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Chapter 3

A polynomial with Galois group SL2(F16)

This chapter consists of an article that has been published as [7], with some slight lay-out

modifications.

Abstract. In this paper we display an explicit polynomial having Galois group SL2(F16),
filling in a gap in the tables of Jürgen Klüners and Gunter Malle. Furthermore, the poly-

nomial has small Galois root discriminant; this fact answers a question of John Jones and

David Roberts. The computation of this polynomial uses modular forms and their Galois

representations.

3.1 Introduction
It is a computational challenge to construct polynomials with a prescribed Galois group; see

[44] for methods and examples. Here, by the Galois group of a polynomial f ∈ Q[x] we

mean the Galois group of a splitting field of f over Q together with its natural action on

the roots of f in this splitting field. Jürgen Klüners informed me about an interesting group

for which a polynomial had not been found yet, namely SL2(F16) with its natural action on

P1(F16). This action is faithful because of char(F16) = 2. It must be noted that the existence

of such a polynomial was already known to Mestre (unpublished). In this paper we will give

an explicit example.

Proposition 3.1. The polynomial

P(x) := x17−5x16 +12x15−28x14 +72x13−132x12 +116x11−74x9

+90x8−28x7−12x6 +24x5−12x4−4x3−3x−1 ∈Q[x]

has Galois group isomorphic to SL2(F16) with its natural action on P1(F16).

What is still unknown is whether there exists a regular extension of Q(T ) with Galois group

isomorphic to SL2(F16); regular here means that it contains no algebraic elements over Q
apart from Q itself. In Section 3.2 we will say some words about the calculation of the

polynomial and the connection with modular forms. We’ll indicate how one can verify that it
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70 CHAPTER 3. A POLYNOMIAL WITH GALOIS GROUP SL2(F16)

has the claimed Galois group in Section 3.3 using computational Galois theory. We will show

in Section 3.4 that this polynomial gives a Galois representation associated to an explicitly

given modular form.

3.1.1 Further remarks

In algebraic number theory, the root discriminant of a number field K is defined as d(K) :=
|Disc(OK)|1/[K:Q]. This way of measuring number fields appears to be very useful in asymp-

totic analysis on the set of all number fields (inside a fixed algebraic closure of Q, say). An

excellent survey paper on this material is [57]. Let us mention some interesting results here

as well. For example it is known that the bounds

22.38≈ 4πeγ ≤ liminf
K

d(K)≤ 82.11

hold; see [59, Section 7] for the lower bound and [30, Section 3.2] for the upper bound.

Under the assumption of the Generalised Riemann Hypothesis we even have

liminf
K

d(K)≥Ω := 8πeγ ≈ 44.76,

see [69]. In view of this lower bound, root discriminants below Ω are called small and it is

interesting to construct number fields that have small root discriminant. A paper focusing

on the construction of Galois number fields with small root discriminant is [33]. A question

asked in that paper is whether there exists such a field of which the Galois group contains

a subgroup isomorphic to SL2(F16) (see [33, Section 13]). The splitting field of the poly-

nomial in Proposition 3.1 has root discriminant 215/8 ·1371/2 ≈ 42.93 and thus answers this

question affirmatively.

The example given in Proposition 3.1 is not the only polynomial that the author could pro-

duce. Here are the other examples of polynomials having Galois group SL2(F16) computed

so far:

x17 + x16−4x15−2x14 +54x13 +6x12−36x11−16x10 +714x9

−1238x8 +484x7 +764x6−1084x5−520x4 +668x3 +776x2 +382x+74

and

x17 + x16 +18x15 +10x14 +194x13 +250x12 +442x11 +1006x10 +1176x9

−392x8 +1178x7 +4490x6 +4790x5 +1606x4 +286x3 +38x2 +25x+1.

The former polynomial defines a number field that ramifies above 2 and 173 and the num-

ber field defined by the latter polynomial ramifies above 2 and 199. The root discrimi-

nants of their splitting fields are not small, as they are equal to 215/81731/2 ≈ 48.25 and

215/81991/2 ≈ 51.74 respectively.
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3.2 Computation of the polynomial

In this section we will briefly indicate how one can find a polynomial like the one in Propo-

sition 3.1. We will make use of modular forms. For an overview as well as many further

references on this subject the reader is referred to [24].

Let N be a positive integer and consider the space S2(Γ0(N)) of holomorphic cusp forms

of weight 2 for Γ0(N). A newform f ∈ S2(Γ0(N)) has a q-expansion f = ∑anqn where the

coefficients an are in a number field. The smallest number field containing all the coefficients

is denoted by Kf . To a given prime number � and a place λ of Kf above � one can attach

a semi-simple Galois representation ρ f = ρ f ,λ : Gal(Q/Q)→ GL2(Fλ ) unramified outside

N� satisfying the following property: for each prime p � N� and any Frobenius element Frobp
in Gal(Q/Q) attached to p we have

tr(ρ f (Frobp))≡ ap modλ and det(ρ f (Frobp))≡ pmodλ . (3.1)

The representation ρ f is unique up to isomorphism. The fixed field of ker(ρ f ) in Q is Galois

over Q with Galois group isomorphic to im(ρ f ). For � = 2 and any λ above � equation (3.1)

together with Chebotarev’s density theorem imply that im(ρ f ) is contained in SL2(Fλ ). So

to show that there is an extension of Q with Galois group isomorphic to SL2(F16) it suffices

to find an N and a newform f ∈ S2(Γ0(N)) such that there is a prime λ of degree 4 above

2 in Kf and im(ρ f ) is the full group SL2(Fλ ). Using modular symbols we can calculate

the coefficients of f , hence traces of matrices that occur in the image of ρ f . For a survey

paper on how this works, see [80]. A subgroup Γ of SL2(F16) contains elements of every

trace if and only if Γ equals SL2(F16); this can be shown in several ways, either by a direct

calculation or by invoking a more general classification result like [82, Theorem III.6.25].

With this in mind, after a small computer search in which we check the occurring values of

tr(ρ f (Frobp)) up to some moderate bound of p, one finds that a suitable modular form f
exists in S2(Γ0(137)). It turns out that we have Kf ∼= Q(α) with the minimal polynomial of

α equal to x4 +3x3−4x−1 and that f is the form whose q-expansion starts with

f = q+αq2 +(α3 +α2−3α−2)q3 +(α2−2)q4 + · · · .

Now the next question comes in: knowing this modular form, how does one produce a poly-

nomial? In general, one can use the Jacobian J0(N) to construct ρ f . In this particular case

we can do that in the following way. We observe that Kf is of degree 4 and that the prime

2 is inert in it. Furthermore we can verify that the subspace of S2(Γ0(137)) fixed by the

Atkin-Lehner operator w137 is exactly the subspace generated by all the complex conju-

gates of f . These observations imply that ρ f is isomorphic to the action of Gal(Q/Q) on

Jac(X0(137)/〈w137〉)[2], where we give this latter space an F16-vector space structure via

the action of the Hecke operators. Note that im(ρ f ) = SL2(F16) implies surjectivity of the

natural map T→OK, f /(2)∼= F16, where T is the Hecke algebra attached to S2(Γ0(N)). The

methods described in [28, Sections 11 & 24] allow us now to give complex approximations
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of the 2-torsion points of Jac(X0(137)/〈w137〉) to a high precision. This part of the calcu-

lation took by far the most effort; the author will write more details about how this works

in a future paper (or thesis). We use this to give a real approximation of a polynomial with

Galois group isomorphic to SL2(F16). The results from [28, Sections 14 to 19] do, at least

implicitly, give a theoretical upper bound for the height of the coefficients of the polynomial

hence an upper bound for the calculation precision to get an exact result. Though this upper

bound is small in the sense that it leads to a polynomial time algorithm, it is still far too

high to be of use in practice. However it turns out that we can use a much smaller precision

to obtain our polynomial, the only drawback being that this does not give us a proof of its

correctness, so we have to verify this afterwards.

The polynomial P′ obtained in this way has coefficients of about 200 digits so we want to find

a polynomial of smaller height defining the same number field K. To do this, we first compute

the ring of integers OK of K. In [11, Section 6] an algorithm to do this is described, provided

that one knows the square-free factorisation of Disc( f ) [11, Theorem 1.4] and even if we

don’t know the square-free factorisation of the discriminant, the algorithm produces a ’good’

order in K (see [11, Theorem 1.1]). Assuming that our polynomial P′ is correct we know

that K is unramified outside 2 · 137 so we can easily calculate the square-free factorisation

of Disc( f ) and hence apply the algorithm. Having done this we obtain an order in K with

a discriminant small enough to be able to factor and hence we know that this is indeed the

maximal order OK . Explicitly, the discriminant is equal to

Disc(OK) = 230 ·1378. (3.2)

We embed OK as a lattice into C[K:Q] in the natural way and use lattice basis reduction, see

[49, (1.15)], to compute a short vector α ∈OK−Z. The minimal polynomial of α has small

coefficients. In our particular case [K : Q] is equal to 17, which is a prime number, hence this

new polynomial must define the full field K. This method gives us also a way of expressing

α as an element of Q(x)/(P′(x)).

3.3 Verification of the Galois group
Now that we have computed a polynomial P(x), we want to verify that its Galois group

Gal(P) is really isomorphic to SL2(F16) and that we can identify the set Ω(P) of roots of P
with P1(F16) in such a way that the action of Gal(P) on Ω(P) is identified with the action of

SL2(F16) on P1(F16).

For completeness let us remark that it is easy to verify that P(x) is irreducible since it is

irreducible modulo 5. The irreducibility of P implies that Gal(P) is a transitive permutation

group of degree 17. The transitive permutation groups of degree 17 have been classified,

see for example [75, Section 5]. It follows from [82, Theorem III.6.25] that up to conjugacy

there is only one subgroup of index 17 in SL2(F16), namely the group of upper triangular

matrices. This implies that up to conjugacy there is exactly one transitive G < S17 that is iso-

morphic to SL2(F16). Hence if Gal(P) ∼= SL2(F16) is an isomorphism of groups then there
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is an identification of Ω(P) with P1(F16) such that the group actions become compatible.

It follows from the classification in [75, Section 5] that if the order of a transitive G < S17

is divisible by 5, then G contains a transitive subgroup isomorphic to SL2(F16). To show

5 | #Gal(P) we use the fact that for a prime p � Disc(P) the decomposition type of P modulo

p is equal to the cycle type of any Frobenius element in Gal(P) attached to p. One can verify

that modulo 7 the polynomial P has an irreducible factor of degree 15, showing that indeed

5 | #Gal(P) holds, hence Gal(P) contains SL2(F16) as a subgroup.

To show that Gal(P) cannot be bigger than SL2(F16) it seems inevitable to use heavy com-

puter calculations. We will use ideas from [29], in particular we will use [29, Algorithm 6.1],

which combines the absolute resolvent method from [76] with an improved version of the

relative resolvent method from [77]. It would be interesting to see how Gal(P)∼= SL2(F16)
can be proven without using heavy calculations.

Note that the action of SL2(F16) on P1(F16) is sharply 3-transitive. So first we show that

Gal(P) is not 4-transitive to prove that it does not contain A17. To do this we start with

calculating the polynomial

Q(x) := ∏
{α1,α2,α3,α4}⊂Ω(P)

(X−α1−α2−α3−α4) , (3.3)

where the product runs over all subsets of {1, . . . ,17} consisting of exactly 4 elements. This

implies deg(Q) = 2380. One can calculate Q(x) using symbolic methods [15, Section 2.1].

Suppose that Gal(P) acting on Ω(P) is 4-transitive. Then the action on Ω(Q) is transitive

hence if Q(x) is square-free it is irreducible. So if we can show that Q(x) is reducible and

square-free, we have shown that Gal(P) is not 4-transitive.

We have two ways to find a nontrivial factor of Q(x): the first way is use a factorisation

algorithm and the second way is to produce a candidate factor ourselves. An algorithm that

works very well for our type of polynomial is Van Hoeij’s algorithm [31, Section 2.2]. One

finds that Q(x) is the product of 3 distinct irreducible polynomials of degrees 340, 1020 and

1020 respectively. A more direct way to produce a candidate factorisation is as follows. The

calculation of the 2-torsion in the Jacobian mentioned in Section 3.2 gives a bijection be-

tween the set of complex roots of P′ and the set P1(F16) such that the action of Gal(P′) on

Ω(P′) corresponds to the action of SL2(F16) on P1(F16), assuming the outcome is correct.

From the previous section we know how to express the roots of P as rational expressions

in the roots of P hence this gives us a bijection between Ω(P) and P1(F16), conjecturally

compatible with the group actions of Gal(P) and SL2(F16) respectively. A calculation shows

that the action of SL2(F16) on the set of unordered four-tuples of elements of P1(F16) has

3 orbits, of size 340, 1020 and 1020 respectively. Using approximations to a high precision

of the roots, we use these orbits to produce sub-products of (3.3), round off the coefficients

to the nearest integer and verify afterwards that the obtained polynomials are indeed factors

of Q(x).
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Let us remark that the group SL2(F16).4 := SL2(F16)� Aut(F16) with its natural action on

P1(F16) is a transitive permutation group of degree 17, and the same holds for its normal

subgroup SL2(F16).2 := SL2(F16)� 〈Frob2
2〉. Furthermore, it is well-known that SL2(F16).4

is isomorphic to Aut(SL2(F16)) (where SL2(F16) acts by conjugation and Aut(F16) acts

on matrix entries) and actually inside S17 this group is the normaliser of both SL2(F16)
and itself. According to the classification of transitive permutation groups of degree 17 in

[75, Section 5] these two groups are the only ones that lie strictly between SL2(F16) and A17.

Once we have fixed SL2(F16) inside S17, these two groups are actually unique subgroups of

S17, not just up to conjugacy.

From A17 
< Gal(P) we can thus conclude Gal(P) < SL2(F16).4. To proceed we consult

[29, Theorem 2.17], which gives a good computational method to move down over small

steps in a lattice of transitive permutation groups. Using this method we can easily go from

Gal(P)<SL2(F16).4 to Gal(P)<SL2(F16).2 and from there to Gal(P)<SL2(F16). So indeed

we have Gal(P)∼= SL2(F16).

3.4 Does P indeed define ρ f ?

So now that we have shown Gal(P) ∼= SL2(F16) we can wonder whether we can prove that

P comes from the modular form f we used to construct it with. Once an isomorphism

of Gal(P) with SL2(F16) is given, P defines a representation ρP : Gal(Q/Q)→ SL2(F16).
Above we mentioned that that Out(SL2(F16)) is isomorphic to Aut(F16) acting on matrix

entries. Hence, up to an automorphism of F16, the map sending σ ∈ Gal(Q/Q) to the char-

acteristic polynomial of ρP in F16[x] is determined by P and in fact the isomorphism class of

ρP is well-defined up to an automorphism of F16. More concretely, we have to show that the

splitting field of P, which we will denote by L, is the fixed field of ker(ρ f ).

A continuous representation ρ : Gal(Q/Q)→ GL2(F�) has a level, denoted by N(ρ), and a

weight, denoted by k(ρ). Instead of repeating the full definitions here, which are lengthy (at

least for the weight) and can be found in [70, Sections 1.2 and 2] (see also [27, Section 4] for

a discussion on the definition of the weight), we will just say that they are defined in terms of

the local representations ρ p : Gal(Qp/Qp)→GL2(F�) obtained from ρ . The level is defined

in terms of the representations ρ p with p 
= � and the weight is defined in terms of ρ�. The

following conjecture is due to Serre:

Conjecture 3.1 (Serre’s strong conjecture, [70, Conjecture 3.2.4]). Let � be a prime and
let ρ : Gal(Q/Q)→ GL2(F�) be a continuous odd irreducible Galois representation (a rep-
resentation is called odd if the image of a complex conjugation has determinant −1). Then
there exists a modular form f of level N(ρ) and weight k(ρ) which is a normalised eigenform
and a prime λ | � of Kf such that ρ and ρ f ,λ become isomorphic after a suitable embedding
of Fλ into F�.

In 2006, Khare and Wintenberger proved the following part of Serre’s strong conjecture:



3.4. DOES P INDEED DEFINE ρF? 75

Theorem 3.1 (Khare & Wintenberger, [39, Theorem 1.2]). Conjecture 3.1 holds in each of
the following cases:

• N(ρ) is odd and � > 2.

• � = 2 and k(ρ) = 2.

With Theorem 3.1 in mind it is sufficient to prove that a representation ρ = ρP attached to P
has level 137 and weight 2, which are the level and weight of the modular form f we used to

construct it with and that of all eigenforms in S2(Γ1(137)), the form f is one which gives rise

to ρP. Therefore, in the remainder of this section we will verify the following proposition.

Proposition 3.2. Let f be the cusp form from Section 3.2. Up to an automorphism of F16,
the representations ρP and ρ f ,(2) are isomorphic. In particular, the representation ρP has
Serre-level 137 and Serre-weight 2.

Let us argue that it is not clear how to prove the modularity of ρP using only results that

are older than Theorem 3.1. The older results deal with cases that are ’small’ in some sense.

For example, [55, Thms 1 & 2] deal with ρ that satisfy N(ρ) = 1 or k(ρ) = 1 and focus

on proving non-existence of Galois representations. Also, the group SL2(F16) is too big to

apply other results. It is a non-solvable group and in that case there are some old results

dealing with imρ ⊂ GL2(Fq) for q ∈ {22,32,5,7}, but not for q = 16 (see [37, Section 1.3]

for a survey). Neither is it clear how to do a computer search of whichever kind that will

eliminate the possibility that ρP is not isomorphic to ρ f ,(2), as the group SL2(F16) and the

degree 17 are simply too big.

3.4.1 Verification of the level
The level is the easiest of the two to verify. Here we have to do local computations in p-adic

fields with p 
= 2. According to the definition of N(ρ) in [70, Section 1.2] it suffices to verify

that ρ is unramified outside 2 and 137, tamely ramified at 137 and the local inertia subgroup

I at 137 leaves exactly one line of F2
16 point-wise fixed. That ρP is unramified outside 2 and

137 follows immediately from (3.2).

From (3.2) and the fact that 1378‖Disc(P) it follows that the monogenous order defined by

P is maximal at 137. Modulo 137, the polynomial P factors as

P = (x+14)(x2 +6x+101)2(x2 +88x+97)2(x2 +106x+112)2(x2 +133x+110)2

into irreducibles. Let v be any prime above 137 in L. From the above factorisation it follows

that the prime 137 decomposes in K as a product of 5 primes; one of them has its inertial

and ramification degree equal to 1 and the other four ones have their inertial and ramification

degrees equal to 2. Thus deg(v) is a power of 2, as L is obtained by successively adjoining

roots of P and in each step the relative inertial and ramification degrees of the prime below

v are both at most 2. In particular, Gal(Lv/Q137) is a subgroup of SL2(F16) whose order is

a power of 2. Now, {
(

1
0
∗
1

)
} is a Sylow 2-subgroup of SL2(F16), so Gal(Lv/Q137) is, up to
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conjugacy, a subgroup of {
(

1
0
∗
1

)
}. Hence I is also conjugate to a subgroup of {

(
1
0
∗
1

)
} and

it is actually nontrivial because 137 ramifies in L (so I is of order 2 since the tame inertia

group of any finite Galois extension of local fields is cyclic).

It is immediate that ρ is tamely ramified at 137 as no power of 2 is divisible by 137. Also,

it is clear that I leaves exactly one line of F2
16 point-wise fixed since {(∗0)} is the only point-

wise fixed line of any nontrivial element of {
(

1
0
∗
1

)
}. This establishes the verification of

N(ρ) = 137.

3.4.2 Verification of the weight
Because the weight is defined in terms of the induced local representation ρ2, we will try to

compute some relevant properties of the splitting field Lv of P over Q2, where v is any place

of L above 2. In p-adic fields one can only do calculations with a certain precision, but this

does not give any problems since practically all properties one needs to know can be verified

rigorously using a bounded precision calculation and the error bounds in the calculations can

be kept track of exactly.

The polynomial P does not define an order which is maximal at the prime 2. Instead we use

the polynomial

R = x17−11x16 +64x15−322x14 +916x13 +276x12−5380x11 +2748x10

+6904x9−23320x8 +131500x7−140744x6−16288x5−39752x4

−48840x3 +102352x2 +234466x−1518,

which is the minimal polynomial of

(
36863+22144α +123236α2 +154875α3−416913α4 +436074α5

+229905α6−1698406α7 +1857625α8−467748α9−2289954α10

+2838473α11−1565993α12 +605054α13−263133α14 +112104α15

−22586α16
)
/8844,

where α is a root of P. We can factor R over Q2 and see that it has one root in Q2 which

happens to be odd, and an Eisenstein factor of degree 16, which we will call E. This type

of decomposition can be read off from the Newton polygon of R and it also shows that the

order defined by R is indeed maximal at 2. From the oddness of the root and (3.2) we see

v2(Disc(E)) = 30. (3.4)

For the action of Gal(Q2/Q2) on P1(F16) the factorisation means that there is one fixed point

and one orbit of degree 16. If we adjoin a root β of E to Q2 and factor E over Q2(β ) then

we see that it has an irreducible factor of degree 15; in [14, Section 6] one can find methods

for factorisation and irreducibility testing that can be used to verify this. This means that
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[Lv : Q2] is at least 240.

A subgroup of SL2(F16) that fixes a point of P1(F16) has to be conjugate to a subgroup of

the group

H :=
{(∗

0

∗
∗
)}
⊂ SL2(F16),

which is the stabiliser subgroup of [
(∗

0

)
]. But we have #H = 240 so Gal(Lv/Q2) is isomorphic

to H and from now on we will identify these two groups with each other. We can filter H by

normal subgroups:

H ⊃ I ⊃ I2 ⊃ {e},
where I is the inertia subgroup and I2 is the wild ramification subgroup, which is the unique

Sylow 2-subgroup of I. We wish to determine the groups I and I2. Let k(v) be the residue

class field of Lv. The group H/I is isomorphic to Gal(k(v)/F2) and I/I2 is isomorphic to

a subgroup of k(v)∗. In particular [I : I2] | (2[H:I]−1) follows. The group H has the nice

property

[H,H] =
{(

1

0

∗
1

)}
∼= F16,

which is its unique Sylow 2-subgroup. As H/I is abelian, we see that [H,H] ⊂ I. We con-

clude that I2 = [H,H], since above we remarked that I2 is the unique Sylow 2-subgroup of I.

The restriction [I : I2] | (2[H:I]−1) leaves only one possibility for I, namely I = I2.

Let L′v be the subextension of Lv/Q2 fixed by I. Then L′v is the maximal unramified subex-

tension as well as the maximal tamely ramified subextension. It is in fact isomorphic to Q215,

the unique unramified extension of Q2 of degree 15 and the Eisenstein polynomial E from

above, being irreducible over any unramified extension of Q2, is a defining polynomial for

the extension Lv/Q215. According to [55, Theorem 3] we can relate the discriminant of Lv to

k(ρ) as follows:

v2(Disc(Lv)) =
{

240 · 15
8 = 450 if k(ρ) = 2

240 · 19
8 = 570 if k(ρ) 
= 2

It follows from (3.4) that v2(Disc(Lv/Q2)) = 30 ·15 = 450, so indeed k(ρ) = 2.

3.4.3 Verification of the form f

Now we know N(ρP) = 137 and k(ρP) = 2, Theorem 3.1 shows that there is an eigenform

g ∈ S2(Γ1(137)) giving rise to ρP. Using [12, Corollary 2.7] we see that if such a g exists,

then there actually exists such a g of trivial Nebentypus, i.e. g ∈ S2(Γ0(137)) (as SL2(F16)
is non-solvable ρP cannot be an induced Hecke character from Q(i)).

A modular symbols calculation shows that there exist two Galois orbits of newforms in

S2(Γ0(137)): the form f we used for our calculations and another form, g say. The prime

2 decomposes in Kg as a product λ 3μ , where λ has inertial degree 1 and μ has inertial

degree 4. So it could be that gmod μ gives rise to ρP. We will show now that f mod(2)
and gmod μ actually give the same representation. The completions of OKf and OKg at the
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primes (2) and μ respectively are both isomorphic to Z16, the unramified extension of Z2

of degree 4. After a choice of embeddings of OKf and OKg into Z16 we obtain two modu-

lar forms f ′ and g′ with coefficients in Z16 and we wish to show that a suitable choice of

embeddings exists such that they are congruent modulo 2. According to [81, Theorem 1], it

suffices to check there is a suitable choice of embeddings that gives an( f ′) ≡ an(g′)mod2

for all n≤ [SL2(Z) : Γ0(137)]/6 = 23 (in [81] this theorem is formulated for modular forms

with coefficients in the ring of integers of a number field, but the proof also works for p-adic

rings). Using a modular symbols calculation, this can be easily verified. The bound on the

indices up to which one has to check such a congruence is usually referred to as the Sturm
bound or Hecke bound.

3.5 MAGMA code used for computations
All the calculations were done using MAGMA (see [6]); for most of them the author used the

MEDICIS cluster (http://medicis.polytechnique.fr). The MAGMA code used for the

computation of the polynomials, together with a short instruction on how to use it, has been

included as an add-on to this paper and may be found at

http://www.lms.ac.uk/jcm/10/lms2007-024/appendix-a
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