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Summary

Melanomas are immunogenic tumors, presenting a range of tumor-associated antigens (TAA), and cases of
spontaneous tumor regression indicate that immune control over melanoma growth can be achieved. Evasion of the
immune response is a critical part of tumor development and melanomas can avoid recognition by a variety of
mechanisms such as impaired expression of HLA molecules, shedding TAA or secretion of immunosuppressive
factors. To enhance antigen presentation and prime effector T lymphocytes, a range of dendritic cell (DC) based
melanoma vaccines have been developed. A variety of strategies have been employed using autologous DC to
stimulate tumor specific immune responses. Although all of these were apparently successful in vitro, when used in
patients the responses were disappointing and they ultimately failed to destroy the tumor in the majority of
patients. This may reflect observations that melanoma cells suppress immune responses in vitro, and may prevent
the generation of effector cells following DC vaccination. Mature DC are normally potent activators of immune
responses. However, when immature, they are often immunosuppressive. The DC found in melanoma and in the
sentinel lymph nodes invaded by tumor are of an immature phenotype and therefore may suppress the anti-tumor
immune response. We suggest, that a successful vaccine for melanoma must include either mechanisms to reverse in
situ DC suppression or increase immune stimulation.

immunotherapy. Despite the presence of potent anti-tumor

L. Introduction immune cells in their blood, more than 95% of patients

A great deal of effort has been put into developing a gain no benefit from anti-tumor immune therapy. The co-
vaccine for the treatment of melanoma. However none of existence of anti-tumor immunity and tumor progression
the current approaches have addressed immune in the same individual remains one of the major paradoxes
suppression at the tumor site. It is possible that unless this of melanoma immunology.

melanoma-derived immune suppression is reversed
immunotherapy will be unsuccessful. Melanomas, unlike
most other tumors, can be immunogenic, and can present a 11. Escaping immune surveillance
range of tumor-associated antigens (TAA). Cases of
spontaneous tumor regression have been reported even in
very advanced disease (Szekeres and Daroczy, 1981;
Ralfkiaer et al, 1987; Tefany et al, 1991), and these reports
have encouraged  efforts towards anti-tumor

It has been recognised for some time that the
immune system plays a crucial role in the removal of
malignancies  arising  through somatic = mutation.
Successful malignancies must survive this surveillance
and are therefore subject to selection pressure resulting in
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the evolution of escape variants, that can no longer be
recognised by either T lymphocytes or NK cells (Burnet,
1970; Festenstein and Garrido, 1986). Since the
recognition is based on antigen presentation, the loss of
HLA molecules and impaired antigen presentation are the
most obvious mechanisms of escape from destruction by
cytotoxic T lymphocytes (CTL). Alterations in HLA
expression are ubiquitous among tumors, but are also
highly variable. So far seven different major modifications
of HLA class I phenotypes have been described in
different tumor types. These include complete loss of any
HLA allele, significant down-regulation of one or more
alleles, expression of altered HLA alleles or
immunosuppressive ~ HLA  alleles, and  altered
responsiveness to activation signals such as type I
interferons (Adrian Cabestre et al, 1999).

Loss of HLA class I is often attributable to structural
alterations in the proteins involved in antigen processing
leading to impaired HLA loading, and therefore surface
antigen presentation (Seliger et al, 2001). Melanomas can
also express HLA class II proteins, whose expression is
generally restricted to APC and activated T cells. This
ability does not enhance tumor immune sensitivity, but on
the contrary interferes with normal T helper function due
to the absence of co-stimulatory molecules such as B7 on
the tumor (Becker et al, 1991; Hersey et al, 1994; Becker
and Brocker, 1995; Denfeld et al, 1995). Antigen
recognition and a successful immune reaction is
additionally impeded by heterogeneity in surface protein
expression, even within the same tumor (Dalerba et al,
1998). Moreover melanoma cells can shed antigens, which
may abrogate anti-tumor cytotoxic cell function or express
and release FasL, which causes apoptosis of T
lymphocytes and secrete immunosuppressive cytokines
(Becker et al, 1991; Ekmekcioglu et al, 1999; Gray et al,
2002; Redondo et al, 2002, 2003; Sombroek et al, 2002;
Wolfl et al, 2002; Peguet-Navarro et al, 2003).

II1. Dendritic cell based immune
vaccines

As the generation of successful anti-tumor immune
responses would greatly benefit patients with this
aggressive tumor, a number of approaches have been taken
to initiate protective immunity. Many of these exploit
function of dendritic cells, which act as potent immune
response stimulators. Dendritic cells migrate from blood to
nearly every tissue in the body, take up antigens and
process them. They then migrate to spleen and lymph
nodes and deliver the antigens for presentation to
lymphocytes. As professional APC they express both
HLA class I and II, and can additionally therefore activate
both helper and cytotoxic T lymphocytes. They can cross-
process antigens between these two pathways and in this
way switch the immune response type and evoke cytotoxic
reactions against endogenous tumor antigens (Albert et al,
1998a, 1998b; Banchereau and Steinman, 1998; Inaba et
al, 1998) (Figure 1). Numerous vaccine strategies have
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either utilised DC directly or used a variety of mechanisms
to stimulate them.

To find suitable antigens for vaccine purposes,
melanoma proteins have been screened in search of
peptides with potent immunostimulatory characteristics,
presented by both HLA class I and II, to activate both
cytotoxic and helper T Ilymphocytes. Studies have
identified HLA class I binding peptides, and several
peptides presented in the context of multiple HLA-DR
alleles and recognisable by CD4+ T cells (Table 1).

Peptides derived from known melanoma associated
antigens have been used to load DC generated in vitro
from blood or bone marrow precursors or monocytes from
both melanoma patients and healthy donors. In order to
enhance antigen presentation several peptide modifications
have been tested. For example, the proteins were fused
with TAP targeting sequence to facilitate antigen
processing (Minev et al, 2000) or with heat shock protein
to assist antigen delivery into dendritic cells. (Noessner et
al, 2002). In one particularly successful approach, fusion
of melanoma derived antigen with recombinant HI'V trans-
activating fusion proteins allowed enhancement of the
protein incorporation rate to 95% (Table 2).

One of the most important disadvantages of peptide-
based vaccines is the lack of non-self antigens shared by
all melanoma cells. A single epitope is seldom sufficient
for the induction of a potent immune response, therefore
an ideal vaccine should contain a variety of epitopes and
proteins. One way of avoiding these difficulties is to use
whole tumor cells, or vesicles secreted by them, as a
source of antigen. It has been shown that dendritic cells
can phagocytose necrotic (Abdel-Wahab et al, 1998) and
apoptotic (Soruri et al, 2001) tumor cells, however in the
latter case DC maturation strongly depends on the
presence of pro-inflammatory cytokines in the
environment (Jenne et al, 2000; Labarriere et al, 2002).
One approach to increase vaccine immunogenity exploits
the technique of cell fusion. Hybridomas of melanoma
cells and dendritic cells have been shown to preserve the
features of dendritic cells vital for their function
(expression of HLA-A, B, C; HLA-DR; CD40, CD54,
CD80, CD83, CD86, and the pro-inflammatory cytokine
interleukin-12) and expression of melanoma-associated
antigens (Holmes et al, 2001; Soruri et al, 2001; Jantscheff
et al, 2002).

Endogenous expression of antigen by DC offers the
potential advantage of prolonged presentation of antigens
in the context of both HLA classes, and potentially
extends the repertoire of immune stimulation. Nucleic
acid-based immunization provides an attractive method for
the delivery of protein antigens and adjuvants, without the
need to know the sequence of immunogenic epitopes in
advance. Additionally it allows the function of multiple
restriction elements for the presentation of the same
antigen Kim et al, 1997 and the generation of CD8(+) T
cells against multiple class I-restricted epitopes within the
antigen (Alijagic et al, 1995; Lapointe et al, 2001;
Larregina et al, 2001).
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Figure 1 Role of dendritic cells in immune system activation. Dendritic cells reside in the majority of tissues, and continuously acquire
and process the antigens form the environment (1). The antigen uptake gives them a primary signal for maturation. They start production
of proteins necessary for antigen presentation and they migrate via blood to deliver the antigens to spleen and lymph nodes (2). Being
antigen-presenting cells, they express both HLA class I and II, and can therefore activate both helper and cytotoxic T lymphocytes.
Furthermore, they can cross-process antigens between these two pathways and thus switch the immune response type and evoke
cytotoxic reactions against endogenous tumour antigens presented in their HLA proteins. Providing the secondary activation signal
(accessory molecules and cytokines), they prevent lymphocyte anergy, resulting in the generation of an army of sensitised cytotoxic and
helper, effector and memory lymphocytes (3).

Table 1. Examples of defined epitopes suitable for anti-melanoma immune vaccine therapy.

Protein | HLA-I binding peptides | HLA-II binding peptides | Authors
Cancer-testis antigens
NY-ESO-1 + Jager et al, 2000; Zarour et
119-143 al, 2002, 2000b
119-143
MAGE-3 TQHFVQENYLEY Schultz et al, 2000,
EVDPIGHLY Schultz et al, 2001
Melanocyte differentiation antigens
gp-100 gp100[9(87)] Kawashima et al, 1998
gp100[10(86) Cochlovius et al, 1999
Cochlovius et al, 2000
Kierstead et al, 2001
MelanA/MART-1 GILTVILGV van Elsas et al, 1996
ALMDKSLHV
51-73 Zarour et al, 2000a
Widely expressed antigens
776-788 Sotiriadou et al, 2001

HER2/neu
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Table 2. In vitro immune response mediated by melanoma antigens loaded dendritic cells.

Inducted
cells

Antigen
source

Antigen
presentation

Cytotoxic reactivity anti:

References

Defined CTL,NK, Th |-
peptide lymphocytes
(MAA) -

+++

Peptide loaded target
cells
Tumor cell lines

- Normal melanocytes

- Autologous tumor cells

Bakker et al., 1995; Saeterdal et al.,
1998 Tjandrawan et al., 1998 Abdel-
Wahab et al., 1998 Dhodapkar et al.,
2000; Kikuchi et al., 2001; Minev et
al., 2000; Yang et al., 2002 Noessner
et al., 2002 Tanaka et al., 2003

-+
Cross-
presentation

Melanoma
cell lysates

CTL, Th -
lymphocytes

Autologous tumor cells

Abdel-Wahab et al., 1998 Soruri et
al., 1998 Imro et al., 1999 Berard et
al., 2000 Nouri-Shirazi et al., 2000
Jenne et al., 2000; Labarriere et al.,
2002 Whiteside et al., 2002 Bateman
et al., 2002 Russo et al., 2000 Andre
et al., 2002

Hybridomas

Holmes et al., 2001 Soruri et al., 2001
Jantscheff et al., 2002

Genetically +++
modified

cells

CTL, Th -
lymphocytes
(1 study) -

Cells presenting MAA
antigens
Autologous tumor cells

Reeves et al., 1996 Bettinotti et al.,
1998; Tuting et al., 1998 Chinnasamy
et al., 2000 Yang et al., 2000 Kim et
al., 1998 Drexler et al., 1999 Linette
et al., 2000 Motta et al., 2001; Philip
et al., 2000 Lapointe et al., 2001
Larregina et al., 2001; Smith et al.,
2001 Firat et al., 2002 Prabakaran et
al., 2002

Temme et al., 2002 Sumimoto et al.,
2002

IV. In vitro efficacy of dendritic cells
vaccines

Overall, the majority of the in vitro approaches
described have been successful, with regards to antigen
incorporation/transfection rate, protein production and
presentation, and T-lymphocyte activation. Experiments in
vitro have proved that dendritic cells are able to process
and present melanoma-specific antigens derived from
whole melanoma cells, synthesised or purified peptides or
when they are genetically modified to produce tumor
antigens (Table 2). Moreover, synergistic effects of viral
transfection and DC maturation have been observed (Rea
et al, 2001; Temme et al, 2002). Transfected DC
synthesised the desired product, and the antigen
expression remained detectable for at least 7 days. Also
DC loaded with killed tumor cells can induce HLA class I-
and class Il-restricted proliferation of autologous CD8+
and CD4+ T cells, and are therefore able to cross-present
tumor cell-derived antigens. In all cases they presented a
broad range of tumor antigen epitopes in the context of
multiple HLA alleles and stimulated several types of
lymphocytes reactive against multiple melanoma antigens.

In the vast majority of studies both proliferative and
cytotoxic responses were reported. Lymphocytes co-
cultured with genetically modified DC produced Thl type
cytokines and showed multiple antigen specific cytotoxic
responses, against melanoma cell lines, HLA-matched B
cell lines pulsed with peptide and, most importantly,
autologous tumor (Table 2). Induction of not only
cytotoxic and helper lymphocytes, but also clones of NK
cells have been reported. Tumor-specific T cells with NK
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activity are potentially of great clinical significance as
they provide a mechanism for lysis of tumor cells that
have lost HLA expression (Sacterdal et al, 1998)

It is the ability of in vitro expanded lymphocytes to
recognize naturally processed and presented epitopes that
illustrates the potential use of dendritic cells for
vaccination in human cancer. Unfortunate therefore that,
despite these encouraging results, so far none of these
strategies has found direct effective translation to patient
care.

V. Response of patients to DC

vaccination

Despite dendritic cells being increasingly used for
the immunotherapy of melanoma only a few tumor
remissions due to vaccination have been reported (Table
3). Several phase I/II clinical studies have shown that DC
vaccines are non-toxic (no grade 3 or 4 WHO scale
toxicities), that vaccine injections are well tolerated, and
that DC derived in vitro are viable after injection and can
mediate biologic activity in situ (Table 3). Both adjuvant
therapies and dendritic cell based vaccines caused
infiltration of immune cells (both dendritic cells and
lymphocytes as well as numerous other types) into the site
of vaccination, and the cytotoxic tests on patients immune
cells obtained after one or several courses of vaccine
administration have given encouraging results. Peripheral
blood lymphocytes from patients recognised melanoma
cells in vitro, produced pro-inflammatory cytokines and
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Table 3. Clinical outcome of DC based vaccines

No DC T Objective response rate — overall References
Patients | infiltration | lymphocytes | percentage
infiltration
Complete | Partial Disease
response response | stabilisa-
tion

DC targeted adjuvants

GM-CSF 72 5/5 studies | 4/5 studies 1% 16.7% Nasi et al., 1999
Kusumoto et al., 2001
Zehntner et al., 1999
Chang et al., 2000; Soiffer
etal., 1998

GM-CSF + 51 1/2 studies 22.5% 27% Janik et al., 1999;

Other Schachter et al., 1998

adjuvants

Antigen modified dendritic cells

Autologous 7 1/1 studies | 1/1 studies 0 57% Triozzi et al., 2000

DC injected

into tumor site

Peptide loaded | 172 3/13 4/13 studies | 2% 12% 3% Lotze et al., 1997; Thurner

studies etal., 1999 Lotze et al.,

2000 Mackensen et al.,
2000 Panelli et al., 2000
Schuler-Thurner et al.,
2000 Andersen et al., 2001
Banchereau et al., 2001
Lau et al., 2001 Thomas et
al., 2001 Toungouz et al.,
2001 Schuler-Thurner et
al., 2002
Smithers et al., 2003

Melanoma 66 2/4 studies 12% 13.6% 1.5% Nestle, 2000 Chang et al.,

lysates loaded 2002 Krause et al., 2002
O'Rourke et al., 2003

Genetically 14 1/3 studies | 1/3 studies 0% 0% 0% Housseau et al., 2002 Nair

modified et al., 2002 Tsao et al.,
2002

even killed melanoma cells from cell lines or autologous
tumors. Nevertheless, the vaccination was ultimately
unsuccessful in most cases, since the melanoma survived
and the patient died (Table 3).

A. Adjuvants

Adjuvants stimulate DC and in this way enhance
immune response. An early attempt to induce clinical
inflammatory response in vivo using the dinitrophenyl
(DNP) -conjugated melanoma cell immunization of DNP-
pre-sensitised patients resulted in cutaneous DTH. In half
of the patients the inflammatory reaction was confirmed
and caused regression of metastases within 2-4 months.
The inflammatory response was associated with the
infiltration of CD8+ T cells, enhanced expression of
ICAM-1 and HLA-DR by melanoma cells and the
presence of numerous HLA-DR+, CD4+, CDI1-, Leu-1-
dendritic cells (Murphy et al, 1993).

The cytokine GM-CSF stimulates DC maturation in
vitro and has been used to stimulate DC activation in vivo.
(Mortarini et al, 1997; Chen et al, 2001). Direct sub- or
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intra-cutaneous injections (Schachter et al, 1998; Janik et
al, 1999; Nasi et al, 1999) and the use of genetically
modified melanoma cells (Soiffer et al, 1998; Zehntner et
al, 1999; Chang et al, 2000; Kusumoto et al, 2001) have
been used for vaccine administration either alone or in
combination with other cytokines (Janik et al, 1999) and
cytotoxic agents (Schachter et al, 1998). Vaccine
evaluation was based on immunohistochemical staining of
vaccine site biopsies, peripheral blood analysis and
functional tests in vitro, as well as clinical outcome. In
most cases, despite DC and lymphocyte influx into
metastatic tumor sites and the successful specific
activation of anti-tumor T lymphocytes, the clinical
outcome was far from satisfactory. In two studies achieved
remission in only one patient (Chang et al, 2000;
Kusumoto et al, 2001), and in three, no anti-tumor effects
were observed. In the study performed by Soiffer and
colleagues, extensive tumor destruction was observed, but
no durable complete remission was reported. (Soiffer et al,
1998). The adjuvant vaccine worked well however when
combined with chemotherapy, giving a response rate over
50%. Nevertheless the drug regimen, including cytokines,



was very toxic, and this strategy has not been explored
further (Schachter et al, 1998). These results are consistent
with adjuvant clinical trial studies, where IL2, IFN g, and
GM-CSF did not result in an improved clinical outcome
(McClay, 2002).

B. DC vaccines

Several clinical trials of DC-based anti-melanoma
vaccines have been performed (Table 3). In a study by
Triozzi and colleagues the biologic activity of dendritic
cells injected directly into tumors was examined. This
pilot study demonstrated that DC derived in vitro were
viable after intratumoral injection and could mediate
biologic activity in situ. (Triozzi et al, 2000) Whether
applied intravenously or intradermally, DC can easily
migrate to lymphoid organs and tumor sites (Mackensen et
al, 1999; Thomas et al, 1999). Many T cell anti-tumor
responses were measured, and in 7 out of 9 trials at least
transient tumor-specific PBL activity was observed.
(Table 3). When keyhole limpet hemocyanin (KLH) was
administered, activation of helper T lymphocytes was
reported; with DTH directed both against KHL and tumor
cells (Nestle et al, 1998; Toungouz et al, 2001; Chang et
al, 2002).

Unfortunately, despite the high in vitro anti-tumor
activity of patients’ PBL, the clinical outcome was not
very successful. A maximum overall response rate of
25.6% has been reported with al2% complete response
rate (Table 3). Interestingly, the most potent immune
response was induced when autologous tumor material
was used (Andersen et al, 2001; Thomas et al, 2001;
Krause et al, 2002; O'Rourke et al, 2003; Smithers et al,
2003)

V1. Reasons for the failure of DC

vaccination

Given that all of the strategies tested are equally
successful in vitro, that their application routes in general
do not differ, and that they are all based on autologous
dendritic cells obtained either from patients blood,
generated from CD34+ precursors ex vivo, or monocytes,
the reason for the failure to eradicate the tumor is probably
independent of the methods of vaccination. Since anti-
tumor PBL activity has been shown, this suggests patients’
immune systems are capable of producing a wide range of
cytotoxic cells, potentially able to recognise tumor
antigens. It appears, that although the immune response
against melanoma tumors has been induced, in patients its
effector phase is not carried through to completion.

There are several possible explanations for the failure
of DC vaccinations to eliminate tumor. The simplest
explanation would be that the modified cells or pre-
sensitised CTL might have been unable to penetrate the
tumor or that the antigen specificity of the CTL may have
been too narrow. Studies have however confirmed the
generation of potent anti-tumor CTL and their successful
migration into the tumor site (Table 3). Alternatively, the
CTL may be suppressed or killed at the site of the tumor
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and therefore unable to perform any anti-tumor activity. It
is well known that tumors are immune privileged sites and
that they create an immunosuppressive environment
around themselves, preventing inflammatory responses.
This is thought to be achieved by the secretion of a range
of immunosuppressive cytokines, such as IL-10, IL-19,
IL-6, TGF bl and 2, macrophage migration-inhibitory
factor, gangliosides, heavy chain ferritin, [CAM-1 and
prostaglanoids. In addition tumors are not only resistant to
TNF receptor pathway mediated apoptosis, but can also
express and secrete FasL, which causes apoptosis of
activated lymphocytes (Ekmekcioglu et al, 1999; Gray et
al, 2002; Redondo et al, 2002; Sombroek et al, 2002;
Peguet-Navarro et al, 2003; Redondo et al, 2003; Wolfl et
al, 2002).

VII. Modulation of immune responses
by dendritic cells

Since inappropriate immune responses can be
dangerous (if e.g. induced against healthy tissue), they
must be carefully regulated. DC subsets play crucial roles
in the selection process in the thymus as well as regulatory
roles in lymph nodes and the periphery.

One of the most characteristic features of dendritic
cells is the transformation of their phenotype during
maturation. DC function is highly dependent on their level
of maturation, and cells in various stages of development
differ not only in their morphology but also completely
alter their surface antigen expression. In humans, the
presence of immature DC has been reported in most
organs, including liver, kidney and heart, where they tend
to be associated with vascular structures (Hart, 1997;
Banchereau and Steinman, 1998). An interdigitating
sentinel epithelial network of DC has been described in the
mucosa of the oral cavity, intestinal tract and the
respiratory tract (Hart, 1997). It is increasingly believed
that tissue-residing immature dendritic cells constantly
incorporate and process various proteins from their
environment. Under physiological conditions, they express
few self-antigens on their surface for presentation to T
lymphocytes. However, since the dendritic cells are
immature, they do not express co-stimulatory molecules,
and what results is impaired lymphocyte activation, and
anergy. This simple mechanism eliminates self-reactive
lymphocytes, and prevents autoimmunity (Hart, 1997;
Banchereau and Steinman, 1998; Lutz and Schuler, 2002).
Tissue resident immature dendritic cells can also
phagocytose apoptotic bodies formed when neighbouring
cells die by apoptosis. Normally this will not result in an
immune response, however, if apoptosis was the result of a
viral infection then additional signals at the site of
infection (e.g. IFNa, HSP) induce dual activation and
maturation of dendritic cells, and launch an immune
reaction (Hart 1997; Bancherecau and Steinman, 1998;
Lutz and Schuler, 2002).

It is not only immature tissue-resident dendritic cells
that anergise T lymphocytes. The presence of ‘“semi-
matured” dendritic cells circulating in the blood of healthy
donors was described by Lutz and Schuler (2002). These
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cells are loaded with self-antigen, and express antigens
associated with a mature phenotype, but do not release
cytokines, and therefore do not provide sufficient
activation signals for lymphocytes. They react with CD4+
lymphocytes, inducing a subset of regulatory helper
lymphocytes, which remain in the organism as memory
cells, providing a mechanism that supports peripheral
tolerance.

VIII. Melanoma
mediated immune control

derived, DC

A. Altered phenotype of lymph nodes
invaded by melanoma

The induction of T lymphocyte anergy in tissues and
the creation of a population of regulatory cells are two
distinct pathways leading to tolerance to self-antigens.
Thanks to these control mechanisms, severe autoimmune
reactions can be avoided. If however dendritic cells are
kept artificially immature, it creates a potential hazard for
the function of immune system.

Many groups have reported alterations in cell ratio
and function in lymph nodes invaded by melanoma.
Several authors observed the recruitment of immature
plasmacytoid dendritic cells, and T lymphocytes with a
suppressive phenotype. (Fernandez-Bussy et al, 1983;
Lana et al, 2001; Salio et al, 2003; Vermi et al, 2003). A
comparison between sentinel and non-sentinel lymph
nodes showed a quantitative reduction in dendritic cell
markers, in the sentinel lymph node. This suggests a loss
of mature DC and a concomitant decrease in total DC
content (Essner and Kojima, 2002)

Histological studies show a profound decrease in the
number of antigen-presenting cells expressing HLA class
Il in the epidermis above the melanoma, with zonal
immune suppression in involved lymph nodes. There are
decreased numbers of DC in the paracortex of the lymph
node, and the majority of remaining LC and DC are
phenotypically immature (Fernandez-Bussy et al, 1983;
Cochran et al, 1987; Toriyama et al, 1993; Garcia-Plata et
al, 1995; Barbour and Coventry, 2003) (Figure 2). In vitro
assays confirmed the suppressed functional characteristics
of cells derived from melanoma-invaded sentinel lymph
nodes or exposed to conditioned supernatants from
melanoma cell cultures (Hoon et al, 1987a, 1987b; Farzad
et al, 1997; Chang et al, 1999).

Several studies have examined the tolerizing
influence of melanoma cells on the maturation and
function of DC and show that under the influence of
melanoma, DC acquire an immunosuppressive phenotype
and cause the generation of anergic T lymphocytes. The
immunostimulatory function of DC obtained from
progressing and regressing melanoma metastases show a
significant difference in the abilities of each population. In
addition, monocyte-derived DC exposed to tumor
supernatant failed to acquire full allo-stimulatory activity
and rapidly underwent apoptosis (Enk et al, 1997;
Steinbrink et al, 1999; Kiertscher et al, 2000; Steinbrink et
al, 2002).
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In the presence of melanoma cells or tumor
conditioned media, CD 80, 86 and HLA class I and II are
up-regulated on the DC surface, even though expression of
immature DC-related antigens like E-cadherin is retained,
and the DC maturity factor, CD 83, is not expressed
(Remmel et al, 2001; Padovan et al, 2002).

These cells therefore have a phenotype allowing
antigen presentation by immature cells, leading to the
suppression of antigen-specific immune responses.

It may be worth considering whether the
characteristic dissemination of melanoma via the
lymphatics and primary metastatic spread into the lymph
nodes is coincidental.

B Dendritic cells as a key to immune
escape

Melanoma is a tumor recognisable to the immune
system and cannot grow and develop in the presence of a
competent immune system. In the early stages of tumor
development melanoma acquire an “invisible” phenotype
following the selection pressure of the immune system.
This however might be not enough to ensure further tumor
cell survival. The tumor needs a more secure and
permanent strategy. Lymph nodes are the nerve centres of
the immune response, places where antigens are presented
to lymphocytes and where decisions about immune
responses are made. By invading these, melanoma creates
an immune-privileged site in the centre of immune
reaction. What can be harmful to infiltrating cytotoxic
cells must also influence to at least the same degree any
regulatory cells residing in vicinity. Dendritic cells act as
the key component in immune reaction regulation. Under
normal circumstances they are able to stimulate
populations of lymphocytes against danger (e.g. tumor
cells), however if their maturation is halted and their
phenotype switched into modulatory mode, instead of
immune stimulation, they will induce immune tolerance.
Melanoma cells have the potential to keep dendritic cells
in an immature state (Figure 2), impaired and suppressed,
yet able to control and suppress other components of the
immune response. By invading lymph nodes, melanoma
acquire a potent strategy of immune evasion. The hunted
transforms into the hunter — instead of escaping the
immune system, in effect the melanoma takes control and
deletes the tumor sensitive lymphocytes at the command
centre of immune reactivity (Figure 3).

Functional alterations in lymph nodes invaded by
melanoma should be considered when attempting immune
therapy. If our hypothesis is correct, any external immune
intervention is unlikely to result in tumor destruction,
despite the induction of immunocompetent cells. Tumor
specific cytotoxic cells will migrate into the lymph nodes
and instead of being activated they will be anergized and
may undergo apoptosis due to the interaction with
dendritic cells modulated by the melanoma. To obtain a
successful anti-melanoma vaccination, the immune
suppression in draining lymph nodes must be overcome.
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Figure 3. Suppression of immune system managed by melanoma-derived altered maturation of dendritic cells. Antigen presentation by
immature dendritic cells is one of the immune control mechanisms. Dendritic cells kept in the immature state by cytokines released by
melanoma are capable to modulate immune response and anergise antigen specific T lymphocytes. This mechanism can be potentially
used by melanoma to avoid immune recognition and to suppress the immune reaction.
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