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Chapter 4

Some polynomials for level one forms

The contents of this chapter will appear in the final version of the manuscript [28] that will

eventually be published as a volume of the Annals of Mathematics Studies.

4.1 Introduction
In this chapter we explicitly compute mod � Galois representations associated to modular

forms. To be precise, we look at cases with � ≤ 23 and the modular forms considered will

be cusp forms of level 1 and weight up to 22. We present the result in terms of polynomials

associated to the projectivised representations. As an application, we will improve a known

result on Lehmer’s non-vanishing conjecture for Ramanujan’s tau function (see [47, p. 429]) .

To fix a notation, for any k ∈Z satisfying dimSk(SL2(Z)) = 1 we will denote the unique nor-

malised cusp form in Sk(SL2(Z)) by Δk. We will denote the coefficients of the q-expansion

of Δk by τk(n):
Δk(z) = ∑

n≥1

τk(n)qn ∈ Sk(SL2(Z)).

From dimSk(SL2(Z)) = 1 it follows that the numbers τk(n) are integers. For every Δk and

every prime � there is a continuous representation

ρΔk,� : Gal(Q/Q)→ GL2(F�)

such that for every prime p �= � we have that the characteristic polynomial of ρΔk,�(Frobp) is

congruent to X2− τk(p)X + pk−1 mod �. For a summary on the exceptional representations

ρΔk,� and the corresponding congruences for τk(n), see [83].

4.1.1 Notational conventions

Throughout this chapter, for every field K we will fix an algebraic closure K and all algebraic

extension fields of K will be regarded as subfields of K. Furthermore, for each prime number

p we will fix an embedding Q ↪→Qp and hence an embedding Gal(Qp/Qp) ↪→ Gal(Q/Q),
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80 CHAPTER 4. SOME POLYNOMIALS FOR LEVEL ONE FORMS

whose image we call Dp. We will use Ip to denote the inertia subgroup of Gal(Qp/Qp).

For any field K, a linear representation ρ : G→ GLn(K) defines a projective representation

ρ̃ : G → PGLn(K) via the canonical map GLn(K) → PGLn(K). We say that a projective

representation ρ̃ : G→ PGLn(K) is irreducible if the induced action of G on Pn−1(K) fixes

no proper subspace. So for n = 2 this means that every point of P1(K) has its stabiliser

subgroup not equal to G. Representations are assumed to be continuous.

4.1.2 Statement of results

Theorem 4.1. For every pair (k, �) occurring in Table 4.1 on page 87, let the polynomial
Pk,� be defined as in that same table. Then the splitting field of each Pk,� is the fixed field of
Ker(ρ̃Δk,�) and has Galois group PGL2(F�). Furthermore, if α ∈Q is a root of Pk,� then the
subgroup of Gal(Q/Q) fixing α corresponds via ρ̃Δk,� to a subgroup of PGL2(F�) fixing a
point of P1(F�).

For completeness we also included the pairs (k, �) for which ρk,� is isomorphic to the action

of Gal(Q/Q) on the �-torsion of an elliptic curve. These are the pairs in Table 4.1 with

� = k−1, as there the representation is the �-torsion of J0(�), which happens to be an elliptic

curve for � ∈ {11,17,19}. A simple calculation with division polynomials [46, Chapter II]

can be used to treat these cases. In the general case, one has to work in the more complicated

Jacobian variety J1(�), which has dimension 12 for � = 23 for instance.

We can apply Theorem 4.1 to verify the following result.

Corollary 4.1. The non-vanishing of τ(n) holds for all

n < 22798241520242687999≈ 2 ·1019.

In [34], the non-vanishing of τ(n) was verified for all

n < 22689242781695999≈ 2 ·1016.

To compute the polynomials, the author used a weakened version of algorithms described

elsewhere in this book. After a suggestion of Couveignes, Complex approximations were

used. We worked directly in X1(�) rather than X1(5�)Q(ζ�) and we guessed the rational coef-

ficients of our polynomials using lattice reduction techniques [49, Proposition 1.39]. instead

of computing the height first. Also reduction techniques were used to make the coefficients

smaller [16]; after the initial computations some of the polynomials had coefficients of al-

most 2000 digits. The used algorithms do not give a proven output, so we have to concentrate

on the verification. We will show how to verify the correctness of the polynomials in Sec-

tion 4.3 after setting up some preliminaries about Galois representations in Section 4.2. In

Section 4.4 we will point out how to use Theorem 4.1 in a calculation that verifies Corollary

4.1. All the calculations were performed using MAGMA (see [6]).
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4.2 Galois representations
This section will be used to state some results on Galois representations that we will need in

the proof of Theorem 4.1.

4.2.1 Liftings of projective representations

Let G be a topological group, let K be a topological field and let ρ̃ : G → PGLn(K) be a

projective representation. Let L be an extension field of K. By a lifting of ρ̃ over L we shall

mean a representation ρ : G→ GLn(L) that makes the following diagram commute:

G
ρ̃

��

ρ
��

PGLn(K)� �

��

GLn(L) �� �� PGLn(L)

where the maps on the bottom and the right are the canonical ones. If the field L is not spec-

ified then by a lifting of ρ̃ we shall mean a lifting over K.

An important theorem of Tate arises in the context of liftings. For the proof we refer to [66,

Section 6]. Note that in the reference representations over C are considered, but the proof

works for representations over arbitrary algebraically closed fields.

Theorem 4.2 (Tate). Let K be a field and let ρ̃ : Gal(Q/Q) → PGLn(K) be a projective
representation. For each prime number p, there exists a lifting ρ ′p : Dp → GLn(K) of ρ̃|Dp.
Assume that these liftings ρ ′p have been chosen so that all but finitely many of them are
unramified. Then there is a unique lifting ρ : Gal(Q/Q)→ GLn(K) such that for all primes
p we have

ρ|Ip = ρ ′p|Ip.

Lemma 4.1. Let p be a prime number and let K be a field. Suppose that we are given a
projective representation ρ̃p : Gal(Qp/Qp)→ PGLn(K) that is unramified. Then there exists
a lifting ρp : Gal(Qp/Qp)→ GLn(K) of ρ̃p that is unramified as well.

Proof. Since ρ̃ is unramified, it factors through Gal(Fp/Fp) ∼= Ẑ and is determined by the

image of Frobp ∈ Gal(Fp/Fp). By continuity, this image is an element of PGLn(K) of finite

order, say of order m. If we take any lift F of ρ̃(Frobp) to GLn(K) then we have Fm = a for

some a ∈ K×. So F ′ := α−1F , where α ∈ K is any m-th root of a, has order m in GLn(K).
Hence the homomorphism Gal(Qp/Qp)→ GLn(K) obtained by the composition

Gal(Qp/Qp) �� �� Gal(Fp/Fp)
∼ �� Ẑ �� �� Z/mZ 1
→F ′�� GLn(K)

lifts ρ̃ and is continuous as well as unramified.
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4.2.2 Serre invariants and Serre’s conjecture
Let � be a prime. A Galois representation ρ : Gal(Q/Q)→ GL2(F�) has a level N(ρ) and

a weight k(ρ). The definitions were introduced by Serre (see [70, Sections 1.2 & 2]). Later

on, Edixhoven found an improved definition for the weight, which is the one we will use,

see [27, Section 4]. The level N(ρ) is defined as the prime-to-� part of the Artin conductor

of ρ and equals 1 if ρ is unramified outside �. The weight is defined in terms of the local

representation ρ|D�
; its definition is rather lengthy so we will not write it out here. When

we need results about the weight we will just state them. Let us for now mention that one

can consider the weights of the twists ρ ⊗ χ of a representation ρ : Gal(Q/Q)→ GL2(F�)
by a character χ : Gal(Q/Q)→ F

×
� . If one chooses χ so that k(ρ⊗ χ) is minimal, then we

always have 1≤ k(ρ⊗χ)≤ �+1 and we can in fact choose our χ to be a power of the mod�
cyclotomic character.

Serre conjectured [70, Conjecture 3.2.4] that if ρ is irreducible and odd, then ρ belongs to

a modular form of level N(ρ) and weight k(ρ). Oddness here means that the image of a

complex conjugation has determinant −1. A proof of this conjecture in the case N(ρ) = 1

has been published by Khare and Wintenberger:

Theorem 4.3 (Khare & Wintenberger, [38, Theorem 1.1]). Let � be a prime number and
let ρ : Gal(Q/Q)→ GL2(F�) be an odd irreducible representation of level N(ρ) = 1. Then
there exists a modular form f of level 1 and weight k(ρ) which is a normalised eigenform
and a prime λ | � of Kf such that ρ and ρ f ,λ become isomorphic after a suitable embedding
of Fλ into F�.

4.2.3 Weights and discriminants
If a representation ρ : Gal(Q/Q)→GL2(F�) is wildly ramified at � it is possible to relate the

weight to discriminants of certain number fields. In this subsection we will present a theorem

of Moon and Taguchi on this matter and derive some results from it that are of use to us.

Theorem 4.4 (Moon & Taguchi, [55, Theorem 3]). Consider a wildly ramified represen-
tation ρ : Gal(Q�/Q�)→ GL2(F�). Let α ∈ Z be such that k(ρ ⊗ χ−α

� ) is minimal where
χ� : Gal(Q�/Q�)→ F×� is the mod � cyclotomic character. Put k̃ = k(ρ ⊗ χ−α

� ), put d =

gcd(α, k̃−1, �−1) and put K = Q
Ker(ρ)
� . Define m ∈ Z by letting �m be the wild ramification

degree of K over Q�. Then we have

v�(DK/Q�
) =

{
1+ k̃−1

�−1 − k̃−1+d
(�−1)�m if 2≤ k̃ ≤ �,

2+ 1
(�−1)� − 2

(�−1)�m if k̃ = �+1,

where DK/Q�
denotes the different of K over Q� and v� is normalised by v�(�) = 1.

We can simplify this formula to one which is useful in our case. In the proof of the following

corollaries, v� denotes a valuation at a prime above � normalised by v�(�) = 1.
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Corollary 4.2. Let ρ̃ : Gal(Q/Q)→ PGL2(F�) be an irreducible projective representation
that is wildly ramified at �. Take a point in P1(F�), let H ⊂ PGL2(F�) be its stabiliser sub-
group and let K be the number field defined as

K = Q
ρ̃−1(H)

.

Then the �-primary part of Disc(K/Q) is related to the minimal weight k of the liftings of ρ̃
by the following formula:

v�(Disc(K/Q)) = k + �−2.

Proof. Let ρ be a lifting of ρ̃ of minimal weight. Since ρ is wildly ramified, after a suitable

conjugation in GL2(F�) we may assume

ρ|I� =

(
χk−1

�

0

∗
1

)
, (4.1)

where χ� : I� → F×� denotes the mod � cyclotomic character; this follows from the definition

of weight. The canonical map GL2(F�)→ PGL2(F�) is injective on the subgroup
(∗

0
∗
1

)
, so

the subfields of Q� cut out by ρ|I� and ρ̃|I� are equal, call them K2. Also, let K1 ⊂ K2 be

the fixed field of the diagonal matrices in Imρ|I� . We see from (4.1) that in the notation of

Theorem 4.4 we can put α = 0, m = 1 and d = gcd(�−1,k−1). So we have the following

diagram of field extensions:

K2
χk−1

�

��
��

��
�� (

χk−1
�

0

∗
1

)
K1

deg = � ��
��

��
��

Qun
�

The extension K2/K1 is tamely ramified of degree (�−1)/d hence we have

v�(DK2/K1
) =

(�−1)/d−1

(�−1)�/d
=

�−1−d
(�−1)�

.

Consulting Theorem 4.4 for the case 2≤ k ≤ � now yields

v�(DK1/Qun
�

) = v�(DK2/Qun
�

)− v�(DK2/K1
)

= 1+
k−1

�−1
− k−1+d

(�−1)�
− �−1−d

(�−1)�
=

k + �−2

�

and also in the case k = �+1 we get

v�(DK1/Qun
�

) = 2+
1

(�−1)�
− 2

(�−1)�
− �−2

(�−1)�
=

k + �−2

�
.

Let L be the number field Q
Ker(ρ̃)

. From the irreducibility of ρ̃ and the fact that Im ρ̃ has

an element of order � it follows that the induced action of Gal(Q/Q) on P1(F�) is transitive
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and hence that L is the normal closure of K in Q. This in particular implies that K/Q is

wildly ramified. Now from [K : Q] = �+ 1 it follows that there are two primes in K above

�: one is unramified and the other has inertia degree 1 and ramification degree �. From

the considerations above it now follows that any ramification subgroup of Gal(L/Q) at �
is isomorphic to a subgroup of

(∗
0
∗
1

) ⊂ GL2(F�) of order (�− 1)�/d with d | �− 1. Up to

conjugacy, the only subgroup of index � is the subgroup of diagonal matrices. Hence K1 and

Kun
λ2

are isomorphic field extensions of Qun
� , from which

v�(Disc(K/Q)) = v�(Disc(K1/Qun
� )) = � · v�(DK1/Qun

�
) = k + �−2.

follows.

Corollary 4.3. Let ρ̃ : Gal(Q/Q)→ PGL2(F�) be an irreducible projective representation
and let ρ be a lifting of ρ̃ of minimal weight. Let K be the number field belonging to a point
of P1(F�), as in the notation of Corollary 4.2. If k ≥ 3 is such that

v�(Disc(K/Q)) = k + �−2

holds, then we have k(ρ) = k.

Proof. From v�(Disc(K/Q)) = k + �− 2 ≥ �+ 1 it follows that ρ̃ is wildly ramified at � so

we can apply Corollary 4.2.

4.3 Proof of the theorem

To prove Theorem 4.1 we need to do several verifications. We will derive representations

from the polynomials Pk,� and verify that they satisfy the conditions of Theorem 4.3. Then

we know there are modular forms attached to them that have the right level and weight and

uniqueness follows then easily.

First we we will verify that the polynomials Pk,� from Table 4.1 have the right Galois group.

The algorithm described in [29, Algorithm 6.1] can be used perfectly to do this verification;

proving A�+1 �< Gal(Pk,�) is the most time-consuming part of the calculation here. It turns

out that in all cases we have

Gal(Pk,�)∼= PGL2(F�). (4.2)

That the action of Gal(Pk,�) on the roots of Pk,� is compatible with the action of PGL2(F�)
follows from the following well-known lemma:

Lemma 4.2. Let � be a prime and let G be a subgroup of PGL2(F�) of index �+1. Then
G is the stabiliser subgroup of a point in P1(F�). In particular any transitive permutation
representation of PGL2(F�) of degree �+1 is isomorphic to the standard action on P1(F�).

Proof. This follows from [82, Proof of Theorem 6.25].
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So now we have shown that the second assertion in Theorem 4.1 follows from the first one.

Next we will verify that we can obtain representations from this that have the right Serre

invariants. Let us first note that the group PGL2(F�) has no outer automorphisms. This

implies that for every Pk,�, two isomorphisms as in (4.2) define isomorphic representations

Gal(Q/Q)→ PGL2(F�) via composition with the canonical map Gal(Q/Q) � Gal(Pk,�). In

other words, every Pk,� gives a projective representation ρ̃ : Gal(Q/Q)→ PGL2(F�) that is

well-defined up to isomorphism.

Now, for each (k, �) in Table 4.1, the polynomial Pk,� is irreducible and hence defines a

number field

Kk,� := Q[x]/(Pk,�),

whose ring of integers we will denote by Ok,�. It is possible to compute Ok,� using the

algorithm from [11, Section 6] (see also [11, Theorems 1.1 & 1.4]), since we know what

kind of ramification behaviour to expect. In all cases it turns out that we have

Disc(Kk,�/Q) = (−1)(�−1)/2�k+�−2.

We see that for each (k, �) the representation ρ̃k,� is unramified outside �. From Lemma 4.1

it follows that for each p �= �, the representation ρ̃k,�|Gal(Qp/Qp) has an unramified lifting.

Above we saw that via ρ̃k,� the action of Gal(Q/Q) on the set of roots of Pk,� is compatible

with the action of PGL2(F�) on P1(F�), hence we can apply Corollary 4.3 to show that the

minimal weight of a lifting of ρ̃k,� equals k. Theorem 4.2 now shows that every ρ̃k,� has a

lifting ρk,� that has level 1 and weight k. From Im ρ̃k,� = PGL2(F�) it follows that each ρk,�
is absolutely irreducible.

To apply Theorem 4.3 we should still verify that ρk,� is odd. Let (k, �) be given and suppose

ρk,� is even. Then a complex conjugation Gal(Q/Q) is sent to a matrix M ∈GL2(F�) of deter-

minant 1 and of order 2. Because � is odd, this means M =±1 so the image of M in PGL2(F�)
is the identity. It follows now that Kk,� is totally real. One could arrive at a contradiction by

approximating the roots of Pk,� to a high precision, but to get a proof one should use only

symbolic calculations. The fields Kk,� with � ≡ 3 mod 4 have negative discriminant hence

cannot be totally real. Now suppose that a polynomial P(x) = xn + an−1xn−1 + · · ·+ a0 has

only real roots. Then a2
n−1−2an−2, being the sum of the squares of the roots, is non-negative

and for a similar reason a2
1−2a0a2 is non-negative as well. One can verify immediately that

each of the polynomials Pk,� with � ≡ 1 mod 4 fails at least one of these two criteria, hence

none of the fields Kk,� is totally real. This proves the oddness of the representations ρk,�.

Of course, this can also be checked with more general methods, like considering the trace

pairing on Kk,� or invoking Sturm’s theorem [32, Theorem 5.4].

So now that we have verified all the conditions of Theorem 4.3 we remark as a final step that

all spaces of modular forms Sk(SL2(Z)) involved here are 1-dimensional. So the modularity

of each ρk,� implies immediately the isomorphism ρk,�
∼= ρΔk,�, hence also ρ̃k,�

∼= ρ̃Δk,� , which

completes the proof of Theorem 4.1.
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4.4 Proof of the corollary
If τ vanishes somewhere, then the smallest positive integer n for which τ(n) is zero is a

prime (see [47, Theorem 2]). Using results on the exceptional representations for τ(p), Serre

pointed out [68, Section 3.3] that if p is a prime number with τ(p) = 0 then p can be written

as

p = hM−1

with
M = 2143753691 = 3094972416000,(

h+1

23

)
= 1 and h≡ 0,30 or 48 mod 49.

In fact p is of this form if and only if τ(p) ≡ 0 mod 23 · 49 ·M holds. Knowing this,

we will do a computer search on these primes p and verify whether τ(p)≡ 0 mod � for

� ∈ {11,13,17,19}. To do that we will use the following lemma.

Lemma 4.3. Let K be a field of characteristic not equal to 2. Then the following conditions
on M ∈ GL2(K) are equivalent:

(1) trM = 0.

(2) For the action of M on P1(K), there are 0 or 2 orbits of length 1 and all other orbits
have length 2.

(3) The action of M on P1(K) has an orbit of length 2.

Proof. We begin with verifying (1)⇒ (2). Suppose trM = 0. Matrices of trace 0 in GL2(K)
have distinct eigenvalues in K because of char(K) �= 2. It follows that two such matri-

ces are conjugate if and only if their characteristic polynomials coincide. Hence M and

M′ :=
(

0
−detM

1
0

)
are conjugate so without loss of generality we assume M = M′. Since M2

is a scalar matrix, all the orbits of M on P1(K) have length 1 or 2. If there are at least 3 orbits

of length 1 then K2 itself is an eigenspace of M hence M is scalar, which is not the case.

If there is exactly one orbit of length 1 then M has a non-scalar Jordan block in its Jordan

decomposition, which contradicts the fact that the eigenvalues are distinct.

The implication (2)⇒ (3) is trivial so that leaves proving (3)⇒ (1). Suppose that M has an

orbit of length 2 in P1(K). After a suitable conjugation, we may assume that this orbit is

{[(1
0

)
], [
(

0
1

)
]}. But this means that M ∼

(
0
b

a
0

)
for certain a,b ∈ K hence trM = 0.

Combining this lemma with Theorem 4.1 one sees that for � ∈ {11,13,17,19} and p �= � we

have τ(p)≡ 0 mod � if and only if the prime p decomposes in the number field Q[x]/(P12,�)
as a product of primes of degree 1 and 2, with degree 2 occurring at least once. For

p � Disc(P12,�), which is a property that all primes p satisfying Serre’s criteria possess, we

can verify this condition by checking whether P12,� has an irreducible factor of degree 2

over Fp. This can be easily checked by verifying

xp2
= x and xp �= x in Fp[x]/(P12,�).
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Having done a computer search, it turns out that the first few primes satisfying Serre’s criteria

as well as τ(p)≡ 0 mod 11 ·13 ·17 ·19 are

22798241520242687999, 60707199950936063999, 93433753964906495999.

Remark. The unpublished paper [34] in which Bruce Jordan and Blair Kelly obtained the

previous bound for the verification of Lehmer’s conjecture seems to be unfindable. Kevin

Buzzard asked me the question what method they could have used. If we weaken the above

search to using only the prime � = 11 we obtain the same bound as Jordan and Kelly did.

So our speculation is that they searched for primes p satisfying Serre’s criteria as well as

τ(p) ≡ 0 mod 11. This congruence can be verified using an elliptic curve computation, as

was already remarked in Subsection 4.1.2.

4.5 The table of polynomials
In this section we present the table of polynomials that is referred to throughout this chapter.

Table 4.1: Polynomials belonging to projective modular rep-

resentations

(k, �) Pk,�

(12,11) x12−4x11 +55x9−165x8 +264x7−341x6 +330x5

−165x4−55x3 +99x2−41x−111

(12,13) x14 +7x13 +26x12 +78x11 +169x10 +52x9−702x8−1248x7

+494x6 +2561x5 +312x4−2223x3 +169x2 +506x−215

(12,17) x18−9x17 +51x16−170x15 +374x14−578x13 +493x12

−901x11 +578x10−51x9 +986x8 +1105x7 +476x6 +510x5

+119x4 +68x3 +306x2 +273x+76

(12,19) x20−7x19 +76x17−38x16−380x15 +114x14 +1121x13−798x12

−1425x11 +6517x10 +152x9−19266x8−11096x7 +16340x6

, +37240x5 +30020x4−17841x3−47443x2−31323x−8055

(16,17) x18−2x17−17x15 +204x14−1904x13 +3655x12 +5950x11

−3672x10−38794x9 +19465x8 +95982x7−280041x6−206074x5

+455804x4 +946288x3−1315239x2 +606768x−378241

(16,19) x20 + x19 +57x18 +38x17 +950x16 +4389x15 +20444x14

+84018x13 +130359x12−4902x11−93252x10 +75848x9

−1041219x8−1219781x7 +3225611x6 +1074203x5

−3129300x4−2826364x3 +2406692x2 +6555150x−5271039

Continued on next page
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Table 4.1 – continued from previous page

(k, �) Pk,�

(16,23) x24 +9x23 +46x22 +115x21−138x20−1886x19 +1058x18

+59639x17 +255599x16 +308798x15−1208328x14

−6156732x13−10740931x12 +2669403x11 +52203054x10 +106722024x9

+60172945x8−158103380x7−397878081x6−357303183x5

+41851168x4 +438371490x3 +484510019x2 +252536071x+55431347

(18,17) x18−7x17 +17x16 +17x15−935x14 +799x13 +9231x12−41463x11

+192780x10 +291686x9−390014x8 +6132223x7−3955645x6 +2916112x5

+45030739x4−94452714x3 +184016925x2−141466230x+113422599

(18,19) x20 +10x19 +57x18 +228x17−361x16−3420x15 +23446x14 +88749x13

−333526x12−1138233x11 +1629212x10 +13416014x9 +7667184x8

−208954438x7 +95548948x6 +593881632x5−1508120801x4

−1823516526x3 +2205335301x2 +1251488657x−8632629109

(18,23) x24 +23x22−69x21−345x20−483x19−6739x18 +18262x17

+96715x16−349853x15 +2196684x14−7507476x13 +59547x12

+57434887x11−194471417x10 +545807411x9 +596464566x8

−9923877597x7 +33911401963x6−92316759105x5 +157585411007x4

−171471034142x3 +237109280887x2−93742087853x+97228856961

(20,19) x20−5x19 +76x18−247x17 +1197x16−8474x15 +15561x14−112347x13

+325793x12−787322x11 +3851661x10−5756183x9 +20865344x8

−48001353x7 +45895165x6−245996344x5 +8889264x4

−588303992x3−54940704x2−538817408x+31141888

(20,23) x24− x23−23x22−184x21−667x20−5543x19−22448x18

+96508x17 +1855180x16 +13281488x15 +66851616x14

+282546237x13 +1087723107x12 +3479009049x11 +8319918708x10

+8576048755x9−19169464149x8−111605931055x7−227855922888x6

−193255204370x5 +176888550627x4 +1139040818642x3

+1055509532423x2 +1500432519809x+314072259618

(22,23) x24−2x23 +115x22 +23x21 +1909x20 +22218x19 +9223x18 +121141x17

+1837654x16−800032x15 +9856374x14 +52362168x13−32040725x12

+279370098x11 +1464085056x10 +1129229689x9 +3299556862x8

+14586202192x7 +29414918270x6 +45332850431x5−6437110763x4

−111429920358x3−12449542097x2 +93960798341x−31890957224


