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CHAPTER 5

GENERAL SOLUTION OF THE JEANS EQUATIONS FOR

TRIAXIAL GALAXIES WITH SEPARABLE POTENTIALS

ABSTRACT
The Jeans equations relate the second-order velocity moments to the density and
potential of a stellar system. For general three-dimensional stellar systems, there
are three equations and six independent moments. By assuming that the potential
is triaxial and of separable Stäckel form, the mixed moments vanish in confocal
ellipsoidal coordinates. Consequently, the three Jeans equations and three re-
maining non-vanishing moments form a closed system of three highly-symmetric
coupled first-order partial differential equations in three variables. These equa-
tions were first derived by Lynden–Bell, over 40 years ago, but have resisted solu-
tion by standard methods. We present the general solution here.

We consider the two-dimensional limiting cases first. We solve their Jeans equa-
tions by a new method which superposes singular solutions. The singular so-
lutions, which are new, are standard Riemann–Green functions. The resulting
solutions of the Jeans equations give the second moments throughout the system
in terms of prescribed boundary values of certain second moments. The two-
dimensional solutions are applied to non-axisymmetric disks, oblate and prolate
spheroids, and also to the scale-free triaxial limit. There are restrictions on the
boundary conditions which we discuss in detail. We then extend the method of
singular solutions to the triaxial case, and obtain a full solution, again in terms
of prescribed boundary values of second moments. There are restrictions on these
boundary values as well, but the boundary conditions can all be specified in a
single plane. The general solution can be expressed in terms of complete (hy-
per)elliptic integrals which can be evaluated in a straightforward way, and provides
the full set of second moments which can support a triaxial density distribution in
a separable triaxial potential.

G. van de Ven, C. Hunter, E.K. Verolme, P.T. de Zeeuw

MNRAS, 342, 1056–1082 (2003)
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1 INTRODUCTION

M
UCH has been learned about the mass distribution and internal dynamics of

galaxies by modeling their observed kinematics with solutions of the Jeans equa-

tions (e.g., Binney & Tremaine 1987). These are obtained by taking velocity moments

of the collisionless Boltzmann equation for the phase-space distribution function f ,
and connect the second moments (or the velocity dispersions, if the mean streaming

motion is known) directly to the density and the gravitational potential of the galaxy,

without the need to know f . In nearly all cases there are fewer Jeans equations than
velocity moments, so that additional assumptions have to be made about the degree

of anisotropy. Furthermore, the resulting second moments may not correspond to a

physical distribution function f ≥ 0. These significant drawbacks have not prevented
wide application of the Jeans approach to the kinematics of galaxies, even though the

results need to be interpreted with care. Fortunately, efficient analytic and numer-

ical methods have been developed in the past decade to calculate the full range of

distribution functions f that correspond to spherical or axisymmetric galaxies, and
to fit them directly to kinematic measurements (e.g., Gerhard 1993; Qian et al. 1995;

Rix et al. 1997; van der Marel et al. 1998). This has provided, for example, accurate

intrinsic shapes, mass-to-light ratios, and central black hole masses (e.g., Verolme et

al. 2002; Gebhardt et al. 2003).

Many galaxy components are not spherical or axisymmetric, but have triaxial

shapes (Binney 1976, 1978). These include early-type bulges, bars, and giant el-

liptical galaxies. In this geometry, there are three Jeans equations, but little use

has been made of them, as they contain six independent second moments, three of

which have to be chosen ad-hoc (see, e.g., Evans, Carollo & de Zeeuw 2000). At the

same time, not much is known about the range of physical solutions, as very few

distribution functions have been computed, and even fewer have been compared with

kinematic data (but see Zhao 1996).

An exception is provided by the special set of triaxial mass models that have a grav-

itational potential of Stäckel form. In these systems, the Hamilton–Jacobi equation

separates in orthogonal curvilinear coordinates (Stäckel 1891), so that all orbits have

three exact integrals of motion, which are quadratic in the velocities. The associated

mass distributions can have arbitrary central axis ratios and a large range of density

profiles, but they all have cores rather than central density cusps, which implies that

they do not provide perfect fits to galaxies (de Zeeuw, Peletier & Franx 1986). Even so,

they capture much of the rich internal dynamics of large elliptical galaxies (de Zeeuw

1985a, hereafter Z85; Statler 1987, 1991; Arnold, de Zeeuw & Hunter 1994). Numer-

ical and analytic distribution functions have been constructed for these models (e.g.,

Bishop 1986; Statler 1987; Dejonghe & de Zeeuw 1988; Hunter & de Zeeuw 1992,

hereafter HZ92; Mathieu & Dejonghe 1999), and their projected properties have been

used to provide constraints on the intrinsic shapes of individual galaxies (e.g., Statler

1994a, b; Statler & Fry 1994; Statler, DeJonghe & Smecker-Hane 1999; Bak & Statler

2000; Statler 2001).

The Jeans equations for triaxial Stäckel systems have received little attention.

This is remarkable, as Eddington (1915) already knew that the velocity ellipsoid

in these models is everywhere aligned with the confocal ellipsoidal coordinate sys-

tem in which the motion separates. This means that there are only three, and not

six, non-vanishing second-order velocity moments in these coordinates, so that the
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Jeans equations form a closed system. However, Eddington, and later Chandrasekhar

(1939, 1940), did not study the velocity moments, but instead assumed a form for the

distribution function, and then determined which potentials are consistent with it.

Lynden–Bell (1960) was the first to derive the explicit form of the Jeans equations for

the triaxial Stäckel models. He showed that they constitute a highly symmetric set

of three first-order partial differential equations (PDEs) for three unknowns, each of

which is a function of the three confocal ellipsoidal coordinates, but he did not de-

rive solutions. When it was realized that the orbital structure in the triaxial Stäckel

models is very similar to that in the early numerical models for triaxial galaxies with

cores (Schwarzschild 1979; Z85), interest in the second moments increased, and the

Jeans equations were solved for a number of special cases. These include the axisym-

metric limits and elliptic disks (Dejonghe & de Zeeuw 1988; Evans & Lynden–Bell

1989, hereafter EL89), triaxial galaxies with only thin tube orbits (HZ92), and, most

recently, the scale-free limit (Evans et al. 2000). In all these cases the equations sim-

plify to a two-dimensional problem, which can be solved with standard techniques

after recasting two first-order equations into a single second-order equation in one

dependent variable. However, these techniques do not carry over to a single third-

order equation in one dependent variable, which is the best that one could expect to

have in the general case. As a result, the general case has remained unsolved.

Here, we first present an alternative solution method for the two-dimensional limit-

ing cases which does not use the standard approach, but instead uses superpositions

of singular solutions. We show that this approach can be extended to three dimen-

sions, and provides the general solution for the triaxial case in closed form, which we

give explicitly. We will apply our solutions in a follow-up paper, and will use them

together with the mean streaming motions (Statler 1994a) to study the properties of

the observed velocity and dispersion fields of triaxial galaxies.

In Section 2, we define our notation and derive the Jeans equations for the triaxial

Stäckel models in confocal ellipsoidal coordinates, together with the continuity condi-

tions. We summarize the limiting cases, and show that the Jeans equations for all the

cases with two degrees of freedom correspond to the same two-dimensional problem.

We solve this problem in Section 3, first by employing a standard approach with a

Riemann–Green function, and then via the singular solution superposition method.

We also discuss the choice of boundary conditions in detail. We relate our solution to

that derived by EL89 in Appendix A, and explain why it is different. In Section 4, we

extend the singular solution approach to the three-dimensional problem, and derive

the general solution of the Jeans equations for the triaxial case. It contains complete

(hyper)elliptic integrals, which we express as single quadratures that can be numeri-

cally evaluated in a straightforward way. We summarize our conclusions in Section 5.

2 THE JEANS EQUATIONS FOR SEPARABLE MODELS

We first summarize the essential properties of the triaxial Stäckel models in confocal

ellipsoidal coordinates. Further details can be found in Z85. We show that for these

models the mixed second-order velocity moments vanish, so that the Jeans equations

form a closed system. We derive the Jeans equations and find the corresponding

continuity conditions for the general case of a triaxial galaxy. We then give an overview

of the limiting cases and show that solving the Jeans equations for the various cases

with two degrees of freedom reduces to an equivalent two-dimensional problem.
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FIGURE 1 — Confocal ellipsoidal coordinates. Surfaces of constant λ are ellipsoids, surfaces
of constant µ are hyperboloids of one sheet and surfaces of constant ν are hyperboloids of two
sheets.

2.1 TRIAXIAL STÄCKEL MODELS

We define confocal ellipsoidal coordinates (λ, µ, ν) as the three roots for τ of

x2

τ + α
+

y2

τ + β
+

z2

τ + γ
= 1, (2.1)

with (x, y, z) the usual Cartesian coordinates, and with constants α, β and γ such
that −γ ≤ ν ≤ −β ≤ µ ≤ −α ≤ λ. For each point (x, y, z), there is a unique set
(λ, µ, ν), but a given combination (λ, µ, ν) generally corresponds to eight different points
(±x,±y,±z). We assume all three-dimensional Stäckel models in this chapter to be
likewise eightfold symmetric.

Surfaces of constant λ are ellipsoids, and surfaces of constant µ and ν are hyper-
boloids of one and two sheets, respectively (Fig. 1). The confocal ellipsoidal coordi-

nates are approximately Cartesian near the origin and become a conical coordinate

system at large radii with a system of spheres together with elliptic and hyperbolic

cones (Fig. 3). At each point, the three coordinate surfaces are perpendicular to each

other. Therefore, the line element is of the form ds2 = P 2dλ2 +Q2dµ2 +R2dν2, with the
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metric coefficients

P 2 =
(λ− µ)(λ− ν)

4(λ+ α)(λ+ β)(λ+ γ)
,

Q2 =
(µ− ν)(µ− λ)

4(µ+ α)(µ + β)(µ+ γ)
, (2.2)

R2 =
(ν − λ)(ν − µ)

4(ν + α)(ν + β)(ν + γ)
.

We restrict attention to models with a gravitational potential VS(λ, µ, ν) of Stäckel
form (Weinacht 1924)

VS = − F (λ)

(λ− µ)(λ− ν)
− F (µ)

(µ− ν)(µ− λ)
− F (ν)

(ν − λ)(ν − µ)
, (2.3)

where F (τ) is an arbitrary smooth function.
Adding any linear function of τ to F (τ) changes VS by at most a constant, and

hence has no effect on the dynamics. Following Z85, we use this freedom to write

F (τ) = (τ + α)(τ + γ)G(τ), (2.4)

where G(τ) is smooth. It equals the potential along the intermediate axis. This choice
will simplify the analysis of the large radii behavior of the various limiting cases.1

The density ρS that corresponds to VS can be found from Poisson’s equation or by

application of Kuzmin’s (1973) formula (see de Zeeuw 1985b). This formula shows

that, once we have chosen the central axis ratios and the density along the short axis,

the mass model is fixed everywhere by the requirement of separability. For centrally

concentrated mass models, VS has the x-axis as long axis and the z-axis as short axis.
In most cases this is also true for the associated density (de Zeeuw et al. 1986).

2.2 VELOCITY MOMENTS

A stellar system is completely described by its distribution function (DF), which in

general is a time-dependent function f of the six phase-space coordinates (x,v). As-
suming the system to be in equilibrium (df/dt = 0) and in steady-state (∂f/∂t = 0),
the DF is independent of time t and satisfies the (stationary) collisionless Boltzmann
equation (CBE). Integration of the DF over all velocities yields the zeroth-order veloc-

ity moment, which is the density ρ of the stellar system. The first- and second-order
velocity moments are defined as

〈vi〉(x) =
1

ρ

∫∫∫

vif(x,v) d3v,

(2.5)

〈vivj〉(x) =
1

ρ

∫∫∫

vivjf(x,v) d3v,

where i, j = 1, 2, 3. The streaming motions 〈vi〉 together with the symmetric second-
order velocity moments 〈vivj〉 provide the velocity dispersions σ2

ij = 〈vivj〉 − 〈vi〉〈vj〉.
The continuity equation that results from integrating the CBE over all velocities,

relates the streaming motion to the density ρ of the system. Integrating the CBE over

1Other, equivalent, choices include F (τ ) = −(τ +α)(τ + γ)G(τ ) by HZ92, and F (τ ) = (τ +α)(τ +β)U(τ )
by de Zeeuw et al. (1986), with U(τ ) the potential along the short axis.
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all velocities after multiplication by each of the three velocity components, provides

the Jeans equations, which relate the second-order velocity moments to ρ and V , the
potential of the system. Therefore, if the density and potential are known, we in gen-

eral have one continuity equation with three unknown first-order velocity moments

and three Jeans equations with six unknown second-order velocity moments.

The potential (2.3) is the most general form for which the Hamilton–Jacobi equa-

tion separates (Stäckel 1890; Lynden–Bell 1962b; Goldstein 1980). All orbits have

three exact isolating integrals of motion, which are quadratic in the velocities (e.g.,

Z85). It follows that there are no irregular orbits, so that Jeans’ (1915) theorem is

strictly valid (Lynden–Bell 1962a; Binney 1982) and the DF is a function of the three

integrals. The orbital motion is a combination of three independent one-dimensional

motions — either an oscillation or a rotation — in each of the three ellipsoidal coor-

dinates. Different combinations of rotations and oscillations result in four families of

orbits in triaxial Stäckel models (Kuzmin 1973; Z85): inner (I) and outer (O) long-axis

tubes, short (S) axis tubes and box orbits. Stars on box orbits carry out an oscil-

lation in all three coordinates, so that they provide no net contribution to the mean

streaming. Stars on I- and O-tubes carry out a rotation in ν and those on S-tubes a
rotation in µ, and oscillations in the other two coordinates. The fractions of clockwise
and counterclockwise stars on these orbits may be unequal. This means that each of

the tube families can have at most one nonzero first-order velocity moment, related to

ρ by the continuity equation. Statler (1994a) used this property to construct velocity
fields for triaxial Stäckel models. It is not difficult to show by similar arguments (e.g.,

HZ92) that all mixed second-order velocity moments also vanish

〈vλvµ〉 = 〈vµvν〉 = 〈vνvλ〉 = 0. (2.6)

Eddington (1915) already knew that in a potential of the form (2.3), the axes of the

velocity ellipsoid at any given point are perpendicular to the coordinate surfaces, so

that the mixed second-order velocity moments are zero. We are left with three second-

order velocity moments, 〈v2
λ〉, 〈v2

µ〉 and 〈v2
ν〉, related by three Jeans equations.

2.3 THE JEANS EQUATIONS

The Jeans equations for triaxial Stäckel models in confocal ellipsoidal coordinates

were first derived by Lynden–Bell (1960). We give an alternative derivation here, using

the Hamilton equations.

We first write the DF as a function of (λ, µ, ν) and the conjugate momenta

pλ = P 2 dλ

dt
, pµ = Q2dµ

dt
, pν = R2dν

dt
, (2.7)

with the metric coefficients P , Q and R given in (2.2). In these phase-space coordi-
nates the steady-state CBE reads

dτ

dt

∂f

∂τ
+
dpτ

dt

∂f

∂pτ
= 0, (2.8)

where we have used the summation convention with respect to τ = λ, µ, ν. The Hamil-
ton equations are

dτ

dt
=
∂H

∂pτ
,

dpτ

dt
=
∂H

∂τ
, (2.9)
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with the Hamiltonian defined as

H =
p2

λ

2P 2
+

p2
µ

2Q2
+

p2
ν

2R2
+ V (λ, µ, ν). (2.10)

The first Hamilton equation in (2.9) defines the momenta (2.7) and gives no new in-

formation. The second gives

dpλ

dt
=
p2

λ

P 3

∂P

∂λ
+
p2

µ

Q3

∂Q

∂λ
+
p2

ν

R3

∂R

∂λ
− ∂V

∂λ
, (2.11)

and similar for pµ and pν by replacing the derivatives with respect to λ by derivatives
to µ and ν, respectively.
We assume the potential to be of the form VS defined in (2.3), and we substitute

(2.7) and (2.11) in the CBE (2.8). We multiply this equation by pλ and integrate over

all momenta. The mixed second moments vanish (2.6), so that we are left with

3〈fp2
λ〉

P 3

∂P

∂λ
+

〈fp2
µ〉

Q3

∂Q

∂λ
+

〈fp2
ν〉

R3

∂R

∂λ
− 1

P 2

∂

∂λ
〈fp2

λ〉 − 〈f〉∂VS

∂λ
= 0, (2.12)

where we have defined the moments

〈f〉 ≡
∫

fd3p = PQRρ,

(2.13)

〈fp2
λ〉 ≡

∫

p2
λfd3p = P 3QRTλλ,

with the diagonal components of the stress tensor

Tττ (λ, µ, ν) ≡ ρ〈v2
τ 〉, τ = λ, µ, ν. (2.14)

The moments 〈fp2
µ〉 and 〈fp2

ν〉 follow from 〈fp2
λ〉 by cyclic permutation λ → µ → ν → λ,

for which P →Q →R →P . We substitute the definitions (2.13) in eq. (2.12) and carry
out the partial differentiation in the fourth term. The first term in (2.12) then cancels,

and, after rearranging the remaining terms and dividing by PQR, we obtain

∂Tλλ

∂λ
+
Tλλ − Tµµ

Q

∂Q

∂λ
+
Tλλ − Tνν

R

∂R

∂λ
= −ρ∂VS

∂λ
. (2.15)

Substituting the metric coefficients (2.2) and carrying out the partial differentiations

results in the Jeans equations

∂Tλλ

∂λ
+
Tλλ − Tµµ

2(λ− µ)
+
Tλλ − Tνν

2(λ− ν)
= −ρ∂VS

∂λ
, (2.16a)

∂Tµµ

∂µ
+
Tµµ − Tνν

2(µ− ν)
+
Tµµ − Tλλ

2(µ− λ)
= −ρ∂VS

∂µ
, (2.16b)

∂Tνν

∂ν
+
Tνν − Tλλ

2(ν − λ)
+
Tνν − Tµµ

2(ν − µ)
= −ρ∂VS

∂ν
, (2.16c)

where the equations for µ and ν follow from the one for λ by cyclic permutation. These
equations are identical to those derived by Lynden–Bell (1960).
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In self-consistent models, the density ρ must equal ρS, with ρS related to the po-

tential VS (2.3) by Poisson’s equation. The Jeans equations, however, do not require

self-consistency. Hence, we make no assumptions on the form of the density other

than that it is triaxial, i.e., a function of (λ, µ, ν), and that it tends to zero at infinity.
The resulting solutions for the stresses Tττ do not all correspond to physical distribu-

tion functions f ≥ 0. The requirement that the Tττ are non-negative removes many

(but not all) of the unphysical solutions.

2.4 CONTINUITY CONDITIONS

We saw in §2.2 that the velocity ellipsoid is everywhere aligned with the confocal
ellipsoidal coordinates. When λ → −α, the ellipsoidal coordinate surface degenerates
into the area inside the focal ellipse (Fig. 2). The area outside the focal ellipse is

labeled by µ = −α. Hence, Tλλ is perpendicular to the surface inside and Tµµ is

perpendicular to the surface outside the focal ellipse. On the focal ellipse, i.e. when

λ = µ = −α, both stress components therefore have to be equal. Similarly, Tµµ and Tνν

are perpendicular to the area inside (µ = −β) and outside (ν = −β) the two branches
of the focal hyperbola, respectively, and have to be equal on the focal hyperbola itself

(µ = ν = −β). This results in the following two continuity conditions

Tλλ(−α,−α, ν) = Tµµ(−α,−α, ν), (2.17a)

Tµµ(λ,−β,−β) = Tνν(λ,−β,−β). (2.17b)

These conditions not only follow from geometrical arguments, but are also precisely

the conditions necessary to avoid singularities in the Jeans equations (2.16) when λ =
µ = −α and µ = ν = −β. For the sake of physical understanding, we will also obtain
the corresponding continuity conditions by geometrical arguments for the limiting

cases that follow.

2.5 LIMITING CASES

When two or all three of the constants α, β or γ are equal, the triaxial Stäckel models
reduce to limiting cases with more symmetry and thus with fewer degrees of freedom.

We show in §2.6 that solving the Jeans equations for all the models with two degrees
of freedom reduces to the same two-dimensional problem. EL89 first solved this

generalized problem and applied it to the disk, oblate and prolate case. Evans et al.

(2000) showed that the large radii case with scale-free DF reduces to the problem

solved by EL89. We solve the same problem in a different way in §3, and obtain a
simpler expression than EL89. In order to make application of the resulting solution

straightforward, and to define a unified notation, we first give an overview of the

limiting cases.

2.5.1 Oblate spheroidal coordinates: prolate potentials

When γ = β, the coordinate surfaces for constant λ and µ reduce to oblate spheroids
and hyperboloids of revolution around the x-axis. Since the range of ν is zero, it
cannot be used as a coordinate. The hyperboloids of two sheets are now planes

containing the x-axis. We label these planes by an azimuthal angle χ, defined as
tanχ = z/y. In these oblate spheroidal coordinates (λ, µ, χ) the potential VS has the
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FIGURE 2 — Special surfaces inside (λ = −α) and outside (µ = −α) the focal ellipse in the plane
x = 0, and inside (µ = −β) and outside (ν = −β) the two branches of the focal hyperbola in the
plane y = 0 and the plane z = 0 (ν = −γ).

form (cf. Lynden–Bell 1962b)

VS = −f(λ)− f(µ)

λ− µ
− g(χ)

(λ+ β)(µ+ β)
, (2.18)

where the function g(χ) is arbitrary, and f(τ) = (τ + α)G(τ), with G(τ) as in eq. (2.4).
The denominator of the second term is proportional to y2 + z2, so that these potentials

are singular along the entire x-axis unless g(χ) ≡ 0. In this case, the potential is
prolate axisymmetric, and the associated density ρS is generally prolate as well (de

Zeeuw et al. 1986).

The Jeans equations (2.16) reduce to

∂Tλλ

∂λ
+
Tλλ − Tµµ

2(λ− µ)
+
Tλλ − Tχχ

2(λ+ β)
= −ρ∂VS

∂λ
,

∂Tµµ

∂µ
+
Tµµ − Tλλ

2(µ− λ)
+
Tµµ − Tχχ

2(µ+ β)
= −ρ∂VS

∂µ
, (2.19)

∂Tχχ

∂χ
= −ρ∂VS

∂χ
.

The continuity condition (2.17a) still holds, except that the focal ellipse has become a

focal circle. For µ = −β, the one-sheeted hyperboloid degenerates into the x-axis, so
that Tµµ is perpendicular to the x-axis and coincides with Tχχ. This gives the following
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two continuity conditions

Tλλ(−α,−α,χ) = Tµµ(−α,−α,χ),
(2.20)

Tµµ(λ,−β, χ) = Tχχ(λ,−β, χ).

By integrating along characteristics, Hunter et al. (1990) obtained the solution of

(2.19) for the special prolate models in which only the thin I- and O-tube orbits are

populated, so that Tµµ ≡ 0 and Tλλ ≡ 0, respectively (cf. §2.5.6).

2.5.2 Prolate spheroidal coordinates: oblate potentials

When β = α, we cannot use µ as a coordinate and replace it by the azimuthal angle
φ, defined as tan φ = y/x. Surfaces of constant λ and ν are confocal prolate spheroids
and two-sheeted hyperboloids of revolution around the z-axis. The prolate spheroidal
coordinates (λ, φ, ν) follow from the oblate spheroidal coordinates (λ, µ, χ) by taking
µ→ ν, χ→ φ and β → α→ γ. The potential VS(λ, φ, ν) is (cf. Lynden–Bell 1962b)

VS = −f(λ) − f(ν)

λ− ν
− g(φ)

(λ+ α)(ν + α)
. (2.21)

In this case, the denominator of the second term is proportional to R2 = x2+y2, so that

the potential is singular along the entire z-axis, unless g(φ) vanishes. When g(φ) ≡ 0,
the potential is oblate, and the same is generally true for the associated density ρS.

The Jeans equations (2.16) reduce to

∂Tλλ

∂λ
+
Tλλ − Tφφ

2(λ+ α)
+
Tλλ − Tνν

2(λ− ν)
= −ρ∂VS

∂λ
,

∂Tφφ

∂φ
= −ρ∂VS

∂φ
. (2.22)

∂Tνν

∂ν
+
Tνν − Tλλ

2(ν − λ)
+
Tνν − Tφφ

2(ν + α)
= −ρ∂VS

∂ν
.

For λ = −α, the prolate spheroidal coordinate surfaces reduce to the part of the z-axis
between the foci. The part beyond the foci is reached if ν = −α. Hence, in this case,
Tλλ is perpendicular to part of the z-axis between, and Tνν is perpendicular to the

part of the z-axis beyond the foci. They coincide at the foci (λ = ν = −α), resulting in
one continuity condition. Two more follow from the fact that Tφφ is perpendicular to

the (complete) z-axis, and thus coincides with Tλλ and Tνν on the part between and

beyond the foci, respectively:

Tλλ(−α, φ,−α) = Tνν(−α, φ,−α),

Tλλ(−α, φ, ν) = Tφφ(−α, φ, ν), (2.23)

Tνν(λ, φ,−α) = Tφφ(λ, φ,−α).

For oblate models with thin S-tube orbits (Tλλ ≡ 0, see §2.5.6), the analytical solution
of (2.22) was derived by Bishop (1987) and by de Zeeuw & Hunter (1990). Robijn &

de Zeeuw (1996) obtained the second-order velocity moments for models in which the

thin tube orbits were thickened iteratively. Dejonghe & de Zeeuw (1988, Appendix D)

found a general solution by integrating along characteristics. Evans (1990) gave an

algorithm for solving (2.22) numerically, and Arnold (1995) computed a solution using

characteristics without assuming a separable potential.
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2.5.3 Confocal elliptic coordinates: non-circular disks

In the principal plane z = 0, the ellipsoidal coordinates reduce to confocal elliptic
coordinates (λ, µ), with coordinate curves that are ellipses (λ) and hyperbolae (µ), that
share their foci on the symmetry y-axis. The potential of the perfect elliptic disk,
with its surface density distribution stratified on concentric ellipses in the plane z = 0
(ν = −γ), is of Stäckel form both in and outside this plane. By a superposition of
perfect elliptic disks, one can construct other surface densities and corresponding

disk potentials that are of Stäckel form in the plane z = 0, but not necessarily outside
it (Evans & de Zeeuw 1992). The expression for the potential in the disk is of the form

(2.18) with g(χ) ≡ 0:

VS = −f(λ) − f(µ)

λ− µ
, (2.24)

where again f(τ) = (τ + α)G(τ), so that G(τ) equals the potential along the y-axis.
Omitting all terms with ν in (2.16), we obtain the Jeans equations for non-circular

Stäckel disks

∂Tλλ

∂λ
+
Tλλ − Tµµ

2(λ− µ)
= −ρ∂VS

∂λ
,

(2.25)
∂Tµµ

∂µ
+
Tµµ − Tλλ

2(µ− λ)
= −ρ∂VS

∂µ
,

where now ρ denotes a surface density. The parts of the y-axis between and beyond
the foci are labeled by λ = −α and µ = −α, resulting in the continuity condition

Tλλ(−α,−α) = Tµµ(−α,−α). (2.26)

2.5.4 Conical coordinates: scale-free triaxial limit

At large radii, the confocal ellipsoidal coordinates (λ, µ, ν) reduce to conical coordinates
(r, µ, ν), with r the usual distance to the origin, i.e., r2 = x2+y2+z2 and µ and ν angular
coordinates on the sphere (Fig. 3). The potential VS(r, µ, ν) is scale-free, and of the form

VS = −F̃ (r) +
F (µ) − F (ν)

r2(µ− ν)
, (2.27)

where F̃ (r) is arbitrary, and F (τ) = (τ + α)(τ + γ)G(τ), as in eq. (2.4).
The Jeans equations in conical coordinates follow from the general triaxial case

(2.16) by going to large radii. Taking λ → r2 � −α ≥ µ, ν, the stress components
approach each other and we have

Tλλ − Tµµ

2(λ− µ)
,
Tλλ − Tνν

2(λ− ν)
∼ 1

r
→ 0,

∂

∂λ
→ 1

2r

∂

∂λ
. (2.28)

Hence, after multiplying (2.16a) by 2r, the Jeans equations for scale-free Stäckel mod-
els are

∂Trr

∂r
+

2Trr − Tµµ − Tνν

r
= −ρ∂VS

∂r
,

∂Tµµ

∂µ
+
Tµµ − Tνν

2(µ− ν)
= −ρ∂VS

∂µ
, (2.29)

∂Tνν

∂ν
+
Tνν − Tµµ

2(ν − µ)
= −ρ∂VS

∂ν
.



148 CHAPTER 5. GENERAL SOLUTION OF THE JEANS EQUATIONS

FIGURE 3 — Behavior of the confocal ellipsoidal coordinates in the limit of large radii r. The
surfaces of constant λ become spheres. The hyperboloids of constant µ and ν approach their
asymptotic surfaces, and intersect the sphere on the light and dark curves, respectively.
These form an orthogonal curvilinear coordinate system (µ, ν) on the sphere. The black dots
indicate the transition points (µ = ν = −β) between both sets of curves.

The general Jeans equations in conical coordinates, as derived by Evans et al. (2000),

reduce to (2.29) for vanishing mixed second moments. At the transition points be-

tween the curves of constant µ and ν (µ = ν = −β), the tensor components Tµµ and Tνν

coincide, resulting in the continuity condition

Tλλ(r,−β,−β) = Tφφ(r,−β,−β). (2.30)

2.5.5 One-dimensional limits

There are several additional limiting cases with more symmetry for which the form of

VS (Lynden–Bell 1962b) and the associated Jeans equations follow in a straightfor-

ward way from the expressions that were given above. We only mention spheres and

circular disks.

When α = β = γ, the variables µ and ν loose their meaning and the ellipsoidal
coordinates reduce to spherical coordinates (r, θ, φ). A steady-state spherical model
without a preferred axis is invariant under a rotation over the angles θ and φ, so that
we are left with only one Jeans equation in r, and Tθθ = Tφφ. This equation can readily

be obtained from the CBE in spherical coordinates (e.g., Binney & Tremaine 1987).

It also follows as a limit from the Jeans equations (2.16) for triaxial Stäckel models
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or from any of the above two-dimensional limiting cases. Consider for example the

Jeans equations in conical coordinates (2.29), and take µ → θ and ν → φ. The stress
components Trr and Tµµ = Tνν = Tφφ = Tθθ depend only r, so that we are left with

dTrr

dr
+

2(Trr − Tθθ)

r
= −ρdVS

dr
, (2.31)

the well-known result for non-rotating spherical systems (Binney & Tremaine 1987).

In a similar way, the one Jeans equation for the circular disk-case follows from,

e.g., the first equation of (2.25) by taking µ = −α and replacing Tµµ by Tφφ, where φ is
the azimuthal angle defined in §2.5.2. With λ+ α = R2 this gives

dTRR

dR
+
TRR − Tφφ

R
= −ρdVS

dR
, (2.32)

which may be compared with Binney & Tremaine (1987), their eq. (4.29).

2.5.6 Thin tube orbits

Each of the three tube orbit families in a triaxial Stäckel model consists of a rotation

in one of the ellipsoidal coordinates and oscillations in the other two (§2.2). The I-
tubes, for example, rotate in ν and oscillate in λ and µ, with turning points µ1, µ2 and

λ0, so that a typical orbit fills the volume

−γ ≤ ν ≤ −β, µ1 ≤ µ ≤ µ2, −α ≤ λ ≤ λ0. (2.33)

When we restrict ourselves to infinitesimally thin I-tubes, i.e., µ1 = µ2, there is no

motion in the µ-coordinate. The second-order velocity moment in this coordinate
is zero, and thus also the corresponding stress component T I

µµ ≡ 0. As a result,

eq. (2.16b) reduces to an algebraic relation between T I
λλ and T

I
νν. This relation can be

used to eliminate T I
νν and T

I
λλ from the remaining Jeans equations (2.16a) and (2.16c)

respectively.

HZ92 solved the resulting two first-order PDEs (their Appendix B) and showed that

the same result is obtained by direct evaluation of the second-order velocity moments,

using the thin I-tube DF. They derived similar solutions for thin O- and S-tubes, for

which there is no motion in the λ-coordinate, so that T O
λλ ≡ 0 and T S

λλ ≡ 0, respectively.

In Stäckel disks we have – besides the flat box orbits – only one family of (flat)

tube orbits. For infinitesimally thin tube orbits Tλλ ≡ 0, so that the Jeans equations
(2.25) reduce to two different relations between Tµµ and the density and potential. In

§3.4.4, we show how this places restrictions on the form of the density and we give
the solution for Tµµ. We also show that the general solution of (2.25), which we obtain

in §3, contains the thin tube result. The same is true for the triaxial case: the general
solution of (2.16), which we derive in §4, contains the three thin tube orbit solutions
as special cases (§4.6.6).

2.6 ALL TWO-DIMENSIONAL CASES ARE SIMILAR

EL89 showed that the Jeans equations in oblate and prolate spheroidal coordinates,

(2.19) and (2.22), can be transformed to a system that is equivalent to the two Jeans

equations (2.25) in confocal elliptic coordinates. Evans et al. (2000) arrived at the

same two-dimensional form for Stäckel models with a scale-free DF. We introduce a
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transformation which differs slightly from that of EL89, but has the advantage that it

removes the singular denominators in the Jeans equations.

The Jeans equations (2.19) for prolate potentials can be simplified by introducing

as dependent variables

Tττ (λ, µ) = (λ+ β)
1

2 (µ+ β)
1

2 (Tττ − Tχχ), τ = λ, µ, (2.34)

so that the first two equations in (2.19) transform to

∂Tλλ

∂λ
+

Tλλ − Tµµ

2(λ− µ)
= −(λ+ β)

1

2 (µ+ β)
1

2

[

ρ
∂VS

∂λ
+
∂Tχχ

∂λ

]

,

(2.35)
∂Tµµ

∂µ
+

Tµµ − Tλλ

2(µ− λ)
= −(µ+ β)

1

2 (λ+ β)
1

2

[

ρ
∂VS

∂µ
+
∂Tχχ

∂µ

]

.

The third Jeans eq. (2.19) can be integrated in a straightforward fashion to give the

χ-dependence of Tχχ. It is trivially satisfied for prolate models with g(χ) ≡ 0. Hence if,
following EL89, we regard Tχχ(λ, µ) as a function which can be prescribed, then equa-
tions (2.35) have known right hand sides, and are therefore of the same form as those

of the disk case (2.25). The singular denominator (µ + β) of (2.19) has disappeared,
and there is a boundary condition

Tµµ(λ,−β) = 0, (2.36)

due to the second continuity condition of (2.20) and the definition (2.34).

A similar reduction applies for oblate potentials. The middle equation of (2.22)

can be integrated to give the φ-dependence of Tφφ, and is trivially satisfied for oblate

models. The remaining two equations (2.22) transform to

∂Tλλ

∂λ
+

Tλλ − Tνν

2(λ− ν)
= −(λ+ α)

1

2 (−α− ν)
1

2

[

ρ
∂VS

∂λ
+
∂Tφφ

∂λ

]

,

(2.37)
∂Tνν

∂ν
+

Tνν − Tλλ

2(ν − λ)
= −(−α− ν)

1

2 (λ+ α)
1

2

[

ρ
∂VS

∂ν
+
∂Tφφ

∂ν

]

,

in terms of the dependent variables

Tττ (λ, ν) = (λ+ α)
1

2 (−α− ν)
1

2 (Tττ − Tφφ), τ = λ, ν. (2.38)

We now have two boundary conditions

Tλλ(−α, ν) = 0, Tνν(λ,−α) = 0, (2.39)

as a result of the last two continuity conditions of (2.23) and the definitions (2.38).

In the case of a scale-free DF, the stress components in the Jeans equations in

conical coordinates (2.29) have the form Tττ = r−ζTττ (µ, ν), with ζ > 0 and τ = r, µ, ν.
After substitution and multiplication by rζ+1, the first equation of (2.29) reduces to

(2 − ζ)Trr + Tµµ + Tνν = rζ+1ρ
∂VS

∂r
. (2.40)

When ζ = 2, Trr drops out, so that the relation between Tµµ and Tνν is known and the

remaining two Jeans equations can be readily solved (Evans et al. 2000). In all other
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cases, Trr can be obtained from (2.40) once we have solved the last two equations

of (2.29) for Tµµ and Tνν. This pair of equations is identical to the system of Jeans

equations (2.25) for the case of disk potentials. The latter is the simplest form of

the equivalent two-dimensional problem for all Stäckel models with two degrees of

freedom. We solve it in the next section.

Once we have derived the solution of (2.25), we may obtain the solution for prolate

Stäckel potentials by replacing all terms −ρ ∂Vs/∂τ (τ = λ, µ) by the right-hand side
of (2.35) and substituting the transformations (2.34) for Tλλ and Tµµ. Similarly, our

unified notation makes the application of the solution of (2.25) to the oblate case and

to models with a scale-free DF straightforward (§3.4).

3 THE TWO-DIMENSIONAL CASE

We first apply Riemann’s method to solve the Jeans equations (2.25) in confocal el-

liptic coordinates for Stäckel disks (§2.5.3). This involves finding a Riemann–Green
function that describes the solution for a source point of stress. The full solution is

then obtained in compact form by representing the known right-hand side terms as a

sum of sources. In §3.2, we introduce an alternative approach, the singular solution
method. Unlike Riemann’s method, this can be extended to the three-dimensional

case, as we show in §4. We analyze the choice of the boundary conditions in de-
tail in §3.3. In §3.4, we apply the two-dimensional solution to the axisymmetric and
scale-free limits, and we also consider a Stäckel disk built with thin tube orbits.

3.1 RIEMANN’S METHOD

After differentiating the first Jeans equation of (2.25) with respect to µ and eliminat-
ing terms in Tµµ by applying the second equation, we obtain a second-order partial

differential equation (PDE) for Tλλ of the form

∂2Tλλ

∂λ∂µ
− 3

2(λ− µ)

∂Tλλ

∂λ
+

1

2(λ− µ)

∂Tλλ

∂µ
= Uλλ(λ, µ). (3.1)

Here Uλλ is a known function given by

Uλλ = − 1

(λ− µ)
3

2

∂

∂µ

[

(λ− µ)
3

2 ρ
∂VS

∂λ

]

− ρ

2(λ− µ)

∂VS

∂µ
. (3.2)

We obtain a similar second-order PDE for Tµµ by interchanging λ↔ µ. Both PDEs can
be solved by Riemann’s method. To solve them simultaneously, we define the linear

second-order differential operator

L =
∂2

∂λ∂µ
− c1
λ− µ

∂

∂λ
+

c2
λ− µ

∂

∂µ
, (3.3)

with c1 and c2 constants to be specified. Hence, the more general second-order PDE

LT = U, (3.4)

with T and U functions of λ and µ alone, reduces to those for the two stress compo-
nents by taking

T = Tλλ : c1 = 3
2 , c2 = 1

2 , U = Uλλ,
(3.5)

T = Tµµ : c1 = 1
2 , c2 = 3

2 , U = Uµµ.
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In what follows, we introduce a Riemann–Green function G and incorporate the left-
hand side of (3.4) into a divergence. Green’s theorem then allows us to rewrite the

surface integral as a line integral over its closed boundary, which can be evaluated

if G is chosen suitably. We determine the Riemann–Green function G which satisfies
the required conditions, and then construct the solution.

3.1.1 Application of Riemann’s method

We form a divergence by defining a linear operator L?, called the adjoint of L (e.g.,
Copson 1975), as

L? =
∂2

∂λ∂µ
+

∂

∂λ

(

c1
λ− µ

)

− ∂

∂µ

(

c2
λ− µ

)

. (3.6)

The combination GLT − TL?G is a divergence for any twice differentiable function G
because

GLT − TL?G = ∂L/∂λ+ ∂M/∂µ, (3.7)

where

L(λ, µ) =
G
2

∂T

∂µ
− T

2

∂G
∂µ

− c1 G T
λ− µ

,

(3.8)

M(λ, µ) =
G
2

∂T

∂λ
− T

2

∂G
∂λ

+
c2 G T
λ− µ

.

We now apply the PDE (3.4) and the definition (3.6) in zero-subscripted variables λ0

and µ0. We integrate the divergence (3.7) over the domain D = {(λ0, µ0): λ ≤ λ0 ≤ ∞,
µ ≤ µ0 ≤ −α}, with closed boundary Γ (Fig. 4). It follows by Green’s theorem that

∫∫

D

dλ0dµ0

(

GL0T − TL?
0G
)

=

∮

Γ

dµ0 L(λ0, µ0) −
∮

Γ

dλ0M(λ0, µ0), (3.9)

where Γ is circumnavigated counter-clockwise. Here L0 and L?
0 denote the operators

(3.3) and (3.6) in zero-subscripted variables. We shall seek a Riemann–Green function

G(λ0, µ0) which solves the PDE
L?

0G = 0, (3.10)

in the interior ofD. Then the left-hand side of (3.9) becomes
∫∫

D dλ0dµ0G(λ0, µ0)U(λ0, µ0).
The right-hand side of (3.9) has a contribution from each of the four sides of the rect-

angular boundary Γ. We suppose thatM(λ0, µ0) and L(λ0, µ0) decay sufficiently rapidly
as λ0 → ∞ so that the contribution from the boundary at λ0 = ∞ vanishes and the

infinite integration over λ0 converges. Partial integration of the remaining terms then

gives for the boundary integral

∞
∫

λ

dλ0

[( ∂G
∂λ0

− c2 G
λ0 − µ0

)

T
]

µ0=µ

+

−α
∫

µ

dµ0

[( ∂G
∂µ0

+
c1 G

λ0 − µ0

)

T
]

λ0=λ

+

∞
∫

λ

dλ0

[( ∂T

∂λ0
+

c2 T

λ0 − µ0

)

G
]

µ0=−α

+ G(λ, µ)T (λ, µ). (3.11)

We now impose on G the additional conditions

G(λ, µ) = 1, (3.12)
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FIGURE 4 — The (λ0, µ0)-plane. The total stress at a field point (λ, µ), consists of the weighted
contributions from source points at (λ0, µ0) in the domain D, with boundary Γ.

and

∂G
∂λ0

− c2 G
λ0 − µ0

= 0 on µ0 = µ,

(3.13)
∂G
∂µ0

+
c1 G

λ0 − µ0
= 0 on λ0 = λ.

Then eq. (3.9) gives the explicit solution

T (λ, µ) =

∞
∫

λ

dλ0

−α
∫

µ

dµ0 G(λ0, µ0)U(λ0, µ0) −
∞
∫

λ

dλ0

[( ∂T

∂λ0
+

c2 T

λ0 − µ0

)

G
]

µ0=−α

, (3.14)

for the stress component, once we have found the Riemann–Green function G.

3.1.2 The Riemann–Green function

Our prescription for the Riemann–Green function G(λ0, µ0) is that it satisfies the PDE
(3.10) as a function of λ0 and µ0, and that it satisfies the boundary conditions (3.12)

and (3.13) at the specific values λ0 = λ and µ0 = µ. Consequently G depends on two
sets of coordinates. Henceforth, we denote it as G(λ, µ;λ0, µ0).
An explicit expression for the Riemann–Green function which solves (3.10) is (Cop-

son 1975)

G(λ, µ;λ0, µ0) =
(λ0 − µ0)

c2(λ− µ0)
c1−c2

(λ− µ)c1
F (w), (3.15)

where the parameter w is defined as

w =
(λ0 − λ)(µ0 − µ)

(λ0 − µ0)(λ− µ)
, (3.16)

and F (w) is to be determined. Since w = 0 when λ0 = λ or µ0 = µ, it follows from
(3.12) that the function F has to satisfy F (0) = 1. It is straightforward to verify that
G satisfies the conditions (3.13), and that eq. (3.10) reduces to the following ordinary
differential equation for F (w)

w(1 − w)F ′′ + [1 − (2 + c1 − c2)w]F ′ − c1(1 − c2)F = 0. (3.17)
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This is a hypergeometric equation (e.g., Abramowitz & Stegun 1965), and its unique

solution satisfying F (0) = 1 is

F (w) = 2F1(c1, 1 − c2; 1;w). (3.18)

The Riemann–Green function (3.15) represents the influence at a field point at (λ, µ)
due to a source point at (λ0, µ0). Hence it satisfies the PDE

LG(λ, µ;λ0, µ0) = δ(λ0 − λ)δ(µ0 − µ). (3.19)

The first right-hand side term of the solution (3.14) is a sum over the sources in D
which are due to the inhomogeneous term U in the PDE (3.4). That PDE is hyperbolic
with characteristic variables λ and µ. By choosing to apply Green’s theorem to the
domain D, we made it the domain of dependence (Strauss 1992) of the field point
(λ, µ) for (3.4), and hence we implicitly decided to integrate that PDE in the direction
of decreasing λ and decreasing µ.
The second right-hand side term of the solution (3.14) represents the solution to

the homogeneous PDE LT = 0 due to the boundary values of T on the part of the
boundary µ = −α which lies within the domain of dependence. There is only one
boundary term because we implicitly require that T (λ, µ) → 0 as λ → ∞. We verify in
§3.1.4 that this requirement is indeed satisfied.

3.1.3 The disk solution

We obtain the Riemann–Green functions for Tλλ and Tµµ, labeled as Gλλ and Gµµ,

respectively, from expressions (3.15) and (3.18) by substitution of the values for the

constants c1 and c2 from (3.5). The hypergeometric function in Gλλ is the complete

elliptic integral of the second kind2, E(w). The hypergeometric function in Gµµ can

also be expressed in terms of E(w) using eq. (15.2.15) of Abramowitz & Stegun (1965),
so that we can write

Gλλ(λ, µ;λ0, µ0) =
(λ0 − µ0)

3

2

(λ− µ)
1

2

2E(w)

π(λ0 − µ)
, (3.20a)

Gµµ(λ, µ;λ0, µ0) =
(λ0 − µ0)

3

2

(λ− µ)
1

2

2E(w)

π(λ− µ0)
, (3.20b)

Substituting these into (3.14) gives the solution of the stress components throughout

the disk as

Tλλ(λ, µ) =
2

π(λ− µ)
1

2

{

∞
∫

λ

dλ0

−α
∫

µ

dµ0
E(w)

(λ0 − µ)

{

∂

∂µ0

[

−(λ0 − µ0)
3

2 ρ
∂VS

∂λ0

]

− (λ0 − µ0)
1

2

2
ρ
∂VS

∂µ0

}

−
∞
∫

λ

dλ0

[

E(w)

(λ0 − µ)

]

µ0=−α

(λ0 + α)
d

dλ0

[

(λ0 + α)
1

2 Tλλ(λ0,−α)
]

}

, (3.21a)

2We use the definition E(w) =
R π

2

0
dθ

p

1 − w sin2 θ



SECTION 3. THE TWO-DIMENSIONAL CASE 155

Tµµ(λ, µ) =
2

π(λ− µ)
1

2

{

∞
∫

λ

dλ0

−α
∫

µ

dµ0
E(w)

(λ− µ0)

{

∂

∂λ0

[

−(λ0 − µ0)
3

2 ρ
∂VS

∂µ0

]

+
(λ0 − µ0)

1

2

2
ρ
∂VS

∂λ0

}

−
∞
∫

λ

dλ0

[

E(w)

(λ− µ0)

]

µ0=−α

d

dλ0

[

(λ0 + α)
3

2 Tµµ(λ0,−α)
]

}

. (3.21b)

This solution depends on ρ and VS, which are assumed to be known, and on Tλλ(λ,−α)
and Tµµ(λ,−α), i.e., the stress components on the part of the y-axis beyond the foci.
Because these two stress components satisfy the first Jeans equation of (2.25) at

µ = −α, we are only free to choose one of them, say Tµµ(λ,−α). Tλλ(λ,−α) then
follows by integrating this first Jeans equation with respect to λ, using the continuity
condition (2.26) and requiring that Tλλ(λ,−α) → 0 as λ→ ∞.

3.1.4 Consistency check

We now investigate the behavior of our solutions at large distances and verify that our

working hypothesis concerning the radial fall-off of the functions L and M in eq. (3.8)
is correct. The solution (3.14) consists of two components: an area integral due to the

inhomogeneous right-hand side term of the PDE (3.4), and a single integral due to the

boundary values. We examine them in turn to obtain the conditions for the integrals

to converge. Next, we parameterize the behavior of the density and potential at large

distances and apply it to the solution (3.21) and to the energy eq. (2.10) to check if

the convergence conditions are satisfied for physical potential-density pairs.

As λ0 → ∞, w tends to the finite limit (µ0 − µ)/(λ− µ). Hence E(w) is finite, and so,

by (3.20), Gλλ = O(λ
1/2
0 ) and Gµµ = O(λ

3/2
0 ). Suppose now that Uλλ(λ0, µ0) = O(λ−l1−1

0 )
and Uµµ(λ0, µ0) = O(λ−m1−1

0 ) as λ0 → ∞. The area integrals in the solution (3.14) then
converge, provided that l1 > 1

2 and m1 > 3
2 . These requirements place restrictions

on the behavior of the density ρ and potential VS which we examine below. Since

Gλλ(λ, µ;λ0, µ0) is O(λ−1/2) as λ → ∞, the area integral component of Tλλ(λ, µ) behaves

as O(λ−1/2
∫∞
λ λ

−l1−1/2
0 dλ0) and so is O(λ−l1). Similarly, with Gµµ(λ, µ;λ0, µ0) = O(λ−3/2)

as λ→ ∞, the first component of Tµµ(λ, µ) is O(λ−m1

0 ).
To analyze the second component of the solution (3.14), we suppose that the

boundary value Tλλ(λ0,−α) = O(λ−l2
0 ) and Tµµ(λ0,−α) = O(λ−m2

0 ) as λ0 → ∞. A similar
analysis then shows that the boundary integrals converge, provided that l2 >

1
2 and

m2 > 3
2 , and that the second components of Tλλ(λ, µ) and Tµµ(λ, µ) are O(λ−l2) and

O(λ−m2) as λ→ ∞, respectively.
We conclude that the convergence of the integrals in the solution (3.14) requires

that Tλλ(λ, µ) and Tµµ(λ, µ) decay at large distance as O(λ−l) with l > 1
2 and O(λ−m)

with m > 3
2 , respectively. The requirements which we have imposed on U(λ0, µ0) and

T (λ0,−α) cause the contributions to
∮

Γ dµ0L(λ0, µ0) in Green’s formula (3.9) from the
segment of the path at large λ0 to be negligible in all cases.

Having obtained the requirements for the Riemann–Green function analysis to be

valid, we now investigate the circumstances in which they apply. Following Arnold

et al. (1994), we consider densities ρ that decay as N(µ)λ−s/2 at large distances. We

suppose that the function G(τ) introduced in eq. (2.4) is O(τ δ) for − 1
2 ≤ δ < 0 as τ → ∞.
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The lower limit δ = − 1
2 corresponds to a potential due to a finite total mass, while the

upper limit restricts it to potentials that decay to zero at large distances.

For the disk potential (2.24), we then have that f(τ) = O(τ δ+1) when τ → ∞. Using
the definition (3.2), we obtain

Uλλ(λ, µ) =
f ′(µ) − f ′(λ)

2(λ− µ)2
ρ+

VS + f ′(λ)

(λ− µ)

∂ρ

∂µ
, (3.22a)

Uµµ(λ, µ) =
f ′(λ) − f ′(µ)

2(λ− µ)2
ρ− VS + f ′(µ)

(λ− µ)

∂ρ

∂λ
, (3.22b)

where ρ is the surface density of the disk. It follows that Uλλ(λ, µ) is generally the
larger and is O(λδ−s/2−1) as λ → ∞, whereas Uµµ(λ, µ) is O(λ−2−s/2). Hence, for the
components of the stresses (3.21) we have Tλλ = O(λδ−s/2) and Tµµ = O(λ−1−s/2). This
estimate for Uλλ assumes that ∂ρ/∂µ is also O(λ−s/2). It is too high if the density
becomes independent of angle at large distances, as it does for disks with s < 3
(Evans & de Zeeuw 1992). Using these estimates with the requirements for integral

convergence that were obtained earlier, we obtain the conditions s > 2δ + 1 and s > 1,
respectively, for inhomogeneous terms in Tλλ(λ, µ) and Tµµ(λ, µ) to be valid solutions.
The second condition implies the first because δ < 0.

With VS(λ, µ) = O(λδ) at large λ, it follows from the energy eq. (2.10) for bound orbits
that the second-order velocity moments 〈v2

τ 〉 cannot exceed O(λδ), and hence that
stresses Tττ = ρ〈v2

τ 〉 cannot exceed O(λδ−s/2). This implies for Tλλ(λ, µ) that s > 2δ + 1,
and for Tµµ(λ, µ) we have the more stringent requirement that s > 2δ + 3. This last
requirement is unnecessarily restrictive, but an alternative form of the solution is

needed to do better. Since that alternative form arises naturally with the singular

solution method, we return to this issue in §3.2.6.
Thus, for the Riemann–Green solution to apply, we find the conditions s > 1 and

−1
2 ≤ δ < 0. These conditions are satisfied for the perfect elliptic disk (s = 3, δ = − 1

2),
and for many other separable disks (Evans & de Zeeuw 1992).

3.1.5 Relation to the EL89 analysis

EL89 solve for the difference ∆ ≡ Tλλ − Tµµ using a Green’s function method which is

essentially equivalent to the approach used here. EL89 give the Fourier transform of

their Green’s function, but do not invert it. We give the Riemann–Green function for

∆ in Appendix A, and then rederive it by a Laplace transform analysis. Our Laplace
transform analysis can be recast in terms of Fourier transforms. When we do this,

we obtain a result which differs from that of EL89.

3.2 SINGULAR SOLUTION SUPERPOSITION

We have solved the disk problem (2.25) by combining the two Jeans equations into

a single second-order PDE in one of the stress components, and then applying Rie-

mann’s method to it. However, Riemann’s method and other standard techniques do

not carry over to a single third-order PDE in one dependent variable, which is the

best that one could expect to have in the general case. We introduce an alternative

but equivalent method of solution, also based on the superposition of source points.

In contrast to Riemann’s method, this singular solution method is applicable to the

general case of triaxial Stäckel models.
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3.2.1 Simplified Jeans equations

We define new independent variables

Sλλ(λ, µ) = |λ− µ| 12 Tλλ(λ, µ),
(3.23)

Sµµ(λ, µ) = |µ− λ| 12 Tµµ(λ, µ),

where |.| denotes absolute value, introduced to make the square root single-valued
with respect to cyclic permutation of λ→ µ→ λ. The Jeans equations (2.25) can then
be written in the form

∂Sλλ

∂λ
− Sµµ

2(λ− µ)
= −|λ− µ| 12 ρ ∂VS

∂λ
≡ g1(λ, µ), (3.24a)

∂Sµµ

∂µ
− Sλλ

2(µ− λ)
= −|µ− λ| 12 ρ ∂VS

∂µ
≡ g2(λ, µ). (3.24b)

For given density and potential, g1 and g2 are known functions of λ and µ. Next, we
consider a simplified form of (3.24) by taking for g1 and g2, respectively

g̃1(λ, µ) = 0, g̃2(λ, µ) = δ(λ0 − λ)δ(µ0 − µ), (3.25)

with −β ≤ µ ≤ µ0 ≤ −α ≤ λ ≤ λ0. A similar set of simplified equations is obtained by

interchanging the expressions for g̃1 and g̃2. We refer to solutions of these simplified
Jeans equations as singular solutions.

Singular solutions can be interpreted as contributions to the stresses at a fixed

point (λ, µ) due to a source point in (λ0, µ0) (Fig. 4). The full stress at the field point
can be obtained by adding all source point contributions, each with a weight that

depends on the local density and potential. In what follows, we derive the singular

solutions, and then use this superposition principle to construct the solution for the

Stäckel disks in §3.2.6.

3.2.2 Homogeneous boundary problem

The choice (3.25) places constraints on the functional form of Sλλ and Sµµ. The pres-

ence of the delta-functions in g̃2 requires that Sµµ contains a term −δ(λ0 −λ)H(µ0 −µ),
with the step-function

H(x− x0) =

{

0, x < x0,

1, x ≥ x0.
(3.26)

Since H′(y) = δ(y), it follows that, by taking the partial derivative of −δ(λ0−λ)H(µ0−µ)
with respect to µ, the delta-functions are balanced. There is no balance when Sλλ

contains δ(λ0 − λ), and similarly neither stress components can contain δ(µ0 − µ). We
can, however, add a function of λ and µ to both components, multiplied by H(λ0 −
λ)H(µ0 − µ). In this way, we obtain a singular solution of the form

Sλλ = A(λ, µ)H(λ0 − λ)H(µ0 − µ),
(3.27)

Sµµ = B(λ, µ)H(λ0 − λ)H(µ0 − µ) − δ(λ0 − λ)H(µ0 − µ),

in terms of functions A and B that have to be determined. Substituting these forms in
the simplified Jeans equations and matching terms gives two homogeneous equations

∂A

∂λ
− B

2(λ− µ)
= 0,

∂B

∂µ
− A

2(µ− λ)
= 0, (3.28)
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and two boundary conditions

A(λ0, µ) =
1

2(λ0 − µ)
, B(λ, µ0) = 0. (3.29)

Two alternative boundary conditions which are useful below can be found as fol-

lows. Integrating the first of the equations (3.28) with respect to λ on µ = µ0, where

B(λ, µ0) = 0, gives the boundary condition

A(λ, µ0) =
1

2(λ0 − µ0)
. (3.30)

Similarly, integrating the second of equations (3.28) with respect to µ on λ = λ0 where

A is known gives

B(λ0, µ) =
µ0 − µ

4(λ0 − µ0)(λ0 − µ)
. (3.31)

Even though expressions (3.30) and (3.31) do not add new information, they will be

useful for identifying contour integral formulas in the analysis which follows.

We have reduced the problem of solving the Jeans equations (2.25) for Stäckel

disks to a two-dimensional boundary problem. We solve this problem by first deriving

a one-parameter particular solution (§3.2.3) and then making a linear combination of
particular solutions with different values of their free parameter, such that the four

boundary expressions are satisfied simultaneously (§3.2.4). This gives the solution of
the homogeneous boundary problem.

3.2.3 Particular solution

To find a particular solution of the homogeneous equations (3.28) with one free pa-

rameter z, we take as an Ansatz

A(λ, µ) ∝ (λ− µ)a1(z − λ)a2(z − µ)a3 ,
(3.32)

B(λ, µ) ∝ (λ− µ)b1(z − λ)b2(z − µ)b3 ,

with ai and bi (i = 1, 2, 3) all constants. Hence,

∂A

∂λ
= A

(

a1

λ− µ
− a2

z − λ

)

=
1

2(λ− µ)

(

2a1A
z − µ

z − λ

)

,

(3.33)
∂B

∂µ
= B

(

b1
µ− λ

− b3
z − µ

)

=
1

2(µ− λ)

(

2b1B
z − λ

z − µ

)

,

where we have set a2 = −a1 and b3 = −b1. Taking a1 = b1 = 1
2 , the homogeneous

equations are satisfied if

z − λ

z − µ
=
A

B
=

(z − λ)−
1

2
−b2

(z − µ)−
1

2
−a3

, (3.34)

so, a3 = b2 = −3
2 . We denote the resulting solutions as

AP (λ, µ) =
|λ− µ| 12

(z − λ)
1

2 (z − µ)
3

2

, (3.35a)

BP (λ, µ) =
|µ− λ| 12

(z − µ)
1

2 (z − λ)
3

2

. (3.35b)

These particular solutions follow from each other by cyclic permutation λ→ µ→ λ, as
is required from the symmetry of the homogeneous equations (3.28).
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FIGURE 5 — Contours Cµ and Cλ in the complex z-plane which appear in the solution (3.37).
The two cuts running from µ to µ0 and one from λ to λ0 make the integrands single-valued.

3.2.4 The homogeneous solution

We now consider a linear combination of the particular solution (3.35) by integrating it

over the free parameter z, which we assume to be complex. We choose the integration
contours in the complex z-plane, such that the four boundary expressions can be
satisfied simultaneously.

We multiply BP (λ, µ) by (z−µ0)
1

2 , and integrate it over the closed contour Cµ (Fig. 5).

When µ = µ0, the integrand is analytic within Cµ, so that the integral vanishes by

Cauchy’s theorem. Since both the multiplication factor and the integration are inde-

pendent of λ and µ, it follows from the superposition principle that the homogeneous
equations are still satisfied. In this way, the second of the boundary expressions

(3.29) is satisfied.

Next, we also multiply BP (λ, µ) by (z−λ0)
− 1

2 , so that the contour Cλ (Fig. 5) encloses

a double pole when λ = λ0. From the Residue theorem (e.g., Conway 1973), it then

follows that

∮

Cλ

(z − µ0)
1

2

(z − λ0)
1

2

BP (λ0, µ) dz =

∮

Cλ

(z − µ0)
1

2 (λ0 − µ)
1

2

(z − µ)
1

2 (z − λ0)2
dz

= 2πi(λ0 − µ)
1

2

[

d

dz

(

z − µ0

z − µ

)
1

2

]

z=λ0

=
πi(µ0 − µ)

(λ0 − µ0)
1

2 (λ0 − µ)
, (3.36)

which equals the boundary expression (3.31), up to the factor 4πi(λ0 − µ0)
1

2 .

Taking into account the latter factor, and the ratio (3.34) of A and B, we postulate
as homogeneous solution

A(λ, µ) =
1

4πi

|λ− µ| 12
|λ0 − µ0|

1

2

∮

C

(z − µ0)
1

2 dz

(z − λ)
1

2 (z − µ)
3

2 (z − λ0)
1

2

, (3.37a)

B(λ, µ) =
1

4πi

|µ− λ| 12
|λ0 − µ0|

1

2

∮

C

(z − µ0)
1

2 dz

(z − µ)
1

2 (z − λ)
3

2 (z − λ0)
1

2

, (3.37b)
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FIGURE 6 — Integration along the contour Cτ . The contour is wrapped around the branch
points τ and τ0 (τ = λ, µ), and split into four parts. Γ1 and Γ3 run parallel to the real axis in
opposite directions. Γ2 and Γ4 are two arcs around τ and τ0, respectively.

with the choice for the contour C still to be specified.
The integrands in (3.37) consist of multi-valued functions that all come in pairs

(z − τ)1/2−m(z − τ0)
1/2−n, for integer m and n, and for τ being either λ or µ. Hence, we

can make the integrands single-valued by specifying two cuts in the complex z-plane,
one from µ to µ0 and one from λ to λ0. The integrands are now analytic in the cut

plane away from its cuts and behave as z−2 at large distances, so that the integral over

a circular contour with infinite radius is zero3. Connecting the simple contours Cλ

and Cµ with this circular contour shows that the cumulative contribution from each

of these contours cancels. As a consequence, every time we integrate over the contour

Cλ, we will obtain the same result by integrating over −Cµ instead. This means we

integrate over Cµ and take the negative of the result or, equally, integrate over Cµ in

clockwise direction.

For example, we obtained the boundary expression for B in (3.36) by applying the
Residue theorem to the double pole enclosed by the contour Cλ. The evaluation of

the integral becomes less straightforward when we consider the contour −C µ instead.

Wrapping the contour around the branch points µ and µ0 (Fig. 6), one may easily verify

that the contribution from the two arcs vanishes if their radius goes to zero. Taking

into account the change in phase when going around the two branch points, one may

show that the contributions from the two remaining parts of the contour, parallel to

the real axis, are equivalent. Hence, we arrive at the following (real) integral

B(λ0, µ) =
1

2π

(λ− µ0)
1

2

(λ0 − µ0)
1

2

µ0
∫

µ

dt

(λ0 − t)2

√

µ0 − t

t− µ
. (3.38)

The substitution

t = µ0 +
(µ0 − µ)(λ0 − µ0) sin2 θ

(µ0 − µ) sin2 θ − (λ0 − µ)
(3.39)

then indeed gives the correct boundary expression (3.31).

3We evaluate the square roots as (z − τ )
1

2 = |z − τ | exp i arg(z − τ ) with | arg(z − τ )| ≤ π.
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When we take µ = µ0 in (3.37b), we are left with the integrand (z−λ)−3/2(z−λ0)
−1/2.

This is analytic within the contour Cµ and hence it follows from Cauchy’s theorem that

there is no contribution. However, if we take the contour −Cλ instead, it is not clear

at once that the integral indeed is zero. To evaluate the complex integral we wrap the

contour Cλ around the branch points λ and λ0 (Fig. 6). There will be no contribution

from the arc around λ0 if its radius goes to zero. However, since the integrand involves

the term z − λ with power − 3
2 , the contribution from the arc around λ is of the order

ε−1/2 and hence goes to infinity if its radius ε > 0 reduces to zero. If we let the two
remaining straight parts of the contour run from λ + ε to λ0, then their cumulative

contribution becomes proportional to tan θ(ε), with θ(ε) approaching π
2 when ε reduces

to zero. Hence, both the latter contribution and the contribution from the arc around

λ approaches infinity. However, careful investigation of their limiting behavior shows
that they cancel when ε reaches zero, as is required for the boundary expression
B(λ, µ0) = 0.
We have shown that the use of Cλ and −Cµ gives the same result, but the effort to

evaluate the contour integral varies between the two choices. The boundary expres-

sions for A(λ, µ), (3.29) and (3.30) are obtained most easily if we consider C λ when

λ = λ0 and −Cµ when µ = µ0. In both cases the integrand in (3.37a) has a single pole

within the chosen contour, so that the boundary expressions follow by straightforward

application of the Residue theorem.

We now have proven that the homogeneous solution (3.37) solves the homogeneous

equations (3.28), satisfies the boundary values (3.29)–(3.31) separately and, from the

observation that Cλ and −Cµ produce the same result, also simultaneously.

3.2.5 Evaluation of the homogeneous solution

The homogeneous solution (3.37) consists of complex contour integrals, which we

transform to real integrals by wrapping the contours Cλ and Cµ around the corre-

sponding pair of branch points (Fig. 6). To have no contribution from the arcs around

the branch points, we choose the (combination of) contours such that the terms in the

integrand involving these branch points have powers larger than −1. In this way, we
can always evaluate the complex integral as a (real) integral running from one branch

point to the other.

In the homogeneous solution (3.37a) for A we choose C = Cλ and in (3.37b) for B
we take C = −Cµ. Taking into account the changes in phase when going around the

branch points, we obtain the following expressions for the homogeneous solution

A(λ, µ) =
1

2π

|λ− µ| 12
|λ0 − µ0|

1

2

λ0
∫

λ

dt

t− µ

√

t− µ0

(t− λ)(t− µ)(λ0 − t)
, (3.40a)

B(λ, µ) =
1

2π

|λ− µ| 12
|λ0 − µ0|

1

2

µ0
∫

µ

dt

λ− t

√

µ0 − t

(λ− t)(t− µ)(λ0 − t)
. (3.40b)

By a parameterization of the form (3.39), or by using an integral table (e.g., Byrd

& Friedman 1971), expressions (3.40) can be written conveniently in terms of the

complete elliptic integral of the second kind, E, and its derivative E ′

A(λ, µ;λ0, µ0) =
E(w)

π(λ0 − µ)
, (3.41a)
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B(λ, µ;λ0, µ0) = − 2wE′(w)

π(λ0 − λ)
. (3.41b)

with w defined as in (3.16). The second set of arguments that were added to A and B
make explicit the position (λ0, µ0) of the source point which is causing the stresses at
the field point (λ, µ).

3.2.6 The disk solution

The solution of equations (3.24) with right hand sides of the simplified form

g̃1(λ, µ) = δ(λ0 − λ)δ(µ0 − µ), g̃2(λ, µ) = 0, (3.42)

is obtained from the solution (3.27) by interchanging λ↔ µ and λ0 ↔ µ0. It is

Sλλ = B(µ, λ;µ0, λ0)H(λ0 − λ)H(µ0 − µ) − δ(µ0 − µ)H(λ0 − λ),
(3.43)

Sµµ = A(µ, λ;µ0, λ0)H(λ0 − λ)H(µ0 − µ).

To find the solution to the full equations (3.24) at (λ, µ), we multiply the singular
solutions (3.27) and (3.43) by g1(λ0, µ0) and g2(λ0, µ0) respectively and integrate over D,
the domain of dependence of (λ, µ). This gives the first two lines of the two equations
(3.44) below. The terms in the third lines are due to the boundary values of Sµµ at

µ = −α. They are found by multiplying the singular solution (3.27) evaluated for
µ0 = −α by −Sµµ(λ0,−α) and integrating over λ0 in D. It is easily verified that this
procedure correctly represents the boundary values with singular solutions. The final

result for the general solution of the Jeans equations (3.24) for Stäckel disks, after

using the evaluations (3.41), is

Sλλ(λ, µ) = −
∞
∫

λ

dλ0 g1(λ0, µ)

+

∞
∫

λ

dλ0

−α
∫

µ

dµ0

[

−g1(λ0, µ0)
2wE′(w)

π(µ0 − µ)
+ g2(λ0, µ0)

E(w)

π(λ0 − µ)

]

−
∞
∫

λ

dλ0 Sµµ(λ0,−α)

[

E(w)

π(λ0 − µ)

]

µ0=−α

, (3.44a)

Sµµ(λ, µ) = −
−α
∫

µ

dµ0 g2(λ, µ0)

+

∞
∫

λ

dλ0

−α
∫

µ

dµ0

[

−g1(λ0, µ0)
E(w)

π(λ− µ0)
− g2(λ0, µ0)

2wE′(w)

π(λ0 − λ)

]

+ Sµµ(λ,−α) −
∞
∫

λ

dλ0 Sµµ(λ0,−α)

[

− 2wE′(w)

π(λ0 − λ)

]

µ0=−α

. (3.44b)

The terms (µ0−µ)−1 and (λ0−λ)−1 do not cause singularities because they are canceled

by components of w. In order to show that equations (3.44) are equivalent to the
solution (3.21) given by Riemann’s method, integrate the terms in E ′(w) by parts, and
use the definitions of Sττ , g1 and g2.
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3.2.7 Convergence of the disk solution

We now return to the convergence issues first discussed in §3.1.4, where we assumed
that the density ρ decays as N(µ)λ−s/2 at large distances and the Stäckel potential as

O(λδ). For the physical reasons given there, the assigned boundary stress Tµµ(λ,−α)
cannot exceed O(λδ−s/2) at large λ, giving an Sµµ(λ,−α) of O(λδ−s/2+1/2). It follows that
the infinite integrals in Sµµ(λ0,−α) in the solution (3.44) require only that s > 2δ + 1
for their convergence. This is the less restrictive result to which we referred earlier.

The terms in the boundary stress are seen to contribute terms of the correct order

O(λδ−s/2+1/2) to Sλλ(λ, µ) and Sµµ(λ, µ). The formulas for the density and potential show
that g1(λ, µ) = O(λδ−s/2−1/2) while g2(λ, µ) is larger and O(λ−s/2−1/2) as λ → ∞. The λ0

integrations with g1 and g2 in their integrands all converge provided s > 2δ+ 1. Hence,
both Sλλ(λ, µ) and Sµµ(λ, µ) are O(λδ−s/2+1/2), so that the stress components Tττ (λ, µ)
(τ = λ, µ) are O(λδ−s/2), which is consistent with the physical reasoning of §3.1.4.
Hence, all the conditions necessary for (3.44) to be a valid solution of the Jeans

equations (3.24) for a Stäckel disk are satisfied provided that s > 2δ+ 1. We have seen
in §3.1.4 that δ must lie in the range [− 1

2 , 0). When δ → 0 the models approach the
isothermal disk, for which also s = 1 when the density is consistent with the potential.
Only then our requirement s > 2δ + 1 is violated.

3.3 ALTERNATIVE BOUNDARY CONDITIONS

We now derive the alternative form of the general disk solution when the boundary

conditions are not specified on µ = −α but on µ = −β, or on λ = −α rather than in the
limit λ → ∞. While the former switch is straightforward, the latter is non-trivial, and
leads to non-physical solutions.

3.3.1 Boundary condition for µ

The analysis in §3.1 and §3.2 is that needed when the boundary conditions are im-
posed at large λ and at µ = −α. The Jeans equations (2.25) can be solved in a
similar way when one or both of those conditions are imposed instead at the opposite

boundaries λ = −α and/or µ = −β. The solution by Riemann’s method is accom-
plished by applying Green’s theorem to a different domain, for example D ′ = {(λ0, µ0):
λ ≤ λ0 ≤ ∞,−β ≤ µ0 ≤ µ} when the boundary conditions are at µ = −β and as λ→ ∞.
The Riemann–Green functions have to satisfy the same PDE (3.10) and the same

boundary conditions (3.12) and (3.13), and so again are given by equations (3.20a)

and (3.20b). The variable w is negative in D ′ instead of positive as in D, but this is
unimportant. The only significant difference in the solution of eq. (3.4) is that of a

sign due to changes in the limits of the line integrals. The final result, in place of

eq. (3.14), is

T (λ, µ) = −
∞
∫

λ

dλ0

µ
∫

−β

dµ0G(λ0, µ0)U(λ0, µ0) −
∞
∫

λ

dλ0

[( ∂T

∂λ0
+

c2 T

λ0 − µ0

)

G
]

µ0=−β

. (3.45)

To apply the method of singular solutions to solve for the stresses when the bound-

ary stresses are specified at µ = −β rather than at µ = −α, we modify the singular
solutions (3.27) by replacing the step-function H(µ0 − µ) by −H(µ − µ0) throughout.
No other change is needed because both functions give −δ(µ − µ0) on partial differ-
entiation with respect to µ. The two-dimensional problem for A and B remains the
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same, and so, as with Riemann’s method, its solution remains the same. Summing

over sources in D′ now gives

Sλλ(λ, µ) = −
∞
∫

λ

dλ0 g1(λ0, µ)

−
∞
∫

λ

dλ0

µ
∫

−β

dµ0

[

−g1(λ0, µ0)
2wE′(w)

π(µ0 − µ)
+ g2(λ0, µ0)

E(w)

π(λ0 − µ)

]

−
∞
∫

λ

dλ0 Sµµ(λ0,−β)

[

E(w)

π(λ0 − µ)

]

µ0=−β

, (3.46a)

Sµµ(λ, µ) =

µ
∫

−β

dµ0 g2(λ, µ0)

−
∞
∫

λ

dλ0

µ
∫

−β

dµ0

[

−g1(λ0, µ0)
E(w)

π(λ− µ0)
− g2(λ0, µ0)

2wE′(w)

π(λ0 − λ)

]

+ Sµµ(λ,−β) −
∞
∫

λ

dλ0 Sµµ(λ0,−β)

[

− 2wE′(w)

π(λ0 − λ)

]

µ0=−β

. (3.46b)

as an alternative to equations (3.44).

3.3.2 Boundary condition for λ

There is a much more significant difference when one assigns boundary values at

λ = −α rather than at λ → ∞. It is still necessary that stresses decay to zero at large
distances. The stresses induced by arbitrary boundary data at the finite boundary

λ = −α do decay to zero as a consequence of geometric divergence. The issue is that
of the rate of this decay. We find that it is generally less than that required by our

analysis in §3.1.4.
To isolate the effect of boundary data at λ = −α, we study solutions of the two-

dimensional Jeans equations (2.25) when the inhomogeneous right hand side terms

are set to zero and homogeneous boundary conditions of zero stress are applied at

either µ = −α or µ = −β. These solutions can be derived either by Riemann’s method
or by singular solutions. The solution of the homogeneous PDE LT = 0 is

T (λ, µ) = −
−α
∫

µ

dµ0

[( ∂T

∂µ0
− c1 T

λ0 − µ0

)

G(λ, µ;λ0, µ0)
]

λ0=−α

, (3.47)

for the case of zero stress at µ = −α, and

T (λ, µ) =

µ
∫

−β

dµ0

[( ∂T

∂µ0
− c1 T

λ0 − µ0

)

G(λ, µ;λ0, µ0)
]

λ0=−α

, (3.48)

for the case of zero stress at µ = −β.
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The behavior of the stresses at large distances is governed by the behavior of the

Riemann–Green functions G for distant field points (λ, µ) and source points at λ0 = −α.
It follows from equations (3.20) that Tλλ(λ, µ) = O(λ−1/2) and Tµµ(λ, µ) = O(λ−3/2). As
a result, the radial stresses dominate at large distances and they decay as only the

inverse first power of distance. Their rate of decay is less than O(λδ−s/2) – obtained
in §3.1.4 from physical arguments – if the requirement s > 2δ + 1 is satisfied. This
inequality is the necessary condition which we derived in §3.2.6 for (3.44) to be a valid
solution of the disk Jeans equations (3.24). It is violated in the isothermal limit.

There is a physical implication of radial stresses which decay as only the inverse

first power of distance. It implies that net forces of finite magnitude are needed at

an outer boundary to maintain the system, the finite magnitudes arising from the

product of the decaying radial stresses and the increasing length of the boundary

over which they act. That length grows as the first power of distance. Because this

situation is perhaps more naturally understood in three dimensions, we return to it

in our discussion of oblate models in §3.4.2. For now, lacking any physical reason
for allowing a stellar system to have such an external constraint, we conclude that

boundary conditions can be applied only at large λ and not at λ = −α.

3.3.3 Disk solution for a general finite region

We now apply the singular solution method to solve equations (3.24) in some rectangle

µmin ≤ µ ≤ µmax, λmin ≤ λ ≤ λmax, when the stress Sµµ is given a boundary in µ, and Sλλ

is given on a boundary in λ. This solution includes (3.44) and (3.46) as special cases.
It will be needed for the large-radii scale-free case of §3.4.3.

As we saw in §3.3.1, singular solutions can easily be adapted to alternative choices
for the domain of dependence of a field point (λ, µ). Originally this was D, the first
of the four quadrants into which (λ0, µ0)-space is split by the lines λ0 = λ and µ0 = µ
(Fig. 4). It has the singular solution (3.27). We then obtained the singular solution

for the fourth quadrant D′ simply by replacing H(µ0 − µ) by −H(µ − µ0) in (3.27).
We can similarly find the singular solution for the second quadrant λmin ≤ λ0 ≤ λ,
µ ≤ µ0 ≤ µmax by replacing H(λ0 − λ) by −H(λ − λ0), and for the third quadrant
λmin ≤ λ0 ≤ λ, µmin ≤ µ0 ≤ µ by replacing H(λ0 − λ) by −H(λ − λ0) and H(µ0 − µ) by
−H(µ− µ0). We find the part of the solution of equations (3.24) due to the right hand
side g terms by multiplying the first and second terms of the singular solutions by
g1(λ0, µ0) and g2(λ0, µ0), respectively, and integrating over the relevant domain. We
use λ = λe and µ = µe to denote the boundaries at which stresses are specified. We

find the part of the solution generated by the boundary values of Sµµ by multiplying

the singular solution (3.27), modified for the domain and evaluated at µ0 = µe, by

±Sµµ(λ0, µe) and integrating over λ0 in the domain. The plus sign is needed when

µe = µmin and the minus when µe = µmax. Similarly, the part of the solution generated

by the boundary values of Sλλ is obtained by multiplying the singular solution (3.43),

modified for the domain and evaluated at λ0 = λe, by ±Sλλ(λe, µ0) and integrating over
µ0 in the domain. The sign is plus if λe = λmin and minus if λe = λmax. The final
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solution is

Sλλ(λ, µ) = Sλλ(λe, µ) −
λe
∫

λ

dλ0 g1(λ0, µ)

+

λe
∫

λ

dλ0

µe
∫

µ

dµ0 [ g1(λ0, µ0)B(µ, λ;µ0, λ0) + g2(λ0, µ0)A(λ, µ;λ0, µ0) ]

−
λe
∫

λ

dλ0 Sµµ(λ0, µe)A(λ, µ;λ0, µe) −
µe
∫

µ

dµ0 Sλλ(λe, µ0)B(µ, λ;µ0, λe), (3.49a)

Sµµ(λ, µ) = Sµµ(λ, µe) −
µe
∫

µ

dµ0 g2(λ, µ0)

+

λe
∫

λ

dλ0

µe
∫

µ

dµ0 [ g1(λ0, µ0)A(µ, λ;µ0, λ0) + g2(λ0, µ0)B(λ, µ;λ0, µ0) ]

−
λe
∫

λ

dλ0 Sµµ(λ0, µe)B(λ, µ;λ0, µe) −
µe
∫

µ

dµ0 Sλλ(λe, µ0)A(µ, λ;µ0, λe). (3.49b)

This solution is uniquely determined once g1 and g2 are given, and the boundary val-
ues Sµµ(λ0, µe) and Sλλ(λe, µ0) are prescribed. It shows that the hyperbolic equations
(3.24) can equally well be integrated in either direction in the characteristic variables

λ and µ. Solutions (3.44) and (3.46) are obtained by taking λe → ∞, Sλλ(λe, µ0) → 0,
setting µe = −α and µe = −β respectively, and evaluating A and B by equations (3.41).

3.4 APPLYING THE DISK SOLUTION TO LIMITING CASES

We showed in §2.6 that the Jeans equations for prolate and oblate potentials and
for three-dimensional Stäckel models with a scale-free DF all reduce to a set of two

equations equivalent to those for the Stäckel disk. Here we apply our solution for the

Stäckel disk to these special three-dimensional cases, with particular attention to the

behavior at large radii and the boundary conditions. This provides further insight in

some of the previously published solutions. We also consider the case of a Stäckel

disk built with thin tube orbits.

3.4.1 Prolate potentials

We can apply the disk solution (3.46) to solve the Jeans equations (2.35) by setting

Sλλ(λ, µ) = |λ− µ| 12Tλλ(λ, µ) and Sµµ(λ, µ) = |µ− λ| 12Tµµ(λ, µ), and taking

g1(λ, µ) = −|λ− µ| 12 (λ+ β)
1

2 (µ+ β)
1

2

[

ρ
∂VS

∂λ
+
∂Tχχ

∂λ

]

,

(3.50)

g2(λ, µ) = −|µ− λ| 12 (λ+ β)
1

2 (µ+ β)
1

2

[

ρ
∂VS

∂µ
+
∂Tχχ

∂µ

]

.

The boundary terms in Sµµ(λ,−β) vanish because of the boundary condition (2.36).
As before, we regard the azimuthal stress Tχχ as a variable that can be arbitrarily
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assigned, provided that it has the correct behavior at large λ (§3.1.4). The choice of
Tχχ is also restricted by the requirement that the resulting solutions for the stresses

Tλλ and Tµµ must be non-negative (see §2.3).
The analysis needed to show that the solution obtained in this way is valid requires

only minor modifications of that of §3.2.7. We suppose that the prescribed azimuthal
stresses also decay as O(λδ−s/2) as λ→ ∞. As a result of the extra factor in the defini-
tions (3.50), we now have g1(λ, µ) = O(λδ−s/2) and g2(λ, µ) = O(λ−s/2) as λ→ ∞. The λ0

integrations converge provided s > 2δ + 2, and Sλλ and Sµµ are O(λδ−s/2+1). Hence the
stresses Tλλ and Tµµ, which follow from Tττ = Tχχ+Sττ/

√

(λ− µ)(λ+ β)(µ+ β), are once
again O(λδ−s/2). The requirement s > 2δ + 2 is no stronger than the requirement s >
2δ + 1 of §3.2.7; it is simply the three-dimensional version of that requirement. It also
does not break down until the isothermal limit. That limit is still δ → 0, but now s→ 2.

3.4.2 Oblate potentials

The oblate case with Jeans equations (2.37) differs significantly from the prolate case.

Now Sλλ(λ, ν) = |λ−ν| 12Tλλ(λ, ν) vanishes at λ = −α and Sνν(λ, ν) = |ν−λ| 12Tνν(λ, ν) van-
ishes at ν = −α. If one again supposes that the azimuthal stresses Tφφ can be assigned

initially, then one encounters the problem discussed in §3.3.2 of excessively large ra-
dial stresses at large distances. To relate that analysis to the present case, we use the

solution (3.44) with µ replaced by ν, and with zero boundary value Sνν(λ,−α), and for

g1 and g2 the right hand side of (2.37) multiplied by |λ− ν| 1

2 and |ν − λ| 12 , respectively.
The estimates we obtained for the prolate case are still valid, so the stresses Tλλ

and Tνν are O(λδ−s/2). Difficulties arise when this solution for Sλλ does not vanish

at λ = −α, but instead has some nonzero value κ(ν) there. To obtain a physically
acceptable solution, we must add to it a solution of the homogeneous equations (2.37)

with boundary values Tλλ(−α, ν) = −κ(ν)/
√
−α− ν and Tνν(λ,−α) = 0. This is precisely

the problem we discussed in §3.3.2 where we showed that the resulting solution gives
Tλλ(λ, µ) = O(λ−1/2), and hence Tλλ(λ, µ) = O(λ−1). This is larger than O(λδ−s/2) when
the three-dimensional requirement s > 2δ + 2 is met. We therefore conclude that
the approach in which one first selects the azimuthal stress Tφφ and then calculates

the other two stresses will be unsuccessful unless the choice of Tφφ is fortunate, and

leads to κ(ν) ≡ 0. Otherwise, it leads only to models which either violate the continuity
condition Tλλ − Tφφ = 0 at λ = −α, or else have radial stresses which require external
forces at large distances.

The physical implication of radial stresses which decay as only O(λ−1), or the in-
verse second power of distance, is that net forces of finite magnitude are needed at an

outer boundary to maintain the system. This finite magnitude arises from the prod-

uct of the decaying radial stresses and the increasing surface area of the boundary

over which they act, which grows as the second power of distance. This situation is

analogous to that of an isothermal sphere, as illustrated in problem 4–9 of Binney &

Tremaine (1987), for which the contribution from an outer surface integral must be

taken into account in the balance between energies required by the virial theorem.

There are, of course, many physical models which satisfy the continuity condition

and whose radial stresses decay in the physically correct manner at large distances,

but some strategy other than that of assigning Tφφ initially is needed to find them. In

fact, only Evans (1990) used the approach of assigning Tφφ initially. He computed a

numerical solution for a mass model with s = 3 and VS ∝ O(λ−1/2 lnλ) for large λ, so
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that the stresses there should be O(λ−2 lnλ). He set Tφφ = −1
3ρVS, which is of this mag-

nitude, and integrated from λ = −α in the direction of increasing λ for a finite range.
Evans does not report on the large λ behavior, and it is possible that his choice of
Tφφ gives κ(ν) = 0, but his Figure 2 especially shows velocity ellipsoids which become
increasingly elongated in the radial direction, consistent with our prediction that Tλλ

generally grows as O(λ−1) when the boundary value of Tλλ is assigned at λ = −α.
A more common and effective approach to solve the Jeans equations for oblate

models has been to specify the ratio Tλλ/Tνν , and then to solve for one of those

stresses and Tφφ (Bacon, Simien & Monnet 1983; Dejonghe & de Zeeuw 1988; Evans &

Lynden–Bell 1991; Arnold 1995). This leads to a much simpler mathematical problem

with just a single first-order PDE. The characteristics of that PDE have non-negative

slopes dλ/dν, and therefore cut across the coordinate lines of constant λ and ν. The
solution is obtained by integrating in along the characteristics from large λ. The conti-
nuity conditions (2.23) are taken care of automatically, the region −γ ≤ ν ≤ −α ≤ ∞ is
covered, and it is easy to verify that the stresses so obtained are everywhere positive.

3.4.3 Large radii limit with scale-free DF

We found in §2.5.4 that the first of the Jeans equations in conical coordinates (2.29)
reduces to an algebraic relation for the radial stress Trr. The problem that remains is

that of solving the second and third Jeans equations for Tµµ and Tνν. Those equations

are exactly the same as those of the disk case after we apply the coordinate permu-

tation λ → µ → ν, and the physical domain is −γ ≤ ν ≤ −β ≤ µ ≤ −α with finite
ranges of both variables. Hence, the solution (3.49) can be applied with Tµµ assigned

at either µe = −α or µe = −β, and Tνν at either νe = −β or νe = −γ. For g1 and g2 we
take the same expressions as for the disk case, i.e., the right-hand side of (3.24), but

with λ → µ → ν and multiplied by rζ. To obtain Tµµ and Tνν from the Sλλ and Sµµ

respectively, we use the transformation

Sττ = (µ− ν)
1

2 rζ Tττ , τ = µ, ν, (3.51)

with ζ > 0 the scaling factor. We can choose to specify the stress components on the
two boundaries µ = −β and ν = −β. For a given radius r these boundaries cover the
circular cross section with the (x, z)-plane (Fig. 3). We can consider the (x, z)-plane
as the starting space for the solution. It turns out that the latter also applies to the

triaxial solution (§4.6.3) and compares well with Schwarzschild (1993), who used the
same plane to start his numerically calculated orbits from.

3.4.4 Thin tube orbits

For infinitesimally thin tube orbits in Stäckel disks we have that Sλλ ≡ 0 (§2.5.6), so
that equations (3.24) reduce to

− Sµµ

2(λ− µ)
= g1(λ, µ),

∂Sµµ

∂µ
= g2(λ, µ). (3.52)

A solution is possible only if the right hand side terms satisfy the subsidiary equation

g2(λ, µ) = −2
∂

∂µ
[(λ− µ)g1(λ, µ)] . (3.53)
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We find below that this equation places restrictions on the form of the (surface) density

ρ, and we use this relation between g1 and g2 to show that the disk solution (3.44)
yields the right results for the stress components.

If we write the disk potential (2.24) as a divided difference, VS = −f [λ, µ], we have

g1 = (λ− µ)
1

2 ρ f [λ, λ, µ], g2 = (λ− µ)
1

2 ρ f [λ, µ, µ]. (3.54)

Upon substitution of these expressions in (3.53) we obtain a PDE in µ, of which the
solution implies the following form for the density

ρ(λ, µ) =
f̃(λ)

(λ− µ)
√

f [λ, λ, µ]
, (3.55)

where f̃(λ) is an arbitrary function independent of µ. From (3.52) and the definition
(3.23) it then follows that Tµµ(λ, µ, ν) = −2f̃(λ)

√

f [λ, λ, µ]. The tube density that de
Zeeuw, Hunter & Schwarzschild (1987) derive from the DF for thin tube orbits in the

perfect elliptic disk (their eq. [4.25]) is indeed of the form (3.55).

To show that the general disk solution (3.44) gives Sλλ(λ, µ) = 0, we substitute
eq. (3.53) for g2(λ, µ) in (3.44a). After partial integration and using

2(λ0 − µ0)
∂

∂µ0

E(w)

π(λ0 − µ)
=

2wE′(w)

π(µ0 − µ)
, (3.56)

we find that the area integral reduces to

∞
∫

λ

dλ0

{

g1(λ0, µ) − 2(λ0 + α) g1(λ0,−α)

[

E(w)

π(λ0 − µ)

]

µ0=−α

}

. (3.57)

The first part cancels the first line of (3.44a) and since from (3.52) we have that

−2(λ0 + α)g1(λ0,−α) = Sµµ(λ0,−α), the second part cancels the third line. Hence,
we have Sλλ(λ, µ) = 0 as required. To see that the general disk solution also yields
Sµµ(λ, µ) correctly, we apply similar steps to (3.44b), where we use the relation

−2(λ0 − µ0)
∂

∂µ0

2wE′(w)

π(λ0 − λ)
=

E(w)

π(λ− µ0)
. (3.58)

We are finally left with

Sµµ(λ, µ) = Sµµ(λ,−α) −
−α
∫

µ

dµ0 g2(λ, µ0), (3.59)

which is just the second equation of (3.52) integrated with respect to µ.

4 THE GENERAL CASE

We now solve the system of three Jeans equations (2.16) for triaxial Stäckel models by

applying the singular solution superposition method, introduced in §3.2 for the two-
dimensional case. Although the calculations are more complex for a triaxial model,

the step-wise solution method is similar to that in two dimensions. Specifically, we

first simplify the Jeans equations and show that they reduce to a three-dimensional

homogeneous boundary problem. We then find a two-parameter particular solution

and apply contour integration to both complex parameters to obtain the general ho-

mogeneous solution. The latter yields the three singular solutions of the simplified

Jeans equations, from which, by superposition, we construct the general solution.



170 CHAPTER 5. GENERAL SOLUTION OF THE JEANS EQUATIONS

4.1 SIMPLIFIED JEANS EQUATIONS

We start by introducing the functions

Sττ (λ, µ, ν) =
√

(λ− µ)(λ− ν)(µ− ν)Tττ (λ, µ, ν), (4.1)

with τ = λ, µ, ν, to write the Jeans equations for triaxial Stäckel models (2.16) in the
more convenient form

∂Sλλ

∂λ
− Sµµ

2(λ− µ)
− Sνν

2(λ− ν)
= g1(λ, µ, ν), (4.2a)

∂Sµµ

∂µ
− Sνν

2(µ− ν)
− Sλλ

2(µ− λ)
= g2(λ, µ, ν), (4.2b)

∂Sνν

∂ν
− Sλλ

2(ν − λ)
− Sµµ

2(ν − µ)
= g3(λ, µ, ν), (4.2c)

where the function g1 is defined as

g1(λ, µ, ν) = −
√

(λ− µ)(λ− ν)(µ− ν) ρ
∂VS

∂λ
, (4.3)

and g2 and g3 follow by cyclic permutation λ → µ → ν → λ. We keep the three terms
λ− µ, λ− ν and µ− ν under one square root. With each cyclic permutation two of the
three terms change sign, so that the combination of the three terms is always positive

real. Therefore. the square root of the combination is always single-valued, whereas

in the case of three separate square roots we would have a multi-valued function.

We simplify equations (4.2) by substituting for g1, g2 and g3, respectively

g̃1(λ, µ, ν) = 0,

g̃2(λ, µ, ν) = δ(λ0 − λ) δ(µ0 − µ) δ(ν0 − ν), (4.4)

g̃3(λ, µ, ν) = 0,

with

−γ ≤ ν ≤ ν0 ≤ −β ≤ µ ≤ µ0 ≤ −α ≤ λ ≤ λ0. (4.5)

We obtain two similar systems of simplified equations by cyclic permutation of the

left-hand side of (4.2). Once we have obtained the singular solutions of the simplified

system with the right-hand side given by (4.4), those for the other two systems follow

via cyclic permutation.

4.2 HOMOGENEOUS BOUNDARY PROBLEM

The choice (4.4) implies that the functions Sττ (λ, µ, ν) (4.1) have the following forms

Sλλ = A(λ, µ, ν)H(λ0 − λ)H(µ0 − µ)H(ν0 − ν)

+ F (λ, µ) δ(ν0 − ν)H(λ0 − λ)H(µ0 − µ),

Sµµ = B(λ, µ, ν)H(λ0 − λ)H(µ0 − µ)H(ν0 − ν)

+ G(λ, µ) δ(ν0 − ν)H(λ0 − λ)H(µ0 − µ)
(4.6)

+ H(µ, ν) δ(λ0 − λ)H(µ0 − µ)H(ν0 − ν)

− δ(λ0 − λ)δ(ν0 − ν)H(µ0 − µ),

Sνν = C(λ, µ, ν)H(λ0 − λ)H(µ0 − µ)H(ν0 − ν)

+ I(µ, ν) δ(λ0 − λ)H(µ0 − µ)H(ν0 − ν),



SECTION 4. THE GENERAL CASE 171

with A, B, C and F , G, H, I yet unknown functions of three and two coordinates,
respectively, and H the step-function (3.26). After substituting these forms into the
simplified Jeans equations and matching terms we obtain 14 equations. Eight of them

comprise the following two homogeneous systems with two boundary conditions each















∂F

∂λ
− G

2(λ− µ)
= 0, F (λ0, µ) =

1

2(λ0 − µ)
,

∂G

∂µ
− F

2(µ− λ)
= 0, G(λ, µ0) = 0,

(4.7)

and














∂H

∂µ
− I

2(µ− ν)
= 0, H(µ0, ν) = 0,

∂I

∂ν
− H

2(ν − µ)
= 0, I(µ, ν0) =

1

2(ν0 − µ)
.

(4.8)

We have shown in §3 how to solve these two-dimensional homogeneous boundary
problems in terms of the complete elliptic integral of the second kind E and its deriva-
tive E′. The solutions are

F (λ, µ) =
E(w)

π(λ0 − µ)
, G(λ, µ) = − 2wE′(w)

π(λ0 − λ)
,

(4.9)

H(µ, ν) = − 2uE′(u)
π(ν0 − ν)

, I(µ, ν) = − E(u)

π(µ− ν0)
,

where u and similarly v, which we will encounter later on, follow from w (3.16) by
cyclic permutation λ→ µ→ ν → λ and λ0 → µ0 → ν0 → λ0, so that

u =
(µ0 − µ)(ν0 − ν)

(µ0 − ν0)(µ− ν)
, v =

(ν0 − ν)(λ0 − λ)

(λ0 − ν0)(λ− ν)
. (4.10)

The remaining six equations form a three-dimensional homogeneous boundary prob-

lem, consisting of three homogeneous Jeans equations

∂A

∂λ
− B

2(λ− µ)
− C

2(λ− ν)
= 0,

∂B

∂µ
− C

2(µ− ν)
− A

2(µ− λ)
= 0, (4.11)

∂C

∂ν
− A

2(ν − λ)
− B

2(ν − µ)
= 0.

and three boundary conditions, specifically the values of A(λ0, µ, ν), B(λ, µ0, ν), and
C(λ, µ, ν0). As in §3.2.2, it is useful to supplement these boundary conditions with
the values of A, B, and C at the other boundary surfaces. These are obtained by
integrating the pairs of equations (4.11) which apply at those surfaces, and using the
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boundary conditions. This results in the following nine boundary values

A(λ0, µ, ν) =
1

2π

[

E(u)

(λ0 − ν)(µ− ν0)
+

2uE′(u)
(λ0 − µ)(ν0 − ν)

]

,

A(λ, µ0, ν) =
1

2π

[

E(v)

(λ0 − ν)(µ0 − ν0)
+

2vE′(v)
(λ0 − µ0)(ν0 − ν)

]

,

A(λ, µ, ν0) =
E(w)

4π(λ0 − µ)

[

λ− µ

(λ− ν0)(µ− ν0)
+

λ0 − µ0

(λ0 − ν0)(µ0 − ν0)

]

,

B(λ0, µ, ν) =
uE′(u)

2π(ν0 − ν)

[

µ0 − µ

(λ0 − µ0)(λ0 − µ)
− ν0 − ν

(λ0 − ν0)(λ0 − ν)

]

,

B(λ, µ0, ν) = 0, (4.12)

B(λ, µ, ν0) =
wE′(w)

2π(λ0 − λ)

[

µ0 − µ

(µ0 − ν0)(µ− ν0)
− λ0 − λ

(λ0 − ν0)(λ− ν0)

]

,

C(λ0, µ, ν) =
E(u)

4π(µ− ν0)

[

µ− ν

(λ0 − µ)(λ0 − ν)
+

µ0 − ν0

(λ0 − µ0)(λ0 − ν0)

]

,

C(λ, µ0, ν) =
1

2π

[

E(v)

(λ0 − µ0)(λ− ν0)
− 2vE′(v)

(µ0 − ν0)(λ0 − λ)

]

,

C(λ, µ, ν0) =
1

2π

[

E(w)

(λ0 − µ)(λ− ν0)
− 2wE′(w)

(µ− ν0)(λ0 − λ)

]

.

If we can solve the three homogeneous equations (4.11) and satisfy the above nine

boundary expressions (4.12) simultaneously, we obtain the singular solutions (4.6).

By superposition, we can then construct the solution of the Jeans equations for tri-

axial Stäckel models.

4.3 PARTICULAR SOLUTION

By analogy with the two-dimensional case, we look for particular solutions of the

homogeneous equations (4.11) and by superposition of these particular solutions we

try to satisfy the boundary expressions (4.12) simultaneously, in order to obtain the

homogeneous solution for A, B and C.

4.3.1 One-parameter particular solution

By substitution one can verify that

AP (λ, µ, ν) =

√

(λ− µ)(λ− ν)(µ− ν)

(λ− µ)(λ− ν)

(z − λ)

(z − µ)(z − ν)
, (4.13)

with BP and CP following from AP by cyclic permutation, solves the homogeneous

equations (4.11). To satisfy the nine boundary expressions (4.12), we could integrate

this particular solution over its free parameter z, in the complex plane. From §3.2.4,
it follows that, at the boundaries, this results in simple polynomials in (λ, µ, ν) and
(λ0, µ0, ν0). This means that the nine boundary expressions (4.12) cannot be satisfied,
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since in addition to these simple polynomials they also contain E and E ′. The latter
are functions of one variable, so that at least one extra freedom is necessary. Hence,

we look for a particular solution with two free parameters.

4.3.2 Two-parameter particular solution

A particular solution with two free parameters z1 and z2 can be found by splitting the
z-dependent terms of the one-parameter solution (4.13) into two similar parts and
then relabelling them. The result is the following two-parameter particular solution

AP =

√

(λ− µ)(λ− ν)(µ− ν)

(λ− µ)(λ− ν)

2
∏

i=1

(zi − λ)
1

2

(zi − µ)
1

2 (zi − ν)
1

2

,

BP =

√

(λ− µ)(λ− ν)(µ− ν)

(µ− ν)(µ− λ)

2
∏

i=1

(zi − µ)
1

2

(zi − ν)
1

2(zi − λ)
1

2

, (4.14)

CP =

√

(λ− µ)(λ− ν)(µ− ν)

(ν − λ)(ν − µ)

2
∏

i=1

(zi − ν)
1

2

(zi − λ)
1

2 (zi − µ)
1

2

.

These functions are cyclic in (λ, µ, ν), as is required from the symmetry of the homo-
geneous equations (4.11). The presence of the square roots, such as occurred earlier

in the solution (3.32) for the disk case, allows us to fit boundary values that contain

elliptic integrals.

To show that this particular solution solves the homogeneous Jeans equations, we

calculate the derivative of AP (λ, µ, ν) with respect to λ:

∂AP

∂λ
=
AP

2

(

1

λ− z1
+

1

λ− z2
− 1

λ− µ
− 1

λ− ν

)

. (4.15)

This can be written as

∂AP

∂λ
=

1

2(λ− µ)

[

−(z1 − µ)(z2 − µ)(λ− ν)

(z1 − λ)(z2 − λ)(µ− ν)
AP

]

(4.16)

+
1

2(λ− ν)

[

(z1 − ν)(z2 − ν)(λ− µ)

(z1 − λ)(z2 − λ)(µ− ν)
AP

]

.

From the two-parameter particular solution we have

BP

AP
= −(z1 − µ)(z2 − µ)(λ− ν)

(z1 − λ)(z2 − λ)(µ− ν)
,

(4.17)
CP

AP
=

(z1 − ν)(z2 − ν)(λ− µ)

(z1 − λ)(z2 − λ)(µ− ν)
,

so that, after substitution of these ratios, the first homogeneous equation of (4.11), is

indeed satisfied. The remaining two homogeneous equations can be checked in the

same way.
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4.4 THE HOMOGENEOUS SOLUTION

In order to satisfy the four boundary expressions of the two-dimensional case, we

multiplied the one-parameter particular solution by terms depending on λ0, µ0 and

the free complex parameter z, followed by contour integration over the latter. Sim-
ilarly, in the triaxial case we multiply the two-parameter particular solution (3.35)

by terms depending on λ0, µ0, ν0 and the two free parameters z1 and z2, in such
a way that by contour integration over the latter two complex parameters the nine

boundary expressions (4.12) can be satisfied. Since these terms and the integration

are independent of λ, µ and ν, it follows from the superposition principle that the
homogeneous equations (4.11) remain satisfied.

The contour integrations over z1 and z2 are mutually independent, since we can
separate the two-parameter particular solution (4.14) with respect to these two pa-

rameters. This allows us to choose a pair of contours, one contour in the z1-plane and

the other contour in the z2-plane, and integrate over them separately. We consider the
same simple contours as in the disk case (Fig. 5) around the pairs of branch points

(λ, λ0) and (µ, µ0), and a similar contour around (ν, ν0). We denote these contours by
Cλ

i , C
µ
i and C

ν
i respectively, with i = 1, 2 indicating in which of the two complex planes

we apply the contour integration.

4.4.1 Boundary expressions for B

It follows from (4.12) that B = 0 at the boundary µ = µ0. From Cauchy’s theorem, B
would indeed vanish if, in this case, in either the z1-plane or z2-plane the integrand
for B is analytic within the chosen integration contour. The boundary expression for
B at ν = ν0 follows from the one at λ = λ0 by taking ν ↔ λ and ν0 ↔ λ0. In addition

to this symmetry, also the form of both boundary expressions puts constraints on

the solution for B. The boundary expressions can be separated in two parts, one
involving the complete elliptic integral E ′ and the other consisting of a two-component
polynomial in τ and τ0 (τ = λ, µ, ν). Each of the two parts follows from a contour
integration in one of the two complex planes. For either of the complex parameters,

z1 or z2, the integrands will consist of a combination of the six terms zi − τ and zi − τ0
with powers that are half-odd integers, i.e., the integrals are of hyperelliptic form. If

two of the six terms cancel on one of the boundaries, we will be left with an elliptic

integral. We expect the polynomial to result from applying the Residue theorem to a

double pole, as this would involve a first derivative and hence give two components.

This leads to the following Ansatz

B(λ, µ, ν) ∝
√

(λ− µ)(λ− ν)(µ− ν)

(µ− ν)(µ− λ)
×

∮

C1

(z1 − µ)
1

2 (z1 − λ0)
1

2 dz1

(z1 − ν)
1

2 (z1 − λ)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

×

∮

C2

(z2 − µ)
1

2 (z2 − ν0)
1

2 dz2

(z2 − ν)
1

2 (z2 − λ)
1

2 (z2 − µ0)
1

2 (z2 − λ0)
3

2

. (4.18)

Upon substitution of µ = µ0, the terms involving µ0 cancel in both integrals, so that

the integrands are analytic in both contours Cµ
1 and C

µ
2 . By choosing either of these

contours as integration contour, the boundary expression B(λ, µ0, ν) = 0 is satisfied.
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When λ = λ0, the terms with λ0 in the first integral in (4.18) cancel, while in the

second integral we have (z2 − λ0)
−2. The first integral is analytic within Cλ

1 , so that

there is no contribution from this contour. However, the integral over Cµ
1 is elliptic

and can be evaluated in terms of E ′ (cf. §3.2.5). We apply the Residue theorem to the
second integral, for which there is a double pole inside the contour Cλ

2 . Considering

Cµ
1 and C

λ
2 as a pair of contours, the expression for B at λ = λ0 becomes

B(λ, µ, ν) ∝ −16π2

√

(λ0 − µ0)(λ0 − ν0)(µ0 − ν0)

(µ0 − ν0)(µ0 − λ0)
×

uE′(u)
2π(ν0 − ν)

[

µ0 − µ

(λ0 − µ0)(λ0 − µ)
− ν0 − ν

(λ0 − ν0)(λ0 − ν)

]

, (4.19)

which is the required boundary expression up to a scaling factor. As before, we keep

the terms λ0 − µ0, λ0 − ν0 and µ0 − ν0 under one square root, so that it is single-valued

with respect to cyclic permutation in these coordinates.

The boundary expression for B at ν = ν0 is symmetric with the one at λ = λ0, so

that a similar approach can be used. In this case, for the second integral, there is no

contribution from Cν
2 , whereas it can be expressed in terms of E

′ if C2 = Cµ
2 . The first

integrand has a double pole in Cν
1 . The total contribution from the pair (C

ν
1 ,C

µ
2 ) gives

the correct boundary expression, up to a scaling factor that is the same as in (4.19).

Taking into account the latter scaling factor, this shows that the Ansatz (4.18) for B
produces the correct boundary expressions and hence we postulate it as the homoge-

neous solution for B. The expressions for A and C then follow from the ratios (4.17).
Absorbing the minus sign in (4.19) into the pair of contours, i.e., either of the two

contours we integrate in clockwise direction, we postulate the following homogeneous

solution

A(λ, µ, ν) =
(µ0 − ν0)(µ0 − λ0)

16π2(λ− µ)(λ− ν)

√

(λ− µ)(λ− ν)(µ− ν)

(λ0 − µ0)(λ0 − ν0)(µ0 − ν0)
×

∮

C1

(z1 − λ)
1

2 (z1 − λ0)
1

2 dz1

(z1 − µ)
1

2 (z1 − ν)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

×

∮

C2

(z2 − λ)
1

2 (z2 − ν0)
1

2 dz2

(z2 − µ)
1

2 (z2 − ν)
1

2 (z2 − µ0)
1

2 (z2 − λ0)
3

2

, (4.20)

B(λ, µ, ν) =
(µ0 − ν0)(µ0 − λ0)

16π2(µ− ν)(µ− λ)

√

(λ− µ)(λ− ν)(µ− ν)

(λ0 − µ0)(λ0 − ν0)(µ0 − ν0)
×

∮

C1

(z1 − µ)
1

2 (z1 − λ0)
1

2 dz1

(z1 − ν)
1

2 (z1 − λ)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

×

∮

C2

(z2 − µ)
1

2 (z2 − ν0)
1

2 dz2

(z2 − ν)
1

2 (z2 − λ)
1

2 (z2 − µ0)
1

2 (z2 − λ0)
3

2

, (4.21)
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C(λ, µ, ν) =
(µ0 − ν0)(µ0 − λ0)

16π2(ν − λ)(ν − µ)

√

(λ− µ)(λ− ν)(µ− ν)

(λ0 − µ0)(λ0 − ν0)(µ0 − ν0)
×

∮

C1

(z1 − ν)
1

2 (z1 − λ0)
1

2 dz1

(z1 − λ)
1

2 (z1 − µ)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

×

∮

C2

(z2 − ν)
1

2 (z2 − ν0)
1

2 dz2

(z2 − λ)
1

2 (z2 − µ)
1

2 (z2 − µ0)
1

2 (z2 − λ0)
3

2

. (4.22)

The above integrands consist of multi-valued functions that all come in pairs of the

form (z − τ)
1

2
−m(z − τ0)

1

2
−n, for integers m and n, with τ equal to λ, µ or ν. Completely

analogous to our procedure in §3.2.4, we can make the integrands single-valued by
specifying, in the complex z1-plane and z2-plane, three cuts running between the three
pairs (λ, λ0), (µ, µ0), (ν, ν0) of branch points, that are enclosed by the simple contours.
The integrands are now analytic in the cut plane away from its cuts and behave again

as z−2
i at large distances, so that the integral over a circular contour with radius going

to infinity, will be zero. Hence, connecting the simple contours Cλ
i , C

µ
i and C

ν
i with

this circular contour, shows that their cumulative contribution cancels

Cν
i + Cµ

i + Cλ
i = 0, i = 1, 2. (4.23)

This relation allow us to make a combination of contours, so that the nine boundary

expressions (4.12) are satisfied simultaneously (§4.4.3). Before doing so, we first es-
tablish whether, with the homogeneous solution for A and C given by (4.20) and (4.22),
respectively, we indeed satisfy their corresponding boundary expressions separately.

4.4.2 Boundary expressions for A and C

The boundary expressions and the homogeneous solution of C, follow from those of
A by taking λ ↔ ν and λ0 ↔ ν0. Henceforth, once we have checked the boundary

expressions for A, those for C can be checked in a similar way.

Upon substitution of λ = λ0 in the expression for A (4.20), the first integrand is pro-
portional to z1 −λ′ and thus is analytic within the contour Cλ

1 . The contribution to the

boundary expression therefore needs to come from either Cµ
1 or C

ν
1 . The substitution

z1 − λ0 =
λ0 − ν

µ− ν
(z1 − µ) − λ0 − µ

µ− ν
(z1 − ν), (4.24)

splits the first integral into two complete elliptic integrals

λ0 − ν

µ− ν

∮

C1

(z1 − µ)
1

2 dz1

(z1 − ν)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

− λ0 − µ

µ− ν

∮

C1

(z1 − ν)
1

2 dz1

(z1 − µ)
1

2 (z1 − µ0)
1

2 (z1 − ν0)
3

2

. (4.25)

Within the contour Cµ
1 , the integrals can be evaluated in terms of E

′(u) and E(u)
respectively. When λ = λ0, the second integral in (4.20) has a single pole contribution

from the contour Cλ
2 . Together, −C

µ
1C

λ
2 , exactly reproduces the boundary expression

A(λ0, µ, ν) in (4.12).

When µ = µ0, both integrands in the expression for A have a single pole within
the contour Cµ

i . However, the combination C
µ
1C

µ
2 does not give the correct boundary



SECTION 4. THE GENERAL CASE 177

expression. We again split both integrals to obtain the required complete elliptic

integrals. In the first we substitute

z1 − λ0 =
λ0 − ν0

µ0 − ν0
(z1 − µ0) −

λ0 − µ0

µ0 − ν0
(z1 − ν0). (4.26)

For the contour Cλ
1 , the first integral after the split can be evaluated in terms of E

′(v).
The second integral we leave unchanged. For the integral in the z2-plane we substitute

z2 − ν0 =
λ0 − ν0

λ0 − µ0
(z2 − µ0) −

µ0 − ν0

λ0 − µ0
(z2 − λ0). (4.27)

We take Cν
2 as contour, and evaluate the first integral after the split in terms of E(v).

We again leave the second integral unchanged. Except for the contour choice, it is of

the same form as the integral we left unchanged in the z1-plane.

To obtain the required boundary expression for A at µ = µ0, it turns out that

we have to add the contribution of three pairs of contours, Cλ
1C

µ
2 , C

µ
1C

ν
2 and C

µ
1C

µ
2 .

With the above substitutions (4.26) and (4.27), the first two pairs together provide the

required boundary expression, but in addition we have two similar contour integrals

i/8π

(λ0− ν0)
1

2 (λ− ν)
1

2

∮

Cτ

(z − λ)
1

2 dz

(z − ν)
1

2 (z − λ0)
1

2 (z − ν0)
1

2 (z − µ0)
, (4.28)

with contours Cλ and Cν, respectively. The third pair, Cµ
1C

µ
2 , involves the product of

two single pole contributions. The resulting polynomial

i/8π

(λ0− ν0)
1

2 (λ− ν)
1

2

2πi (λ− µ0)
1

2

(µ0 − ν)
1

2 (λ0 − µ0)
1

2 (µ0 − ν0)
1

2

, (4.29)

can be written in the same form as (4.28), with contour Cµ. As a result, we now have

the same integral over all three contours, so that from (4.23), the cumulative result

vanishes and we are left with the required boundary expression.

The expression for A at ν = ν0 resembles the one for B at the same boundary. This
is expected since their boundary expressions in (4.12) are also very similar. The first

integral now has a contribution from a double pole in the contour C ν
1 . The second

integral has no contribution from the contour C ν
2 . However, within Cµ

2 , the second

integral can be evaluated in terms of E(w). We obtain the correct boundary expression
A(λ, µ, ν0) by considering the pair −Cν

1C
µ
2 .

4.4.3 Combination of contours

In the previous paragraphs we have constructed a homogeneous solution for A, B and
C, and we have shown that with this solution all nine boundary expressions can be
satisfied. For each boundary expression separately, we have determined the required

pair of contours and also contours from which there is no contribution. Now we have

to find the right combination of all these contours to fit the boundary expressions

simultaneously.



178 CHAPTER 5. GENERAL SOLUTION OF THE JEANS EQUATIONS

We first summarize the required and non-contributing pairs of contours per bound-

ary expression

A(λ0, µ, ν) : −Cµ
1C

λ
2 ± Cλ

1C
τ
2 ,

A(λ, µ0, ν) : +Cµ
1C

ν
2 + Cλ

1C
µ
2 + Cµ

1C
µ
2 ,

A(λ, µ, ν0) : −Cν
1C

µ
2 ± Cτ

1C
ν
2 ,

B(λ0, µ, ν) : −Cµ
1C

λ
2 ± Cλ

1C
τ
2 ,

B(λ, µ0, ν) : ±Cµ
1C

τ
2 ± Cτ

1C
µ
2 , (4.30)

B(λ, µ, ν0) : −Cν
1C

µ
2 ± Cτ

1C
ν
2 ,

C(λ0, µ, ν) : −Cµ
1C

λ
2 ± Cλ

1C
τ
2 ,

C(λ, µ0, ν) : +Cµ
1C

ν
2 + Cλ

1C
µ
2 + Cµ

1C
µ
2 ,

C(λ, µ, ν0) : −Cν
1C

µ
2 ± Cτ

1C
ν
2 ,

where τ can be λ, µ or ν. At each boundary separately, λ = λ0, µ = µ0 and ν = ν0,

the allowed combination of contours matches between A, B and C. This leaves the
question how to relate the combination of contours at the different boundaries.

From (4.23), we know that in both the complex z1-plane and z2-plane, the cumula-
tive contribution of the three simple contours cancels. As a consequence, each of the

following three combinations of integration contours

Cµ
1 C

µ
2 = −Cµ

1 (Cλ
2 + Cν

2 ) = − (Cλ
1 + Cν

1 )Cµ
2 , (4.31)

will give the same result. Similarly, we can add to each combination the pairs C λ
1C

µ
2

and Cµ
1C

ν
2 , to obtain

Cµ
1 C

ν
2 + Cλ

1 C
µ
2 + Cµ

1 C
µ
2 = Cλ

1 C
µ
2 − Cµ

1 C
λ
2 = Cµ

1 C
ν
2 − Cν

1 C
µ
2 . (4.32)

The first combination of contour pairs matches the allowed range for µ = µ0 in (4.30)

and the second and third match the boundary expressions λ = λ0 and ν = ν0. This

completes the proof that the expressions (4.20)–(4.22) for A, B and C solve the homo-
geneous equations (4.11) and satisfy the nine boundary expressions (4.12) simultane-

ously when the integration contour is any of the three combinations (4.32). We shall

see below that the first of these combinations is preferred in numerical evaluations.

4.5 EVALUATION OF THE HOMOGENEOUS SOLUTIONS

We write the complex contour integrals in the homogeneous solutions A, B and C
(4.20–4.22) as real integrals. The resulting complete hyperelliptic integrals are ex-

pressed as single quadratures, which can be easily evaluated numerically. We also

express the complete elliptic integrals in the two-dimensional homogeneous solutions

F , G, H and I (4.9) in this way to facilitate their numerical evaluation.

4.5.1 From complex to real integrals

To transform the complex contour integrals in (4.20)–(4.22) in real integrals we wrap

the contours Cλ, Cµ and Cν around the corresponding pair of branch points (Fig. 6).

The integrands consist of terms z− τ and z− τ0, all with powers larger than −1, except
z1−ν0 and z2−λ0, both of which occur to the power − 3

2 . This means that for all simple
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contours Cτ
i (τ = λ, µ, ν; i = 1, 2), except for Cν

1 and Cλ
2 , the contribution from the

arcs around the branch points vanishes. In the latter case, we are left with the parts

parallel to the real axis, so that we can rewrite the complex integrals as real integrals

with the branch points as integration limits. The only combination of contours of the

three given in (4.32) that does not involve both C ν
1 and C

λ
2 , is

S ≡ Cµ
1 C

ν
2 + Cλ

1 C
µ
2 + Cµ

1 C
µ
2 . (4.33)

We have to be careful with the changes in phase when wrapping each of the simple

contours around the branch points. One can verify that the phase changes per con-

tour are the same for all three the homogeneous solutions A, B and C, and also that
the contribution from the parts parallel to the real axis is equivalent. This gives a

factor 2 per contour and thus a factor 4 for the combination of contour pairs in S. In
this way, we can transform the double complex contour integration into the following

combination of real integrals

∫∫

S

dz1dz2 = 4(

λ0
∫

λ

dt1

µ0
∫

µ

dt2 +

µ0
∫

µ

dt1

ν0
∫

ν

dt2 −
µ0
∫

µ

dt1

µ0
∫

µ

dt2), (4.34)

with ti the real part of zi.

We apply this transformation to (4.20)–(4.22), and we absorb the factor of 4 left in

the denominators into the integrals, so that we can write

A(λ, µ, ν;λ0, µ0, ν0) =
(µ0 − ν0)(µ0 − λ0)Λ

π2(λ− µ)(λ− ν)
(A1A2 +A3A4 −A2A3) ,

B(λ, µ, ν;λ0, µ0, ν0) =
(µ0 − ν0)(µ0 − λ0)Λ

π2(µ− ν)(µ− λ)
(B1B2 +B3B4 −B2B3) , (4.35)

C(λ, µ, ν;λ0, µ0, ν0) =
(µ0 − ν0)(µ0 − λ0)Λ

π2(ν − λ)(ν − µ)
(C1C2 + C3 C4 − C2 C3) ,

where Ai, Bi and Ci (i = 1, 2, 3, 4) are complete hyperelliptic integrals, for which we give
expressions below, and

Λ2 =
(λ− µ)(λ− ν)(µ− ν)

(λ0 − µ0)(λ0 − ν0)(µ0 − ν0)
. (4.36)

The second set of arguments added to A, B and C make explicit the position (λ0, µ0, ν0)
of the source point which is causing the stresses at the field point (λ, µ, ν).

4.5.2 The complete hyperelliptic integrals

With the transformation described in the previous section the expression for, e.g., the

complete hyperelliptic integral A2 is of the form

A2 =
1

2

µ0
∫

µ

dt

λ0 − t

√

(λ− t)(t− ν0)

(µ0 − t)(t− µ)(λ0 − t)(t− ν)
. (4.37)

The integrand has two singularities, one at the lower integration limit t = µ and one
at the upper integration limit t = µ0. The substitution t = µ + (µ0 − µ) cos2 θ removes
both singularities, since dt/

√

(µ0 − t)(t− µ) = 2(µ0 − µ)dθ.
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All complete hyperelliptic integrals Ai, Bi and Ci (i = 1, 2, 3, 4) in (4.35) are of the
form (4.37) and have at most two singularities at either of the integration limits.

Hence, we can apply a similar substitution to remove the singularities. This results

in the following expressions

A1 = (λ0 − λ)2
π/2
∫

0

sin2 θ cos2 θdθ

x3 ∆x
, A2 =

π/2
∫

0

y1y4dθ

y3 ∆y
,

A4 = (ν0 − ν)

π/2
∫

0

z2 sin2 θdθ

z1 ∆z
, A3 =

π/2
∫

0

y3y4dθ

y1 ∆y
,

B1 = (λ0 − λ)

π/2
∫

0

x2 sin2 θdθ

x3 ∆x
, B2 = (µ0 − µ)

π/2
∫

0

y1 cos2 θdθ

y3 ∆y
,

(4.38)

B4 = (ν0 − ν)

π/2
∫

0

z4 sin2 θdθ

z1 ∆z
, B3 = (µ0 − µ)

π/2
∫

0

y3 cos2 θdθ

y1 ∆y
,

C1 = (λ0 − λ)

π/2
∫

0

x4 sin2 θdθ

x3 ∆x
, C2 =

π/2
∫

0

y1y2dθ

y3 ∆y
,

C4 = (ν0 − ν)2
π/2
∫

0

sin2 θ cos2 θdθ

z1 ∆z
, C3 =

π/2
∫

0

y2y3dθ

y1 ∆y
,

where we have defined

∆2
x = x1x2x3x4, ∆2

y = y1y2y3y4, ∆2
z = z1z2z3z4, (4.39)

and the factors xi, yi and zi (i = 1, 2, 3, 4) are given by

x1 = (λ− µ0) + (λ0 − λ) cos2 θ, x2 = (λ− µ) + (λ0 − λ) cos2 θ,

x3 = (λ− ν0) + (λ0 − λ) cos2 θ, x4 = (λ− ν) + (λ0 − λ) cos2 θ,

y1 = (µ− ν0) + (µ0 − µ) cos2 θ, y2 = (µ− ν) + (µ0 − µ) cos2 θ,
(4.40)

y3 = (µ− λ0) + (µ0 − µ) cos2 θ, y4 = (µ− λ) + (µ0 − µ) cos2 θ,

z1 = (ν − λ0) + (ν0 − ν) cos2 θ, z2 = (ν − λ) + (ν0 − ν) cos2 θ,

z3 = (ν − µ0) + (ν0 − ν) cos2 θ, z4 = (ν − µ) + (ν0 − ν) cos2 θ.

For each i these factors follow from each other by cyclic permutation of λ→ µ→ ν → λ
and at the same time λ0 → µ0 → ν0 → λ0. Half of the factors – all xi, y1 and y2 – are

always positive, whereas the other factors are always negative. The latter implies

that one has to be careful with the signs of the factors under the square root when

evaluating the single quadratures numerically.

4.5.3 The complete elliptic integrals

The two-dimensional homogeneous solutions F , G, H and I are given in (4.9) in terms
of the Legendre complete elliptic integrals E(m) and E ′(m) = [E(m) −K(m)]/2m. Nu-
merical routines for E(m) and K(m) (e.g., Press et al. 1992) generally require the
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argument to be 0 ≤ m < 1. In the allowed range of the confocal ellipsoidal coordinates,
the arguments u (4.10) and w (3.16) become larger than unity. In these cases we can
use transformations to express E(m) and K(m) in terms of E(1/m) and K(1/m) (e.g.,
Byrd & Friedman 1971).

We prefer, however, to write the complete elliptic integrals as single quadratures

similar to the above expressions for the hyperelliptic integrals. These quadratures

can easily be evaluated numerically and apply to the full range of the confocal ellip-

soidal coordinates. The resulting expressions for the two-dimensional homogeneous

solutions are

F (λ, µ;λ0, µ0) =
1

π

√

λ− µ

λ0 − µ0

π/2
∫

0

x1 dθ

x2
√
x1 x2

,

G(λ, µ;λ0, µ0) =
1

π

√

λ− µ

λ0 − µ0
(µ0 − µ)

π/2
∫

0

sin2 θ dθ

y4
√
y3 y4

,

H(µ, ν;µ0, ν0) =
1

π

√

µ− ν

µ0 − ν0
(µ0 − µ)

π/2
∫

0

sin2 θ dθ

y2
√
y1 y2

,

I(µ, ν;µ0, ν0) =
1

π

√

µ− ν

µ0 − ν0

π/2
∫

0

z3 dθ

z4
√
z3 z4

. (4.41)

Again we have added two arguments to make the position of the unit source explicitly.

We note that the homogeneous solutions A(λ, µ;λ0, µ0) and B(λ, µ;λ0, µ0) for the disk
case (3.41) are equivalent to F and G respectively.

4.6 GENERAL TRIAXIAL SOLUTION

We now construct the solution of the Jeans equations for triaxial Stäckel models

(4.2), by superposition of singular solutions, which involve the homogeneous solution

derived in the above. We match the solution to the boundary conditions at µ = −α and
ν = −β, and check for convergence of the solution when λ → ∞. Next, we consider
alternative boundary conditions and present the triaxial solution for a general finite

region. We also show that the general solution yields the correct result in the case of

thin tube orbits and the triaxial Abel models of Dejonghe & Laurent (1991). Finally,

we describe a numerical test of the triaxial solution to a polytrope model.

4.6.1 Superposition of singular solutions

Substitution of the functions A, B, C (4.35) and the functions F , G, H, I (4.41)
in expression (4.6), provides the three singular solutions of the system of simplified

Jeans equations, with the right-hand side given by (4.4). We denote these by S ττ
2

(τ = λ, µ, ν). The singular solutions of the two similar simplified systems, with the
triplet of delta functions at the right-hand side of the first and third equation, S ττ

1 and
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Sττ
3 then follow from Sττ

2 by cyclic permutation. This gives

Sλλ
1 = B(ν, λ, µ; ν0, λ0, µ0) +G(ν, λ; ν0, λ0)δ(µ0 − µ)

+H(λ, µ;λ0, µ0)δ(ν0 − ν) − δ(µ0 − µ)δ(ν0 − ν),

Sµµ
1 = C(ν, λ, µ; ν0, λ0, µ0) + I(λ, µ;λ0, µ0)δ(ν0 − ν)

Sνν
1 = A(ν, λ, µ; ν0, λ0, µ0) + F (ν, λ; ν0, λ0)δ(µ0 − µ), (4.42a)

Sλλ
2 = A(λ, µ, ν;λ0, µ0, ν0) + F (λ, µ;λ0, µ0)δ(ν0 − ν),

Sµµ
2 = B(λ, µ, ν;λ0, µ0, ν0) +G(λ, µ;λ0, µ0)δ(ν0 − ν)

+H(µ, ν;µ0, ν0)δ(λ0 − λ) − δ(ν0 − ν)δ(λ0 − λ),

Sνν
2 = C(λ, µ, ν;λ0, µ0, ν0) + I(µ, ν;µ0, ν0)δ(λ0 − λ) (4.42b)

Sλλ
3 = C(µ, ν, λ;µ0, ν0, λ0) + I(ν, λ; ν0, λ0)δ(µ0 − µ),

Sµµ
3 = A(µ, ν, λ;µ0, ν0, λ0) + F (µ, ν;µ0, ν0)δ(λ0 − λ)

Sνν
3 = B(µ, ν, λ;µ0, ν0, λ0) +G(µ, ν;µ0, ν0)δ(λ0 − λ)

+H(ν, λ; ν0, λ0)δ(µ0 − µ) − δ(λ0 − λ)δ(µ0 − µ). (4.42c)

These singular solutions describe the contribution of a source point in (λ0, µ0, ν0) to
(λ, µ, ν). To find the solution of the full equations (4.2), we multiply the singular
solutions (4.42a), (4.42b) and (4.42c) by g1(λ0, µ0, ν0), g2(λ0, µ0, ν0) and g3(λ0, µ0, ν0),
respectively, so that the contribution from the source point naturally depends on the

local density and potential (cf. eq. [4.3]). Then, for each coordinate τ = λ, µ, ν, we add
the three weighted singular solutions, and integrate over the volume Ω, defined as

Ω = {(λ0, µ0, ν0) : λ ≤λ0 <∞, µ ≤ µ0 ≤ −α, ν ≤ ν0 ≤ −β} , (4.43)

which is the three-dimensional extension of the integration domain D in Fig. 4. The
resulting solution solves the inhomogeneous Jeans equations (4.2), but does not give

the correct values at the boundaries µ = −α and ν = −β. They are found by multiply-
ing the singular solutions (4.42b) evaluated at µ0 = −α, and, similarly, the singular
solutions (4.42c) evaluated at ν0 = −β, by −Sµµ(λ0,−α, ν0) and −Sνν(λ0, µ0,−β), re-
spectively, and integrating in Ω over the coordinates that are not fixed. One can verify
that this procedure represents the boundary values correctly. The final result for the

general solution of the Jeans equations (4.2) for triaxial Stäckel models is

Sττ (λ, µ, ν) =

∞
∫

λ

dλ0

−α
∫

µ

dµ0

−β
∫

ν

dν0

3
∑

i=1

gi(λ0, µ0, ν0)S
ττ
i (λ, µ, ν;λ0, µ0, ν0)

−
−β
∫

ν

dν0

∞
∫

λ

dλ0 Sµµ(λ0,−α, ν0)S
ττ
2 (λ, µ, ν;λ0,−α, ν0)

−
∞
∫

λ

dλ0

−α
∫

µ

dµ0 Sνν(λ0, µ0,−β)Sττ
3 (λ, µ, ν;λ0, µ0,−β), (4.44)



SECTION 4. THE GENERAL CASE 183

where τ = (λ, µ, ν). This provides the stresses everywhere, once we have specified
Sµµ(λ,−α, ν) and Sνν(λ, µ,−β). At both boundaries µ = −α and ν = −β, the three
stress components are related by a set of two Jeans equations, i.e., (4.2) evaluated

at µ = −α and ν = −β respectively. From §3, we know that the solution of these
two-dimensional systems both will involve a (boundary) function of one variable. We

need this latter freedom to satisfy the continuity conditions (2.17). This means it is

sufficient to specify any of the three stress components at µ = −α and ν = −β.

4.6.2 Convergence of the general triaxial solution

As in §§3.1.4, 3.2.7 and 3.4 we suppose G(τ) = O(τ δ) when τ → ∞, with δ in the range
[−1

2 , 0). This implies that the potential VS (2.3) is also O(τ δ). We assume that the
density ρ, which does not need to be the density ρS which generates VS, is of the form

N(µ, ν)λ−s/2 when λ → ∞. In the special case where ρ = ρS, we have s ≤ 4 except pos-
sibly along the z-axis. When s = 4 the models remain flattened out to the largest radii,
but when s < 4 the function N(µ, ν) → 1 in the limit λ→ ∞ (de Zeeuw et al. 1986).
From the definition (4.3), we find that g1(λ0, µ0, ν0) = O(λ

δ−s/2
0 ) as λ0 → ∞, while

g2(λ0, µ0, ν0) and g3(λ0, µ0, ν0) are larger and both O(λ
−s/2
0 ). To investigate the behav-

ior of the singular solutions (4.42) at large distance, we have to carefully analyze the

complete hyperelliptic (4.38) and elliptic (4.41) integrals as λ0 → ∞. This is simplified
by writing them as Carlson’s R-functions (Carlson 1977). We finally find for the sin-
gular solutions that Sττ

1 = O(1) when λ0 → ∞, whereas Sττ
2 and Sττ

3 are smaller and

O(λ−1
0 ), with τ = λ, µ, ν. This shows that for the volume integral in the triaxial solution

(4.44) to converge, we must have δ− s/2 + 1 < 0. This is equivalent to the requirement
s > 2δ + 2 we obtained in §3.4 for the limiting cases of prolate and oblate potentials
and for the large radii limit with scale-free DF. From the convergence of the remaining

two double integrals in (4.44), we find that the boundary stresses Sµµ(λ,−α, ν) and
Sνν(λ, µ,−β) cannot exceed O(1) when λ→ ∞.
This is in agreement with the large λ behavior of Sττ (λ, µ, ν) that follows from the

volume integral. The singular solutions Sλλ
i = O(1) (i = 1, 2, 3) when λ→ ∞, larger than

Sµµ
i and Sνν

i , which are all O(λ−1). Evaluating the volume integral at large distance
gives Sττ (λ, µ, ν) = O(λδ−s/2+1), i.e., not exceeding O(1) if the requirement s > 2δ + 2 is
satisfied. We obtain the same behavior and requirement from the energy, eq. (2.10).

We conclude that for the general triaxial case, as well as for the limiting cases

with a three-dimensional shape, the stress components Tττ (λ, µ, ν) are O(λδ−s/2) at
large distance, with the requirement that s > 2δ + 2 for − 1

2 ≤ δ < 0. We obtained the
same result for the stresses in the disk case, except that then s > 2δ + 1. Both the
three-dimensional and two-dimensional requirements are met for many density dis-

tributions ρ and potentials VS of interest. They do not break down until the isothermal

limit δ → 0, with s = 1 (disk) and s = 2 (three-dimensional) is reached.

4.6.3 Alternative boundary conditions

Our solution for the stress components at each point (λ, µ, ν) in a triaxial model with a
Stäckel potential consists of the weighted contribution of all sources outwards of this

point. Accordingly, we have integrated with respect to λ0, µ0 and ν0, with lower limits

the coordinates of the chosen point and upper limits ∞, −α and −β, respectively.
To obtain the correct expressions at the outer boundaries, the stresses must vanish

when λ→ ∞ and they have to be specified at µ = −α and ν = −β.
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The integration limits λ, µ and ν are fixed, but for the other three limits we can,
in principle, equally well choose −α, −β and −γ respectively. The latter choices also
imply the specification of the stress components at these boundaries instead. Each

of the eight possible combinations of these limits corresponds to one of the octants

into which the physical region −γ ≤ ν0 ≤ −β ≤ µ0 ≤ −α ≤ λ0 < ∞ is split by the

lines through the point (λ, µ, ν). By arguments similar to those given in §3.3, one
may show that in all octants the expressions (4.35) for A, B, C, and (4.9) for F ,
G, H, I are equivalent. Hence, again the only differences in the singular solutions
are due to possible changes in the sign of the step-functions, but the changes in

the integration limits cancel the sign differences between the corresponding singular

solutions. However, as in §3.3 for the two-dimensional case, it is not difficult to show
that while switching the boundary conditions µ and ν is indeed straightforward, the
switch from λ → ∞ to λ = −α again leads to solutions which generally have the
incorrect radial fall-off, and hence are non-physical.

4.6.4 Triaxial solution for a general finite region

If we denote non-fixed integration limits by λe, µe and νe respectively, we can write the

triaxial solution for a general finite region as

Sττ (λ, µ, ν) =

λe
∫

λ

dλ0

µe
∫

µ

dµ0

νe
∫

ν

dν0

3
∑

i=1

gi(λ0, µ0, ν0)S
ττ
i (λ, µ, ν;λ0, µ0, ν0)

−
µe
∫

µ

dµ0

νe
∫

ν

dν0 Sλλ(λe, µ0, ν0)S
ττ
1 (λ, µ, ν;λe, µ0, ν0)

−
νe
∫

ν

dν0

λe
∫

λ

dλ0 Sµµ(λ0, µe, ν0)S
ττ
2 (λ, µ, ν;λ0, µe, ν0)

−
λe
∫

λ

dλ0

µe
∫

µ

dµ0 Sνν(λ0, µ0, νe)S
ττ
3 (λ, µ, ν;λ0, µ0, νe), (4.45)

with, as usual, τ = λ, µ, ν. The weight functions gi (i = 1, 2, 3) are defined in (4.3)
and the singular solutions Sττ

i are given by (4.42). The non-fixed integration limits

are chosen in the corresponding physical ranges, i.e., λe ∈ [−α,∞], µe ∈ [−β,−α] and
νe ∈ [−γ,−β], but λe 6= −α (see §4.6.3). The solution requires the specification of the
stress components on the boundary surfaces λ = λe, µ = µe and ν = νe. On each

of these surfaces the three stress components are related by two of the three Jeans

equations (4.2) and the continuity conditions (2.17). Hence, once one of the stress

components is prescribed on three boundary surfaces, the solution (4.44) yields all

three stresses everywhere in the triaxial Stäckel galaxy. The stresses on the remaining

three boundary surfaces then follow as the limits of the latter solution.

4.6.5 Physical solutions

Statler (1987) and HZ92 showed that many different DFs are consistent with a triaxial

density ρ in the potential VS. Specifically, the boundary plane ν = −β, i.e., the area
outside the focal hyperbola in the (x, z)-plane (Fig. 2), is only reached by inner (I) and
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outer (O) long-axis tube orbits. A split between the contribution of both orbit families

to the density in this plane has to be chosen, upon which the DF for both the I and O

orbits is fixed in case only thin tubes are populated, but many other possibilities exist

when the full set of I- and O-orbits is included. For each of these DFs, the density pro-

vided by the I- and O-tubes can then in principle be found throughout configuration

space. In the area outside the focal ellipse in the (y, z)-plane (µ = −α), only the O-tubes
and S-tubes contribute to the density. Subtracting the known density of the O-orbits

leaves the density to be provided by the S-tubes in this plane, from which their DF

can be determined. This is again unique when only thin orbits are used, but is non-

unique otherwise. The density that remains after subtracting the I-, O-, and S-tube

densities from ρmust be provided by the box (B) orbits. Their DF is now fixed, and can
be found by solving a system of linear equations, starting from the outside (λ→ ∞).
The total DF is the sum of the DFs of the four orbit families, and is hence highly

non-unique. All these DFs give rise to a range of stresses Tλλ, Tµµ, Tνν , and our solution

of the Jeans equations must be sufficiently general to contain them as a subset. This

is indeed the case, as we are allowed to choose the stresses on the special surfaces

ν = −β and µ = −α. However, not all choices will correspond to physical DFs. The
requirement Tττ ≥ 0 is necessary but not sufficient for the associated DF to be non-
negative everywhere.

4.6.6 The general solution for thin tube orbits

For each of the three tube families in case of infinitesimally thin orbits one of the

three stress components vanishes everywhere (see §2.5.6). We are left with two non-
zero stress components related to the density and potential by three reduced Jeans

equations (4.2). We thus have subsidiary conditions on the three right hand side

terms g1, g2 and g3.

HZ92 solved for the two non-trivial stresses and showed that they can be found

by single quadratures (with integrands involving no worse than complete elliptic inte-

grals), once the corresponding stress had been chosen at ν = −β (for I- and O-tubes)
or at µ = −α (for S-tubes).
By analogy with the reasoning for the thin tube orbits in the disk case (§3.4.4),

we can show that for each of the three tube families in the case of thin orbits the

general triaxial solution (4.45) gives the stress components correctly. Consider, e.g.,

the thin I-tubes, for which Sµµ ≡ 0. Apply the latter to (4.45), substitute for g1, g2
and g3 the subsidiary conditions that follow from the reduced Jeans equations (4.2)
and substitute for the singular solutions the expressions (4.42). After several partial

integrations, we use that the homogeneous solutions A, B and C solve a homoge-
neous system similar to (4.11), but now with respect to the source point coordinates

(λ0, µ0, ν0)

∂B(ν, λ, µ; ν0, λ0, µ0)

∂λ0
=
A(λ, µ, ν;λ0, µ0, ν0)

2(λ0 − µ0)
+
C(µ, ν, λ;µ0, ν0, λ0)

2(λ0 − ν0)
, (4.46)

where other relations follow by cyclic permutation of λ → µ → ν → λ and λ0 → µ0 →
ν0 → λ0. And similar for the two-dimensional homogeneous solutions F , G, H and I
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the relations follow from

∂G(µ, λ;µ0, λ0)

∂λ0
=

F (λ, µ;λ0, µ0)

2(λ0 − µ0)
,

(4.47)
∂H(µ, ν;µ0, ν0)

∂µ0
=

I(ν, µ; ν0, µ0)

2(µ0 − ν0)
.

It indeed turns out that for Sµµ(λ, µ, ν) all terms cancel on the right hand side of (4.45).
The terms that are left in the case of Sλλ and Sνν are just eq. (4.2a) integrated with

respect to λ and eq. (4.2c) integrated with respect to ν, respectively, and using that
Sµµ ≡ 0. A similar analysis as above shows that also for thin O- and S-tubes — for
which Sλλ ≡ 0 in both cases — the general triaxial solution yields the correct result.

4.6.7 Triaxial Abel models

For a galaxy with a triaxial potential of Stäckel form, the DF is a function of the three

exact isolating integrals of motion, f(x,v) = f(E, I2, I3) (see also §2.2). The expressions
for E, I2 and I3 in terms of the phase-space coordinates (x,v) can be found in e.g. Z85.
We can thus write the velocity moments of the DF as a triple integral over E, I2 and

I3. Assuming that the DF is function of only one variable

S ≡ E + wI2 + uI3, (4.48)

with w and u constants, Dejonghe & Laurent (1991) show that the triple integration
simplifies to a one-dimensional Abel integration over S. Even though a DF of this form
can only describe a self-consistent model in the spherical case (ellipsoidal hypothesis,

see, e.g., Eddington 1915), the Jeans equations do not require self-consistency.

The special Abel form results in a simple analytical relation between the three

stress components (Dejonghe & Laurent 1991, their eq. [5.6])

Tµµ = Tλλaµν/aλν , Tνν = Tλλaµν/aµλ, (4.49)

with

aστ = (γ − α) + (σ + α) (τ + α)w − (σ + γ) (τ + γ)u, (4.50)

and σ, τ = λ, µ, ν. With these relations we find that

Tλλ − Tµµ

λ− µ
=
Tλλ

aλν

∂ aλν

∂λ
,

Tλλ − Tνν

λ− ν
=
Tλλ

aλµ

∂ aλµ

∂λ
. (4.51)

The first Jeans eq. (2.16a) now becomes a first-order partial differential equation for

Tλλ. This equation can be solved in a straightforward way and provides an elegant

and simple expression for the radial stress component

Tλλ(λ, µ, ν) =

√

aλeµ aλeν

aλµ aλν
Tλλ(λe, µ, ν) +

λe
∫

λ

dλ0

√

aλ0µ aλ0ν

aλµ aλν
ρ
∂VS

∂λ0
(4.52)

The expressions for Tµµ and Tνν follow by application of the ratios (4.49). If we let the

boundary value λe → ∞, the first term on the right-hand side of (4.52) vanishes.
The density ρ, which does not need to be the density ρS which generates VS, is of

the Abel form as given in eq. (3.11) of Dejonghe & Laurent (1991). If we substitute
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this form in (4.52), we obtain, after changing the order of integration and evaluating

the integral with respect to λ, again a single Abel integral that is equivalent to the ex-
pression for Tλλ that follows from eq. (3.10) of Dejonghe & Laurent (1991). Using the

relations (4.49) and the corresponding subsidiary conditions for g1, g2 and g3, it can be
shown that the general triaxial solution (4.45) gives the stress components correctly.

4.6.8 Numerical test

We have numerically implemented the general triaxial solution (4.45), and tested it

on a polytrope dynamical model, for which the DF depends only on energy E as
f(E) ∝ En−3/2, with n > 1

2 . Integration of this DF over velocity v, with E = −V − 1
2v

2 for

a potential V ≤ 0, shows that the density ρ ∝ (−V )n (e.g., Binney & Tremaine 1987, p.

223). This density is not consistent with the Stäckel potentials we use but, as noted in

§2.3, the Jeans equations do not require self-consistency. The first velocity moments
and the mixed second moments of the DF are all zero. The remaining three moments

all equal −V/(n+1), so that the isotropic stress of the polytrope model Tpol ∝ (−V )n+1.

We take the potential V to be of Stäckel form VS (2.3), and consider two different

choices for G(τ) in (2.4). The first is the simple form G(τ) = −GM/(
√
τ +

√
−α) that

is related to Hénon’s isochrone (de Zeeuw & Pfenniger 1988). The second is the form

for the perfect ellipsoid, for which G(τ) is given in Z85 in terms of complete elliptic
integrals. The partial derivatives of VS(λ, µ, ν), that appear in the weights g1, g2 and g3,
can be obtained in terms of G(τ) and its derivative in a straightforward way by using
the expressions derived by de Zeeuw et al. (1986).

The calculation of the stresses is done in the following way. We choose the poly-

trope index n, and fix the triaxial Stäckel model by choosing α, β and γ. This gives
Tpol. Next, we obtain successively the stresses Tλλ, Tµµ and Tνν from the general tri-

axial solution (4.45) by numerical integration, where the relation between Sττ and Tττ

is given by (4.1). We first fix the upper integration limits λe, µe and νe. All integrands

contain the singular solutions (4.42), that involve the homogeneous solutions A, B, C,
F , G, H and I, for which we numerically evaluate the single quadratures (eq. [4.35],
[4.38] and [4.41]). The weights g1, g2 and g3 (4.3) involve the polytrope density and
Stäckel potential. This leaves the boundary stresses in the integrands, for which we

use the polytrope stress Tpol that follows from the choice of the DF, evaluated at the

corresponding boundary surfaces. We then evaluate the general solution away from

these boundaries, and compare it with the known result.

We carried out the numerical calculations for different choices of n, α, β and γ and
at different field points (λ, µ, ν). In each case the resulting stresses Tλλ, Tµµ and Tνν –

independently calculated – were equivalent to high precision and equal to Tpol. This

agreement provides a check on the accuracy of both our formulae and their numerical

implementation, and demonstrates the feasibility of using our methods for computing

triaxial stress distributions. That will be the subject of a follow-up paper.

5 DISCUSSION AND CONCLUSIONS

Eddington (1915) showed that the velocity ellipsoid in a triaxial galaxy with a sep-

arable potential of Stäckel form is everywhere aligned with the confocal ellipsoidal

coordinate system in which the equations of motion separate. Lynden–Bell (1960)

derived the three Jeans equations which relate the three principal stresses to the po-

tential and the density. They constitute a highly-symmetric set of first-order partial
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differential equations in the three confocal coordinates. Solutions were found for the

various two-dimensional limiting cases, but with methods that do not carry over to

the general case, which, as a consequence, remained unsolved.

Here, we have introduced an alternative solution method, using superposition of

singular solutions. We have shown that this approach not only provides an elegant al-

ternative to the standard Riemann–Green method for the two-dimensional limits, but

also, unlike the standard methods, can be generalized to solve the three-dimensional

system. The resulting solutions contain complete (hyper)elliptic integrals which can

be evaluated in a straightforward way. In the derivation, we have recovered (and in

some cases corrected) all previously known solutions for the various two-dimensional

limiting cases with more symmetry, as well as the two special solutions known for the

general case, and have also clarified the restrictions on the boundary values. We have

numerically tested our solution on a polytrope model.

The general Jeans solution is not unique, but requires specification of principal

stresses at certain boundary surfaces, given a separable triaxial potential, and a tri-

axial density distribution (not necessarily the one that generates the potential). We

have shown that these boundary surfaces can be taken to be the plane containing the

long and the short axis of the galaxy, and, more specifically, the part that is crossed by

all three families of tube orbits and the box orbits. This is not unexpected, as HZ92

demonstrated that the phase-space distribution functions of these triaxial systems

are defined by specifying the population of each of the three tube orbit families in a

principal plane. Once the tube orbit populations have been defined in this way, the

population of the box orbits is fixed, as it must reproduce the density not contributed

by the tubes, and there is only one way to do this. While HZ92 chose to define the pop-

ulation of inner and outer long axis tubes in a part of the (x, z)-plane, and the short
axis tubes in a part of the (y, z)-plane, it is in fact also possible to specify all three of
them in the appropriate parts of the (x, z)-plane, just as is needed for the stresses.

The set of all Jeans solutions (4.45) contains all the stresses that are associated

with the physical distribution functions f ≥ 0, but, as in the case of spherical and
axisymmetric models, undoubtedly also contains solutions which are unphysical, e.g.,

those associated with distribution functions that are negative in some parts of phase

space. The many examples of the use of spherical and axisymmetric Jeans models in

the literature suggest nevertheless that the Jeans solutions can be of significant use.

While triaxial models with a separable potential do not provide an adequate de-

scription of the nuclei of galaxies with cusped luminosity profiles and a massive cen-

tral black hole, they do catch much of the orbital structure at larger radii, and in some

cases even provide a good approximation of the galaxy potential. The solutions for the

mean streaming motions, i.e., the first velocity moments of the distribution function,

are quite helpful in understanding the variety of observed velocity fields in giant el-

liptical galaxies and constraining their intrinsic shapes (e.g., Statler 1991, 1994b;

Arnold et al.1994; Statler et al. 1999; Statler 2001). We expect that the projected ve-

locity dispersion fields that can be derived from our Jeans solutions will be similarly

useful, and, in particular, that they can be used to establish which combinations of

viewing directions and intrinsic axis ratios are firmly ruled out by the observations.

As some of the projected properties of the Stäckel models can be evaluated by ana-

lytic means (Franx 1988), it is possible that this holds even for the intrinsic moments

considered here. Work along these lines is in progress.

The solutions presented here constitute a significant step towards completing the
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analytic description of the properties of the separable triaxial models, whose history

by now spans more than a century. It is remarkable that the entire Jeans solution can

be written down by means of classical methods. This suggests that similar solutions

can be found for the higher dimensional analogues of (2.16), most likely involving

hyperelliptic integrals of higher order. It is also likely that the higher-order velocity

moments for the separable triaxial models can be found by similar analytic means,

but the effort may become prohibitive.
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APPENDIX A SOLVING FOR THE DIFFERENCE IN STRESS

We compare our solution for the stress components Tλλ and Tµµ with the result derived

by EL89. They combine the two Jeans equations (2.25) into the single equation

∂2∆

∂λ∂µ
+

(

∂

∂µ
− ∂

∂λ

)

∆

2(λ − µ)
=
∂ρ

∂λ

∂VS

∂µ
− ∂ρ

∂µ

∂VS

∂λ
, (A.1)

for the difference ∆ ≡ Tλλ − Tµµ of the two stress components. Eq. (A.1) is of the form

L?∆ =
∂ρ

∂λ

∂VS

∂µ
− ∂ρ

∂µ

∂VS

∂λ
, (A.2)

where L? is the adjoint operator defined in eq. (3.6). As in §3.1, eq. (A.1) can be solved
via a Riemann–Green function.
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A.1 THE GREEN’S FUNCTION

In order to obtain the Riemann–Green function G? for the adjoint operator L?, we use

the reciprocity relation (Copson 1975, §5.2) to relate it to the Riemann–Green function
G, derived in §3.1.2 for L. With c1 = c2 = −1

2 in this case, we get

G?(λ, µ;λ0, µ0) = G(λ0, µ0;λ, µ) =

(

λ0 − µ0

λ− µ

)
1

2

2F1(− 1

2
, 3
2
; 1;w), (A.3)

where w as defined in (3.16). EL89 seek to solve eq. (A.2) using a Green’s function G
which satisfies the equation

L?G = δ(λ0 − λ) δ(µ0 − µ). (A.4)

That they impose the same boundary conditions that we do is evident from their re-

mark that, if L? were the simpler operator ∂2/∂λ∂µ, G would be H(λ0 − λ)H(µ0 − µ).
This is the same result as would be obtained by the singular solution method of §3.2,
which, as we showed there, is equivalent to the Riemann–Green analysis. Hence their

G should match the G? of eq. (A.3). We show in §A.3 that it does not.

A.2 LAPLACE TRANSFORM

We use a Laplace transform to solve (A.4) because the required solution is that to an

initial value problem to which Laplace transforms are naturally suited. The PDE is

hyperbolic with the lines λ = const and µ = const as characteristics, and its solution is
non-zero only in the rectangle bounded by the characteristics λ = λ0 and µ = µ0, and

the physical boundaries λ = −α and µ = −β (Fig. A.1). We introduce new coordinates

ξ = (λ− µ)/
√

2, η = −(λ+ µ)/
√

2, (A.5)

so that eq. (A.4) simplifies to

L?G ≡ ∂2G

∂η2
− ∂2G

∂ξ2
− ∂

∂ξ

(

G

ξ

)

= 2δ(ξ − ξ0) δ(η − η0), (A.6)

where ξ0 = (λ0 − µ0)/
√

2 and η0 = −(λ0 + µ0)/
√

2 are the coordinates of the source
point. The factor of 2 arises from the transformation of the derivatives; the product of

the delta functions in (A.4) transforms into that of (A.6) because the Jacobian of the

transformation (A.5) is unity. The reason for our choice of η is that G ≡ 0 for η < η0,

that is λ+ µ > λ0 + µ0. Hence η is a time-like variable which increases in the direction
in which the non-zero part of the solution propagates. We take a Laplace transform

in η̃ = η − η0, and transform G(ξ, η) to

Ĝ(ξ, p) =

∞
∫

0

e−pη̃G(ξ, η̃)dη̃. (A.7)

There are two equally valid ways of taking proper account of the δ(η−η0) in taking the
Laplace transform of eq. (A.6). One can either treat it as δ(η̃−0+), in which case it has
a Laplace transform of 1, or one can treat it as δ(η̃ − 0−), in which case it contributes
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FIGURE A.1 — The physically relevant region of the (λ, µ)-plane for the determination of the
Riemann–Green function G, overlayed with the new coordinates ξ and η (A.5). The dot marks
the source point of the Riemann–Green function G at (λ0, µ0). This function is non-zero only
in the shaded region, which denotes the domain of influence in the (λ, µ)-plane of that source
point. Fig. 4 on the other hand shows the (λ0, µ0)-plane. It is relevant to the solution for
the stress at a single field point (λ, µ). The hatched region D of Fig. 4 shows the domain of
dependence of the field point, that is the portion of the source plane on which the solution at
the field point depends.

a unit initial value to ∂G/∂η which must be included in the Laplace transform of
∂2G/∂η2 (Strauss 1992). Either way leads to a transformed equation for Ĝ(ξ, p) of

p2Ĝ− d2Ĝ

dξ2
− d

dξ

(

Ĝ

ξ

)

= 2δ(ξ − ξ0). (A.8)

The homogeneous part of eq. (A.8) is the modified Bessel equation of order one in the

variable pξ. Two independent solutions are the modified Bessel functions I1 and K1.

The former vanishes at ξ = 0 and the latter decays exponentially as ξ → ∞. We need
Ĝ to decay exponentially as ξ → ∞ because G(ξ, η) vanishes for η̃ < ξ − ξ0, and hence
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its Laplace transform Ĝ is exponentially small for large ξ. We also need Ĝ to vanish
at ξ = 0 where λ = µ. The focus at which λ = µ = −α is the only physically relevant
point at which ξ = 0. It lies on a boundary of the solution region in the λ0 → −α
limit (Fig. A.1). The focus is a point at which the difference ∆ between the stresses
vanishes, and hence G and Ĝ should vanish there. The delta function in eq. (A.8)
requires that Ĝ be continuous at ξ = ξ0 and that dĜ/dξ decrease discontinuously by 2
as ξ increases through ξ = ξ0. Combining all these requirements, we obtain the result

Ĝ(ξ, p) =

{

2ξ0K1(pξ) I1(pξ0), ξ0 ≤ ξ <∞,

2ξ0K1(pξ0) I1(pξ), 0 ≤ ξ ≤ ξ0.
(A.9)

We use the Wronskian relation I1(x)K
′
1(x)−I ′1(x)K1(x) = −1/x (eq. [9.6.15] of Abramowitz

& Stegun 1965) in calculating the prefactor of the products of modified Bessel func-

tions. The inversion of this transform is obtained from formula (13.39) of Oberhet-

tinger & Badii (1973) which gives

G(ξ, η̃) =

{
√

ξ0
ξ 2F1(− 1

2
, 3
2
; 1;w), |ξ0 − ξ| ≤ η̃ ≤ ξ0 + ξ,

0, −∞ < η̃ < |ξ0 − ξ|,
(A.10)

we have (cf. eq. [3.16])

w ≡ η̃2 − (ξ0 − ξ)2

4ξ0ξ
=

(λ0 − λ)(µ0 − µ)

(λ0 − µ0)(λ− µ)
. (A.11)

The second case of eq. (A.10) shows that G does indeed vanish outside the shaded
sector λ < λ0, µ < µ0. The first case shows that it agrees with the adjoint Riemann–

Green function G? of (A.3) which was derived from the analysis of §3.1.

A.3 COMPARISON WITH EL89

EL89 use variables s = −η and t = ξ, whereas we avoided using t for the non-time-like
variable. They consider the Fourier transform

Ḡ(ξ, k) =

∞
∫

−∞

e−ikη̃G(ξ, η̃)dη̃. (A.12)

Because G ≡ 0 for η̃ ≤ 0, we can rewrite our Laplace transform as their Fourier
transform. Setting p = −ik gives Ḡ(ξ, k) = iĜ(ξ,−ik), and using the formulas I1(x) =

−J1(ix) and K1(x) = 1
2πiH

(1)
1 (ix), eq. (A.9) yields

Ḡ(ξ, k) =

{

πiξ0H
(1)
1 (kξ)J1(kξ0), ξ0 ≤ ξ <∞,

πiξ0H
(1)
1 (kξ0)J1(kξ), 0 ≤ ξ ≤ ξ0.

(A.13)

This formula differs from the solution for the Fourier transform given in eq. (70) of

EL89. The major difference is that their solution has Hankel functions of the sec-

ond kind H
(2)
1 (kt) = H

(2)
1 (kξ) where ours has J1 Bessel functions. Consequently their

solution has an unphysical singularity at t = ξ = 0, and so, in our opinion, is incor-
rect. Our solution, which was devised to avoid that singularity, gives a result which

matches that derived by Riemann’s method in §3.1.
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A.4 THE SOLUTION FOR ∆

The solution for ∆ using the adjoint Riemann–Green function is given by eq. (3.14)
with G replaced by G? and the sign of c2 changed for the adjoint case (Copson 1975).
The hypergeometric function of eq. (A.3) for G? is expressible in terms of complete

elliptical integrals as

2F1(− 1

2
, 3
2
; 1;w) =

2

π
[E(w) + 2wE′(w)]. (A.14)

Hence, the solution for the difference ∆ between the two principal stresses is given by

∆(λ, µ) =
2

π(λ− µ)
1

2

{

∞
∫

λ

dλ0

−α
∫

µ

dµ0

[

E(w) + 2wE′(w)
]

(λ0 − µ0)
1

2

(

∂ρ

∂λ0

∂VS

∂µ0
− ∂ρ

∂µ0

∂VS

∂λ0

)

−
∞
∫

λ

dλ0

[

E(w) + 2wE′(w)

]

µ0=−α

d

dλ0

[

(λ0 + α)
1

2 ∆(λ0,−α)
]

}

. (A.15)

The determined reader can verify, after some manipulation, that this expression is

equivalent to the difference between the separate solutions (3.21a) and (3.21b), de-

rived in §3.1.

NOTE ADDED IN MANUSCRIPT

We agree with the amendment to our method of solution for ∆ given in Appendix A.4.
Our Green’s function, while solving the differential equation, had the wrong boundary

conditions.

N.W. Evans & D. Lynden-Bell


