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Chapter 1

Preliminaries

In this chapter we will set up some preliminaries that we will need in later chapters. No new

material will be presented in this chapter and a reader who is familiar with modular forms

can probably skip most of it without loss of understanding of the rest of this thesis. The main

purpose of this chapter is to make a reader who is not familiar with modular forms or related

subjects sufficiently comfortable with them. The presented material is well-known and the

exposition will be far from complete. Proofs will usually be omitted. The main references

for all of this chapter are [24] and the references therein, as well as [25]. In each section we

will also give specific further references.

1.1 Modular forms

In this section we will briefly discuss what modular forms are. Apart from the main refer-

ences given in the beginning, references for further reading include [54].

1.1.1 Definitions

Consider the complex upper half plane H := {z ∈ C : ℑz > 0}. On it we have an action of

SL2(Z) by (
a
c

b
d

)
z :=

az+b
cz+d

. (1.1)

Note that this action is not faithful, but it does become faithful when factored through

PSL2(Z) = SL2(Z)/± I. We can also add cusps to H. The cusps are the points in P1(Q) =
Q∪{∞}. We will denote the completed upper half plane by H∗, so H∗ = H∪P1(Q). We

will extend the action of SL2(Z) on H to an action on H∗: use the same fractional linear

transformations.

It might be useful to note that SL2(Z) acts transitively on the set of cusps: every cusp can be

written as γ∞ for some γ ∈ SL2(Z). The subgroup of SL2(Z) that fixes the cusp γ∞ is the

1
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Figure 1.1: The upper half plane with SL2(Z)-tiling

group
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Definition 1.1. Let Γ < SL2(Z) be a subgroup of finite index and consider a cusp γ∞ with

γ ∈ SL2(Z). Then the width of γ∞ with respect to Γ, or the width of γ∞ in Γ\H∗, is defined

as the smallest positive integer h for which at least one of γ
(

1
0

h
1

)
γ−1 and −γ

(
1
0

h
1

)
γ−1 is

in Γ.

Figure 1.1 is a useful picture to keep in mind when thinking about these things. It shows a

tiling of the upper half plane along the SL2(Z)-action. Each tile here is an SL2(Z)-translate

of the fundamental domain

F :=
{

z ∈ H :−1

2
≤ℜz≤ 1

2
and |z| ≥ 1

}
.

Sometimes in the literature parts of the boundary are left out in order that F contain exactly

one point of each orbit of the SL2(Z)-action on H. We will not worry about sets of measure

zero here; our definition enables us to view the topological space SL2(Z) \H as a quotient

space of F .

We can also use formula (1.1) to define an action of GL+
2 (R) on H or of GL+

2 (Q) on H∗.
Here the superscript + means that we take the subgroup consisting of matrices with positive

determinant.

We topologise H∗ in the following way: we take the usual topology on H but a basis of open

neighbourhoods for each cusp γ∞ with γ ∈ SL2(Z) consists of the sets

{γ∞}∪ γ ({z ∈ H : ℑz > M}) ,
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where M runs through R>0. With this topology, the set of cusps is discrete in H∗.

Definition 1.2. Let Γ be a subgroup of SL2(Z) of finite index and let k be an integer. A

modular form of weight k for Γ is a holomorphic function f : H→C satisfying the following

conditions:

• f (az+b
cz+d ) = (cz+d)k f (z) for all

(
a
c

b
d

)
∈ Γ and all z ∈ H.

• f is holomorphic at the cusps. This means that for any matrix
(

a
c

b
d

)
∈ SL2(Z), the

function (cz + d)−k f (az+b
cz+d ) should be bounded in the region {z ∈ C : ℑz ≥ M} for

some (equivalently, any) M > 0.

The former condition is called the modular transformation property of f .

If Γ < SL2(Z) is of finite index, then the set of modular forms of weight k for the group Γ is

denoted by Mk(Γ). Under the usual addition and scalar multiplication of functions, Mk(Γ) is

a C-vector space; it can in fact be shown to be of finite dimension.

We will often focus on the cuspidal subspace Sk(Γ) of Mk(Γ) that is defined as the set of

f ∈Mk that vanish at the cusps. By ”vanishing at the cusps” we mean that

lim
ℑz→∞

(cz+d)−k f
(

az+b
cz+d

)
= 0

should hold for all
(

a
c

b
d

)
∈ SL2(Z). Elements of Sk(Γ) are called cusp forms.

Now, let N ∈ Z>0 be given. Define the subgroup Γ(N)of SL2(Z) by

Γ(N) :=
{(

a
c

b
d

)
∈ SL2(Z) :

(
a
c

b
d

)
≡

(
1

0

0

1

)
mod N

}
.

Clearly, Γ(N) has finite index in SL2(Z) because it is the kernel of the reduction map

SL2(Z)→ SL2(Z/NZ). A subgroup Γ of SL2(Z) that contains Γ(N) for some N will be

called a congruence subgroup of SL2(Z). If Γ is a congruence subgroup then the smallest

positive integer N for which Γ ⊃ Γ(N) holds is called the level of Γ. Likewise, if f is a

modular form for some congruence subgroup, we define its level to be the smallest positive

integer N such that f is modular for the group Γ(N).

Many special types of congruence subgroups of some level N turn out to be very interesting.

Arguably, the two most interesting ones are

Γ0(N) :=
{(

a
c

b
d

)
∈ SL2(Z) :

(
a
c

b
d

)
≡

(∗
0

∗
∗
)

mod N
}

and

Γ1(N) :=
{(

a
c

b
d

)
∈ SL2(Z) :

(
a
c

b
d

)
≡

(
1

0

∗
1

)
mod N

}
.
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One of the reasons to focus on these groups is that any modular form f of level N can be

transformed into a modular form for Γ1(N2) (and the same weight) by replacing it with

f (Nz). In fact we have an isomorphism

Mk(Γ(N))∼= Mk
(
Γ0(N2)∩Γ1(N)

)⊂Mk(Γ1(N2)) (1.2)

defined by f (z) 
→ f (Nz).

Note that we have
(

1
0

1
1

)
∈ Γ1(N) for all N. If we plug this matrix into the transformation

property of a modular form f ∈Mk(Γ1(N)), then f (z+1) = f (z) follows. In other words, f
is periodic with period 1. Hence f is a holomorphic function of

q = q(z) := e2πiz.

We therefore have a power series expansion

f (z) = ∑
n≥0

an( f )qn,

the so-called q-expansion of f . The absence of terms with negative exponent is equivalent

with f being holomorphic at ∞. If f is a cusp form, then it vanishes at ∞ and hence a0( f ) = 0.

Be aware of the fact that a0 = 0 does not in general imply that f is a cusp form because there

are other cusps than ∞. The function from Z>0 to C defined by n 
→ an( f ) has very interesting

arithmetic properties for many modular forms f , as we shall see later.

1.1.2 Example: modular forms of level one

Let us give some examples of modular forms of level one now, that is modular forms for the

full group SL2(Z). Note that SL2(Z) is generated by the matrices
(

1
0

1
1

)
and

(
0
1
−1
0

)
. So to

check the modular transformation properties in this case it suffices to check f (z+1) = f (z)
and f (−1/z) = zk f (z).

Another interesting thing to observe here is that z ∈ H defines a lattice

Λz := Zz+Z⊂ C.

For z,w ∈ H there is a λ ∈ C× with Λz = λΛw if and only if there is a γ ∈ SL2(Z) with

z = γ(w). On the other hand, given a lattice Λ ⊂ C we can choose a basis ω1,ω2 with

ℑ(ω2/ω1) > 0. Then we have Λ = ω1Λω2/ω1
. This gives us a bijective correspondence be-

tween the SL2(Z)-equivalence classes of H and the C×-equivalence classes of the set of rank

2 lattices in C.

We can use this to formulate the modular transformation property of a function f : H→ C
in terms of lattices. Let f : H→ C be a function satisfying f (az+b

cz+d ) = (cz+d)k f (z) for all
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(
a
c

b
d

)
∈ SL2(Z) and all z ∈ H. Then we define the function F = Ff from the set of rank 2

lattices in C to C by

F(Zω1 +Zω2) := ω−k
1 f (ω2/ω1) where ℑ(ω2/ω1) > 0.

This function F then satisfies F(λΛ) = λ−kF(Λ) for all λ ∈ C and all Λ. Conversely, given

a function F from the set of rank 2 lattices in C to C that satisfies F(λΛ) = λ−kF(Λ) for all

λ ∈ C and all Λ, we define f = fF by

f (z) = F(Zz+Z).

The function f will then satisfy the weight k modular transformation property for SL2(Z)
and in fact the assignments f 
→ Ff and F 
→ fF are inverse to each other.

Eisenstein series

Now that we have given definitions of modular forms, it becomes time that we write down

some explicit examples. Let us first note that there are no non-zero modular forms of odd

weight and level one; this can be seen by plugging in the matrix
(
−1
0

0
−1

)
, which yields the

identity f (z) = (−1)k f (z). So if we want to write down a modular form we should at least

do this in even weight. For reasons that we will make clear later, there cannot exist nonzero

modular forms of negative weight and no non-constant modular forms of weight 0. Also, in

level one there are no non-zero modular forms of weight 2.

If k ≥ 4 is even, then

Gk(z) :=
(k−1)!
2(2πi)k ∑′

m,n∈Z

1

(mz+n)k (1.3)

is a modular form of weight k, the so-called normalised Eisenstein series of weight k and

level one (priming the summation sign here means that we ignore the terms whose denom-

inator is equal to zero). One can in fact write down Gk(z) in terms of lattices. The formula

becomes then

Gk(Λ) =
(k−1)!
2(2πi)k ∑′

z∈Λ
z−k

and we readily see that it does satisfy the weight k modular transformation property for

SL2(Z). The reason for using the normalisation factor (k− 1)!/(2(2πi)k) becomes clear if

one writes down the q-expansion for Gk:

Gk =−Bk

2k
+ ∑

n≥1

σk−1(n)qn. (1.4)

Here Bk is the k-th Bernoulli number, defined by

x
ex−1

= ∑
k≥0

Bk

k!
xk.
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and σk−1(n) is defined as ∑d|n dk−1.

We see that the arithmetic function n 
→ σk−1(n) arises as the coefficients of a modular form,

something that not everyone would expect right after reading the definition of a modular

form.

Why can’t we take k = 2 here? This is because the series (1.3) does not converge absolutely in

that case and verifying the modular transformation property boils down to changing the order

of summation. If we define G2 by the q-expansion (1.4), then we get a well-defined holo-

morphic function on H that ’almost’ satisfies a modular transformation property for SL2(Z):
we have

G2

(
az+b
cz+d

)
= (cz+d)2G2(z)− c(cz+d)

4πi

for all
(

a
c

b
d

)
∈ SL2(Z). The ’almost’ modularity of G2 is still very useful within the theory

of modular forms.

Discriminant modular form

The spaces Mk(SL2(Z)) for k ∈ {4,6,8,10} can be shown to be one-dimensional, so they are

generated by Gk. In particular there are no non-zero cusp forms there. The lowest weight

where we do have a cusp form of level one is k = 12 (for higher levels, however, there are

non-zero cusp forms of lower weight):

Δ(z) := 8000G3
4−147G2

6 = q ∏
n≥1

(1−qn)24.

This form is called the discriminant modular form or modular discriminant and it is a gen-

erator for the space S12(SL2(Z)). If we write it out as a series

Δ(z) = ∑
n≥1

τ(n)qn = q−24q2 +252q3−1472q4 +4830q5−6048q6 + · · ·

then τ(n) is called the Ramanujan tau function. The tau function will play an important role

in this thesis. Ramanujan observed some very remarkable properties of it. Among these

properties, the following ones occur, which he was unable to prove.

• For coprime integers m and n we have τ(mn) = τ(m)τ(n).

• For prime powers we have a recurrence τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1).

• For all prime numbers p we have the estimation |τ(p)| ≤ 2p11/2.

The first two of these properties were proved by Mordell in 1917; they determine τ(n) in

terms of τ(p) for p prime. The third property was proved by Deligne in 1974; its proof uses

very deep results from algebraic geometry. These properties witness once more the interest-

ing arithmetic behaviour of q-coefficients of modular forms.
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Other properties found by Ramanujan and improved by others (cf. [83, Section 1] and

[64, Section 4.5]) are congruence properties. For � ∈ {2,3,5,7,23,691} there exist simple

formulas for τ(n) modulo � or a power of �. The following summarises what is known about

this for � �= 23:

τ(n)≡ σ11(n) mod 211 for n≡ 1 mod 8,
τ(n)≡ 1217σ11(n) mod 213 for n≡ 3 mod 8,
τ(n)≡ 1537σ11(n) mod 212 for n≡ 5 mod 8,
τ(n)≡ 705σ11(n) mod 214 for n≡ 7 mod 8,
τ(n)≡ n−610σ1231(n) mod 36 for n≡ 1 mod 3,
τ(n)≡ n−610σ1231(n) mod 37 for n≡ 2 mod 3,
τ(n)≡ n−30σ71(n) mod 53 for n �≡ 0 mod 5,
τ(n)≡ nσ9(n) mod 7 for n≡ 0,1,2,4 mod 7,
τ(n)≡ nσ9(n) mod 72 for n≡ 3,5,6 mod 7,
τ(n)≡ σ11(n) mod 691 for all n.

Modulo 23 we have the following congruences for p �= 23 prime:

τ(p)≡ 0 mod 23 if
( p

23

)
=−1,

τ(p)≡ σ11(p) mod 232 if p is of the form a2 +23b2,
τ(p)≡−1 mod 23 otherwise.

Later in this thesis we will study τ(p) mod � for other values of �.

1.1.3 Eisenstein series of arbitrary levels
Having seen some examples in level one, we now turn back to the subgroups Γ0(N) and

Γ1(N) of SL2(Z). In this subsection we will define what Eisenstein series are for these sub-

groups. The situation is analogous to the level one case, though slightly more complicated.

We will make use of Dirichlet characters, which will in this subsection be assumed to be

primitive and take values in C×. If a Dirichlet character is evaluated at an integer not co-

prime with its conductor, then the value is defined to be 0. Details for this subsection can be

found in [25, Chapter 4].

The case k ≥ 3

For N ∈ Z>0, k ∈ Z≥3 and c,d ∈ Z/NZ we define

G(c,d)
k (z) := ∑′

m≡cmodN
n≡d modN

1

(mz+n)k . (1.5)

This defines a modular form of weight k for Γ(N).

To get forms with nice q-expansions, we have to take suitable linear combinations of the

forms G(c,d)
k . Choose two Dirichlet characters ψ and φ , of conductors N(ψ) and N(φ) say,
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that satisfy the conditions

N(ψ)N(φ) | N and ψ(−1)φ(−1) = (−1)k. (1.6)

We then define

Gψ,φ
k :=

(−N(φ))k(k−1)!
2(2πi)kg(φ−1)

N(ψ)

∑
c=1

N(φ)

∑
d=1

N(ψ)

∑
e=1

G(cN(ψ),d+eN(ψ))
k ,

where the pair (cN(ψ),d + eN(ψ)) is an element of (Z/(N(ψ)N(φ)Z))2 and for any C-

valued Dirichlet character χ , the number g(χ) denotes its Gauss sum:

g(χ) := ∑
ν∈(Z/N(χ)Z)×

χ(ν)exp

(
2πiν
N(χ)

)
. (1.7)

The q-expansion of Gψ,φ
k is as follows:

Gψ,φ
k =−δ (ψ)Bk,φ

2k
+ ∑

n≥1

σψ,φ
k−1(n)qn, (1.8)

where δ (ψ) equals 1 if ψ is trivial and 0 otherwise, Bk,φ is a so-called generalised Bernoulli

number defined by

∑
ν∈(Z/N(φ)Z)×

φ(n)
xeνx

eN(φ)x−1
= ∑

k≥0

Bk,φ

k!
xk

and σψ,φ
k−1(n) is a character-twisted sum of (k−1)-st powers of divisors, defined as

σψ,φ
k−1(n) = ∑

d|n
ψ(n/d)φ(d)dk−1.

The function Gψ,φ
k is called a normalised Eisenstein series with characters ψ and φ . It is an

element of Mk(Γ1(N(ψ)N(φ))). In particular, it is an element of Mk(Γ1(N)) and the same

holds for Gψ,φ
k (dz) for every d | N

N(ψ)N(φ) . Furthermore, Gψ,φ
k is in Mk(Γ0(N)) if and only if

the character ψφ is trivial.

The cases k = 1 and k = 2

Recall from the level one situation that G2, defined by a q-series, is not a modular form,

though it is not really far from being one. A similar picture occurs in arbitrary level: the

series (1.5) do not converge absolutely for k ∈ {1,2}, but the q-series (1.8) do define holo-

morphic functions on H that are ’almost’ modular. In fact it will turn out to be much nicer

than it seems to be at first sight. Assume k ∈ {1,2}, take N ∈ Z>0 and let ψ and φ be C×-

valued Dirichlet characters that satisfy (1.6).
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Let us first treat the case k = 2. Define Gψ,φ
2 by the q-series (1.8). Then Gψ,φ

2 is in M2(Γ1(N))
unless both ψ and φ are trivial, in which case Gψ,φ

2 (z)−dGψ,φ
2 (dz) = G2(z)−dG2(dz) is in

M2(Γ1(N)) for all d | N. Again, the series is modular for Γ0(N) if and only if ψφ is trivial.

In weight 1 the convergence problems of (1.5) are even worse but still we can do almost the

same thing. We alter the definition of the q-series slightly: put

Gψ,φ
1 :=−δ (φ)B1,ψ +δ (ψ)B1,φ

2
+ ∑

n≥1

σψ,φ
0 (n)qn.

This turns out to be a modular form in M1(Γ1(N)) in all cases.

Eisenstein subspace

Now that we have defined for each space Mk(Γ1(N)) what its Eisenstein series are, we will

define its Eisenstein subspace as the subspace generated by these series:

Definition 1.3. Let k and N be positive integers with k �= 2. The Eisenstein subspace

Ek(Γ1(N)) of Mk(Γ1(N)) is defined as the subspace generated by the modular forms Gψ,φ
k (dz)

defined above where (ψ,φ) runs through the set of pairs of Dirichlet characters satisfying

(1.6) and for given (ψ,φ), the number d runs through all divisors of N/(N(ψ)N(φ)).

Definition 1.4. Let N be a positive integer. The Eisenstein subspace E2(Γ1(N)) of M2(Γ1(N))
is defined as the subspace generated by the following modular forms:

• The forms Gψ,φ
k (dz) defined above where (ψ,φ) runs through the set of pairs of Dirich-

let characters that are not both trivial and that satisfy (1.6) and for given (ψ,φ), the

number d runs through all divisors of N/(N(ψ)N(φ)).

• The forms G2(z)−dG2(dz) where d runs through divisors of N, except d = 1.

The given generators for the spaces actually do give a basis for each space, provided that in

the case k = 1 we take each form Gψ,φ
1 = Gφ ,ψ

1 only once. Furthermore, we define Ek(Γ0(N))
to be Mk(Γ0(N))∩Ek(Γ1(N)) and this is actually generated by the Eisenstein series that lie

in Mk(Γ0(N)).

The Eisenstein subspace satisfies a very nice property:

Theorem 1.1. Let k and N be positive integers and let Γ be either Γ0(N) or Γ1(N). Then
every f ∈Mk(Γ) can be written in a unique way as g+h with g ∈ Ek(Γ) and h ∈ Sk(Γ).

In particular, Eisenstein series are not cusp forms and knowing a complete description of

Eisenstein series reduces the study of modular forms to that of cusp forms. The q-expansions

of cusp forms are in general far less explicit but far more interesting than those of Eisenstein

series.
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1.1.4 Diamond and Hecke operators

The arithmetic structure of modular forms turns out to be related to interesting operators on

the spaces Sk(Γ1(N)), called diamond operators and Hecke operators. The operators are in

fact defined on all of Mk(Γ1(N)), preserving Ek(Γ1(N)) as well. However, the treatments for

Sk and Ek differ at a few points and since we more or less ’know’ Ek already, we will stick to

Sk(Γ1(N)) from now. Details for this subsection can be found in [25, Chapter 5].

Most operators on modular forms can be formulated in terms of a notation called the slash
operator. For k ∈ Z and γ =

(
a
c

b
d

)
∈ GL+

2 (R) we define the following operation on the

space of functions f : H→ C:

( f |kγ)(z) := det(γ)k−1(cz+d)−k f (γz).

It must be noted that in the literature there appears to be no consensus about the normalisa-

tion factor det(γ)k−1; some textbooks use det(γ)k/2 instead. For a function f the modular

transformation property of weight k for Γ < SL2(Z) can be formulated in terms of the slash

operator as f |kγ = f for all γ ∈ Γ. Be aware of the fact that slash operators in general don’t

leave the spaces Sk(Γ) invariant.

Diamond operators

Note that Γ1(N) is a normal subgroup of Γ0(N) and that for the quotient we have

Γ0(N)/Γ1(N)∼= (Z/NZ)× by

(
a
c

b
d

)

→ d. (1.9)

It follows from this normality that γ ∈ Γ0(N) leaves the spaces Sk(Γ1(N)) invariant under

the weight k slash action. Since the action of the subgroup Γ1(N) is trivial so this defines an

action of (Z/NZ)× on Sk(Γ1(N)):

〈d〉 f := f |k
(

a
c

b
d

)
,

where we can choose any matrix
(

a
c

b
d

)
∈ Γ0(N) mapping to d under (1.9). The operator 〈d〉

is called a diamond operator.

Let ε : (Z/NZ)× → C× be a character. Then we define the subspace Sk(N,ε) of Sk(Γ1(N))
as

Sk(N,ε) :=
{

f ∈ Sk(Γ1(N)) : 〈d〉 f = ε(d) f for all d ∈ (Z/NZ)×
}

and call it the ε-eigenspace of Sk(Γ1(N)). Note that if ε is the trivial character, then we

have Sk(N,ε) = Sk(Γ0(N)). If f ∈ Sk(Γ1(N)) lies inside Sk(N,ε) then we say that f is a

modular form with character ε . Now, the diamond action of (Z/NZ)× on Sk(Γ1(N)) is a
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representation of (Z/NZ)× on a finite-dimensional C-vector space and thus is a direct sum

of irreducible representations, hence we have

Sk(Γ1(N)) =
⊕

ε:(Z/NZ)×→C×
Sk(N,ε).

Note that we always have 〈−1〉 = (−1)k so that Sk(N,ε) can only be non-zero for ε with

ε(−1) = (−1)k.

Hecke operators

Congruence subgroups of SL2(Z) have the property that any two of them are commensurable,

which means that their intersection has finite index in both of them. Also, for any congruence

subgroup Γ < SL2(Z) and any γ ∈ GL+
2 (Q) we have that γ−1Γγ ∩SL2(Z) is a congruence

subgroup of SL2(Z) and that γ−1Γγ is commensurable with Γ. It follows that for any two

congruence subgroups Γ1 and Γ2 and any γ ∈ GL+
2 (Q) the left action of Γ1 on Γ1γΓ2 has

only a finite number of orbits. If we choose representatives γ1, . . . ,γr ∈ GL+
2 (Q) for these

orbits then the operator

Tγ = TΓ1,Γ2,k,γ : Sk(Γ1)→ Sk(Γ2)

given by

Tγ f =
r

∑
i=1

f |kγi (1.10)

is well-defined and depends only on the double coset Γ1γΓ2. Note that the diamond operator

〈d〉 is equal to Tγ if we choose γ ∈ Γ0(N) with lower right entry congruent to d mod N.

Now, let p be a prime number and consider the operator Tp on Sk(Γ1(N)) defined as

Tp := Tγ for γ =
(

1

0

0

p

)
.

It is this operator that we call a Hecke operator. If we write it out according to the definition

of Tγ then we have

Tp f = (〈p〉 f )
∣∣
k

(
p
0

0

1

)
+

p−1

∑
j=0

f
∣∣
k

(
1

0

j
p

)
, (1.11)

where we take the convention 〈p〉 f = 0 for p | N. It can be shown that the Hecke operators

on Sk(Γ1(N)) commute with the diamond operators and with each other. In particular the

subspaces Sk(N,ε) are preserved; hence we can speak of Tp as operators on Sk(N,ε), with

Sk(Γ0(N)) being a special case of this. The formula (1.11) then becomes

Tp f = ε(p) f
∣∣
k

(
p
0

0

1

)
+

p−1

∑
j=0

f
∣∣
k

(
1

0

j
p

)
,

for f ∈ Sk(N,ε).
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If we use the lattice interpretation for the level one case, we can formulate Tp in terms of

lattices. Take f ∈ Sk(SL2(Z)) and let F be the corresponding function on the set of full rank

lattices in C. Then the function corresponding to Tp f is equal to

TpF(Λ) = pk−1 ∑
Λ′⊂Λ

[Λ:Λ′]=p

F(Λ′), (1.12)

i.e. we sum over all sublattices of index p. A similar interpretation exists in arbitrary levels;

we shall address this later, in Subsection 1.2.5.

We can also define operators Tn for arbitrary positive integers n. We do this by means of a

recursion formula:

T1 = 1,
Tmn = TmTn for m,n coprime,
Tpr = T r

p for p | N prime and r ∈ Z>1,

Tpr+1 = TpTpr −〈p〉pk−1Tpr−1 for p � N prime and r ∈ Z>0.

(1.13)

One motivation for this definition is that in the lattice interpretation formula (1.12) we can

simply replace p with n.

We can in fact describe the Hecke operators in terms of q-expansions. Take N ∈ Z>0 and

f ∈ Sk(Γ1(N)). For all n ∈ Z>0 we have

am(Tn f ) = ∑
d|gcd(m,n)

gcd(d,N)=1

dk−1amn/d2(〈d〉 f ).

This formula has some interesting special cases. First of all, for m = 1 we get

a1(Tn f ) = an( f ). (1.14)

Also, for p prime and f ∈ Sk(N,ε) we have

an(Tp f ) =
{

apn( f ) for p � n,

apn( f )+ ε(p)pk−1an/p( f ) for p | n.

Petersson inner product

Let Γ < SL2(Z) be of finite index. We can define an inner product (i.e. a positive def-

inite hermitian form) on Sk(Γ) that is very natural in some sense. If we write z = x + iy
then the measure μ := dxdy/y2 is GL+

2 (R)-invariant on H and the integral
∫

Γ\H μ converges

to [PSL2(Z) : PΓ]π/3. The measure μ is called the hyperbolic measure on H. Also, for

f ∈ Sk(Γ) the function | f (z)|2yk is Γ-invariant and bounded on H, hence the measure

μ f := | f (z)|2yk−2dxdy where z = x+ iy
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is a Γ-invariant measure on H such that the integral
∫

Γ\H μ f converges to a positive real

number. Now we define the Petersson inner product on Sk(Γ) as follows:

( f ,g) :=
1

[PSL2(Z) : PΓ]

∫
Γ\H

f (z)g(z)yk−2dxdy (1.15)

for f ,g∈ Sk(Γ), i.e. it is a scaled inner product associated to the Hermitian form f 
→ ∫
Γ\H μ f .

The normalisation factor [PSL2(Z) : PΓ]−1 is used so that the value of the integral does not

depend on the chosen group Γ for which f and g are modular.

We can in fact use the formula (1.15) for the Petersson inner product to define a sesquilinear

pairing on Mk(Γ)×Sk(Γ) (note that this would not work on Mk(Γ)×Mk(Γ) as the integral

diverges there). For Γ∈ {Γ0(N),Γ1(N)} the set of f ∈Mk(Γ) with ( f ,g) = 0 for all g∈ Sk(Γ)
is exactly the Eisenstein subspace Ek(Γ) defined in Subsection 1.1.3.

From now on, we return to the case Γ = Γ1(N). The Petersson inner product behaves partic-

ularly nicely with respect to the Hecke operators. Take γ ∈ GL+
2 (Q). Then the adjoint of Tγ

with respect to the Petersson inner product is equal to Tγ∗ where

γ∗ =
(

d
−c
−b
a

)
for γ =

(
a
c

b
d

)
,

i.e.

(Tγ f ,g) = ( f ,T ∗γ g) where T ∗γ = Tγ∗.

For the diamond operators this boils down to

〈d〉∗ = 〈d〉−1

If we now let WN be the operator f 
→ N1−k/2 f |k
(

0
N
−1
0

)
on Sk(Γ1(N)) then we have

T ∗n = WNTnW−1
N . (1.16)

We will study the operator WN in more detail in Subsection 1.1.7. In the special case

gcd(n,N) = 1 formula (1.16) simplifies to

T ∗n = 〈n〉−1Tn if gcd(n,N) = 1.

In particular for n coprime to N the operators Tn and T ∗n commute.

Hecke algebra

The diamond and Hecke operators on Sk(Γ1(N)) generate a subring of EndC Sk(Γ1(N))
which we call the Hecke algebra of Sk(Γ1(N)) and which is commutative. We will usu-

ally denote the Hecke algebra by T, where it is understood which modular forms space is

involved. We will also be considering its subalgebra T′ that is generated by all the 〈d〉 and
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Tn with gcd(n,N) = 1. If confusion could arise we will write Tk(N) and T′k(N) respectively.

The structure of T is important in the study of Sk(Γ1(N)). It can be shown that T is a free

Z-module of rank dimSk(Γ1(N)). Consider the pairing

T×Sk(Γ1(N))→ C, (T, f ) 
→ a1(T f ).

For any ring A we put TA := T⊗A. From formula (1.14) it follows immediately that the

induced pairing TC×Sk(Γ1(N))→ C is perfect. In particular we have

Sk(Γ1(N))∼= HomZ−Mod(T,C) (1.17)

Under this isomorphism, the action of T on Sk(Γ1(N)) comes from the following action of T
on HomZ−Mod(T,Z): let T ∈T send φ ∈HomZ−Mod(T,Z) to T ′ 
→ φ(T T ′). It can be shown

that Hom(TQ,Q) is in this way a free TQ-module of rank one so that in fact Sk(Γ1(N)) is

free of rank one as a TC-module. For each subring A of C, we can identify HomZ−Mod(T,A)
with the A-module of modular forms whose q-expansion has coefficients in A.

1.1.5 Eigenforms
The commutativity of all the Tn, T ∗n , 〈d〉 and 〈d〉∗ for n and d coprime to N has an interesting

consequence:

Theorem 1.2. For k,N ∈Z>0 the space Sk(Γ1(N)) has a basis that is orthogonal with respect
to the Petersson inner product and whose elements are eigenvectors for all the operators in
T′.

Theorem 1.2 would fail if we took all the Hecke operators in T, i.e. also the Tn with

gcd(n,N) > 1. This is because those operators are in general not semi-simple, so we do not

get a decomposition of our vector space into eigenspaces. Forms that are eigenvectors for

all the operators in T are called eigenforms. If a form is an eigenvector for all the operators

in T′, we will call it a T′-eigenform. Each T′-eigenform is an eigenvector for the diamond

operators, so must lie inside some space Sk(N,ε). An eigenform f is called normalised if

a1( f ) = 1. From (1.14) and the commutativity of T it follows easily that f ∈ Sk(Γ1(N)) is a

normalised eigenform if and only if the map T→ C corresponding to f as in (1.17) is a ring

homomorphism.

Consider M and N with M | N. For each divisor d of N/M we have a map

αd : Sk(Γ1(M))→ Sk(Γ1(N)) defined by f (z) 
→ f (dz).

The map αd is called a degeneracy map. Note that for d = 1 it is just the inclusion of

Sk(Γ1(M)) into Sk(Γ1(N)). The subspace of Sk(Γ1(N)) generated by all the αd( f ) for M | N,

M < N, d | N/M is called the old subspace of Sk(Γ1(N)) and is denoted by Sk(Γ1(N))old.

The orthogonal complement of Sk(Γ1(N))old with respect to the Petersson inner product

is called the new subspace and denoted by Sk(Γ1(N))new. Its eigenforms have interesting

properties:
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Theorem 1.3. Let f ∈ Sk(Γ1(N))new be an eigenform. Then C · f is an eigenspace of
Sk(Γ1(N)) and a1( f ) �= 0. Furthermore, Sk(Γ1(N))new is generated by its eigenforms.

This is called the multiplicity one theorem. In fact, in the new subspace there is no distinction

between eigenforms for T and eigenforms for T′. The theorem allows us to put the normali-

sation a1 = 1 on eigenforms in the new subspace. New eigenforms f that satisfy a1( f ) = 1

are called newforms. If we combine this with (1.14) then we see

Theorem 1.4. Let N and k be positive integers and let f ∈ Sk(Γ1(N)) be a newform. Then
the eigenvalue of the Hecke operator Tn on f is equal to the q-coefficient an( f ).

If f ∈ Sk(Γ1(M)) a T′k(M)-eigenform, then for all d the form αd( f ) ∈ Sk(Γ1(dM)) is a

T′k(dM)-eigenform. We furthermore have a decomposition:

Sk(Γ1(N)) =
⊕
M|N

⊕
d| N

M

αd (Sk(Γ1(M))new)

that allows us to write down an interesting basis for Sk(Γ1(N)):

Theorem 1.5. Let N and k be given positive integers. Then the following set is a basis for
Sk(Γ1(N)) consisting of T′-eigenforms.

⋃
M|N

⋃
d| N

M

{αd( f ) : f is a newform in Sk(Γ1(M))} .

The field Kf

If f ∈ Sk(Γ1(N)) is a newform with character ε , then the values of ε together with the coef-

ficients an( f ) generate a field

Kf := Q(ε,a1( f ),a2( f ), . . .)

which is known to be a number field. It can be shown that for any embedding σ : Kf ↪→ C
the function σ f := ∑σ(an)qn is a newform in Sk(Γ1(N)) with character σε . To a newform

f ∈ Sk(N,ε) we can attach a ring homomorphism

θ f : T→ Kf

defined by

θ f (〈d〉) = ε(d) and θ f (Tp) = ap,

as in (1.17). We define

I f := ker(θ f ),

which is a prime ideal of T called the Hecke ideal of f . It is known that imθ f is an order in

Kf but it need not be the maximal order.
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1.1.6 Anti-holomorphic cusp forms
From time to time we will also be considering anti-holomorphic cusp forms. A function

f : H→C is called an anti-holomorphic cusp form of some level N and weight k if z 
→ f (z)
is in Sk(Γ1(N)). The space of anti-holomorphic cusp forms of level N and weight k is denoted

by Sk(Γ1(N)). We let the diamond and Hecke operators act on Sk(Γ1(N)) by the formulas

〈d〉 f = 〈d〉 f and Tp f = Tp f ,

where we denote by f the function z 
→ f (z). The spaces Sk(N,ε) are now defined as

Sk(N,ε) =
{

f : f ∈ Sk(N,ε)
}

=
{

f ∈ Sk(Γ1(N)) : 〈d〉 f = ε(d) f for all d ∈ (Z/NZ)×
}

.

If we have a simultaneous eigenspace inside Sk(Γ1(N)) for the diamond and Hecke operators

then we also have an eigenspace with conjugate eigenvalues and of the same dimension

(which could be the same space if all these eigenvalues are real). It follows that we have

a decomposition of Sk(Γ1(N))⊕ Sk(Γ1(N)) into eigenspaces with the same eigenvalues as

in the decomposition of Sk(Γ1(N)), but the dimension of each such eigenspace is twice the

dimension of its restriction to Sk(Γ1(N)).

1.1.7 Atkin-Lehner operators
The main reference for this subsection is [3].

Besides diamond and Hecke operators, there is another interesting type of operators on

Sk(Γ1(N)), namely the Atkin-Lehner operators. Let Q be a positive divisor of N such that

gcd(Q,N/Q) = 1. Let wQ ∈ GL+
2 (Q) be any matrix of the form

wQ =
(

Qa
Nc

b
Qd

)
(1.18)

with a,b,c,d ∈ Z and det(wQ) = Q. The assumption gcd(Q,N/Q) = 1 ensures that such a

wQ exists. A straightforward verification shows f |kwQ ∈ Sk(Γ1(N))). Now, given Q, this

f |kwQ still depends on the choice of a,b,c,d. However, we can use a normalisation in our

choice of a,b,c,d which will ensure that f |kwQ only depends on Q. Be aware of the fact that

different authors use different normalisations here. The one we will be using is

a≡ 1 mod N/Q, b≡ 1 mod Q, (1.19)

which is the normalisation used in [3]. We define

WQ( f ) := Q1−k/2 f |kwQ =
Qk/2

(Ncz+Qd)k f
(

Qaz+b
Ncz+Qd

)
, (1.20)

which is now independent of the choice of wQ and call WQ an Atkin-Lehner operator.
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An unfortunate thing about these Atkin-Lehner operators is that they do not preserve the

spaces Sk(N,ε). But we can say something about it. Let ε : (Z/NZ)× → C× be a character

and suppose that f ∈ Sk(N,ε). By the Chinese Remainder Theorem, one can write ε in a

unique way as ε = εQεN/Q such that εQ is a character on (Z/QZ)× and εN/Q is a character

on (Z/(N/Q)Z)×. It is a fact that

WQ( f ) ∈ Sk(N,εQεN/Q).

Also, there is a relation between the q-expansions of f and WQ( f ):

Theorem 1.6. Let f ∈ Sk(N,ε) be a newform. Take Q | N with gcd(Q,N/Q) = 1. Then

WQ( f ) = λQ( f )g

with λQ( f ) ∈C an algebraic number of absolute value 1 and g ∈ Sk(N,εQεN/Q) a newform.
Suppose now that n is a positive integer and write n = n1n2 where n1 consists only of prime
factors dividing Q and n2 consists only of prime factors not dividing Q. Then we have

an(g) = εN/Q(n1)εQ(n2)an1
( f )an2

( f ).

The number λQ( f ) in the above theorem is called a pseudo-eigenvalue for the Atkin-Lehner

operator. In some cases there exists a closed expression for it.

Theorem 1.7. Let f ∈ Sk(N,ε) be a newform and suppose q is a prime that divides N exactly
once. Then we have

λq( f ) =
{

g(εq)q−k/2aq( f ) if εq is non-trivial,
−q1−k/2aq( f ) if εq is trivial.

Here, g(εq) is the Gauss sum of εq.

Theorem 1.8 ([2, Theorem 2]). Let f ∈ Sk(N,ε) be a newform with N square-free. For Q |N
we have

λQ( f ) = ε(Qd− N
Q

a)∏
q|Q

ε(Q/q)λq( f ).

Here, a and d are defined by (1.18). Moreover, this identity holds without any normalisation
assumptions on the entries of wQ, as long as we define λq( f ) by the formula given in Theorem
1.7.

1.2 Modular curves
In this section we will very briefly discuss modular curves. Apart from the main references

given in the beginning, we use [22] and [36] as further references on this subject. We will

use a little bit of algebro-geometric language. but we’ll keep it as simple as possible, trying

to explain properties that we need to understand why the calculations in later chapters work.
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1.2.1 Modular curves over C

Let Γ < SL2(Z) be a subgroup of finite index. If one divides out the group action of Γ on H

one obtains a Riemann surface

YΓ := Γ\H.

If we add the cusps to YΓ and use (q|0γ−1)1/w(γ∞) as a local parameter at the cusp γ∞ we

obtain another Riemann surface

XΓ := Γ\H∗,

which happens to be compact. This compactness implies that XΓ is in fact (the analytification

of) a projective algebraic curve over C, the open subset YΓ ⊂ XΓ being an affine curve.

For Γ equal to Γ0(N), Γ1(N) or Γ(N) we write YΓ as Y0(N), Y1(N) or Y (N) and XΓ as X0(N),
X1(N) or X(N) respectively. These are the curves in which we are primarily interested.

The curves Y0(N), Y1(N) and Y (N) have moduli interpretations. Take z ∈ H and consider

the lattice Λz = Zz + Z, as we did in Subsection 1.1.2. Then C/Λz is a complex elliptic

curve and in this way SL2(Z) \H is in bijection with the set of all isomorphism classes of

elliptic curves over C. This gives in all three cases the moduli interpretation for N = 1. In

general, Y0(N)(C) = Γ0(N) \H is in bijection with the set of isomorphism classes of pairs

(E,C) where E is an elliptic curve over C and C ⊂ E(C) is a cyclic subgroup of order N.

The bijection is obtained by

z 
→ (C/Λz,
1

N
Z mod Λz).

The additional information C that we attach to E is called a level structure.

Likewise, for Y1(N)(C) = Γ1(N)\H the map

z 
→ (C/Λz,
1

N
mod Λz).

defines a bijection with the set of isomorphism classes of pairs (E,P) with E an elliptic curve

over C and P ∈ E(C) a point of order N.

To describe the moduli interpretation of Y (N), we use the Weil pairing on elliptic curves over

C. The sign convention we use is such that the Weil eN-pairing on the N-torsion of C/Λ is

defined as

eN(z,w) = exp

(
πiN

zw− zw
covol(Λ)

)
.

Then the map

z 
→ (C/Λz,
1

N
modΛz,

z
N

modΛz)

defines a bijection between Y (N)(C) = Γ(N) \H and the set of isomorphism classes of

triples (E,P,Q) where E is an elliptic curve over C and P,Q ∈ E(C)[N] are points that sat-

isfy en(P,Q) = exp(2πi/N).
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In view of (1.2), the curve Y (N) is isomorphic to YΓ with Γ = Γ0(N2)∩Γ1(N). The map

z 
→ Nz defines an isomorphism YΓ → Y (N). In terms of moduli, YΓ parametrises triples

(E,C,P) with E/C an elliptic curve, C⊂ E(C) cyclic of order N2 and P ∈C a point of order

N. Let us describe what the given isomorphism YΓ → Y (N) sends (E,C,P) to. Choose a

generator P′ for C with P = NP′ and a Q ∈ E(C)[N2] with eN2(P′,Q) = exp(2πi/N2). Then

the image of (E,C,P) is the triple (E/〈NP〉, PmodNP, NQmodNP).

1.2.2 Modular curves as fine moduli spaces
In the previous subsection we spoke about bijections between points of YΓ(C) and isomor-

phism classes of elliptic curves with certain level structures. It turns out that this can be put

in a more general setting, which is what we will do in the present subsection.

For an arbitrary scheme S, an elliptic curve over S is defined to be a proper smooth group

scheme E over S of which all the geometric fibres are elliptic curves. For a fixed positive

integer N that we use for our level structures, we will usually work with schemes in which

N is invertible, i.e. schemes over Z[1/N], which is the treatment of [22]. Getting rid of this

condition is done in the standard work [36] and makes things much more technical.

So let N be a positive integer, let S/Z[1/N] a scheme and let E/S be an elliptic curve. Then a

point of order N of E/S is meant to be a section P∈E(S)[N] whose pull-back to all geometric

fibres of E/S defines a point of order N. Define a contravariant functor

F1(N) : SchZ[1/N] → Set

from the category of schemes over Z[1/N] to the category of sets as follows. We send

a scheme S to the set of isomorphism classes of pairs (E,P) where E is an elliptic curve

over S and P a point of order N of E/S. And we send a morphism T → S to the map

F1(N)(S)→ F1(N)(T ) that sends every pair (E,P)/S to its pull-back along T → S.

Theorem 1.9 (Igusa). Let N > 3 be an integer. Then there exists a smooth affine scheme
Y1(N) over Z[1/N], an elliptic curve E over Y1(N) and a point P of E/Y1(N) of order N that
satisfies the following universal property: for all schemes S/Z[1/N] and pairs (E,P) with
E/S an elliptic curve and P a point of order N of E/S there are unique morphisms S→Y1(N)
and E → E such that the following diagram is commutative with Cartesian inner square:

E

�

��

��

E

��

S ��

P

��

Y1(N)

P

��

Moreover, the geometric fibres of Y1(N)/Z[1/N] are irreducible curves.

Note that we abusively use the same notation Y1(N) as in the previous subsection; we will

write subscripts in cases where this abuse might lead to confusion. The scheme Y1(N)
of the theorem represents the functor F1(N): pulling back (E,P)/Y1(N) along morphisms



20 CHAPTER 1. PRELIMINARIES

S → Y1(N) defines a functorial bijection between Y1(N)(S) and F1(N)(S). Because we can

give such an isomorphism of functors, or equivalently, a universal (E,P), we say that Y1(N)
is a fine moduli space for the functor F1(N).

The complex curve Y1(N) from the previous subsection, together with its moduli description,

is canonically isomorphic to the base change Y1(N)C of Y1(N)Z[1/N] to C. In fact, over C, the

universal elliptic curve EC/Y1(N)C can be described analytically as follows: Consider C×H

as line bundle over H and embed Z2×H into it by

Z2×H ↪→ C×H, ((m,n),z) 
→ ((mz+n),z).

Call the image of this embedding Λ. The quotient (C×H)/Λ is an elliptic curve E over H

whose fibre over z ∈H is C/Λz. The section P : H→ E defined by z 
→ 1/N has order N. We

have an action of SL2(Z) on C×H as follows:(
a
c

b
d

)
(w,z) :=

(
w

cz+d
,
az+b
cz+d

)
.

This action respects Λ and therefore induces an action on E. The subgroup of SL2(Z) re-

specting the section P is exactly Γ1(N) and we can in fact describe EC/Y1(N)C as the quotient

of E/H by the action of Γ1(N):

EC
∼= Γ1(N)\ ((C×H)/Λ). (1.21)

Let us note that from Theorem 1.9 it follows that Y1(N) has a model over Q and that for each

field extension K/Q the set Y1(N)(K) of K-rational points of Y1(N)Q is in bijection with the

set of isomorphism classes of pairs (E,P) where E is an elliptic curve over K and P ∈ E(K)
is a K-rational point of order N. We furthermore see that for p � N the curve Y1(N)Q has

a non-singular reduction Y1(N)Fp that parametrises all pairs (E,P) with E an elliptic curve

over a field K of characteristic p and P ∈ E(K) a point of order N.

There is another functor that people sometimes use; this is the functor

Fμ(N) : Sch→ Set.

It takes a scheme S to the set of pairs (E, ι) where E/S is an elliptic curve and ι : μN,S → E is

a closed immersion of group schemes over S. There exists a fine moduli space Yμ(N)/Z[1/N]
for Fμ(N) as well. Also here we have an isomorphism of Yμ(N)C with the complex curve

Y1(N)C; it is defined by sending z to (C/Λz, exp(2πik/N) 
→ k/N modΛ). In fact, we have

an isomorphism of schemes

Y1(N)∼= Yμ(N) (1.22)

defined as follows. Let S/Z[1/N] be a scheme and take (E,P) ∈ Y1(S). We have to make

a point (E ′, ι ′) ∈ Yμ(S). Put E ′ = E/〈P〉 with quotient map φ : E → E ′. For each closed
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immersion of group schemes ι : μN,S → E ′ we have an endomorphism of μN,S that is defined

by sending Q ∈ μN,S(T ) to eN(P,(ιQ)′) for any S-scheme T , where (ιQ)′ denotes any point

of E(T ) that maps to ιQ along φ . We take for ι ′ the ι that makes this endomorphism the

identity. Over C the isomorphism (1.22) can be defined by sending z∈H to wN(z) =−1/Nz.

For Y (N)with N > 2 there is a similar description as the fine moduli space over Z[1/N]
parametrising all pairs (E/S,φ) where φ : (Z/NZ)S → E(S)[N] is an isomorphism of group

schemes. In this case, the Y (N) from the previous subsection is a disjoint union of φ(N)
copies of the base change Y1(N)C of Y1(N)Z[1/N] to C: one for each possible value of the

Weil pairing.

One cannot construct Y0(N) as the fine moduli space parametrising pairs (E,C) of elliptic

curve and cyclic subgroups of order N in any sensible meaning. The obstruction lies in

the fact that such pairs always have the non-trivial automorphism −1. However, we can do

the following. Let the group G = (Z/NZ)× act on Y1(N) by letting d ∈ (Z/NZ)× act as

(E,P) 
→ (E,dP) on moduli and define Y0(N) as the quotient G \Y1(N). Although Y0(N)
is not a fine moduli space, it is true that for all fields K with char(K) � N the set Y0(N)(K)
is naturally in bijection with the set of K-isomorphism classes of pairs (E,C) where E is

an elliptic curve over K and C ⊂ E is a cyclic subgroup of order N defined over K. Here

as well Y0(N) from the previous subsection is canonically isomorphic to the base change of

Y0(N)Z[1/N] to C.

1.2.3 Moduli interpretation at the cusps

In Subsection 1.2.1 we defined the compact Riemann surfaces X0(N), X1(N) and X(N) but

so far we only gave moduli descriptions for Y0(N), Y1(N) and Y (N). In this subsection we

will explain the approach of [22] to extend the moduli interpretation to the cusps.

Néron polygons and generalised elliptic curves

Let n be a positive integer and let k be a field. A Néron n-gon over k is defined to be a singu-

lar connected curve over k that can be constructed as follows: take n copies of P1
k , indexed

by Z/nZ and identify for each i ∈ Z/nZ the point ∞ of the i-th P1 with the point 0 of the

(i+1)-st P1 such that this intersection point is an ordinary double point.

For a ∈ P1
k(k) and i ∈ Z/nZ we denote the point a of the i-th P1 of a Néron n-gon by (a, i).

The choice of projective coordinates on P1 allows us to identify P1
k−{0,∞}with Gm,k, which

acts on P1
k by (a,b) 
→ ab. This way we give the smooth locus Csm of a Néron n-gon C the

structure of a commutative group scheme, where addition is defined as

(a, i)+(b, j) := (ab, i+ j). (1.23)

We use this same formula to equip a Néron n-gon C with an action of Csm.
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Note that a Néron n-gon C together with its addition (1.23), admits an action of the group

μn(k) by letting ζ ∈ μn(k) act as (a, i) 
→ (ζ ia, i). Furthermore, we have an automorphism ι
defined on it that sends (a, i) to (a−1,−i). In fact

Aut(C,+)∼= μn(k)×〈ι〉 (1.24)

is the group of automorphisms of C that respect the addition.

We are now ready to define the notion of a generalised elliptic curve.

Definition 1.5. Let S be a scheme. Then a generalised elliptic curve over S is a scheme

E over S that is proper, flat, of finite presentation that comes equipped with a morphism

Esm×S E +→ E that makes Esm into a commutative group scheme acting on E and such that

each geometric fibre of E/S is either an elliptic curve or a Néron polygon equipped with an

action as in (1.23).

Definition 1.6. If E is a generalised elliptic curve over a scheme S, then a point of order N
of E/S is meant to be section in Esm(S)[N] whose pull-back to all geometric fibres defines a

point of order N such that the subgroup generated by it meets all irreducible components.

The notion of generalised elliptic curves enables us to generalise Igusa’s theorem to X1(N):

Theorem 1.10 (see [22, Chapter IV]). Let N > 4 be an integer. Then there exists a proper
smooth scheme X1(N) over Z[1/N], a generalised elliptic curve E over X1(N) and a point
P of E/X1(N) of order N that satisfies the following universal property: for all schemes
S/Z[1/N] and pairs (E,P) with E/S a generalised elliptic curve and P ∈ E(S) a point of
order N there are unique morphisms S→ X1(N) and E → E such that the following diagram
is commutative with Cartesian inner square:

E

�

��

��

E

��

S ��

P

��

X1(N)

P

��

Moreover, the geometric fibres of X1(N)/Z[1/N] are irreducible curves.

The scheme Y1(N) is naturally an open subscheme of X1(N) and the complement is called

the cuspidal locus of X1(N). We can also extend Yμ(N) to cusps and get a scheme Xμ(N)
parametrising pairs (E, ι) of generalised elliptic curves over S together with closed immer-

sions ι : μN,S → E. We require that the image of ι meets the geometric fibres of E in all

components. The isomorphism (1.22) extends to an isomorphism X1
∼= Xμ .

As with Y0(N), we define X0(N) by dividing out the group action of (Z/NZ)× defined

by d : (E,P) 
→ (E,dP). Furthermore, there also exists for N > 2 a scheme X(N) that is

a fine moduli space for pairs (E,φ)/S/Z[1/N] with E/S a generalised elliptic curve and

φ : (Z/NZ)2
S → Esm a closed immersion of S-group schemes meeting all irreducible compo-

nents of all geometric fibres of E.
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Tate curves

We will give an informal discussion on the Tate curve now. Precise results can be found in

[22, Chapter VII]. See also [74, Chapter V] for a more elementary and explicit approach. The

idea is that for an elliptic curve E = C/Λ over C we have E ∼= C×/qZ with q = exp(2πiz).
An explicit Weierstrass equation for E is

E : y2 + xy = x3 +a4(q)x+a6(q) (1.25)

with

a4(q) =−5 ∑
n≥1

σ3(n)qn and a6(q) =− 1

12
∑
n≥1

(5σ3(n)+7σ5(n))qn.

An isomorphism C×/qZ → E can be given by

t 
→
(

∑
n∈Z

qnt
(1−qnt)2

−2 ∑
n≥1

σ1(n)qn, ∑
n∈Z

(qnt)2

(1−qnt)3
+ ∑

n≥1

σ1(n)qn

)
,

where of course we send t ∈ qZ to 0 ∈ E. This isomorphism leads to the following identifi-

cation of differentials on C×/qZ and E:

dt
t

=
dx

2y+ x
.

We will use this t-coordinate notation whenever it makes sense.

The Weierstrass equation (1.25) defines a generalised elliptic curve over Z[[q]]. Also, for any

w ∈ Z>0 we can regard (1.25) as a Weierstrass equation for an elliptic curve over the ring

Z((q1/w)). We call this the Tate curve Eq over Z[[q]] and Z((q1/w)) respectively. The idea

is now that if we move our favourite cusp of width w to ∞ and see q1/w as a local parameter

there, then Eq can be seen as a (formal completion of a) universal elliptic curve over a punc-

tured neighbourhood of our cusp. This can in fact be used to describe cusps of X1(N) over

arbitrary fields, not just C.

Let now N > 4 and w be integers with w | N. Let k be a field of characteristic not dividing

N that contains all N-th roots of unity and put R = k[[q1/w]] and K = k((q1/w)). The Néron

model Eq of Eq over K is the smooth locus of a generalised elliptic curve over R whose

special fibre E q is a Néron w-gon over k. We have canonical isomorphisms Eq(K)∼= K×/qZ

and Eq,0(K) ∼= R×/qZ, where the latter is the subset of Eq(K) consisting of points whose

specialisation lies in the 0-component of the smooth locus. The component group of E q is

canonically isomorphic to

E q(k)/E
0
q(k)∼= Eq(K)/Eq,0(K)∼= (q1/w)Z/qZ ∼= Z/wZ.

Using the identification Eq(K) ∼= K×/qZ we get an isomorphism from μN(k)×Z/wZ to

Eq(K)[N], hence a homomorphism to E q(k), defined by (ζ , i) 
→ ζ qi/w. This gives us a de-

scription for all the cusps: to write down a cusp of X1(N)(k) is suffices to write down a w | N
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and a point (ζ , i) of order N of Eq(K) satisfying gcd(i,w) = 1; this last condition is necessary

so as to meet the requirement that the subgroup generated by it meets all the components of

the special fibre. Be aware of the fact that this does not lead to a unique notation for cusps

because of (1.24).

Let us work out what this means for a cusp γ∞ with γ =
(

a
c

b
d

)
∈ SL2(Z) in the upper half

plane model for X1(N)C. Write z ∈ H as γω with ω ∈ H and let w = w(γ) = N/gcd(c,N)
be the width of γ∞ in X1(N). If we put qγ = exp(2πiω) then q1/w

γ is a local parameter for

X1(N)C at γ∞. The fibre of (E,P) above z = γω is then uniquely isomorphic to

(E,P)z ∼=
(

C/Λω ,
cω +d

N

)
.

In terms of the parameter q1/w
γ this can be written as

(E,P)z ∼=
(
C×/qZ,ζ d

Nqc/N
γ

)
=

(
C×/qZ,ζ d

N(q1/w
γ )c/gcd(c,N)

)
,

where we have put ζN = exp(2πi/N). Our conclusion is that Eγ∞ is the Néron w-gon with

w = N/gcd(N,c) and for the point of order N on it we have

Pγ∞ =
(

exp(2πid/N),
c

gcd(c,N)

)
.

Note that the cusp does not uniquely determine the number d, but the different choices lead

to isomorphic objects.

Let us note that in this way we can see that the cusp 0 ∈H∗ is defined over Q: it corresponds

to (c,d) = (1,0) and thus to an N-gon with the point (1,1) on it, which is invariant under

the action of Gal(Q(ζN)/Q). The cusp ∞ ∈ H∗ is not defined over Q: it corresponds to

(c,d) = (0,1) and thus to a 1-gon with the point (ζN ,0) on it, whose isomorphism class in

only invariant under the stabiliser subgroup of Q(ζN +ζ−1
N ).

1.2.4 Katz modular forms
The algebraic description of modular curves allows us to give an algebraic description of

modular forms as global sections of certain line bundles over modular curves. These sec-

tions are sometimes called Katz modular forms and in particular they allow us to speak about

modular forms for Γ1(N) over any Z[1/N]-algebra.

Let S be a scheme and let E/S be a generalised elliptic curve. The curve E has a sheaf of

relative differentials Ω1
E/S as well as a zero section 0 : S→ E. We put

ωE/S := 0∗Ω1
E/S,

which is a line bundle on S. In particular, for N > 4 and k ∈ Z we can consider the line bun-

dle ω⊗k
EC/Y1(N)C

on Y1(N)C, using the notation of (1.21). Using the same construction of ωE/S
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in an analytic context, the sheaf ω⊗k
((C×H)/Λ)/H

is a free OH-module of rank 1, generated by

(dw)⊗k, where w denotes the coordinate on the factor C. In particular, any holomorphic func-

tion f : H→ C can be seen as the section f (z)(dw)⊗k of ω⊗k
((C×H)/Λ)/H

and vice versa. The

action of γ =
(

a
c

b
d

)
∈ SL2(Z) on (C×H)/Λ sends f (z)(dw)⊗k to (cz + d)−k f (γz)(dw)⊗k.

Using that Γ1(N) acts freely on H, we see now that H0(Y1(N)(C),ω⊗k) is isomorphic to

the space of holomorphic functions on H that satisfy the weight k modular transformation

property for Γ1(N).

Now, we extend this to EC/X1(N)C. Global sections of H0(X1(N)(C),ω⊗k) can still be seen

as holomorphic functions f : H→C satisfying the weight k modular transformation property

for Γ1(N). Using the description of neighbourhoods of cusps as Tate curves, one can see that

the extra condition at the cusps is simply that f has to be holomorphic at the cusps. So we

have an isomorphism

Mk(Γ1(N))∼= H0
(

X1(N)C,ω⊗k
EC/X1(N)C

)
.

Cusps forms are modular forms that vanish at the cusps, so we have

Sk(Γ1(N))∼= H0
(

X1(N)C,ω⊗k
EC/X1(N)C

(−cusps)
)

.

Here, cusps denotes the divisor of all cusps, all counted with multiplicity 1. The above

isomorphisms inspire us to write down the definition of Katz modular forms

Definition 1.7. Let N > 4 and k be integers. Let A be a Z[1/N]-algebra. Then the space of

Katz modular forms for Γ1(N) over A is defined to be the A-module

Mk(Γ1(N),A) := H0
(

X1(N)A,ω⊗k
EA/X1(N)A

)
and the space of Katz cusp forms over A is defined as the A-module

Sk(Γ1(N),A) := H0
(

X1(N)A,ω⊗k
EA/X1(N)A

(−cusps)
)

.

Let us remark that there is an isomorphism of line bundles

ω⊗2
E/X1(N)

∼−→Ω1
X1(N)/Z[1/N](cusps),

called the Kodaira-Spencer isomorphism, see [35, Subsection A1.3.17]. Over C it is defined

by f (z)(dw)⊗2 
→ (2πi)−1 f (z)dz. It is compatible with base-change. A consequence of this

isomorphism is

S2(Γ1(N),A)∼= H0
(

X1(N)A,Ω1
X1(N)A/A

)
,

which is something that we shall use later in our calculations.
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q-expansions

We can define the q-expansion of a Katz modular form of level N and weight k algebraically.

Let A be an algebra over Z[1/N,ζN ] and consider the Tate curve Eq over A[[q]] together

with the point t = ζN mod qZ on it. By Theorem 1.10, the pair (Eq,ζN modqZ) is the base-

change of E/X1(N) along an A[[q]]-valued point of X1(N). This base-change gives a pull-

back homomorphism

Mk(Γ1(N),A) = H0
(

X1(N)A,ω⊗k
EA/X1(N)A

)
→ H0

(
SpecA[[q]],ω⊗k

Eq/A[[q]]

)
.

The latter object is a free module over A[[q]] generated by (dt/t)⊗k, where dt/t is the standard

differential on Eq. So we obtain a homomorphism of A-modules

Mk(Γ1(N),A)→ A[[q]]
(

dt
t

)⊗k

.

Applying this homomorphism and dropping the factor (dt/t)⊗k defines for f ∈Mk(Γ1(N),A)
its q-expansion in A[[q]]. Formation of this q-expansion commutes with base-change. Over

C this q-expansion coincides with the usual q-expansion of f ∈ Mk(Γ1(N)) since the pair

(Eq,ζN modqZ) corresponds to a neighbourhood of the cusp ∞.

A thorn in the eye here is that the ring A has to contain a primitive N-th root of unity, while

we wish to work, for instance, over Q. Luckily, we can resolve this problem. So let A be a

Z[1/N]-algebra. Remember that we have an isomorphism

X1(N)∼= Xμ(N).

This induces an isomorphism

Mk(Γ1(N),A)∼= H0
(

Xμ(N),ω⊗k
(E/〈P〉)A/Xμ (N)A

)
.

Now, consider the pair (Eq, ι) over A[[q]] with ι the canonical injection μN,A ↪→ Eq via the

t-coordinate. We repeat the above argument and obtain a map

Mk(Γ1(N),A)→ A[[q]].

Over C, the q-series of f ∈ Mk(Γ1(N),A) obtained in this way coincides with the usual

q-expansion of WN( f ). So we have the following proposition:

Proposition 1.1. Let N and k be positive integers with N > 4. Let A be a subring of C in
which N is invertible. Then the image of the canonical map

Mk(Γ1(N),A)→Mk(Γ1(N))

consist exactly of those forms f for which the q-expansion of WN( f ) has coefficients in A.
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1.2.5 Diamond and Hecke operators
On the modular curve X1(N) we have a diamond operator 〈d〉 for d ∈ (Z/NZ)× that we have

in fact already mentioned before. It acts on a pair (E,P) by

〈d〉(E,P) 
→ (E,dP).

By pull-back it defines an operator on the space Sk(Γ1(N),Q) for any Z[1/N]-algebra A.

Over C this coincides with the usual diamond operator on Sk(Γ1(N)).

Hecke operators are defined on the Jacobian J1(N)Q of X1(N)Q as follows. For a positive in-

teger n, we let Tn be the endomorphism of J1(N)Q induced by the following map on divisors:

Tn : (E,P) 
→ ∑
C⊂E subgroup of order n,

C∩〈P〉=0

(E/C, P mod C).

Here, E is a true elliptic curve, not a generalised one. Now choose a rational point Q in

X1(N)Q, for instance (N-gon, (1,1)). Then we can embed X1(N)Q into J1(N)Q by sending P
to P−Q. This embedding induces an isomorphism

H0
(

J1(N)Q,Ω1
J1(N)Q/Q

) ∼−→ H0
(

X1(N)Q,Ω1
X1(N)Q/Q

)∼= S2(Γ1(N),Q)

which is independent of the choice of Q. The Hecke operators on J1(N)Q induce opera-

tors on the space S2(Γ1(N),Q) via this isomorphism. Over C, they coincide with the usual

Hecke operators on S2(Γ1(N)). For a general definition of Hecke operators on the space

Sk(Γ1(N),Q), see [35, 1.11].

Eichler-Shimura relation

Consider the modular curve X1(N) and let p be a prime not dividing N. On the Jacobian

J1(N)Fp of X1(N)Fp we have several operators. First of all, we have the Frobenius oper-

ator Frobp, defined on coordinates by x 
→ xp. This operator has a dual Verp, called the

Verschiebung. It satisfies Frobp ◦Verp = Verp ◦Frobp = p as endomorphisms of J1(N)Fp .

Viewing the Jacobian as a covariant (Albanese) functor of curves, the diamond operator 〈p〉
on X1(N)Fp defines an operator on J1(N)Fp that we shall also denote by 〈p〉. Furthermore,

the Hecke operator Tp on J1(N)Q defines an operator on the Néron model of J1(N)Q over Z.

The fibre of this Néron model over p is J1(N)Fp so we have an operator Tp on J1(N)Fp as

well. The following relation between all these operators holds in End(J1(N)Fp):

Tp = Frobp +〈p〉Verp . (1.26)

This relation is called the Eichler-Shimura relation in End(J1(N)Fp).

1.3 Galois representations associated to newforms
Modular forms turn out to be strongly related to the representation theory of Gal(Q/Q),
in particular to the 2-dimensional representations over finite fields and �-adic fields. As
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in the previous sections, we will not present the material in its most general and complete

form. Interested readers could consult for example [19] or [65] for a general treatment of

representation theory and [62] or [85] for Galois representations.

1.3.1 Basic definitions
Let G be a group and let K be a field. Assume that both G and K are equipped with a

topology; when for groups or fields considered in this text no standard topology exists or no

topology has been specified, the topology will be assumed to be discrete. For n ∈ Z≥0, an

n-dimensional linear representation of G over K is a continuous homomorphism

ρ : G→ GLn(K)

or, equivalently, a continuous linear action of G on an n-dimensional vector space over K. A

topology on GLn(K) is defined in the following way: embed GLn(K) into Mn(K)×Mn(K)
by g 
→ (g,g−1) and give Mn(K)×Mn(K)∼= Kn2

the product topology. This is to ensure that

the map g 
→ g−1 will be continuous.

The conventions here are not completely standard. In the literature, infinite-dimensional

and non-continuous representations are considered as well. Representations of G on two K-

vector spaces V and V ′ are called isomorphic if there is a linear isomorphism between V and

V ′ that respects the G-action.

A representation ρ : G→ GL(V ) is said to be irreducible if V is nonzero and the only sub-

spaces of V fixed by G are 0 and V . It is said to be absolutely irreducible if the representation

G→ GL(V ⊗K K) obtained from ρ is irreducible. A representation ρ : G→ GL(V ) is said

to be semi-simple if it can be written as a direct sum of irreducible representations. If G
is a finite group then any finite-dimensional representation of G over a field of character-

istic not dividing #G is semi-simple (Maschke’s theorem). An example of a representation

that is not semi-simple can be obtained as follows: Let p be any prime number and take

ρ : Z/pZ→ GL2(Fp) defined by

ρ(x) =
(

1

0

x
1

)
(1.27)

The following two theorems on semi-simple representations are important to us.

Theorem 1.11 (cf. [10, Proposition 3.12]). Let G be a group, let K be a field of characteristic
0 and let ρ and ρ ′ be n-dimensional semi-simple representations of G over K. If tr(ρ(g)) =
tr(ρ ′(g)) holds for all g ∈ G then ρ and ρ ′ are isomorphic.

Theorem 1.12 (Brauer-Nesbitt, [19, Theorem 30.16]). Let G be a finite group and let ρ and
ρ ′ be finite-dimensional semi-simple representations of G over a field. If for all g ∈ G the
characteristic polynomials of ρ(g) and ρ ′(g) coincide, then ρ and ρ ′ are isomorphic.

To any finite-dimensional representation ρ : G→GL(V ) we can attach a semi-simple repre-

sentation ρss : G→GL(V ) as follows. There is a maximal chain 0 = V0 � V1 � · · ·� Vr = V
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of G-stable subspaces. The action of G on V induces an action on each successive quotient

Vi+1/Vi and we define ρss to be the action of G on the direct sum of these successive quo-

tients. The representation ρss is called the semi-simplification of ρ; by the Jordan-Hölder

theorem it is well-defined, i.e. independent of the chosen chain. In any case, the process of

semi-simplification does not affect the function g 
→ charpol(ρ(g)).

1.3.2 Galois representations
Let now G be the group Gal(Q/Q) with its Krull topology. For each prime p, we fix an

embedding Q ↪→Qp. This defines an embedding Gal(Qp/Qp) ↪→Gal(Q/Q) whose image is

a decomposition group Dp at p; we will identify Gal(Qp/Qp) with Dp. Every representation

ρ of Gal(Q/Q) defines a representation ρp of Gal(Qp/Qp) by restriction. A representation

ρ : Gal(Qp/Qp)→ GLn(K) is called unramified if it is trivial on its inertia subgroup. In

that case it factors through the quotient Gal(Qp/Qp) � Gal(Fp/Fp) and we have a well-

defined element ρ(Frobp) ∈ GL2(K). A representation ρ : Gal(Q/Q)→ GLn(K) is called

unramified at p if the restriction of ρ at p is unramified; this notion is independent of the

choice of Gal(Qp/Qp) ↪→ Gal(Q/Q). If ρ is unramified at p then ρ(Frobp) is well-defined

up to conjugacy; in particular charpol(ρ(Frobp)) will be well-defined in that case.

One-dimensional Galois representations

The Kronecker-Weber theorem allows us to classify the 1-dimensional representations of

Gal(Q/Q). The maximal abelian extension of Q is the field Q(μ∞) obtained by adjoining all

roots of unity in Q to Q. Its Galois group Gal(Q(μ∞)/Q) is canonically isomorphic to Ẑ×;

the isomorphism Ẑ× ∼−→Gal(Q(μ∞)/Q) is given by letting α ∈ Ẑ× send a root unity ζ to ζ α

(which is well-defined). This implies that for any topological field K, giving a 1-dimensional

representation of Gal(Q/Q) is equivalent to giving a continuous homomorphism Ẑ× → K×.

A particular example that is interesting to us is the case K = Q�. We canonically have a

surjection Ẑ× � Z×� and an embedding Z×� ↪→Q×� ⊂Q
×
� . Composing these two homomor-

phisms gives a Q×� -valued character of Ẑ× that corresponds to a 1-dimensional representation

of Gal(Q/Q) that is known as the �-adic cyclotomic character and that is denoted by χ�. The

representation χ� is unramified outside � and for all primes p �= � we have

χ�(Frobp) = p ∈Q×� .

This representation factors through Gal(Q(μ�∞)/Q), where Q(μ�∞) is the extension of Q ob-

tained by adjoining all roots of unity of �-primary order.

For each N ∈ Z>0 we have a canonical surjection Ẑ× � (Z/NZ)× and we can write down a

character of Z× by writing down a character ε : (Z/NZ)× → μ(Q�). By abuse of notation,

we will also write the corresponding character of Gal(Q/Q) as ε . It is unramified outside N,

factors through Gal(Q(μN)/Q) and using our abusive notation it satisfies ε(Frobp) = ε(p)
for all p � N. In particular we can make 1-dimensional representations of Gal(Q/Q) over Q�
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of the form εχn
� where ε is associated to a character of (Z/NZ)× for some N and n is an

integer.

We can also take K = F�. Any continuous homomorphism ε : Ẑ× → F
×
� factors as

ε : Ẑ× � (Z/NZ)× → F×λ ⊂ F
×
�

for some N ∈ Z>0 and some finite extension Fλ of F�. Again if we denote the corre-

sponding character of Gal(Q/Q) by ε as well then we have the abusively written iden-

tity ε(Frobp) = ε(p) ∈ F
×
� for p � N. A special example is the mod � cyclotomic charac-

ter χ�. Here we take N = � and use the canonical map (Z/�Z)× → F×� ⊂ F
×
� . It satisfies

χ�(Frobp) = p ∈ F×� for p �= �. This corresponds to the well-known canonical isomorphism

Gal(Q(μ�)/Q) ∼−→ (Z/�Z)×.

1.3.3 �-Adic representations associated to newforms
It was a conjecture of Ramanujan and Petersson that for a newform f of level N and weight

k, the inequality

|ap| ≤ 2p(k−1)/2

holds for all primes p � N. The inequality |τ(p)| ≤ 2p11/2 mentioned in Subsection 1.1.2 is

a special case of this, conjectured by Ramanujan; Petersson formulated the conjecture for

more general newforms. Later, Serre refined this conjecture to a more delicate conjecture

about Galois representations, which was already known to hold by Eichler and Shimura for

weight k = 2, and later proved by Deligne for weights k > 2 [21] and by Deligne and Serre

for k = 1 [23]. The proven form of the conjecture is as follows:

Theorem 1.13. Let k and N be positive integers. Let f ∈ Sk(Γ1(N)) be a newform and let
Kf be the coefficient field of f . Choose a rational prime � and a prime λ of Kf lying over �.
Then there is an irreducible representation

ρ = ρ f ,λ : Gal(Q/Q)→ GL2(Kf ,λ )

that is unramified outside N� and such that for each prime p � N� the characteristic polyno-
mial of ρ(Frobp) satisfies

charpol(ρ(Frobp)) = x2−ap( f )x+ ε f (p)pk−1.

Furthermore, the representation ρ is unique up to isomorphism and for each p � N� the com-
plex roots of charpol(Frobp) both have their absolute value equal to p(k−1)/2.

The representation ρ in the theorem is called the λ -adic representation associated to f . It

is clear that this theorem implies the conjecture of Ramanujan and Petersson, as the trace

is the sum of the roots of the characteristic polynomial. Also, it follows from this theorem

that ρ = ρ f ,λ is odd, which means that for a complex conjugation c ∈ Gal(Q/Q) we have

detρ(c) =−1. This holds because of detρ = ε f χk−1
� and the fact that the character and the

weight of a newform have the same parity. Let us for completeness say what happens with

|ap( f )| for p | N.
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Theorem 1.14. Let f ∈ Sk(N,ε) be a newform and let p be a prime dividing N. Then we
have

|ap( f )|=

⎧⎪⎨
⎪⎩

p(k−1)/2 if N(ε) � N
p ,

p(k−2)/2 if N(ε) | N
p and p2 � N,

0 if N(ε) | N
p and p2 | N.

For a proof of this, see [58, Theorems 2 & 3 and Corollary 1] or [50, Theorem 3].

We will now indicate where the representations ρ f ,λ can be found. Let f ∈ Sk(Γ1(N))
be a newform, let T be the Hecke algebra associated to Sk(Γ1(N)) and consider the map

θ f : T→ C defined by Tn 
→ an( f ) and 〈d〉 
→ ε f (d). Also, choose a rational prime � and a

prime λ | � of Kf .

For k = 2 we can find the representation as follows. First of all, we have the �-adic Tate

module of J1(N):
T�(J1(N)) := lim←−

n
J1(N)(Q)[�n],

where the maps in the projective system are multiplication by �. This is a free Z�-module of

rank 2g(X1(N)), equipped with an linear action of Gal(Q/Q). Let T be the Hecke algebra

associated to S2(Γ1(N)). Integration defines a perfect pairing between H1(X1(N)(C),C) and

S2(Γ1(N))⊕ S2(Γ1(N)). Also, T acts on H1(X1(N)(C),Z) ∼= H1(J1(N)(C),Z) and this ac-

tion is self-adjoint with respect to the integration pairing. If follows that T�(J1(N))⊗Z�
Q�

is a free TQ�
-module of rank 2. We can describe the space Vf ,λ as the tensor product of

T�(J1(N)) and Kf ,� over TZ�
. Here Kf obtains its T-module structure via θ f and it gets the

action ρ ′f ,λ of Gal(Q/Q) from the one on T�(J1(N)).

Now, let p � N� be a prime. By proper smooth base-change, the action of Frobp ∈Gal(Q/Q)
on T�(J1(N)) coincides with the action of Frobp on T�(J1(N)Fp). From the Eichler-Shimura

relation (1.26) it already follows that ρ ′f ,λ (Frobp) is a root of x2− ap( f )x + ε f (p)p. Now,

if ρ ′f ,λ (Frobp) is not a scalar matrix, this already shows that x2− ap( f )x + ε f (p)p is in-

deed its characteristic polynomial. Using the Weil pairing on T�(J1(N)Q) one can show that

detρ ′f ,λ = ε f χ� so that in general we have charpol(ρ ′f ,λ ) = x2− ap( f )x + ε f (p)p and thus

ρ f ,λ
∼= ρ ′f ,λ .

For k > 2 the construction is more technical and uses étale cohomology. Replace N by a

multiple rN with gcd(r,N) = 1 if this is necessary to obtain N > 4. Consider the universal

elliptic curve π : EQ → Y1(N)Q and the �-adic étale sheaf

Fk,� := Symk−2 R1π∗Q�.

This is a locally free sheaf of Q�-vector spaces of dimension k−1. Now put

W� := HomQ�

(
H1

ét(X1(N)Q, j∗Fk,�),Q�

)
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with j : Y1(N) ↪→ X1(N) the natural embedding. It can be shown that there are natural actions

of Tk(N) and Gal(Q/Q) on W� that allow us to obtain ρ f ,λ as the tensor product of W� with

Kf ,λ over TQ. We won’t be using this construction in our calculations and we refer to [21]

for the details.

In the case k = 1 no direct geometric construction is known, but a proof of existence was

given by Deligne and Serre [23]. The essential idea of their proof is as follows. For any

prime �, a form of weight one is congruent to a form of weight � modulo �, a case in which

the existence of a representation is already known. Reducing mod a prime above � we get a

representation ρ f ,� over F�. Combining asymptotic properties of ap( f ) mod � for large � and

|ap( f )| they concluded that the set {ap( f )} should be finite and that in fact a representation

over Kf should exist for f . So not only over all Kf ,λ there exists a representation in this case

but also over C.

1.3.4 Mod � representations associated to newforms

The representations ρ f ,λ are uncountable objects. This implies that we will not be able to

compute them precisely, except in some special cases. So if we want to compute them then

we have to approximate them, like one approximates real numbers by floating point numbers.

The approximations that we will study are representations ρ = ρ f ,λ : Gal(Q/Q)→GL2(Fλ )
that have charpol(ρ(Frobp)) congruent to X2−ap( f )X + ε(p)pk−1 modλ .

Let G be a compact group, let K be an �-adic field with residue field k and let ρ : G→GLn(K)
be a semi-simple representation. From the compactness of G it follows that Kn has a G-stable

OK-sublattice: if Λ ⊂ Kn is any OK-lattice, then the OK-module generated by GΛ is a G-

stable OK-lattice. Reducing this lattice modulo the prime λ of K we obtain a 2-dimensional

representation of G over k. This representation depends in general on the choice of the lat-

tice. However, the Brauer-Nesbitt theorem shows that its semi-simplification ρ is unique up

to isomorphism (note that since k is finite, the representation factors through a finite quotient

of G). This semi-simple representation ρ is called the reduction of ρ modulo λ .

This shows that the above mentioned representations ρ f ,λ at least do exist. We can also

find them concretely. Assume for this that ρ f ,λ is absolutely irreducible, which is the most

interesting case anyway.

The case k = 2

The above mentioned construction of ρ f ,λ suggests that we should look inside Jacobians of

modular curves.

Theorem 1.15 (Boston-Lenstra-Ribet [9, Theorem 2]). Let f ∈ S2(Γ1(N)) be a newform and
let λ be a prime of Kf such that ρ f ,λ is absolutely irreducible. Let T be the Hecke algebra
associated to S2(Γ1(N)) and consider the map θ f ,λ : T→ Fλ defined by Tn 
→ an modλ and
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〈d〉 
→ ε f (d)modλ . Let m = m f ⊂ T be the kernel of θ f ,λ . Then the (T/m)[Gal(Q/Q)]-
module J1(N)(Q)[m] is a direct sum of copies of ρ f ,λ .

If we take m as in the theorem then from the construction of ρ f ,λ it follows a priori that

ρ f ,λ is an irreducible constituent of J1(N)(Q)[mr] for some r > 0. An argument of Mazur

[52, Section 14] shows that we can in fact take r = 1 here, showing that the number of copies

in Theorem 1.15 is positive. The map θ f ,λ mentioned in Theorem 1.15 need not be surjective.

So it may happen that the representation ρ f ,λ is actually defined over a field that is smaller

than Fλ .

The case k �= 2

If we write N = N′�n with � � N′ then it can be shown that there is a newform f ′ of weight

k and level dividing N′, a prime λ ′ of Kf ′ and embeddings of Fλ and F′λ into F� such that

for all n coprime to N we have in F� an equality of an( f ) mod λ with an( f ′) mod λ ′. For a

proof of this see [61, Theorem 2.1] and [12, Proposition 1.1]. In other words, without loss of

generality we can and do assume � � N.

If we let the weight vary, we can find more congruences. In fact, [61, Theorem 2.2] states

that for k ≤ �+ 1 there is a newform f ′ of level dividing N� and weight 2 such that in the

notation as above, an( f )modλ is equal to an( f ′)modλ ′ for n coprime to N�. So also in

this case, we can find the representation inside the Jacobian of a modular curve. If we have

k > �+ 1 then the representation ρ = ρ f ,λ might not always be present inside the �-torsion

of some J1(M) but there is a twist

ρ⊗χn
� : σ 
→ ρ(σ)χn

�(σ)

which does belong to a form of weight at most �+1, hence can be reduced to weight 2 again;

see [27, Section 7].

In conclusion, if ρ f ,λ is absolutely irreducible, we can always reduce to weight 2 and work

inside the �-torsion of the Jacobian of some modular curve X1(M).

Multiplicity one

The number of copies of ρ f ,λ in Theorem 1.15 is called the multiplicity of ρ f ,λ . In general,

let f ∈ Sk(Γ1(N)) be a newform and λ is a prime of Kf such that ρ = ρ f ,λ is absolutely

irreducible. Then we define the multiplicity of ρ f ,λ as the multiplicity of its twist that is

associated to a weight 2 form of minimal level. This multiplicity is equal to 1 in most cases,

exceptions are only possible if a list of very strong conditions are satisfied.

Theorem 1.16 (Multiplicity one theorem, cf. [13, Theorem 6.1]). Let N and k be positive
integers and let f ∈ Sk(Γ1(N)) be a newform. Furthermore, let � � N be a prime and suppose
2≤ k ≤ �+1. Take a prime λ of Kf above � such that ρ = ρ f ,� is an absolutely irreducible
representation of multiplicity not equal to one. Then k is equal to �, the representation ρ is
unramified at � and ρ(Frob�) is a scalar matrix.
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With some possible exceptions for � = 2, the converse of the theorem also holds; for a proof

of this, see [87, Corollary 4.5]. For computational examples on representations of multiplic-

ity not equal to one, see [41].

1.3.5 Examples

Let us give some examples of Galois representations associated to modular forms now. If one

relaxes Theorem 1.13 a bit and does neither demand the representation to be irreducible nor

the roots of ρ(Frobp) to have absolute value p(k−1)/2 then the Eisenstein series Gψ,φ
k have

Galois representations as well. From the q-expansion (1.8) of G = Gk one can immediately

read off that

ρG,� =
(

ψ
0

0

φ χk−1
�

)

is an �-adic representation for G, where we denote a Dirichlet character and its associated

Gal(Q/Q)-character by the same symbol.

The Ramanujan tau function

For the Ramanujan tau function, we also have representations. We are unable to write down

the �-adic ones so we’ll display some of the mod � representations for the tau function.

The congruences for τ(n) described in Subsection 1.1.2 enable us to write down explicit

representations ρΔ,� for � ∈ {2,3,5,7,23,691}. For � ∈ {2,3,5,7,691} they are reducible,

for instance

ρΔ,5 ∼
(

χ5

0

0

χ2
5

)
and ρΔ,691 ∼

(
1

0

0

χ11
691

)
.

For � = 23 we have to do a little more work to write it down. Consider the field Q(
√−23)

and let H be its Hilbert class field. The field H is a splitting field of x3− x− 1 over Q and

has Galois group Gal(H/Q)∼= S3; we fix an isomorphism of these two groups. Consider the

space V ⊂ F3
23 consisting of the vectors whose coordinates sum up to zero. The group S3 acts

on F3
23 by permuting the basis vectors and V is stable under this action. We claim that ρΔ,23

is the composition

ρΔ,23 : Gal(Q/Q)→ Gal(H/Q)∼= S3 → GL(V )∼= GL2(F23).

Indeed: primes p with
( p

23

)
=

(
−23

p

)
=−1 are inert in Q(

√−23) so are sent to a transposi-

tion in S3; transpositions have trace 0 in GL(V ). Primes of the form a2 +23b2 are known to

split completely in H so are sent to the identity matrix which has trace 2. The other primes

p �= 23 have
(
−23

p

)
= 1 but do not split completely in H so must be sent to a 3-cycle which

has trace −1.

Another interesting case is � = 11. From the above we know that we can obtain ρΔ,11

as the action of Gal(Q/Q) on a 2-dimensional subspace of J1(11)(Q)[11]. Because of
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g(X1(11)) = 1, the space J1(11)(Q)[11] is 2-dimensional itself and E := J1(11) is an elliptic

curve; a minimal Weierstrass equation for it is

E : y2− y = x3− x2.

So ρΔ,11 is isomorphic to the action of Gal(Q/Q) on E[11]. In particular we have the con-

gruence τ(p)≡ p+1−#E(Fp) mod 11 for p �= 11. Schoof’s algorithm [63] can be used to

compute #E(Fp) mod � efficiently for p �= 11 and small � �= p.

Remarks

Serre [64] has explained that the existence of simple congruences for τ(p) depends on what

type of representation ρΔ,� is. As already remarked, it is reducible for � ∈ {2,3,5,7,691}.
Furthermore, it is dihedral for � = 23: a representation ρ : Gal(Q/Q)→ GL2(Fq) is called

dihedral if it is irreducible and over an algebraic closure of Fq its image is contained in a

subgroup conjugate to
{(

∗
0

0
∗
)}
∪
{(

0
∗
∗
0

)}
.

For all other primes �, the representation ρΔ,� is non-exceptional: a Galois representation

ρ : Gal(Q/Q)→ GL2(Fq) with q = pr is called exceptional if its image does not contain a

subgroup conjugate to SL2(Fp). So ρΔ,� is exceptional for � ∈ {2,3,5,7,23,691} and for all

other � its image contains SL2(F�). We have seen that reducible and dihedral representations

are exceptional. These are not the only types of exceptional representations; there are also

representations whose projective image is contained in a group isomorphic to the symme-

try group of a regular polyhedron, but these do not occur very often. For more details on

the exceptional representations for τ(p) and related functions, the reader is referred to [83]

and [84].

1.4 Serre’s conjecture
Let � be a prime and let ρ : Gal(Q/Q)→GL2(F�) be an odd irreducible representation. Serre

made the striking conjecture that such a ρ can always be obtained from a modular form, of

a prescribed level and weight. In this section we will give the definitions for the level and

the weight of the representation, which are called its Serre invariants; they depend on local

properties of ρ . After this, we will formulate the conjecture, which is nowadays a theorem.

The main reference for this material is [70]; other references include [27], [20], [42], [62]

and [37].

1.4.1 Some local Galois theory
In this subsection we shall give some basic definitions from local Galois theory that we shall

be using later on. However, to understand this material well, it is recommended to study

[67], especially [67, Chapter IV].
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Let K be a field that is complete with respect to a discrete valuation v = vK , having perfect

residue field κ . A field satisfying these conditions will be called a local field here. We also

take as convention that discrete valuations map K× surjectively to Z. The ring of elements

of a local field K with nonnegative valuation will be denoted by OK and π = πK will denote

a uniformiser of K.

Lower numbering

Let L/K be a finite Galois extension of local fields, with residue fields λ/κ . For s∈ [−1,+∞[,
define the subgroups Gs and G+

s of Gal(L/K) as

Gs = {σ ∈ Gal(L/K) : vL(σπL−πL)≥ s+1} ,

G+
s = {σ ∈ Gal(L/K) : vL(σπL−πL) > s+1} ;

this does not depend on the choice of πL. In particular, G−1 is equal to Gal(L/K) and

G−1/G+
−1 is canonically isomorphic to Gal(λ/κ). If s is not an integer, then we have

G+
s = Gs and if s is an integer, we have G+

s = Gs+1.

The group G0 is called the inertia subgroup of Gal(L/K) and is usually denoted by I. The

group G+
0 is called the wild ramification subgroup of Gal(L/K) and we denote usually by Iw.

The wild ramification group can only be non-trivial if p = char(κ) is positive; in that case it

is the unique Sylow p-subgroup of I. Also, G0/G+
0 is called the tame ramification or tame

inertia subquotient of Gal(L/K) and is denoted by It .

We have an injective homomorphism

θ0 = θ L/K
0 : It ↪→ O×

L /(1+πLOL)∼= λ×, σ 
→ σπ
π

mod (1+πLOL),

which is independent of the choice of a uniformiser of L. The group G−1/G+
−1 acts by

conjugation on G0/G+
0 ; via θ0, this action is compatible with the natural action of Gal(λ/κ)

on λ×. To be more precise, for σ ∈ G−1 and τ ∈ G0 the following formula holds:

θ0(στσ−1) = σ (θ0(τ)) , (1.28)

where the action of G−1 on λ× is the one that is obtained from the canonical isomorphism

G−1/G+
−1
∼= Gal(λ/κ).

Upper numbering

Let again a finite Galois extension L/K of local fields be given and consider its lower num-

bering filtration. Define a function φ : [−1,+∞[→ [−1,+∞[ by

φ(s) =
∫ s

0

#Gt

#G0
dt.
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This is a concave piecewise linear strictly increasing function. In particular it has an inverse,

which we will call ψ . Now the upper numbering is defined by

Gs = Gψ(s) and Gs+ = G+
ψ(s).

The jumps in this filtration have rational index, not necessarily at integers. The real-valued

indices allow us to use integrals in order to compactify a lot of notation. Note that for

s ∈ [−1,0] we have Gs = Gs and G+
s = Gs+.

If L is an infinite Galois extension of K, then we can still define an upper numbering on

Gal(L/K): the upper numbering is compatible with taking Galois subfields, thus with taking

quotients of Galois groups. Therefore, we can simply take projective limits to obtain an

upper numbering Gal(L/K)s and Gal(L/K)s+ that is compatible with taking finite Galois

subextensions of L/K. In particular, we can speak of I(L/K), Iw(L/K) and It(L/K)

Tame characters

We will now restrict to the case K = Q� and study the structure of the tame ramification

group of Q�/Q�. For every finite Galois extension L/Q� with residue field λ there is a

canonical embedding θ L/Q�
0 : It(L/Q�) ↪→ λ× as we saw above. If M/L/Q� is a tower of

Galois extensions with μ/λ/F×� the corresponding extensions of residue fields, then the

diagram

It(M/Q�) �� ��
� �

θ0
��

It(L/Q�)� �

θ0

��

μ× Norm �� �� λ×

commutes. If we put L = Q�(ζm, m
√

�) with m = �n−1 then θ L/Q�
0 maps It(L/Q�) isomorphi-

cally to F×�n . This gives us an isomorphism

It(Q�/Q�)∼= lim←−
n

F×�n,

where the maps in the projective system are the norm maps F�n → F�m for m | n.

Giving a character φ : It(Q�/Q�)→ F×� boils thus down to giving an n and a homomorphism

of groups F×�n → F×� . The smallest n that can be used here is called the level of φ . For a

given n, exactly n of the homomorphisms F×�n → F×� come from field embeddings F�n ↪→ F�;

if a character ψ : It(Q�/Q�)→ F×� can be given in this way, then we call ψ a fundamental
character of level n.

Every character φ : It(Q�/Q�)→ F×� is a power of any fundamental character of the same

level. The fundamental character of level 1 is the restriction of the mod � cyclotomic χ�

character to I, which we will abusively write as χ� as well.
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Peu/très ramifiée

Let L/Q� be a Galois extension whose wild ramification group Iw is killed by �. Let K ⊂ L be

the maximal tamely ramified subextension, i.e. the fixed field of Iw and consider the extension

L(ζ�)/K(ζ�). By Kummer theory, there is a unique subgroup A < K(ζ�)×/K(ζ�)×� with

L(ζ�) = K(ζ�)(
�
√

A). If A is a subgroup of O×
K(ζ�)

modK(ζ�)×� then we say that the extension

L/Q� is peu ramifiée and otherwise that it is très ramifiée. A representation ρ of Gal(Q�/Q�)
is called peu/très ramifiée if the field extension Q

ker(ρ)
� /Q� is.

1.4.2 The level
Let V be a finite dimensional vector space over F� and let ρ : Gal(Q/Q)→ GL(V ) be a

representation. For a prime p �= � we consider the representation ρ|Dp of G = Gal(Qp/Qp)
and set

n(p,ρ) =
∫ +∞

−1
dim(V/V Gs

)ds. (1.29)

It is a non-trivial fact that n(p,ρ) is a non-negative integer (cf. [67, Ch. VI]), equal to 0 for

all but finitely many p. We define the level N(ρ) of ρ as

N(ρ) := ∏
p�=�prime

pn(p,ρ). (1.30)

The integer defined in this way is known as the prime-to-� part of the Artin conductor of ρ .

We can also use the lower numbering to define the level. The field K := Qker(ρ) is a finite

Galois extension of Q and the representation ρ factors through Gal(K/Q). Again, let p �= �
be a prime and choose a prime p of K above p. Then G = Gal(Kp/Qp) can be seen as a

subgroup of Gal(K/Q). The formula (1.29) is equivalent to

n(p,ρ) =
∞

∑
i=0

dim(V/V Gi)
[G0 : Gi]

.

In any case, we can read off from these formulas that n(p,ρ) = 0 if and only if ρ is unrami-

fied at p and n(p,ρ) = dim(V/V I) if and only if ρ is (at most) tamely ramified at p.

This definition of level comes from Artin L-series. Let V be a finite-dimensional vector space

over C and let ρ : Gal(Q/Q)→ GL(V ) be a representation. For each prime p, consider the

subspace V Ip of V . The action of Frobp on V Ip is well-defined up to conjugacy. We define

the L-series of ρ to be

L(ρ,s) := ∏
pprime

det
(
1− p−sρ(Frobp);V Ip

)
.

This series converges absolutely and uniformly in any right half plane {s∈C : ℜ(s) > 1+δ}
with δ > 0 and it has a meromorphic continuation to all of C. Any complex conjugation in
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Gal(Q/Q) will be sent to a matrix with eigenvalues equal to 1 and −1; let n+ and n− their

respective multiplicities. Define the completed L-series to be

Λ(ρ,s) := N(ρ)s/2
(

πs/2Γ(
s
2
)
)n+(

π(s+1)/2Γ(
s+1

2
)
)n−

L(ρ,s),

where N(ρ) is defined by the same formulas as above except that we don’t exclude a prime

called � in the product (1.30). If we let ρ ′ be the representation obtained by composing ρ
with complex conjugation in GL(V ) then we have a functional equation

Λ(ρ,s) = W (ρ)Λ(ρ ′,1− s)

where W (ρ) ∈ C has absolute value 1. For details on these matters, the reader is referred

to [56, Chapter VII].

1.4.3 The weight
The weight of ρ is defined in terms of ρ|D�

. Serre’s original definition [70, Section 2] differs

slightly from Edixhoven’s one in [27, Section 4]. The difference is due to the fact that Serre

considers only classical modular forms, whereas Edixhoven considers the more geometric

Katz modular forms. Spaces of Katz modular forms in positive characteristic can sometimes

be bigger than their classical counterparts. Because of this, Serre avoids the cases k = 1 and

odd k for � = 2. It is however true that those Katz modular forms can always be lifted to

classical modular forms, but the weight may have to be adjusted.

A representation Gal(Q�/Q�)→GL2(F�) can have several shapes and to define the weight it

seems inevitable to do an investigation on the possible shapes that can occur. Using the fact

that im(ρ|I�) is an extension of a cyclic group by an �-group one can show that ρ|I� has to be

reducible. It follows that (ρ|I�)ss the direct sum of two characters, which have to be tame as

the order of the image is coprime to �:

(ρ|I�)ss ∼
(

φ
0

0

φ ′

)
,

say. Using (1.28) one can show that either φ and φ ′ are both of level 1 or φ and φ ′ are both

of level 2. To define the weight we will distinguish on these two cases, starting with the level

2 case as it has less subcases than the level 1 case.

The case that φ and φ ′ have level 2

From (1.28) it follows that φ and φ ′ are each others �-th power and in fact that ρ|D�
is dihe-

dral. If we choose a fundamental character ψ of level 2 then we can find a,b ∈ {0, . . . , �−1}
with

φ = ψa+�b and φ ′ = ψ�a+b.

We define the weight of ρ now as

k(ρ) := 1+ � ·min(a,b)+max(a,b).

Let us remark that choosing another ψ just exchanges a and b and furthermore that a and b
are distinct as otherwise the level of φ and φ ′ would be 1.
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The case that φ and φ ′ have level 1 and ρ|I� is tamely ramified

In this case φ and φ ′ are powers of the cyclotomic character χ� and ρ|I� is semi-simple, so

we can write

ρ|I� ∼
(

χa
�

0

0

χb
�

)
with a,b ∈ {0, . . . , �− 2}. There is a difference between the definitions of Serre and Edix-

hoven. Edixhoven puts

k(ρ) := 1+ � ·min(a,b)+max(a,b)

and Serre’s definition is the same except for a = b = 0 where he puts k(ρ) := �.

The case that φ and φ ′ have level 1 and ρ|I� is wildly ramified

Here, φ and φ ′ are again powers of χ�, but ρ|I� is not semi-simple. We write

ρ|I� ∼
(

χa
�

0

∗
χb

�

)
,

with a ∈ {1, . . . , �−1} and b ∈ {0, . . . , �−2}.

Suppose first that we have a = b+1 and ρ|D�
is très ramifiée over Q�. Then we have again a

difference between Serre and Edixhoven. Edixhoven puts

k(ρ) := �+ � ·min(a,b)+max(a,b)

and Serre’s definition has one exception to Edixhoven’s one: Serre puts k(ρ) := 4 in the case

� = 2. In all other cases (i.e. if either a �= b+1 holds or ρ is peu ramifiée at �) the weight is

defined by

k(ρ) := 1+ � ·min(a,b)+max(a,b).

Remarks

Sticking to Edixhoven’s definitions, we have 1≤ k(ρ)≤ �2−1 in all cases. We have k(ρ) = 1

if and only if ρ is unramified at �. There is a twist ρ⊗ χn
� of minimal weight. This minimal

weight is at most �+ 1 and is called the reduced weight of ρ; it is denoted by k̃(ρ). For a

representation ρ that is wildly ramified at �, an interesting theorem of Moon and Taguchi

relates the reduced weight of ρ to the �-part of the discriminant of the number field Qker(ρ):

Theorem 1.17 (Moon & Taguchi, [55, Theorem 3]). Consider a wildly ramified representa-
tion ρ : Gal(Q�/Q�)→ GL2(F�). Let n ∈ Z satisfy k̃ := k̃(ρ) = k(ρ⊗χn

�). Define a number
d by d = gcd(b, k̃−1, �−1) and define m ∈ Z by letting �m be the wild ramification degree
of K := Q

ker(ρ)
� over Q�. Then we have

v�(DK/Q�
) =

{
1+ k̃−1

�−1 − k̃−1+d
(�−1)�m if 2≤ k̃ ≤ �,

2+ 1
(�−1)� − 2

(�−1)�m if k̃ = �+1,

where DK/Q�
denotes the different of K over Q� and v� is normalised by v�(�) = 1.
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1.4.4 The conjecture
Let us now state the conjecture. It has a weak form and a strong form.

Conjecture 1.1 (Serre’s conjecture, weak form, [70, Conjecture 3.2.3]). Consider an odd
irreducible representation ρ : Gal(Q/Q) → GL2(F�). Then there exists a newform f of
some level and some weight, a prime λ of Kf above � and an embedding Fλ ↪→ F� such that
ρ ∼= ρ f ,λ holds, where we view ρ f ,λ as a representation over F� via the embedding Fλ ↪→ F�.

Conjecture 1.2 (Serre’s conjecture, strong form, [70, Conjecture 3.2.6]). In the notation and
statement of Conjecture 1.1 there exists an f of level dividing N(ρ) and weight k(ρ).

It is a result of many people that the weak version is equivalent to the strong version; instead

of compiling a complete list of names here, we refer to the overview article [42]. Serre’s

conjecture has been proven subsequently for level one in [38], for representations of odd

level over fields of odd characteristic in [39] and finally in general in [43]. In all cases, the

main ideas originate from the proof of the modularity theorem for elliptic curves by Taylor

and Wiles [86].



42 CHAPTER 1. PRELIMINARIES


