
Explicit computations with modular Galois representations
Bosman, J.G.

Citation
Bosman, J. G. (2008, December 15). Explicit computations with modular Galois
representations. Retrieved from https://hdl.handle.net/1887/13364

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13364

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13364

Chapter 2

Computations with modular forms

In this chapter we will discuss several aspects of computations with modular forms. Let us

warn the reader on beforehand that we will focus on how to compute in practice, not on

theoretical aspects of computability. What in theory can be proven to be computable, can

often not be computed in practice and what in practice can be computed, can often not be

proven to be computable in theory.

2.1 Modular symbols
Modular symbols provide a way of doing symbolic calculations with modular forms, as well

as the homology of modular curves. In this section as well, our intention is to give the reader

an idea of what is going on rather than a complete and detailed account of the material. For

more details and further reading on the subject of modular symbols, the reader could take a

look at [51], [72] and [53]. A computational approach to the material can be found in [78]

and [79].

2.1.1 Definitions
Let A be the free abelian group on the symbols {α,β} with α,β ∈ P1(Q). Consider the

subgroup I ⊂ A generated by all elements of the forms

{α,β}+{β ,γ}+{γ,α}, {α,β}+{β ,α}, and {α,α}.

We define the group

M2 := (A/I)/torsion

as the quotient of A/I by its torsion subgroup. By a slight abuse of notation, we will denote

the class of {α,β} in this quotient also by {α,β}. We have an action GL+
2 (Q) on M2 by

γ{α,β} := {γα,γβ},

where γ acts on P1(Q) by fractional linear transformations.

43

44 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

For k ≥ 2, we consider also the abelian group Z[x,y]k−2 ⊂ Z[x,y] of homogeneous polyno-

mials of degree k− 2 and we let matrices in GL+
2 (Q) with integer coefficients act on it on

the left by (
a
c

b
d

)
P(x,y) := P(dx−by,−cx+ay).

We define

Mk := Z[x,y]k−2⊗M2,

and we equip Mk with the component-wise action of integral matrices in GL+
2 (Q) (that is

γ(P⊗α) = γ(P)⊗ γ(α)).

Definition 2.1. Let k≥ 2 be an integer. Let Γ⊂ SL2(Z) be a subgroup of finite index and let

I ⊂Mk be the subgroup generated by all elements of the form γx−x with γ ∈ Γ and x ∈Mk.

Then we define the space of modular symbols of weight k for Γ to be the quotient of Mk/I
by its torsion subgroup and we denote this space by Mk(Γ):

Mk(Γ) := (Mk/I)/torsion.

In the special case Γ = Γ1(N), which we will mostly be interested in, Mk(Γ) is called the

space of modular symbols of weight k and level N. The class of {α,β} in Mk(Γ) will be

denoted by {α,β}Γ or, if no confusion exists, by {α,β}.

The group Γ0(N) acts naturally on Mk(Γ1(N)) and hence induces an action of (Z/NZ)×
on Mk(Γ1(N)). We denote this action by the diamond symbol 〈d〉. The operator 〈d〉 on

Mk(Γ1(N)) is called a diamond operator. This leads to the notion of modular symbols with

character.

Definition 2.2. Let ε : (Z/NZ)× → C× be a Dirichlet character. Denote by Z[ε]⊂ C the

subring generated by all values of ε . Let I ⊂ Mk(Γ1(N))⊗Z[ε] be the Z[ε]-submodule

generated by all elements of the form 〈d〉x− ε(d)x with d ∈ (Z/NZ)× and x ∈Mk(Γ1(N)).
Then we define the space Mk(N,ε) of modular symbols of weight k, level N and character ε
as the Z[ε]-module

Mk(N,ε) :=
(
Mk(Γ1(N))⊗Z[ε]/I

)
/torsion.

We denote the elements of Mk(N,ε) by {α,β}N,ε or simply by {α,β}. If ε is trivial, then

we have Mk(N,ε)∼= Mk(Γ0(N)).

Let B2 be the free abelian group on the symbols {α} with α ∈ P1(Q) with action of SL2(Z)
by γ{α}= {γα} and define Bk := Z[x,y]k−2⊗B2 with component-wise SL2(Z)-action. El-

ements of Bk are called boundary modular symbols. For a subgroup Γ < SL2(Z) of finite

index, we define Bk(Γ) as

Bk(Γ) := (Bk/I)/torsion

where I is the subgroup of Bk generated by all elements γx− x with γ ∈ Γ and x ∈ Bk.

We define Bk(N,ε) to be the quotient of (Bk(Γ1(N))⊗Z[ε])/I by its torsion submodule,

2.1. MODULAR SYMBOLS 45

where I is the Z[ε]-submodule of Bk(Γ1(N))⊗Z[ε] generated by the elements γx− ε(γ)x
with γ ∈ Γ0(N).

We have boundary homomorphisms δ : Mk(Γ)→ Bk(Γ) and δ : Mk(N,ε)→ Bk(N,ε), de-

fined by

δ (P⊗{α,β}) = P⊗{β}−P⊗{α}.
The spaces of cuspidal modular symbols, denoted by Sk(Γ) and Sk(N,ε) respectively are

defined as the kernel of δ .

2.1.2 Properties

One can interpret the symbol {α,β} as a smooth path in H∗ from the cusp α to the cusp β ,

lying in H except for the endpoints α and β . It can be shown that this interpretation induces

an isomorphism

M2(Γ)∼= H1 (XΓ,cusps,Z) .

Here the homology is taken of the topological pair (X1(N),cusps). We also get an isomor-

phism

S2(Γ)∼= H1 (XΓ,Z) .

So we immediately see that there is a perfect pairing

(S2(Γ(N))⊗C)× (S2(Γ(N))⊕S2(Γ(N))
)→ C

defined by

({α,β}, f ⊕g) �→
∫ β

α

(
f

dq
q

+g
dq
q

)
.

More generally, there is a pairing

Mk(Γ1(N))× (Sk(Γ1(N))⊕Sk(Γ1(N))
)→ C (2.1)

defined by

(P⊗{α,β}, f ⊕g) �→ 2πi
∫ β

α
(f (z)P(z,1)dz−g(z)P(z,1)dz) ,

which becomes perfect if we restrict and tensor the left factor to Sk(Γ(N))⊗C. This pairing

induces a pairing

(Mk(N,ε))× (Sk(N,ε)⊕Sk(N,ε)
)→ C

which is perfect when the left factor is restricted and tensored to Sk(N,ε)⊗Z[ε] C. From now

on we will denote all these pairings with the notation

(x, f) �→ 〈x, f 〉.

46 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

The star involution

On the spaces Mk(Γ1(N)) and Mk(N,ε) we have an involution ι∗ defined by

ι∗(P(x,y)⊗{α,β}) :=−P(x,−y)⊗{−α,−β},
which is called the star involution. It preserves cuspidal subspaces. We define Sk(Γ1(N))+

and Sk(Γ1(N))− subspaces of Sk(Γ1(N)) where ι∗ acts as +1 and −1 respectively and we

use similar definitions for Sk(N,ε)±. It can be shown that the pairing (2.1) induces perfect

pairings

(Sk(Γ1(N))+⊗C)×Sk(Γ1(N))→ C

and

(Sk(Γ1(N))−⊗C)×Sk(Γ1(N))→ C

and similarly for the spaces with character. This allows us to work sometimes in modular

symbols spaces of half the dimension of the full cuspidal space.

2.1.3 Hecke operators
Hecke operators on modular symbols are defined in a similar way as on modular forms

(see Subsection 1.1.4). Let k ≥ 2 and N ≥ 1 be given. Then for γ ∈ GL+
2 (Q)∩M2(Z) we

define an operator Tγ on Mk(Γ1(N)) by letting γ1, . . . ,γr be double coset representatives for

Γ1(N)\Γ1(N)γΓ1(N) and putting

Tγ(x) :=
r

∑
i=1

γix for x ∈Mk(Γ1(N)). (2.2)

It follows from [72, Theorem 4.3] that this operator is well-defined. For a prime number

p we put Tp = Tγ for γ =
(

1
0

0
p

)
and for positive integers n we define Tn by means of the

relations (1.13). The operators Tn are called Hecke operators.

The Hecke operators preserve the subspace Sk(Γ1(N)) and induce an action on the spaces

Mk(N,ε) and Sk(N,ε). Furthermore, from [72, Theorem 4.3] one can conclude that the

diamond and Hecke operators are self-adjoint with respect to the pairings defined in the

previous subsection:

〈T x, f 〉= 〈x,T f 〉. (2.3)

for any modular symbol x, cusp form f and diamond or Hecke operator T for which this re-

lation is well-defined. Furthermore, the Hecke operators commute with the star involution ι∗.

In conclusion, we see how we can write cusp forms spaces as the dual of modular symbols

spaces. The computation of Hecke operators on these modular symbols spaces would enable

us to compute q-expansions of cusp forms: q-coefficients of newforms can be computed once

we can compute the eigenvalues of Hecke operators. But because of (2.3) this reduces to the

computation of the eigenvalues of Hecke operators on modular symbols spaces. In com-

putations one often works with the spaces Sk(N,ε)+⊗Z[ε] Q(ε) because these have smaller

2.1. MODULAR SYMBOLS 47

dimension than Sk(Γ1(N))⊗Q. Since we also know how all cusp forms arise from newforms

of possibly lower level (see Theorem 1.5), this allows us to compute the q-expansions of a

basis for the spaces Sk(Γ1(N)) and Sk(N,ε). For precise details on how these computations

work, please read [79, Chapter 9].

2.1.4 Manin symbols
If we want to do symbolic calculations with modular symbols, then the above definitions are

not quite applicable since the groups of which we take quotients are not finitely generated.

The Manin symbols enable us to give finite presentations for the spaces of modular symbols.

First we need some definitions and lemmas. For a positive integer N we define a set

EN :=
{
(c,d) ∈ (Z/NZ)2 : gcd(N,c,d) = 1

}
.

Define the following equivalence relation on EN :

(c,d)∼ (c′,d′) def⇐⇒ there is an a ∈ (Z/NZ)× such that (c,d) = (ac′,ad′)

and the denote the quotient by PN :

PN := EN/∼ . (2.4)

The following lemma is easily verified:

Lemma 2.1. Let N be a positive integer. Then the maps

Γ1(N)\SL2(Z)→ EN :

(
a
c

b
d

)
�→ (c,d) and

Γ0(N)\SL2(Z)→ PN :

(
a
c

b
d

)
�→ (c,d)

are well-defined and bijective.

This lemma enables us to write down an explicit set of coset representatives for the orbit

spaces Γ1(N)\SL2(Z) and Γ0(N)\SL2(Z). The following lemma provides us a first step in

reducing the set of generators for the spaces of modular symbols:

Lemma 2.2. Each space M2(Γ1(N)) or M2(N,ε) is generated by the symbols {a/c,b/d}
with a,b,c,d ∈ Z and ad−bc = 1, where in this notation a fraction with denominator equal
to zero denotes the cusp at infinity.

Calculating the continued fraction expansion at each cusp in Q gives us immediately an algo-

rithm to write a given element of M2 in terms of the generators in the lemma. Furthermore,

note that {
a
c
,

b
d

}
=
(

a
c

b
d

)
{∞,0},

48 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

so that we can write each element of M2 as a sum of γ{∞,0} with γ ∈ SL2(Z).

Let’s consider the space M2(Γ1(N)). As we saw, it is generated by the elements γ{∞,0}
where γ runs through SL2(Z). Now, two matrices γ define the same element this way if

they are in the same coset of the quotient Γ1(N)\SL2(Z). According to Lemma 2.1 such a

coset can be uniquely identified with a pair (c,d) ∈ (Z/NZ)2. The corresponding element in

M2(Γ1(N)) is also denoted by (c,d). This element (c,d) is called a Manin symbol. Clearly,

there are only a finite number of Manin symbols so we now know a finite set of generators

for M2(Γ1(N)).

For arbitrary k we define the Manin symbols in Mk(Γ1(N)) as the symbols of the form

P⊗ (c,d) where P is a monomial in Z[x,y]k−2 and (c,d) a Manin symbol in M2(Γ1(N)). In

this case as well there are finitely many Manin symbols and they generate the whole space.

In the modular symbols spaces with character ε , we have γ(α) = ε(α) for γ ∈ Γ0(N).
Now for each element of PN we choose according to Lemma 2.1 a corresponding element

γ ∈ SL2(Z) and hence an element in M2(N,ε), which we call again a Manin symbol. Note

that this Manin symbol depends on the choice of γ , but because of the relation γ(x) = ε(x)
these chosen Manin symbols always form a finite set of generators for M2(N,ε) as a Z[ε]-
module. Likewise, Mk(N,ε) is generated by elements P⊗ (c,d) with P a monomial in

Z[x,y]k−2 and (c,d) a Manin symbol in M2(N,ε).

If we want to do symbolic calculations, then besides generators we also need to know the

relations between the Manin symbols. For Mk(Γ1(N)) one can do the following.

Proposition 2.1. Let N be a positive integer and let A be the free abelian group on the Manin
symbols of the space Mk(Γ1(N)). Let I ⊂ A be the subgroup generated by the following
elements:

P(x,y)⊗ (c,d) + P(−y,x)⊗ (−d,−c),
P(x,y)⊗ (c,d) + P(−y,x− y)⊗ (−d,−c−d) + P(−x+ y,−x)⊗ (−c−d,−c),
P(x,y)⊗ (c,d) − P(−x,−y)⊗ (c,d),

where P(x,y)⊗(c,d) runs through all Manin symbols. Then Mk(Γ1(N)) is naturally isomor-
phic to the quotient of A/I by its torsion subgroup.

For the modular symbols spaces Mk(N,ε) we have a similar proposition.

Proposition 2.2. Let N and ε be given. Let A be the free Z[ε]-module on the Manin symbols
of Mk(N,ε). Let I ⊂ A be the submodule generated by the elements given in Proposition 2.1
plus for each n ∈ (Z/NZ)× the elements

P(x,y)⊗ (nc,nd) − ε(n)P(x,y)⊗ (c,d).

Then Mk(N,ε) is naturally isomorphic to the quotient of A/I by its torsion submodule.

2.2. BASIC NUMERICAL EVALUATIONS 49

These presentations enable us to perform symbolic calculations very efficiently.

A remark on the computation of Hecke operators is in order here. The formula (2.2) does not

express the Hecke action on Manin symbols in terms of Manin symbols. Instead, one uses

other formulas to compute Hecke operators. The following theorem, due to Merel, allows us

to express Hecke operators more directly in terms of Manin symbols:

Theorem 2.1 (see [53, Theorem 2]). On the spaces Mk(Γ1(N)) and Mk(N,ε) the Hecke
operator Tn satisfies the following relation:

Tn(P(x,y)⊗ (u,v)) = ∑′
a>b≥0
d>c≥0

ad−bc=n

P(ax+by,cx+dy)⊗ (au+ cv,bu+dv),

where the prime in the sum notation means that terms with gcd(N,au+cv,bu+dv) �= 1 have
to be omitted.

One would also like to express Sk(Γ1(N)) and Sk(N,ε) in terms of the Manin symbols. The

following proposition will help us.

Proposition 2.3 (See [53, Proposition 4]). Let integers N ≥ 1 and k ≥ 2 be given. Define an
equivalence relation on the vector space Q[Γ1(N)\Q2] by

[λx]∼ sign(λ)k[x] for λ ∈Q× and x ∈Q2.

Then the map
μ : Bk(Γ1(N))→Q[Γ1(N)\Q2]/∼

given by

μ : P⊗
{a

b

}
�→ P(a,b)

[(a
b

)]
(a,b coprime integers)

is well-defined and injective.

The vector space Q[Γ1(N)\Q2]/∼ is finite dimensional. The above proposition shows that

Sk(Γ1(N)) is the kernel of μδ , which is a map that can be computed in terms of Manin

symbols. The computation of Sk(N,ε) can be done in a similar way, see [79, Section 8.4].

2.2 Basic numerical evaluations

In this section we will describe how to perform basic numerical evaluations, such as the

evaluation of a cusp form at a point in H and the evaluation of an integral of a cusp form

between to points in H∗. Again, the paradigm will be performing actual computations.

50 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

2.2.1 Period integrals: the direct method
In this subsection we will stick to the case k = 2, referring to [79, Chapter 10] for a more

general approach (see also [18, Section 2.10] for a treatment of Γ0(N)). So fix a positive

integer N and an f ∈ S2(Γ1(N)). Our goal is to efficiently evaluate 〈x, f 〉 for x ∈ S2(Γ1(N)).

Let us indicate why it suffices to look at newforms f . Because of Theorem 1.5, it suffices

to look at f = αd(f ′) with f ′ ∈ Sk(Γ1(M)) a newform for some M | N and d | N/M. By

[72, Theorem 4.3] we have

〈x, f 〉= 〈x,αd(f ′)〉= d1−k
〈(

d
0

0

1

)
x, f ′

〉

so that computing period integrals for f reduces to computing period integrals of the new-

form f ′.

Let us now make the important remark that for each z ∈ H we can numerically compute∫ z
∞ f dq/q by formally integrating the q-expansion of f :

∫ z

∞
f

dq
q

= ∑
n≥1

an(f)
n

qn where q = exp(2πiz). (2.5)

The radius of convergence of this series is 1 and the coefficients are small (that is, estimated

by Õ(n(k−3)/2)). So if ℑz� 0 then we have |q| � 1 and the series converges rapidly. To be

more concrete, for ℑz > M we have |qn|< exp(−2πMn) so if we want to compute
∫ z

∞ f dq/q
to a precision of p decimals, we need to compute about

p log10
2πM ≈ 0.37 p

M terms of the series.

To compute a period integral we remark that for any γ ∈ Γ1(N) and any z ∈ H∗ any continu-

ous, piecewise smooth path δ in H∗ from z to γz, the homology class of δ pushed forward to

X1(N)(C) depends only on γ [51, Proposition 1.4]. Let us denote this homology class by

{∞,γ∞} ∈ S2(Γ1(N))∼= H1(X1(N)(C),Z)

and remark that all elements of H1(X1(N)(C),Z) can be written in this way. As we also have

S2(Γ1(N))∼= H0(X1(N)C,Ω1), this means we can calculate
∫
{∞,γ∞} f dq

q by choosing a smart

path in H∗: ∫ γ∞

∞
f

dq
q

=
∫ γz

z
f

dq
q

=
∫ γz

∞
f

dq
q
−
∫ z

∞
f

dq
q

.

If we write γ =
(

a
c

b
d

)
then a good choice for z is

z =−d
c

+
i
|c| .

In this case we have ℑz = ℑγz = 1/|c| so in view of (2.5), to compute the integral to a preci-

sion of p decimals we need about
pc log10

2π ≈ 0.37pc terms of the series.

2.2. BASIC NUMERICAL EVALUATIONS 51

Another thing we can use is the Hecke compatibility from (2.3). Put

Wf :=
(
S2(Γ1(N))/I f S2(Γ1(N))

)⊗Q,

where I f is the Hecke ideal belonging to f . The space Wf has the structure of a vector space

over T/I f ∼= Kf of dimension 2. This means that computing any period integral of f , we

only need to precompute 2 period integrals. So one tries to find a Kf -basis of Wf consisting

of elements {∞,γ∞} where γ ∈ Γ1(N) has a very small c-entry. In practice it turns out that

we do not need to search very far.

2.2.2 Period integrals: the twisted method
In this subsection we have the same set-up as in the previous subsection. There is another

way of computing period integrals for f ∈ S2(Γ1(N)) which sometimes beats the method

described in the previous subsection. The method described in this subsection is similar to

[18, Section 2.11] and makes use of winding elements and twists.

The winding element of M2(Γ1(N)) is simply defined as the element {∞,0} (some authors

define it as {0,∞} but this is only a matter of sign convention). Integration over this element

is easy to perform because we can break up the path in a very neat way:

∫ 0

∞
f

dq
q

=
∫ i/

√
N

∞
f

dq
q

+
∫ 0

i/
√

N
f

dq
q

=
∫ i/

√
N

∞
f

dq
q

+
∫ ∞

i/
√

N
WN(f)

dq
q

=
∫ i/

√
N

∞
(f −WN(f))

dq
q

.

Now, choose an odd prime � � N and a primitive Dirichlet character χ : Z→ C of conductor

�. If f ∈ Sk(Γ1(N)) is a newform then f ⊗χ is a newform in Sk(Γ1(N�2)), where

f ⊗χ = ∑
n≥1

an(f)χ(n)qn.

The following formula to express χ as a linear combination of additive characters is well-

known:

χ(n) =
g(χ)

�

�−1

∑
ν=1

χ(−ν)exp

(
2πiνn

�

)
,

where g(χ) is the Gauss sum of χ (see (1.7)). It follows now immediately that

f ⊗χ =
g(χ)

�

�−1

∑
ν=1

χ(−ν) f
(

z+
ν
�

)
=

g(χ)
�

�−1

∑
ν=1

χ(−ν) f
∣∣∣∣
(

�

0

ν
�

)
. (2.6)

For f ∈ S2(Γ1(N)) we now get the following useful formula for free:

〈{∞,0}, f ⊗χ〉=
g(χ)

�

〈
l−1

∑
ν=0

χ(−ν)
{

∞,
ν
�

}
, f

〉
. (2.7)

52 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

The element ∑l−1
ν=0 χ(−ν)

{
∞, ν

�

}
of Mk(Γ1(N))⊗Z[χ] or of some other modular symbols

space where it is well-defined is called a twisted winding element or, more precisely the

χ-twisted winding element. Because of formula (2.7), we can calculate the pairings of new-

forms in S2(Γ1(N)) with twisted winding elements quite efficiently as well.

We can describe the action of the Atkin-Lehner operator WN�2 on f ⊗χ:

WN�2(f ⊗χ) =
g(χ)
g(χ)

ε(�)χ(−N)λN(f) f̃ ⊗χ,

where f̃ = ∑n≥1 an(f)qn (see for example [3, Section 3]). So in particular we have the

following integral formula for a newform f ∈ S2(N,ε):

∫ 0

∞
f ⊗χ

dq
q

=
∫ i/(�

√
N)

∞
(f ⊗χ−WN�2(f ⊗χ))

dq
q

=
∫ i/(�

√
N)

∞

(
f ⊗χ− g(χ)

g(χ)
χ(−N)ε(�)λN(f) f̃ ⊗χ

)
dq
q

.

(2.8)

So to calculate 〈
l−1

∑
ν=0

χ(−ν)
{

∞,
ν
�

}
, f

〉

we need to evaluate the series (2.5) at z with ℑz = 1/(�
√

N) which means that for a precision

of p decimals we need about
p�
√

N log10
2π ≈ 0.37p�

√
N terms of the series. In the spirit of the

previous subsection, we try several � and χ , as well as the untwisted winding element {∞,0},
until we can make a Kf -basis for Wf . It follows from [71, Theorems 1 and 3] that we can

always find such a basis. Also here, it turns out that in practice we do not need to search very

far.

2.2.3 Computation of q-expansions at various cusps

The upper half plane H is covered by neighbourhoods of the cusps. If we want to evaluate

a cusp form f ∈ Sk(Γ1(N)) or an integral of a cusp form at a point in such a neighbourhood

then it is useful to be able to calculate the q-expansion of f at the corresponding cusp. We

shall mean by this the following: A cusp a/c can be written as γ∞ with γ =
(

a
c

b
d

)
∈ SL2(Z).

Then a q-expansion of f at a/c is simply the q-expansion of f |kγ . This notation is abusive,

since it depends on the choice of γ . The q-expansion will be an element of the power series

ring C[[q1/w]] where w is the width of the cusp a/c and q1/w = exp(2πiz/w).

If the level N is square-free this can be done symbolically. However for general N it is

not known how to do this but we shall give some attempts that do at least give numerical

computations of q-expansions. We use that we can compute the q-expansions of newforms

in Sk(Γ1(N)) at ∞ using modular symbols methods.

2.2. BASIC NUMERICAL EVALUATIONS 53

The case of square-free N

The method we present here is due to Asai [2]. Let N be square-free and let f ∈ Sk(Γ1(N))
be a newform of character ε . The main reason for being able to compute q-expansions at

all cusps in this case is because the group generated by Γ0(N) and all wQ (see (1.18)) acts

transitively on the cusps.

So let γ =
(

a
c

b
d

)
∈ SL2(Z) be given. Put

c′ =
c

gcd(N,c)
, and Q =

N
gcd(N,c)

.

Let r ∈ Z be such that d ≡ cr mod Q and define b′,d′ ∈ Z by

Qd′ = d− cr and b′ = b−ar.

Then we have (
a
c

b
d

)
=
(

Qa
Nc′

b′

Qd′

)(
Q−1

0

rQ−1

1

)
.

We know how
(

Qa
Nc′

b′
Qd′
)

acts on q-expansions by Theorems 1.6 and 1.8. The action of(
Q−1

0
rQ−1

1

)
on q-expansions is simply

∑
n≥1

anqn �→ Q1−k ∑
n≥1

anζ rn
Q qn/Q with ζQ = exp(2πi

Q).

This shows how the q-expansion of f |kγ can be derived from the q-expansion of f .

Let us now explain how to do it for oldforms as well. By induction and Theorem 1.5 we may

suppose f = αp(f ′) with p | N prime, f ′ ∈ Sk(Γ1(N/p)) and that we know how to compute

the q-expansions of f ′ at all the cusps. Let γ =
(

a
c

b
d

)
be given. Then we have

f |kγ = p1−k f ′
∣∣
k

(
p
0

0

1

)
γ = p1−k f ′

∣∣
k

(
pa
c

pb
d

)
.

We will now distinguish on two cases: p | c and p � c. If p | c then we have a decomposition(
pa
c

pb
d

)
=
(

a
c/p

pb
d

)(
p
0

0

1

)

and we know how both matrices on the right hand side act on q-expansions. If p � c, choose

b′,d′ with pad′ −b′c = 1. Then we have(
pa
c

pb
d

)
=
(

pa
c

b′

d′

)
β

with β ∈ GL+
2 (Q) upper triangular, so also in this case we know how both matrices on the

right hand side act on q-expansions.

54 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

The general case

In a discussion with Peter Bruin, the author figured out an attempt to drop the assumption

that N be square-free and compute q-expansions of cusp forms numerically in this case. The

idea is to generalise the WQ operators from Subsection 1.1.7.

So let N be given. Let Q be a divisor of N and put R = gcd(Q,N/Q). Let wQ be any matrix

of the form

wQ =
(

RQa
RNc

b
Qd

)
with a,b,c,d ∈ Z

such that detwQ = QR2 (the conditions guarantee us that such matrices do exist). One can

then verify

Γ1(NR2) < w−1
Q Γ1(N)wQ,

so that slashing with wQ defines a linear map

Sk(Γ1(N))⊕Sk(Γ1(N))
|wQ−→ Sk(Γ1(NR2))⊕Sk(Γ1(NR2))

which is injective since the slash operator defines a group action on the space of all functions

H→ C.

On the other hand, wQ defines an operation on Mk which can be shown to induce a linear

map

wQ : Sk(Γ1(NR2))⊗Q→ Sk(Γ1(N))⊗Q

that satisfies the following compatibility with respect to the integration pairing between mod-

ular symbols and cusp forms (see [72, Theorem 4.3]):

〈wQx, f 〉= 〈x, f |kwQ〉. (2.9)

Let (x1, . . . ,xr) and (y1, . . . ,ys) be bases of Sk(Γ1(N))⊗Q and Sk(Γ1(NR2))⊗Q respec-

tively. Then one can write down a matrix A in terms of these basis that describes the map

wQ since we can express any symbol P⊗{α,β} in terms of Manin symbols. The matrix At

then defines the action of wQ in terms of the bases of the cusp forms spaces that are dual to

(x1, . . .xr) and (y1, . . . ,ys).

Now, let (f1, . . . , fr) be a basis of Sk(Γ1(N))⊕ Sk(Γ1(N)) and let (g1, . . . ,gs) be a basis of

Sk(Γ1(NR2))⊕Sk(Γ1(NR2)) (for instance we could take bases consisting of eigenforms for

the Hecke operators away from N). Define matrices

B :=
(〈xi, f j〉

)
i, j and C :=

(〈yi,g j〉
)

i, j .

These can be computed numerically as the entries are period integrals. Then the matrix

C−1AtB describes the map ·|kwQ in terms of the bases (f1, . . . , fr) and (g1, . . . ,gs). Hence if

we can invert C efficiently, then we can numerically compute the q-expansion of f |kwQ with

f ∈ Sk(Γ1(N)).

2.2. BASIC NUMERICAL EVALUATIONS 55

Let now a matrix γ =
(

a
c

b
d

)
∈ SL2(Z) be given. Put

c′ := gcd(N,c) and Q := N/c′.

Because of gcd(c/c′,Q) = 1 we can find α ∈ (Z/QZ)× with αc/c′ ≡ 1modQ. If we lift

α to (Z/NZ)× then we have αc ≡ c′modN. Let now d′ ∈ Z be a lift of αd. We have

gcd(c′,d′) = gcd(c′,d′,N) = 1 so we can find a′,b′ ∈Z that satisfy a′d′−b′c′= 1. According

to Lemma 2.1, we have

γ = γ0

(
a′

c′
b′

d′

)
with γ0 ∈ Γ0(N).

Put R = gcd(c′,Q). Then we have gcd(NR,Q2Ra′) = QRgcd(c′,Qa′) = QR2 so there exist

b′′,d′′ ∈ Z with

wQ :=
(

QRa′

NR
b′′

Qd′′

)

having determinant QR2. One can now verify that we have
(

a′
c′

b′
d′
)

= wQβ with β ∈GL+
2 (Q)

upper triangular. So in the decomposition

γ = γ0wQβ

we can compute the slash action of all three matrices on the right hand side in terms of

q-expansions, hence also of γ .

In conclusion we see that in this method we have to increase the level and go to Sk(Γ1(NR2))
for the square divisors R2 of N to compute q-expansions of cusp forms in Sk(Γ1(N)) at

arbitrary cusps.

2.2.4 Numerical evaluation of cusp forms
For f ∈ Sk(Γ1(N)) and a point P∈H we wish to compute f (P) to a high numerical precision.

Before we do this let us say some words on how P should be represented. Looking at Figure

1.1 on page 2 we convince ourselves that representing P as x+ iy with x,y ∈ R is not a good

idea, as this would be numerically very unstable when P is close to the real line. Instead, we

represent P as

P = γz with γ ∈ SL2(Z), z = x+ iy, x� ∞ and y� 0. (2.10)

For instance, one could demand z ∈F , although this is not strictly necessary.

So let P = γz be given, with γ =
(

a
c

b
d

)
∈ SL2(Z) and ℑz > M, say. Let w = w(γ) be the

width of the cusp γ∞ with respect to Γ1(N). To compute f (P) we make use of a q-expansion

of f at γ∞:

f (P) = (cz+d)k(f |kγ)(z) = (cz+d)k ∑
n≥1

anqn/w where q1/w = exp(2πiz/w).

56 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

The radius of convergence is 1 and the coefficients are small (estimated by Õ(n(k−1)/2)). So

to compute f (P) to a precision of p decimals we need about
pw log10

2πM ≈ 0.37 pw
M terms of the

q-expansion of f |kγ .

Of course, we have some freedom in choosing γ and z to write down P. We want to find γ
such that P = γz with ℑz/w(γ) as large as possible. In general, one can always write P = γz
with z ∈F so one obtains

max
γ∈SL2(Z)

ℑγ−1P
w(γ)

≥
√

3

2N
. (2.11)

We see that in order to calculate f (P) to a precision of p decimals it suffices to use about
pN log10√

3π
≈ 0.42pN terms of the q-expansions at each cusp. Although for most points P there

is a better way of writing it as γz in this respect than taking z ∈F , it seems hard to improve

the bound
√

3
2N in general.

We wish to adjust the representation sometimes from P = γz to P = γ ′z′ where γ ′ ∈ SL2(Z)
is another matrix, for instance because during our calculations ℜz has become too large or

ℑz has become too small (but still within reasonable bounds). We can make ℜz smaller by

putting z′ := z−n for appropriate n ∈ Z and putting γ ′ := γ
(

1
0

n
1

)
. Making ℑz larger is very

easy as well. We want to find γ ′′ =
(

a
c

b
d

)
∈ SL2(Z) such that

ℑγ ′′z =
ℑz

|cz+d|2
is large. But this simply means that we have to find a small vector cz+d in the lattice Zz+Z,

something which can be done easily if ℜz� ∞ and ℑz� 0. If c and d are not coprime we

can divide both by their greatest common divisor to obtain a smaller vector. The matrix γ ′′
can now be completed and we put z′ := γ ′′z and γ ′ := (γ ′′)−1.

2.2.5 Numerical evaluation of integrals of cusp forms
In this subsection we will describe for f ∈ S2(Γ1(N)) and P ∈H how to evaluate the integral∫ P

∞ f dq/q. As in the previous subsection, we assume P to be given by means of (2.10). The

path of integration will be broken into two parts: first we go from ∞ to a cusp α near P and

then we go from α to P.

Integrals over paths between cusps

The pairing (2.1) gives a map

Θ : M2(Γ1(N))→ HomC (S2(Γ1(N)),C) ,

which is injective when restricted to S2(Γ1(N)). The image of Θ is a lattice of full rank,

hence the induced map

S2(Γ1(N))⊗R→ HomC (S2(Γ1(N)),C)

2.2. BASIC NUMERICAL EVALUATIONS 57

is an isomorphism. In particular we obtain a map

Φ : M2(Γ1(N))→ S2(Γ1(N))⊗R,

which is an interesting map to compute if we want to calculate integrals of cusp forms along

paths between cusps. The map Φ is called a period mapping.

The Manin-Drinfel’d theorem (see [51, Corollary 3.6] and [26, Theorem 1]) tells us that

im(Φ) ⊂ S2(Γ1(N))⊗Q. This is equivalent to saying that each degree 0 divisor of X1(N)
which is supported on cusps is a torsion point of J1(N). The proof given in [26] already

indicates how to compute Φ with symbolic methods: let p be a prime that is 1 mod N. Then

the operator p + 1− Tp on M2(Γ1(N)) has its image in S2(Γ1(N)). The same operator is

invertible on S2(Γ1(N))⊗Q. So we simply have

Φ = (p+1−Tp)−1(p+1−Tp),

where the rightmost p + 1−Tp denotes the map M2(Γ1(N))→ S2(Γ1(N)) and the leftmost

p+1−Tp denotes the invertible operator on S2(Γ1(N))⊗Q. For other methods to compute

Φ, see [79, Section 10.6]. So we can express the integral of f dq/q between any two cusps α
and β in terms of period integrals, which we have already seen how to compute:

∫ β

α
f

dq
q

= 〈Φ({α,β}), f 〉.

Integrals over general paths

We can imitate the previous subsection pretty much. Write P ∈H as P = γz with γ ∈ SL2(Z)
such that ℑz/w(γ∞) is as large as possible. Then we have

∫ P

∞
f

dq
q

=
∫ γ∞

∞
f

dq
q

+
∫ γz

γ∞
f

dq
q

=
∫ γ∞

∞
f

dq
q

+
∫ z

∞
(f |2γ)

dq
q

. (2.12)

The integral
∫ γ∞

∞ f dq
q is over a path between two cusps so we can compute it by the above

discussion and the integral
∫ z

∞(f |2γ)dq
q can be computed using the q-expansion of f |2γ:

∫ z

∞
(f |2γ)

dq
q

= w ∑
n≥1

an

n
qn/w,

where w = w(γ), q1/w = exp(2πiz/w) and f |2γ = ∑anqn/w. Because of (2.11), computing

about
pN log10√

3π
≈ 0.42pN terms of the series should suffice to compute

∫ P
∞ f dq

q for any P ∈H.

Note also that we can use formula (2.12) to compute the pseudo-eigenvalue λQ(f) by plug-

ging in γ = wQ and a z for which both imz and imwQz are high and for which
∫ z

∞Wq(f)dq/q
is not too close to zero.

58 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

2.3 Computation of modular Galois representations

In this section, we will give a short overview of the project [28] to which the research of this

thesis belongs. Here we omit many details which can be found in [28]. However, we will

not give precise references to sections or theorems, since at the time of writing the present

section, the paper [28] is undergoing a huge revision. In the first few subsections we will

explain the theoretical ideas and in Subsection 2.3.3 we will discuss how to perform actual

computations.

A motivational question is: how fast can the q-coefficients of a modular form be computed?

Our main example here will be the Ramanujan tau function, but we remark that most tech-

niques that we discuss here can be generalised.

From the recurrence properties on page 6 it follows that we can compute τ(n) if we can

factor n and compute τ(p) for all prime factors p | n. Also, in [4] it was shown that we can

factor numbers n = pq where p and q are distinct unknown primes if we can compute τ(n)
and τ(n2), provided at least one of these numbers is non-zero. The idea is as follows: put

α = τ(p)/p11 and β = τ(q)/q11. We can compute α and β because their product is τ(n)/n11

and their sum is (τ(n)2−τ(n2)−n11)/n11. The primes p and q can now be obtained by look-

ing at the denominators of α and β .

Because of the above discussion, it seems reasonable to focus on computing τ(p) for p prime.

A strategy for this is computing τ(p) mod � for many small primes �. If the product of all

these primes � exceeds 4p11/2 then by the bound |τ(p)| ≤ 2p11/2 we know exactly what τ(p)
is. The main theorem of [28] is the following:

Theorem 2.2. There exists a probabilistic algorithm that on input two prime numbers p and
� with p �= � can compute τ(p) mod � in expected time polynomial in log p and �.

Corollary 2.1. There exists a probabilistic algorithm that on input a prime number p can
compute τ(p) in expected time polynomial in log p.

2.3.1 Computing representations for τ(p) mod �

We saw in Subsection 1.1.2 that for some values of �, called exceptional primes, there exist

simple formulas for τ(p) mod �. So assume from now that � is non-exceptional. We can

work with the residual representations ρ� := ρΔ,�, see Subsections 1.3.4 and 1.3.5. For p �= �
we have

τ(p)≡ tr(ρ(Frobp)) mod �.

If we put K� := Q
ker(ρ�) then ρ� factors through Gal(K�/Q). Our main task is to give a poly-

nomial P� whose splitting field is K�. Since imρ� acts faithfully and transitively on F2
� −{0}

(remember that � is non-exceptional), we will demand that P� has degree �2−1 and that the

number field K′� defined by P� is the subfield of K� that is fixed by the stabiliser of a point in

2.3. COMPUTATION OF MODULAR GALOIS REPRESENTATIONS 59

F2
� −{0}.

We can find ρ� inside the Jacobian of X1(�). If T ⊂ End(J1(�)) is the algebra generated by

the diamond and Hecke operators acting on J1(�) then we have a homomorphism

θ = θΔ,� : T→ F�, θ : 〈d〉 �→ d10 mod �, θ : Tn �→ τ(n) mod �.

If I ⊂ T denotes the kernel of θ , then ρ� can be defined as Gal(Q/Q) acting on V� :=
J1(�)(Q)[I], which is a 2-dimensional F�-linear subspace of J1(�)(Q)[�]. One can express

this space in terms of modular symbols since we have isomorphisms

J1(�)(C)[�]∼= H1(X1(�)(C),F�)∼= S2(Γ1(�))⊗F�

and the action of T on S2(Γ1(�)) can be computed.

Let g be the genus of X1(�). If we choose an effective divisor D of degree g on X1(�) then

we have a morphism

φ : X1(�)g → J1(�), (Q1, . . . ,Qg) �→
g

∑
i=1

Qi−D

which induces a birational morphism

φ ′ : Symg X1(�)→ J1(�). (2.13)

Suppose that D is such that φ is étale over V�. Take a function f ∈ Q(X1(�)) such that for

any (Q1, . . . ,Qg) ∈ φ−1(V�−{0}) it has no poles at the Qi and such that the induced map

f∗ : Symg(X1(�))→ Symg(P1
Q) is injective on φ ′−1(V�−{0}).

The field K′� is the field of definition of a point P ∈ V�−{0}. Put φ ′−1(P) = (Q1, . . . ,Qg).
Then certainly K′� contains ei(f (Q1), . . . , f (Qg)) for all i, where ei is the i-th elementary

symmetric polynomial in g variables. But in fact we have an equality

K′� = Q
(
e1(f (Q1), . . . , f (Qg)) , . . . , eg(f (Q1), . . . , f (Qg))

)
.

This can be seen as follows: the field on the right hand side, say L, is the field of definition

of f∗(φ ′−1(P)). The group Gal(Q/L) acts on Symg P1(Q) and fixes f∗(φ ′−1(P)). But f∗ is

injective on φ ′−1(V�−{0}) so Gal(Q/L) fixes P as well. So L contains, hence is equal to, K′�.

In practice, it often suffices to take D = g · [0] (remember from Subsection 1.2.3 that the cusp

0 is defined over Q) and any non-constant f . The field K′� will almost always be equal to

Q(f (Q1)+ · · ·+ f (Qg)). If we assume that all of this is correct, then P� will be equal to

P� = ∏
P∈V�−{0}

(
x−∑

i
f (Qi)

)
where (Q1, . . . ,Qg) = φ ′−1(P). (2.14)

In theory however, to show that a good divisor D and a good function f can be found, one

has to work with X1(5�)Q(ζ�) instead of X1(�). In this thesis, we will ignore these theoretical

60 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

complications. The main reasons for this are that we want to compute actual polynomials

and we want to explain ideas rather than technical details.

To compute the polynomial P� we will use numerical methods. The idea is to approximate

the coefficients of P�. This could be done in several ways, for instance approximating them

p-adically for one or more primes p or approximating them in R. In [17] and [40] one

can find methods to compute with modular curves over Fp which can be used to compute

P� mod p for primes p. Note that this is a special case of p-adically approximating P�. In

Subsection 2.3.3 we will describe how to approximate Pλ over the reals, in a way that is

practically convenient.

Heights

If the used precision for the approximation of P� is high enough, we can compute the exact

coefficients in Q. To know how high this precision should actually be, we use height bounds.

Definition 2.3. Let K be a number field and take α ∈ K. Then the (logarithmic) field height

of α is defined as

htK(α) := ∑
v

[Kv : Qv] logmax(1, |α|v).

Here, the sum is taken over all places of K and the absolute value is normalised by demand-

ing |p|v = 1/p for v finite lying above p and |x|v = |σ(x)| for v infinite belonging to the

embedding σ : K ↪→ C. The absolute (logarithmic) height of α is defined as

ht(α) :=
htK(α)
[K : Q]

.

The absolute height of an algebraic number is independent of the number field we put around

it. Also note that for a rational number p/q written in lowest terms we have ht(p/q) =
logmax(|p|, |q|).
Definition 2.4. Let K be a number field and consider a point P = (α0 : . . . : αn) ∈ Pn(K).
Then the (logarithmic) field height of P is defined as

htK(P) := ∑
v

[Kv : Qv] logmax
i
|αi|v,

using the same conventions for valuations as in Definition 2.3. The absolute (logarithmic)

height of P is defined as

ht(P) :=
htK(P)
[K : Q]

.

It is a fact that this definition is consistent in the sense that the height does not depend on the

scaling of projective coordinates. Again, the absolute height of P ∈ Pn(Q) does not depend

on the chosen number field. If we write P ∈ Pn(Q) as (p0 : . . . : pn) with pi coprime integers,

then ht(P) = logmaxi |pi|.

2.3. COMPUTATION OF MODULAR GALOIS REPRESENTATIONS 61

For P = anxn + · · ·+a0 ∈ K[x] with K a number field we define the height of P as the height

of (a0 : . . . : an) ∈ Pn(K). If P ∈Q[x] is an irreducible polynomial of degree d and α ∈Q is a

root of P then we have the following estimations between the height of P and the field height

of α in Q(α):
ht(P)−d log2≤ d ht(α)≤ htP+ log(d +1)/2.

This means that bounding the height of Pλ is equivalent with bounding the height of its

roots. One can embed X1(�) into projective space. Bounding the roots of Pλ boils then down

to bounding the Qi occurring in formula (2.14), or rather the version of this formula that

can be proven to be correct. Using a vast amount of highly non-trivial Arakelov geometry,

Bas Edixhoven and Robin de Jong succeeded in bounding the Qi and using this to show that

ht(P�) is bounded polynomially in �.

Their method relies on the fact that Δ is a modular form of level one. In fact, this method

works for any newform of level one. At the time of writing this section, it is not known how

to produce bounds for more general levels but some progress on this is expected to be made

soon.

Suppose now that a height bound for a rational number x = p/q (written in lowest terms

with q > 0) is known, say ht(x) < C. Using non-archimedean local approximations of x
one can find a large integer M > 0 with gcd(q,M) = 1 and with x mod M congruent to

a given number a. Using real approximations, one can find a small ε > 0 and a ξ such

that |x− ξ | ≤ ε|x| < ε expC
q . If one doesn’t use non-archimedian approximations, one can

take M = 1 and if one doesn’t use real approximations one can put ξ = 0 and ε = 1. If

the approximations are close enough to satisfy log M
2ε > 2C then they determine the number

x: suppose that x′ = p′/q′ is another rational number satisfying the same approximation

conditions as x. Then we have

2ε
exp(2C)

qq′
> ε exp(C)

(
1

q
+

1

q′

)
> |x−ξ |+ |x′ −ξ | ≥ |x− x′| ≥ M

|qq′| , (2.15)

leading to a contradiction with log M
2ε > 2C.

We want to actually compute x from its approximations and height bound. Note that the

above reasoning is still valid if we weaken the condition p/q≡ a mod M to p≡ qa mod M,

dropping the assumption gcd(q,M) = 1. We will change our notation a bit and assume that

the approximation ξ is given in terms of a rational number ξ = m/n with n > 0 (so typically

n will be a power of 2 or 10). We thus assume∣∣∣∣ pq − m
n

∣∣∣∣< 1

2n
(2.16)

and the condition that we need to determine p/q uniquely is

log
Mn
q

> C.

62 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

We can use the extended Euclidean algorithm [73, Section 4.2] with (na−m,nM) as input to

generate a sequence of triples (qi,ri,si) satisfying (na−m)qi +nMri = si with |si| decreasing

and |qiri+1− qi+1ri| = 1 for all i. Put r = (p− qa)/M and s = pn− qm. From (2.16) it

follows that the triple (q,r,s) satisfies (na−m)q + nMr = s with |s| < q
2 < Mn

2exp(C) . By

[73, Theorem 4.9] the first index i for which the bound |si| ≤ � Mn
2exp(C)�− 1 holds satisfies

|qi| ≤ �exp(C)�−1 and ri/qi = r/q, thus also p/q = (qia+Mri)/qi.

2.3.2 Computing τ(p) mod � from P�

The image of ρ� is a group G between SL2(F�) and GL2(F�). The stabiliser subgroup of a

basis of F2
� in G is trivial, so K� can be obtained by adjoining two roots of P�; make sure that

the second root is not in the field generated by the first root. There are methods to compute

this [45, Corollary 6]. Also, we have obtained P� from approximations in J1(�). From this

we can deduce a bijection between the roots of P� and V�−{0} that induces an isomorphism

Gal(K�/Q)∼= G which defines ρ�.

Let p be a prime different from �. We want to compute the conjugacy class [Frobp] inside

Gal(K�/Q). This would give us ρ�(Frobp) and thus τ(p) mod �. To do this, one first com-

putes the maximal order OK�
of K� [11, Theorem 1.4]. For a prime p of K� above p we have

that Frobp/p is equal to the unique σ ∈G that satisfies σ(p) = p and σ(x)≡ xp mod p for all

x ∈OK�
. We have a decomposition

OK�
/(p)∼= ∏

p|p
OK�

/p.

So Frobp/p is the element that fixes OK�
/p in this decomposition and acts there as x �→ xp. To

check whether σ ∈ G is equal to Frobp/p for at least one p | p we do the following. Both σ
and x→ xp are Fp-linear maps from OK�

/(p) to itself; compute them. We have σ = Frobp/p
if and only if the image of the map σ − (x→ xp) is contained in p. From this it follows that

σ is equal to at least one of the Frobp/p if and only if the ideal in OK�
/(p) generated by the

image of σ − (x→ xp) is not the unit ideal. So given p, we can obtain [Frobp] by checking

the above for all σ ∈ G.

2.3.3 Explicit numerical computations

Let now an arbitrary positive integer N be given and let f ∈ S2(Γ1(N)) be a newform with

character ε (remember from Subsection 1.3.4 that we can reduce to the weight 2 case). Also,

let � be a prime number and let λ be a prime of Kf lying above �. Assume that the repre-

sentation ρ f ,λ is absolutely irreducible and let T be the Hecke algebra acting on J1(N). In

Subsection 1.3.4 we saw that there is a subspace Vλ of J1(N)(Q)[�] on which both T and

Gal(Q/Q) act, such that the action of Gal(Q/Q) defines ρ f ,λ .

2.3. COMPUTATION OF MODULAR GALOIS REPRESENTATIONS 63

Approximation of torsion points

The Jacobian J1(N)C can be described as follows. Pick a basis f1, . . . , fg of S2(Γ1(N)). Put

Λ :=
{∫

γ
(f1, . . . , fg)

dq
q

: [γ] ∈ H1(X1(N)(C),Z)
}
⊂ Cg.

This is a lattice in Cg of full rank. By the Abel-Jacobi theorem we have an isomorphism

J1(N)(C) ∼−→ Cg/Λ,
[
∑

i
([Qi]− [Ri])

] �→∑
i

∫ Qi

Ri

(f1, . . . , fg)
dq
q

.

Let again a divisor D = ∑g
i=1[Ri] on X1(N) be given. Identifying J1(N)(C) with Cg/Λ in this

way, the map (2.13) becomes a birational morphism

φ ′ : Symg X1(N)(C)→ Cg/Λ, (Q1, . . . ,Qg) �→
g

∑
i=1

∫ Qi

Ri

(f1, . . . , fg)
dq
q

.

The homology group H1(X1(N)(C),Z) is canonically isomorphic to the modular symbols

space S2(Γ1(N)). The period lattice Λ can thus be computed numerically using the methods

from Subsections 2.2.1 and 2.2.2. Since we can compute the action of T on S2(Γ1(N))∼= Λ,

we can write down the points in 1
� Λ/Λ⊂Cg/Λ that correspond to the points of Vλ . The aim

is now to compute the divisors on X1(N)C that map to these points along φ ′. In our compu-

tations, we assume without proof that φ is étale above Vλ .

We start calculating with a small precision. Let P ∈ Vλ (C) ⊂ Cg/Λ be given. First we try

out a lot of random points Q = (Q1, . . . ,Qg) ∈ X1(N)(C). Here, each Qi will be written as

Qi = γiwi, with γi in a set of representatives for Γ1(N)\SL2(Z) and wi ∈F . We can compute

φ ′(Q) using methods from Subsection 2.2.5. We work with the point Q for which φ ′(Q) is

closest to P. If we in fact already know some points Q with φ ′(Q) approximately equal to a

point in Vλ (C), then we could also take one of those points as a starting point Q to work with.

The next thing to do is adjust Q so that φ ′(Q) comes closer to P. We’ll make use of the

Newton-Raphson approximation method. Let φ ′′ : Hg → Cg/Λ be the function defined by

φ ′′(z1, . . .zg) = φ ′(γ1z1, . . .γgzg).

We observe that for a small vector h = (h1, . . .hg) ∈ Cg we have

φ ′′(w1 +h1, . . . ,wg +hg) = φ ′(Q)+hD+O(‖h‖2)

with

D =

⎛
⎜⎜⎝

∂φ ′′1
∂ z1

· · · ∂φ ′′g
∂ z1

...
. . .

...
∂φ ′′1
∂ zg

· · · ∂φ ′′g
∂ zg

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
(w1,...,wg)

.

64 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

From the definition of φ ′ we can immediately deduce

∂φ ′′i
∂ z j

(w1, . . . ,wg) = 2πi(fi|2γ j)(w j),

where we apologise for the ambiguous i. We can thus compute the matrix D using the

methods of Subsection 2.2.4. Now choose a small vector v = (v1, . . . ,vg) ∈ Cg such that

φ ′(Q)+ v is closer to P than φ ′(Q) is. For example, v can be chosen among all vectors of a

bounded length so that φ ′(Q)+ v is closest to P. If we write

h = vD−1,

then we expect φ ′′(w1 + h1, . . . ,wg + hg) to be approximately equal to φ ′(Q)+ v. If this is

not the case, then we try the same thing with a smaller v. It could be that this still fails, for

instance because we are too close to the non-étale locus of the map φ . In that case, we start

with a new random point Q.

We repeat the above adjustments until we are (almost) as close as we can get, considering

our calculation precision. It might happen that the wi become too wild, i.e. |ℜwi| becomes

too large or ℑwi becomes too small. If this is the case we adjust the way we write Qi as γiwi
using the method described in Subsection 2.2.4. We can always replace the γi then by a small

matrix in the same coset of Γ1(N)\SL2(Z).

Once we have for each P ∈ Vλ a point Q such that φ ′(Q) is approximately equal to P, we

can start increasing the precision. We double our calculation precision and repeat the above

adjustments (φ ′(Q)+ v will in this case be equal to P). We repeat this a few times until we

have very good approximations.

Computation of polynomials

Now, we have to choose a function in h ∈ Q(X1(N)). Since h multiplies heights of points

roughly by deg(h), we want to find a function of small degree. Take any k and a basis

h1, . . . ,hn of Sk(Γ1(N)) such that the q-expansions of the hi lie in Z[[q]] and such that the

exponents of the first non-zero terms of these q-expansions form a strictly increasing se-

quence. We propose to use h = WN(hn−1)/WN(hn) as a function to use (assuming n ≥ 2).

Remember from Subsection 1.2.4 that Sk(Γ1(N)) is the space of global sections of the line

bundle L = ω⊗k(−cusps) on X1(N), base changed to C. Remember also that the cusp ∞
is not defined over Q, but the cusp 0 is. Since we demand the q-expansions to have rational

coefficients, the sections WN(h1), . . . ,WN(hn) are defined over Q and they have increasing

order at 0. One can now verify that for h = WN(hn−1)/WN(hn) we have

deg(h)≤ deg(L)−ord∞(hn−1)≤ deg(L)−dimH0(L)+2≤ g+1.

For k = 2 and g ≥ 2 we have L ∼= Ω1(X1(N)) and we get g as an upper bound for deg(h).
Using methods from Subsection 2.2.4, we can evaluate h numerically. The author is not

aware of a sophisticated method for finding a function h ∈ Q(X1(N)) of minimal degree in

2.3. COMPUTATION OF MODULAR GALOIS REPRESENTATIONS 65

general; this minimal degree is called the gonality of the curve X1(N). Published results on

these matters seem to either be limited to X0(N) or to concern only lower bounds for the

gonality of modular curves, see for example [1], [5, Chapter 3] or [60].

Now put

αP =
g

∑
i=1

h(Qi), for P ∈Vλ (C)−{0} and where φ ′(Q1, . . . ,Qg) = P.

We work out the product in

Pλ (x) := ∏
P∈Vλ (C)−{0}

(x−αi) =
n

∑
k=0

akxk, where n = degPλ .

The coefficients ak are rational numbers that we have computed numerically. Since the height

of Pλ is expected to be not too large, the denominators of the ak should have a relative small

common denominator. The LLL algorithm can be used to compute integers p0, . . . , pn−1,q
such that |pk− akq| is small for all k, see [49, Proposition 1.39]. If the sequence (ak) is

arbitrary, then we’ll be able to find pk and q such that |pk−akq| is roughly of order q−1/n for

each k, but not much better than that. So if it happens that we find pk and q with |pk−akq|
much smaller than q−1/n for all k, then we guess that ak is equal to pk/q. If we cannot find

such pk and q then we will double the precision and repeat all the calculations described

above.

Heuristically, the calculation precision that is needed to find the true value of ak is about

(1 + 1/n)ht(Pλ)/ log(10) decimals. Another way of finding rational approximations of the

ak is by approximating them using continued fractions. For this method, the precision needed

to find the true value of ak would be about 2ht(Pλ)/ log(10) decimals.

Since the degree of Pλ will be quite large, we won’t be able to do many further calculations

with it. In particular it may be hard to verify whether all the guesses we made were indeed

correct. Instead, we will look at the following variant. If m is the Hecke ideal of f mod

λ , then Vλ is a vector space over T/m. The representation ρ f ,λ induces an action ρ̃λ of

Gal(Q/Q) on the set P(Vλ) of lines in Vλ . We can attach a polynomial P̃λ to this projectivised

representation ρ̃λ , analogously to the way this was done for ρ . This polynomial will have

smaller a degree than Pλ . We put

P̃λ (x) = ∏
L∈P(V�)

(
x − ∑

P∈L−{0}
αP
)

=
m

∑
k=0

bkxk, where m = deg P̃λ .

As above, if the calculation precision is sufficient we can use lattice reduction algorithms to

compute the exact values of the bk.

Reduction of polynomials

Although the polynomial P̃ will not have a very huge height, its height is still too large to

do any useful computations with it. The first step in making a polynomial of smaller height

66 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

defining the same number field is computing the maximal order of that number field. Let q
be the common denominator of the coefficients and put pk = bkq. Consider the polynomial

Q(x) = q · P̃λ (x) = qxm + pm−1xm−1 + · · ·+ p0.

We make ourselves confident that we correctly computed Q(x) (although we won’t prove

anything at this point yet). For instance, we verify that Q(x) is irreducible and that its dis-

criminant has the prime factors of N� in it. We can also compute for several primes p not

dividing Disc(Q(x)) the decomposition type of Q(x)mod p and verify that it could be equal

to the cycle type of ρ̃(Frobp). If not, we again double the precision and repeat the above

calculations.

Let now α be a root of P̃λ (x) and write down the order

O := Z+
m−1

∑
k=1

(
Z ·

k−1

∑
j=0

am− jαk− j

)
,

which is an order that is closer to the maximal order than Z[qα] (see [48, Subsection 2.10]).

Being confident in the correctness of Q(x), we know where the number field K defined by it

ramifies and thus we can compute its maximal order (see [11, Section 6 and Theorems 1.1

and 1.4]). Having done this, we embed OK as a lattice into Cm in the usual way and we use

the LLL algorithm to compute a basis of small vectors in OK . We can then search for an

element of small length in OK that generates K over Q. Its defining polynomial P̃′λ will have

small coefficients. See also [16].

In the computation of the polynomials Pλ and P̃′λ we made several guesses and assumptions

that we cannot prove to be correct. In Chapters 3 and 4, we work out in special cases how

we can use established parts of Serre’s conjecture to prove afterwards for polynomials of the

style P̃′λ that they indeed belong to the modular Galois representations that we claim they

belong to. In the unlikely case that such tests may fail we can of course make adjustments

like choosing another function h or another divisor D.

Further refinements

The Jacobian J1(N) has large dimension (for N prime it is (N− 5)(N− 7)/24). It could be

that our newform f is an element of S2(Γ) with Γ1(N) � Γ < Γ0(N). In that case we work

with the curve XΓ, which is given its Q-structure by defining it as a quotient of X1(N). The

Jacobian JΓ of XΓ is isogenous to an abelian subvariety of J1(N) that contains Vλ , so this

works perfectly well.

In the case Γ = Γ0(N) we can sometimes go a step further. The operator WN on X0(N)
is defined over Q. If f is invariant under WN , one can work with the curve X+

0 (N) :=
X0(N)/〈WN〉. Its Jacobian J+

0 (N) is isogenous to an abelian subvariety of J1(N) that con-

tains Vλ , so also here it works. Some words on the computation of the homology of X+
0 (N)

are in order. The action of WN on X0(N) induces an action on H1(X0(N)(C),Z) and on

2.3. COMPUTATION OF MODULAR GALOIS REPRESENTATIONS 67

H1(X0(N)(C),cusps,Z). Since paths between cusps on X+
0 (N)(C) lift to paths between

cusps on X0(N)(C) we have a surjection

H1(X0(N),cusps,Z) � H1(X+
0 (N)(C),cusps,Z).

The kernel of this surjection consists of the elements [γ] ∈ H1(X0(N),cusps,Z) satisfying

WN([γ]) =−[γ]. So modular symbols methods allow us to compute H1(X+
0 (N)(C),cusps,Z)

as a quotient of M2(Γ0(N)). Let B+
2 (Γ0(N)) be the free abelian group on the cusps of

X+
0 (N)(C) and define

δ : H1(X+
0 (N)(C),cusps,Z)→ B+

2 (Γ0(N)), {α,β} �→ {β}−{α}.

Then H1(X+
0 (N)(C)) = ker(δ).

68 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

