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CHAPTER 2

THE DYNAMICAL DISTANCE AND INTRINSIC STRUCTURE

OF THE GLOBULAR CLUSTER ω CENTAURI

ABSTRACT
We determine the dynamical distance D, inclination i, mass-to-light ratioM/L and
the intrinsic orbital structure of the globular cluster ω Cen, by fitting axisymmet-
ric dynamical models to the ground-based proper motions of van Leeuwen et al.
(2000) and line-of-sight velocities from four independent data-sets. We bring the
kinematic measurements onto a common coordinate system, and select on cluster
membership and on measurement error. This provides a homogeneous data-set
of 2295 stars with proper motions accurate to 0.20 masyr−1 and 2163 stars with
line-of-sight velocities accurate to 2 kms−1, out to about half the tidal radius.

We correct the observed velocities for perspective rotation caused by the space mo-
tion of the cluster, and show that the residual solid-body rotation component in the
proper motions (caused by relative rotation of the photographic plates from which
they were derived) can be taken out without any modeling other than assuming
axisymmetry. This also provides a tight constraint on D tan i. The corrected mean
velocity fields are consistent with regular rotation, and the velocity dispersion fields
display significant deviations from isotropy.

We model ω Cen with an axisymmetric implementation of Schwarzschild’s orbit
superposition method, which accurately fits the surface brightness distribution,
makes no assumptions about the degree of velocity anisotropy in the cluster, and
allows for radial variations in M/L. We bin the individual measurements on the
plane of the sky to search efficiently through the parameter space of the models.
Tests on an analytic model demonstrate that this approach is capable of measur-
ing the cluster distance to an accuracy of about 6 per cent. Application to ω Cen
reveals no dynamical evidence for a significant radial dependence of M/L, in har-
mony with the relatively long relaxation time of the cluster. The best-fit dynamical
model has a stellar V -band mass-to-light ratio M/LV = 2.5 ± 0.1 M�/L� and an
inclination i = 50◦ ± 4◦, which corresponds to an average intrinsic axial ratio of
0.78 ± 0.03. The best-fit dynamical distance D = 4.8 ± 0.3 kpc (distance modulus
13.75± 0.13 mag) is significantly larger than obtained by means of simple spherical
or constant-anisotropy axisymmetric dynamical models, and is consistent with the
canonical value 5.0 ± 0.2 kpc obtained by photometric methods. The total mass of
the cluster is (2.5 ± 0.3) × 106 M�.

The best-fit model is close to isotropic inside a radius of about 10 arcmin and
becomes increasingly tangentially anisotropic in the outer region, which displays
significant mean rotation. This phase-space structure may well be caused by the
effects of the tidal field of the Milky Way. The cluster contains a separate disk-like
component in the radial range between 1 and 3 arcmin, contributing about 4% to
the total mass.

G. van de Ven, R.C.E. van den Bosch, E.K. Verolme, P.T. de Zeeuw

A&A, in press (2005)
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1 INTRODUCTION

T
HE globular cluster ω Cen (NGC 5139) is a unique window into astrophysics (van
Leeuwen, Hughes & Piotto 2002). It is the most massive globular cluster of our

Galaxy, with an estimated mass between 2.4×106M� (Mandushev, Staneva & Spasova
1991) and 5.1×106M� (Meylan et al. 1995). It is also one of the most flattened globular
clusters in the Galaxy (e.g., Geyer, Nelles & Hopp 1983) and it shows clear differential

rotation in the line-of-sight (Merritt, Meylan & Mayor 1997). Furthermore, multiple

stellar populations can be identified (e.g., Freeman & Rodgers 1975; Lee et al. 1999;

Pancino et al. 2000; Bedin et al. 2004). Since this is unusual for a globular cluster,

a whole range of different formation scenarios of ω Cen have been suggested, from
self-enrichment in an isolated cluster or in the nucleus of a tidally stripped dwarf

galaxy, to a merger between two or more globular clusters (e.g., Icke & Alcaino 1988;

Freeman 1993; Lee et al. 2002; Tsuchiya, Korchagin & Dinescu 2004).

ω Cen has a core radius of rc = 2.6 arcmin, a half-light (or effective) radius of rh = 4.8
arcmin and a tidal radius of rt = 45 arcmin (e.g., Trager, King & Djorgovski 1995). The
resulting concentration index log(rt/rc) ∼ 1.24 implies that ω Cen is relatively loosely
bound. In combination with its relatively small heliocentric distance of 5.0 ± 0.2 kpc
(Harris 1996)1. This makes it is possible to observe individual stars over almost the

entire extent of the cluster, including the central parts. Indeed, line-of-sight velocity

measurements2 have been obtained for many thousands of stars in the field of ω Cen
(Suntzeff & Kraft 1996, hereafter SK96; Mayor et al. 1997, hereafter M97; Reijns et

al. 2005, hereafter Paper II; Xie, Gebhardt et al. in preparation, hereafter XGEA). Re-

cently, also high-quality measurements of proper motions of many thousands of stars

in ω Cen have become available, based on ground-based photographic plate observa-
tions (van Leeuwen et al. 2000, hereafter Paper I) and Hubble Space Telescope (HST)

imaging (King & Anderson 2002).

The combination of proper motions with line-of-sight velocity measurements al-

lows us to obtain a dynamical estimate of the distance to ω Cen and study its internal
dynamical structure. While line-of-sight velocity observations are in units of kms−1,

proper motions are angular velocities and have units of (milli)arcsec yr−1. A value for

the distance is required to convert these angular velocities to kms−1. Once this is

done, the proper motion and line-of-sight velocity measurements can be combined

into a three-dimensional space velocity, which can be compared to kinematic observ-

ables that are predicted by dynamical models. By varying the input parameters of

these models, the set of model parameters (including the distance) that provides the

best-fit to the observations can be obtained. Similar studies for other globular clus-

ters, based on comparing modest numbers of line-of-sight velocity and proper motion

measurements with simple spherical dynamical models, were published for M3 (Cud-

worth 1979), M22 (Peterson & Cudworth 1994), M4 (Peterson, Rees & Cudworth 1995;

see also Rees 1997), and M15 (McNamara, Harrison & Baumgardt 2004).

A number of dynamical models which reproduce the line-of-sight velocity measure-

ments have been published. As no proper motion information was included in these

models, the distance could not be fitted and had to be assumed. Furthermore, all

1Throughout this chapter we use this distance of 5.0 ± 0.2 kpc, obtained with photometric methods,
as the canonical distance.
2Instead of the often-used term radial velocities, we adopt the term line-of-sight velocities, to avoid

confusion with the decomposition of the proper motions in the plane of the sky into a radial and tangen-
tial component.
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these models were limited by the flexibility of the adopted techniques and assumed

either spherical geometry (Meylan 1987, Meylan et al. 1995) or an isotropic veloc-

ity distribution (Merritt et al. 1997). Neither of these assumptions is true for ω Cen
(Geyer et al. 1983; Merrifield & Kent 1990). Recent work, using an axisymmetric im-

plementation of Schwarzschild’s (1979) orbit superposition method, shows that it is

possible to fit anisotropic dynamical models to (line-of-sight) kinematic observations

of non-spherical galaxies (van der Marel et al. 1998; Cretton et al. 1999; Cappellari

et al. 2002; Verolme et al. 2002; Gebhardt et al. 2003; Krajnović et al. 2005). Here,

we extend Schwarzschild’s method in such a way that it can deal with a combination

of proper motion and line-of-sight velocity measurements of individual stars. This al-

lows us to derive an accurate dynamical distance and to improve our understanding

of the internal structure of ω Cen.

It is possible to incorporate the discrete kinematic measurements of ω Cen directly
in dynamical models by using maximum likelihood techniques (Merritt & Saha 1993;

Merritt 1993; Merritt 1997; Romanowsky & Kochanek 2001; Kleyna et al. 2002),

but these methods are non-linear, are not guaranteed to find the global best-fitting

model, and are very CPU-intensive for data-sets consisting of several thousands of

measurements. We therefore decided to bin the measurements instead and obtain

the velocity moments in a set of apertures on the plane of the sky. While this method

is (in principle) slightly less accurate, as some information in the data may be lost

during the binning process, it is much faster, which allows us to make a thorough

investigation of the parameter space of ω Cen in a relatively short time. It should
also give a good starting point for a subsequent maximum likelihood model using the

individual measurements.

This chapter is organized as follows. In Section 2, we describe the proper motion

and line-of-sight velocity measurements and transform them to a common coordinate

system. The selection of the kinematic measurements on membership and measure-

ment error is outlined in Section 3. In Section 4, we correct the kinematic measure-

ments for perspective rotation and show that a residual solid-body rotation compo-

nent in the proper motions can be taken out without any modeling other than assum-

ing axisymmetry. This also provides a tight constraint on the inclination of the cluster.

In Section 5, we describe our axisymmetric dynamical modeling method, and test it in

Section 6 on an analytical model. In Section 7, we construct the mass model for ω Cen,
bin the individual kinematic measurements on the plane of the sky and describe the

construction of dynamical models that we fit to these observations. The resulting

best-fit parameters for ω Cen are presented in Section 8. We discuss the intrinsic
structure of the best-fit model in Section 9, and draw our conclusions in Section 10.

2 OBSERVATIONS

We briefly describe the stellar proper motion and line-of-sight velocity observations of

ω Cen that we use to constrain our dynamical models (see Table 1). We then align
and transform them to a common coordinate system.

2.1 PROPER MOTIONS

The proper motion study in Paper I is based on 100 photographic plates of ω Cen,
obtained with the Yale-Columbia 66 cm refractor telescope. The first-epoch observa-

tions were taken between 1931 and 1935, for a variable star survey of ω Cen (Martin
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Source Extent Observed Selected Precision

(arcmin) (#stars) (#stars) (kms−1)

proper motions

Paper I 0–30 9847 2295 < 4.7

line-of-sight velocities

SK96 3–23 360 345 2.2

M97 0–22 471 471 0.6

Paper II 0–38 1966 1588 2.0

XGEA 0–3 4916 1352 1.1

Merged 0–30 2163 < 2.0

TABLE 1 — Overview of the proper motions and line-of-sight velocity data-sets for ω Cen. The
last row describes the four different line-of-sight velocity data-sets merged together, using the
stars in common. The precision is estimated as the median of the (asymmetric) velocity error
distribution. If a selection on the velocity errors is applied (§ 3), the upper limit is given. For the
proper motions, we assume a canonical distance of 5 kpc to convert from masyr−1 to kms−1.

1938). Second-epoch plates, specifically meant for the proper motion study, were

taken between 1978 and 1983. The plates from both periods were compared and

proper motions were measured for 9847 stars. The observations cover a radial range

of about 30 arcmin from the cluster center.

2.2 LINE-OF-SIGHT VELOCITIES

We use line-of-sight velocity observations from four different data-sets: the first two,

by SK96 and M97, from the literature, the third is described in the companion Paper II

and the fourth (XGEA) was provided by Karl Gebhardt in advance of publication.

SK96 used the ARGUSmulti-object spectrograph on the CTIO 4 m Blanco telescope

to measure, from the Ca II triplet range of the spectrum, the line-of-sight velocities

of bright giant and subgiant stars in the field of ω Cen. They found respectively
144 and 199 line-of-sight velocity members, and extended the bright sample to 161

with measurements by Patrick Seitzer. The bright giants cover a radial range from

3 to 22 arcmin, whereas the subgiants vary in distance between 8 and 23 arcmin.

From the total data-set of 360 stars, we remove the 6 stars without (positive) velocity

error measurement together with the 9 stars for which we do not have a position (see

§ 2.3.1), leaving a total of 345 stars.
M97 published 471 high-quality line-of-sight velocity measurements of giants in

ω Cen, taken with the photoelectric spectrometer CORAVEL, mounted on the 1.5 m
Danish telescope at Cerro La Silla. The stars in their sample are located between 10

arcsec and 22 arcmin from the cluster center.

In Paper II, we describe the line-of-sight velocity measurements of 1966 individual

stars in the field of ω Cen, going out to about 38 arcmin. Like SK96, we observed with
ARGUS, but used the Mgb wavelength range. We use the 1589 cluster members, but
exclude the single star for which no positive velocity error measurement is available.

Finally, the data-set of XGEA contains the line-of-sight velocities of 4916 stars in

the central 3 arcmin of ω Cen. These measurements were obtained in three epochs
over a time span of four years, using the Rutgers Imaging Fabry-Perot Spectropho-

tometer on the CTIO 1.5 m telescope. During the reduction process, some slightly
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smeared out single stars were accidentally identified as two fainter stars. Also, con-

taminating light from surrounding stars can lead to offsets in the line-of-sight velocity

measurements. To exclude (most of) these misidentifications (Gebhardt, priv. comm.),

we select the 1352 stars with a measured (R-band) magnitude brighter than 14.5.

2.3 COORDINATE SYSTEM: POSITIONS

We constrain our dynamical models by merging all the above data-sets. We convert all

stellar positions to the same projected Cartesian coordinates and align the different

data-sets with respect to each other by matching the stars in common between the

different data-sets. Next, we rotate the coordinates over the observed position angle

of ω Cen to align with its major and minor axis, and give the relation with the intrinsic
axisymmetric coordinate system we assume for our models.

2.3.1 Projected Cartesian coordinates (x′′, y′′)

The stellar positions in Paper I are given in equatorial coordinates α and δ (in units of
degrees for J2000), with the cluster center at α0 = 201.◦69065 and δ0 = −47 .◦47855. For
objects with small apparent sizes, these equatorial coordinates can be converted to

Cartesian coordinates by setting x′′ = −∆α cos δ and y′′ = ∆δ, with x′′ in the direction
of West and y′′ in the direction of North, and ∆α ≡ α − α0 and ∆δ ≡ δ − δ0. However,
this transformation results in severe projection effects for objects that have a large

angular diameter or are located at a large distance from the equatorial plane. Since

both conditions are true for ω Cen, we must project the coordinates of each star on
the plane of the sky along the line-of-sight vector through the cluster center

x′′ = −r0 cos δ sin ∆α,
(2.1)

y′′ = r0 (sin δ cos δ0 − cos δ sin δ0 cos ∆α) ,

with scaling factor r0 ≡ 10800/π to have x′′ and y′′ in units of arcmin. The cluster
center is at (x′′, y′′) = (0, 0).
The stellar observations by SK96 are tabulated as a function of the projected radius

to the center only. However, for each star for which its ROA number (Woolley 1966)

appears in the Tables of Paper I or M97, we can reconstruct the positions from these

data-sets. In this way, only nine stars are left without a position. The positions of

the stars in the M97 data-set are given in terms of the projected polar radius R ′′ in
arcsec from the cluster center and the projected polar angle θ ′′ in radians from North
to East, and can be straightforwardly converted into Cartesian coordinates x ′′ and y′′.
For Paper II, we use the Leiden Identification (LID) number of each star, to obtain the

stellar positions from Paper I. The stellar positions in the XGEA data-set are already

in the required Cartesian coordinates x′′ and y′′.

2.3.2 Alignment between data-sets

Although for all data-sets the stellar positions are now in terms of the projected Carte-

sian coordinates (x′′, y′′), (small) misalignments between the different data-sets are
still present. These misalignments can be eliminated using the stars in common be-

tween the different data-sets. As the data-set of Paper I covers ω Cen fairly uniformly
over much of its extent, we take their stellar positions as a reference frame.

All the positions for the Paper II data-set and most of the positions for the SK96

data-set come directly from Paper I, and hence are already aligned. For the M97 and
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XGEA data-set, we use the DAOMASTER program (Stetson 1992), to obtain the trans-

formation (horizontal and vertical shift plus rotation) that minimizes the positional

difference between the stars that are in common with those in Paper I: 451 for the

M97 data-set and 1667 for the XGEA data-set.

2.3.3 Major-minor axis coordinates (x′, y′)

With all the data-sets aligned, we finally convert the stellar positions into the Carte-

sian coordinates (x′, y′), with the x′-axis and y′-axis aligned with respectively the ob-
served major and minor axis of ω Cen. Therefore we have to rotate (x′′, y′′) over the
position angle of the cluster. This angle is defined in the usual way as the angle be-

tween the observed major axis and North (measured counterclockwise through East).

To determine the position angle, we fit elliptic isophotes to the smoothed Digital

Sky Survey (DSS) image of ω Cen, while keeping the center fixed. In this way, we find
a nearly constant position angle of 100◦ between 5 and 15 arcmin from the center
of the cluster. This is consistent with an estimate by Seitzer (priv. comm.) from a U-
band image, close to the value of 96◦ found by White & Shawl (1987), but significantly
larger than the position angle of 91.3◦ measured in Paper I from star counts.

2.3.4 Intrinsic axisymmetric coordinates (x, y, z)

Now that we have aligned the coordinates in the plane of the sky (x′, y′) with the
observed major and the major axis, the definition of the intrinsic coordinate system of

our models and the relation between both becomes straightforward. We assume the

cluster to be axisymmetric and express the intrinsic properties of the model in terms

of Cartesian coordinates (x, y, z), with the z-axis the symmetry axis. The relation
between the intrinsic and projected coordinates is then given by

x′ = y,

y′ = −x cos i+ z sin i, (2.2)

z′ = −x sin i− z cos i.

The z′-axis is along the line-of-sight in the direction away from us3, and i is the
inclination along which the object is observed, from i = 0◦ face-on to i = 90◦ edge-on.

2.4 COORDINATE SYSTEM: VELOCITIES

After the stellar positions have been transformed to a common coordinate system,

we also convert the proper motions and line-of-sight velocities to the same (three-

dimensional) Cartesian coordinate system. We center it around zero (mean) velocity

by subtracting the systemic velocity in all three directions, and relate it to the intrinsic

axisymmetric coordinate system.

2.4.1 Proper motions

The proper motions (in masyr−1) of Paper I are given in the directions East and North,

i.e., in the direction of −x′′ and y′′ respectively. After rotation over the position angle of
100◦, we obtain the proper motion components µx′ and µy′ , aligned with the observed

major and minor axis of ω Cen, and similarly, for the proper motion errors.

3In the common (mathematical) definition of a Cartesian coordinate system the z ′-axis would point
towards us, but here we adopt the astronomical convention to have positive line-of-sight away from us.
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2.4.2 Multiple line-of-sight velocity measurements

In Paper II, the measured line-of-sight velocities are compared with those of SK96

and M97 for the stars in common. A systematic offset in velocity between the differ-

ent data-sets is clearly visible in Fig. 1 of that paper. We measure this offset with

respect to the M97 data-set, since it has the highest velocity precision and more than

a hundred stars in common with the other three data-sets: 129 with SK96, 312 with

Paper II4 and 116 with XGEA. As in Paper II, we apply four-sigma clipping, i.e., we

exclude all stars for which the measured velocities differ by more than four times the

combined velocity error. This leaves respectively 117, 284 and 109 stars in common

between M97 and the three data-sets of SK96, Paper II and XGEA. The (weighted5)

mean velocity offsets of the data-set of M97 minus the three data-sets of SK96, Pa-

per II and XGEA, are respectively −0.41± 0.08 kms−1, 1.45± 0.07 kms−1 and 0.00± 0.12
kms−1. For each of the latter three data-sets, we add these offsets to all observed

line-of-sight velocities.

Next, for each star that is present in more than one data-set, we combine the

multiple line-of-sight velocity measurements. Due to non-overlapping radial coverage

of the data-set of SK96 and XGEA, there are no stars in common between these two

data-sets, and hence no stars that appear in all four data-sets. There are 138 stars

with position in common between three data-sets and 386 stars in common between

two data-sets.

For the 138 stars in common between three data-sets, we check if the three pair-

wise velocity differences satisfy the four-sigma clipping criterion. For 6 stars, we find

that two of the three pairs satisfy the criterion, and we select the two velocities that

are closest to each other. For 7 stars, we only find a single pair that satisfies the

criterion, and we select the corresponding two velocities. Similarly, we find for the

386 stars in common between two data-sets, 13 stars for which the velocity differ-

ence does not satisfy the criterion, and we choose the measurement with the smallest

error. This means from the 524 stars with multiple velocity measurements, for 26

stars (5%) one of the measurements is removed as an outlier. This can be due to a

chance combination of large errors, a misidentification or a binary; Mayor et al. (1996)

estimated the global frequency of short-period binary systems in ω Cen to be 3–4%.

As pointed out in § 2.6 of Paper II, we can use for the stars in common between
(at least) three data-sets, the dispersion of the pairwise differences to calculate the

external (instrumental) dispersion for each of the data-sets. In this way, we found

in Paper II that the errors tabulated in SK96 are under-estimated by about 40%

and hence increased them by this amount, whereas those in M97 are well-calibrated.

Unfortunately, there are too few stars in common with the XGEA data-set for a similar

(statistically reliable) external error estimate.

In the final sample, we have 125 stars with the weighted mean of three velocity

measurements and 373 stars with the weighted mean of two velocity measurements.

Together with the 2596 single velocity measurements, this gives a total of 3094 cluster

stars with line-of-sight velocities.

4In Paper II, we report only 267 stars in common with the data-set of M97. The reason is that there

the comparison is based on matching ROA numbers, and since not all stars from Paper II have a ROA
number, we find here more stars in common by matching in position.

5To calculate the mean and dispersion of a sample, we use the weighted estimators and corresponding
uncertainties as described in Appendix A of Paper II.
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2.4.3 Systemic velocities

To center the Cartesian velocity system around zero mean velocity, we subtract from

both the proper motion data-sets and the merged line-of-sight data-set the (remaining)

systemic velocities. In combination with the cluster proper motion values from Table

4 of Paper I, we find the following systemic velocities

µsys
x′ = 3.88 ± 0.41 mas yr−1,

µsys
y′ = −4.44 ± 0.41 mas yr−1, (2.3)

vsys
z′ = 232.02 ± 0.03 km s−1.

2.4.4 Intrinsic axisymmetric coordinate system

In our models, we calculate the velocities in units of kms−1. If we assume a distance

D (in units of kpc), the conversion of the proper motions in units of masyr−1 into

units of kms−1 is given by

vx′ = 4.74Dµx′ and vy′ = 4.74Dµy′ . (2.4)

The relation between observed (vx′ , vy′ , vx′) and intrinsic (vx, vy, vz) velocities is the
same as in eq. (2.2), with the coordinates replaced by the corresponding velocities.

In addition to Cartesian coordinates, we also describe the intrinsic properties of

our axisymmetric models in terms of the usual cylindrical coordinates (R,φ, z), with
x = R cosφ and y = R sinφ. In these coordinates the relation between the observed and
intrinsic velocities is

vx′ = vR sinφ+ vφ cosφ,

vy′ = (−vR cosφ+ vφ sinφ) cos i+ vz sin i, (2.5)

vz′ = (−vR cosφ+ vφ sinφ) sin i+ vz cos i.

3 SELECTION

We discuss the selection of the cluster members from the different data-sets, as well

as some further removal of stars that cause systematic deviations in the kinematics.

3.1 PROPER MOTIONS

In Paper I, a membership probability was assigned to each star. We use the stars for

which we also have line-of-sight velocity measurements to investigate the member-

ship determination. Furthermore, in Paper I the image of each star was inspected

and classified according to its separation from other stars. We study the effect of the

disturbance by a neighboring star on the kinematics. Finally, after selection of the

undisturbed cluster members, we exclude the stars with relatively large uncertainties

in their proper motion measurements, which cause a systematic overestimation of the

mean proper motion dispersion.

3.1.1 Membership determination

The membership probability in Paper I was assigned to each star in the field by as-

suming that the distribution of stellar velocities is Gaussian. In most studies, this

is done by adopting one common distribution for the entire cluster. However, this

does not take into account that the internal dispersion, as well as the relative number
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of cluster stars decreases with radius. To better incorporate these two effects, the

membership probability in Paper I was calculated along concentric rings.

By matching the identification numbers and the positions of stars, we find that

there are 3762 stars for which both proper motions and line-of-sight velocities are

measured. This allows us to investigate the quality of the membership probability

assigned in Paper I, as the separation of cluster and field stars is very clean in line-

of-sight velocities (see e.g. Paper II, Fig. 4).

From the line-of-sight velocities, we find that of the 3762 matched stars, 3385 are

cluster members. Indeed, most of these cluster stars, 3204 (95%), have a membership

probability based on their proper motions of at least 68 per cent. Based on the latter

criterion, the remaining 181 (5%) cluster stars are wrongly classified as field stars in

Paper I. From the 3762 matched stars, 377 stars are field stars from the line-of-sight

velocity data-set of Paper II. Based on a membership probability of 68 per cent, 54

(14%) of these field stars are wrongly classified as cluster members in Paper I. This

fraction of field stars misclassified as cluster stars is an upper limit, since the obvious

field stars are already removed from the proper motion data-set of Paper I.

Wrongly classifying cluster stars as field stars is relatively harmless for our pur-

pose, since it only reduces the total cluster data-set. However, classifying field stars

as members of the cluster introduces stars from a different population with different

(kinematical) properties. With a membership probability of 99.7 per cent the fraction

of field stars misclassified as cluster stars reduces to 5%. However, at the same time

we expect to miss almost 30% of the cluster stars as they are wrongly classified as

field stars. Taking also into account that the additional selections on disturbance by

neighboring stars and velocity error below remove (part of) the field stars misclassified

as cluster stars, we consider stars with a membership probability of at least 68 per

cent as cluster members.

While for the 3762 matched stars, the line-of-sight velocities confirm 3385 stars as

cluster members, from the remaining 6084 (unmatched) stars of Paper I, 4597 stars

have a proper motion membership probability of at least 68 per cent. From the result-

ing proper motion distribution, we remove 83 outliers with proper motions five times

the standard deviation away from the mean, leaving a total of 7899 cluster stars.

3.1.2 Disturbance by neighboring stars

In Paper I, each star was classified according to its separation from other stars on a

scale from 0 to 4, from completely free to badly disturbed by a neighboring star. In

Fig. 1, we show the effect of the disturbance on the proper motion dispersion. The

(smoothed) profiles are constructed by calculating the mean proper motion dispersion

of the stars binned in concentric rings, taking the individual measurement errors into

account (Appendix A). The proper motions in the x′-direction give rise to the veloc-
ity dispersion profiles σx′ in the left panel. The proper motions in the y ′-direction
yield the dispersion profiles σy′ in the right panel. The thickest curves are the disper-

sion profiles for all 7899 cluster stars with proper motion measurements. The other

curves show how, especially in the crowded center of ω Cen, the dispersion decreases
significantly when sequentially stars of class 4 (severely disturbed) to class 1 (slightly

disturbed) are removed. We select the 4415 undisturbed stars of class 0.

The membership determination is cleaner for undisturbed stars, so that above

fraction of 5% of the cluster stars misclassified as field stars becomes smaller than

3% if only stars of class 0 are selected. The dispersion profiles σx′ and σy′ in Fig. 1
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FIGURE 1 — Velocity dispersion profiles, calculated along concentric rings, from the proper
motions of Paper I. The dispersion profiles from the proper motions in the x′-direction (y′-
direction) are shown in the left (right). The error bar at the bottom-left indicates the typical
uncertainty in the velocity dispersion. The thickest curves are the dispersion profiles for all
7899 cluster stars with proper motion measurements. The other curves show how the dis-
persion decreases significantly, especially in the crowded center of ω Cen, when sequentially
stars of class 4 (severely disturbed) to class 1 (slightly disturbed) are removed. We select the
4415 undisturbed stars of class 0.

are systematically offset with respect to each other, demonstrating that the velocity

distribution in ω Cen is anisotropic. We discuss this further in § 4.6 and § 9.2.

3.1.3 Selection on proper motion error

After selection of the cluster members that are not disturbed by neighboring stars, it

is likely that the sample of 4415 stars still includes (remaining) interlopers and stars

with uncertain proper motion measurements, which can lead to systematic deviations

in the kinematics. Fig. 2 shows that the proper motion dispersion profiles decrease

if we sequentially select a smaller number of stars by setting a tighter limit on the

allowed error in their proper motion measurements.

Since the proper motion errors are larger for the fainter stars (see also Fig. 11 of

Paper I), a similar effect happens if we select on magnitude instead. The decrease

in dispersion is most prominent at larger radii as the above selection on disturbance

by a neighboring star already removed the uncertain proper motion measurements

in the crowded center of ω Cen. All dispersion profiles in the above are corrected for
the broadening due to the individual proper motion errors (cf. Appendix A). The effect

of this broadening, indicated by the dotted curve, is less than the decrease in the

dispersion profiles due to the selection on proper motion error.

Since the kinematics do not change anymore significantly for a limit on the proper

motion errors lower than 0.20 mas yr−1, we select the 2295 stars with proper mo-

tion errors below this limit. The preliminary HST proper motions of King & Anderson
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FIGURE 2 — Proper motion dispersion profiles as in Fig. 1. Starting with all undisturbed
(class 0) cluster stars (thickest solid curve), sequentially a smaller number of stars is selected
by setting a tighter limit on the allowed error in their proper motion measurements. The
dispersion decreases if the stars with uncertain proper motion measurements are excluded.
This effect is significant and larger than the dispersion broadening due to the individual
velocity errors, indicated by the dotted curve. We select the 2295 stars with proper motion
error smaller than 0.20 mas yr−1, since below this limit the kinematics stay similar.

(2002) in the center of ω Cen (R′ ∼ 1 arcmin) give rise to mean proper motion dis-
persion σx′ = 0.81 ± 0.08 masyr−1 and σy′ = 0.77 ± 0.08 masyr−1, depending on the

magnitude cut-off. In their outer calibration field (R′ ∼ 14 arcmin), the average dis-
persion is about 0.41±0.03 masyr−1. These values are consistent with the mean proper

motion dispersion of the 2295 selected stars at those radii. We are therefore confident

that the proper motion kinematics have converged.

The spatial distribution of the selected stars is shown in the left panel of Fig. 4. In

the two upper panels of Fig. 5, the distributions of the two proper motion components

(left panels) and the corresponding errors (right panels) of the Nsel = 2295 selected
stars are shown as shaded histograms, on top of the histograms of the Nmem = 7899
cluster members. The selection removes the extended tails, making the distribution

narrower with an approximately Gaussian shape.

3.2 LINE-OF-SIGHT VELOCITIES

For each of the four different line-of-sight velocity data-sets separately, the velocity

dispersion profiles of the selected (cluster) stars (§ 2.2 and Table 1) are shown in
Fig. 3. The dotted curve is the dispersion profile of all the 4916 stars observed by

XGEA, whereas the dotted-dashed curve is based on the 1352 selected stars with

a measured magnitude brighter than 14.5, showing that fainter misidentified stars

lead to an under-estimation of the line-of-sight velocity dispersion. Although the

dispersion profile of the M97 data-set (long dashed curve) seems to be systematically

higher than those of the other data-sets, it is based on a relatively small number of
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FIGURE 3 — Velocity dispersion profiles, calculated along concentric rings, for the four dif-
ferent line-of-sight velocity data-sets separately and after they have been merged. The dotted
curve shows the under-estimated dispersion for the XGEA data-set if also the faint stars are
included. From the merged data-set of 3094 stars we select the 2163 stars with line-of-sight
velocity errors smaller than 2.0 kms−1, resulting in a dispersion profile (thick dashed curve)
that is not under-estimated due to uncertain line-of-sight velocity measurements.

stars, similar to the SK96 data-set, and the differences are still within the expected

uncertainties indicated by the error bar.

The thick solid curve is the dispersion profile of the 3094 stars after merging the

four line-of-sight velocity data-sets (§ 2.4.2). Due to uncertainties in the line-of-sight
velocity measurements of especially the fainter stars, the latter dispersion profile is

(slightly) under-estimated in the outer parts. By sequentially lowering the limit on

the line-of-sight velocity errors, we find that below 2.0 kms−1 the velocity dispersion

(thick dashed curve) converges. Hence, we select the 2163 stars with line-of-sight

velocity errors smaller than 2.0 kms−1.

The spatial distribution of these stars is shown in the right panel Fig. 4. In the

bottom panels of Fig. 5, the distribution of the line-of-sight velocities (left) and corre-

sponding errors (right) of the Nsel = 2163 selected stars are shown as filled histograms,
on top of the histograms of the Nmem = 3094 cluster members in the merged data-set.

4 KINEMATICS

We compute the mean velocity fields for the selected stars and correct the kinematic

data for perspective rotation and for residual solid-body rotation in the proper mo-

tions. At the same time, we place a tight constraint on the inclination. Finally, we

calculate the mean velocity dispersion profiles from the corrected kinematic data.
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FIGURE 4 — The stars in ω Cen with proper motion measurements (left) and line-of-sight
velocity measurements (right), that are used in our analysis. The stellar positions are plotted
as a function of the projected Cartesian coordinates x′ and y′, with the x′-axis aligned with
the observed major axis and the y′-axis aligned with the observed minor axis of ω Cen. The
excess of stars with line-of-sight velocities inside the central 3 arcmin in the bottom panel is
due to the XGEA data-set.

4.1 SMOOTHED MEAN VELOCITY FIELDS

The left-most panels of Fig. 6 show the smoothed mean velocity fields for the 2295

selected stars with proper motion measurements and the 2163 selected stars with

line-of-sight velocity measurements. This adaptive kernel smoothening is done by

selecting for each star its 200 nearest neighbors on the plane of the sky, and then

calculating the mean velocity (and higher order velocity moments) from the individual

velocity measurements (Appendix A). The contribution of each neighbor is weighted

with its distance to the star, using a Gaussian distribution with zero mean and the

mean distance of the 200 nearest neighbors as the dispersion.

The top-left panel shows the mean proper motion (in masyr−1) in the major axis

x′-direction, i.e., the horizontal component of the streaming motion on the plane of
the sky. The grey scale is such that white (black) means that the stars are moving on

average to the right (left) and the dashed curve shows the region where the horizon-

tal component of the mean proper motion vanishes. Similarly, the middle-left panel

shows the mean proper motion in the minor axis y ′-direction, i.e. the vertical com-
ponent of the streaming motion on the plane of the sky, with white (black) indicating

average proper motion upwards (downwards). Finally, the lower-left panel shows the

mean velocity (in kms−1) along the line-of-sight z′-axis, where white (black) means
that the stars are on average receding (approaching). The (dashed) zero-velocity curve

is the rotation axis of ω Cen.

Apart from a twist in the (dashed) zero-velocity curve, the latter line-of-sight ve-

locity field is as expected for a (nearly) axisymmetric stellar system. However, both

proper motion fields show a complex structure, with an apparently dynamically de-
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FIGURE 5 — Histograms of measured velocities (left panels) and corresponding velocity errors
(right panels). The proper motion components µx′ (top panels) and µy′ (middle panels), in
the direction of the observed major and minor axis of ω Cen respectively, come from the
photographic plate observations in Paper I. The line-of-sight velocities (lower panels) are taken
from four different data-sets (§ 2.2). The shaded histograms for the Nsel selected stars (§ 3) are
overlayed on the histograms of the Nmem cluster member stars.

coupled inner part, far from axisymmetric. We now show that it is, in fact, possible to

bring these different observations into concordance.

4.2 PERSPECTIVE ROTATION

The non-axisymmetric features in the observed smoothed mean velocity fields in the

left-most panels of Fig. 6, might be (partly) caused by perspective rotation. Because
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FIGURE 6 — The mean velocity fields of ω Cen corrected for perspective and solid-body rota-
tion. The individual measurements are smoothed using adaptive kernel smoothening. From
top to bottom: The mean ground-based proper motion in the major axis x′-direction and in the
minor axis y′-direction, and the mean line-of-sight velocity. From left to right: Observed veloc-
ity fields of ω Cen, contribution from perspective rotation, contribution from solid-body rota-
tion and the velocity fields after correcting for both. The perspective rotation is caused by the
space motion of ω Cen. The solid-body rotation in the proper motions is due to relative rotation
of the first and second epoch photographic plates by an amount of 0.029 masyr−1 arcmin−1.
(See p. 249 for a color version of this figure.)

ω Cen has a large extent on the plane of the sky (with a diameter about twice that of
the full moon), its substantial systemic (or space) motion (eq. 2.3) produces a non-

negligible amount of apparent rotation: the projection of the space motion onto the

principal axis (x′, y′, z′) is different at different positions on the plane of the sky (Feast,
Thackeray & Wesselink 1961). We expand this perspective rotation in terms of the

reciprocal of the distance D. Ignoring the negligible terms of order 1/D2 or smaller,

we find the following additional velocities

µpr
x′ = −6.1363 ×10−5 x′vsys

z′ /D mas yr−1,

µpr
y′ = −6.1363 ×10−5 y′vsys

z′ /D mas yr−1, (4.1)

vpr
z′ = 1.3790 ×10−3

(

x′µsys
x′ + y′µsys

y′

)

D km s−1,
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with x′ and y′ in units of arcmin and D in kpc. For the canonical distance of 5 kpc,
the systemic motion for ω Cen as given in eq. (2.3) and the data typically extending
to 20 arcmin from the cluster center, we find that the maximum amplitude of the

perspective rotation for the proper motions is about 0.06 masyr−1 and for the line-of-

sight velocity about 0.8 kms−1. These values are a significant fraction of the observed

mean velocities (left panels of Fig. 6) and of the same order as the uncertainties in the

extracted kinematics (see Appendix B). Therefore, the perspective rotation as shown

in the second column panels of Fig. 6, cannot be ignored and we correct the observed

stellar velocities by subtracting it. Since we use the more recent and improved values

for the systemic proper motion from Paper I, our correction for perspective rotation is

different from that of Merritt et al. (1997). The amplitude of the correction is, however,

too small to explain all of the complex structure in the proper motion fields and we

have to look for an additional cause of non-axisymmetry.

4.3 RESIDUAL SOLID-BODY ROTATION

Van Leeuwen & Le Poole (2002) already showed that a possible residual solid-body ro-

tation component in the ground-based proper motions of Paper I can have an impor-

tant effect on the kinematics. The astrometric reduction process to measure proper

motions removes the ability to observe an overall rotation on the plane of the sky (e.g.,

Vasilevskis et al. 1979). This solid-body rotation results in a transverse proper motion

vt = ΩR′, with Ω the amount of solid-body rotation (in units of masyr−1 arcmin−1) and

R′ the distance from the cluster center in the plane of the sky (in units of arcmin).
Decomposition of vt along the observed major and minor axis yields

µsbr
x′ = +Ω y′ mas yr−1,

(4.2)
µsbr

y′ = −Ωx′ mas yr−1.

Any other reference point than the cluster center results in a constant offset in the

proper motions, and is removed by setting the systemic proper motions to zero. Also

an overall expansion (or contraction) cannot be determined from the measured proper

motions, and results in a radial proper motion in the plane of the sky. Although both

the amount of overall rotation and expansion are in principle free parameters, they

can be constrained from the link between the measured (differential) proper motions

to an absolute proper motion system, such as defined by the Hipparcos and Tycho-2

catalogues (Perryman et al. 1997; Høg et al. 2000). In Paper I, using the 56 stars

in common with these two catalogues, the allowed amount of residual solid-body

rotation was determined to be no more than Ω = 0.02 ± 0.02 masyr−1 arcmin−1 and no

significant expansion was found.

As the amplitude of the allowed residual solid-body rotation is of the order of

the uncertainties in the mean proper motions already close to the center, and can

increase beyond the maximum amplitude of the mean proper motions in the outer

parts, correcting for it has a very important effect on the proper motions. We use

a general relation for axisymmetric objects to constrain Ω, and at the same find a
constraint on the inclination.

4.4 THE RESIDUAL SOLID-BODY ROTATION DIRECTLY FROM THE MEAN VELOCITIES

For any axisymmetric system, there is, at each position (x′, y′) on the plane of the sky,
a simple relation between the mean proper motion in the y ′-direction 〈µy′〉 and the
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FIGURE 7 — Constraints on the amount of residual solid-body body rotation Ω and via D tan i,
on the distance D (in kpc) and inclination i (in degrees), using the general relation (4.3) for
axisymmetric objects. The left panel shows the contour map of the goodness-of-fit parameter
∆χ2. The inner three contours are drawn at the 68.3%, 95.4% and 99.7% (thick contour) lev-
els of a ∆χ2-distribution with two degrees of freedom. Subsequent contours correspond to a
factor of two increase in ∆χ2. The overall minimum is indicated by the cross. The middle panel
shows the mean line-of-sight velocity 〈vz′〉 and mean short-axis proper motion 〈µy′〉 within
the same polar apertures, before (open circles) and after (filled circles) correction for residual
solid-body rotation with the best-fit value of Ω = 0.029 ± 0.004 mas yr−1 arcmin−1. The best-fit
value for D tan i = 5.6 (+1.9/−1.0) kpc gives rise to the relation in the right panel (sold line),
bracketed (at the 68.3%-level) by the dashed lines. Given the canonical distance of D = 5.0±0.2
kpc, the dotted lines indicate the constraint on inclination of i = 48 (+9/−7) degrees.

mean line-of-sight velocity 〈vz′〉 (see e.g. Appendix A of Evans & de Zeeuw 1994, here-
after EZ94). Using relation (2.5), with for an axisymmetric system 〈vR〉 = 〈vz〉 = 0, we
see that, while the mean velocity component in the x′-direction includes the spatial
term cosφ, those in the y′-direction and line-of-sight z ′-direction both contain sinφ.
The latter implies that, by integrating along the line-of-sight to obtain the observed

mean velocities, the expressions for 〈vy′〉 and 〈vz′〉 only differ by the cos i and sin i
terms. Going from 〈vy′〉 to 〈µy′〉 via eq. (2.4), we thus find the following general relation
for axisymmetric objects

〈vz′〉(x′, y′) = 4.74 D tan i 〈µy′〉(x′, y′), (4.3)

with distance D (in kpc) and inclination i.
This relation implies that, at each position on the plane of the sky, the only dif-

ference between the mean short-axis proper motion field and the mean line-of-sight

velocity field should be a constant scaling factor equal to 4.74 D tan i. Comparing the
left-most middle and bottom panel in Fig. 6 (Vobserved), this is far from what we see, ex-

cept perhaps for the inner part. We ascribe this discrepancy to the residual solid-body

rotation, which causes a perturbation of 〈µy′〉 increasing with x′ as given in eq. (4.2).
In this way, we can objectively quantify the amount of solid body rotation Ω needed to
satisfy the above relation (4.3), and at the same time find the best-fit value for D tan i.
To compute uncorrelated values (and corresponding errors) for the mean short-

axis proper motion 〈µy′〉 and mean line-of-sight velocity 〈vz′〉 at the same positions on
the plane of the sky, we bin the stars with proper motion and line-of-sight velocity

measurements in the same polar grid of apertures (see also Appendix B). We plot the

resulting values for 〈vz′〉 against 〈µy′〉 and fit a line (through the origin) by minimizing
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the χ2, weighted with the errors in both directions (§ 15.3 of Press et al. 1992).
By varying the amount of solid-body rotation Ω and the slope of the line, which

is proportional to D tan i (eq. 4.3), we obtain the ∆χ2 = χ2 − χ2
min contours in the

left panel of Fig. 7. The inner three contours are drawn at the levels containing

68.3%, 95.4% and 99.7% (thick contour) of a ∆χ2-distribution with two degrees of

freedom6. Subsequent contours correspond to a factor of two increase in ∆χ2. The

overall minimum χ2
min, indicated by a cross, implies (at the 68.3%-level) a best-fit

value of Ω = 0.029 ± 0.004 masyr−1 arcmin−1. This is fully consistent with the upper

limit of Ω = 0.02 ± 0.02 masyr−1 arcmin−1 from Paper I.

The middle panel of Fig. 7 shows that without any correction for residual solid-

body rotation, the values for 〈vz′〉 and 〈µy′〉 are scattered (open circles), while they are
nicely correlated after correction with Ω = 0.029 masyr−1 arcmin−1 (filled circles). The

resulting solid-body rotation, shown in the third column of Fig. 6, removes the cylin-

drical rotation that is visible in the outer parts of the observed proper motion fields

(first column). After subtracting this residual solid-body rotation, together with the

perspective rotation (second column), the complex structures disappear, resulting in

(nearly) axisymmetric mean velocity fields in the last column. Although the remain-

ing non-axisymmetric features, such as the twist of the (dashed) zero-velocity curve,

might indicate deviations from true axisymmetry, they can also be (partly) artifacts of

the smoothening, which, especially in the less dense outer parts, is sensitive to the

distribution of stars on the plane of the sky.

This shows that the application of eq. (4.3) to the combination of proper motion and

line-of-sight measurements provides a powerful new tool to determine the amount of

solid body rotation. At the same time, it also provides a constraint on the inclination.

4.5 CONSTRAINT ON THE INCLINATION

From the left panel of Fig. 7 we obtain (at the 68.3%-level) a best-fit value for D tan i
of 5.6 (+1.9/−1.0) kpc. The right panel shows the resulting relation (solid line) between
the distance D and the inclination i, where the dashed lines bracket the 68.3%-level
uncertainty. If we assume the canonical value D = 5.0 ± 0.2 kpc, then the inclination
is constrained to i = 48 (+9/−7) degrees.
Although we apply the same polar grid to the proper motions and line-of-sight

velocities, the apertures contain different (numbers of) stars. To test that this does not

significantly influence the computed average kinematics and hence the above results,

we repeated the analysis but now only include the 718 stars for which both the proper

motions and line-of-sight velocity are measured. The results are equivalent, but less

tightly constrained due to the smaller number of apertures.

Van Leeuwen & Le Poole (2002) compared, for different values for the amount of

residual solid-body rotation Ω, the shape of the radial profile of the mean transverse
component of proper motions from Paper I, with that of the mean line-of-sight veloci-

ties calculated by Merritt et al. (1997) from the line-of-sight velocity data-set of M97.

They found that Ω ∼ 0.032 masyr−1 arcmin−1 provides a plausible agreement. Next,

assuming a distribution for the density and the rotational velocities in the cluster,

they computed projected transverse proper motion and line-of-sight velocity profiles,

6For a Gaussian distribution with dispersion σ, these percentages correspond to the 1σ, 2σ and 3σ
confidence intervals respectively. For the (asymmetric) χ2-distribution there is in general no simple
relation between dispersion and confidence intervals. Nevertheless, the 68.3%, 95.4% and 99.7% levels
of the χ2-distribution are often referred to as the 1σ, 2σ and 3σ levels.
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and by comparing them to the observed profiles, they derived a range for the incli-

nation i from 40 to 60 degrees. Their results are consistent with our best-fit val-
ues Ω = 0.029 ± 0.004 masyr−1 arcmin−1 and i = 48 (+9/−7) degrees. Our method is
based on a general relation for axisymmetric objects, without any further assump-

tions about the underlying density and velocity distribution. Moreover, instead of

comparing shapes of mean velocity profiles, we actually fit the mean velocity fields.

In the above analysis, we assume that all of the solid-body rotation in the proper

motion is the result of a (non-physical) residual from the photographic plate reduction

in Paper I. This raises the question what happens if a (physical) solid-body rotation

component is present in ω Cen. Such a solid-body rotation component is expected to
be aligned with the intrinsic rotation axis, inclined at about 48◦, and therefore also
present in the line-of-sight velocities. Except for the perspective rotation correction,

we leave the mean line-of-sight velocities in the above analysis unchanged, so that

any such solid-body rotation component should also remain in the proper motion.

Still, since we are fitting the residual solid-body rotation Ω and the slope D tan i
simultaneously, they can become (partly) degenerate. Combining eq. (4.2) with (4.5),

we obtain the best-fit values for D tan i and Ω by minimizing

χ2 =

n
∑

j

[

〈vobs
z′ 〉j − 4.74D tan i

(

〈µobs
y′ 〉j + Ωx′j

)]2

[

∆〈vobs
z′ 〉j

]2
+
[

4.74D tan i∆〈µobs
y′ 〉j

]2 , (4.4)

where 〈vobs
z′ 〉j and 〈µobs

y′ 〉j are respectively the observed mean line-of-sight velocity and
the observed mean proper motion in the y ′-direction, measured in aperture j of a
total of n apertures, with their centers at x′j. ∆〈vobs

z′ 〉j and ∆〈µobs
y′ 〉j are the correspond-

ing measurement errors. Suppose now the extreme case that all of the observed

mean motion is due to solid-body rotation: an amount of Ω0 residual solid-body ro-

tation in the plane of the sky, and an amount of ω0 intrinsic solid-body rotation,

around the intrinsic z-axis in ω Cen, which we assume to be inclined at i0 degrees.
At a distance D0, the combination yields per aperture 〈vobs

z′ 〉j = 4.74D0ω0 sin i0x
′
j and

〈µobs
y′ 〉j = (ω0 cos i0 − Ω0)x

′
j. Substitution of these quantities in the above eq. (4.4), and

ignoring the (small) variations in the measurements errors, yields that χ2 = 0 if

D tan i = D0 tan i0

[

1 +
Ω − Ω0

ω0 cos i0

]−1

. (4.5)

This implies a degeneracy between D tan i and Ω, which in the left panel of Fig. 7,
would result in the same minimum all along a curve. However, in the case the motion

in ω Cen consists of more than only solid-body rotation, this degeneracy breaks down
and we expect to find a unique minimum. The latter seems to be the case here, and

we conclude that the degeneracy and hence the intrinsic solid-body rotation are not

dominant, if present at all.

4.6 MEAN VELOCITY DISPERSION PROFILES

In Fig. 8, we show the mean velocity dispersion profiles of the radial σR′ (dotted) and

tangential σθ′ (dashed) components of the proper motions, together with the line-of-

sight velocity dispersion σz′ (solid). The dispersions are calculated along concentric

rings from the selected sample of 2295 stars with proper motions corrected for per-

spective and residual solid-body rotation and 2163 stars with line-of-sight velocities
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FIGURE 8 — Mean velocity dispersion profiles calculated along concentric rings. Assuming
the canonical distance of 5 kpc, the profiles of the radial σR′ (dotted curve with diamonds) and
tangential σθ′ (dashed curve with triangles) components of the proper motion dispersion are
converted into the same units of kms−1 as the profile of the line-of-sight velocity dispersion σz′

(solid curve with crosses). The horizontal lines indicate the corresponding scale in masyr−1.
The mean velocity error per ring is indicated below the profiles by the corresponding sym-
bols. The diamonds and triangles mostly overlap, as the errors of the radial and tangential
components are nearly similar.

corrected for perspective rotation. We obtain similar mean velocity dispersion profiles

if we only use the 718 stars for which both proper motions and line-of-sight veloc-

ity are measured. We assume the canonical distance of 5 kpc to convert the proper

motion dispersion into units of kms−1, while the black horizontal lines indicate the

corresponding scale in units of mas yr−1. Below the profiles, the symbols represent

the corresponding mean velocity error per ring, showing that the accuracy of the line-

of-sight velocity measurements (crosses) is about four times better than the proper

motion measurements (diamond and triangles, which mostly overlap since the errors

for the two components are similar).

In § 3.1, we already noticed that since the (smoothed) profile of the major-axis
proper motion dispersion σx′ lies on average above that of the minor-axis proper mo-

tion dispersion σy′ (Fig. 1 and 2), the velocity distribution of ω Cen cannot be fully
isotropic. By comparing in Fig. 8 the radial (dotted) with the tangential (dashed)

component of the proper motion dispersion, ω Cen seems to be radial anisotropic
towards the center, and there is an indication of tangential anisotropy in the outer

parts. Moreover, if ω Cen would be isotropic, the line-of-sight velocity dispersion pro-
file (blue) would have to fall on top of the proper motion dispersion profiles if scaled

with the correct distance. A scaling with a distance lower than the canonical 5 kpc
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is needed for the line-of-sight dispersion profile to be on average the same as those of

both proper motion components.

Hence, it is not surprising that we find a distance as low as D = 4.6 ± 0.2 kpc
from the ratio of the average line-of-sight velocity dispersion and the average proper

motion dispersion (Appendix C). This often used simple distance estimate is only valid

for spherical symmetric objects. Whereas the averaged observed flattening for ω Cen
is already as low as q′ = 0.879 ± 0.007 (Geyer et al. 1983), an inclination of around 48◦

(§ 4.5), implies an intrinsic axisymmetric flattening q < 0.8.

A model with a constant oblate velocity ellipsoid as in Appendix C, allows for offsets

between the mean velocity dispersion profiles. However, the model is not suitable to

explain the observed variation in anisotropy with radius. Therefore, we use in what

follows Schwarzschild’s method to build general axisymmetric anisotropic models.

5 SCHWARZSCHILD’S METHOD

We construct axisymmetric dynamical models using Schwarzschild’s (1979) orbit su-

perposition method. This approach is flexible and efficient and does not require any

assumptions about the degree of velocity anisotropy. The only crucial approximations

are that the object is collisionless and stationary. While these assumptions are gener-

ally valid for a galaxy, they may not apply to a globular cluster. The central relaxation

time of ω Cen is a few times 109 years and the half-mass relaxation time a few times

1010 years (see also Fig. 21 below). The collisionless approximation should therefore

be fairly accurate.

The implementation that we use here is an extension of the method presented in

Verolme et al. (2002). In the next subsections, we outline the method and describe

the extensions.

5.1 MASS MODEL

Schwarzschild’s method requires a mass parameterization, which we obtain by using

the Multi-Gaussian Expansion method (MGE; Monnet, Bacon & Emsellem 1992; Em-

sellem, Monnet & Bacon 1994; Cappellari 2002). The MGE-method tries to find the

collection of two-dimensional Gaussians that best reproduces a given surface bright-

ness profile or a (set) of images. Typically, of the order of ten Gaussians are needed,

each with three free parameters: the central surface brightness Σ0,j, the dispersion

along the observed major axis σ′
j and the observed flattening q

′
j. Even though Gaus-

sians do not form a complete set of functions, in general the surface brightness is well

fitted (see also Fig. 12). Moreover, the MGE-parameterization has the advantage that

the deprojection can be performed analytically once the viewing angles (in this case

the inclination) are given. Also many intrinsic quantities such as the potential and

accelerations can be calculated by means of simple one-dimensional integrals.

5.2 GRAVITATIONAL POTENTIAL

We deproject the set of best-fitting Gaussians by assuming that the cluster is axisym-

metric and by choosing a value of the inclination i. The choice of a distance D to the
object then allows us to convert angular distances to physical units, and luminosities

are transformed to masses by multiplying with the mass-to-light ratio M/L.

The latter quantity is often assumed to be independent of radius. In the inner

regions of most galaxies, where two-body relaxation does not play an important role,
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this often is a valid assumption. Generally, globular clusters have much shorter re-

laxation times and may therefore show significant M/L-variations. This has been
confirmed for post core-collapse clusters such as M15 (e.g., Dull et al. 1997; van den

Bosch et al. 2006). However, ω Cen has a relatively long relaxation time of > 109 years,

implying that little mass segregation has occurred and the mass-to-light ratio should

be nearly constant with radius. In our analysis we assume a constant M/L, but we
also investigate possible M/L-variations.

The stellar potential is then calculated by applying Poisson’s equation to the intrin-

sic density. The contribution of a dark object such as a collection of stellar remnants

or a central black hole may be added at this stage. On the basis of the relation be-

tween the black hole mass and the central dispersion (e.g., Tremaine et al. 2002),

globular clusters might be expected to harbor central black holes with intermediate

mass of the order 103–104 M� (e.g., van der Marel 2004). With a central dispersion
of nearly 20 kms−1, the expected black hole mass for ω Cen would be ∼ 104 M�.
The spatial resolution that is required to observe the kinematical signature of such a

black hole is of the order of its radius of influence, which is around 5 arcsec (at the

canonical distance of 5 kpc). This is approximately an order of magnitude smaller

than the resolution of the ground-based observations we use in our analysis, so that

our measurements are insensitive to such a small mass. Hence, we do not include a

black hole in our dynamical models of ω Cen.

5.3 INITIAL CONDITIONS AND ORBIT INTEGRATION

After deriving the potential and accelerations, the next step is to find the initial con-

ditions for a representative orbit library. This orbit library must include all types of

orbits that the potential can support, to avoid any bias. This is done by choosing

orbits through their integrals of motion, which, in this case, are the orbital energy E,
the vertical component of the angular momentum Lz and the effective third integral I3.

For each energy E, there is one circular orbit in the equatorial plane, with radius Rc

that follows from E = Φ+ 1
2Rc∂Φ/∂Rc for z = 0, and with Φ(R, z) the underlying (axisym-

metric) potential. We sample the energy by choosing the corresponding circular radius

Rc from a logarithmic grid. The minimum radius of this grid is determined by the res-

olution of the data, while the maximum radius is set by the constraint that ≥ 99.9 per
cent of the model mass should be included in the grid. Lz is sampled from a linear

grid in η = Lz/Lmax, with Lmax the angular momentum of the circular orbit. I3 is pa-
rameterized by the starting angle of the orbit and is sampled linearly between zero and

the initial position of the so-called thin tube orbit (see Fig. 3 of Cretton et al. 1999).

The orbits in the library are integrated numerically for 200 times the period of a

circular orbit with energy E. In order to allow for comparison with the data, the in-
trinsic density, surface brightness and the three components of the projected velocity

are stored on grids. During grid storage, we exploit the symmetries of the projected

velocities by folding around the projected axes and store the observables only in the

positive quadrant (x′ ≥ 0, y′ ≥ 0). Since the sizes of the polar apertures on which the
average kinematic data is computed (Fig. 13) are much larger than the typical seeing

FWHM (1–2 arcsec), we do not have to store the orbital properties on an intermediate

grid and after orbit integration convolve with the point spread function (PSF). Instead,

the orbital observables are stored directly onto the polar apertures.
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5.4 FITTING TO THE OBSERVATIONS

After orbit integration, the orbital predictions are matched to the observational data.

We determine the superposition of orbits whose properties best reproduce the obser-

vations. If Oij is the contribution of the jth orbit to the ith constraint point, this
problem reduces to solving for the orbital weights γj in

NO
∑

j

γj Oij = Ci, i = 1, . . . ,NC , (5.1)

where NO is the number of orbits in the library, NC is the number of constraints to

be reproduced and Ci is the ith constraint. Since γj determines the mass of each

individual orbit in this superposition, it is subject to the additional condition γj ≥ 0.

Eq. (5.1) can be solved by using linear or quadratic programming (e.g., Schwarz-

schild 1979, 1982, 1993; Vandervoort 1984; Dejonghe 1989), maximum entropy

methods (e.g., Richstone & Tremaine 1988; Gebhardt et al. 2003) or with a lin-

ear least-squares solver [e.g., Non-Negative Least-Squares (NNLS), Lawson & Hanson

1974], which was used in many of the spherical and axisymmetric implementations

(e.g., Rix et al. 1997; van der Marel et al. 1998; Cretton et al. 1999; Cappellari et al.

2002; Verolme et al. 2002; Krajnović et al. 2005), and is also used here. NNLS has

the advantage that it is guaranteed to find the global best-fitting model and that it

converges relatively quickly.

Due to measurement errors, incorrect choices of the model parameters and nu-

merical errors, the agreement between model and data is never perfect. We therefore

express the quality of the solution in terms of χ2, which is defined as

χ2 =

Nc
∑

i=1

(

C?
i − Ci

∆Ci

)2

. (5.2)

Here, C?
i is the model prediction of the constraint Ci and ∆Ci is the associated error.

The value of χ2 for a single model is of limited value, since the true number of degrees

of freedom is generally not known. On the other hand, the difference in χ2 between a

model and the overall minimum value, ∆χ2 = χ2−χ2
min, is statistically meaningful (see

Press et al. 1992, § 15.6), and we can assign the usual confidence levels to the ∆χ2

distribution. The probability that a given set of model parameters occurs can be mea-

sured by calculating ∆χ2 for models with different values of these model parameters.

We determine the overall best-fitting model by searching through parameter space.

The orbit distribution for the best-fitting model may vary rapidly for adjacent or-

bits, which corresponds to a distribution function that is probably not realistic. This

can be prevented by imposing additional regularization constraints on the orbital

weight distribution. This is usually done by minimizing the nth-order partial deriva-
tives of the orbital weights γj(E,Lz, I3), with respect to the integrals of motion E, Lz

and I3. The degree of smoothing is determined by the order n and by the maximum
value ∆ that the derivatives are allowed to have, usually referred to as the regulariza-
tion error. Since the distribution function is well recovered by minimizing the second

order derivatives (n = 2) and smoothening with ∆ = 4 (e.g., Verolme & de Zeeuw 2002;
Krajnović et al. 2005; Chapter 4), we adopt these values.
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6 TESTS

Before applying our method to observational data, we test it on a theoretical model,

the axisymmetric power-law model (EZ94).

6.1 THE POWER-LAW MODEL

The potential Φ of the power-law model is given by

Φ(R, z) =
Φ0R

β
c

(

R2
c +R2 + z2q−2

Φ

)β/2
, (6.1)

in which (R, z) are cylindrical coordinates, Φ0 is the central potential, Rc is the core

radius and qΦ is the axial ratio of the spheroidal equipotentials. The parameter β
controls the logarithmic gradient of the rotation curve at large radii.

The mass density that follows from applying Poisson’s equation to eq. (6.1) can be

expanded as a finite sum of powers of the cylindrical radius R and the potential Φ.
Such a power-law density implies that the even part of the distribution function is a

power-law of the two integrals energy E and angular momentum Lz. For the odd part

of the distribution function, which defines the rotational properties, a prescription for

the stellar streaming is needed. We adopt the prescription given in eq. (2.11) of EZ94,

with a free parameter k controlling the strength of the stellar streaming, so that the
odd part of the distribution function is also a simple power-law of E and Lz. Due to the

simple form of the distribution function, the calculation of the power-law observables

is straightforward. Analytical expressions for the surface brightness, the three compo-

nents of the mean velocity and velocity dispersion are given in eqs (3.1)–(3.8) of EZ94.

6.2 OBSERVABLES

We choose the parameters of the power-law model such that its observable properties

resemble those of ω Cen. We use Φ0 = 2500 km2 s−2, which sets the unit of velocity of

our models, and a core radius of Rc = 2.5 arcmin, which sets the unit of length. For
the flattening of the potential we take qΦ = 0.95 and we set β = 0.5, so that the even
part of the distribution function is positive (Fig. 1 of EZ94). The requirement that

the total distribution function (even plus odd part) should be non-negative places an

upper limit on the (positive) parameter k. This upper limit kmax is given by eq. (2.22) of

EZ947. Their eq. (2.24) gives the value kiso for which the power-law model has a nearly

isotropic velocity distribution. In our case kmax = 1.38 and kiso = 1.44. We choose k = 1,
i.e., a power-law model that has a (tangential) anisotropic velocity distribution.

Furthermore, we use an inclination of i = 50◦, a mass-to-light ratio of M/L = 2.5
M�/L� and a distance of D = 5 kpc. At this inclination the projected flattening of
the potential is q′Φ = 0.97. The isocontours of the projected surface density are more
flattened. Using eq. (2.9) of Evans (1994), the central and asymptotic axis ratios of

the isophotes are respectively q ′0 = 0.96 and q′∞ = 0.86, i.e., bracketing the average
observed flattening of ω Cen of q′ = 0.88 (Geyer et al. 1983).
Given the above power-law parameters, we calculate the three components of the

mean velocity V and velocity dispersion σ on a polar grid of 28 apertures, spanning
a radial range of 20 arcmin. Because of axisymmetry we only need to calculate the

observables in one quadrant on the plane of the sky, after which we reflect the results

7The definition of χ has a typographical error and should be replaced by χ = (1 − β/2)/|β|.
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FIGURE 9 — Mean velocity and velocity dispersion calculated from a power-law model (first
and third column) and from the best-fit dynamical Schwarzschild model (second and fourth
column). The parameters of the power-law model are chosen such that its observables re-
semble those of ω Cen, including the level of noise, which is obtained by randomizing the
observables according to the uncertainties in the measurements of ω Cen (see § 6.2 and Ap-
pendix B for details). The average proper motion kinematics in the x′-direction (top row) and
y′-direction (middle row), and the average mean line-of-sight kinematics (bottom row), calcu-
lated in polar apertures in the first quadrant, are unfolded to the other three quadrants to
facilitate the visualization.

to the other quadrants. Next, we use the relative precisions ∆V/σ ∼ 0.11 and ∆σ/σ ∼
0.08 as calculated for ω Cen (Appendix B), multiplied with the calculated σ for the
power-law model, to attach an error to the power-law observables in each aperture.

Finally, we perturb the power-law observables by adding random Gaussian deviates

with the corresponding errors as standard deviations.

Without the latter randomization, the power-law observables are as smooth as

those predicted by the dynamical Schwarzschild models, so that the goodness-of-fit

parameter χ2 in eq. (5.2), approaches zero. Such a perfect agreement never happens

for real data. Including the level of noise representative for ω Cen, allows us to use
χ2 to not only investigate the recovery of the power-law parameters, but, at the same
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time, also asses the accuracy with which we expect to measure the corresponding

parameters for ω Cen itself.

The resulting mean velocity Vobserved and velocity dispersion σobserved fields for the

power-law model are shown in respectively the first and third column of Fig. 9. They

are unfolded to the other three quadrants to facilitate the visualization.

6.3 SCHWARZSCHILD MODELS

We construct axisymmetric Schwarzschild models based on the power-law potential

(6.1). We calculate a library of 2058 orbits by sampling 21 energies E, 14 angular
momenta Lz and 7 third integrals I3. In this way, the number and variety of the library
of orbits is large enough to be representative for a broad range of stellar systems, and

the set of eqs (5.1) is still solvable on a machine with 512 Mb memory (including

regularization constraints).

The resulting three-integral Schwarzschild models include the special case of de-

pendence on only E and Lz like for the power-law models. Schwarzschild’s method

requires that the orbits in the library are sampled over a range that includes most

of the total mass, whereas all power-law models have infinite mass. To solve this

problem at least partially, we ensure that there are enough orbits to constrain the

observables at all apertures. We distribute the orbits logarithmically over a radial

range from 0.01 to 100 arcmin (five times the outermost aperture radius) and fit the

intrinsic density out to a radius of 105 arcmin. The orbital velocities are binned in

histograms with 150 bins, at a velocity resolution of 2 kms−1.

To test whether and with what precision we can recover the input distance of

D = 5 kpc, the inclination of i = 50◦ and the mass-to-light ratio M/L = 2.5 M�/L�, we
calculate models for values of D between 3.5 and 6.5 kpc, i between 35◦ (the asymptotic
isophotal axis ratio q′∞ = 0.86 implies that i > 30◦) and 70◦, and M/L between 1.5 and
3.5 M�/L�. Additionally, to test how strongly the best-fitting parameters depend on
the underlying mass model, we also vary the flattening of the power-law potential qΦ

between 0.90 and 1.00. We then fit each of the dynamical models simultaneously to
the calculated observables of the power-law model (with qΦ = 0.95). Comparing these
calculated observables with those predicted by the Schwarzschild models, results

for each fitted Schwarzschild model in a goodness-of-fit parameter χ2. We use this

value to find the best-fit Schwarzschild model and to determine the accuracy of the

corresponding best-fit parameters.

Calculating the observables for all orbits in the library requires about an hour on

a 1 GHz machine with 512 MB memory and the NNLS-fit takes about half an hour.

No distinct models need to be calculated for different values of M/L, as a simple
velocity scaling prior to the NNLS-fit is sufficient. Making use of (a cluster of) about 30

computers, the calculations for the full four-parameter grid of Schwarzschild models

takes a few days.

6.4 DISTANCE, INCLINATION AND MASS-TO-LIGHT RATIO

The Schwarzschild model that best fits the calculated power-law observables is the

one with the (overall) lowest χ2-value. After subtraction of this minimum value, we

obtain ∆χ2 as function of the three parameters D, i and M/L (with qΦ = 0.95 fixed).
To visualize this three-dimensional function, we calculate for a pair of parameters,

say D and i, the minimum in ∆χ2 as function of the remaining parameter, M/L in
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FIGURE 10 — The (marginalized) goodness-of-fit parameter ∆χ2 as a function of distance D,
inclination i and mass-to-light ratio M/LV , for different Schwarzschild model fits (indicated
by the dots) to an axisymmetric power-law model with observables resembling those of ω Cen
(see text for details). The χ2-values are offset such that the overall minimum, indicated by
the cross, is zero. The contours are drawn at the confidence levels for a ∆χ2-distribution with
three degrees of freedom, with inner three contours corresponding to the 68.3%, 95.4% and
99.7% (thick contour) confidence levels. Subsequent contours correspond to a factor of two
increase in ∆χ2. The input parameters D = 5.0 kpc, i = 50◦ and M/L = 2.5 M�/L�, indicated
by the open square, are recovered within the 68.3% confidence levels.

this case. The contour plot of the resulting marginalized ∆χ2 is shown in the left

panel of Fig. 10. The dots indicate the values at which Schwarzschild models have

been constructed and fitted to the power-law observables. The contours are drawn

at the confidence levels for a ∆χ2-distribution with three degrees of freedom, with

inner three contours corresponding to the 68.3%, 95.4% and 99.7% (thick contour)

confidence levels. Subsequent contours correspond to a factor of two increase in ∆χ2.

The minimum (∆χ2 = 0) is indicated by the cross. Similarly, we show in the middle
and left panel the contour plots of ∆χ2 marginalized for respectively the pair D and
M/L and the pair i and M/L.

The input parameters D = 5.0 kpc, i = 50◦ and M/L = 2.5 M�/L�, indicated by
the open square, are well recovered. The mean velocity Vmodel and velocity dispersion

σmodel predicted by the best-fit Schwarzschild model are shown in the second and

fourth column of Fig. 9. The corresponding power-law observables are well repro-

duced within the error bars.

Since the parameters of the power-law model are chosen such that its observables

and corresponding errors resemble those of ω Cen, the contours in Fig. 10 provide an
estimate of the precision with which we expect to measure the best-fitting parameters

for ω Cen. At the 68.3%-level (99.7%-level) the distance D, inclination i and mass-to-
light ratio M/L are retrieved with an accuracy of respectively 6 (11), 9 (18), 13 (28)
per cent. Due the additional complication of infinite mass in the case of the power-

law models, these estimates most likely are upper limits to the precision we expect to

achieve for ω Cen. This holds especially for the inclination and the mass-to-light ratio
as they are sensitive to how well the mass model is fitted. The distance is mainly con-

strained by the kinematics, so that the corresponding accuracy is probably an accu-

rate estimate of the precision with which we expect to measure the distance to ω Cen.
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FIGURE 11 — The (marginalized) goodness-of-fit parameter ∆χ2 as a function of distance D,
inclination i and mass-to-light ratio M/L against the flattening qΦ of the underlying potential,
for different Schwarzschild model fits (indicated by the dots) to the observables of an axisym-
metric power-law model resembling those of ω Cen. The contours are as in Fig. 10, but for a
∆χ2-distribution with four degrees of freedom. The cross indicates the overall best-fit model
(∆χ2 = 0). The input parameters of the power-law model, qΦ = 0.95, D = 5.0 kpc, i = 50◦ and
M/L = 2.5 M�/L�, are indicated by the open square. The input parameters are recovered
within the 68.3% confidence levels, even for mass models that assume a (slightly) incorrect
value for the flattening. However, spherical models (qΦ = 1.0) are strongly ruled out.

6.5 FLATTENING

The above investigation of the recovery of the global parameters D, i and M/L is for a
known mass model, given by the power-law potential (6.1). In general, we obtain the

mass model from a MGE-parameterization of the observed surface brightness (§ 5.1).
There is no guarantee that the resulting MGE model provides an accurate description

of the true mass distribution. We tested the effect of an incorrect mass model on

the best-fit parameters by varying the flattening qΦ of the power-law potential while

keeping the calculated observables (for the power-law model with qΦ = 0.95) fixed.

Since we use these same values for the other power-law parameters (Φ0 = 2500
km2 s−2, Rc = 2.5 arcmin, β = 0.5 and k = 1), we have to be careful that by varying
qΦ the model is still physical, i.e., that the underlying distribution function is non-
negative. For these parameters and qΦ between 0.9 and 1.0 this is the case (EZ94).

As before, for all Schwarzschild models we calculate ∆χ2, which is now a function

of the four parameters D, i, M/L and qΦ. In the three panels of Fig. 11, we show
∆χ2 marginalized for respectively D, i andM/L against qΦ. The symbols and contours

are as in Fig. 10, but now for a ∆χ2-distribution with four degrees of freedom. The

input parameters of the power-law model (indicated by an open square) are qΦ = 0.95,
D = 5.0 kpc, i = 50◦ and M/L = 2.5 M�/L�.

The distance D is well constrained around the input value, even at qΦ value that

are different from the true value of 0.95. This implies that the best-fitting distance is
accurate even for mass models that assume a (slightly) incorrect value for the flat-

tening. Whereas a potential with a flattening as low as 0.90 still (just) falls within the
contour at the 99.7%-level, we conclude, as in § 4.6, that spherical models (qΦ = 1)
are strongly ruled out. The middle and right panel of Fig. 11 show that the results for

respectively the mass-to-light M/L and inclination i are similar, although, as before,
they are less well constrained due to the infinite mass of the power-law models.
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FIGURE 12 — The Multi-Gaussian Expansion (MGE) of the V -band surface brightness profile
of ω Cen. The filled circles represent the measurements by Meylan (1987), the dotted curves
correspond to the eight Gaussians in the expansion and the solid curve represents their sum.
The left panel shows the surface brightness Σ as a function of projected radius R′ (in arcmin).
Kalnajs (1999) has shown that the quantity R′Σ in the right panel is a good diagnostic of the
mass that is enclosed at each radius.

7 DYNAMICAL MODELS FOR ω CEN

We use our method as described in § 5, to construct dynamical models for ω Cen. We
obtain the mass model from a MGE-parameterization of the observed surface bright-

ness. We compute the mean velocity and velocity dispersion of both proper motion

components and along the line-of-sight in polar apertures on the plane of the sky. For

a range of distances, inclinations and (constant) mass-to-light ratios, we then simul-

taneously fit axisymmetric Schwarzschild models to these observations. Additionally,

we also allow for radial variation in the mass-to-light ratio.

7.1 MGE MASS MODEL

An MGE-fit is best obtained from a two-dimensional image, which gives direct infor-

mation about the flattening and any radial variations in the two-dimensional struc-

ture of the object. Unfortunately, no such image is available to us, and the only

published surface brightness observations of ω Cen consist of radial surface bright-
ness profiles, and an ellipticity profile by Geyer et al. (1983). We therefore perform a

one-dimensional MGE-fit to the radial surface brightness profile, and after that use

the ellipticity profile to include flattening in the mass model.

We use the V -band surface brightness data from Meylan (1987), who combined
various published measurements (Gascoigne & Burr 1956; Da Costa 1979; King et

al. 1968). Their data consists of individual measurements along concentric rings,

while the MGE-algorithm developed by Cappellari (2002) requires a regular (logarith-

mic) spacing of the surface brightness measurements. We therefore first describe the

profile in terms of a fourth-order polynomial and then fit a set of one-dimensional
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j Σ0V σ′ q′

(L� pc−2) (arcmin)

1 2284.7077 0.15311 1.000000

2 3583.7901 1.47715 0.934102

3 3143.2029 2.52542 0.876713

4 1670.8477 3.69059 0.848062

5 840.86244 5.21905 0.849760

6 262.69433 7.53405 0.835647

7 46.995893 11.0685 0.866259

8 3.3583961 17.5470 0.926328

TABLE 2 — The parameters of the 8 Gaussians from the MGE-fit to the V -band surface bright-
ness profile of ω Cen as derived by Meylan (1987). The second column gives the central surface
brightness (in L� pc

−2) of each Gaussian component, the third column the dispersion (in ar-
cmin) along the major axis and the fourth column the observed flattening.

Gaussians to this polynomial. Eight Gaussians with different central surface bright-

ness Σ0V,j and dispersion σ
′
j are required by the MGE-fit (second and third column of

Table 2). Fig. 12 shows that this MGE-model provides an excellent fit, not only to the

surface brightness Σ, but also to R′Σ (cf. Kalnajs 1999).
The MGE-parameterization is converted into a two-dimensional luminosity distri-

bution by assigning an observed flattening q ′j to each Gaussian in the superposition.
We take into account that the observed flattening of ω Cen varies as a function of
radius (cf. Geyer et al. 1983). This is done by assuming that the flattening of the jth
Gaussian q′j is equal to the observed flattening at a projected radius R

′ = σ′j. This
is justified by the fact that a given Gaussian contributes most at radii close to its

dispersion σ′j. Although small deviations from the true two-dimensional light distri-
bution in ω Cen may still occur, we showed in § 6.5 that this approximation does not
significantly influence the derived intrinsic parameters for ω Cen. Moreover, a two-
dimensional MGE-fit to the combination of the surface brightness profile from Meylan

(1987) and the ellipticity profile from Geyer et al. (1983), yields nearly equivalent MGE

parameters as those in Table 2, although the fit to the observed surface brightness

profile is less good.

To conserve the total luminosity, we increase the central surface brightness of

each Gaussian by 1/q′j. Taking into account a reddening of E(B − V ) = 0.11 for ω Cen
(Lub 2002), the total V -band luminosity of our mass model, at the canonical distance
of 5.0 ± 0.2 kpc, is LV = 1.0 ± 0.1 × 106 L�. This compares well with other estimates
of the total luminosity of ω Cen of 0.8 × 106 L� (Carraro & Lia 2000), 1.1 × 106 L�
(Seitzer 1983) and 1.3 × 106 L� (Meylan 1987). The most flattened Gaussian in the
superposition (j = 7) places a mathematical lower limit on the inclination of 33◦. This
is safely below the constraint of 41–57 degrees found in § 4.5.

7.2 MEAN VELOCITY AND VELOCITY DISPERSION

We construct a polar aperture grid for the proper motions and line-of-sight velocities,

as shown in Fig. 13. The dots in the left panel represent the positions, folded to

the first quadrant, of the 2295 selected stars with ground-based proper motions.

The overlayed polar grid, extending to about 20 arcmin, consists of 28 apertures.
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FIGURE 13 — The polar aperture grid for the proper motions (left panel) and for the line-of-
sight velocities (right panel). The dots represent the individual stars, with positions folded to
the first quadrant, while the solid lines indicate the locations of the apertures. The number
of stars included are indicated in each aperture. An enlargement of the inner part of the
line-of-sight polar grid is shown in the top-right corner of the right panel.

Per aperture, the number of stars is indicated, adding up to a total of 2223 stars.

Similarly, the right panel shows the 2163 selected stars with line-of-sight velocities.

The different number of stars and spatial distribution results in a polar grid of 27

apertures, which includes in total 2121 stars.

For each aperture, we use the maximum likelihood method (Appendix A) to com-

pute the mean velocity V and velocity dispersion σ for both proper motion components
on along the line-of-sight. We calculate corresponding errors by means of the Monte

Carlo bootstrap method.

Each aperture contains around 50 to 100 stars. In Appendix B, we find that this

is a good compromise between precision in the observables and spatial resolution.

Including more stars per aperture by increasing its size decreases the uncertainties

in the observables (and hence makes the resulting kinematic fields smoother). At the

same time, since the apertures should not overlap to assure uncorrelated observables,

this means less apertures in the polar grid and hence a loss in spatial resolution.

The properties of the apertures and corresponding mean kinematics are given in

Table 3 for the proper motions and in Table 4 for the line-of-sight velocities. The mean

velocity Vobserved and velocity dispersion σobserved fields are shown in the first and third

column of Fig. 14 respectively. Although the average kinematics are only calculated

in the first quadrant, we use the assumed axisymmetric geometry to unfold them to

the other three quadrants to facilitate the visualization.
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FIGURE 14 — Mean velocity and velocity dispersion calculated from the observations of ω Cen
(first and third column) and from the best-fit dynamical model with D = 4.8 kpc, i = 50◦

and M/LV = 2.5 M�/L� (second and fourth column). The mean proper motion kinematics in
the x′-direction (top row) and y′-direction (middle row), and the mean line-of-sight kinematics
(bottom row), calculated in polar apertures in the first quadrant, are unfolded to the other
three quadrants to facilitate the visualization.

7.3 CONSTRUCTING DYNAMICAL MODELS

First, we calculate models for a range of values in distance D, inclination i and con-
stant V -band mass-to-light ratioM/LV . Next, fixing D and i at their measured best-fit
values, we calculate a large set of models in which we allowM/LV to vary with radius.

We sample the orbits on a grid of 21 × 14 × 7 values in (E,Lz , I3) on a radial range
from 0.01 to 63 arcmin. This grid extends beyond the tidal radius of 45 arcmin

(Trager et al. 1995), so that all mass is included. No PSF-convolution is used and the

observables are stored directly onto the apertures.

We (linearly) sample D between 3.5 and 6.5 kpc in steps of 0.5 kpc, and addition-
ally we refine the grid between 4.0 and 5.5 kpc to steps of 0.1 kpc. We vary i between
35 (close to the lower limit of 33 degrees imposed by the flattening, see § 7.1) and 90
degrees in steps of five degrees, and we refine between 40 and 50 degrees to steps of

one degree. We choose the constant M/LV values between 2.0 and 4.0 M�/L� with
steps 0.5 M�/L�, and we refine between 2.0 and 3.0 M�/L� to steps of 0.1 M�/L�.
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n? r0 θ0 ∆r ∆θ Vx′ ∆Vx′ σx′ ∆σx′ Vy′ ∆Vy′ σy′ ∆σy′

1 80 1.14 45.0 2.28 90.0 -0.15 0.09 0.80 0.07 -0.01 0.09 0.70 0.05

2 99 3.04 15.0 1.53 30.0 -0.16 0.07 0.66 0.04 0.23 0.07 0.64 0.05

3 67 3.04 45.0 1.53 30.0 0.03 0.12 0.90 0.07 0.06 0.08 0.62 0.05

4 74 3.04 75.0 1.53 30.0 -0.15 0.08 0.64 0.07 -0.08 0.09 0.71 0.06

5 85 4.59 11.2 1.57 22.5 -0.27 0.06 0.57 0.03 0.19 0.06 0.57 0.05

6 77 4.59 33.7 1.57 22.5 -0.08 0.07 0.63 0.05 0.13 0.06 0.57 0.08

7 76 4.59 56.2 1.57 22.5 -0.20 0.07 0.55 0.05 0.13 0.08 0.69 0.06

8 82 4.59 78.7 1.57 22.5 -0.19 0.05 0.55 0.04 0.07 0.07 0.66 0.06

9 105 6.31 9.0 1.86 18.0 0.00 0.06 0.60 0.04 0.26 0.05 0.50 0.04

10 88 6.31 27.0 1.86 18.0 -0.13 0.07 0.61 0.04 0.13 0.05 0.48 0.05

11 70 6.31 45.0 1.86 18.0 -0.28 0.07 0.58 0.07 0.23 0.06 0.50 0.06

12 72 6.31 63.0 1.86 18.0 -0.25 0.05 0.45 0.04 -0.01 0.06 0.53 0.05

13 65 6.31 81.0 1.86 18.0 -0.25 0.07 0.58 0.05 0.05 0.06 0.45 0.03

14 95 8.49 7.5 2.52 15.0 -0.04 0.05 0.56 0.04 0.22 0.04 0.38 0.02

15 88 8.49 22.5 2.52 15.0 -0.09 0.05 0.46 0.04 0.10 0.07 0.53 0.07

16 91 8.49 37.5 2.52 15.0 -0.15 0.05 0.49 0.04 0.14 0.04 0.41 0.03

17 73 8.49 52.5 2.52 15.0 -0.31 0.06 0.51 0.06 0.19 0.05 0.44 0.03

18 72 8.49 67.5 2.52 15.0 -0.35 0.05 0.44 0.04 0.14 0.06 0.54 0.05

19 61 8.49 82.5 2.52 15.0 -0.40 0.07 0.58 0.05 -0.03 0.07 0.48 0.04

20 88 11.54 9.0 3.56 18.0 0.02 0.05 0.44 0.04 0.20 0.05 0.46 0.04

21 95 11.54 27.0 3.56 18.0 -0.17 0.04 0.42 0.04 0.17 0.05 0.49 0.04

22 64 11.54 45.0 3.56 18.0 -0.24 0.05 0.44 0.04 0.18 0.05 0.41 0.03

23 85 11.54 63.0 3.56 18.0 -0.41 0.05 0.44 0.03 0.05 0.04 0.43 0.03

24 68 11.54 81.0 3.56 18.0 -0.36 0.05 0.43 0.03 0.05 0.05 0.46 0.03

25 58 16.64 11.2 6.64 22.5 -0.02 0.06 0.40 0.04 0.19 0.06 0.41 0.05

26 74 16.64 33.7 6.64 22.5 -0.14 0.06 0.48 0.05 -0.01 0.06 0.45 0.04

27 79 16.64 56.2 6.64 22.5 -0.17 0.05 0.46 0.03 0.04 0.04 0.41 0.04

28 92 16.64 78.7 6.64 22.5 -0.21 0.05 0.43 0.03 -0.05 0.04 0.35 0.03

TABLE 3 — The mean velocity and velocity dispersion calculated in polar apertures on the
plane of sky from the proper motion observations. Per row the information per aperture is
given. The first column labels the aperture and the second column gives the number of stars
n? that fall in the aperture. Columns 3–6 list the polar coordinates r (in arcmin) and the angle
θ (in degrees) of the centroid of the aperture and the corresponding widths ∆r (in arcmin)
and ∆θ (in degrees). The remaining columns present the average proper motion kinematics
in units of masyr−1. The mean velocity V with error ∆V and velocity dispersion σ with error
∆σ are given in columns 7–10 for the proper motion component in the x′-direction and in
columns 11–14 for the proper motion component in the y′-direction.

To investigate possible variation in M/LV with radius, we make use of the eight

Gaussian components of the MGE mass model (§ 7.1). In case of constant M/LV ,

we obtain the intrinsic density by multiplying all the (deprojected) components with

the same constant M/LV value. To construct a mass model with a radial M/LV

profile, we multiply each component with its own M/LV value, as in this way the

calculation of the potential is still efficient. However, to reduce the number of free

parameters (to make a search through parameter space feasible) and to enforce a

continuous profile, we only vary the M/LV values for the first, second, fourth and
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n? r0 θ0 ∆r ∆θ Vz′ ∆Vz′ σz′ ∆σz′

1 80 0.31 45.0 0.61 90.0 2.4 2.2 19.0 1.5

2 82 0.87 22.5 0.52 45.0 -3.1 2.1 20.9 1.4

3 78 0.87 67.5 0.52 45.0 0.2 1.9 19.5 1.4

4 77 1.46 11.2 0.66 22.5 0.0 1.9 16.7 1.3

5 85 1.46 33.7 0.66 22.5 -1.8 1.7 14.4 0.8

6 78 1.46 56.2 0.66 22.5 1.0 1.8 15.6 1.5

7 80 1.46 78.7 0.66 22.5 -0.7 1.7 16.2 1.2

8 86 2.12 9.0 0.66 18.0 -7.6 1.5 12.8 1.1

9 78 2.12 27.0 0.66 18.0 -6.4 1.6 14.3 0.8

10 66 2.12 45.0 0.66 18.0 -3.8 1.9 16.8 1.2

11 78 2.12 63.0 0.66 18.0 -3.0 1.7 15.9 1.0

12 92 2.12 81.0 0.66 18.0 -0.3 1.7 14.5 1.0

13 89 3.13 9.0 1.37 18.0 -7.6 1.6 15.3 1.0

14 79 3.13 27.0 1.37 18.0 -2.2 1.5 14.6 1.0

15 83 3.13 45.0 1.37 18.0 -1.0 1.4 14.1 0.8

16 87 3.13 63.0 1.37 18.0 -2.6 1.4 15.0 0.8

17 62 3.13 81.0 1.37 18.0 -2.9 1.9 13.4 1.3

18 100 5.45 15.0 3.27 30.0 -5.0 1.2 12.0 1.0

19 69 5.45 45.0 3.27 30.0 -3.1 1.3 10.9 1.1

20 71 5.45 75.0 3.27 30.0 -1.4 1.2 11.8 1.0

21 92 9.57 11.2 4.98 22.5 -6.2 1.0 10.0 0.9

22 91 9.57 33.7 4.98 22.5 -5.5 1.1 10.3 1.0

23 74 9.57 56.2 4.98 22.5 -2.4 1.2 10.3 0.9

24 63 9.57 78.7 4.98 22.5 0.2 1.3 9.8 0.9

25 62 15.96 15.0 7.80 30.0 -4.1 1.2 9.6 1.1

26 80 15.96 45.0 7.80 30.0 -1.9 1.2 9.8 0.7

27 59 15.96 75.0 7.80 30.0 -0.6 1.2 8.8 0.9

TABLE 4 — The mean velocity and velocity dispersion calculated in polar apertures on the
plane of sky from the line-of-sight velocity observations. Columns 1–6 are as in Table 3 and
the remaining columns present the average line-of-sight kinematics in kms−1.

sixth component. For the third and fifth component, we interpolate between the M/L
values of the neighboring components. To the outer two components we assign the

same M/LV value as the sixth component, because their individual M/LV values are

not well constrained due to the small number of kinematic measurements at these

radii. With the distance and inclination fixed at their best-fit values from the case

of constant mass-to-light ratio, we are left with a four-dimensional space to search

through, requiring again a few days on (a cluster of) about 30 computers.

All dynamical models are fitted simultaneously to the two-dimensional light distri-

bution of ω Cen (§ 7.1), and to the mean velocity and velocity dispersion of both proper
motions components and along the line-of-sight, calculated in polar apertures on the

plane of the sky (Fig. 14). Comparing the predicted values with the observations, re-

sults for each fitted model in a goodness-of-fit parameter χ2, which we use to find the

best-fit model and to determine the accuracy of the corresponding best-fit parameters.
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FIGURE 15 — The (marginalized) goodness-of-fit parameter ∆χ2 as a function of distance D,
inclination i and mass-to-light ratioM/LV , for different dynamical model fits (indicated by the
dots) to the kinematics of ω Cen. The contours are as in Fig. 10. The best-fit dynamical model
is at D = 4.8 kpc, i = 50◦ and M/LV = 2.5 M�/L�, indicated by the cross The dashed curve
shows the D tan i = 5.6 kpc constraint from the mean velocities (§ 4.5).

8 BEST-FIT PARAMETERS

In Fig. 15, we show ∆χ2 as a (marginalized) function of the distance D, inclination
i and constant mass-to-light ratio M/LV . The dots represent the values at which

dynamical models have been constructed and fitted to the two-dimensional (photo-

metric and kinematic) observations of ω Cen. The cross indicates the over-all best-fit
model. The contours show that all three parameters are tightly constrained, with at

the 68.3%-level (99.7%-level): D = 4.8 ± 0.3 (±0.5) kpc, i = 50 ± 3 (±5) degrees and
M/LV = 2.5±0.1 (±0.2) M�/L�. As an illustration that our best-fit model indeed repro-
duces the observations, the mean velocity and velocity dispersion in polar apertures

on the plane of the sky as they follow from this model are shown in respectively the

second and fourth column of Fig. 14. The model fits the observations within the

uncertainties given in Table 3 and 4.

After the discussion on the set of models where we allow the mass-to-light ratio

M/LV to vary with radius, we compare our best-fit values for the (constant) mass-to-

light ratio, inclination and distance with results from previous studies.

8.1 MASS-TO-LIGHT RATIO VARIATION

Fig. 16 summarizes the results from fitting models in which we allowed the mass-

to-light ratio M/LV to vary with radius in the way described in § 7.3. The filled
circles represent the eight Gaussian components, with the best-fit M/LV value of

each component plotted against their dispersions along the major axis (see column

three of Table 2). The error bars represent the 68.3% confidence level.

The uncertainty on the innermost point around 0.15 arcmin is relatively large since

at that small radius there are only a few observations (see Fig. 13) to constrain the

M/LV value. Nevertheless, the resulting M/LV profile only shows a small variation,

which is not significantly different from the best-fit constant M/LV of 2.5 M�/L�.
In the above experiment, we fixed the distance and inclination at the best-fit values

of D = 4.8 kpc and i = 50◦ from the case of constant M/LV . Although an important

constraint is that all eight Gaussian components have to be at the same distance,
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FIGURE 16 — Variation in mass-to-light ratioM/LV with projected radius R
′. The filled circles

represent the eight Gaussian components of the MGE mass model, with the best-fit M/LV

value of each component plotted against its dispersion along the major axis. With the distance
and inclination fixed at D = 4.8 kpc and i = 50 degrees, we allowed variation in the M/LV

values for the four inner points with error bar, while the two outer points were shifted vertically
similar to the fourth point, and the remaining two points were interpolated between the two
neighboring points. Each of the models was simultaneously fitted to the photometric and
kinematic observations of ω Cen. The error bars represent the 68.3% confidence level for the
corresponding ∆χ2-distribution with four degrees of freedom. The variation in the resulting
M/LV profile is small with no significant deviation from the best-fit constant M/LV of 2.5
M�/L� (horizontal dashed line).

its precise value, as well as that of the inclination, is not crucial. We tested that a

reasonable variation in these fixed values (within the 99.7% confidence level in Fig. 15)

does not significantly change the best-fit M/LV profile. We conclude that a constant

mass-to-light ratio for ω Cen is a valid assumption.

8.2 MASS-TO-LIGHT RATIO

Our best-fit mass-to-light ratio of M/LV = 2.5 ± 0.1 M�/L� lies in between the esti-
mates by Seitzer (1983) of 2.3 M�/L� and by Meylan (1987) of 2.9 M�/L�. Meylan
et al. (1995) derived a value of 4.1 M�/L�, based on a spherical, radial anisotropic
King-Michie dynamical model, while we find that ω Cen is flattened and outwards
tangentially anisotropic (see § 9.2). Moreover, their adopted central value of the line-
of-sight velocity dispersion is significantly higher than ours, even if we use the same

data-set by M97.

Meylan et al. (1995) estimated the total mass of ω Cen to be 5.1 × 106 M�, which
is also significantly higher than what we derive. After multiplication with the total

luminosity of our mass model of L = 1.0×106 L� (at the best-fit distance of D = 4.8±0.3



SECTION 8. BEST-FIT PARAMETERS 49

kpc), we find a total mass of M = (2.5± 0.3)× 106 M�. This is consistent with the value
by Mandushev et al. (1991) of 2.4 × 106 M� and Seitzer (1983) of 2.8 × 106 M�. The
estimate by Meylan (1987) of 3.9 × 106 M� is higher, but again based on a spherical
King-Michie model.

8.3 INCLINATION

The dashed curve in the left panel of Fig. 15 shows theD tan i = 5.6 kpc constraint from
the mean velocities derived in § 4.5. This constraint can be used to eliminate either
the distance or the inclination and hence reduce the parameter space. Although we

do not use this constraint in the dynamical models, it is clear that the above best-fit

D and i yield D tan i = 5.6 ± 0.2 kpc, which is consistent with the value derived from
the mean velocities.

The best-fit inclination of i = 50 ± 3 degrees falls within the range of 30–60 degrees
that was derived in Paper I from the amplitude of the proper motions, but is slightly

higher than the estimate by van Leeuwen & Le Poole (2002) between 40 and 60 degrees.
However, as discussed in § 4.5, they used models of modest complexity and freedom
which require strong assumptions, whereas our method is more general and robust.

Our best-fit inclination implies that ω Cen is intrinsically even more non-spherical
than the average observed flattening of q ′ = 0.879 ± 0.007 (Geyer et al. 1983) already
indicates. Using the relation q2 sin2 i = q′2 − cos2 i for axisymmetric objects, we find an
average intrinsic axial ratio q = 0.78 ± 0.03.

8.4 DISTANCE

Adopting a reddening of E(B − V ) = 0.11 for ω Cen (Lub 2002), the best-fit dynam-
ical distance corresponds to a distance modulus of (m − M)V = 13.75 ± 0.13 (±0.22
at the 99.7%-level). This is consistent with the (canonical) distance modulus of

(m − M)V = 13.84 by photometric methods, as given in the globular cluster catalog
of Harris (1996), together with the uncertainty estimate of about 0.1 magnitude by
Benedict et al. (2002), using the absolute magnitude of RR Lyrae stars. Using the

infrared color versus surface brightness relation for the eclipsing binary OGLEC 17,

Thompson et al. (2001) find a larger distance modulus of (m−M)V = 14.05±0.11. How-
ever, their distance modulus estimates based on the measured bolometric luminosity

of the binary components, are on average lower, ranging from 13.66 to 14.06.

Although our dynamical distance estimate is consistent with that by other meth-

ods, it is at the lower end. A lower value for the distance is expected if the proper mo-

tion dispersion is over-estimated and/or the line-of-sight velocity dispersion under-

estimated (see also Appendix C, eq. C.1). As we saw in § 3, both are likely in the
case of ω Cen if the kinematic data is not properly selected. The correction in § 4 for
perspective rotation and especially for the residual solid-body rotation is crucial for

the construction of a realistic dynamical model and a reliable distance estimate.

An impression of the effect of the selection and correction of the kinematic data

on the distance estimate follows from the range of dynamical models we constructed

for ω Cen. Before any selection and correction, the kinematics of the cluster stars
give rise to a best-fit dynamical model at a distance as low as ∼ 3.5 kpc. After re-
moving from the proper motion data-set the stars disturbed by their neighbors, i.e.,

only selecting class 0 stars, the best-fit distance becomes ∼ 4.0 kpc. The correction
for perspective and solid-body rotation increase the best-fit distance to ∼ 4.5 kpc. Fi-
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nally, after the additional selection on velocity errors, we find our best-fit dynamical

distance of 4.8 ± 0.3 kpc.

An even tighter selection does not significantly change the best-fit dynamical model

and corresponding distance. The same is true if we use a different polar grid, with

fewer or more stars per aperture, and if we restrict to only fitting the average kinemat-

ics in the inner or outer parts. Still, e.g. remaining interlopers in the proper motion

data-set can cause a (small) under-estimation of the distance. Moreover, Platais et al.

(2003) argue that possibly a (non-physical) residual proper motion color/magnitude

dependence in the data-set of Paper I causes the systematic offset between the proper

motions of the metal-rich RGB-a stars and those of the dominant HB and metal-poor

RGB stars, noticed by Ferraro, Bellazzini & Pancino (2002). Since we do not correct for

this possible systematic offset, the proper motion dispersion might be over-estimated

and hence our distance estimate can be systematically too low. However, the effect

is expected to be small since the number of RGB-a stars in the data-set is small. A

deeper proper motion catalog, like that of King & Anderson 2002) obtained with the

HST, is needed to better quantify (non-physical and physical) differences in the proper

motions among the multiple stellar populations observed in ω Cen.

Although the distance and inclination are tightly linked through the mean veloc-

ities (§ 4.5), a small under-estimation of the distance only results in a slight over-
estimation of the inclination (see also the solid curve in the right panel of Fig. 7). Sim-

ilarly, the mass-to-light ratio is nearly insensitive to small changes in the distance.

9 INTRINSIC STRUCTURE

We use the intrinsic velocity moments of our best-fit dynamical model to investigate

the importance of rotation and the degree of anisotropy in ω Cen. Additionally, the
distribution of the orbital weights allows us to study the phase-space distribution

function of ω Cen.

9.1 ROTATION

We calculate the intrinsic velocity moments of our best-fit model by combining the ap-

propriate moments of the orbits that receive weight in the superposition. We consider

the first and second order velocity moments, for which 〈vR〉 = 〈vθ〉 = 〈vRvφ〉 = 〈vθvφ〉 = 0
because of axisymmetry. We define the radial, angular and azimuthal velocity disper-

sion respectively as σ2
R = 〈v2

R〉, σ2
θ = 〈v2

θ〉, σ2
φ = 〈v2

φ〉 − 〈vφ〉2. The only non-vanishing
cross-term is σ2

Rθ = 〈vRvφ〉. The average root-mean-square velocity dispersion σRMS is

given by σ2
RMS = (σ2

R + σ2
θ + σ2

φ)/3.

A common way to establish the importance of rotation in elliptical galaxies and

bulges of disk galaxies, is to determine their position in the (V/σ, ε)-diagram (e.g.,
Davies et al. 1983). The observational quantities that are used for V , σ and ε are
respectively the maximum (line-of-sight) velocity along the major axis, the average

velocity dispersion within half the effective radius and the ellipticity at the effective

radius. We obtain for ω Cen the observational quantities V ∼ 8 kms−1 (at a radius

of ∼ 8 arcmin), σ ∼ 16 kms−1 and ε ∼ 0.15 (Geyer et al. 1983). These values result in
(V/σ, ε) ∼ (0.5, 0.15), placing ω Cen just above the curve for isotropic oblate rotators.

On the other hand, the intrinsic velocity moments from our best-fit dynamical

model for ω Cen, allow us to investigate intrinsically the importance of rotation. The
grey scale in Fig. 17 show the ratio of the mean (azimuthal) rotation 〈vφ〉 over the
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FIGURE 17 — The grey scale represents the mean azimuthal rotation 〈vφ〉 in the meridional
plane as a function of equatorial plane radius R and height z, and normalized by σRMS (exclud-
ing the axes to avoid numerical problems). The white curves are contours of constant mass
density in steps of one magnitude, from the mass model (solid) and from the best-fit model
(dashed), showing that the mass is well fitted. (See p. 250 for a color version of this figure.)

average root-mean-square velocity dispersion σRMS, as function of the position in the

meridional plane. Near the equatorial plane and between radii of about 5 to 15 arcmin,
this ratio is > 0.5. The maximum of ∼ 0.7 around 8 arcmin coincides with the peak in
the mean line-of-sight velocity field. Within this region in the meridional plane rota-

tional support is important. However, more inwards and further outwards this ratio

rapidly drops below 0.5 and ω Cen is at least partly pressure supported. We conclude
that rotation is important in ω Cen, but it is not a simple isotropic oblate rotator.

9.2 ANISOTROPY

For the velocity distribution in ω Cen to be isotropic all three velocity dispersion com-
ponents σR, σθ and σφ have to be equal and the cross-term σRθ has to vanish. Fig. 18

shows that this is not the case.

In the top panels, we show the degree of anisotropy in the meridional plane. The

top-left panel shows the radial over the angular velocity dispersion σR/σθ. This ratio

does however not include the non-zero cross-term σRθ. The latter causes the velocity

ellipsoid to be rotated with respect to the R and θ coordinates. Taking this into ac-
count the semi-axis lengths of the velocity ellipsoid in the meridional plane are given

by σ2
± = (σ2

R + σ2
θ)/2 ±

√

(σ2
R − σ2

θ)
2/4 + σ4

Rθ. In the top-right panel, we show the ratio

of this minor σ− and major σ+ semi-axis length of the velocity ellipsoid (which is by

definition in the range from zero to unity). This demonstrates that the velocity distri-

bution of ω Cen is nearly isotropic near the equatorial plane, but becomes increasingly
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FIGURE 18 — Degree of anisotropy as function of the equatorial plane radius R and height
z (excluding the axes to avoid numerical problems). The top panels show the degree of
anisotropy in the meridional plane: left the radial over the angular velocity dispersion and
right the minor σ− over the major σ+ semi-axis length of the velocity ellipsoid, taking into
account the cross-term σRθ. The bottom panels include the azimuthal velocity dispersion: left
the radial over the tangential velocity dispersion, with σ2

t = (σ2
θ +σ2

φ)/2, and right the minimum
over the maximum of the three semi-axis lengths σ+, σ− and σφ of the velocity ellipsoid. See
text for further details.

tangential anisotropic towards the symmetry axis.

In the bottom panels we also include the azimuthal velocity dispersion σφ. The

bottom-left panel shows the radial over the tangential velocity dispersion, where the

latter is defined as σ2
t = (σ2

θ + σ2
φ)/2. Again this ratio does not take into account

the cross-term σRθ. The actual degree of anisotropy is given by the three semi-axis

lengths σ+, σ− and σφ of the velocity ellipsoid. In the bottom-right panel, we show, as

a function of the position in the meridional plane, the minimum over the maximum

of these three semi-axis lengths. Except for the region near the equatorial plane and

within 10 arcmin, the best-fit model for ω Cen is clearly not isotropic. Even within this
region, between about 3 and 5 arcmin, it is (slightly) radially anisotropic. Outside this
region ω Cen becomes increasingly tangentially anisotropic.

Clearly, isotropic models are not suitable to model ω Cen. Also dynamical models
with a two-integral distribution function of the form F (E,Lz), with Lz = R〈vφ〉 the
angular momentum component along the symmetry z-axis, are not able to describe
the complex dynamical structure of ω Cen. For these models the solution of the
Jeans equations can be used to construct dynamical models in a straightforward way

(e.g., Satoh 1980; Binney, Davies & Illingworth 1990) and they allow for azimuthal

anisotropy. However, for these models σR = σθ and σRθ = 0, i.e., isotropy in the
full meridional plane, which is not the case for ω Cen (top panels of Fig. 18). Our
axisymmetric dynamical models do not have these restrictions as they are based on a
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FIGURE 19 — The orbital weight distribution for our best-fit model of ω Cen. From left to
right, the panels show the orbital weight distribution at increasing distance from the center,
which corresponds to increasing energy. The radius Rc (in arcmin) of the circular orbit at the
corresponding energy is given above each panel. The radial range that is shown is constrained
by the observations and contains more than 90% of the total cluster mass. The vertical axis
represents the angular momentum Lz in units of Lmax, the angular momentum of the circular
orbit. The horizontal axis represents the third integral I3, parameterized by the number of
the (linearly sampled) starting angle of the orbit. Black shading corresponds to zero orbital
weights, and white corresponds to the maximum orbital weight in each panel. At the bottom of
each panel the fraction (in %) of the included mass with respect to the total mass is indicated.
(See p. 250 for a color version of this figure.)

general three-integral distribution function F (E,Lz , I3), which we investigate next for
our best-fit model.

9.3 DISTRIBUTION FUNCTION

Each orbit in our models is characterized by the three integrals of motion E, Lz and

I3. As function of these three integrals, we show in Fig. 19 for our best-fit model of
ω Cen the distribution of the (mass) weights that were assigned to the different orbits
in the NNLS-fit. The energy E is sampled through the radius Rc (in arcmin) of the

circular orbit (different panels), of which we show the range that is constrained by the

observations and that contains more than 90% of the total cluster mass. The angular

momentum Lz (vertical) is in units of Lmax, the angular momentum of the circular or-

bit. The third integral I3 (horizontal) is parameterized by the linearly sampled starting
angle of the orbit, from the equatorial plane towards the symmetry axis, and of which

the number is given.

In each panel, the orbital weights are scaled with respect to the maximum orbital

weight in that panel, indicated by the white color, whereas black corresponds to zero

orbital weight. The fraction of the sum of the mass weights in each panel with respect

to total mass in all panels is given at the bottom of each panel (in %). To avoid an

unrealistic orbital weight distribution that fluctuates rapidly for adjacent orbits, we

regularize our models (§ 5.4). For values of the smoothening parameter below ∆ = 4
and even without regularization, we find the same best-fit parameters and although

the distribution function becomes spiky, the main features of Fig. 19 remain.

Most of the mass in the orbital weight distribution is in the component that is

prominent in all panels. With increasing radius, the average angular momentum

Lz of this component increases from nearly zero to a significant (positive) value in
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the outer parts. This reflects the outwards increasing tangential anisotropy already

seen in the bottom-left panel of Fig. 18. An almost non-rotating part is still present

beyond 5 arcmin, attached to the rotating component, which becomes the dominant
component (in mass). There is also a separate component at Lz/Lmax ∼ 1 that is
clearly visible between about 1 and 3 arcmin. Within this radial range, this maximum
rotating component contributes almost 20% of the mass, and it includes about 4% of

the total mass, i.e., its mass is of the order of 105 M�.
In the right-most panels of Fig. 19 there is a (weak) signature of a component

with Lz/Lmax ∼ −1, which we expect to be a spurious feature due to insufficient
observational constraints. Whereas (nearly) circular orbits (|Lz|/Lmax ∼ 1) are confined
in radius to Rc, orbits with lower |Lz| can go further inwards, so that they have most
of their contribution (their cusps) at a smaller radius than Rc (e.g., Cappellari et

al. 2004). Hence, the apparent feature at Lz/Lmax ∼ −1 in the most-right panel is
only constrained by data around and beyond the radius Rc = 13.6 arcmin, where the
coverage of the data is sparse with only a few polar bins (see Fig. 13). The main

component in this panel at Lz/Lmax ∼ 0.5 is (mostly) constrained by data at smaller
radii, where there is good data coverage. The separate maximum rotating component

between 1 and 3 arcmin is constrained by only a few proper motion apertures, but is
strongly constrained by the line-of-sight velocity data.

Due to the difference in spatial coverage between the proper motion and line-of-

sight velocity data, the two data-sets (better) constrain different parts of the orbital

weight distribution. By fitting besides the light distribution of ω Cen the mean ve-
locity and velocity dispersion of only the proper motion components, we find a less

prominent separate component between 1 and 3 arcmin, but it is still present. In
the case of only fitting the mean line-of-sight velocity and velocity dispersion, this

separate component is clearly visible and even extends into the outer rotating main

component. The transition between the main non-rotating and rotating component

is in the case of only line-of-sight data more abrupt than in Fig. 19. However, the

proper motion data, which has a better coverage in the outer parts, shows a similar

smooth transition. We conclude that, although the spatial coverage is different, both

data-sets give rise to the same main features in the orbital weight distribution.

9.4 DYNAMICAL SUBSTRUCTURES

Within 5 arcmin the main component has on average a high value of I3. In combina-

tion with the low value of Lz, we interpret this as a non-rotating spheroidal structure.

Beyond 5 arcmin, Lz increases and I3 decreases, and the main component flattens
and rotates faster. The smaller component attached to it may well be the signature of

the fading non-rotating spheroidal component.

For the separate component between 1 and 3 arcmin, Lz approaches its maximum

value. As a result, the zero-velocity curve shrinks towards the circular orbit in the

equatorial plane, and the corresponding orbits are all flat, irrespective of the (high)

value of I3 (see also Fig. 3 of Cretton et al. 1999). Hence, this fast-rotating component
is likely to be an inner disk, which fades away into the more massive main rotating

component at larger radius.

We compute the spatial distribution and average kinematics of these possible sub-

structures in the phase-space of ω Cen. To this end we select the orbits from our
best-fit model that contribute non-zero weight to three different parts of the distribu-

tion function in Fig. 19. We select the inner main component in the 7 left-most panels,
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FIGURE 20 — Kinematics of different components in the distribution function of our best-fit
model for ω Cen. From left to right: full distribution function, main inner component, main
outer component and separate disk component between 1 and 3 arcmin (see text for details).
From top to bottom: spatial distribution, mean velocity fields in the direction of the major
x′-axis, the minor y′-axis and the line-of-sight z′-axis, and mean velocity dispersion profiles.
The radial dispersion σR′ (dotted) and tangential dispersion σθ′ (dashed) are on the plane of the
sky and σz′ (solid) is the line-of-sight dispersion. (See p. 251 for a color version of this figure.)
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excluding the separate disk component in the 5 left-most panels, and the outer main

component in the 3 right-most panels (excluding the weak feature in the bottom). For

each orbit with non-zero weight, we then randomly draw points along its numerically

integrated orbit, with the number of drawings proportional to its relative weight. In

this way, we make an (N-body) realization of our best-fit model consisting of a couple

of tens of thousands of particles, representing the stars in ω Cen. For each of these
stars, we determine the position on the plane of the sky and the three velocity compo-

nents; the two proper motion components in the plane of the sky and the line-of-sight

velocity. For the stars that belong to a certain part or substructure of phase-space,

we then calculate the spatial distribution and mean kinematics.

Fig. 20 shows the results for all stars, those in the inner and outer main component

and those in the separate disk component, respectively, per column from left to right.

The first row shows the spatial distribution. The flattening of the spatial distribution

of all stars and of the outer main component are both about 0.88, similar to the average
observed flattening for ω Cen. The inner main component, going out to a radius of
about 6 arcmin, is rounder with a flattening of about 0.94. The spatial distribution
of the disk component only extends to a radius of about 3 arcmin, has an average
flattening as lows as 0.60 and is less dense in the center as this maximum rotating
disk consists of stars on (nearly) circular orbits which avoid the center. The second

to fourth row show the mean velocity fields in respectively the direction of the major

x′-axis and the minor y′-axis on the plane of the sky and the line-of-sight z ′-axis. In
each panel the axes are scaled with respect to the spatial extent of each component.

Whereas the inner main component indeed hardly shows any rotation, the outer main

component clearly rotates and the separate disk component rotates even faster. In the

last row, the velocity dispersion profiles are presented, radial (dotted) and tangential

(dashed) on the plane of the sky and along the line-of-sight (solid). Even though the

outer main component is flatter and rotates faster than the inner main component, it

is not kinematically colder due to the mixture of orbits with different Lz values. On

the other hand, the maximum rotating disk is the kinematically coldest component.

Whereas the inner main component is nearly isotropic, the outer main component is

anisotropic and the disk component is even stronger anisotropic.

The presence of dynamical substructures implies that the formation history of

ω Cen is more complicated than expected for a typical globular cluster. However,
the interpretation of these different components in the distribution function is very

difficult. In what follows we investigate the possible effects due to the tidal interac-

tion between ω Cen and the Milky Way (§ 9.5), and the possible link to the observed
multiple stellar populations in ω Cen (§ 9.6).

9.5 TIDAL INTERACTION

Based on its current position and motion in the Milky Way (MW), Dinescu, Girard &

van Altena (1999) simulated the orbit of ω Cen around the Galactic Center (GC). They
found that the average orbit is inclined by only 17◦ with respect to the Galactic plane,
has a period of P ∼ 122 Myr and an angular momentum of about 406 kpckms−1.

Assuming that the average orbit of ω Cen is circular, we thus find a radius ROC ∼ 2.8
kpc and a velocity of about 143 kms−1, of which the component perpendicular to

Galactic plane v⊥ ∼ 42 kms−1. Since the scale height of the MW disk is typically

250 pc, it takes about tenc ∼ 12 Myr for ω Cen to cross the MW disk. This means
that for nearly 10% of its time ω Cen is immersed in the disk and feels the additional
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FIGURE 21 — Timescales as function of the projected radius R′. The solid curve represents
the timescale on which shocks, caused by successive passages of ω Cen through the MW
disk, change the mean-squared velocity of a cluster star by the order of the (local) velocity
dispersion of the cluster. The dotted and dashed curves show respectively the dynamical time
tdyn and relaxation time trelax. The vertical dashed lines indicate with increasing distance the
core radius rt, the half-light radius rh and the tidal radius rt of ω Cen.

gravitational field.

To investigate what effect the MW tidal field has on the stars in ω Cen, we use the
impulse approximation as described by Binney & Tremaine (1987, p. 446), with the

typical properties of the MW from their Tables 1-1 and 1-2. We assume a Cartesian

coordinate system with its origin at the center of ω Cen and the z-axis perpendicular to
the MW disk. If ω Cen goes through the MW disk, the effect on the velocity component
perpendicular to the disk is the largest. Hence, the velocity of a cluster star changes

on average by |∆v| ∼ z|gz(R)|/v⊥, where gz is the z-component of the gravitational field
of the MW disk. The cumulative effect of successive passages through the MW disk

becomes of the order of the (local) velocity dispersion σ of the cluster on a timescale
of tshock ∼ Pσ2v2

⊥/(8z
2g2

z).
An infinite disk with surface density Σ generates a gravitational field gz = 2πGΣ.

In the solar neighborhood the MW disk has a surface density of Σ� ∼ 75 M� pc−2.

Assuming that the MW disk falls off as exp(−R/Rd) in the radial coordinate, with
Rd = 3.5 kpc , we find that at the mean circular radius R = ROC of ω Cen’s orbit
around the GC, gz ∼ 2.9 × 10−13 kms−2. For a spherical shell of stars of radius r,
we have that on average z2 = r2/3. We thus find that the timescale on which disk
shocking becomes important is

tshock ∼ 21

(

σ

km s−1

)2
( r

arcmin

)−2
Myr. (9.1)
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Fig. 21 shows tshock (solid curve) as function of the projected radius R
′ (in arcmin).

We used the line-of-sight velocity dispersion as given in Fig. 8, smoothed and ex-

trapolated to larger radii using measurements by Scarpa, Marconi & Gilmozzi (2003)

between about 20 and 30 arcmin8. In the same figure we have also plotted the dynami-
cal time tdyn (dotted curve; Binney & Tremaine 1987, eq. 2-30) and the relaxation time

trelax (dashed curve; Spitzer & Hart 1971; Binney & Tremaine 1987, eq. 8-71). The
three vertical dashed lines indicate respectively the core radius rc = 2.6 arcmin, the
half-light radius rh = 4.8 arcmin and the the tidal radius rt = 45 arcmin (e.g., Trager
et al. 1995).

Clearly, the impulse approximation is not valid near the center of ω Cen, where the
period of the stellar orbits T ≡ 4 tdyn is much smaller than the duration of the passage

through the disk tenc ∼ 12 Myr. Disk shocking is thus unimportant at the center
of ω Cen: the orbits evolve adiabatically and emerge unharmed from the encounter.
Around a radius of 16 arcmin, where T is about twice tenc, disk shocks begin to play

an important role since the disk shocking time becomes of the order of the dynamical

time tshock ∼ tdyn ∼ 6 Myr. At the tidal radius of 45 arcmin, the MW disk gravitational
field becomes dominant.

The effect that the MW tidal field has on the internal dynamics of ω Cen also
strongly depends on the relative orientation and spinning direction of the angular

momentum vector of the stars in ω Cen (internal) and the angular momentum vector
of its orbit around the GC (external). We found that the rotation axis is about 50◦

inclined with respect the line-of-sight (the z ′-axis) in the direction South9. On the
plane of sky, the rotation axis projects onto the minor y ′-axis, which makes an angle
of about 10◦ away from North in the direction East. The equatorial coordinates of
ω Cen are α0 = 13h26m46s and δ0 = −47◦28′43′′ (J2000), which correspond to a Galactic
longitude and latitude of l = 309◦ and b = 15◦. Hence, the rotation axis is nearly
parallel (angle < 3◦) to the equatorial plane, and makes an angle of about 65◦ with
respect to the Galactic plane. Seen from the North Galactic pole, ω Cen is moving in
anti-clockwise direction around the GC. The rotation inside ω Cen is dominated by
orbits with positive Lz values in Fig. 19, which correspond to clockwise rotation.

We thus find that the internal and external angular momentum vector are for more

than 90% parallel with respect to each other with opposite spinning direction. From
mergers of spinning galaxies it is well known that if the spins are anti-parallel as in

this case, the orbital disruption is much less than in the case of parallel spins (e.g.,

Toomre & Toomre 1972). Hence, in the past ω Cen might have contained a significant
number of stars on orbits with negative Lz (parallel spin), which then were removed

from the cluster during its successive passages through the MW disk. Stars on orbits

with positive Lz (anti-parallel spin) had a bigger chance to survive.

Furthermore, the stars on more radial orbits (those with smaller values of Lz) cover

a broader range in radius, with the influence of the MW tidal field becoming stronger

at increasing radius. In the course of time, these radial orbits thus have a bigger

chance of being disrupted than the more tangential orbits with similar mean radius.

8Taking into account the measurement error of about 1 kms−1 and the perspective rotation that can

be as large as 1.5 kms−1 at those radii (eq. 4.1).
9This means that in the common definition of the inclination, as in eq. (2.2), the best-fit inclination

is -50◦. This also explains the sign difference of 〈vz′〉 in eq. (4.3) and along the vertical axis of the plot in
the middle panel of Fig. 7. However, we decided to adopt the usual convention to take the value for the
inclination in the range from 0◦ (face-on) to 90◦ (edge-on).
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Both effects (together) might explain the prominent rotating main component in

the distribution function in Fig. 19 beyond a radius of 10 arcmin, while the non-
rotating main component that dominates inwards, fades away. The removal of the

more radial orbits also naturally explains the outwards increasing tangential anisotropy

in our best-fit model of ω Cen (§ 9.2).
The above analysis shows that the frequent passages of ω Cen through the MW

disk most likely have played a crucial role in the evolution of this cluster. At least

part of the phase-space structure of ω Cen may well be caused by the tidal field of the
MW. Detailed (N-body) simulations are needed to further quantify this.

9.6 MULTIPLE STELLAR POPULATIONS

Among the Galactic globular clusters, ω Cen especially stands out because of its
chemical inhomogeneity, first revealed in photometric investigations by Dickens &

Woolley (1967) and spectroscopically confirmed by Freeman & Rodgers (1975). Be-

sides the main population of metal-poor stars (∼ 65% of all stars with [Ca/H]∼ −1.4)
and an intermediate population (∼ 30%, [Ca/H]∼ −1.0), recently also a separate metal-
rich population (∼ 5%, [Ca/H]∼ −0.5) has been identified (Lee et al. 1999; Pancino et
al. 2000), and even the main sequence of ω Cen is bifurcated (Bedin et al. 2004).
Theses different stellar populations also appear to have a different spatial distribu-

tion. Whereas the metal-poor stars seems to follow the observed flattening of ω Cen in
the East-West direction, the more metal-rich stars are elongated in the North-South

direction and also more centrally concentrated (e.g., Pancino et al. 2003). There are

also indications of differences in the kinematics of the stellar populations. Norris et al.

(1997) find that the metal-poor populations have on average a higher line-of-sight ve-

locity dispersion and exhibit a well-defined line-of-sight rotation, while the metal-rich

populations show no significant rotation. Ferraro et al. (2002) claim that the separate

metal-rich population has a coherent bulk proper motion significantly different from

the other cluster stars.

We use the empirical relation in eq. (15) of Paper I to estimate the [Ca/H] abun-

dances of stars in our analysis with V -band magnitude and B−V color measurements
consistent with the top of the red giant branch (V < 13.5 and B − V > 0.7). The result-
ing [Ca/H] histograms for the proper motion and line-of-sight velocity stars both show

a distribution with a broad peak around [Ca/H]∼ −1.2 and a long tail extending be-
yond [Ca/H]∼ −0.5. In both cases the peak shows a small dip, so that we might divide
the stars into a metal-poor population with [Ca/H]≤ −1.2 and a metal-rich population
with [Ca/H]> −1.2, similar to Norris et al. (1997).

Comparing the mean line-of-sight kinematics of the metal-poor and metal-rich

stars, we confirm the result of Norris et al. (1997) that the more centrally concentrated

metal-rich stars are on average kinematically cooler and nearly non-rotating. The

line-of-sight velocity dispersion profile is steeper for the metal-richer stars than for the

metal-poor stars, such that that in the center the metal-richer stars are even (slightly)

kinematically warmer. The proper motions seems to imply a similar difference in the

slope of the velocity dispersion profiles. However, with the proper motion errors on

average four times larger than those of the line-of-sight velocities (see also Fig. 8),

there are no significant differences between the kinematics of the metal-poor and

metal-rich stellar populations.

The above correlations between the kinematics and chemical properties of stars

in ω Cen, are expected to show up in the distribution function (see also Freeman
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2002). The centrally concentrated non-rotating metal-rich stars would lie near the

bottom of the potential well at the lower values of E found in the cluster, symmetrically
distributed over positive and negative values of Lz, and towards higher values of I3.
The rotating metal-poor stars would span the entire range of E, with an asymmetric
distribution in Lz and towards lower I3.

These expectations are consistent with the orbital weight distribution of our best-

fit dynamical model of ω Cen (Fig. 19 and 20). Whereas the metal-richer stars might
well be associated with the inner non-rotating part of the main component, we might

see the kinematical signatures of the metal-poorer stars becoming dominant when

the main component flattens and rotates faster in the outer parts. Still, we have to

be careful as these are (indirect) indications of a link between substructures in the

distribution function and the different stellar populations.

To investigate directly the distribution function of the different stellar populations,

once can try to construct separate dynamical (Schwarzschild) models. However, since

the separation into different stellar populations is not evident, separate mass models

are needed and the separate kinematic constraints are based on much fewer stars,

this is very difficult with the current data-set. A more feasible approach is to model

together, in a consistent way, the observed kinematics and physical properties of the

stars. For example, by labeling the orbits in the model with different colors, the ob-

served color (averaged per aperture) can be used to constrain the model in addition to

the photometry and kinematics. On the other hand, now that we have constrained the

global parameters (distance, inclination and mass-to-light ratio) considerably, it has

become feasible to use non-linear maximum likelihood techniques to directly incor-

porate discrete stellar measurements. In this way, for the model that best fits (simul-

taneously) the measured kinematics and age and metallicity indicators of individual

stars, the different stellar populations can be cleanly separated in phase-space. This

extension, which we leave for a future paper, will provide an important contribution

to solving the stellar population puzzle in ω Cen, and clarify its formation history.

10 CONCLUSIONS

We used an extension of Schwarzschild’s (1979) orbit superposition method to con-

struct realistic axisymmetric dynamical models for ω Cen with an arbitrary anisotropic
velocity distribution. By fitting these models simultaneously to proper motion and

line-of-sight velocity measurements, we measured the radial mass-to-light profile, the

inclination and the distance to ω Cen, which is needed to convert the proper motions
to physical units. This dynamical distance estimate can provide a useful calibration

for the photometric distance ladder.

We used the ground-based proper motions from Paper I and the line-of-sight veloc-

ities from four independent data-sets. We brought the kinematic measurements onto

a common coordinate system and carefully selected on cluster membership and on

measurement error. This provided a homogeneous data-set of 2295 stars with proper

motions accurate to 0.20 mas yr−1 and 2163 stars with line-of-sight velocities accu-

rate to 2 kms−1, covering a radial range out to about half the tidal radius of the clus-

ter. We corrected the kinematic measurements for perspective rotation and removed

a residual solid-body rotation component in the proper motions. We showed that the

latter can be measured without any modeling other than assuming axisymmetry and

at the same time we obtained a tight constraint on D tan i of 5.6 (+1.9/−1.0) kpc, pro-
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viding a unique way to estimate the inclination i of a nearly spherical object once the
distance D is known. The corrected mean velocity fields are consistent with regular ro-
tation, and the mean velocity dispersions display significant deviations from isotropy.

We binned the individual measurements on the plane of the sky to search ef-

ficiently through the parameter space of the models. Tests on an analytic model

demonstrated that our approach is capable of measuring the cluster distance to an

accuracy of about 6 per cent. Application to ω Cen revealed no dynamical evidence
for a significant radial dependence of the (V -band) stellar mass-to-light ratio M/LV ,

in harmony with the relatively long relaxation time of the cluster. We found that

our best-fit dynamical model has M/LV = 2.5 ± 0.1 M�/L� and i = 50◦ ± 4◦, which
corresponds to an average intrinsic axial ratio of 0.78 ± 0.03. The best-fit dynamical
distance D = 4.8 ± 0.3 kpc (distance modulus 13.75 ± 0.13 mag) is significantly larger
than obtained by means of simple spherical or constant-anisotropy axisymmetric dy-

namical models, and is consistent with the canonical value 5.0 ± 0.2 kpc obtained by
photometric methods. The total mass of the cluster is (2.5 ± 0.3) × 106 M�.

Schwarzschild’s approach also provides an insight into the intrinsic orbital struc-

ture of the cluster. Our best-fit model implies that ω Cen is close to isotropic inside
a radius of about 10 arcmin and becomes increasingly tangentially anisotropic in the

outer region, which displays significant mean rotation. We found that this may well

be caused by the effects of the tidal field of the Milky Way. Furthermore, the best-fit

model contains a separate disk-like component between 1 and 3 arcmin, contributing

about 4% to the total mass. This phase-space structure, which might be linked to

the multiple stellar populations observed in ω Cen, is expected to provide important
constraints on its formation history.

We might improve our best-fit dynamical model of ω Cen and better constrain the
distance and the other parameters, by extending the data-set with e.g. proper motions

derived from HST images. Whereas with the ground-based proper motions we were

unable to probe the center of ω Cen due to crowding, the high spatial resolution and
high sensitivity of HST, results in many proper motion measurements in the very cen-

ter, which allows the investigation of a possible central mass concentration in ω Cen.

We may also increase the kinematic constraints on our dynamical models by in-

cluding mean correlated and higher-order velocity moments. With the parameter

range considerably constrained, it now becomes also feasible to use non-linear max-

imum likelihood techniques to directly incorporate the discrete kinematic measure-

ments. These techniques not only allow correlated and higher-order velocity moments

to be included in a straightforward way, but also provide a natural way to incorpo-

rate measurements of age and metallicity indicators of individual stars in addition to

their photometry and kinematics. By fitting an orbit-based model simultaneously to

all these observations, different stellar populations can be separated in phase-space,

after which their structure and dynamics can be studied separately.

We have shown that with the method described in this paper, we were able to

measure the global parameters of ω Cen, including its distance, and investigate its
intrinsic orbital structure. This method can also be applied to study other globular

clusters and stellar clusters in the Milky Way, provided that accurate velocity mea-

surements are available. With the amount of (photometric and kinematic) data quickly

increasing, we expect this method to become an important tool to model these stellar

systems and gain insight in their formation and evolution.
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APPENDIX A MAXIMUM LIKELIHOOD ESTIMATION VELOCITY MOMENTS

We use the average kinematics of stars that fall within apertures on the plane of the

sky. This is comparable to the kinematics from the integrated spectra of galaxies in an

aperture. A very important difference is, however, that we have to take into account

the errors on the individual velocity measurements.

A possible way to measure the mean velocity and velocity dispersion, is to fit a

Gaussian distribution to the velocity histogram of the stars that fall within an aper-

ture. Whereas the mean velocity V is well estimated, the best-fit mean velocity dis-
persion σfit is too large, as the Gaussian distribution is broadened due to the velocity

errors. This additional ’instrumental’ dispersion σins can be estimated by the mean

of the velocity errors. The corrected mean velocity dispersion σ then follows from
σ2 = σ2

fit − σ2
ins. Since this is only an approximate correction, we use a maximum

likelihood estimate of the velocity moments that at the same time corrects for each

individual velocity error.

Suppose L(v) is the (intrinsic) velocity distribution of the stars in an aperture, in
one of the three principal directions. We can consider each stellar velocity measure-

ment vi in that aperture as drawn from this distribution, or alternatively, the product

of L(v) with a delta function around vi, integrated over all velocities. Due to (instru-

mental) uncertainties this delta-function is broadened, and we assume that it can
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be described by a Gaussian around vi, with the corresponding velocity error σi as

the standard deviation. For a sufficient number of draws N , i.e. velocity measure-
ments in the aperture, we can then recover the (unknown) velocity distribution L(v)
by maximizing the likelihood

L(V, σ, . . . ) =

N
∏

i=1

∫ ∞

−∞
L(v)

e
− 1

2

“

vi−v

σi

”2

√
2πσi

dv, (A.1)

or, equivalently, minimizing Λ ≡ −2 ln(L), with respect to the mean velocity V , mean
velocity dispersion σ and possible higher-order velocity moments.

It is possible to recover L(v) in a non-parametric way using (extensions of) Lucy’s
(1974) method, but exploiting the fact that Gaussians are good low-order approxima-

tions, the velocity distribution is often parameterized by a Gauss-Hermite (GH) series

(van der Marel & Franx, 1993; Gerhard, 1993). It has the advantage that it only re-

quires the storage of the velocity moments (V , σ, h3, h4, . . . ) instead of the full velocity

distribution. Furthermore, it allows a simple velocity scaling of the model, which is

useful when investigating the effect of a change in the stellar mass-to-light ratio.

Another advantage of parameterizing L(v) comes from the observation that the
integral in (A.1) is the convolution of the velocity distribution and the Gaussian of

each velocity measurement. For a Gaussian velocity distribution this convolution

is straightforward, but also in the case that L(v) is described by a GH series, the
convolution can be carried out analytically. This makes it feasible to apply the method

to a large number of discrete measurements and to estimate the uncertainties on the

extracted velocity moments by means of the Monte Carlo bootstrap method (§ 15.6 of
Press et al. 1992).

In the case of no measurement errors, the maximum likelihood estimator of the

standard deviation σ, given by

σ̂ =

√

√

√

√

1

n

n
∑

i=1

(vi − v)2, with v =

n
∑

i=1

vi, (A.2)

is a biased estimator, underestimating the true σ by a factor (see also e.g. Kenney &
Keeping 1951, p. 171)

b(n) =

√

2

n

Γ
(

n
2

)

Γ
(

n−1
2

) = 1 − 3

4n
− 7

32n2
− . . . . (A.3)

where Γ is the gamma function. When we consider the measurement errors σi, there

is no such simple analytical bias correction as (A.3). However, we can use the latter

result to derive the following approximate corrected standard deviation estimator

σ̃ ≈ 1

b(n)

√

σ̂2 + [1 − b2(n)]σ2, (A.4)

where σ̂ is the maximum likelihood estimated dispersion and σ2 = 1
n

∑n
i=1 σ

2
i the av-

erage measurement error.
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APPENDIX B POLAR GRID OF APERTURES

We use Monte Carlo simulations of the observed stellar velocities and corresponding

errors to investigate the recovery of their average kinematics. We mimic the stellar ve-

locity observations by randomly drawing from an assumed intrinsic Gaussian velocity

distribution, with given mean velocity V0 and velocity dispersion σ0. This set of intrin-

sic velocities, is then ’instrumentally’ broadened by adding to each velocity a random

drawing from a Gaussian with zero mean and the velocity error as standard deviation.

These velocity errors are simulated by randomly drawing from the observed velocity

error distribution (right panels of Fig. 5). For the latter we use the rejection method

(§ 7.3 of Press et al. 1992), with a Lorentzian distribution as comparison function. In
this way, we create, for a given number of stars, 500 sets of simulated velocities and

corresponding errors.

Next, we use the maximum likelihood method of Appendix A to calculate the mean

velocity and velocity dispersion for each simulated set separately. In Fig. B.1, we

compare the (biweight10) mean (filled circles) of these 500 mean velocity and veloc-

ity dispersion measurements with V0 and σ0 (horizontal lines) of the given intrinsic

Gaussian velocity distribution. The error bars are the (biweight) standard deviation

of the kinematic measurements, and indicate the precision with which the kinemat-

ics can be measured, given the observed velocity error distribution. The precision

increases with increasing number of stars per bin. The precision also increases with

decreasing intrinsic mean velocity dispersion σ0. To remove the latter dependency, we

give relative kinematic measurements and corresponding errors, i.e., divided by the

(arbitrarily) chosen value for σ0.

Both the mean velocity and velocity dispersion are recovered well. To obtain a

better precision, we can increase the number of stars per aperture, but at the same

time the spatial resolution decreases, as we have to increase the size of the apertures.

We find that between 50 and 100 stars per aperture is a good compromise. For

the proper motions this implies a (relative) precision for the mean velocity V and
velocity dispersion σ of respectively ∆V/σ ∼ 0.12 and ∆σ/σ ∼ 0.09. For the line-of-sight
velocities we find similar values, respectively ∆V/σ ∼ 0.12 and ∆σ/σ ∼ 0.08.

Given the average proper motion dispersion of about 0.5 masyr−1 for ω Cen (§ 7.2),
this means we expect to measure the mean proper motion and dispersions with an

average (absolute) precision of respectively 0.06 mas yr−1 and 0.05 mas yr−1. Simi-

larly, with an average line-of-sight velocity dispersion of about 14 kms−1 for ω Cen,
we expect to measure the mean line-of-sight velocity and dispersion with an average

precision of respectively 1.7 kms−1 and 1.1 kms−1.

Indeed, the average of the uncertainties in the kinematics given in Table 3 and 4

are consistent with these expectations. Moreover, as predicted, the decrease in the

uncertainties with radius is proportional to the decrease in dispersion. In other words,

if we divide the uncertainties by the corresponding dispersions, we find nearly con-

stant (relative) precisions, ∆V/σ ∼ 0.11 and ∆σ/σ ∼ 0.08 for both proper motions and
line-of-sight velocities, consistent with the above simulated precisions.

To enhance the signal-to-noise of the observations, we first reflect all measure-

ments back to the first quadrant (x′ ≥ 0, y′ ≥ 0). We exploit the fact that for an axisym-

10The biweight mean and biweight standard deviation (e.g., Andrews et al. 1972; Beers, Flynn &
Gebhardt 1990) are robust estimators for a broad range of non-Gaussian underlying populations and
are less sensitive to outliers than other moment estimators.
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FIGURE B.1 — Recovery of maximum-likelihood-estimated kinematics from proper motions
(left panel) and line-of-sight velocities (right panel). For a given number of stars per aperture,
velocities and corresponding errors are simulated by randomly drawing from an intrinsic
Gaussian distribution with mean velocity V0 and velocity dispersion σ0, broadened by velocity
errors randomly drawn from the observed velocity error distributions (left panels Fig. 5). Each
filled circle with error bar shows the mean and standard deviation of the measured kinematics
from 500 such simulations. As a compromise between lower precision (larger error bars) for
a small number of stars per aperture, and lower spatial resolution (larger bins) for a larger
number of stars, we choose to have between 50 and 100 stars per bin.

metric object, the proper motions in the x′-direction are symmetric in the projected
minor axis, while the proper motions in the y ′-direction as well as the line-of-sight ve-
locities are symmetric in the projected major axis. Since our models are intrinsically

axisymmetric, it is equivalent to fit either to the original or to the reflected data.

We use a polar grid of apertures on (the first quadrant of) the plane of the sky

to better approximate the shape of photometric and kinematic observations. Every

aperture is characterized by its central radius r0 > 0 and angle 0◦ < θ0 < 90◦, together
with its radial and angular width, denoted by ∆r and ∆θ, respectively. We construct
the polar grids such that each aperture has (at least) 50 stars, together with the

requirement that the apertures are as ’round’ as possible in the sense that ∆r ≈ r0∆θ.
The latter avoids (very) radial or angular elongated apertures, which would include

stars from (very) different positions, with probably different (kinematical) properties

than the stars near the center of the aperture.
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APPENDIX C SIMPLE DISTANCE ESTIMATE

The most straightforward way to obtain a dynamical distance estimate is from the ra-

tio of the line-of-sight velocity dispersion σlos and the proper motion velocity dispersion

σpm for spherically symmetric objects (e.g., Binney & Tremaine 1987, p. 280)

D (kpc) =
σlos (km s−1)

4.74σpm (mas yr−1)
. (C.1)

Using, from the 2295 selected stars with proper motions and 2163 selected stars with

line-of-sight velocities, the 718 stars for which all three velocity components are mea-

sured, we find for the two mean proper motion dispersion components σx′ = 0.58±0.02
masyr−1 and σy′ = 0.55 ± 0.02 masyr−1, and for the mean line-of-sight velocity disper-

sion σz′ = 12.3 ± 0.3 kms−1. Substituting the latter value together with the average

proper motion dispersion in (C.1), we obtain a distance of D = 4.6 ± 0.2 kpc.
This value is below the canonical distance D = 5.0 ± 0.2 (Harris et al. 1996). The

above simple distance estimate is not valid for ω Cen, which is not spherically sym-
metric. Moreover, although the above average values for σx′ and σy′ are just consistent

with each other, from the left panel of Fig. C.1 it is clear that the profile of the mean

proper motion dispersion profile of σx′ (dotted) lies systematically above that of σy′

(dashed). A non-spherical anisotropic model is needed to explain these observations.

Here we consider a simple model with constant anisotropy.

If we make the (ad-hoc) assumption that the velocity ellipsoid is oblate with intrin-

sic semi-axis lengths σx = σy ≡ σ and σz = qve σ (all in kms
−1), where qve is the average

intrinsic flattening, the observed velocity dispersions are given by

σx′ = σ / 4.74D mas yr−1,

σy′ = q′ve σ / 4.74D mas yr−1, (C.2)

σz′ =
[

1 − (1 − q′ 2ve) cot2 i
]1/2

σ km s−1,

where we have used eq. (2.2) and the relation q2 sin2 i = q′2 − cos2 i. Using the best-
fit value for D tan i of 5.6 kpc (§ 4.5), we eliminate the inclination i. Next, by fitting
the ratios of the line-of-sight velocity dispersion over the proper motion dispersion

components, σz′/σx′ and σz′/σy′ , to the observations in the left panel of Fig. 8, we

determine the best-fit values for the remaining two free parameters: the distance D
and the (projected) flattening of the velocity ellipsoid q ′ve.
Since we use the full dispersion profiles and we allow for an anisotropic velocity

distribution, this simple way to obtain a dynamical distance estimate goes beyond the

above spherical symmetric approach. If q ′ve = 1 in eq. (C.2), we recover this approach
in which both ratios are equal and the distance follows from eq. (C.1).

We show in the right panel of Fig. C.1 the ∆χ2 contours for a range of q′ve and
D. The overall minimum, indicated by a cross, corresponds to the best-fit values
q′ve = 0.92 ± 0.05 and D = 4.54 ± 0.14 kpc. The isotropic case (q ′ve = 1) is excluded at
about the 95.4%-level. The best-fit (projected) flattening of the velocity ellipsoid is

less than the average observed flattening q ′ = 0.879 ± 0.007 (hashed region) from the
stellar photometry of ω Cen (Geyer et al. 1983), although an equivalent value is not
excluded (at the 68.3%-level). The velocity distribution is expected to be less flattened,

since it traces more directly the potential, which in general is rounder than the light

distribution (see e.g. p. 48 of Binney & Tremaine 1987).
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FIGURE C.1 — Left panel: velocity dispersion profiles calculated along concentric rings. As-
suming the canonical distance of 5 kpc, the profiles of the proper motion components in the
x′-direction (dotted curve with diamonds) and y′-direction (dashed curve with triangles) are
converted into the same units of kms−1 as the line-of-sight profile in the z′-direction (solid
curve with crosses). The black horizontal lines indicate the corresponding scale in mas yr−1.
Below the profiles, the mean velocity error per ring is indicated by the corresponding symbols.
Right panel: Assuming an oblate velocity ellipsoid with constant (projected) flattening, the ra-
tio of the line-of-sight over the proper motion velocity dispersion profiles yields an estimate for
the dynamical distance D. The best-fit values correspond to the minimum (cross) in the ∆χ2

contour plot, where the inner three contours are drawn at the 68.3%, 95.4% and 99.7% (thick
contour) levels, and subsequent contours correspond to a factor of two increase in ∆χ2. For
increasing flattening of the velocity ellipsoid, starting with the isotropic case on the left axis,
the dotted (dashed) curve shows the corresponding best-fit distance if only the profile of the
proper motion in the x′-direction (y′-direction) is used, and the dotted-dashed curve if both
are used. The observed flattening from the stellar photometry (Geyer et al. 1983) is indicated
by the hashed region.

If we only fit the ratio σz′/σx′ , the dotted curve shows the best-fit distance at given

flattening. While in this case the distance increases with flattening, almost exactly

the opposite happens if we only fit the ratio σz′/σy′ (dashed curve). Simultaneously

fitting both ratios does not provide a good fit (the χ2 value is larger than the number

of degrees of the freedom) and the resulting best-fit distance (dotted-dashed curve) of

about 4.5 kpc is significantly below the canonical distance of 5.0 kpc.
We conclude that both the simple distance estimate (C.1) and the above constant-

anisotropy axisymmetric model are not valid for ω Cen and underestimate its dis-
tance. To explain the observed kinematics of ω Cen and obtain a reliable distance
estimate, one needs a non-spherical dynamical model with varying anisotropy, like

the Schwarzschild modeling technique used here.




