to
the general case, which, as a consequence, remained unsolved.

Here, we have introduced an alternative solution method, using superposition of
singular solutions. We have shown that this approach not only provides an elegant al-
ternative to the standard Riemann–Green method for the two-dimensional limits, but
also, unlike the standard methods, can be generalized to solve the three-dimensional
system. The resulting solutions contain complete (hyper)elliptic integrals which can
be evaluated in a straightforward way. In the derivation, we have recovered (and in
some cases corrected) all previously known solutions for the various two-dimensional
limiting cases with more symmetry, as well as the two special solutions known for the
general case, and have also clarified the restrictions on the boundary values. We have
numerically tested our solution on a polytrope model.

The general Jeans solution is not unique, but requires specification of principal
stresses at certain boundary surfaces, given a separable triaxial potential, and a tri-
axial density distribution (not necessarily the one that generates the potential). We
have shown that these boundary surfaces can be taken to be the plane containing the
long and the short axis of the galaxy, and, more specifically, the part that is crossed by
all three families of tube orbits and the box orbits. This is not unexpected, as HZ92
demonstrated that the phase-space distribution functions of these triaxial systems
are defined by specifying the population of each of the three tube orbit families in a
principal plane. Once the tube orbit populations have been defined in this way, the
population of the box orbits is fixed, as it must reproduce the density not contributed
by the tubes, and there is only one way to do this. While HZ92 chose to define the pop-
ulation of inner and outer long axis tubes in a part of the (x, z)-plane, and the short
axis tubes in a part of the (y, z)-plane, it is in fact also possible to specify all three of
them in the appropriate parts of the (x, z)-plane, just as is needed for the stresses.

The set of all Jeans solutions (4.45) contains all the stresses that are associated
with the physical distribution functions f ≥ 0, but, as in the case of spherical and
axisymmetric models, undoubtedly also contains solutions which are unphysical, e.g.,
those associated with distribution functions that are negative in some parts of phase
space. The many examples of the use of spherical and axisymmetric Jeans models in
the literature suggest nevertheless that the Jeans solutions can be of significant use.

While triaxial models with a separable potential do not provide an adequate de-
scription of the nuclei of galaxies with cusped luminosity profiles and a massive cen-
tral black hole, they do catch much of the orbital structure at larger radii, and in some
cases even provide a good approximation of the galaxy potential. The solutions for the
mean streaming motions, i.e., the first velocity moments of the distribution function,
are quite helpful in understanding the variety of observed velocity fields in giant el-
liptical galaxies and constraining their intrinsic shapes (e.g., Statler 1991, 1994b;
Arnold et al.1994; Statler et al. 1999; Statler 2001). We expect that the projected ve-
locity dispersion fields that can be derived from our Jeans solutions will be similarly
useful, and, in particular, that they can be used to establish which combinations of
viewing directions and intrinsic axis ratios are firmly ruled out by the observations.
As some of the projected properties of the Stäckel models can be evaluated by ana-
lytic means (Franx 1988), it is possible that this holds even for the intrinsic moments
considered here. Work along these lines is in progress.

The solutions presented here constitute a significant step towards completing the
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analytic description of the properties of the separable triaxial models, whose history
by now spans more than a century. It is remarkable that the entire Jeans solution can
be written down by means of classical methods. This suggests that similar solutions
can be found for the higher dimensional analogues of (2.16), most likely involving
hyperelliptic integrals of higher order. It is also likely that the higher-order velocity
moments for the separable triaxial models can be found by similar analytic means,
but the effort may become prohibitive.
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APPENDIX A SOLVING FOR THE DIFFERENCE IN STRESS

We compare our solution for the stress components Tλλ and Tµµ with the result derived
by EL89. They combine the two Jeans equations (2.25) into the single equation

∂2∆

∂λ∂µ
+

(

∂

∂µ
− ∂

∂λ

)

∆

2(λ − µ)
=
∂ρ

∂λ

∂VS

∂µ
− ∂ρ

∂µ

∂VS

∂λ
, (A.1)

for the difference ∆ ≡ Tλλ − Tµµ of the two stress components. Eq. (A.1) is of the form

L?∆ =
∂ρ

∂λ

∂VS

∂µ
− ∂ρ

∂µ

∂VS

∂λ
, (A.2)

where L? is the adjoint operator defined in eq. (3.6). As in §3.1, eq. (A.1) can be solved
via a Riemann–Green function.
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A.1 THE GREEN’S FUNCTION

In order to obtain the Riemann–Green function G? for the adjoint operator L?, we use
the reciprocity relation (Copson 1975, §5.2) to relate it to the Riemann–Green function
G, derived in §3.1.2 for L. With c1 = c2 = −1

2 in this case, we get

G?(λ, µ;λ0, µ0) = G(λ0, µ0;λ, µ) =

(

λ0 − µ0

λ− µ

)
1

2

2F1(− 1

2
, 3
2
; 1;w), (A.3)

where w as defined in (3.16). EL89 seek to solve eq. (A.2) using a Green’s function G
which satisfies the equation

L?G = δ(λ0 − λ) δ(µ0 − µ). (A.4)

That they impose the same boundary conditions that we do is evident from their re-
mark that, if L? were the simpler operator ∂2/∂λ∂µ, G would be H(λ0 − λ)H(µ0 − µ).
This is the same result as would be obtained by the singular solution method of §3.2,
which, as we showed there, is equivalent to the Riemann–Green analysis. Hence their
G should match the G? of eq. (A.3). We show in §A.3 that it does not.

A.2 LAPLACE TRANSFORM

We use a Laplace transform to solve (A.4) because the required solution is that to an
initial value problem to which Laplace transforms are naturally suited. The PDE is
hyperbolic with the lines λ = const and µ = const as characteristics, and its solution is
non-zero only in the rectangle bounded by the characteristics λ = λ0 and µ = µ0, and
the physical boundaries λ = −α and µ = −β (Fig. A.1). We introduce new coordinates

ξ = (λ− µ)/
√

2, η = −(λ+ µ)/
√

2, (A.5)

so that eq. (A.4) simplifies to

L?G ≡ ∂2G

∂η2
− ∂2G

∂ξ2
− ∂

∂ξ

(

G

ξ

)

= 2δ(ξ − ξ0) δ(η − η0), (A.6)

where ξ0 = (λ0 − µ0)/
√

2 and η0 = −(λ0 + µ0)/
√

2 are the coordinates of the source
point. The factor of 2 arises from the transformation of the derivatives; the product of
the delta functions in (A.4) transforms into that of (A.6) because the Jacobian of the
transformation (A.5) is unity. The reason for our choice of η is that G ≡ 0 for η < η0,
that is λ+ µ > λ0 + µ0. Hence η is a time-like variable which increases in the direction
in which the non-zero part of the solution propagates. We take a Laplace transform
in η̃ = η − η0, and transform G(ξ, η) to

Ĝ(ξ, p) =

∞
∫

0

e−pη̃G(ξ, η̃)dη̃. (A.7)

There are two equally valid ways of taking proper account of the δ(η−η0) in taking the
Laplace transform of eq. (A.6). One can either treat it as δ(η̃−0+), in which case it has
a Laplace transform of 1, or one can treat it as δ(η̃ − 0−), in which case it contributes
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FIGURE A.1 — The physically relevant region of the (λ, µ)-plane for the determination of the
Riemann–Green function G, overlayed with the new coordinates ξ and η (A.5). The dot marks
the source point of the Riemann–Green function G at (λ0, µ0). This function is non-zero only
in the shaded region, which denotes the domain of influence in the (λ, µ)-plane of that source
point. Fig. 4 on the other hand shows the (λ0, µ0)-plane. It is relevant to the solution for
the stress at a single field point (λ, µ). The hatched region D of Fig. 4 shows the domain of
dependence of the field point, that is the portion of the source plane on which the solution at
the field point depends.

a unit initial value to ∂G/∂η which must be included in the Laplace transform of
∂2G/∂η2 (Strauss 1992). Either way leads to a transformed equation for Ĝ(ξ, p) of

p2Ĝ− d2Ĝ

dξ2
− d

dξ

(

Ĝ

ξ

)

= 2δ(ξ − ξ0). (A.8)

The homogeneous part of eq. (A.8) is the modified Bessel equation of order one in the
variable pξ. Two independent solutions are the modified Bessel functions I1 and K1.
The former vanishes at ξ = 0 and the latter decays exponentially as ξ → ∞. We need
Ĝ to decay exponentially as ξ → ∞ because G(ξ, η) vanishes for η̃ < ξ − ξ0, and hence
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its Laplace transform Ĝ is exponentially small for large ξ. We also need Ĝ to vanish
at ξ = 0 where λ = µ. The focus at which λ = µ = −α is the only physically relevant
point at which ξ = 0. It lies on a boundary of the solution region in the λ0 → −α
limit (Fig. A.1). The focus is a point at which the difference ∆ between the stresses
vanishes, and hence G and Ĝ should vanish there. The delta function in eq. (A.8)
requires that Ĝ be continuous at ξ = ξ0 and that dĜ/dξ decrease discontinuously by 2
as ξ increases through ξ = ξ0. Combining all these requirements, we obtain the result

Ĝ(ξ, p) =

{

2ξ0K1(pξ) I1(pξ0), ξ0 ≤ ξ <∞,

2ξ0K1(pξ0) I1(pξ), 0 ≤ ξ ≤ ξ0.
(A.9)

We use the Wronskian relation I1(x)K
′
1(x)−I ′1(x)K1(x) = −1/x (eq. [9.6.15] of Abramowitz

& Stegun 1965) in calculating the prefactor of the products of modified Bessel func-
tions. The inversion of this transform is obtained from formula (13.39) of Oberhet-
tinger & Badii (1973) which gives

G(ξ, η̃) =

{
√

ξ0
ξ 2F1(− 1

2
, 3
2
; 1;w), |ξ0 − ξ| ≤ η̃ ≤ ξ0 + ξ,

0, −∞ < η̃ < |ξ0 − ξ|,
(A.10)

we have (cf. eq. [3.16])

w ≡ η̃2 − (ξ0 − ξ)2

4ξ0ξ
=

(λ0 − λ)(µ0 − µ)

(λ0 − µ0)(λ− µ)
. (A.11)

The second case of eq. (A.10) shows that G does indeed vanish outside the shaded
sector λ < λ0, µ < µ0. The first case shows that it agrees with the adjoint Riemann–
Green function G? of (A.3) which was derived from the analysis of §3.1.

A.3 COMPARISON WITH EL89
EL89 use variables s = −η and t = ξ, whereas we avoided using t for the non-time-like
variable. They consider the Fourier transform

Ḡ(ξ, k) =

∞
∫

−∞

e−ikη̃G(ξ, η̃)dη̃. (A.12)

Because G ≡ 0 for η̃ ≤ 0, we can rewrite our Laplace transform as their Fourier
transform. Setting p = −ik gives Ḡ(ξ, k) = iĜ(ξ,−ik), and using the formulas I1(x) =

−J1(ix) and K1(x) = 1
2πiH

(1)
1 (ix), eq. (A.9) yields

Ḡ(ξ, k) =

{

πiξ0H
(1)
1 (kξ) J1(kξ0), ξ0 ≤ ξ <∞,

πiξ0H
(1)
1 (kξ0) J1(kξ), 0 ≤ ξ ≤ ξ0.

(A.13)

This formula differs from the solution for the Fourier transform given in eq. (70) of
EL89. The major difference is that their solution has Hankel functions of the sec-
ond kind H

(2)
1 (kt) = H

(2)
1 (kξ) where ours has J1 Bessel functions. Consequently their

solution has an unphysical singularity at t = ξ = 0, and so, in our opinion, is incor-
rect. Our solution, which was devised to avoid that singularity, gives a result which
matches that derived by Riemann’s method in §3.1.
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A.4 THE SOLUTION FOR ∆

The solution for ∆ using the adjoint Riemann–Green function is given by eq. (3.14)
with G replaced by G? and the sign of c2 changed for the adjoint case (Copson 1975).
The hypergeometric function of eq. (A.3) for G? is expressible in terms of complete
elliptical integrals as

2F1(− 1

2
, 3
2
; 1;w) =

2

π
[E(w) + 2wE ′(w)]. (A.14)

Hence, the solution for the difference ∆ between the two principal stresses is given by

∆(λ, µ) =
2

π(λ− µ)
1

2

{

∞
∫

λ

dλ0

−α
∫

µ

dµ0

[

E(w) + 2wE ′(w)
]

(λ0 − µ0)
1

2

(

∂ρ

∂λ0

∂VS

∂µ0
− ∂ρ

∂µ0

∂VS

∂λ0
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−
∞
∫

λ

dλ0

[

E(w) + 2wE ′(w)

]

µ0=−α

d

dλ0

[

(λ0 + α)
1

2 ∆(λ0,−α)
]

}

. (A.15)

The determined reader can verify, after some manipulation, that this expression is
equivalent to the difference between the separate solutions (3.21a) and (3.21b), de-
rived in §3.1.

NOTE ADDED IN MANUSCRIPT

We agree with the amendment to our method of solution for ∆ given in Appendix A.4.
Our Green’s function, while solving the differential equation, had the wrong boundary
conditions.
N.W. Evans & D. Lynden-Bell



CHAPTER 6

THE EINSTEIN CROSS: LENSING VS. STELLAR DYNAMICS

ABSTRACT
We study the total mass distribution in the inner parts of the lens galaxy in the
Einstein Cross by combining gravitational lensing with stellar dynamics. We obtain
a realistic luminosity density of the lens galaxy by deprojecting its observed surface
brightness, and we construct a lens model that accurately fits the positions and
relative fluxes of the four quasar images. We combine both to build axisymmetric
dynamical models that fit preliminary two-dimensional stellar kinematics derived
from recent observations with the integral-field spectrograph GMOS. We find that
the stellar velocity dispersion measurements with a mean value of 167 ± 10km s−1

within the Einstein radius RE = 0.90′′, are in agreement with predictions from
our and previous lens models. From the best-fit dynamical model, with I-band
mass-to-light ratio M/L = 3.6M�/L�, the Einstein mass is consistent with ME =
1.60×1010 M� from our lens model. The shapes of the density inferred from the lens
model and from the surface brightness are very similar, but further improvement
on the preliminary kinematic data is needed, before firm conclusions on the total
mass distribution can be drawn.
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1 INTRODUCTION

IN the cold dark matter (CDM) paradigm for galaxy formation (e.g., Kauffmann & van
den Bosch 2002), galaxies are embedded in extended dark matter distributions with

a specific and universal shape. Although we cannot directly see this dark matter, it
contributes to the gravitational potential and hence it influences the dynamics of the
galaxy. Measurements of rotation curves from neutral Hydrogen (H I) observations in
the outer parts of late-type galaxies have provided evidence for the presence of dark
matter in these systems more than two decades ago (e.g., van Albada et al. 1985). In
the outer parts of early-type galaxies, however, cold gas is scarce, and evidence for
dark matter in these systems has been found (mainly) from stellar kinematics (e.g.,
Carollo et al. 1995; Gerhard et al. 2001; but see Romanowsky et al. 2003).

A fundamental problem in using stellar kinematics for this purpose is the mass-
anisotropy degeneracy: a change in the measured line-of-sight velocity dispersion
can be due to a change in mass, but also due to a change in velocity anisotropy.
Both effects can be disentangled by measuring also the higher-order velocity moments
(Dejonghe 1988; van der Marel & Franx 1993; Gerhard 1993), but only the inner parts
of nearby galaxies are bright enough to obtain the required kinematic measurements.
Fitting dynamical models to such observations has provided accurate measurements
of the anisotropy and M/L in the inner parts of early-type galaxies (e.g., van der Marel
et al. 1991; Rix et al. 1997; Gerhard et al. 2001; Cappellari et al. 2005).

The dark matter fraction can be estimated by comparing this total (luminous and
dark) M/L with the stellar (luminous) M?/L determined by fitting stellar population
models to color and absorption line-strength measurements. Due to uncertainties in
the stellar population models (particularly with respect to the initial mass function),
however, the dark matter fraction is not well constrained in this way.

The central dark matter profile provides a critical test of the CDM paradigm, which
predicts that the inner parts of galaxies have a cuspy density ∝ r−γ, with power-
law slope γ ∼ 1 (Navarro, Frenk & White 1997). However, the observed slopes from
H I rotation curves of late-type galaxies are on average much shallower, and even
less is known about this apparent ‘cusp/core-problem’ in early-type galaxies (see e.g.
Primack 2004 for an overview). Due to this lack of constraint, the dark matter profile
in the inner parts of early-type galaxies is often restricted to the assumption that
mass follows light, i.e., constant M/L.

A unique method to address the above issues is via the use of strong gravitational
lensing. In combination with stellar dynamics, strong gravitational lensing can si-
multaneously break the mass-anisotropy degeneracy, and determine the fraction and
shape of the dark matter distribution. The mass of a foreground galaxy bends the light
of a distant bright object behind it, resulting in multiple images. From the separation
and fluxes of the images the total mass distribution of the lens galaxy can be inferred.
The luminous distribution can be obtained from the surface brightness of the lens
galaxy, and dynamical models can then be constructed. Fitting the kinematics pre-
dicted by these models to the observed stellar kinematics places constraints on the
free parameters, including anisotropy, stellar M?/L and central dark matter slope γ.

Treu & Koopmans (2004, and references therein) have applied this approach to
several lensing systems, of which 0047-281 (Koopmans & Treu 2003) is the best
constrained case, with three spatially-resolved velocity dispersion measurements ex-
tending to about the effective radius of the lens galaxy. They measured the total mass
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within the Einstein radius by fitting a singular isothermal ellipsoid to the positions of
the quasar images. This total mass is then used to constrain the relative contribution
to the potential from a luminous and dark matter component, both of which they
assume to be a simple spherical distribution. They then compared the dispersions
predicted by the spherical Jeans equations, for an ad-hoc assumption of the velocity
anisotropy, with the observed dispersions. Based on a well constrained M?/L and an
upper limit on γ, they conclude that a significant amount of dark matter is present
in the inner parts of the lens galaxy, with a slope flatter than the light. However,
their results are limited by too few kinematic constraints (which leaves the anisotropy
degenerate), and by the use of a simple spherical dynamical model.

The use of non-spherical models is important, since triaxial dark matter distribu-
tions are predicted by the CDM paradigm (e.g., Jing & Suto 2002). A triaxial geometry
also seems necessary to explain the lens statistics (e.g., Oguri & Keeton 2004). Above
all, most lens galaxies are significantly flattened and so cannot be well-described by
spherical models. Non-spherical models provide a more realistic description of the
lens galaxy, but the increase in freedom requires also (significantly) more spatially re-
solved kinematic measurements to constrain them. Only very few of the known strong
gravitational lens systems are close enough to obtain such kinematic data, e.g., via
observations with integral-field spectrographs. One of them is the gravitational lens
system QSO 2237+0305, well-known as the Einstein Cross, with the lens galaxy at a
redshift zlens ∼ 0.04. We have observed the Einstein Cross with the integral-field spec-
trograph GMOS on the Gemini-North Telescope. We combine a detailed model of the
gravitational lens system with the light distribution inferred directly from the surface
brightness to construct realistic non-spherical dynamical models. We then fit these
models to the two-dimensional GMOS kinematics to investigate the mass distribution in
the inner parts of the lens galaxy, including a possible contribution from dark matter.

In Section 2 we briefly describe the Einstein Cross and we present the photomet-
ric and kinematic observations we use in Section 3 to construct a detailed lens and
dynamical model. In Section 4 we present our results. We discuss our findings in
Section 5 and summarize our conclusions in Section 6. We adopt the WMAP cosmo-
logical parameters for the Hubble constant, the matter density and the cosmological
constant, of H0 = 71 km s−1 Mpc−1, ΩM = 0.27 and ΩL = 0.73, respectively (Bennett et
al. 2003), although these parameters only have a small effect on the physical scales
of the lens galaxy due to its proximity.

2 OBSERVATIONS

2.1 THE EINSTEIN CROSS

The Einstein Cross is the well-known gravitational lens system QSO 2237+0305 or
PGC069457 (22h40m30.3s, +03◦ 21.′31′′). In this system, a distant quasar at zsource = 1.695
is lensed by the bulge of an early-type spiral at zlens = 0.0394, resulting in a cross of
four bright images separated by about 1.8′′.

Because the Einstein Cross has long been the closest strong gravitational lens
system known, it has been very well studied since its discovery by Huchra et al.
(1985). There is a wealth of ground- and space-based imaging data at all wavelengths
(e.g., Falco et al. 1996; Blanton, Turner & Wambsganss 1998; Agol, Jones & Blaes
2000; Dai et al. 2003). The resulting precise measurements of the positions and
relative fluxes of the quasar images can be used to construct a detailed lens model.
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In contrast, kinematic data of the lens galaxy is very scarce, with only one mea-
sured central stellar velocity dispersion (Foltz et al. 1992) and two H I rotation curve
measurements in the very outer parts (Barnes et al. 1999). There are several previous
integral-field studies of the Einstein Cross (TIGER: Fitte & Adam 1994; INTEGRAL: Me-
diavilla et al. 1998; CIRPASS: Metcalf et al. 2004). However, none of these studies were
concerned with the the stellar kinematics of the lens galaxy, but instead investigated
the quasar spectra.

2.2 IMAGING

Strong gravitational lensing occurs when a bright distant source like a quasar is
sufficiently aligned with a foreground massive object such as an early-type elliptical
galaxy. The lens galaxy then bends and magnifies the light from the quasar into
separate images. The more precise the positions and relative fluxes of the quasar
images are measured, the better the total (projected) mass distribution of the lens
galaxy is constrained. Here, we use the accurate positions from the website of the
CASTLES survey1 based on Hubble Space Telescope (HST) imaging. Although optical
flux ratios are given on this website, we use the radio fluxes provided by Falco et al.
(1996), because they are in general (much) less affected by differential extinction or
microlensing.

Instead of assuming a simple functional form for the light distribution as in most
previous studies, we construct in § 3.1 a density model that in projection reproduces
the surface brightness in detail. We measure the inclination needed to deproject the
surface brightness from the flattening of the disk in a WFPC2/F555W V -band image
(Fig. 1, left panel), retrieved from the HST-archive (1600 seconds; PI: Westphal). For
the actual construction of the density model we use a WFPC2/F814W I-band image
(Fig. 1, right panel) from the HST-archive (120 seconds; PI: Kochanek). We correct
the I-band image for extinction following Schlegel, Finkbeiner & Davis (1998), and we
convert to solar units using the WFPC2 calibration of Dolphin (2000), while assuming
an absolute I-band magnitude for the Sun of 4.08 mag (Table 2 of Binney & Merrifield
1998). From a de Vaucouleurs R1/4 profile fit to the I-band photometry in the inner 3′′

bulge region, we obtain an effective radius Re ∼ 6′′, which is consistent with previous
measurements (e.g., Racine 1991).

2.3 INTEGRAL-FIELD SPECTROSCOPY

Observations of the Einstein Cross lens system were carried out using the integral-
field unit of the GMOS-North spectrograph (Murray et al. 2003; Hook et al. 2004) on
July 17th and August 1st 2005 as part of the program GN-2005A-DD-7. The data were
obtained using the IFU two-slit mode that provides a field-of-view of 5′′×7′′. An array
of 1500 hexagonal lenslets, of which 500 are located 1′ away from the main field to be
used for sky subtraction, sets the 0.′′2 spatial sampling. Eight individual exposures of
1895 seconds each were obtained during the two nights, resulting in a total on-source
integration time of ∼4 hours. An offset of 0.′′3 was introduced between exposures to
avoid bad CCD regions or lost fibers. The R400-G5305 grating in combination with
the CaT-G0309 filter was used to cover a wavelength range between 7800-9200 Å
with a spectral resolution of 2.8 Å (FWHM).

1http://cfa-www.harvard.edu/castles/
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To perform the data reduction we use an updated version of the officially dis-
tributed Gemini IRAF2 package (B. Miller, priv. comm.). For each frame CuAr and
Quartz Halogen (QH) lamp exposures were taken before each target for wavelength
calibration and flat-fielding purposes. We bias subtract, flat-field and apply cosmic
ray rejection to each science frame before the extraction of the data. An accurate
flat-fielding is particularly important since at the observed wavelengths the data is
affected by fringing. We minimize the effect of fringes in the final data by using the
QH lamp exposures taken just before each science frame. For the cosmic ray rejection
we use the L.A. Cosmic algorithm by van Dokkum (2001). After the extraction, we use
the CuAr lamps closest to each science frame for wavelength calibration.

In order to check the range of fiber-to-fiber variations of the spectral resolution
of the instrument, we measure the width of the sky lines in each fiber. As expected,
the values on each fiber yield the nominal value (2.8 ± 0.2 Å). For the sky subtrac-
tion, given the small scatter in the instrumental resolution of each fiber, we generate
a single sky spectrum from all the sky fibers. This exercise, however, lead to sig-
nificant residuals in the sky subtracted science frames. In each science frame, the
data is grouped in blocks of science fibers surrounded by sky lenses. In an attempt
to minimize the residuals in the sky subtracted frame, we subtract the averaged sky
lenses closer to each group of science lenses. This approach leads to a significant
improvement in the final sky subtracted results. Additionally, before the merging
of the individual exposures, we homogenize each science frame for the fiber-to-fiber
resolution variations by convolving each individual spectrum to an instrumental reso-
lution of 3.2 Å (FWHM). We also resample the individual exposures, so that they have
the same starting value and sampling in wavelength. Before the merging process,
we interpolate each individual frame to a common grid taking into account the small
spatial offsets applied during the observations. We then sum the spectra sharing the
same position in the sky to produce the final merged datacube.

3 ANALYSIS

We determine the intrinsic light distribution of the lens galaxy from its surface bright-
ness, we fit a lens model to the quasar images, and we extract the stellar velocity and
dispersion maps of the inner parts of the lens galaxy from the integral-field spectro-
scopic observations. These are then the ingredients for constructing an axisymmetric
dynamical model of the lens galaxy.

3.1 LIGHT DISTRIBUTION

We construct a stellar luminosity density model of the lens galaxy based on its ob-
served surface brightness with HST. For this we use the Multi-Gaussian Expansion
(MGE) parametrization by Emsellem, Monnet & Bacon (1994), which describes the
observed surface brightness as a sum of Gaussians. Even though Gaussians do not
form a complete set of functions, in general the photometry is accurately reproduced,
including ellipticity variations and non-elliptical isophotes. In Fig. 1 we show MGE
fits to the V -band and I-band HST images, obtained with the software of Cappellari
(2002), while masking the quasar images. Although the adopted constant-PA model

2IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the As-
sociation of Universities for Research in Astronomy, Inc., under cooperative agreement with the National
Science Foundation.
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FIGURE 1 — The surface brightness of the lens galaxy in the Einstein Cross as observed
with HST. Left panel: the contours of the WFPC2/F555W V -band image reveal clearly the
bulge, spiral arms and bar embedded in the large-scale disk of this early-type spiral galaxy.
The ellipticity measured from the MGE fit (solid contours) is used to estimate the inclination.
Right panel: the central 8′′×8′′of the WFPC2/F814W I-band image, of which the MGE fit
(solid contours) is used to construct the stellar density model of the lens galaxy. We use the
I-band image instead of the longer exposed V -band image as it tracers better the old stellar
population and is less sensitive to extinction and reddening. The four quasar images are
masked out during the MGE fit. The contours are in steps of 0.5 mag/arcsec2 and the WFPC
images are rotated such that North is up and East is to the left.

cannot reproduce the bar and spiral arms, it provides a very good description of the
disk in the outer parts (left panel) and reproduces well the bulge in the inner parts
(right panel).

The position angle (PA) of the major axis of the MGE isophotes (with respect to
North through East) is ∼ 70◦. This is consistent with measurements by Yee (1988),
who found PA∼ 67◦ for the axis through quasar images C and D, bracketed by PA∼ 77◦

for the outer disk and PA∼ 39◦ for the bar (see also Fig. 1 of Trott & Webster 2002).
The MGE-parametrization of the surface brightness has the advantage that the

deprojection can be performed analytically once the inclination i is known (Monnet,
Bacon & Emsellem 1992). From the MGE fit to the V -band surface brightness of the
lens galaxy (left panel of Fig. 1), we find that Gaussian components as flat as q ′ = 0.4
are required for an acceptable fit. This sets a lower limit to the inclination of i & 66◦,
which is above the value of i ∼ 60◦ found by Irwin et al. (1989). Assuming a lower
limit for the intrinsic flattening of the disk of 0.15 (e.g., Lambas, Maddox & Loveday
1992), we obtain an inclination of i = 68◦.

Given this inclination, we deproject the I-band MGE surface brightness fit, to
obtain the axisymmetric stellar luminosity density j?(R, θ) in the meridional plane of
the lens galaxy, still expressed as a sum of Gaussians. The intrinsic flattening of the
embedded bulge component is around 0.64.
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FIGURE 2 — The surface mass density from the gravitational lens model of the Einstein Cross
(solid contours). The scale-free lens model fits the positions and relative fluxes of the quasar
images, indicated by the filled circles. Superposed are the (dashed) contours of an MGE fit. As
in Fig. 1, the contours are in steps of 0.5 mag/arcsec2, and North is up and East is to the left.

3.2 LENS MODEL

We use the algorithm of Evans & Witt (2003) to construct a lens model that accurately
fits the (optical) positions and relative (radio) fluxes of the four quasar images (§ 2.2)
in the Einstein Cross. The (projected) potential of the lens galaxy is assumed to be a
scale-free function Φlens(R

′, θ′) = R′βF (θ′) of the polar coordinates R′ and θ′ in the lens
sky-plane, with 0 < β < 2 for realistic models. The angular part F (θ ′) is expanded as a
Fourier series

F (θ′) =
1

2
a0 +

∞
∑

m=1

[cm cos(mθ′) + sm sin(mθ′)]. (3.1)

We consider the models with β = 1 since they are interesting in two ways. These mod-
els have an everywhere flat rotation curve, and hence are projections of axisymmetric
and triaxial generalizations of the familiar isothermal sphere. Moreover, as shown by
Evans & Witt (2003), the lens model that best fits the positions and relative fluxes of
the quasar images follows by straightforward matrix inversion.

The positions (R′
i, θ

′
i) of the images are related to the position (ξ ′, η′) of the quasar

by the lens equation (e.g., Schneider, Ehlers & Falco 1992), which for β = 1 reduces to

ξ′ = [R′
i − F (θ′i)] cos θ

′
i + F ′(θ′i) sin θ′i, (3.2)

η′ = [R′
i − F (θ′i)] sin θ

′
i − F ′(θ′i) cos θ′i. (3.3)
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The flux ratios of the images follow from their magnifications, for β = 1 given by

µi = 1 − [F (θ′i) + F ′′(θ′i)]/R
′
i. (3.4)

Both equations are linear in the free parameters, i.e., the Fourier coefficients (cm, sm)
and the quasar position (ξ ′, η′), so that the solution indeed follows by matrix inversion.

The Einstein Cross consists of four quasar images, resulting in 8 constraints from
their positions and 3 from their flux ratios, so that in total we can constrain up to 11
free parameters. Although we can in principle fit the constraints exactly, we take into
account the observational errors in the constraints (including for the positions the
uncertainty in the measurement of the center of the lens galaxy). From the models
that fit the constraints within the observational errors, we choose the solution with the
smallest Fourier components higher than m = 2, as it looks most like a real galaxy.
The resulting 11 best-fit parameters3 are ξ′ = 0.0696, η′ = −0.0133 for the source
position with respect to the center of the lens galaxy, and c0 = 1.7746, c2 = −0.04223,
s2 = 0.0428, c3 = 0.0004, s3 = −0.0014, c4 = 0.0008, s4 = 0.0009, c5 = −0.0001, s5 = 0.0007,
all in arcseconds.

The Fourier coefficients c1 and s1 are set to zero as they do not contribute to the
inferred surface mass density, which follows from Poisson’s equation as

Σlens(R
′, θ′) = Σcrit

F (θ′) + F ′′(θ′)
2R′ , with Σcrit =

c2Ds

4πGDl Dls
, (3.5)

where Dl, Ds and Dls are the (angular diameter) distance to the lens galaxy, the quasar
source and the distance from lens to source, respectively. The contours of Σlens(R

′, θ′)
for the best-fit lens model of the Einstein Cross are shown in Fig. 2.

The scale-free β = 1 lens models have the further advantage that it is straightfor-
ward to compute the mass within the critical curve, which is given by

Rcrit(θ
′) = F (θ′) + F ′′(θ′), (3.6)

with Rcrit in arcseconds. From the area within this critical curve, Acrit, it follows that

Mcrit = Σcrit Acrit (Dl π/648000)
2 , (3.7)

where the factor in parentheses is the conversion from arcsec to pc for a given distance
to the lens galaxy Dl in pc. The critical area Acrit (in arcsec2) can also be computed
directly from the Fourier coefficients (cf. eq. 31 of Evans & Witt 20034)

Acrit =
1

4
a2

0 +
1

2

∞
∑

m=1

(m2 − 1)2(c2m + s2m). (3.8)

The critical mass Mcrit also provides a good approximation of the Einstein mass
ME within the Einstein radius RE, which can be obtained from the critical area as
RE =

√

Acrit/π (in arcseconds), and describes the circle that approximately traces the
positions of the quasar images.

3Although based on the same data and method, these values are slightly different than obtained by
Evans & Witt (2003) due different assumptions on the errors.

4Their expression misses the factor half in front of the summation.
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FIGURE 3 — Spectrum from the center of the lens galaxy, showing the Ca II triplet region fitted
by a composite of stellar population models. The sky spectrum is shown at the bottom. The
horizontal bar indicates the region included in the fit to obtain the stellar kinematics.

3.3 VELOCITY AND DISPERSION FIELDS

An accurate measurement of the mean line-of-sight velocities typically requires a
signal-to-noise (S/N) ratio of 20 to match the stellar absorption lines in each spec-
trum. Stellar velocity dispersion measurements require higher S/N ratios to achieve
the same accuracy. To measure reliable stellar kinematics we co-add the spectra us-
ing the adaptive spatial 2D-binning scheme of Cappellari & Copin (2003) to obtain in
each resulting Voronoi bin a minimum S/N of ∼40, resulting in a total of 118 bins.

We measure the stellar kinematics of the lens galaxy using the penalized pixel-
fitting algorithm of Cappellari & Emsellem (2004). We adopt the single stellar pop-
ulation (SSP) models of Vazdekis et al. (2003) as stellar templates. A non-negative
linear combination of these templates is convolved with a Gaussian line-of-sight ve-
locity distribution to obtain the mean line-of-sight velocity and velocity dispersion of
each (binned) spectra in our merged datacube.

Fig. 3 shows the central spectrum of the lens galaxy with the best-fit SSP template
(smooth line). We plot the typical sky spectrum below to indicate the regions where
a possible bad sky subtraction has the strongest effect. This shows that an accurate
sky subtraction is crucial given that many of the sky lines fall into the Ca II triplet
absorption lines, and therefore affect our measurement of the mean line-of-sight ve-
locity and velocity dispersion. This effect is of course stronger at larger radii in the
lens galaxy, where the relative contribution from the sky is more significant.

The resulting stellar velocity V and dispersion σ fields are shown in Fig. 4, with
superposed contours of the reconstructed image (obtained by collapsing the datacube
in the spectral direction). The velocity field shows clear regular rotation around the
projected minor axis of the bulge, with amplitude up to 100 km s−1. Although the ve-
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FIGURE 4 — Mean velocity and velocity dispersion field of the lens galaxy in the Einstein Cross
as measured from observations with the integral-field spectrograph GMOS on Gemini-North.
The overlayed contours of the reconstructed image show the positions of the quasar images,
which affect the kinematics only very locally. The velocity field shows clear and regular
rotation around the (vertically aligned) short-axis of the bulge. The velocity dispersion is fairly
constant across the field, except for the region towards the upper-right, where systematic
effects cause the dispersion to be overestimated. (See p. 256 for a color version of this figure.)

locity field is less well determined at the locations of the quasar images, most of their
contribution has been efficiently removed during the extraction of the stellar kinemat-
ics. The dispersion field is more noisy, and is affected by systematics, in particular
in the upper-right part. This is likely caused by the dominating sky lines in this re-
gion, which shift into the Ca II triplet absorption lines as a result of the corresponding
positive mean velocity. The central dispersion measurements in between the quasar
images, however, are robust around a value of 170 km s−1 (see § 5). We expect that
a more detailed and careful treatment of the sky background will improve our stellar
dispersion measurements, and we will investigate this in the near future. Because
of the preliminary nature of the kinematic data, we limit the subsequent analysis to
relatively simple axisymmetric dynamical models.

3.4 AXISYMMETRIC DYNAMICAL MODEL

For an axisymmetric model with a stellar distribution function that depends on only
two integrals of motion f = f(E,Lz), with E the energy and Lz the angular momentum
component parallel to the symmetry z-axis, the second velocity moments are uniquely
defined (e.g., Lynden-Bell 1962; Hunter 1977). They can be computed by solving the
Jeans equations for a given potential and stellar density. For a given inclination i,
we then obtain the line-of-sight projected second velocity moment VRMS =

√
V 2 + σ2,

which can be compared with the value obtained from the observed mean line-of-sight
velocity V and velocity dispersion σ.

If the potential and density are described by an MGE-parametrization, the calcula-
tion of VRMS reduces to a single one-dimensional integral via eqs (61–63) of Emsellem
et al. (1994), with correction for a typographical error given in Cappellari et al. (2005).
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i log Σ0 log σ′ q′

(M� pc−2) (arcsec)
1 4.936 -1.779 0.670
2 4.971 -1.285 0.640
3 4.518 -0.915 0.650
4 4.145 -0.569 0.664
5 3.795 -0.230 0.663
6 3.460 0.105 0.667
7 3.133 0.445 0.667
8 2.836 0.814 0.665
9 2.623 1.376 0.670

TABLE 1 — The parameters of the nine Gaussians in the MGE fit to the lens model of the
Einstein Cross. The second column gives the central surface mass density (in M� pc−2) of
each Gaussian component, the third column the dispersion (in arcsec) along the major axis
and the fourth column the observed flattening.

i log SB0 log σ′ q′

(L� pc−2) (arcsec)
1 4.329 -3.601 0.700
2 3.935 -2.168 0.700
3 3.606 -1.444 0.700
4 3.293 -0.550 0.700
5 3.005 -0.098 0.700
6 2.845 0.530 0.700
7 2.261 1.352 0.700
8 2.160 2.111 0.414
9 1.334 2.613 0.700

TABLE 2 — The parameters of the nine Gaussians in the MGE-fit to the HST/WFPC2/F814W
I-band image of the surface brightness of the lens galaxy in the Einstein Cross. The sec-
ond column gives the central surface brightness (in L� pc−2) of each Gaussian component,
the third column the dispersion (in arcsec) along the major axis and the fourth column the
observed flattening.

The MGE-parametrization of the lens potential follows from an MGE fit to the surface
mass density Σ(R′, θ′) (3.5) of the lens model, shown by the dashed contours in Fig. 2
and with the corresponding parameters given in Table 1. Deprojection of this MGE
fit provides the lens mass density from which the lens potential follows by solving
Poisson’s equation. As we saw in § 3.1, the stellar luminosity density j?(R, θ) follows
from the MGE fit to the surface brightness with the corresponding parameters given
in Table 2. With the potential and density known, the only free parameter left is the
inclination, for which we assume the value of i = 68◦, derived above from the ellipticity
of the outer disk. When comparing the VRMS predicted by the Jeans model with the
observations, we also investigate a possible mass-scaling in the lens potential needed
to better match the data.

Alternatively, we can build an axisymmetric Jeans model with the potential de-
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FIGURE 5 — Two-integral axisymmetric Jeans model of the lens galaxy. Left panel: map of the
second velocity moment as obtained from the observed velocity and dispersion field, where
the region with systematic effects in the dispersion is excluded. Right panel: map of the
second velocity moment from the best-fit Jeans model, based on the lens potential and the
axisymmetric luminosity density inferred from the surface brightness.

duced from the stellar luminosity density j?(R, θ) instead of using the lens potential.
To this end we multiply j?(R, θ) with a constant mass-to-light ratio M/L to obtain the
mass density, from which we then find the potential via Poisson’s equation. In this
case we have two free parameters, i and M/L. In what follows, we refer to these ax-
isymmetric models as stellar Jeans models, whereas we call the above models, based
on the lens potential, lens Jeans models.

4 RESULTS

In the left panel of Fig. 5, we show the second velocity moment VRMS map, derived
from the observed velocity and dispersion field (Fig. 4). We have excluded the region
that is significantly affected by systematic effects in σ (see § 3.3), leaving 66 bins out of
the total of 118 bins. The right panel shows VRMS as predicted by a lens Jeans model
[i.e., using the (scaled) potential from the lens model] at the measured inclination i =
68◦. Across the relatively small field-of-view covered by the GMOS data, the predicted
variation in VRMS is small and of the order of the measurement uncertainties, so that
there is only a weak indication for the ‘butterfly’ shape in the data. However, the
central measurements are robust and can be used to reliably set the scaling.

We consider the region within the quasar images by selecting all bins within a
radius that is half of the image separation of 1.8′′, i.e., all bins within the Einstein
radius RE = 0.90′′. We find that the predictions of the lens Jeans model provide an
acceptable fit to the resulting 15 dispersion measurements, although the best fit is
obtained if the lens potential of the Jeans model is scaled by a factor 1.10. The best-fit
stellar Jeans model predicts a similar butterfly shape for the projected second velocity
moment. In this case the potential is inferred from the surface brightness, assuming
a constant mass-to-light ratio to convert from light to mass (§ 3.4). We obtain a best-fit
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FIGURE 6 — The surface mass density profile along the major axis of the lens galaxy. The
solid line is the assumed power-law slope of the lens model. The dashed line shows the profile
of the MGE fit to the I-band surface brightness. The solid and dashed vertical lines indicate
respectively the Einstein radius RE = 0.90′′ and the effective radius Re ∼ 6′′, obtained by fitting
a R1/4 profile to the I-band photometry in the inner 3′′ bulge region.

I-band mass-to-light ratio of M/L = 3.6 M�/L�.
We compare the above best-fits by calculating the mass within the region enclosed

by the critical curve Rcrit given by eq. (3.5). This critical mass is nearly identical to the
mass within the Einstein radius, which is the region of the dispersion field to which
we fitted the Jeans models. For the best-fit lens Jeans model we obtain a mass of
∼ 1.76× 1010 M�. After multiplying the MGE surface brightness model with the best-fit
M/L, we find for the best-fit stellar Jeans model a very similar mass of ∼ 1.75×1010 M�.
This does not mean that no dark matter is present in this region, as in both cases they
are total masses (and total M/L), which in addition to the stellar mass may include a
possible dark matter contribution.

At the same time, it is remarkable how similar the independent MGE fits of the
surface mass density of the lens model (Fig. 2) and of the surface brightness (Fig. 1)
are, and hence also their associated potentials. Both the orientation and the flattening
(see fourth column of Tables 1 and 2) are comparable, suggesting that the shape of
the total and stellar mass distributions are closely related. The radial profiles, shown
in Fig. 6, cannot be compared in a similar way, since we assumed the power-law
profile for the lens model as it is only weakly constrained by the lensing geometry.
The critical mass, however, is not affected by our assumption of the power-law profile
for the lens model, because it is almost independent of the lens model (e.g., Kochanek
1991; Evans & Witt 2001). The profile of the stellar dispersion can provide these
constraints (e.g., Treu & Koopmans 2004). Unfortunately, due to the limited radial
coverage, but mainly due to measurement uncertainties, this is not possible with the
current preliminary velocity and dispersion field (but see § 6 below).

We can also compute the critical mass directly from the lens model via eq. (3.7). We
find a mass of ∼ 1.62× 1010 M�, which is about 8% lower than the critical masses from
the best-fit lens and stellar Jeans model, but within the measurement uncertainties.
Errors of a few per cent are typically assigned to critical mass measurements directly
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from the lens model, although Ferreras, Saha & Williams (2005) found errors up to
10% by considering a large ensemble of possible lens models. Still, the errors in
the critical masses from the Jeans models are expected to dominate. By comparing
M/L determinations from Jeans models with those from three-integral Schwarzschild
models fitted to high-quality integral-field kinematics, Cappellari et al. (2005) found
as a realistic lower limit on the uncertainty in these determinations a value of 6%. The
15 dispersion measurements within RE = 0.90′′ have a mean value of 167 km s−1, with
corresponding RMS value of 10 km s−1, i.e., on average a 6% error, which translates
into an error of about 12% in mass. Hence, we estimate a typical error of 13% in the
crititcal mass estimates from the Jeans models. This shows that the difference in the
critical mass determinations from the lens model and from Jeans models is within
the expected uncertainties.

We now add the VRMS measurements outside RE, but still excluding the systemati-
cally affected upper-right region (left panel of Fig. 4). When we fit these 66 dispersion
measurements with the lens and stellar Jeans models, we find again very similar val-
ues for the critical masses, but about 10% higher than before and nearly 20% higher
than the critical mass directly from the lens model. The mean velocity dispersion
of 166 km s−1 is nearly identical to that of the 15 central measurements. The cor-
responding RMS value increases to 15 km s−1, resulting in an error on the mass of
almost 20%. Although the difference between the various critical mass estimates is
within the estimated uncertainties, we expect that the critical mass from the Jeans
models is overestimated, mainly due to remaining systematics in the data, but also
the model assumptions can have an effect (see the discussion below).

5 DISCUSSION

We find a central stellar velocity dispersion of 167 ± 10 km s−1, based on 15 measure-
ments within the Einstein radius RE = 0.90′′. The only other direct (single) measure-
ment of the stellar dispersion is 215 ± 30 km s−1 by Foltz et al. (1992). For a singular
isothermal sphere lens model, we can use the relation ∆θ = 8π(σSIS/c)

2Dls/Ds (e.g.,
Kochanek 2000) with a separation ∆θ ∼ 1.8′′ of the four quasar images, to obtain a
simple estimate for the dispersion of σSIS ∼ 180 km s−1. Taking into account aper-
ture correction and a range in velocity anisotropy, van de Ven, van Dokkum & Franx
(2003) converted this to a central stellar dispersion of 168 ± 17 km s−1. The King and
de Vaucouleurs models of Kent & Falco (1988) predict a similar value of ∼ 166 km s−1,
and also Barnes et al. (1999) find a value of 165 ± 23 km s−1 based on their two H I
rotation curve measurements. All these measurements are lower than that of Foltz
et al. (1992), but in perfect agreement with ours. Their optical long-slit measurement
might be affected by the very bright quasar images, whereas our measurements are
in the less-affected Ca II triplet region and are spatially resolved, allowing for a clean
separation of the quasar images.

A large variety of different lens models have been constructed for the Einstein
Cross, most of which fit the positions of the quasar images but not their relative flux
ratios. Although they predict significantly different flux ratios, the mass ME within
the Einstein radius RE = 0.90′′ is expected to be similar, because, as mentioned before,
it is insensitive to the details of the lens model. In Table 3, we compare measurements
of ME from our analysis with values obtained from the literature, taking into account
the inverse scaling with the Hubble constant. The difference between the circular
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reference ME (1010 M�)
scale-free β = 1 lens model 1.60
best-fit lens Jeans model 1.74
best-fit stellar Jeans model 1.73
Rix, Schneider & Bahcall (1992) 1.52
Wambsganss & Paczýnski (1994) 1.56
Chae, Turnshek & Kehersonsky (1998) 1.58
Schmidt, Webster & Lewis (1998) 1.58
Trott & Webster (2002) 1.54
Ferreras, Saha & Williams (2005) 1.87

TABLE 3 — Measurements of the Einstein mass ME, i.e., the projected mass within the Ein-
stein radius, for the Einstein Cross. The first four measurements follow from our analysis,
the remaining are taken from the literature, taking into account an inverse scaling with the
Hubble constant, for which we assume H0 = 71km s−1 Mpc−1.

area within RE and the non-circular critical area causes a 1% decrease in ME with
respect to critical mass measurements we obtained in § 4. Given the typical error of
a few per cent in the determination of ME from the lens models, we conclude that the
measurement from our lens model, that does fit the (radio) flux ratios, is consistent
with all previous measurements. The one exception is the determination by Ferreras
et al. (2005), who find a value higher than all others.

Although our two ME values from the Jeans models fitted to the GMOS data are on
average somewhat higher, they are safely within the uncertainties, given the estimated
13% error on these mass determinations. Part of the offset might be the result of our
model assumptions of axisymmetry and two-integral distribution functions. Although
the bar is clearly visible in the large-scale V -band image in Fig. 1, its effect in the
inner bulge-dominated region is minimal, with an estimated mass contribution of
only 5 per cent (Schmidt, Webster & Lewis 1998). This is supported by the observed
velocity field, which shows regular rotation around the minor axis of the bulge. The
two-integral assumption implies velocity isotropy in the meridional plane, which can
have a direct effect on the mass estimate. Nevertheless, Cappellari et al. (2005) found
that M/L determinations from axisymmetric two-integral Jeans models seem to be
consistent with those obtained from three-integral Schwarzschild models. The latter
models have full freedom in velocity anisotropy, but consequently more extensive
and accurate kinematic observational constraints are required. When we use the
(M/L) − σ relation derived by these authors from Schwarzschild models, we find for
our measured central dispersion of 167 km s−1 a predicted I-band M/L ∼ 3.3 M�/L�.
This is just 10% lower than we found from our stellar Jeans model, and implies a
critical mass of ∼ 1.6 × 1010 M�, equal to that measured directly from the lens model.

6 CONCLUSIONS

We have studied the total mass distribution in the inner parts of the lens galaxy in
the Einstein Cross by fitting axisymmetric models based on an accurate lens model
and a realistic luminosity density to spatially resolved kinematics obtained via ob-
servations with the integral-field spectrograph GMOS. We have found that the stellar
velocity dispersion measurements have an average value of 167 ± 10 km s−1 within the
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Einstein radius RE = 0.90′′, and are in agreement with previous predictions from lens
models. The constructed scale-free lens model fits the positions as well as relative (ra-
dio) fluxes of the quasar images, and provides an Einstein mass ME = 1.60 × 1010 M�
consistent with previous measurements.

We have obtained the luminosity density by deprojection of the surface brightness,
and used it to construct axisymmetric two-integral Jeans models, which we fitted to
the two-dimensional kinematic observations. Using the potential inferred from the
lens model or from the luminosity density for a constant mass-to-light ratio M/L, we
have found that in both cases the Einstein mass of the best-fit Jeans model is consis-
tent with that of the lens model within the measurement uncertainties. The best-fit
I-band M/L = 3.6 M�/L� is consistent with the prediction from the M/L − σ relation
of Cappellari et al. (2005). Moreover, we have found that the ME values from both
best-fit Jeans models are the same within 1% and that the shape of the density in-
ferred from the lens model and from the surface brightness is similar, suggesting that
mass and light are similarly distributed. However, further analysis of the kinematic
data, with in particular a more careful treatment of the sky background, is needed to
also establish the radial profile of the mass distribution, before firm conclusions on
the total mass distribution can be drawn.

Our preliminary study has shown that with integral-field spectrographs like GMOS
it is possible, although very challenging, to obtain reliable spatially resolved kinemat-
ics of the lens galaxies in nearby gravitational lens systems, allowing for the unique
combination of lensing and stellar dynamics to constrain the mass distribution. An
even better candidate than the Einstein Cross for this kind of study is the newly-
discovered gravitational lens system ESO325+G004 (Smith et al. 2005). The system
is closer (z = 0.0345), the possible contamination from the faint quasar images is ex-
pected to be minimal, and above all, the lens galaxy is a bright giant elliptical galaxy.
Hence, it becomes even feasible to measure absorption line strengths to obtain an
independent estimate of the stellar mass-to-light ratio from the stellar population
analysis. By improving our kinematic data on the Einstein Cross, as well as by ob-
taining integral-field spectroscopic observations on objects such as ESO325+G004,
we expect to place constraints on the dark matter distribution in the inner parts a
early-type galaxies, without being limited by ad-hoc assumptions on the geometry or
velocity anisotropy.
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CHAPTER 7

THE FUNDAMENTAL PLANE AND THE EVOLUTION OF
THE MASS-TO-LIGHT RATIO OF EARLY-TYPE FIELD

GALAXIES UP TO z ∼ 1

ABSTRACT
We analyze the Fundamental Plane (FP) of 26 strong gravitational lens galaxies
with redshifts up to z ∼ 1, using tabulated data from Kochanek et al. (2000) and
Rusin et al. (2003). The lens galaxies effectively form a mass-selected sample of
early-type galaxies in environments of relatively low density. We analyze the FP and
its evolution in the restframe Johnson B and Gunn r bands. Assuming that early-
type galaxies are a homologous family, the FP then provides a direct measurement
of the M/L ratio evolution.
If we assume that the M/L ratios of field early-type galaxies evolve as power-laws,
we find for the lens galaxies an evolution rate d log(M/L)/dz of −0.62± 0.13 in rest-
frame B and −0.47±0.11 in restframe Gunn r for a flat cosmology with ΩM = 0.3 and
ΩΛ = 0.7. For a Salpeter (1955) Initial Mass Function and Solar metallicity these
results correspond to mean stellar formation redshifts of 〈z?〉 = 1.8+1.4

−0.5 and 1.9+1.9
−0.6

respectively. After correction for maximum progenitor bias, van Dokkum & Franx
(2001) find a mean stellar formation redshift for cluster galaxies of 〈zcl

? 〉 = 2.0+0.3
−0.2,

which is not significantly different from that found for the lens galaxies. However,
if we impose the constraint that lens and cluster galaxies that are of the same age
have equal M/L ratios and we do not correct for progenitor bias, the difference is
significant and we find that the stellar populations of the lens galaxies are 10–15 %
younger than those of the cluster galaxies.
We find that both the M/L ratios as well as the restframe colors of the lens galax-
ies show significant scatter. About half of the lens galaxies are consistent with an
old cluster-like stellar populations, but the other galaxies are bluer and best fit
by single burst models with younger stellar formation redshifts as low as z? ∼ 1.
Moreover, the scatter in color is correlated with the scatter in M/L ratio. We in-
terpret this as evidence of a significant age spread among the stellar populations
of lens galaxies, whereas the ages of the stellar populations of the cluster galaxies
are well approximated by a single formation epoch.

G. van de Ven, P.G. van Dokkum, M. Franx
MNRAS, 344, 924–934 (2003)
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1 INTRODUCTION

ONE of the central problems in astronomy is that of galaxy formation and evolu-
tion: when were the visible parts of galaxies assembled and when were the stars

formed? The merging of galaxies leads to changes in their masses, and stellar evolu-
tion changes their luminosities. The evolution of the mass-to-light (M/L) ratio relates
the mass and luminosity evolution.

Galaxy mass measurements are notoriously difficult. Fortunately, empirical rela-
tions such as the Tully-Fisher relation for spiral galaxies (Tully & Fisher 1977) and
the Fundamental Plane (FP) for early-type galaxies (Dressler et al. 1987; Djorgovski
& Davis 1987) can provide us with information on the masses and mass evolution of
galaxies. The FP is a tight relation between the structural parameters and velocity
dispersion, which under the assumption of homology implies that M/L ∝ M

1

4 with
low scatter (Faber et al. 1987). Due to stellar evolution the M/L ratio of a stellar
population changes with redshift, and hence also the FP will change. The redshift
evolution of the intercept of the FP is proportional to the evolution of the mean M/L
ratio. Hence, the tightness of the FP relation makes it a very sensitive indicator of the
mean age of the stellar population of early-type galaxies (van Dokkum & Franx 1996).

For cluster galaxies, the M/L ratio evolves very slowly, indicating that the stars
were formed at redshifts z & 3 (e.g., Kelson et al. 1997; Bender et al. 1998; van
Dokkum et al. 1998). Current semi-analytical hierarchical models place the assembly
time of typical early-type galaxies at much lower redshifts (e.g., Kauffmann 1996;
Kauffmann & Charlot 1998; Diaferio et al. 2001). However, in hierarchical galaxy
formation models the assembly time and star formation epoch are strongly dependent
on the environment, with cluster early-type galaxies forming much earlier than those
in the general field (e.g., Kauffmann 1996). Hence cluster early-type galaxies do not
provide the most stringent tests of these models. Moreover, the measured evolution
of early-type galaxies may underestimate the true evolution because of the effects of
morphological evolution. If many early-type galaxies evolved from late-type galaxies
at z . 1, the sample of early-type galaxies at high redshift is only a subset of all
progenitors of present-day early-type galaxies. This would lead us to underestimate
the luminosity evolution, and hence overestimate the stellar formation redshift (see
van Dokkum & Franx 2001, hereafter vDF01).

Recent studies have started to explore the FP and M/L ratios of high redshift
early-type galaxies in the general field. Interestingly, the FP of field early-type galaxies
appears to be quite similar to that of cluster early-type galaxies out to z ≈ 0.55 (Treu et
al. 2001; van Dokkum et al. 2001), in apparent conflict with current semi-analytical
models (see van Dokkum et al. 2001). However, there are indications for a significant
offset between the two populations at higher redshift (Treu et al. 2002). Kochanek et
al. (2000, hereafter K00) analyzed the FP and color evolution of strong gravitational
lens galaxies up to z ∼ 1. The lensing cross section is dominated by galaxies with
high central velocity dispersions, and the lens galaxies effectively provide a mass-
selected sample of field early-type galaxies which can be compared to optically selected
samples of field and cluster galaxies. The mass-selection is important because it limits
Malmquist-type biases, and it is much less sensitive to selection effects caused by
morphological evolution. K00 find that the stars constituting the lens galaxies must
have formed at z & 2 for a flat cosmology with ΩM = 0.3 and ΩΛ = 0.7, and conclude
that there are no significant differences between field and cluster early-type galaxies.
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K00 analyze the evolution of the FP in the observed photometric bands, and their
modeling necessarily includes the large variation in observed magnitudes and colors
due to redshift (the “K”-correction). This complicates the measurement of the smaller
effect due to evolution of (the stellar populations of) the lens galaxies. Rusin et al.
(2003, hereafter R03) study the same sample of lens galaxies, with recent photometric
observations included. They convert the data from observed filters into magnitudes
in standard restframe bands, so that the evolution of the M/L ratio that follows from
the FP (under the usual assumption that early-type galaxies are a homologous family)
can be investigated instead of the evolution within the FP. This clarifies the analysis
and allows for direct comparison of the results with those of other FP studies. From
their M/L evolution analysis R03 find a (2σ) lower limit z > 1.8 for the formation of
the stars in lens galaxies. Although this limit is more precise, it is similar to that
of K00. Hence, R03 also conclude that the evolution measurements favor old stellar
populations among field galaxies, like those of cluster galaxies, and argue against
significant episodes of star formation at z < 1, as predicted by the semi-analytical
hierarchical models.

For the analysis in this chapter we use the tabulated data of K00, extended with
the recent photometric measurements as given by R03. We convert the observed sur-
face brightnesses and colors to the restframe Johnson B and Gunn r bands. Our
transformation to restframe differs from that of R03. In both approaches the mod-
eled color between restframe band and observed filter is used to convert the observed
magnitude into an estimate of the restframe magnitude. R03 obtain the modeled color
for a given spectral energy distribution, whereas we use the observed color between
a pair of filters to interpolate between the modeled colors for four different spectral
types (Fig. 1). Moreover, while R03 use the (weighted) contribution of all observed
magnitudes to determine the restframe magnitude, we select the best one with small
observational error and filter close to the (redshifted) restframe band. Hence, the
model dependence of our correction is small and we exclude observed magnitudes
with large uncertainties, minimizing the error in the resulting restframe magnitude.
We analyze the M/L evolution of the lens galaxies and compare our results with those
of R03 and with results from previous studies. Additionally, we test whether age dif-
ferences between the lens galaxies are significant. To this end, we study the scatter in
both the M/L evolution and the restframe colors of the lens galaxies, and investigate
whether the deviations are correlated.

This chapter is organized as follows. In Section 2 we determine the FP parameters,
using the lensing geometry to estimate the velocity dispersion. The transformation
from observed to restframe bands is described in Section 3. In Section 4, we con-
struct the FP of the lens galaxies and present the M/L evolution derived from the FP.
We estimate the age of the stellar populations of the lens galaxies by fitting single burst
models to the M/L evolution in Section 5. In Section 6 we study the colors of the lens
galaxies. The results are summarized and discussed in Section 7. Unless stated oth-
erwise we assume H0 = 50 km s−1 Mpc−1 and a flat cosmology with ΩM = 0.3 and ΩΛ =
0.7. We note that our results are not dependent on the value of the Hubble constant.

2 FP PARAMETERS

The study of the FP of strong gravitational lens galaxies differs in two important as-
pects from that of cluster galaxies. First, the lens galaxies are individual galaxies
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Name Lens z σc σc? re µe,Bz
µe,rz

(km s−1) (km s−1) (kpc) (mag arcsec−2)
0047-2808 0.49 254±26 229±15 7.7±0.7 21.79±0.16 21.11±0.28
Q0142-100 0.49 224±22 4.3±0.2 20.42±0.05 19.64±0.05
MG0414+0534 0.96 303±30 8.6±1.6 21.07±0.17 19.97±0.16
B0712+472 0.41 181±18 2.8±0.4 20.67±0.17 19.60±0.16
RXJ0911+0551 0.77 260±26 7.0±0.6 21.74±0.17 20.75±0.14
FBQ0951+2635 0.24 128±13 0.9±0.2 19.82±0.25 19.05±0.25
BRI0952-0115 0.41 117±12 0.8±0.2 20.00±0.21 18.61±0.20
Q0957+561 0.36 431±43 305±11 14.1±1.3 22.48±0.12 21.45±0.11
LBQS1009-0252 0.88 198±21 1.9±0.3 19.81±0.14 18.90±0.13
Q1017-207 0.78 151±16 3.1±0.1 21.28±0.49 20.28±0.07
FSC10214+4724 0.75 241±26 11.8±5.2 22.97±0.44 22.03±0.56
B1030+074 0.60 218±22 4.2±0.6 21.38±0.14 20.14±0.25
HE1104-1805 0.73 316±32 6.4±1.9 21.34±0.33 20.22±0.30
PG1115+080 0.31 210±21 288±27 3.0±0.1 21.23±0.06 20.01±0.05
HST14113+5211 0.46 190±19 3.8±0.4 21.70±0.09 20.72±0.11
HST14176+5226 0.81 292±29 230±14 7.5±0.9 20.98±0.15 20.35±0.12
B1422+231 0.34 160±16 2.1±0.6 21.18±0.25 19.93±0.24
SBS1520+530 0.72 220±22 3.5±0.3 20.13±0.17 19.36±0.08
MG1549+3047 0.11 188±19 242±20 2.3±0.2 21.39±0.09 20.12±0.09
B1608+656 0.63 292±29 6.2±1.0 20.68±0.19 19.88±0.15
MG1654+1346 0.25 206±21 4.9±0.1 21.99±0.07 20.73±0.05
MG2016+112 1.00 299±30 328±32 2.5±0.3 19.22±0.10 18.06±0.10
B2045+265 0.87 378±38 4.1±1.3 20.50±0.44 19.41±0.30
HE2149-2745 0.50 203±20 4.3±0.4 20.92±0.12 20.36±0.12
Q2237+030 0.04 168±17 220±31 4.3±0.8 22.37±0.50 21.15±0.23
HS0818+1227 0.39 251±25 6.6±0.2 22.18±0.07 21.13±0.04

TABLE 1 — FP parameters of 26 strong gravitational lens galaxies with redshifts up to
z ∼ 1. For 5 lens galaxies the redshift is not known spectroscopically, and a photometrically
estimated value (in italics) is given. The velocity dispersion σc, within the standard aperture
with a diameter of 3.′′4 at the distance of the Coma cluster, follows from the lensing geometry,
assuming a singular isothermal sphere mass model and a Hernquist (1990) luminosity profile.
The velocity dispersion from stellar kinematics σ? has been measured for 7 lens galaxies (ref-
erences in text). The effective radius re and effective surface brightness µe follow from fits to
an r1/4 law. To allow a direct comparison with the local FP, the effective surface brightness has
been corrected to the restframe Johnson B and Gunn r band by interpolating between filters.

spread over a large range in redshifts, instead of an ensemble of galaxies at the same
redshift. Additionally, whereas studies of the FP of optically selected galaxies measure
velocity dispersions from spectra, for lens galaxies we use the lensing geometry to es-
timate this quantity. The separation between lensed images of background sources
increases with the mass of the lens and is therefore a measure of the velocity disper-
sion. The two remaining FP parameters, the effective radius and surface brightness,
are determined from surface photometry as for cluster galaxies.
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2.1 VELOCITY DISPERSION

For a singular isothermal sphere (SIS) mass model the relation between the velocity
dispersion of the matter distribution and the separation of the source images ∆θ is
∆θ = 8π(σD/c)

2DLS/DOS. Here, DLS and DOS are the angular diameter distances from
the lens galaxy to the source and from the observer to the source. To determine these
values, the redshifts of both the lens galaxy and the source are needed (e.g., Hogg
2000). If the redshift of a lens galaxy is not known spectroscopically, we adopt a
photometrically estimated value1 with a 10% uncertainty. The lens systems for which
no redshift is known for the source, we exclude from our analysis. This leaves a
total of 26 lens galaxies, of which 5 have a redshift that is estimated photometrically
(Table 1). The velocity dispersion σD depends also (weakly) on cosmology through the
angular diameter distances, but is independent of the value of the Hubble constant
since the distances appear as a ratio.

The velocity dispersion σD is that of the total matter distribution, including possi-
ble dark matter, rather than the central velocity dispersion of the stellar component
σc. For a given mass and luminosity distribution, the ratio g ≡ σc/σD can be mod-
eled by solving the single Jeans equation for a spherical system with σφ = σθ and
β = 1 − σ2

θ/σ
2
r the anisotropy parameter (e.g., Binney & Tremaine 1987). The overall

mass distribution is assumed to be isothermal. We model the luminosity distribution
by a Hernquist (1990) profile with characteristic radius a = re/1.8153. For each lens
galaxy with effective radius re in kpc (see Section 2.2), we integrate the resulting line
of sight velocity dispersion within the Coma aperture to obtain an estimate for g, so
that the stellar velocity dispersion follows as σc = g σD.

For the sample of 26 lens galaxies, σD is distributed with a (biweight2) mean of 230
km s−1 and a (biweight) standard deviation of 61 km s−1. In the case of an isotropic
system (β = 0), the estimated stellar velocity dispersion σc has a mean of 223 km s−1

and a standard deviation of 70 km s−1. Hence, the properties of the sample of lens
galaxies will be typical for early-type field galaxies close to L∗, which have a charac-
teristic velocity dispersion around 225 km s−1 (e.g., Kochanek 1994, 1996).

Several sources contribute to the uncertainty in σc. We account for the scatter
in the image separation ∆θ, which is small and set to 2%. The error in the effective
radius re (Table 1) contributes through the modeled ratio g. For those galaxies for
which only a photometric estimate of the lens redshift zl is available, we included an
error of 10%. Since the angular diameter distance depends on redshift this error also
contributes to the uncertainty in σc via the determination of σD and via the conversion
of the effective radius in arcseconds into physical units of kpc. Apart from these errors
in observational parameters, we want to take into account that we have made several
assumptions in the modeling of the ratio g. For the 26 lens galaxies, the distribution
of g has a mean of 0.90, 0.94 and 1.01 for an anisotropy parameter β of −0.5, 0 and 0.5
respectively. For each lens galaxy we apply the isotropic case β = 0, but to take the
variation of g with β into account, together with the assumption of a SIS mass model
and a Hernquist profile, we assume an additional error of 10% in g and hence in σc.

1Obtained from the CfA-Arizona Space Telescope Lens Survey (CASTLES) web site at http://cfa-
www.harvard.edu/castles/

2Throughout this chapter we use the biweight location and scale as estimators of the mean and
standard deviation (rms) respectively. These estimators are robust for a broad range of non-Gaussian
underlying populations and are less sensitive to outliers than standard estimators (e.g., Andrews et al.
1972; Beers, Flynn & Gebhardt 1990).
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For 7 out of the 26 lens galaxies presented in this chapter, a velocity dispersion
measured from stellar kinematics σc? is available: 0047-2808 (Koopmans & Treu
2003), Q0957+561 (Tonry & Franx 1999; Falco et al. 1997; Rhee 1991), PG1115+080
(Tonry 1998), HST14176+5226 (Ohyama et al. 2002), MG1549+3047 (Lehár et al.
1996), MG2016+112 (Koopmans & Treu 2002) and Q2237+030 (Foltz et al. 1992).
Comparing the measured velocity dispersions (Table 1) with the modeled σc from the
lensing geometry, we find for these 7 galaxies that the ratio σc?/σc is distributed with a
mean of 1.07 and dispersion of 0.27. For the sample of 7 lens galaxies both methods are
consistent. Due to peculiarities of the lensing system, such as the contamination of
Q0957+561 by the mass distribution of the underlying cluster, the velocity dispersion
from both methods can be significantly different for individual lens galaxies.

2.2 EFFECTIVE RADIUS AND SURFACE BRIGHTNESS

The lensing systems were observed with the WFPC2, NICMOS1 and NICMOS2 camera
on the HST, in filters ranging from the visual F555W through the infrared F205W
filter. For each system, the image with optimal contrast between the lens galaxy and
the images of the background source is selected, and the effective radius re and the
mean surface brightness within the effective radius 〈µe〉 from fits to an r1/4 law is
determined. The data and model fits are described in detail by Lehár et al. (2000) and
K00. Note that re depends slightly on cosmology due to the conversion of the effective
radius from units of arcseconds from the fit into physical units of kpc. Moreover,
since the lens redshift is used in the conversion, we have to take into account a
(small) additional contribution to the uncertainty in re due to the assumed 10% error
in the lens redshift in the case it is estimated photometrically (see also Section 2.1).

Here, we use the surface brightness at the effective radius µe (in mag arcsec−2),
which is related to 〈µe〉 by µe − 〈µe〉 = 1.393. We also define Ie ≡ 10−µe/2.5. In the follow-
ing, we refer to the filter in which the fit was made as the reference filter. The depen-
dence of effective radius on passband due to color gradients can be ignored because of
the strong correlation between µe and re (see Section 4), and we can use the observed
colors (tabulated by K00) to calculate the effective surface brightness in each filter.

The effective surface brightnesses and colors are corrected for Galactic extinction
with an RV ≡ A(V )/E(B − V ) ≈ 3.1 extinction curve for a diffuse stellar medium (e.g.,
Cardelli, Clayton & Mathis 1989; O’Donnell 1994). The galactic extinction E(B−V ) is
obtained from Schlegel, Finkbeiner & Davis (1998). Extinction corrections on the ef-
fective surface brightness are typically ∼ 0.03 magnitudes in the reference filter, which
in most cases is the F160W filter. The three galaxies MG0414+0534, MG2016+112
and B2045+265 are exceptions with significantly higher galactic extinction of 0.18,
0.14 and 0.14 magnitudes respectively.

3 TRANSFORMATION TO RESTFRAME

In order to compare the FP of the redshifted lens galaxies directly to the FP of the
Coma cluster at z = 0.023, we calculate the effective surface brightness of the lens
galaxies in restframe Johnson B band and restframe Gunn r band by interpolating
between filters.

In the following example we assume that the redshifted r band falls between the
WFPC2 F555W (=V ) and F814W (=I) filters and the effective surface brightness is de-
termined in the NICMOS F160W (=H) reference filter. We assume a linear relation
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FIGURE 1 — Transformation to restframe r band by interpolation between the F555W (=V )
and F814W (=I) filter. For four spectral types the V − I and V − rz colors are modeled (open
circles). With the observed V − I color of the lens galaxy (filled circle) we interpolate between
the modeled colors of the two nearest spectral types, to find the V − rz color of the lens galaxy.

between the AB magnitudes of the redshifted r filter and the V and I filter, so that for
the restframe r magnitude of a galaxy at redshift z we can write

rz = V − α(V − I) − α(cV − cI) + cV − cr + 2.5 log(1 + z). (3.1)

The constants c are the conversion constants between the standard Vega magnitudes
and AB magnitudes

c = 2.5 log

(

∫∞
0 T (ν)fVega

ν dν
∫∞
0 T (ν)dν

)

− 48.60, (3.2)

with fVega
ν the fluxdensity of Vega, and T (ν) the filter transmission. The transmission

curves of the HST filters (including the CCD response) were obtained from STSCI3,
and those of the B and r passbands were obtained from Bessel (1990) and Thuan &
Gunn (1976) respectively. We used the CALCPHOT task of the STSDAS package in IRAF
to calculate the conversion constants for the HST filters. The conversion constants for
the B and r passband follow from Bessel (1990) and Frei & Gunn (1994) respectively.
The last term in (3.1) includes the broadening of the r band with redshift and makes
the magnitude behave as if it is a flux, rather than a fluxdensity.

Eq. (3.1) relates the V − rz color of a lens galaxy to its observed V − I color. To
determine α, we model the V − I and V − rz colors for four different spectral types,
E/S0, Sbc, Scd and Im, using the spectral energy distribution of Coleman, Wu &
Weedman (1980). This gives four estimates of α. Using the observed V − I color of
the lens galaxy we interpolate linearly between the modeled colors of the two nearest
spectral types (Fig. 1). In this way we obtain the best-fit V −rz color and corresponding
value of α for the lens galaxy. To estimate the uncertainty in the conversion constants
we compare modeled colors with those predicted by Frei & Gunn (1994). We find that
the differences are small and estimate the uncertainty at 0.02 magnitudes.

3http://www.stsci.edu/instruments/observatory/cdbs/cdbs.html
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The observed V −H color is then used to relate the effective surface brightness in
the reference H filter to that of the restframe r band

µe,rz
= µe,H + (V −H) − (V − rz). (3.3)

Similar transformations are derived for each lensing system. In cases where ob-
servations are available in more than two passbands, we calculate µe,rz

for all filter
combinations and make a selection based on the following criteria: the error in µe,rz

,
the wavelength difference between the redshifted r band and the observed filter, and a
preference for filter pairs enclosing the redshifted r band. The latter implies an inter-
polation between two filters, whereas otherwise we have to extrapolate. As byproducts
of our procedure we find the SEDs that provide the best fits to the observed colors
of the lens galaxies. For the restframe B and r band this yields respectively 20 (77%)
and 19 (73%) lens galaxies that are best fitted by the E/S0 spectral type, whereas the
colors of the remaining lens galaxies are closest to the Sbc spectral type.

Since rz in (3.1) behaves like a flux, the effective surface brightness decreases
as (1 + z)4 with increasing redshift4. We correct the surface brightnesses for this
cosmological dimming. For the 26 lens galaxies, the resulting values for the restframe
Johnson B and Gunn r effective surface brightness µe,Bz

and µe,rz
are given in Table

1, together with the other two FP parameters; the central stellar velocity dispersion σc

and effective radius re. We have also included the redshift z of the lens galaxies and
the velocity dispersions measured from stellar kinematics σc? when available.

4 FP AND M/L EVOLUTION

The Fundamental Plane has the form

log re = α log σc + β log Ie + γ (4.1)

(Dressler et al. 1987; Djorgovski & Davis 1987), with re in kpc, σc in km s−1 and µe

(= −2.5 log Ie) in mag arcsec−2. We adopt for the coefficients α and β the values derived
by Jørgensen, Franx & Kjærgaard (1996) for a sample of 225 early-type galaxies in
nearby clusters. They found for the Johnson B band α = 1.20±0.06 and β = −0.83±0.02,
and for the Gunn r band α = 1.24 ± 0.07 and β = −0.82 ± 0.02.

We use the tabulated photometric and spectroscopic data of Jørgensen, Franx &
Kjærgaard (1995a, 1995b) to construct the FP of Coma. The edge-on projection of
the Coma FP in the r band is shown in Fig. 2 (small dots). A linear fit to the coma
FP yields an intercept of 9.50 ± 0.02 and 9.12 ± 0.02 for the B and r band respectively.
Large symbols show the lens galaxies. The lens galaxies show a large scatter, and are
offset with respect to the FP of Coma. This relative difference can be attributed to the
evolution of the M/L ratios of galaxies, and the large scatter may in part be caused
by the large range of redshifts spanned by the lens sample.

As usual in FP evolution studies, we assume that early-type galaxies are a ho-
mologous family, i.e. that they are structurally similar. The total mass of a galaxy
(including possible dark matter) is then proportional to an effective mass ∝ σ2

cre. With
the total luminosity proportional to Ier

2
e , the FP relation implies that the effective

mass-to-light ratio M/L ∝ M 0.24r−0.02
e in the r band (e.g., Treu et al. 2001). The tight-

ness of the FP relation implies a low scatter in the M/L ratios of early-type galaxies
4The restframe rz magnitude (3.1) behaves therefore as a K-corrected magnitude.
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FIGURE 2 — Edge-on view of the FP in the restframe Gunn r band. The Coma cluster galaxies
(small dots) and corresponding linear fit represent the local FP (Jørgensen et al. 1995a, 1995b,
1996). Lens galaxies for which the redshifts are known spectroscopically are indicated with
circles. Filled circles correspond to lens galaxies for which the transformation to restframe
(Section 3) was by interpolation between a pair of filters, and open circles if a modest extrap-
olation was needed. The open squares represent the 5 lens galaxies with a redshift that is
estimated photometrically (Table 1). The transformation to restframe for these 5 galaxies was
by interpolation. For 7 lens galaxies, velocity dispersions have been measured from stellar
kinematics (see text for details). Asterisks show the position of these galaxies in the FP if the
stellar velocity dispersion is used. The lens galaxies are offset from the Coma FP, as expected
from evolution of their stellar populations.

of 23% (Faber et al. 1987; Jørgensen et al. 1996). Hence, the evolution of M/L can be
well studied via the evolution of the FP.

We assume that all early-type galaxies evolve in the same way, i.e. the coefficients
α and β are independent of redshift and the same for cluster and field early-type
galaxies. Until now there is no convincing (observational) evidence against these as-
sumptions, but this might change if more and deeper data become available (e.g., van
Dokkum & Franx 1996; van Dokkum et al. 2001; Treu et al. 2002). If furthermore
the effective radius and velocity dispersion do not change with redshift, the differ-
ence in FP intercept is due to a difference in surface brightness caused by luminosity
evolution. As a result, the evolution of the intercept of the FP is proportional to the
evolution of the mean M/L ratio. For each lens galaxy, the difference in FP intercept
with respect to the Coma FP (Fig. 2) can be expressed as an offset in its M/L ratio
relative to that of a galaxy of the same mass in Coma. Fig. 3 (two left panels) shows
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the dependence of the M/L offset on redshift, in the restframe r band. The M/L ratio
of lens galaxies clearly shows a trend with redshift, with the highest redshift objects
having the lowest M/L ratios.

From a linear fit to the M/L ratios of the 26 lens galaxies, we find an evolution rate
d log(M/L)/dz of −0.62 ± 0.13 and −0.47 ± 0.11 in restframe B and r band respectively.
The intercept of the fit, ∆logM/L at z = 0, is −0.01±0.08 and −0.01±0.06 respectively, so
that locally there is no significant offset in the mean M/L ratio of the lens and cluster
galaxies. If this offset is forced to be zero, we find best-fit evolution rates for the B
and r band of −0.63 ± 0.06 and −0.49 ± 0.05, which are only slightly higher than for the
unconstrained fit. (The 1σ errors from the fit are smaller than for the unconstrained
fit since only the slope is a fitting parameter, while the intercept is fixed to zero.)
Restricting the fit to only the 21 lens galaxies with spectroscopic redshifts, has no
significant effect on the results. Similarly, we find no significant differences if we
exclude the lens galaxies from the fit for which a modest extrapolation was needed
in the transformation to restframe band; or if for the 7 lens galaxies for which the
velocity dispersion σc? measured from stellar kinematics is available, this value is
used instead of the modeled σc from the lensing geometry.

For cluster galaxies van Dokkum et al. (1998) find in the B band an evolution
rate d log(M/L)/dz = −0.49 ± 0.05 This means on average a faster evolution for the
lens galaxies, but the difference is only significant if the M/L ratio of lens galaxies
is forced to coincide with that of cluster galaxies at z = 0. The value for the cluster
evolution rate by van Dokkum et al. (1998) does not take into account possible effects
due to morphological evolution. If early-type galaxies were transformed from late-
type galaxies at modest redshifts (e.g., Dressler et al. 1997) the early-type galaxies
that were already present at high redshift are only a subset of all progenitors of low
redshift early-type galaxies. As a result of this “progenitor bias” (vDF01) the formation
redshift of morphologically selected cluster early-type galaxies may be overestimated.
The lens galaxy sample is probably much less affected by progenitor bias, since they
are selected on mass and not on morphology, but due to the merging of galaxies, a
fraction of the progenitors may still not be accounted for. After applying the maximum
correction for progenitor bias allowed by the data, vDF01 find a cluster evolution rate
of d log(M/L)/dz = −0.56 ± 0.05 in the B band, similar to the evolution rate for the
lens galaxies. These results suggest that, if there is no progenitor bias, field galaxies
may be younger than cluster galaxies, but that such an age difference becomes less
significant if we correct for possible progenitor bias.

Our results are consistent with determinations for field galaxies based on direct
spectroscopic measurements of the velocity dispersions. For the B band, van Dokkum
et al. (2001) arrive at an evolution rate d log(M/L)/dz of −0.59 ± 0.15, and Treu et al.
(2002) find a value of −0.72+0.11

−0.16. Comparing our results for the B band with those of
R03, we find that the evolution rate obtained by R03 is on average slower, but the (1σ)
confidence limits still overlap. For intercepts that are allowed to vary and forced to be
zero, R03 find an evolution rate of −0.54 ± 0.09 and −0.56 ± 0.04 respectively.

The error analysis and the transformation to restframe of R03 differs from ours
(see also Section 1), but we cannot further investigate the effects of these differences,
as R03 do not give their resulting fundamental plane parameters. However, if we add
(in quadrature) an constant additional error to the observed uncertainties in the M/L
ratios of the lens galaxies, the slope of the fit does decrease. Around the linear fit we
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measure a (biweight) scatter of 0.17 for the B band and 0.15 for the r band5, which in
both cases is higher than the expected scatter from the observational errors of 0.12. If
we now take for the constant additional scatter the difference (in quadrature) between
the measured and expected scatter, we find for the unconstrained fit in the B band
an evolution rate of −0.56 ± 0.12, almost identical to the result of R03. If the offset is
forced to zero the slope changes less, giving an evolution rate of −0.61±0.05. Note that
R03 rescale their input errors so that the best-fit model has a reduced χ2 of one. They
assume that the additional scatter is due to underestimated errors in the data set,
whereas we propose that internal population differences cause the additional scatter.
Hence, we multiply our results with the square root of the reduced χ2 to reflect this
aspect, but we do not change the uncertainties on the input data.

The additional scatter implies that the M/L ratios of the lens galaxies are not well
fitted with a single evolution rate, whereas for the cluster galaxies the fit is very good
(e.g., van Dokkum et al. 1998). This may be due to a significant spread in stellar
population ages among field galaxies, which induces an additional scatter measured
in the evolution rate d log(M/L)/dz of the lens galaxies In the next Section, we relate
the M/L evolution to stellar population ages by fitting simple single burst models. In
Section 6, we then study the restframe colors of lens galaxies and their evolution. To
find out whether there is a significant age spread, we also investigate scatter in color
and if it is correlated with the scatter in M/L ratio.

5 STELLAR POPULATION AGES

The evolution of the M/L ratio depends on the age of the stellar population. A stellar
population which formed at low redshift will evolve faster than a population formed
at high redshift: the luminosity of a young population becomes rapidly fainter when
short-lived massive and bright stars disappear, whereas the dimming of the light is
more gradual for an old population dominated by low mass stars. We estimate the
stellar population ages of lens galaxies and the age difference between lens and cluster
galaxies by fitting simple single burst models to the M/L evolution.

The M/L ratio of a single burst stellar population with fixed mass evolves as

M/L ∝ (t− t?)
κ, (5.1)

with t? the stellar formation time, corresponding to a stellar formation redshift z? (e.g.,
Tinsley & Gunn 1976). The coefficient κ depends on the Initial Mass Function (IMF)
and metallicity, and also on the passband in which the luminosity is measured. For
a normal IMF with Salpeter (1955) slope and Solar metallicity, κB ≈ 0.93 and κr ≈ 0.78
for the restframe B and r bands (Worthey 1994). Note that the predicted evolution is
independent of H0 because the age dependence of the M/L ratio is a power-law.

We first investigate if we can fit the observed M/L evolution of the lens galaxies by
a single burst evolution model with the same stellar formation redshift z? as has been
derived previously for cluster galaxies (the null-hypothesis). In Section 5.2 and 5.3
we investigate the range of z? allowed by the data.

5The scatter in the B band is probably higher than in the r band due to the fact that the B band is
more sensitive to recent star formation.
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FIGURE 3 — UPPER-LEFT: The evolution of the M/L offset in the restframe Gunn r band.
The small dot is the average M/L of the Coma galaxies. The lens galaxies are indicated with
the same symbols as in Fig. 2. The solid line represents the single burst evolution of a
stellar population formed at the mean cluster formation redshift of z? = 4.3. If we correct for
progenitor bias, the latter formation redshift will be lower, and hence the evolution steeper.
This is indicated by the shaded region, with z? = 2.0 for maximum progenitor bias correction
(vdF01). The dashed line is the best fit model for the lens galaxies, with z? = 1.9 and zeropoint
b ≡ ∆ logM/Lrz

(z = 0) = −0.01. UPPER-RIGHT: Confidence levels (1, 2 and 3σ) for combinations
of z? and the zeropoint b when they are both allowed to vary. LOWER-LEFT: The solid line
shows the evolution for a stellar population formed at z? = 2.0, which is the mean cluster value
after maximum progenitor bias correction. The dashed line is the model for a stellar popula-
tion formed at the best-fitting star formation redshift of z? = 1.8, if the lens and cluster galaxies
are fitted in a self-consistent way (model B). To illustrate the effect of changing z? we also
show a model with z? = 1 (dotted line). LOWER-RIGHT: Because cluster and lens galaxies are
modeled self-consistently, the stellar formation redshift of the lens galaxies depends on that of
the clusters zcl

? . The best-fit values vary from 1.8 to 2.3 (indicated by arrows) if zcl
? is increased

from 2.0 to 4.3, the values for maximum and no progenitor bias correction. The errors on the
best-fit parameters from the confidence levels are multiplied with the square root of the re-
duced χ2 of the fit, to reflect the measured additional scatter compared to the expected scatter
from the observational errors (see text and Table 2 for resulting uncertainties on b and z?).
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5.1 CAN CLUSTER GALAXIES AND LENS GALAXIES HAVE THE SAME AGE?
Before investigating more complex models we consider the case that lens galaxies
and cluster galaxies have the same luminosity weighted stellar age. To determine the
mean stellar formation redshift of cluster early-type galaxies 〈zcl

? 〉 we fit a single burst
model (5.1) to previously published restframe B band data for the clusters CL1358+62
(Kelson et al. 1997), CL0024+16 (van Dokkum & Franx 1996), MS2053+03 (Kelson
et al. 1997) and MS1054-03 (van Dokkum et al. 1998) at redshifts 0.33, 0.39, 0.58
and 0.83, respectively, normalized with respect to the average M/LB ratio of the local
Coma cluster at z = 0.023 (Jørgensen et al. 1996).

To perform such a single burst fit, we minimize

χ2 =
n
∑

i=1

(

M/Lmod,i −M/Lobs,i

σ(M/Lobs,i)

)2

, (5.2)

with n the number of M/L observations used as constraints, M/Lobs,i the ith obser-
vation, M/Lmod,i the corresponding single burst prediction and σ(M/Lobs,i) the uncer-
tainty or error in this observation. To determine the confidence levels, we calculate
the difference in χ2 between a model and the overall minimum, ∆χ2 = χ2 − χ2

min, to
which the usual Gaussian confidence levels can be assigned (e.g., Press et al. 1992).

The resulting best-fit mean formation redshift 〈zcl
? 〉 = 4.3+3.7

−1.2. This direct fit does
not take into account possible progenitor bias. After applying the maximum correction
for progenitor bias allowed by the data, vDF01 find 〈zcl

? 〉 = 2.0+0.3
−0.2 for cluster galaxies.

Therefore, we consider 2.0 < zcl
? < 4.3 as a plausible range for the mean star formation

epoch of cluster early-type galaxies.
We fitted single burst models with this range of formation redshifts to the restframe

B and r band data of the lens galaxies. The fits improve towards higher formation
epoch, but even those with maximum progenitor bias correction are rejected with
nearly 100%. We can allow for an offset between M/L ratios of lens galaxies and those
of cluster galaxies. We will describe this offset with the value of ∆logM/L at z = 0,
which we denote by b. For a stellar formation epoch ranging from 4.3 to 2.0 (no to
maximum progenitor bias correction) the offset b varies from −0.12 to −0.06 for the B
band, and from −0.08 to −0.03 for the r band. These models with a systematic offset
fit the lens data better, but are still rejected with > 99.9% confidence.

5.2 MODEL A: UNCONSTRAINED FIT

We assume that the M/L ratios of field galaxies are independent of those of cluster
galaxies, i.e. a cluster galaxy of a given age can have a very different M/L ratio than
a field galaxy of the same age. This may be the case if, e.g., the metallicities of field
and cluster galaxies are different at a given mass. In addition to the stellar formation
redshift z?, we also have the normalization of the single burst model as free parameter.
We describe this second parameter with b (see Section 5.1).

For a range of z? and b values, we fit single burst models the observed M/L values
of the redshifted lens galaxies. For the r band, the 1, 2 and 3 σ limits on z? and b
are shown the in the upper-right panel of Fig. 3, with the minimum indicated by a
cross. The best-fit values of z? and b are 1.8+1.4

−0.5 and −0.03 ± 0.09 for the B band, and
1.9+1.9

−0.6 and −0.01 ± 0.07 for the r band (Table 2). Note that the given uncertainties are
1σ errors unless noted. The M/Lr evolution that corresponds to the best-fit values is
shown in the upper-left panel of Fig.3 (dashed line). Since for both B and r band the
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model Bz band rz band
A 1.8 (-0.5/+1.4) 1.9 (-0.6/+1.9)
B (with zcl

? = 2.0) 1.7 (-0.1/+0.2) 1.8 (-0.2/+0.2)
B (with zcl

? = 4.3) 2.1 (-0.2/+0.3) 2.3 (-0.3/+0.3)

TABLE 2 — The mean formation redshift 〈z?〉 of a single burst stellar population for lens
galaxies (1σ errors). Models as in Fig. 3 (see text for further details).

model parameter b is not significantly different from zero, we obtain similar best-fit
values for z? if we normalize the single burst model such that b ≡ 0, i.e. if we assume
that locally the average M/L ratio of field and cluster galaxies is the same.

5.3 MODEL B: SIMULTANEOUS FIT TO LENS AND CLUSTER GALAXIES

Here we assume that the stellar populations of field and cluster galaxies evolve in the
same way. The stellar populations of the lens galaxies may form at a different redshift
than those of the cluster galaxies, but galaxies of a given age have identical M/L
ratios. For the formation redshift of the stars in cluster galaxies we use the values
that we obtained in Section 5.1: zcl

? = 4.3 if not corrected for progenitor bias and
zcl
? = 2.0 after correction for maximum progenitor bias. In both cases we determine

the constraints on z? for the lens galaxies. Note that z? and b are coupled in this model,
because of the constraint that lens galaxies with the same age as cluster galaxies have
identical M/L ratios. For the r band the resulting constraints on z? (and hence b) are
shown in the lower-right panel of Fig. 3, with the best fit values indicated by arrows.
From maximum to no progenitor bias correction, we find z? ranging from 1.6 to 2.4
(1σ) for the B band, and from 1.6 to 2.6 (1σ) for the r band (Table 2). For the case
of maximum progenitor bias the M/L evolution that follows from the best-fit value
z? = 1.8 in the r band, is shown in the lower-left panel of Fig. 3 (dashed line).

5.4 SUMMARY OF RESULTS

We have demonstrated that the M/L evolution of lens galaxies cannot be fitted with
models that provide good fits to cluster galaxies. The fit clearly improves if lens galax-
ies are allowed to be systematically offset from cluster galaxies due to metallicity
differences or other systematic effects.

If we consider both this offset and the stellar formation epoch of the lens galaxies
as free parameters, the best-fit single burst model in the B and r band are consistent.
The resulting offset is not significantly different from zero, and although the best-
fit stellar formation redshift implies for lens galaxies on average a younger stellar
population than for cluster galaxies, the resulting (1σ) range of 1.3 < 〈z?〉 < 3.8 is not
significantly different from the formation epoch for cluster galaxies of 1.8 < 〈z cl

? 〉 < 8.0
for the full range from no to maximum progenitor bias correction.

If we impose the constraint that galaxies of the same age have the same M/L
ratio irrespective of their environment, we find stellar formation redshifts for the lens
galaxies of 1.6 < 〈z?〉 < 2.0 if the stars in cluster galaxies formed at zcl

? = 2.0 (maximum
progenitor bias), and 1.9 < 〈z?〉 < 2.6 if the stars in cluster galaxies formed at zcl

? = 4.3
(no progenitor bias). In the latter case the stellar populations of the lens galaxies are
significant younger (10–15% at the present epoch) than those of the cluster galaxies.
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If the local M/L offset between lens and cluster galaxies is allowed to vary, R03
find for the stellar formation redshift of the lens galaxies a (1σ) range of 2.0 < 〈z?〉 < 3.6
from their B band analysis. Although we find a range of 1.3 < 〈z?〉 < 3.2 (model A, B
band) which implies on average a somewhat younger stellar population, the results
are consistent. R03 conclude that the M/L evolution rates they measure favor old
stellar populations for the lens galaxies with a mean formation redshift 〈z?〉 > 1.8 at a
2σ confidence level. We find a lower 2σ confidence limit of 〈z?〉 > 1.2.

To test the hypothesis whether the M/L evolution of the lens galaxies can be fitted
with a single burst model, we calculate the reduced χ2. We also compare the measured
scatter around the fit with the expected scatter from the uncertainties in the M/L ra-
tios of the lens galaxies. If we allow more freedom in the single burst models, the fit
improves (lower reduced χ2) and the measured scatter decreases. However, even the
over-all best-fit single burst model is rejected with > 99% confidence and the mea-
sured scatter of 0.17 and 0.15 in B and r band is significant higher than the expected
scatter of 0.12 from the observational errors. To establish whether the additional scat-
ter is due to a significant spread in ages among field galaxies, we study in the next
Section the (restframe) colors of the lens galaxies, and investigate if there is also a sig-
nificant scatter in the color and if it is correlated with the scatter in their M/L ratios.

6 COLORS

If the stellar populations of lens galaxies are on average younger than those of cluster
galaxies (Section 5) we expect their colors to evolve more rapidly and to be on average
bluer than those of cluster galaxies. For single burst stellar populations the B − r
color evolves as

B − r = 2.5(κB − κr) log(t− t?) + c, (6.1)

with κB − κr ≈ 0.15 (Worthey 1994) and c a normalization constant.
The left panel of Fig. 4 shows the restframe B− r colors of the lens galaxies versus

redshift. For the lens galaxies with open circles, a modest extrapolation was required
in the transformation to either the restframe B or r band. The red outlier (at z ∼ 0.4) is
the lens BRI0952-0115, for which the observed R−H (F675W-F160W) color is signifi-
cantly redder than the modeled E/S0 color, and for which we had to extrapolate in the
transformation to restframe B band. The single burst evolution of a stellar population
formed at the mean cluster formation epoch of zcl

? = 2.0 (maximum progenitor bias),
is drawn (solid line) through the averaged color of the coma cluster galaxies (small
dot). A decline in the colors of the lens galaxies with increasing redshift is visible, in
spite of the large scatter. If we fit single burst models as in Section 5 (model A and
B), we find on average a younger stellar formation epoch for the lens galaxies, but the
difference with the cluster galaxies is never significant. In case the stellar popula-
tions of field and cluster galaxies are assumed to evolve in the same way (model B),
the evolution model with the best-fit stellar formation redshift of z? = 1.7 is shown in
the left panel of Fig. 4 (dashed line). Similarly as for the single burst model fits to
the M/L evolution, the fits to the color evolution are rejected with > 99% confidence,
and the measured scatter is in all cases significantly higher than the expected scatter
from the observational errors in the restframe colors of the lens galaxies.

To further investigate the scatter in color, we subtract the predicted colors of clus-
ter galaxies with zcl

? = 2.0, from the restframe colors of the lens galaxies. Note that this
choice of formation redshift corresponds to the minimum age difference between field
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FIGURE 4 — LEFT: Evolution of the restframe B − r color. The symbols correspond to those
in Fig. 2, with the colors of the coma cluster galaxies averaged (small dot). The solid line
shows the evolution for a stellar population formed at z? = 2.0, which is the mean cluster
value after maximum progenitor bias correction. The dashed line is the model for a stellar
population formed at the best-fitting star formation redshift of z? = 1.7, if the lens and cluster
galaxies are fitted in a self-consistent way. To illustrate the effect of changing z? we also show
a model with z? = 1 (dotted line). For redshifts beyond z ∼ 0.5 the scatter in color increases
and becomes significant higher than expected from the observational errors. RIGHT: The
restframe B− r colors of lens galaxies, after subtracting the fiducial model for cluster galaxies
with zcl

? = 2.0, plotted versus velocity dispersion. The solid line is a linear fit to the Coma
cluster galaxies. On average the colors of the lens galaxies are bluer than those of the cluster
galaxies, consistent with a younger average stellar population. The scatter in the reduced
colors is larger than expected from the observational errors.

and cluster galaxies. In the right panel of Fig. 4 we show the resulting residual colors
plotted against velocity dispersion, with a linear fit to the Coma cluster galaxies. The
lens galaxies show a large spread in their reduced colors, and are on average bluer by
∼ 0.1 mag than the cluster galaxies. The bluer average color is qualitatively consistent
with the on average younger ages of lens galaxies derived from the single burst model
fits above and from the fits to the M/L evolution (Section 5.4). For the total sample of
26 lens galaxies, we measure a scatter in the residual colors of 0.22, that is significant
higher than the expected scatter of 0.18. From the left panel of Fig. 4, we observe
that the color scatter increases beyond z ∼ 0.5. For the 15 lens galaxies with z & 0.5
we measure a scatter of 0.24, whereas for the lens galaxies with z . 0.5 the measured
scatter is only 0.16 and nearly identical to the expected scatter of 0.15 from the errors
in the colors of these galaxies.

The additional measured scatter in the residual colors of the lens galaxies may
indicate a significant spread in the ages of the stellar populations of the lens galaxies.
We test whether the color spread is caused by a spread in ages or other effects, by in-
vestigating whether the residual colors correlate with the residual M/L ratios. In Fig.
5 we plot the color of the lens galaxies against the logarithm of their M/L ratio. For
both quantities the expected evolution of a stellar population formed at z cl

? = 2.0 was
subtracted; hence a galaxy with the average color and M/L ratio of galaxies in Coma
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FIGURE 5 — The B − r color versus M/Lr ratio, after subtracting the fiducial cluster galaxy
evolution model with zcl

? = 2.0. The symbols are the same as in Fig. 2, with the average
of Coma situated in the origin. The dashed line is a linear fit to the data; the solid line
shows the expected correlation between color and M/L ratio due to age variations, with slope
2.5(κB −κr)/κB ≈ 0.40. Although the slope is uncertain, the correlation between color and M/L
ratio is significant at the 95 % level. Hence we interpret the intrinsic scatter in the colors of
the lens galaxies as a stellar population effect, probably caused by a spread in their ages.

would be located at the origin. From eq. (6.1) and (5.1) it follows that a linear relation
is expected in Fig. 5, with a (time-independent) slope of 2.5(κB − κr)/κB ≈ 0.40 (solid
line). The data appear to be correlated in the expected sense, albeit with large scatter.
To test whether the correlation is significant we used the Spearman’s rank-order cor-
relation coefficient rS. We find that rS = 0.47, so that with N = 26 lenses, we can reject
the hypothesis that the two quantities are uncorrelated with > 95% confidence. The
only viable explanation for the correlation is age variation. If the correlation would be
caused by metallicity variations, (some) field galaxies would be much less metal rich
than cluster galaxies, opposite to the result by Kuntschner et al. (2002).

The colors and M/L ratios of the bluest lens galaxies are best fitted with stellar
formation redshifts as low as z? ∼ 1. About half the lens galaxies are consistent with
an old cluster-like stellar population with stellar formation redshift z? & 2. If galaxies
form in a sequence of bursts, formation redshifts are indicative of the last prominent
epoch of star formation. The galaxies can have older underlying stellar populations.

7 SUMMARY AND CONCLUSIONS

We studied the evolution of the M/L ratios of lens galaxies in the restframe Johnson B
and Gunn r bands. For an flat cosmology with ΩM = 0.3 and ΩΛ = 0.7, we obtained an
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evolution rate d log(M/L)/dz of −0.62±0.13 in restframe B and −0.47±0.11 in restframe
r. Due to differences in the determination of the FP parameters and the corresponding
errors, the evolution rate obtained by R03 of −0.54 ± 0.09 is slightly slower but not
significant different. Our results are consistent with determinations for field galaxies
based on direct spectroscopic measurements of the velocity dispersions. For the B
band, van Dokkum et al. (2001) arrive at an evolution rate of −0.59 ± 0.15, and Treu
et al. (2002) find a value of −0.72+0.11

−0.16. The weighted mean of these results and our
result yields an evolution rate for field early-type galaxies of −0.64 ± 0.06 in the B
band. For cluster galaxies van Dokkum et al. (1998) and vDF01 find an evolution rate
between d log(M/LB)/dz = −0.49 ± 0.05 and −0.56 ± 0.05, for minimum and maximum
progenitor bias respectively. The latter value is not significantly different from the
average evolution rate for the field galaxies.

We further investigated the M/L evolution in Section 5, where we related it to
stellar population ages by fitting simple single burst models for a Salpeter (1955) IMF
and Solar metallicity. The M/L evolution of cluster galaxies is well approximated by a
mean single burst formation redshift of zcl

? = 4.3+3.7
−1.2, and zcl

? = 2.0+0.3
−0.2 after maximum

progenitor bias correction (vDF01).
We first tested if these cluster models could fit the M/L evolution of the lens galax-

ies. This is not the case, but the fits improve if there is a systematic offset between
lens and cluster galaxies of ∼ −0.1 in ∆logM/L Such an offset could be caused by,
e.g., metallicity variations, systematic differences in the velocity dispersions due to
the different measurement techniques, or other effects. It is interesting to note that
hierarchical models have predicted such a constant offset with redshift between clus-
ter and field galaxies (see van Dokkum et al. 2001). However, similar to van Dokkum
et al. (2001), we conclude that the observed offset is much smaller than the predicted
offset of ∆logM/LB ∼ −0.26.

If we next allow the stellar formation redshift z? also to vary, we find for the best-fit
single burst model that the offset is not significant from zero, together with a mean
stellar formation epoch 〈z?〉 for the lens galaxies of 1.8+1.4

−0.5 in the B band and 1.9+1.9
−0.6 in

the r band. This means that on average the stellar populations of the lens galaxies
are younger, but the difference with the cluster galaxies is not significant. However,
if we impose the constraint that galaxies of the same age have the same M/L ratio
irrespective of their environment, we find without correction for progenitor bias that
the stellar populations of the lens galaxies are significant younger (10–15 % at the
present epoch) than those of the cluster galaxies. In the case of maximum progenitor
bias the average difference (∼ 5%) is not anymore significant.

From their analysis R03 obtain a (2σ) lower limit for the mean stellar formation
epoch of lens galaxies of 〈z?〉 > 1.8, whereas we find that lower stellar formation red-
shifts are allowed, with 〈z?〉 > 1.2 as a 2σ lower limit. Nevertheless, these results
disagree with the prediction of semi-analytical hierarchical galaxy formation models
(e.g., Kauffmann 1996; Kauffmann & Charlot 1998; Diaferio et al. 2001) that early-
type field galaxies in general have very late star formation with z? < 1.

Whereas the M/L evolution of cluster galaxies is well approximated by a single
burst evolution model, we found that this is not the case for the lens galaxies. All sin-
gle burst models are rejected with > 99% based on the reduced χ2, and the measured
scatter is in all cases significant higher than the expected scatter from the observa-
tional errors. The additional scatter is most likely caused by differences in the stellar
population of the lens galaxies.
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To investigate whether there is a significant spread in ages, we studied in Section
6 the restframe colors of the lens galaxies and their evolution. The colors of the lens
galaxies are on average bluer than those of the cluster galaxies, consistent with on a
younger average stellar population. We found that the measured scatter in the single
burst fits to the colors is much larger than the expected scatter from the observational
errors. Moreover, we showed that there is a significant correlation between the colors
and the M/LB ratios of the lens galaxies. We interpret this as evidence for a significant
spread in the stellar population ages of the lens galaxies.

Whereas about half of the lens galaxies are consistent with old cluster-like stellar
populations, the bluest galaxies are best fit by single burst models with young stellar
formation redshifts z? ∼ 1. For the seven blue lens galaxies with residual colors below
−0.2 mag in the right panel of Fig. 4, we found (as a byproduct of our transformation
to restframe B band) that only two of them are best fitted by the E/S0 spectral type,
i.e. ∼ 28%, whereas for the total sample we found 77%. For the r band even six of
the seven blue galaxies are best fitted by the Scd spectral type, instead of the ES/0
spectral type. Three of the seven blue galaxies indeed show (some) deviations from
early-type morphology. FBQ0951+2635 is an edge-on disk galaxy, SBS1520+530 is
slightly irregular and B1608+656 is an apparently dusty galaxy with star forming re-
gions. However, a homogeneous sample of quasar subtracted (NICMOS) images of the
lens galaxies is needed to do a more detailed and systematic study of their morpholo-
gies. Such a study will be valuable to determine the cause of apparently younger
populations in a fraction of the lens galaxies.
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R. F. Peletier, R. C. E. van den Bosch, G. van de Ven,
2005, MNRAS, submitted, astro-ph/0505042

The distribution of maser stars in our Milky Way: the effect of a weak, rotating bar
H. J. Habing, M. N. Sevenster, M. Messineo, G. van de Ven, K. Kuijken:
the ROTBAR consortium, 2005, A&A, submitted

The dynamical M/L-profile and distance of the globular cluster M15
R. C. E. van den Bosch, P. T. de Zeeuw, K. Gebhardt, E. Noyola, G. van de Ven,
2005, ApJ, submitted

Recovery of three-integral galaxy models
G. van de Ven, P.T. de Zeeuw, R. C. E. van den Bosch,
2005, MNRAS, to be submitted (Chapter 4)

The Einstein Cross: lensing vs. stellar dynamics
G. van de Ven, J. Falcón–Barroso, M. Cappellari, R. M. McDermid, B. Miller,
P. T. de Zeeuw, 2005, MNRAS, to be submitted (Chapter 6)



234 List of publications

Triaxial Schwarzschild models for elliptical galaxies
R. C. E. van den Bosch, G. van de Ven, E. K. Verolme, M. Cappellari, P. T. de Zeeuw,
2006, MNRAS, to be submitted

NON-REFEREED PAPERS

Jeans solutions for triaxial galaxies
G. van de Ven, C. Hunter, E. K. Verolme, P. T. de Zeeuw, 2003,
in ’Galaxies and Chaos’, eds. G. Contopoulos, N. Voglis, LNP, 626, 101–108

A SAURON view of galaxies
E. K. Verolme, M. Cappellari, G. van de Ven, P. T. de Zeeuw, SAURON team, 2003,
in ’Galaxies and Chaos’, eds. G. Contopoulos, N. Voglis, LNP, 626, 279–285

Orbital structure of triaxial galaxies
G. van de Ven, E. K. Verolme, M. Cappellari, P. T. de Zeeuw, 2004
in Proc. IAU Symp. 220 ’Dark matter in galaxies’, eds. S. D. Ryder, D. J. Pisano,
M. A. Walker, K. C. Freeman, ASP San Francisco, 179–180

Two-dimensional kinematics of a bar and central disk in NGC 5448
K. Fathi, G. van de Ven, R.F. Peletier, E. Emsellem, J. Falcón-Barroso, M. Cappellari,
P.T. de Zeeuw, 2005, in Proc. Island Universes conference, astro-ph/0508131

Revisiting the (V/σ) − ε anisotropy diagram of early-type galaxies
using integral-field kinematics
M. Cappellari, R. Bacon, M. Bureau, R. L. Davies, P. T. de Zeeuw, E. Emsellem,
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STERSYSTEMEN

HET heelal ontstond in een ‘oerknal’, waarna het begon uit te dijen. Op plekken
met net iets meer donkere materie dan in de nabije omgeving zorgde de zwaar-

tekracht ervoor dat de donkere materie zich samentrok en daarbij gas verzamelde,
waaruit zich sterren vormden. Deze eerste sterren kwamen terecht in systemen van
verschillende grootte en vorm, afhankelijk van de verdeling van de donkere materie.
De sterren in deze systemen evolueren: de meeste sterren doven aan het einde van
hun leven uit, maar de zwaarste sterren exploderen en uit hun resten worden weer
nieuwe sterren geboren. Ook de systemen zelf evolueren door onderlinge interactie en
samensmelting. Dit alles leidt tot de volgende vraag: kunnen we voor de verschillende
stersystemen achterhalen hoe ze zijn geëvolueerd vanaf de oerknal tot nu?

Een mogelijke onderzoeksstrategie is het waarnemen van objecten die op grote af-
stand staan. Doordat het licht tijd nodig heeft om afstanden af te leggen, zien we deze
objecten ‘terug in de tijd’. Door steeds dieper het heelal in te kijken, kunnen we dus
als het ware de vorming en evolutie van deze objecten in ‘omgekeerde volgorde’ bekij-
ken. Echter, met toenemende afstand wordt het licht van deze objecten snel zwakker,
zodat heel grote telescopen nodig zijn, die niet alleen technisch moeilijk te realiseren
zijn maar bovenal heel kostbaar zijn. Een andere manier is nabije stersystemen te
bestuderen en, net als een archeoloog, op zoek te gaan naar de ‘fossiele resten’ van
hun ontstaan en evolutie. We kunnen dan bijvoorbeeld denken aan de aanwezigheid
van kleine centrale schijven, ontkoppelde kernen en tegendraads roterende schijven,
welke het gevolg kunnen zijn van het samensmelten van verschillende stersystemen.
Omdat de stersystemen dichtbij staan, kunnen we de bewegingen en samenstelling
van de sterren in deze systemen tot in groot detail waarnemen. Door middel van
het fitten van theoretische modellen (gebaseerd op de zwaartekrachtwet van Newton)
aan deze waarnemingen kunnen we dan proberen deze stersystemen te reconstrue-
ren. Hierna kunnen we als het ware stersystemen ‘van binnenuit bekijken’ en in hun
structuur en interne bewegingen op zoek gaan naar overblijfselen, oftewel ‘fossielen’,
die gerelateerd zijn aan hun vormingsgeschiedenis.

De geschiktste stersystemen om op zoek te gaan naar ‘fossiele resten’ zijn diegene
waarvoor het zicht op de sterren niet bemoeilijkt, of zelfs geheel ontnomen wordt
door de aanwezigheid van gas en stof, en diegene die niet ‘vervuild’ zijn door recente
stervorming. Bolhopen zijn in dit opzicht de ’schoonste’ stersystemen met in de orde
van een miljoen zeer oude sterren, die zijn ontstaan uit dezelfde materie die zich
samentrok vlak na de oerknal. Bovendien zijn het simpele, bijna ronde objecten, die
we ook nog eens van relatief dichtbij kunnen waarnemen, omdat ze zich in onze eigen
Melkweg bevinden. In deze bolhopen kunnen we (veel van) de sterren afzonderlijk
waarnemen en hun individuele snelheden langs de gezichtslijn en zelfs in het vlak van
de hemel bepalen. Deze laatste zogenaamde eigenbewegingen worden verkregen door
heel nauwkeurig de positieverandering van de sterren in de tijd te meten. Momenteeel
zijn zulke metingen van de kinematica van individuele sterren alleen goed mogelijk
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voor de nabijste stersystemen en voor sterren in de Melkweg zelf. Omdat wij zelf deel
uitmaken van de Melkweg, is ons zicht helaas sterk vertroebeld door het aanwezige
gas en stof.

In het begin van de negentiende eeuw werd duidelijk dat de Melkweg slechts één
van de ‘nevels’ is die aan de hemel te zien zijn. Fotografische waarnemingen lieten
zien dat deze sterrenstelsels in verschillende soorten voorkomen. Dit zette Hubble
in 1936 aan ze onder te verdelen in vier verschillende groepen naar aanleiding van
hun waargenomen vorm. In het resulterende Hubble diagram (of Hubble stemvork)
behoort de Melkweg tot de stelsels met een grote schijf, ook wel spiralen genoemd van-
wege de prominent aanwezige spiraalarmen. Aan het andere uiteinde van het diagram
vinden we de elliptische stelsels met een (zeer) eenvoudig uitziende structuur. Tussen
beide uiteindes in vinden we de lensvormige stelsels met een schijf en een sferoı̈dale
verdeling van de sterren, maar geen (prominente) spiraalarmen. De vierde groep be-
staat uit stelsels zonder een regelmatige vorm en deze worden dan ook heel toepasse-
lijk onregelmatige stelsels genoemd. Toentertijd dacht men dat de complex uitziende
spiraalstelsels evolueerden uit de schijnbaar eenvoudige elliptische stelsels. Ondanks
dat we tegenwoordig weten dat de vorming en evolutie van stelsels juist in omgekeerde
volgorde is, worden de spiraalstelsels nog steeds laat-type stelsels genoemd en worden
de elliptische en lensvormige stelsels ook wel aangeduid als vroeg-type stelsels.

De laat-type stelsels, waartoe dus ook de Melkweg behoort, bevatten flinke hoe-
veelheden gas en stof en er vindt regelmatig (of zelfs continu) intensieve stervorming
plaats die de omgeving als het ware ‘schoonveegt’, waardoor het erg lastig wordt de
ontstaansgeschiedenis te achterhalen. Daarentegen bevatten vroeg-type stelsels over
het algemeen weinig gas en stof en vertonen geen recente stervorming, zodat ze ide-
aal zijn voor het bestuderen van de vorming en evolutie van sterrenstelsels. Voor de
‘nabije’ (< 300 miljoen lichtjaar) vroeg-type stelsels kunnen we de fossiele resten van
hun vorming in detail bestuderen. In het algemeen kunnen we de individuele sterren
niet onderscheiden, maar desondanks kunnen we hun gezamenlijke licht (fotometrie)
en bewegingen (kinematica) langs de gezichtslijn nauwkeurig meten.

LICHTVERDELING

De waargenomen (twee-dimensionale) lichtverdeling van vroeg-type stelsels kan in
het algemeen goed beschreven worden door een set van ellipsen, ieder met hun eigen
helderheid, die volgens een eenvoudige functie afneemt naarmate de straal van de
ellipsen toeneemt. Hoewel de fotometrie van vroeg-type stelsels dus redelijk eenvoudig
is, betekent dit niet dat ook de intrinsieke (drie-dimensionale) structuur eenvoudig
achterhaald en beschreven kan worden.

De conversie van een lichtverdeling gemeten aan de hemel naar een intrinsieke
lichtverdeling is in het algemeen niet uniek. Voor bolvormige objecten is deze zo-
genaamde deprojectie wel uniek, maar er zijn maar heel weinig stelsels die er rond
uitzien en zelfs dan hoeven ze intrinsiek niet bolvormig te zijn. In het geval van af-
geplatte objecten die symmetrisch zijn rond één as is de projectie alleen uniek als we
zo’n axisymmetrisch stelsel bekijken vanuit het vlak loodrecht op de symmetrie-as.
Zo’n zij-aanzicht wordt vaak aangeduid met een inclinatiehoek van 90 graden. Ech-
ter, een stersysteem in evenwicht kan net zo goed een intrinsieke vorm hebben die
verschillend is langs alle drie de assen. In het geval van zo’n triaxiaal stelsel is de
deprojectie in hoge mate niet uniek. Voor de kijkrichting zijn nu twee hoeken nodig.
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Bovendien kan, in tegenstelling tot axisymmetrische objecten, de oriëntatie van de
ellipsen die de lichtverdeling beschrijven, veranderen met straal. Heel snel nadat men
zich dit realiseerde werd dit effect inderdaad waargenomen in elliptische stelsels, wat
aantoonde dat deze stelsels niet axisymmetrisch maar waarschijnlijk triaxiaal zijn.

In het geval van axisymmetrische stelsels kan de afplatting (gedeeltelijk) veroor-
zaakt worden door rotatie, net als de afplatting van de Aarde. Naast deze geordende
beweging, kan in een stersysteem ook de willekeurige beweging van sterren zo’n af-
platting in stand houden. Deze willekeurige beweging, gemeten als de gemiddelde
afwijking van de sterren van hun gemiddelde snelheid, oftewel snelheidsdispersie, ge-
draagt zich als een soort tegendruk die kan variëren met richting en positie binnen
een stersystem. We zeggen dan dat zo’n stersysteem anisotroop is, in tegenstelling tot
een isotroop systeem waarin de dispersie overal hetzelfde is. Ondanks dat anisotropie
een bepaalde vorm kan ondersteunen zoals axisymmetrie of zelfs triaxialiteit, hoeven
anisotropie en vorm niet (volledig) gekoppeld te zijn. Zo kan een bolvormig systeem
bijvoorbeeld ook een anisotrope snelheidsverdeling hebben.

Anisotropie en andere dynamische eigenschappen kunnen niet bepaald worden uit
fotometrie alleen, maar vergen ook kinematische metingen. Toen in de midden jaren
zeventig en de vroege jaren tachtig van de vorige eeuw de rotatie en de dispersie van
vroeg-type stelsels werd gemeten, was één van de belangrijke conclusies dat vroeg-
type stelsels in het algemeen te langzaam roteren om de afplatting volledig te kunnen
verklaren. Verdere waarnemingen lieten zien dat terwijl de lichtzwakkere elliptische
en de lensvormige stelsels schijfvormig zijn met duidelijke rotatie, de grote elliptische
stelsels ovaler van vorm zijn met vaak nauwelijks enige rotatie. Deze tweedeling werd
toegeschreven aan verschillende onderliggende dynamische structuren, waarbij de
zwakkere vroeg-type stelsels isotrope roterende axisymmetrische systemen zijn en de
heldere vroeg-type stelsels anisotrope triaxiale systemen zijn.

Echter, recente (N-deeltjes) simulaties van samensmeltende stelsels lijken het te-
genovergestelde te suggereren voor de anisotropie: zwakkere anisotrope en heldere
isotrope vroeg-type stelsels. Op basis van de intrinsieke dynamische structuur die
volgt uit dynamische modellen van een serie van vroeg-type stelsels, komen wij tot
dezelfde conclusies. Het is duidelijk dat zulke gedetailleerde simulaties en dynami-
sche modellen van stelsels cruciaal zijn om hun ontstaansgeschiedenis te achterha-
len. Zo’n verbetering in de bepaling van de intrinsieke dynamische structuur zou niet
mogelijk zijn zonder de toevoeging van twee-dimensionale kinematische waarnemin-
gen en realistische dynamische modellen, die hierna beide nader worden toegelicht.

TWEE-DIMENSIONALE KINEMATISCHE WAARNEMINGEN

Vroeg-type sterrenstelsels kunnen in het algemeen beschouwd worden als botsingslo-
ze stersystemen in evenwicht. Alleen in het centrum kan de dichtheid van de sterren
hoog genoeg worden zodat ze elkaars banen gaan beı̈nvloeden. Elders vormen de
sterren een botsingsloos systeem en bewegen ze onder invloed van het gemiddelde
zwaartekrachtsveld van alle andere sterren. Met uitzondering van mogelijk de bui-
tenste delen van een stersysteem is sinds het ontstaan van het systeem genoeg tijd
verstreken voor de sterren om in dynamisch evenwicht te komen. Deze aannames
gelden veelal ook voor bolhopen behalve in hun kernen die vaak niet botsingsloos
zijn. Als een stersysteem botsingsloos en in evenwicht is dan wordt zijn dynamische
toestand volledig beschreven door de distributie functie (DF) van de sterren in de
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zes-dimensionale fase-ruimte van posities en snelheden.
Van sterren in de Melkweg en die in de nabije stersystemen zoals bolhopen, kun-

nen we de snelheid langs de gezichtslijn en de eigenbewegingen meten als functie van
hun positie aan de hemel. We missen dan alleen nog de afstand, waarvan de bepaling
in het algemeen erg lastig en onzeker is. Vertroebeling door gas en stof gecombineerd
met beperkt ruimtelijk en snelheids oplossend vermogen van de meetinstrumenten,
zorgen er bovendien voor dat waarnemingen niet compleet zijn. Desondanks zullen
toekomstige ruimtemissies zoals GAIA naar verwachting voor een groot deel van de
Melkweg en omgeving de zes dimensies in kaart brengen.

Al na een relatief kleine toename in afstand (in de orde van enkele duizenden
lichtjaren) kunnen we geen individuele sterren meer waarnemen (althans niet met
de huidige telescopen). We kunnen dan nog wel de geprojecteerde lichtverdeling en
voor nabije systemen ook de gezamenlijke snelheidsverdeling van de sterren langs
de gezichtslijn meten. In de meting van deze snelheidsverdeling is de laatste jaren
een grote stap voorwaarts gemaakt van (één-dimensionale) spleetspectrografen naar
twee-dimensionale spectrografen. Terwijl een spleetspectrograaf het licht afkomstig
van een rij posities aan de hemel via een spleet verstrooit in verschillende golflengten,
gebeurt dit in het geval van twee-dimensionale spectrografen via een matrix van alle-
maal kleine lensjes, een bundel van glasvezels of een rij van aaneengesloten spleten.
Op deze manier leveren twee-dimensionale spectrografen dus een spectrum van posi-
ties in twee dimensies aan de hemel. Uit de verschuiving en de vorm van de lijnen in
elk spectrum kan dan vervolgens de snelheidsverdeling van sterren en gas, tezamen
met eigenschappen zoals gemiddelde leeftijd en samenstelling van de sterren, bepaald
worden op verschillende plaatsen in het stelsel.

DYNAMISCHE MODELLEN

Twee-dimensionale spectroscopie heeft (letterlijk) een nieuwe dimensie toegevoegd
aan de waarnemingen van vroeg-type stelsels. De resulterende kinematische kaarten
geven drie-dimensionale informatie over de DF. We moeten wel rekening houden met
de onzekerheden in de kaarten door de onvermijdelijke ruis. Bovendien hebben we te
maken met een onbekende kijkrichting, een in het algemeen niet unieke deprojectie
van de lichtverdeling, die we vervolgens ook nog moeten omzetten naar een massaver-
deling via een onbekende massa-lichtkracht verhouding om de interne structuur te
kunnen bestuderen. Tenslotte is er de mogelijke aanwezigheid van donkere materie,
die we niet direct kunnen zien, maar wel effect heeft op de kinematica van de sterren.
Dit alles beschouwend lijkt het een hopeloze zaak om de DF in de zes-dimensionale
fase-ruimte te reconstrueren. Gelukkig hangt voor stersystemen in evenwicht de DF
in het algemeen af van minder dan zes parameters.

INTEGRALEN VAN BEWEGING

De stelling van Jeans zegt dat de DF een functie is van de integralen van beweging. In
een stationair stersysteem is de energie E altijd een integraal van beweging. Een ster
met een bepaalde energie zal een baan kunnen beschrijven die reikt tot een maximale
afstand vanaf het centrum van het stersysteem opgelegd door de grootte van E. Op
eenzelfde manier kan behoud van hoekimpuls L verdere beperkingen opleggen. Als
voor deze ster bijvoorbeeld ook de component van de hoekimpuls Lz parallel aan
de z-as een integraal van beweging is, dan zal hij roterend rond de z-as een baan
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beschrijven die ingeperkt is tussen een minimale en maximale straal.
In een sferische gravitationele potentiaal zijn naast E de drie componenten L be-

houden, maar in het geval dat ook de DF sferisch is, alleen de grootte L, omdat de
richting er dan niet toe doet. De sterbanen zijn rosettes ingeperkt tussen schillen
met een minimale en maximale straal in een vlak. In een axisymmetrische potentiaal
voldoen de meeste sterbanen aan drie integralen van beweging: E, Lz parallel aan
de symmetrie z-as en een derde integraal van beweging I3, waarvan de precieze uit-
drukking in het algemeen onbekend is. Terwijl E en Lz er voor zorgen dat de rond de
z-as roterende sterbanen zich kunnen bewegen in een volume dat de vorm heeft van
een torus, zorgt I3 voor een verdere inperking van dit volume. In het triaxiale geval
zijn er naast E nog twee integralen van beweging, I2 and I3, die in het algemeen beide
onbekend zijn. Er is een grote variatie aan mogelijke sterbanen die bovendien kunnen
roteren om ofwel de korte ofwel de lange as.

Alhoewel complexe sterbanen mogelijk zijn in de zes-dimensionale fase-ruimte,
hangt de DF in het algemeen dus slechts af van drie integralen van beweging. Door
nu een functionele vorm voor de DF te kiezen, kunnen alle dynamische eigenschappen
van een stersysteem worden uitgerekend en vergeleken met de waargenomen lichtver-
deling en kinematica. In het algemeen is de gekozen DF een functie van de bekende
integralen van beweging, zoals een functie van E en Lz in het axisymmetrische ge-
val. Deze ‘twee-integraal’ modellen hebben significant bijgedragen aan ons begrip van
de dynamische structuur van stersystemen, maar voor meer realistische modellen
moeten we ook de derde integraal van beweging meenemen. Dit is niet gemakkelijk
omdat deze derde integraal in het algemeen onbekend is. Het maken van triaxiale
modellen met in het algemeen twee onbekende integralen van beweging is zelfs nog
gecompliceerder.

Een uitzondering hierop is de speciale familie van modellen met een gravitationele
potentiaal van Stäckel vorm, waarvoor alledrie de integralen van beweging explicitiet
bekend zijn. Er is een grote vrijheid in de massaverdeling, maar een sterke piek in
centrum van het stelsel is niet toegestaan, zodat deze modellen ongeschikt zijn voor
het beschrijven van de centrale delen van sterrenstelsels met een heel zwaar zwart
gat. Desondanks zijn de kinematische eigenschappen van deze modellen net zo rijk
als waargenomen in vroeg-type stelsels. Verscheidene DFs zijn dan ook geconstrueerd
voor deze Stäckel modellen en ze kunnen worden gebruikt om realistische modellen
van sterrenstelsels te construeren, waarvan de kinematica overeenkomt met die vol-
gend uit waarnemingen met twee-dimensionale spectrografen (Hoofdstuk 4).

SNELHEIDSMOMENTEN

Een manier om de in het algemeen onbekende integralen van beweging te omzeilen
is door het oplossen van de continuı̈teitsvergelijking en de Jeans vergelijkingen voor
de snelheidsmomenten van de DF. De continuı̈teitsvergelijking relateert de drie eer-
ste momenten 〈vx〉, 〈vy〉 en 〈vz〉, en de Jeans vergelijkingen relateren de negen tweede
momenten, 〈v2

x〉, 〈vxvy〉, . . . , 〈v2
z〉, direct aan de sterdichtheid en de gravitationele po-

tentiaal, zonder dat we de DF hoeven te kennen. Jammer genoeg zijn er in bijna alle
gevallen minder vergelijkingen dan snelheidsmomenten, zodat extra aannames over
de anisotropie gemaakt moeten worden.

Dit is niet nodig in het geval van Stäckel modellen in zogenaamde confocale el-
lipsoı̈dale coördinaten. In deze coördinaten geldt voor elke sterbaan in een Stäckel
potentiaal dat slechts één eerste moment niet nul is, zodat de continuı̈teitsvergelij-
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king vrij eenvoudig opgelost kan worden. Omdat alle gecorreleerde tweede momenten
verdwijnen, vormen de Jeans vergelijkingen een gesloten systeem met evenveel verge-
lijkingen als tweede momenten. Terwijl voor het axisymmetrische geval de oplossing
al enige tijd bekend is, wordt die voor het triaxiale geval afgeleid in Hoofdstuk 5.

We zijn al veel te weten gekomen over de dynamische structuur van stersystemen
door hun waargenomen lichtverdeling en kinematica te modelleren met oplossingen
van de continuı̈teitsvergelijking en Jeans vergelijkingen. Toch moeten we voorzichtig
zijn omdat de oplossingen voor de snelheidsmomenten niet garanderen dat de onder-
liggende DF positief en dus fysisch is.

BEWEGINGSVERGELIJKIGEN

We kunnen modellen met een mogelijke niet-fysische DF vermijden, zonder de DF zelf
te definiëren, door in een gegeven gravitationele potentiaal de bewegingsvergelijkingen
direct op te lossen en de daaruit volgende dichtheids- en snelheidsverdeling te fitten
aan de waargenomen lichtverdeling en kinematica. Analytisch is dit alleen mogelijk
voor (zeer) speciale keuzes van de potentiaal, of door middel van het (linear) benade-
ren van de bewegingsvergelijkingen (zie Hoofdstuk 3 voor een voorbeeld). Een heel
krachtige numerieke methode is afkomstig van (en vernoemd naar) Schwarzschild
en is gebaseerd op het optellen van sterbanen. De methode begint met het creëren
van een representatieve bibliotheek van sterbanen door de bewegingsvergelijkingen
numeriek te integreren in een willekeurige potentiaal met mogelijke bijdragen van
donkere materie. Daarna worden gewichten toegekend aan de sterbanen, zodanig dat
de gecombineerde en geprojecteerde dichtheids- en snelheidsverdeling het beste de
waargenomen lichtverdeling en (twee-dimensionale) kinematica fit. De zo gevonden
verdeling van (positieve) baangewichten representeert de DF, die dus gegarandeerd
overal positief is.

De afgelopen jaren hebben verschillende groepen onafhankelijke numerieke axi-
symmetrische implementaties van Schwarzschilds methode ontwikkeld en gebruikt
om massa’s van zwarte gaten, massa-lichtkracht verhoudingen, de verdeling van don-
kere materie en ook de DF van vroeg-type stelsels te bepalen door het in detail fitten
van hun waargenomen lichtverdeling en snelheidsverdeling langs de gezichtslijn. Door
ook eigenbewegingen in het vlak van de hemel toe te voegen wordt het mogelijk de af-
stand en dynamische structuur van nabije bolhopen te bepalen (Hoofdstuk 2). Met
een (zeker niet eenvoudige) uitbreiding van Schwarzschilds methode naar triaxiale ge-
ometrie (zie o.a. Hoofdstuk 4), wordt het mogelijk elliptische stelsels te modelleren
die niet-axisymmetrische kenmerken vertonen in hun waargenomen lichtverdeling
(draaiing van de ellipsen) en kinematica (bijvoorbeeld om verschillende assen roteren-
de componenten).

DYNAMISCHE STRUCTUUR EN EVOLUTIE

Hierboven hebben we drie manieren beschreven om stersystemen te modelleren, ach-
tereenvolgens gebaseerd op een gekozen DF als functie van (bekende) integralen van
beweging, op de continuı̈teitsvergelijking en Jeans vergelijkingen opgelost voor de
snelheidsmomenten, en op de bewegingsvergelijkingen (numeriek) geı̈ntegreerd. In
deze volgorde neemt de vrijheid en flexibiliteit van de aanpak toe, maar tegelijkertijd
ook de moeite (en computertijd) om het best fittende model te vinden. Vooral voor
het modelleren van triaxiale stersystemen kunnen de eerste twee methoden erg nuttig
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zijn om de grote parameterruimte in te perken, alvorens de algemenere maar compu-
terintensievere Schwarzschild methode toe te passen. Een dergelijke combinatie van
modelleertechnieken vormt een krachtig gereedschap om in nabije bolhopen en vroeg-
type stelsels te zoeken naar fossiele overblijfselen van hun ontstaansgeschiedenis.

Voor alle dynamische modellen vormt de gravitationele potentiaal de basis. In het
algemeen wordt deze verkregen uit de lichtverdeling via deprojectie en conversie van
licht naar massa, voor een gegeven kijkrichting en massa-lichtkracht verhouding. Zo-
als we zagen is de deprojectie in het algemeen niet uniek, de kijkrichting onbekend,
net zoals de massa-lichtkracht verhouding die bovendien ook nog eens niet constant
hoeft te zijn bij de aanwezigheid van donkere materie. Alhoewel de gereconstrueerde
potentiaal dus kan afwijken van de werkelijke, suggeren verscheidene tests dat de
dynamische structuur teruggevonden wordt, mits er genoeg en nauwkeurige waarne-
mingen zijn (zie ook Hoofdstuk 2 en 4).

Een unieke manier om direct houvast te krijgen op de potentiaal is via (sterke) gra-
vitatielenzen. Het licht van een verafgelegen heldere bron wordt afgebogen door een
sterrenstelsel, resulterend in meerdere en versterkte afbeeldingen van de bron rond-
om het lensstelsel. De relatieve positie en lichtkracht van de beelden hangen af van
de massaverdeling (inclusief mogelijk donkere materie) van het lensstelsel en leggen
daarmee de gravitationele potentiaal (voor een groot deel) vast. Vervolgens kunnen
we door een dynamisch model van het lensstelsel te maken en deze te vergelijken met
de waargenomen lichtverdeling en kinematica, de donkere materie in het lensstelsel
bestuderen. Slechts enkele van de tot nu toe bekende lenssystemen staan dichtbij
genoeg om voldoende fotometrische en (twee-dimensionale) kinematische metingen te
vergaren voor een gedetailleerde dynamische studie (Hoofdstuk 6).

Op grotere afstanden kunnen we alleen nog de globale eigenschappen van stel-
sels meten. En dan hebben we vaak alleen nog de fotometrische eigenschappen zoals
lichtkracht, kleur en grootte tot onze beschikking, omdat kinematische metingen via
spectra erg lastig worden met de sterk afnemende helderheid. Sterke gravitatielenzen
zorgen hier voor een uitweg: omdat de snelheidsdispersie van een lensstelsel is ge-
relateerd aan zijn massa, kunnen we de (centrale waarde van de) dispersie schatten
uit de onderlinge afstand van de beelden van de verafgelegen heldere bron. Als de
globale eigenschappen van verschillende stelsels eenmaal bekend zijn, dan kunnen
we deze stelsels met elkaar vergelijken en hun evolutie bestuderen door gebruik te
maken van schalingsrelaties zoals de Fundamental Plane relatie. Deze nauwe relatie
tussen de dispersie, grootte en lichtkracht van vroeg-type stelsels verandert met de
tijd doordat de sterren in stelsels uitdoven. Door deze verandering te meten kan de
massa-lichtkracht evolutie van het stelsel achterhaald worden (Hoofdstuk 7). Door
zulke metingen aan de veranderingen van de globale eigenschappen van stelsels te
vergelijken met gedetailleerde bepalingen van de eigenschappen van nabije stelsels,
wordt het mogelijk een beter inzicht te verwerven in de dynamische structuur en evo-
lutie van stersystemen vanaf de oerknal tot aan het heden.

DIT PROEFSCHRIFT

In HOOFDSTUK TWEE bepalen we de afstand D, inclinatie i, massa-lichtkracht ver-
houding M/L, en intrinsieke dynamische structuur van de bolhoop ω Centauri in
onze Melkweg. Hierbij maken we gebruik van eigenbewegingen in het hemelvlak en
snelheden langs de gezichtslijn van duizenden sterren in de bolhoop. We corrigeren
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de gemeten snelheden voor de beweging van de bolhoop als geheel. Verder bevatten
de eigenbewegingen een rotatiecomponent veroorzaakt door de relatieve draaiing van
de fotografische platen waarvan ze gemeten zijn. We laten zien dat deze kunstmatige
rotatie verwijderd kan worden zonder enige modellering en dat enkel de aanname van
axisymmetrie volstaat. Dit levert tevens een nauwkeurige bepaling van D tan i op. De
gecorrigeerde gemiddelde snelheidsvelden zijn consistent met axisymmetrische rotatie
en de snelheidsdispersies duiden op significante afwijkingen van isotropie.

We modelleren vervolgens ω Centauri met een axisymmetrische implementatie
van de Schwarzschild methode, die nauwkeurig de lichtverdeling fit, geen aannames
maakt over de anisotropie in de bolhoop en bovendien variatie in M/L toestaat. We
middelen de individuele snelheidsmetingen om effectief de parameterruimte te kun-
nen doorzoeken. We voeren verscheidene tests uit met een analytisch model, waaruit
blijkt dat met deze methode de afstand gemeten kan worden met een nauwkeurigheid
van ongeveer 6 procent. Toepassing van de methode op ω Centauri laat zien dat M/L
niet varieert met straal. Het best fittende model heeft een massa-lichtkracht verhou-
ding (in de V -band) van M/LV = 2.5 ± 0.1 M�/L� en een inclinatie van i = 50◦ ± 4◦,
wat overeenkomt met een gemiddelde intrinsieke assenverhouding van 0.78 ± 0.03. De
gevonden afstand D = 4.8 ± 0.3 kpc (afstand modulus van 13.75 ± 0.13 mag) is signifi-
cant groter dan die volgt uit simpele sferische of constante-anisiotropie modellen en
is consistent met de canonieke waarde van 5.0± 0.2 kpc gemeten met behulp van foto-
metrische methoden. De totale massa van de bolhoop is (2.5 ± 0.3) × 106 M�. Het best
fittende model is binnen een straal van 10 boogminuten vrijwel isotroop, maar wordt
naar buiten toe steeds meer tangentieel anisotroop met toenemende rotatie. Het is
goed mogelijk dat deze fase-ruimte structuur veroorzaakt wordt door getijde-effecten
van de Melkweg. Tenslotte laat het model in een gebied tussen 1 en 3 boogminuten
een afzonderlijke schijf-achtige structuur zien, met ongeveer 4% van de totale massa.

In HOOFDSTUK DRIE analyseren we kinematische kaarten van de binnenste delen
van het nabij gelegen vroeg-type spiraalstelsel NGC 5448, verkregen uit waarnemin-
gen met de twee-dimensionale spectograaf SAURON aan de 4.2 meter William Herschel
Telescoop op La Palma. De verstoorde structuur en kinematica van het gas wijzen op
duidelijke afwijkingen van simpele rotatie langs cirkels. De kinematica van de sterren
is veel regelmatiger en duidt op de aanwezigheid van een kleine schijf-achtige compo-
nent in een grote roterende structuur. We delen het snelheidsveld van het gas op in
verschillende componenten en laten zien dat de voornaamste eigenschappen consis-
tent zijn met een eenvoudig model met een roterende balk. Dit model is verkregen uit
de analytische oplossing van de lage orde lineaire termen van de bewegingsvergelij-
kingen voor het geval van een zwakke roterende balk. Een aantal van de afwijkingen
tussen dit model en de data worden mogelijk veroorzaakt door de asymmetrische ver-
deling van stof in NGC 5448.

In HOOFDSTUK VIER construeren we axisymmetrische en triaxiale modellen met
een DF die afhangt van lineare combinaties van de drie exacte integralen van be-
weging in een separabele Stäckel potentiaal. Voor deze zogenaamde Abel modellen
kunnen we de dichtheid en snelheidsmomenten op een efficiënte manier uitrekenen
en we laten zien dat ze veel van de rijke interne dynamica van vroeg-type stelsels
kunnen beschrijven. We gebruiken deze modellen om de kinematische kaarten na
te bootsen die volgen uit waarnemingen met twee-dimensionale spectrografen zoals
SAURON. We fitten deze gesimuleerde waarnemingen met axisymmetrische en triaxiale
modellen gemaakt met onze numerieke implementatie van de Schwarzschild metho-
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de, terwijl we de intrinsieke vorm en kijkrichting veranderen. We concluderen dat de
Schwarzschild methode ons in staat stelt de interne structuur van vroeg-type stelsels
te bepalen en nauwkeurig de massa-lichtkracht verhouding te meten, maar dat extra
informatie nodig is om de kijkrichting beter in te perken.

In HOOFDSTUK VIJF zetten we onze analyse van modellen met separabele poten-
tialen voort en leiden we de algemene oplossing van de Jeans vergelijkingen af. De-
ze vergelijkingen relateren de tweede orde snelheidsmomenten aan de dichtheid en
potentiaal van een stersysteem, zonder verder aannames over de DF. Voor algeme-
ne drie-dimensionale stersystemen zijn er drie vergelijkingen en zes onafhankelijke
momenten, maar in een triaxiale Stäckel potentiaal verdwijnen de gecorelleerde mo-
menten in confocale ellipsoı̈dale coördinaten. De drie Jeans vergelijkingen en drie
overgebleven momenten vormen een gesloten systeem van drie symmetrische gekop-
pelde eerste orde partiële differentiaalvergelijkingen in drie variabelen. Meer dan 40
jaar nadat Lynden-Bell ze afleidde, geven we in dit hoofdstuk de oplossing.

We lossen allereerst de Jeans vergelijkingen in de axisymmetrische limiet op met
een nieuwe methode gebaseerd op het optellen van particuliere oplossingen. Deze
twee-dimensionale oplossingen passen we toe op (elliptische) schijven, oblate en pro-
late sferoı̈den en op de schaalvrije triaxiale limiet. Daarna breiden we onze methode
uit naar triaxiale modellen en vinden de algemene oplossing. Deze kan uitgedrukt
worden in termen van (hyper)elliptische integralen die op een efficiente manier nu-
meriek geëvalueerd kunnen worden. De oplossing geeft de volledige set van tweede
momenten die een triaxiale dichtheidsverdeling in een separabele potentiaal kunnen
ondersteunen.

In HOOFDSTUK ZES onderzoeken we de totale massverdeling in de binnendelen van
het gravitationele lenssysteem QSO 2237+0305, beter bekend als het Einstein Cross.
In dit systeem wordt het licht afkomstig van een veraf gelegen quasar afgebogen door
een vroeg-type spiraal stelsel op een roodverschuiving van z = 0.04, oftewel op een
afstand van bijna 500 miljoen lichtjaar. We leiden de intrinsieke lichtverdeling van
het lensstelsel af door de gemeten lichtverdeling aan de hemel te deprojecteren. Ver-
volgens construeren we een lensmodel dat nauwkeurig de posities en relatieve licht-
kracht van de vier afbeeldingen van de quasar fit. Dan bouwen we een realistisch
afgeplat dynamisch model van het lensstelsel dat voldoet aan de voorlopige kinemati-
sche waarnemingen gedaan met de twee-dimensionale spectrograaf GMOS aan de 8.2
meter Gemini Noord Telescoop op Mauna Kea. We vinden dat de gemeten snelheids-
dispersie van 167 ± 10 km s−1 in het gebied omsloten door de quasar afbeeldingen in
overeenstemming is met de voorspelde waarde uit ons en eerdere lensmodellen. Ook
de massa in dit gebied dat volgt uit het model dat het beste bij de waarnemingen
past is consistent met de onafhankelijk bepaalde waarde uit ons lensmodel. Tenslotte
vertoont ook de vorm van geprojecteerde dichtheid van het lens model veel gelijkenis
met de waargenomen lichtverdeling van het lensstelsel. Echter, verdere verbeterin-
gen aan de voorlopige kinematische waarnemingen zijn nodig, alvorens we definitieve
conclusies kunnen trekken over de total massaverdeling in het lensstelsel.

In HOOFDSTUK ZEVEN beschouwen we naast het Einstein Cross nog 25 andere gra-
vitationele lenssystemen met roodverschuiving tot z ∼ 1. Op dergelijke grote afstanden
zijn we beperkt tot het bestuderen van de globale (dynamische) eigenschappen van de-
ze lensstelsels. Ze zijn representatief voor vroeg-type veldstelsels, dat wil zeggen in een
omgeving van relatief lage dichtheid aan stelsels in tegenstelling tot cluster stelsels.
De Fundamental Plane relatie van deze lensstelsels op verschillende roodverschuivin-
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gen maakt het mogelijk om de evolutie van hun massa-lichtkracht verhouding M/L
te bestuderen. Als we aannemen dat de M/L van vroeg-type stelsels evolueert als een
machtswet, vinden we voor de lensstelsels een evolutie d log(M/L)/dz = −0.62 ± 0.13 in
de B-band. Dit betekent dat de sterren gemiddeld gevormd zijn op een roodverschui-
ving van 〈z?〉 = 1.8+1.4

−0.5.
Er rekening mee houdend dat op hogere roodverschuiving laat-type stelsels mo-

gelijk nog evolueren (door samensmelting) tot vroeg-type stelsels, geldt voor sterren
in cluster stelsels 〈zcl

? 〉 = 2.0+0.3
−0.2. Dit is niet significant anders dan de lensstelsels,

in tegenstelling tot voorspellingen door de huidige theoriën van de vorming van ster-
renstelsels. Als we echter aannemen dat stelsels van dezelfde leeftijd gelijke M/L
hebben, vinden we dat de sterpopulaties in lensstelsels gemiddeld 10–15 % jonger zijn
dan die in clusterstelsels. Verder vertonen zowel de M/L waarden als de kleuren van
de lensstelsels een significante spreiding. Terwijl ongeveer de helft van de lensstel-
sels consistent zijn met een oude sterpopulatie zoals in clusterstelsels, zijn andere
lensstelsels veel blauwer met jongere sterpopulaties die mogelijk pas gevormd zijn op
z? ∼ 1. Bovendien is de spreiding in kleur gerelateerd aan die in de M/L. We zien
dit als bewijs voor een significante spreiding in de leeftijden van de sterpopulaties in
lensstelsels, in tegenstelling tot de oude populaties in clusterstelsels die in dezelfde
periode gevormd lijken te zijn.

TOEKOMSTPERSPECTIEVEN

Een belangrijk deel van het werk gepresenteerd in dit proefschrift betreft de uitbrei-
ding van axisymmetrische naar triaxiale modellen voor sterrenstelsels. Dit is vooral
belangrijk voor de zware elliptische stelsels, waarvan vele duidelijke afwijkingen van
axisymmetrie vertonen in hun kinematica gemeten met behulp van twee-dimensionale
spectrografen zoals SAURON. Triaxiale modellen van deze zware elliptische stelsels, te-
zamen met axisymmetrische modellen van twee dozijn andere elliptische en lensvor-
mige stelsels die al geconstrueerd zijn, zullen het mogelijk maken de fossiele overblijf-
selen in deze ‘schone’ vroeg-type stelsels in detail te bestuderen.

Omdat SAURON typisch de heldere binnendelen van stelsels waarneemt, hebben
we extra informatie nodig om onderzoek te doen naar de uitgestrekte donkere materie
verdeling zoals voorspeld door de huidige theoriën over de vorming van stelsels. We
hebben gezien dat gravitatielenzen informatie verschaffen over de donkere materie,
maar slechts enkele lensstelsels staan dichtbij genoeg om in detail te modelleren. Mo-
menteel onderzoeken we het gebruik van het relatief grote waarneemveld van SAURON
om alsnog kinematische metingen te doen in de lichtzwakke buitendelen van stelsels.
Overige kinematische metingen komen voort uit waarnemingen van neutraal water-
stof en van Röntgen straling, als ook de snelheden van bolhopen en planetaire nevels
in de buitendelen van deze stelsels. We zijn begonnen met het uitbreiden van onze
modelleer software om ook zulke discrete waarnemingen mee te kunnen nemen. De-
ze toevoeging is ook belangrijk met betrekking tot het modelleren van de individueel
waarneembare sterren in de Melkweg en in de omliggende stersystemen.

Voor nabij gelegen bolhopen zoals ω Centauri zullen we dan in staat zijn de waar-
genomen snelheden van individuele sterren (in drie dimensies) direct te fitten, met
eventueel zelfs de toevoeging van metingen van hun leeftijd en samenstelling. Op deze
manier kunnen verschillende populaties van sterren in de fase-ruimte gescheiden
worden, waarna hun structuur en dynamica afzonderlijk bestudeerd kunnen worden.
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Door bovendien direct de eigenbewegingen in het centrum van bolhopen, gemeten met
behulp van de Hubble Space Telescope, te fitten, kunnen we het mogelijke bestaan
van zwarte gaten in bolhopen onderzoeken.

Het modelleren van de sterren in de Melkweg wordt sterk bemoeilijkt door de aan-
wezigheid van stof en een roterende balk. Dit laatste vereist een zeker niet vanzelfspre-
kende uitbreiding van onze (statische) modelleer software. In een inleidend onderzoek
hebben we de zeer nauwkeurige snelheidsmetingen van meer dan duizend sterren
gebruikt om aan te tonen dat met zo’n uitbreiding het binnenste van de Melkweg ge-
modelleerd kan worden met direct bewijs voor het bestaan van een balk. Verder zal
deze uitbreiding het mogelijk maken andere roterende stelsels (met mogelijk een balk)
te modelleren, waaronder de vroeg-type spiraalstelsels waargenomen met SAURON, en
een link te leggen tussen de kinematica van het sterren en het gas.

De grote hoeveelheid fotometrische en kinematische data die inmiddels al beschik-
baar is, zal snel toenemen met de bestaande en toekomstige instrumenten en mis-
sies, zoals RAVE, GAIA en SIM, die data van miljoenen sterren zullen opleveren, als-
ook VIMOS, SINFONI, MUSE en andere twee-dimensionale spectrografen, die ons zullen
voorzien van twee-dimensionale data van vele nabije stelsels. Tegelijkertijd maken de
snelle ontwikkeling van telescopen en de grootte van hun spiegels een steeds diepere
blik in het heelal mogelijk, met een direct zicht op de evolutie en zelfs vorming van
stersystemen. Het werk gepresenteerd in dit proefschrift betekent een stap vooruit
in de ontwikkeling en toepassing van dynamische modellen om uit deze rijkdom aan
data te achterhalen hoe stersystemen zich ontwikkeld hebben vanaf de oerknal tot de
dag van vandaag.
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APPENDIX: COLOR FIGURES

CHAPTER 2: FIGURE 6 — The mean velocity fields of ω Cen corrected for perspective
and solid-body rotation. The individual measurements are smoothed using adaptive
kernel smoothening. From top to bottom: The mean ground-based proper motion in
the major axis x′-direction and in the minor axis y′-direction, and the mean line-of-
sight velocity. From left to right: Observed velocity fields of ω Cen, contribution from
perspective rotation, contribution from solid-body rotation and the velocity fields after
correcting for both. The perspective rotation is caused by the space motion of ω Cen.
The solid-body rotation in the proper motions is due to relative rotation of the first
and second epoch photographic plates by an amount of 0.029 mas yr−1 arcmin−1.
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CHAPTER 2: FIGURE 17 — The colors represent the mean azimuthal rotation 〈vφ〉 in
the meridional plane as a function of equatorial plane radius R and height z, and
normalized by σRMS (excluding the axes to avoid numerical problems). The black
curves are contours of constant mass density, from the mass model (solid) and from
the best-fit model (dashed), showing that the mass is well fitted.

CHAPTER 2: FIGURE 19 — The orbital weight distribution for our best-fit model of
ω Cen. From left to right, the panels show the orbital weight distribution at increasing
distance from the center, which corresponds to increasing energy. The radius Rc of the
circular orbit at the corresponding energy is given above each panel. The radial range
that is shown is constrained by the observations and contains more than 90% of the
total cluster mass. The vertical axis represents the angular momentum Lz in units of
Lmax, the angular momentum of the circular orbit. The horizontal axis represents the
third integral I3, parameterized by the number of the (linearly sampled) starting angle
of the orbit. Black shading corresponds to zero orbital weights, and white corresponds
to the maximum orbital weight in each panel. At the bottom of each panel the fraction
of the included mass with respect to the total mass is indicated (in %).
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CHAPTER 2: FIGURE 20 — Kinematics of different components in the distribution
function of our best-fit model for ω Cen. From left to right: full distribution function,
main inner component, main outer component and separate disk component between
1 and 3 arcmin (§ 9.4). From top to bottom: spatial distribution, mean velocity fields
in the direction of the major x′-axis, the minor y′-axis and the line-of-sight z ′-axis, and
mean velocity dispersion profiles. The radial and tangential dispersion, σR′ (green) and
σθ′ (red), are on the plane of the sky and σz′ (blue) is the line-of-sight dispersion.
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CHAPTER 3: FIGURE 1 — Top Left: Digitized Sky Survey image of NGC 5448 with
SAURON footprint and north-east orientation arrow. All other panels show the SAURON
data. The stellar flux map and unsharp-masked SAURON image are given in mag
arcsec−2 with arbitrary zero point, and north-east direction as indicated. The titles
are indicated at the bottom right corner of each panel, and the plotting ranges are
given at the top. All SAURON maps are overplotted with stellar contours in magnitude
steps of 0.25, and all velocities and velocity dispersions are given in km s−1.
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CHAPTER 3: FIGURE 3 — A thin isothermal disk model for the stellar velocity field of
NGC 5448. The circle marks the 7′′ region within which we find a disk-like structure.
The disk model, fitted to the field outside this region, implies for the outer disk a scale
length of 18′′, Vsys= 2002 km s−1, and PA= 91◦. The orientation of the maps is the same
as in Fig. 1 of Chapter 3 (see above).
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CHAPTER 3: FIGURE 5 — Zooming into the central few arcseconds of the stellar and
gaseous velocity maps of NGC 5448, using the same velocity range as in Fig. 1 of
Chapter 3 (see above). Indicated are the north-east direction (arrow), the photometric
PA (straight line) and the photometric center (cross). The over-plotted circle indicates
the 7′′ radius for comparison with Fig. 3 of Chapter 3 (see above). In the right panel,
we present the stellar rotation curve (extracted along the photometric PA) together
with the gas rotation curve derived from tilted-ring decomposition.

CHAPTER 4: FIGURE 6 — Kinematic maps for a triaxial Abel model (top) and for the
best-fit triaxial Schwarzschild model (bottom). From left to right: mean line-of-sight
velocity V (in km s−1), velocity dispersion σ (in km s−1) and Gauss-Hermite moments
h3 and h4. The line-of-sight kinematics of the input Abel model have been converted to
observables with realistic measurement errors as described in the text of Chapter 4.
Isophotes of the surface brightness of the Abel model are overplotted in each map.
At the right side of each map, the (linear) scale of the corresponding kinematics is
indicated by the color bar, and the limits are given below.
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CHAPTER 4: FIGURE 9 — The colors represent the mean motion 〈vy〉 perpendicular to
the (x, z)-plane, normalized by σRMS (excluding the axes to avoid numerical problems),
for a triaxial Abel model (left) and for the best-fit triaxial Schwarzschild model (right).
The ellipses are cross sections of the velocity ellipsoid with the (x, z)-plane. The black
curves are contours of constant mass density in steps of one magnitude, for the input
Abel model (solid) and for the fitted Schwarzschild model (dashed).

CHAPTER 4: FIGURE 11 — The orbital mass weight distribution for the input triaxial
Abel model (top) and for the fitted triaxial Schwarzschild model (bottom). From left
to right the energy increases, corresponding to increasing distance from the center,
indicated by the radius RE (in arcsec) of the thin short-axis tube orbit on the x-axis.
The vertical and horizontal axes represent respectively the second and third integral
of motion, I2 and I3, normalized by their maximum amplitude (for given E). Between
the two rows of panels, the fraction of the included mass with respect to the total
mass is indicated (in %).
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CHAPTER 4: FIGURE 7 — Kinematic maps for an oblate axisymmetric Abel model (top)
and for the fitted axisymmetric Schwarzschild model (bottom), with parameters as in
Fig. 6 of Chapter 4 above.

CHAPTER 4: FIGURE 13 — The mean azimuthal motion 〈vφ〉 perpendicular to the
meridional plane, normalized by σRMS, for an oblate axisymmetric Abel model (left)
and for the best-fit axisymmetric Schwarzschild model (right), with parameters as in
Fig. 9 of Chapter 4 above.



256 Appendix: Color figures

CHAPTER 4: FIGURE 14 — The mass weight distribution for an oblate axisymmetric
Abel model (top) and for the fitted axisymmetric Schwarzschild model (bottom). Pa-
rameters are the same as in Fig. 4 of Chapter 4 above. In this case, the second integral
of motion I2 = 1

2L
2
z, where Lz is the component of the angular momentum parallel to

the symmetry z-axis.

CHAPTER 6: FIGURE 4 — Mean velocity and velocity dispersion field of the lens galaxy
in the Einstein Cross as measured from observations with the integral-field spectro-
graph GMOS on Gemini-North. The overlayed contours of the reconstructed image
show the positions of the quasar images, which affect the kinematics only very lo-
cally. The velocity field shows clear and regular rotation around the (vertically aligned)
short-axis of the bulge. The velocity dispersion is fairly constant across the field, ex-
cept for the region towards the upper-right, where systematic effects cause the dis-
persion to be overestimated.


