
Explicit computations with modular Galois representations
Bosman, J.G.

Citation
Bosman, J. G. (2008, December 15). Explicit computations with modular Galois
representations. Retrieved from https://hdl.handle.net/1887/13364
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13364
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13364


Explicit computations with modular
Galois representations

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. P. F. van der Heijden,

volgens besluit van het College voor Promoties

te verdedigen op maandag 15 december 2008

klokke 13.45 uur

door

Johannes Gerardus Bosman

geboren te Wageningen

in 1979



Samenstelling van de promotiecommissie:

Promotor: prof. dr. S. J. Edixhoven (Universiteit Leiden)

Referent: prof. dr. W. A. Stein (University of Washington)

Overige leden: prof. dr. J.-M. Couveignes (Université de Toulouse 2)
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Preface

The area of modular forms is one of the many junctions in mathematics where several dis-
ciplines come together. Among these disciplines are complex analysis, number theory, al-
gebraic geometry and representation theory, but certainly this list is far from complete. In
fact, the phrase ‘modular form’ has no precise meaning since modular forms come in many
types and shapes. In this thesis, we shall be working with classical modular forms of integral
weight, which are known to be deeply linked with two-dimensional representations of the
absolute Galois group of the field of rational numbers.

In the past decades an astonishing amount of research has been performed on the deep the-
oretical aspects of these modular Galois representations. The most well-known result that
came out of this is the proof of Fermat’s Last Theorem by Andrew Wiles. This theorem states
that for any integer n > 2, the equation xn + yn = zn has no solutions in positive integers x,
y and z. The fact that at first sight this theorem seems to have nothing to do with modular
forms at all witnesses the depth as well as the broad applicability of the theory of modu-
lar Galois representations. Another big result has been achieved, namely a proof of Serre’s
conjecture by Chandrashekhar Khare, Jean-Pierre Wintenberger and Mark Kisin. Serre’s
conjecture states that every continuous two-dimensional odd irreducible residual representa-
tion of Gal(Q/Q) comes from a modular form. This can be seen as a vast generalisation of
Wiles’s result and in fact the proof also uses Wiles’s ideas.

On the other hand, research on the computational aspects of modular Galois representations
is still in its early childhood. At the moment of writing this thesis there is very little literature
on this subject, though more and more people are starting to perform active research in this
field. This thesis is part of a project, led by Bas Edixhoven, that focuses on the computations
of Galois representations associated to modular forms. The project has a theoretical side,
proving computability and giving solid runtime analyses, and an explicit side, performing
actual computations. The main contributors to the theoretical part of the project are, at this
moment of writing, Bas Edixhoven, Jean-Marc Couveignes, Robin de Jong and Franz Merkl.
A preprint version of their work, which will eventually be published as a volume of the An-
nals of Mathematics Studies, is available [28]. As the title of this thesis already suggests,
we will be dealing with the explicit side of the project. In the explicit calculations we will
make some guesses and base ourselves on unproven heuristics. However, we will use Serre’s
conjecture to prove the correctness of our results afterwards.

vii



viii PREFACE

The thesis consists of four chapters. In Chapter 1 we will recall the relevant parts of the
theory of modular forms and Galois representations. It is aimed at a reader who hasn’t
studied this subject before but who wants to be able to read the rest of the thesis as well.
Chapter 2 will be discussing computational aspects of this theory, with a focus on performing
explicit computations. Chapter 3 consists of a published article that displays polynomials
with Galois group SL2(F16), computed using the methods of Chapter 2. Explicit examples
of such polynomials could not be computed by previous methods. Chapter 4 will appear in
the final version of the manuscript [28]. In that chapter, we present some explicit results
on mod ` representations for level one cusp forms. As an application, we improve a known
result on Lehmer’s non-vanishing conjecture for Ramanujan’s tau function.

Notations and conventions

Throughout the thesis we will be using the following notational conventions. For each field
k we fix an algebraic closure k, keeping in mind that we can embed algebraic extensions of k
into k. Furthermore, for each prime number p, we regard Q as a subfield of Qp and Fp will
be regarded as a fixed quotient of the integral closure of Zp in Qp. Furthermore, if λ is a
prime of a local or global field, then Fλ will denote its residue field.



Chapter 1

Preliminaries

In this chapter we will set up some preliminaries that we will need in later chapters. No new
material will be presented in this chapter and a reader who is familiar with modular forms
can probably skip most of it without loss of understanding of the rest of this thesis. The main
purpose of this chapter is to make a reader who is not familiar with modular forms or related
subjects sufficiently comfortable with them. The presented material is well-known and the
exposition will be far from complete. Proofs will usually be omitted. The main references
for all of this chapter are [24] and the references therein, as well as [25]. In each section we
will also give specific further references.

1.1 Modular forms

In this section we will briefly discuss what modular forms are. Apart from the main refer-
ences given in the beginning, references for further reading include [54].

1.1.1 Definitions

Consider the complex upper half plane H := {z ∈ C : ℑz > 0}. On it we have an action of
SL2(Z) by (

a
c

b
d

)
z :=

az+b
cz+d

. (1.1)

Note that this action is not faithful, but it does become faithful when factored through
PSL2(Z) = SL2(Z)/± I. We can also add cusps to H. The cusps are the points in P1(Q) =
Q∪{∞}. We will denote the completed upper half plane by H∗, so H∗ = H∪P1(Q). We
will extend the action of SL2(Z) on H to an action on H∗: use the same fractional linear
transformations.

It might be useful to note that SL2(Z) acts transitively on the set of cusps: every cusp can be
written as γ∞ for some γ ∈ SL2(Z). The subgroup of SL2(Z) that fixes the cusp γ∞ is the

1



2 CHAPTER 1. PRELIMINARIES

Figure 1.1: The upper half plane with SL2(Z)-tiling

group

γ

{
±
(

1
0

h
1

)
: h ∈ Z

}
γ
−1.

Definition 1.1. Let Γ < SL2(Z) be a subgroup of finite index and consider a cusp γ∞ with
γ ∈ SL2(Z). Then the width of γ∞ with respect to Γ, or the width of γ∞ in Γ\H∗, is defined
as the smallest positive integer h for which at least one of γ

(
1
0

h
1

)
γ−1 and −γ

(
1
0

h
1

)
γ−1 is

in Γ.

Figure 1.1 is a useful picture to keep in mind when thinking about these things. It shows a
tiling of the upper half plane along the SL2(Z)-action. Each tile here is an SL2(Z)-translate
of the fundamental domain

F :=
{

z ∈ H :−1
2
≤ℜz≤ 1

2
and |z| ≥ 1

}
.

Sometimes in the literature parts of the boundary are left out in order that F contain exactly
one point of each orbit of the SL2(Z)-action on H. We will not worry about sets of measure
zero here; our definition enables us to view the topological space SL2(Z) \H as a quotient
space of F .

We can also use formula (1.1) to define an action of GL+
2 (R) on H or of GL+

2 (Q) on H∗.
Here the superscript + means that we take the subgroup consisting of matrices with positive
determinant.

We topologise H∗ in the following way: we take the usual topology on H but a basis of open
neighbourhoods for each cusp γ∞ with γ ∈ SL2(Z) consists of the sets

{γ∞}∪ γ ({z ∈ H : ℑz > M}) ,
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where M runs through R>0. With this topology, the set of cusps is discrete in H∗.

Definition 1.2. Let Γ be a subgroup of SL2(Z) of finite index and let k be an integer. A
modular form of weight k for Γ is a holomorphic function f : H→C satisfying the following
conditions:

• f (az+b
cz+d ) = (cz+d)k f (z) for all

(
a
c

b
d

)
∈ Γ and all z ∈ H.

• f is holomorphic at the cusps. This means that for any matrix
(

a
c

b
d

)
∈ SL2(Z), the

function (cz + d)−k f (az+b
cz+d ) should be bounded in the region {z ∈ C : ℑz ≥ M} for

some (equivalently, any) M > 0.

The former condition is called the modular transformation property of f .

If Γ < SL2(Z) is of finite index, then the set of modular forms of weight k for the group Γ is
denoted by Mk(Γ). Under the usual addition and scalar multiplication of functions, Mk(Γ) is
a C-vector space; it can in fact be shown to be of finite dimension.

We will often focus on the cuspidal subspace Sk(Γ) of Mk(Γ) that is defined as the set of
f ∈Mk that vanish at the cusps. By ”vanishing at the cusps” we mean that

lim
ℑz→∞

(cz+d)−k f
(

az+b
cz+d

)
= 0

should hold for all
(

a
c

b
d

)
∈ SL2(Z). Elements of Sk(Γ) are called cusp forms.

Now, let N ∈ Z>0 be given. Define the subgroup Γ(N)of SL2(Z) by

Γ(N) :=
{(

a
c

b
d

)
∈ SL2(Z) :

(
a
c

b
d

)
≡
(

1
0

0
1

)
mod N

}
.

Clearly, Γ(N) has finite index in SL2(Z) because it is the kernel of the reduction map
SL2(Z)→ SL2(Z/NZ). A subgroup Γ of SL2(Z) that contains Γ(N) for some N will be
called a congruence subgroup of SL2(Z). If Γ is a congruence subgroup then the smallest
positive integer N for which Γ ⊃ Γ(N) holds is called the level of Γ. Likewise, if f is a
modular form for some congruence subgroup, we define its level to be the smallest positive
integer N such that f is modular for the group Γ(N).

Many special types of congruence subgroups of some level N turn out to be very interesting.
Arguably, the two most interesting ones are

Γ0(N) :=
{(

a
c

b
d

)
∈ SL2(Z) :

(
a
c

b
d

)
≡
(∗

0
∗
∗

)
mod N

}
and

Γ1(N) :=
{(

a
c

b
d

)
∈ SL2(Z) :

(
a
c

b
d

)
≡
(

1
0
∗
1

)
mod N

}
.
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One of the reasons to focus on these groups is that any modular form f of level N can be
transformed into a modular form for Γ1(N2) (and the same weight) by replacing it with
f (Nz). In fact we have an isomorphism

Mk(Γ(N))∼= Mk
(
Γ0(N2)∩Γ1(N)

)
⊂Mk(Γ1(N2)) (1.2)

defined by f (z) 7→ f (Nz).

Note that we have
(

1
0

1
1

)
∈ Γ1(N) for all N. If we plug this matrix into the transformation

property of a modular form f ∈Mk(Γ1(N)), then f (z+1) = f (z) follows. In other words, f
is periodic with period 1. Hence f is a holomorphic function of

q = q(z) := e2πiz.

We therefore have a power series expansion

f (z) = ∑
n≥0

an( f )qn,

the so-called q-expansion of f . The absence of terms with negative exponent is equivalent
with f being holomorphic at ∞. If f is a cusp form, then it vanishes at ∞ and hence a0( f ) = 0.
Be aware of the fact that a0 = 0 does not in general imply that f is a cusp form because there
are other cusps than ∞. The function from Z>0 to C defined by n 7→ an( f ) has very interesting
arithmetic properties for many modular forms f , as we shall see later.

1.1.2 Example: modular forms of level one

Let us give some examples of modular forms of level one now, that is modular forms for the
full group SL2(Z). Note that SL2(Z) is generated by the matrices

(
1
0

1
1

)
and

(
0
1
−1
0

)
. So to

check the modular transformation properties in this case it suffices to check f (z+1) = f (z)
and f (−1/z) = zk f (z).

Another interesting thing to observe here is that z ∈ H defines a lattice

Λz := Zz+Z⊂ C.

For z,w ∈ H there is a λ ∈ C× with Λz = λΛw if and only if there is a γ ∈ SL2(Z) with
z = γ(w). On the other hand, given a lattice Λ ⊂ C we can choose a basis ω1,ω2 with
ℑ(ω2/ω1) > 0. Then we have Λ = ω1Λω2/ω1 . This gives us a bijective correspondence be-
tween the SL2(Z)-equivalence classes of H and the C×-equivalence classes of the set of rank
2 lattices in C.

We can use this to formulate the modular transformation property of a function f : H→ C
in terms of lattices. Let f : H→ C be a function satisfying f (az+b

cz+d ) = (cz+d)k f (z) for all
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a
c

b
d

)
∈ SL2(Z) and all z ∈ H. Then we define the function F = Ff from the set of rank 2

lattices in C to C by

F(Zω1 +Zω2) := ω
−k
1 f (ω2/ω1) where ℑ(ω2/ω1) > 0.

This function F then satisfies F(λΛ) = λ−kF(Λ) for all λ ∈ C and all Λ. Conversely, given
a function F from the set of rank 2 lattices in C to C that satisfies F(λΛ) = λ−kF(Λ) for all
λ ∈ C and all Λ, we define f = fF by

f (z) = F(Zz+Z).

The function f will then satisfy the weight k modular transformation property for SL2(Z)
and in fact the assignments f 7→ Ff and F 7→ fF are inverse to each other.

Eisenstein series

Now that we have given definitions of modular forms, it becomes time that we write down
some explicit examples. Let us first note that there are no non-zero modular forms of odd
weight and level one; this can be seen by plugging in the matrix

(
−1
0

0
−1

)
, which yields the

identity f (z) = (−1)k f (z). So if we want to write down a modular form we should at least
do this in even weight. For reasons that we will make clear later, there cannot exist nonzero
modular forms of negative weight and no non-constant modular forms of weight 0. Also, in
level one there are no non-zero modular forms of weight 2.

If k ≥ 4 is even, then

Gk(z) :=
(k−1)!
2(2πi)k ∑

′

m,n∈Z

1
(mz+n)k (1.3)

is a modular form of weight k, the so-called normalised Eisenstein series of weight k and
level one (priming the summation sign here means that we ignore the terms whose denom-
inator is equal to zero). One can in fact write down Gk(z) in terms of lattices. The formula
becomes then

Gk(Λ) =
(k−1)!
2(2πi)k ∑

′

z∈Λ

z−k

and we readily see that it does satisfy the weight k modular transformation property for
SL2(Z). The reason for using the normalisation factor (k− 1)!/(2(2πi)k) becomes clear if
one writes down the q-expansion for Gk:

Gk =−Bk

2k
+ ∑

n≥1
σk−1(n)qn. (1.4)

Here Bk is the k-th Bernoulli number, defined by

x
ex−1

= ∑
k≥0

Bk

k!
xk.
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and σk−1(n) is defined as ∑d|n dk−1.

We see that the arithmetic function n 7→ σk−1(n) arises as the coefficients of a modular form,
something that not everyone would expect right after reading the definition of a modular
form.

Why can’t we take k = 2 here? This is because the series (1.3) does not converge absolutely in
that case and verifying the modular transformation property boils down to changing the order
of summation. If we define G2 by the q-expansion (1.4), then we get a well-defined holo-
morphic function on H that ’almost’ satisfies a modular transformation property for SL2(Z):
we have

G2

(
az+b
cz+d

)
= (cz+d)2G2(z)−

c(cz+d)
4πi

for all
(

a
c

b
d

)
∈ SL2(Z). The ’almost’ modularity of G2 is still very useful within the theory

of modular forms.

Discriminant modular form

The spaces Mk(SL2(Z)) for k ∈ {4,6,8,10} can be shown to be one-dimensional, so they are
generated by Gk. In particular there are no non-zero cusp forms there. The lowest weight
where we do have a cusp form of level one is k = 12 (for higher levels, however, there are
non-zero cusp forms of lower weight):

∆(z) := 8000G3
4−147G2

6 = q ∏
n≥1

(1−qn)24.

This form is called the discriminant modular form or modular discriminant and it is a gen-
erator for the space S12(SL2(Z)). If we write it out as a series

∆(z) = ∑
n≥1

τ(n)qn = q−24q2 +252q3−1472q4 +4830q5−6048q6 + · · ·

then τ(n) is called the Ramanujan tau function. The tau function will play an important role
in this thesis. Ramanujan observed some very remarkable properties of it. Among these
properties, the following ones occur, which he was unable to prove.

• For coprime integers m and n we have τ(mn) = τ(m)τ(n).

• For prime powers we have a recurrence τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1).

• For all prime numbers p we have the estimation |τ(p)| ≤ 2p11/2.

The first two of these properties were proved by Mordell in 1917; they determine τ(n) in
terms of τ(p) for p prime. The third property was proved by Deligne in 1974; its proof uses
very deep results from algebraic geometry. These properties witness once more the interest-
ing arithmetic behaviour of q-coefficients of modular forms.
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Other properties found by Ramanujan and improved by others (cf. [83, Section 1] and
[64, Section 4.5]) are congruence properties. For ` ∈ {2,3,5,7,23,691} there exist simple
formulas for τ(n) modulo ` or a power of `. The following summarises what is known about
this for ` 6= 23:

τ(n)≡ σ11(n) mod 211 for n≡ 1 mod 8,
τ(n)≡ 1217σ11(n) mod 213 for n≡ 3 mod 8,
τ(n)≡ 1537σ11(n) mod 212 for n≡ 5 mod 8,
τ(n)≡ 705σ11(n) mod 214 for n≡ 7 mod 8,
τ(n)≡ n−610σ1231(n) mod 36 for n≡ 1 mod 3,
τ(n)≡ n−610σ1231(n) mod 37 for n≡ 2 mod 3,
τ(n)≡ n−30σ71(n) mod 53 for n 6≡ 0 mod 5,
τ(n)≡ nσ9(n) mod 7 for n≡ 0,1,2,4 mod 7,
τ(n)≡ nσ9(n) mod 72 for n≡ 3,5,6 mod 7,
τ(n)≡ σ11(n) mod 691 for all n.

Modulo 23 we have the following congruences for p 6= 23 prime:

τ(p)≡ 0 mod 23 if
( p

23

)
=−1,

τ(p)≡ σ11(p) mod 232 if p is of the form a2 +23b2,
τ(p)≡−1 mod 23 otherwise.

Later in this thesis we will study τ(p) mod ` for other values of `.

1.1.3 Eisenstein series of arbitrary levels
Having seen some examples in level one, we now turn back to the subgroups Γ0(N) and
Γ1(N) of SL2(Z). In this subsection we will define what Eisenstein series are for these sub-
groups. The situation is analogous to the level one case, though slightly more complicated.
We will make use of Dirichlet characters, which will in this subsection be assumed to be
primitive and take values in C×. If a Dirichlet character is evaluated at an integer not co-
prime with its conductor, then the value is defined to be 0. Details for this subsection can be
found in [25, Chapter 4].

The case k ≥ 3

For N ∈ Z>0, k ∈ Z≥3 and c,d ∈ Z/NZ we define

G(c,d)
k (z) := ∑

′

m≡cmodN
n≡d modN

1
(mz+n)k . (1.5)

This defines a modular form of weight k for Γ(N).

To get forms with nice q-expansions, we have to take suitable linear combinations of the
forms G(c,d)

k . Choose two Dirichlet characters ψ and φ , of conductors N(ψ) and N(φ) say,
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that satisfy the conditions

N(ψ)N(φ) | N and ψ(−1)φ(−1) = (−1)k. (1.6)

We then define

Gψ,φ
k :=

(−N(φ))k(k−1)!
2(2πi)kg(φ−1)

N(ψ)

∑
c=1

N(φ)

∑
d=1

N(ψ)

∑
e=1

G(cN(ψ),d+eN(ψ))
k ,

where the pair (cN(ψ),d + eN(ψ)) is an element of (Z/(N(ψ)N(φ)Z))2 and for any C-
valued Dirichlet character χ , the number g(χ) denotes its Gauss sum:

g(χ) := ∑
ν∈(Z/N(χ)Z)×

χ(ν)exp
(

2πiν
N(χ)

)
. (1.7)

The q-expansion of Gψ,φ
k is as follows:

Gψ,φ
k =−

δ (ψ)Bk,φ

2k
+ ∑

n≥1
σ

ψ,φ
k−1(n)qn, (1.8)

where δ (ψ) equals 1 if ψ is trivial and 0 otherwise, Bk,φ is a so-called generalised Bernoulli
number defined by

∑
ν∈(Z/N(φ)Z)×

φ(n)
xeνx

eN(φ)x−1
= ∑

k≥0

Bk,φ

k!
xk

and σ
ψ,φ
k−1(n) is a character-twisted sum of (k−1)-st powers of divisors, defined as

σ
ψ,φ
k−1(n) = ∑

d|n
ψ(n/d)φ(d)dk−1.

The function Gψ,φ
k is called a normalised Eisenstein series with characters ψ and φ . It is an

element of Mk(Γ1(N(ψ)N(φ))). In particular, it is an element of Mk(Γ1(N)) and the same
holds for Gψ,φ

k (dz) for every d | N
N(ψ)N(φ) . Furthermore, Gψ,φ

k is in Mk(Γ0(N)) if and only if
the character ψφ is trivial.

The cases k = 1 and k = 2

Recall from the level one situation that G2, defined by a q-series, is not a modular form,
though it is not really far from being one. A similar picture occurs in arbitrary level: the
series (1.5) do not converge absolutely for k ∈ {1,2}, but the q-series (1.8) do define holo-
morphic functions on H that are ’almost’ modular. In fact it will turn out to be much nicer
than it seems to be at first sight. Assume k ∈ {1,2}, take N ∈ Z>0 and let ψ and φ be C×-
valued Dirichlet characters that satisfy (1.6).
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Let us first treat the case k = 2. Define Gψ,φ
2 by the q-series (1.8). Then Gψ,φ

2 is in M2(Γ1(N))
unless both ψ and φ are trivial, in which case Gψ,φ

2 (z)−dGψ,φ
2 (dz) = G2(z)−dG2(dz) is in

M2(Γ1(N)) for all d | N. Again, the series is modular for Γ0(N) if and only if ψφ is trivial.

In weight 1 the convergence problems of (1.5) are even worse but still we can do almost the
same thing. We alter the definition of the q-series slightly: put

Gψ,φ
1 :=−

δ (φ)B1,ψ +δ (ψ)B1,φ

2
+ ∑

n≥1
σ

ψ,φ
0 (n)qn.

This turns out to be a modular form in M1(Γ1(N)) in all cases.

Eisenstein subspace

Now that we have defined for each space Mk(Γ1(N)) what its Eisenstein series are, we will
define its Eisenstein subspace as the subspace generated by these series:

Definition 1.3. Let k and N be positive integers with k 6= 2. The Eisenstein subspace
Ek(Γ1(N)) of Mk(Γ1(N)) is defined as the subspace generated by the modular forms Gψ,φ

k (dz)
defined above where (ψ,φ) runs through the set of pairs of Dirichlet characters satisfying
(1.6) and for given (ψ,φ), the number d runs through all divisors of N/(N(ψ)N(φ)).

Definition 1.4. Let N be a positive integer. The Eisenstein subspace E2(Γ1(N)) of M2(Γ1(N))
is defined as the subspace generated by the following modular forms:

• The forms Gψ,φ
k (dz) defined above where (ψ,φ) runs through the set of pairs of Dirich-

let characters that are not both trivial and that satisfy (1.6) and for given (ψ,φ), the
number d runs through all divisors of N/(N(ψ)N(φ)).

• The forms G2(z)−dG2(dz) where d runs through divisors of N, except d = 1.

The given generators for the spaces actually do give a basis for each space, provided that in
the case k = 1 we take each form Gψ,φ

1 = Gφ ,ψ
1 only once. Furthermore, we define Ek(Γ0(N))

to be Mk(Γ0(N))∩Ek(Γ1(N)) and this is actually generated by the Eisenstein series that lie
in Mk(Γ0(N)).

The Eisenstein subspace satisfies a very nice property:

Theorem 1.1. Let k and N be positive integers and let Γ be either Γ0(N) or Γ1(N). Then
every f ∈Mk(Γ) can be written in a unique way as g+h with g ∈ Ek(Γ) and h ∈ Sk(Γ).

In particular, Eisenstein series are not cusp forms and knowing a complete description of
Eisenstein series reduces the study of modular forms to that of cusp forms. The q-expansions
of cusp forms are in general far less explicit but far more interesting than those of Eisenstein
series.
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1.1.4 Diamond and Hecke operators

The arithmetic structure of modular forms turns out to be related to interesting operators on
the spaces Sk(Γ1(N)), called diamond operators and Hecke operators. The operators are in
fact defined on all of Mk(Γ1(N)), preserving Ek(Γ1(N)) as well. However, the treatments for
Sk and Ek differ at a few points and since we more or less ’know’ Ek already, we will stick to
Sk(Γ1(N)) from now. Details for this subsection can be found in [25, Chapter 5].

Most operators on modular forms can be formulated in terms of a notation called the slash
operator. For k ∈ Z and γ =

(
a
c

b
d

)
∈ GL+

2 (R) we define the following operation on the
space of functions f : H→ C:

( f |kγ)(z) := det(γ)k−1(cz+d)−k f (γz).

It must be noted that in the literature there appears to be no consensus about the normalisa-
tion factor det(γ)k−1; some textbooks use det(γ)k/2 instead. For a function f the modular
transformation property of weight k for Γ < SL2(Z) can be formulated in terms of the slash
operator as f |kγ = f for all γ ∈ Γ. Be aware of the fact that slash operators in general don’t
leave the spaces Sk(Γ) invariant.

Diamond operators

Note that Γ1(N) is a normal subgroup of Γ0(N) and that for the quotient we have

Γ0(N)/Γ1(N)∼= (Z/NZ)× by
(

a
c

b
d

)
7→ d. (1.9)

It follows from this normality that γ ∈ Γ0(N) leaves the spaces Sk(Γ1(N)) invariant under
the weight k slash action. Since the action of the subgroup Γ1(N) is trivial so this defines an
action of (Z/NZ)× on Sk(Γ1(N)):

〈d〉 f := f |k
(

a
c

b
d

)
,

where we can choose any matrix
(

a
c

b
d

)
∈ Γ0(N) mapping to d under (1.9). The operator 〈d〉

is called a diamond operator.

Let ε : (Z/NZ)×→ C× be a character. Then we define the subspace Sk(N,ε) of Sk(Γ1(N))
as

Sk(N,ε) :=
{

f ∈ Sk(Γ1(N)) : 〈d〉 f = ε(d) f for all d ∈ (Z/NZ)×
}

and call it the ε-eigenspace of Sk(Γ1(N)). Note that if ε is the trivial character, then we
have Sk(N,ε) = Sk(Γ0(N)). If f ∈ Sk(Γ1(N)) lies inside Sk(N,ε) then we say that f is a
modular form with character ε . Now, the diamond action of (Z/NZ)× on Sk(Γ1(N)) is a
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representation of (Z/NZ)× on a finite-dimensional C-vector space and thus is a direct sum
of irreducible representations, hence we have

Sk(Γ1(N)) =
⊕

ε:(Z/NZ)×→C×
Sk(N,ε).

Note that we always have 〈−1〉 = (−1)k so that Sk(N,ε) can only be non-zero for ε with
ε(−1) = (−1)k.

Hecke operators

Congruence subgroups of SL2(Z) have the property that any two of them are commensurable,
which means that their intersection has finite index in both of them. Also, for any congruence
subgroup Γ < SL2(Z) and any γ ∈ GL+

2 (Q) we have that γ−1Γγ ∩SL2(Z) is a congruence
subgroup of SL2(Z) and that γ−1Γγ is commensurable with Γ. It follows that for any two
congruence subgroups Γ1 and Γ2 and any γ ∈ GL+

2 (Q) the left action of Γ1 on Γ1γΓ2 has
only a finite number of orbits. If we choose representatives γ1, . . . ,γr ∈ GL+

2 (Q) for these
orbits then the operator

Tγ = TΓ1,Γ2,k,γ : Sk(Γ1)→ Sk(Γ2)

given by

Tγ f =
r

∑
i=1

f |kγi (1.10)

is well-defined and depends only on the double coset Γ1γΓ2. Note that the diamond operator
〈d〉 is equal to Tγ if we choose γ ∈ Γ0(N) with lower right entry congruent to d mod N.

Now, let p be a prime number and consider the operator Tp on Sk(Γ1(N)) defined as

Tp := Tγ for γ =
(

1
0

0
p

)
.

It is this operator that we call a Hecke operator. If we write it out according to the definition
of Tγ then we have

Tp f = (〈p〉 f )
∣∣
k

(
p
0

0
1

)
+

p−1

∑
j=0

f
∣∣
k

(
1
0

j
p

)
, (1.11)

where we take the convention 〈p〉 f = 0 for p | N. It can be shown that the Hecke operators
on Sk(Γ1(N)) commute with the diamond operators and with each other. In particular the
subspaces Sk(N,ε) are preserved; hence we can speak of Tp as operators on Sk(N,ε), with
Sk(Γ0(N)) being a special case of this. The formula (1.11) then becomes

Tp f = ε(p) f
∣∣
k

(
p
0

0
1

)
+

p−1

∑
j=0

f
∣∣
k

(
1
0

j
p

)
,

for f ∈ Sk(N,ε).
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If we use the lattice interpretation for the level one case, we can formulate Tp in terms of
lattices. Take f ∈ Sk(SL2(Z)) and let F be the corresponding function on the set of full rank
lattices in C. Then the function corresponding to Tp f is equal to

TpF(Λ) = pk−1
∑

Λ′⊂Λ

[Λ:Λ′]=p

F(Λ′), (1.12)

i.e. we sum over all sublattices of index p. A similar interpretation exists in arbitrary levels;
we shall address this later, in Subsection 1.2.5.

We can also define operators Tn for arbitrary positive integers n. We do this by means of a
recursion formula:

T1 = 1,
Tmn = TmTn for m,n coprime,
Tpr = T r

p for p | N prime and r ∈ Z>1,

Tpr+1 = TpTpr −〈p〉pk−1Tpr−1 for p - N prime and r ∈ Z>0.

(1.13)

One motivation for this definition is that in the lattice interpretation formula (1.12) we can
simply replace p with n.

We can in fact describe the Hecke operators in terms of q-expansions. Take N ∈ Z>0 and
f ∈ Sk(Γ1(N)). For all n ∈ Z>0 we have

am(Tn f ) = ∑
d|gcd(m,n)

gcd(d,N)=1

dk−1amn/d2(〈d〉 f ).

This formula has some interesting special cases. First of all, for m = 1 we get

a1(Tn f ) = an( f ). (1.14)

Also, for p prime and f ∈ Sk(N,ε) we have

an(Tp f ) =
{

apn( f ) for p - n,
apn( f )+ ε(p)pk−1an/p( f ) for p | n.

Petersson inner product

Let Γ < SL2(Z) be of finite index. We can define an inner product (i.e. a positive def-
inite hermitian form) on Sk(Γ) that is very natural in some sense. If we write z = x + iy
then the measure µ := dxdy/y2 is GL+

2 (R)-invariant on H and the integral
∫

Γ\H µ converges
to [PSL2(Z) : PΓ]π/3. The measure µ is called the hyperbolic measure on H. Also, for
f ∈ Sk(Γ) the function | f (z)|2yk is Γ-invariant and bounded on H, hence the measure

µ f := | f (z)|2yk−2dxdy where z = x+ iy
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is a Γ-invariant measure on H such that the integral
∫

Γ\H µ f converges to a positive real
number. Now we define the Petersson inner product on Sk(Γ) as follows:

( f ,g) :=
1

[PSL2(Z) : PΓ]

∫
Γ\H

f (z)g(z)yk−2dxdy (1.15)

for f ,g∈ Sk(Γ), i.e. it is a scaled inner product associated to the Hermitian form f 7→
∫

Γ\H µ f .
The normalisation factor [PSL2(Z) : PΓ]−1 is used so that the value of the integral does not
depend on the chosen group Γ for which f and g are modular.

We can in fact use the formula (1.15) for the Petersson inner product to define a sesquilinear
pairing on Mk(Γ)×Sk(Γ) (note that this would not work on Mk(Γ)×Mk(Γ) as the integral
diverges there). For Γ∈ {Γ0(N),Γ1(N)} the set of f ∈Mk(Γ) with ( f ,g) = 0 for all g∈ Sk(Γ)
is exactly the Eisenstein subspace Ek(Γ) defined in Subsection 1.1.3.

From now on, we return to the case Γ = Γ1(N). The Petersson inner product behaves partic-
ularly nicely with respect to the Hecke operators. Take γ ∈ GL+

2 (Q). Then the adjoint of Tγ

with respect to the Petersson inner product is equal to Tγ∗ where

γ
∗ =

(
d
−c
−b
a

)
for γ =

(
a
c

b
d

)
,

i.e.
(Tγ f ,g) = ( f ,T ∗γ g) where T ∗γ = Tγ∗.

For the diamond operators this boils down to

〈d〉∗ = 〈d〉−1

If we now let WN be the operator f 7→ N1−k/2 f |k
(

0
N
−1
0

)
on Sk(Γ1(N)) then we have

T ∗n = WNTnW−1
N . (1.16)

We will study the operator WN in more detail in Subsection 1.1.7. In the special case
gcd(n,N) = 1 formula (1.16) simplifies to

T ∗n = 〈n〉−1Tn if gcd(n,N) = 1.

In particular for n coprime to N the operators Tn and T ∗n commute.

Hecke algebra

The diamond and Hecke operators on Sk(Γ1(N)) generate a subring of EndC Sk(Γ1(N))
which we call the Hecke algebra of Sk(Γ1(N)) and which is commutative. We will usu-
ally denote the Hecke algebra by T, where it is understood which modular forms space is
involved. We will also be considering its subalgebra T′ that is generated by all the 〈d〉 and
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Tn with gcd(n,N) = 1. If confusion could arise we will write Tk(N) and T′k(N) respectively.

The structure of T is important in the study of Sk(Γ1(N)). It can be shown that T is a free
Z-module of rank dimSk(Γ1(N)). Consider the pairing

T×Sk(Γ1(N))→ C, (T, f ) 7→ a1(T f ).

For any ring A we put TA := T⊗A. From formula (1.14) it follows immediately that the
induced pairing TC×Sk(Γ1(N))→ C is perfect. In particular we have

Sk(Γ1(N))∼= HomZ−Mod(T,C) (1.17)

Under this isomorphism, the action of T on Sk(Γ1(N)) comes from the following action of T
on HomZ−Mod(T,Z): let T ∈T send φ ∈HomZ−Mod(T,Z) to T ′ 7→ φ(T T ′). It can be shown
that Hom(TQ,Q) is in this way a free TQ-module of rank one so that in fact Sk(Γ1(N)) is
free of rank one as a TC-module. For each subring A of C, we can identify HomZ−Mod(T,A)
with the A-module of modular forms whose q-expansion has coefficients in A.

1.1.5 Eigenforms
The commutativity of all the Tn, T ∗n , 〈d〉 and 〈d〉∗ for n and d coprime to N has an interesting
consequence:

Theorem 1.2. For k,N ∈Z>0 the space Sk(Γ1(N)) has a basis that is orthogonal with respect
to the Petersson inner product and whose elements are eigenvectors for all the operators in
T′.

Theorem 1.2 would fail if we took all the Hecke operators in T, i.e. also the Tn with
gcd(n,N) > 1. This is because those operators are in general not semi-simple, so we do not
get a decomposition of our vector space into eigenspaces. Forms that are eigenvectors for
all the operators in T are called eigenforms. If a form is an eigenvector for all the operators
in T′, we will call it a T′-eigenform. Each T′-eigenform is an eigenvector for the diamond
operators, so must lie inside some space Sk(N,ε). An eigenform f is called normalised if
a1( f ) = 1. From (1.14) and the commutativity of T it follows easily that f ∈ Sk(Γ1(N)) is a
normalised eigenform if and only if the map T→ C corresponding to f as in (1.17) is a ring
homomorphism.

Consider M and N with M | N. For each divisor d of N/M we have a map

αd : Sk(Γ1(M))→ Sk(Γ1(N)) defined by f (z) 7→ f (dz).

The map αd is called a degeneracy map. Note that for d = 1 it is just the inclusion of
Sk(Γ1(M)) into Sk(Γ1(N)). The subspace of Sk(Γ1(N)) generated by all the αd( f ) for M | N,
M < N, d | N/M is called the old subspace of Sk(Γ1(N)) and is denoted by Sk(Γ1(N))old.

The orthogonal complement of Sk(Γ1(N))old with respect to the Petersson inner product
is called the new subspace and denoted by Sk(Γ1(N))new. Its eigenforms have interesting
properties:
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Theorem 1.3. Let f ∈ Sk(Γ1(N))new be an eigenform. Then C · f is an eigenspace of
Sk(Γ1(N)) and a1( f ) 6= 0. Furthermore, Sk(Γ1(N))new is generated by its eigenforms.

This is called the multiplicity one theorem. In fact, in the new subspace there is no distinction
between eigenforms for T and eigenforms for T′. The theorem allows us to put the normali-
sation a1 = 1 on eigenforms in the new subspace. New eigenforms f that satisfy a1( f ) = 1
are called newforms. If we combine this with (1.14) then we see

Theorem 1.4. Let N and k be positive integers and let f ∈ Sk(Γ1(N)) be a newform. Then
the eigenvalue of the Hecke operator Tn on f is equal to the q-coefficient an( f ).

If f ∈ Sk(Γ1(M)) a T′k(M)-eigenform, then for all d the form αd( f ) ∈ Sk(Γ1(dM)) is a
T′k(dM)-eigenform. We furthermore have a decomposition:

Sk(Γ1(N)) =
⊕
M|N

⊕
d| NM

αd (Sk(Γ1(M))new)

that allows us to write down an interesting basis for Sk(Γ1(N)):

Theorem 1.5. Let N and k be given positive integers. Then the following set is a basis for
Sk(Γ1(N)) consisting of T′-eigenforms.⋃

M|N

⋃
d| NM

{αd( f ) : f is a newform in Sk(Γ1(M))} .

The field K f

If f ∈ Sk(Γ1(N)) is a newform with character ε , then the values of ε together with the coef-
ficients an( f ) generate a field

K f := Q(ε,a1( f ),a2( f ), . . .)

which is known to be a number field. It can be shown that for any embedding σ : K f ↪→ C
the function σ f := ∑σ(an)qn is a newform in Sk(Γ1(N)) with character σε . To a newform
f ∈ Sk(N,ε) we can attach a ring homomorphism

θ f : T→ K f

defined by
θ f (〈d〉) = ε(d) and θ f (Tp) = ap,

as in (1.17). We define
I f := ker(θ f ),

which is a prime ideal of T called the Hecke ideal of f . It is known that imθ f is an order in
K f but it need not be the maximal order.
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1.1.6 Anti-holomorphic cusp forms
From time to time we will also be considering anti-holomorphic cusp forms. A function
f : H→C is called an anti-holomorphic cusp form of some level N and weight k if z 7→ f (z)
is in Sk(Γ1(N)). The space of anti-holomorphic cusp forms of level N and weight k is denoted
by Sk(Γ1(N)). We let the diamond and Hecke operators act on Sk(Γ1(N)) by the formulas

〈d〉 f = 〈d〉 f and Tp f = Tp f ,

where we denote by f the function z 7→ f (z). The spaces Sk(N,ε) are now defined as

Sk(N,ε) =
{

f : f ∈ Sk(N,ε)
}

=
{

f ∈ Sk(Γ1(N)) : 〈d〉 f = ε(d) f for all d ∈ (Z/NZ)×
}

.

If we have a simultaneous eigenspace inside Sk(Γ1(N)) for the diamond and Hecke operators
then we also have an eigenspace with conjugate eigenvalues and of the same dimension
(which could be the same space if all these eigenvalues are real). It follows that we have
a decomposition of Sk(Γ1(N))⊕ Sk(Γ1(N)) into eigenspaces with the same eigenvalues as
in the decomposition of Sk(Γ1(N)), but the dimension of each such eigenspace is twice the
dimension of its restriction to Sk(Γ1(N)).

1.1.7 Atkin-Lehner operators
The main reference for this subsection is [3].

Besides diamond and Hecke operators, there is another interesting type of operators on
Sk(Γ1(N)), namely the Atkin-Lehner operators. Let Q be a positive divisor of N such that
gcd(Q,N/Q) = 1. Let wQ ∈ GL+

2 (Q) be any matrix of the form

wQ =
(

Qa
Nc

b
Qd

)
(1.18)

with a,b,c,d ∈ Z and det(wQ) = Q. The assumption gcd(Q,N/Q) = 1 ensures that such a
wQ exists. A straightforward verification shows f |kwQ ∈ Sk(Γ1(N))). Now, given Q, this
f |kwQ still depends on the choice of a,b,c,d. However, we can use a normalisation in our
choice of a,b,c,d which will ensure that f |kwQ only depends on Q. Be aware of the fact that
different authors use different normalisations here. The one we will be using is

a≡ 1 mod N/Q, b≡ 1 mod Q, (1.19)

which is the normalisation used in [3]. We define

WQ( f ) := Q1−k/2 f |kwQ =
Qk/2

(Ncz+Qd)k f
(

Qaz+b
Ncz+Qd

)
, (1.20)

which is now independent of the choice of wQ and call WQ an Atkin-Lehner operator.
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An unfortunate thing about these Atkin-Lehner operators is that they do not preserve the
spaces Sk(N,ε). But we can say something about it. Let ε : (Z/NZ)×→ C× be a character
and suppose that f ∈ Sk(N,ε). By the Chinese Remainder Theorem, one can write ε in a
unique way as ε = εQεN/Q such that εQ is a character on (Z/QZ)× and εN/Q is a character
on (Z/(N/Q)Z)×. It is a fact that

WQ( f ) ∈ Sk(N,εQεN/Q).

Also, there is a relation between the q-expansions of f and WQ( f ):

Theorem 1.6. Let f ∈ Sk(N,ε) be a newform. Take Q | N with gcd(Q,N/Q) = 1. Then

WQ( f ) = λQ( f )g

with λQ( f ) ∈C an algebraic number of absolute value 1 and g ∈ Sk(N,εQεN/Q) a newform.
Suppose now that n is a positive integer and write n = n1n2 where n1 consists only of prime
factors dividing Q and n2 consists only of prime factors not dividing Q. Then we have

an(g) = εN/Q(n1)εQ(n2)an1( f )an2( f ).

The number λQ( f ) in the above theorem is called a pseudo-eigenvalue for the Atkin-Lehner
operator. In some cases there exists a closed expression for it.

Theorem 1.7. Let f ∈ Sk(N,ε) be a newform and suppose q is a prime that divides N exactly
once. Then we have

λq( f ) =
{

g(εq)q−k/2aq( f ) if εq is non-trivial,
−q1−k/2aq( f ) if εq is trivial.

Here, g(εq) is the Gauss sum of εq.

Theorem 1.8 ([2, Theorem 2]). Let f ∈ Sk(N,ε) be a newform with N square-free. For Q |N
we have

λQ( f ) = ε(Qd− N
Q

a)∏
q|Q

ε(Q/q)λq( f ).

Here, a and d are defined by (1.18). Moreover, this identity holds without any normalisation
assumptions on the entries of wQ, as long as we define λq( f ) by the formula given in Theorem
1.7.

1.2 Modular curves
In this section we will very briefly discuss modular curves. Apart from the main references
given in the beginning, we use [22] and [36] as further references on this subject. We will
use a little bit of algebro-geometric language. but we’ll keep it as simple as possible, trying
to explain properties that we need to understand why the calculations in later chapters work.
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1.2.1 Modular curves over C
Let Γ < SL2(Z) be a subgroup of finite index. If one divides out the group action of Γ on H

one obtains a Riemann surface
YΓ := Γ\H.

If we add the cusps to YΓ and use (q|0γ−1)1/w(γ∞) as a local parameter at the cusp γ∞ we
obtain another Riemann surface

XΓ := Γ\H∗,
which happens to be compact. This compactness implies that XΓ is in fact (the analytification
of) a projective algebraic curve over C, the open subset YΓ ⊂ XΓ being an affine curve.

For Γ equal to Γ0(N), Γ1(N) or Γ(N) we write YΓ as Y0(N), Y1(N) or Y (N) and XΓ as X0(N),
X1(N) or X(N) respectively. These are the curves in which we are primarily interested.

The curves Y0(N), Y1(N) and Y (N) have moduli interpretations. Take z ∈ H and consider
the lattice Λz = Zz + Z, as we did in Subsection 1.1.2. Then C/Λz is a complex elliptic
curve and in this way SL2(Z) \H is in bijection with the set of all isomorphism classes of
elliptic curves over C. This gives in all three cases the moduli interpretation for N = 1. In
general, Y0(N)(C) = Γ0(N) \H is in bijection with the set of isomorphism classes of pairs
(E,C) where E is an elliptic curve over C and C ⊂ E(C) is a cyclic subgroup of order N.
The bijection is obtained by

z 7→ (C/Λz,
1
N

Z mod Λz).

The additional information C that we attach to E is called a level structure.

Likewise, for Y1(N)(C) = Γ1(N)\H the map

z 7→ (C/Λz,
1
N

mod Λz).

defines a bijection with the set of isomorphism classes of pairs (E,P) with E an elliptic curve
over C and P ∈ E(C) a point of order N.

To describe the moduli interpretation of Y (N), we use the Weil pairing on elliptic curves over
C. The sign convention we use is such that the Weil eN-pairing on the N-torsion of C/Λ is
defined as

eN(z,w) = exp
(

πiN
zw− zw
covol(Λ)

)
.

Then the map

z 7→ (C/Λz,
1
N

modΛz,
z
N

modΛz)

defines a bijection between Y (N)(C) = Γ(N) \H and the set of isomorphism classes of
triples (E,P,Q) where E is an elliptic curve over C and P,Q ∈ E(C)[N] are points that sat-
isfy en(P,Q) = exp(2πi/N).
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In view of (1.2), the curve Y (N) is isomorphic to YΓ with Γ = Γ0(N2)∩Γ1(N). The map
z 7→ Nz defines an isomorphism YΓ → Y (N). In terms of moduli, YΓ parametrises triples
(E,C,P) with E/C an elliptic curve, C⊂ E(C) cyclic of order N2 and P ∈C a point of order
N. Let us describe what the given isomorphism YΓ → Y (N) sends (E,C,P) to. Choose a
generator P′ for C with P = NP′ and a Q ∈ E(C)[N2] with eN2(P′,Q) = exp(2πi/N2). Then
the image of (E,C,P) is the triple (E/〈NP〉, PmodNP, NQmodNP).

1.2.2 Modular curves as fine moduli spaces
In the previous subsection we spoke about bijections between points of YΓ(C) and isomor-
phism classes of elliptic curves with certain level structures. It turns out that this can be put
in a more general setting, which is what we will do in the present subsection.

For an arbitrary scheme S, an elliptic curve over S is defined to be a proper smooth group
scheme E over S of which all the geometric fibres are elliptic curves. For a fixed positive
integer N that we use for our level structures, we will usually work with schemes in which
N is invertible, i.e. schemes over Z[1/N], which is the treatment of [22]. Getting rid of this
condition is done in the standard work [36] and makes things much more technical.

So let N be a positive integer, let S/Z[1/N] a scheme and let E/S be an elliptic curve. Then a
point of order N of E/S is meant to be a section P∈E(S)[N] whose pull-back to all geometric
fibres of E/S defines a point of order N. Define a contravariant functor

F1(N) : SchZ[1/N]→ Set

from the category of schemes over Z[1/N] to the category of sets as follows. We send
a scheme S to the set of isomorphism classes of pairs (E,P) where E is an elliptic curve
over S and P a point of order N of E/S. And we send a morphism T → S to the map
F1(N)(S)→ F1(N)(T ) that sends every pair (E,P)/S to its pull-back along T → S.

Theorem 1.9 (Igusa). Let N > 3 be an integer. Then there exists a smooth affine scheme
Y1(N) over Z[1/N], an elliptic curve E over Y1(N) and a point P of E/Y1(N) of order N that
satisfies the following universal property: for all schemes S/Z[1/N] and pairs (E,P) with
E/S an elliptic curve and P a point of order N of E/S there are unique morphisms S→Y1(N)
and E→ E such that the following diagram is commutative with Cartesian inner square:

E

�

//

��

E

��

S //

P

BB

Y1(N)

P

[[

Moreover, the geometric fibres of Y1(N)/Z[1/N] are irreducible curves.

Note that we abusively use the same notation Y1(N) as in the previous subsection; we will
write subscripts in cases where this abuse might lead to confusion. The scheme Y1(N)
of the theorem represents the functor F1(N): pulling back (E,P)/Y1(N) along morphisms
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S→ Y1(N) defines a functorial bijection between Y1(N)(S) and F1(N)(S). Because we can
give such an isomorphism of functors, or equivalently, a universal (E,P), we say that Y1(N)
is a fine moduli space for the functor F1(N).

The complex curve Y1(N) from the previous subsection, together with its moduli description,
is canonically isomorphic to the base change Y1(N)C of Y1(N)Z[1/N] to C. In fact, over C, the
universal elliptic curve EC/Y1(N)C can be described analytically as follows: Consider C×H

as line bundle over H and embed Z2×H into it by

Z2×H ↪→ C×H, ((m,n),z) 7→ ((mz+n),z).

Call the image of this embedding Λ. The quotient (C×H)/Λ is an elliptic curve E over H

whose fibre over z ∈H is C/Λz. The section P : H→ E defined by z 7→ 1/N has order N. We
have an action of SL2(Z) on C×H as follows:(

a
c

b
d

)
(w,z) :=

(
w

cz+d
,
az+b
cz+d

)
.

This action respects Λ and therefore induces an action on E. The subgroup of SL2(Z) re-
specting the section P is exactly Γ1(N) and we can in fact describe EC/Y1(N)C as the quotient
of E/H by the action of Γ1(N):

EC ∼= Γ1(N)\ ((C×H)/Λ). (1.21)

Let us note that from Theorem 1.9 it follows that Y1(N) has a model over Q and that for each
field extension K/Q the set Y1(N)(K) of K-rational points of Y1(N)Q is in bijection with the
set of isomorphism classes of pairs (E,P) where E is an elliptic curve over K and P ∈ E(K)
is a K-rational point of order N. We furthermore see that for p - N the curve Y1(N)Q has
a non-singular reduction Y1(N)Fp that parametrises all pairs (E,P) with E an elliptic curve
over a field K of characteristic p and P ∈ E(K) a point of order N.

There is another functor that people sometimes use; this is the functor

Fµ(N) : Sch→ Set.

It takes a scheme S to the set of pairs (E, ι) where E/S is an elliptic curve and ι : µN,S→ E is
a closed immersion of group schemes over S. There exists a fine moduli space Yµ(N)/Z[1/N]
for Fµ(N) as well. Also here we have an isomorphism of Yµ(N)C with the complex curve
Y1(N)C; it is defined by sending z to (C/Λz, exp(2πik/N) 7→ k/N modΛ). In fact, we have
an isomorphism of schemes

Y1(N)∼= Yµ(N) (1.22)

defined as follows. Let S/Z[1/N] be a scheme and take (E,P) ∈ Y1(S). We have to make
a point (E ′, ι ′) ∈ Yµ(S). Put E ′ = E/〈P〉 with quotient map φ : E → E ′. For each closed
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immersion of group schemes ι : µN,S→ E ′ we have an endomorphism of µN,S that is defined
by sending Q ∈ µN,S(T ) to eN(P,(ιQ)′) for any S-scheme T , where (ιQ)′ denotes any point
of E(T ) that maps to ιQ along φ . We take for ι ′ the ι that makes this endomorphism the
identity. Over C the isomorphism (1.22) can be defined by sending z∈H to wN(z) =−1/Nz.

For Y (N)with N > 2 there is a similar description as the fine moduli space over Z[1/N]
parametrising all pairs (E/S,φ) where φ : (Z/NZ)S→ E(S)[N] is an isomorphism of group
schemes. In this case, the Y (N) from the previous subsection is a disjoint union of φ(N)
copies of the base change Y1(N)C of Y1(N)Z[1/N] to C: one for each possible value of the
Weil pairing.

One cannot construct Y0(N) as the fine moduli space parametrising pairs (E,C) of elliptic
curve and cyclic subgroups of order N in any sensible meaning. The obstruction lies in
the fact that such pairs always have the non-trivial automorphism −1. However, we can do
the following. Let the group G = (Z/NZ)× act on Y1(N) by letting d ∈ (Z/NZ)× act as
(E,P) 7→ (E,dP) on moduli and define Y0(N) as the quotient G \Y1(N). Although Y0(N)
is not a fine moduli space, it is true that for all fields K with char(K) - N the set Y0(N)(K)
is naturally in bijection with the set of K-isomorphism classes of pairs (E,C) where E is
an elliptic curve over K and C ⊂ E is a cyclic subgroup of order N defined over K. Here
as well Y0(N) from the previous subsection is canonically isomorphic to the base change of
Y0(N)Z[1/N] to C.

1.2.3 Moduli interpretation at the cusps

In Subsection 1.2.1 we defined the compact Riemann surfaces X0(N), X1(N) and X(N) but
so far we only gave moduli descriptions for Y0(N), Y1(N) and Y (N). In this subsection we
will explain the approach of [22] to extend the moduli interpretation to the cusps.

Néron polygons and generalised elliptic curves

Let n be a positive integer and let k be a field. A Néron n-gon over k is defined to be a singu-
lar connected curve over k that can be constructed as follows: take n copies of P1

k , indexed
by Z/nZ and identify for each i ∈ Z/nZ the point ∞ of the i-th P1 with the point 0 of the
(i+1)-st P1 such that this intersection point is an ordinary double point.

For a ∈ P1
k(k) and i ∈ Z/nZ we denote the point a of the i-th P1 of a Néron n-gon by (a, i).

The choice of projective coordinates on P1 allows us to identify P1
k−{0,∞}with Gm,k, which

acts on P1
k by (a,b) 7→ ab. This way we give the smooth locus Csm of a Néron n-gon C the

structure of a commutative group scheme, where addition is defined as

(a, i)+(b, j) := (ab, i+ j). (1.23)

We use this same formula to equip a Néron n-gon C with an action of Csm.
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Note that a Néron n-gon C together with its addition (1.23), admits an action of the group
µn(k) by letting ζ ∈ µn(k) act as (a, i) 7→ (ζ ia, i). Furthermore, we have an automorphism ι

defined on it that sends (a, i) to (a−1,−i). In fact

Aut(C,+)∼= µn(k)×〈ι〉 (1.24)

is the group of automorphisms of C that respect the addition.

We are now ready to define the notion of a generalised elliptic curve.

Definition 1.5. Let S be a scheme. Then a generalised elliptic curve over S is a scheme
E over S that is proper, flat, of finite presentation that comes equipped with a morphism
Esm×S E +→ E that makes Esm into a commutative group scheme acting on E and such that
each geometric fibre of E/S is either an elliptic curve or a Néron polygon equipped with an
action as in (1.23).

Definition 1.6. If E is a generalised elliptic curve over a scheme S, then a point of order N
of E/S is meant to be section in Esm(S)[N] whose pull-back to all geometric fibres defines a
point of order N such that the subgroup generated by it meets all irreducible components.

The notion of generalised elliptic curves enables us to generalise Igusa’s theorem to X1(N):

Theorem 1.10 (see [22, Chapter IV]). Let N > 4 be an integer. Then there exists a proper
smooth scheme X1(N) over Z[1/N], a generalised elliptic curve E over X1(N) and a point
P of E/X1(N) of order N that satisfies the following universal property: for all schemes
S/Z[1/N] and pairs (E,P) with E/S a generalised elliptic curve and P ∈ E(S) a point of
order N there are unique morphisms S→ X1(N) and E→ E such that the following diagram
is commutative with Cartesian inner square:

E

�

//

��

E

��

S //

P

BB

X1(N)

P

[[

Moreover, the geometric fibres of X1(N)/Z[1/N] are irreducible curves.

The scheme Y1(N) is naturally an open subscheme of X1(N) and the complement is called
the cuspidal locus of X1(N). We can also extend Yµ(N) to cusps and get a scheme Xµ(N)
parametrising pairs (E, ι) of generalised elliptic curves over S together with closed immer-
sions ι : µN,S→ E. We require that the image of ι meets the geometric fibres of E in all
components. The isomorphism (1.22) extends to an isomorphism X1 ∼= Xµ .

As with Y0(N), we define X0(N) by dividing out the group action of (Z/NZ)× defined
by d : (E,P) 7→ (E,dP). Furthermore, there also exists for N > 2 a scheme X(N) that is
a fine moduli space for pairs (E,φ)/S/Z[1/N] with E/S a generalised elliptic curve and
φ : (Z/NZ)2

S→ Esm a closed immersion of S-group schemes meeting all irreducible compo-
nents of all geometric fibres of E.
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Tate curves

We will give an informal discussion on the Tate curve now. Precise results can be found in
[22, Chapter VII]. See also [74, Chapter V] for a more elementary and explicit approach. The
idea is that for an elliptic curve E = C/Λ over C we have E ∼= C×/qZ with q = exp(2πiz).
An explicit Weierstrass equation for E is

E : y2 + xy = x3 +a4(q)x+a6(q) (1.25)

with
a4(q) =−5 ∑

n≥1
σ3(n)qn and a6(q) =− 1

12 ∑
n≥1

(5σ3(n)+7σ5(n))qn.

An isomorphism C×/qZ→ E can be given by

t 7→

(
∑
n∈Z

qnt
(1−qnt)2 −2 ∑

n≥1
σ1(n)qn, ∑

n∈Z

(qnt)2

(1−qnt)3 + ∑
n≥1

σ1(n)qn

)
,

where of course we send t ∈ qZ to 0 ∈ E. This isomorphism leads to the following identifi-
cation of differentials on C×/qZ and E:

dt
t

=
dx

2y+ x
.

We will use this t-coordinate notation whenever it makes sense.

The Weierstrass equation (1.25) defines a generalised elliptic curve over Z[[q]]. Also, for any
w ∈ Z>0 we can regard (1.25) as a Weierstrass equation for an elliptic curve over the ring
Z((q1/w)). We call this the Tate curve Eq over Z[[q]] and Z((q1/w)) respectively. The idea
is now that if we move our favourite cusp of width w to ∞ and see q1/w as a local parameter
there, then Eq can be seen as a (formal completion of a) universal elliptic curve over a punc-
tured neighbourhood of our cusp. This can in fact be used to describe cusps of X1(N) over
arbitrary fields, not just C.

Let now N > 4 and w be integers with w | N. Let k be a field of characteristic not dividing
N that contains all N-th roots of unity and put R = k[[q1/w]] and K = k((q1/w)). The Néron
model Eq of Eq over K is the smooth locus of a generalised elliptic curve over R whose
special fibre E q is a Néron w-gon over k. We have canonical isomorphisms Eq(K)∼= K×/qZ

and Eq,0(K) ∼= R×/qZ, where the latter is the subset of Eq(K) consisting of points whose
specialisation lies in the 0-component of the smooth locus. The component group of E q is
canonically isomorphic to

E q(k)/E
0
q(k)∼= Eq(K)/Eq,0(K)∼= (q1/w)Z/qZ ∼= Z/wZ.

Using the identification Eq(K) ∼= K×/qZ we get an isomorphism from µN(k)×Z/wZ to
Eq(K)[N], hence a homomorphism to E q(k), defined by (ζ , i) 7→ ζ qi/w. This gives us a de-
scription for all the cusps: to write down a cusp of X1(N)(k) is suffices to write down a w | N
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and a point (ζ , i) of order N of Eq(K) satisfying gcd(i,w) = 1; this last condition is necessary
so as to meet the requirement that the subgroup generated by it meets all the components of
the special fibre. Be aware of the fact that this does not lead to a unique notation for cusps
because of (1.24).

Let us work out what this means for a cusp γ∞ with γ =
(

a
c

b
d

)
∈ SL2(Z) in the upper half

plane model for X1(N)C. Write z ∈ H as γω with ω ∈ H and let w = w(γ) = N/gcd(c,N)
be the width of γ∞ in X1(N). If we put qγ = exp(2πiω) then q1/w

γ is a local parameter for
X1(N)C at γ∞. The fibre of (E,P) above z = γω is then uniquely isomorphic to

(E,P)z ∼=
(

C/Λω ,
cω +d

N

)
.

In terms of the parameter q1/w
γ this can be written as

(E,P)z ∼=
(
C×/qZ,ζ d

Nqc/N
γ

)
=
(
C×/qZ,ζ d

N(q1/w
γ )c/gcd(c,N)

)
,

where we have put ζN = exp(2πi/N). Our conclusion is that Eγ∞ is the Néron w-gon with
w = N/gcd(N,c) and for the point of order N on it we have

Pγ∞ =
(

exp(2πid/N),
c

gcd(c,N)

)
.

Note that the cusp does not uniquely determine the number d, but the different choices lead
to isomorphic objects.

Let us note that in this way we can see that the cusp 0 ∈H∗ is defined over Q: it corresponds
to (c,d) = (1,0) and thus to an N-gon with the point (1,1) on it, which is invariant under
the action of Gal(Q(ζN)/Q). The cusp ∞ ∈ H∗ is not defined over Q: it corresponds to
(c,d) = (0,1) and thus to a 1-gon with the point (ζN ,0) on it, whose isomorphism class in
only invariant under the stabiliser subgroup of Q(ζN +ζ

−1
N ).

1.2.4 Katz modular forms
The algebraic description of modular curves allows us to give an algebraic description of
modular forms as global sections of certain line bundles over modular curves. These sec-
tions are sometimes called Katz modular forms and in particular they allow us to speak about
modular forms for Γ1(N) over any Z[1/N]-algebra.

Let S be a scheme and let E/S be a generalised elliptic curve. The curve E has a sheaf of
relative differentials Ω1

E/S as well as a zero section 0 : S→ E. We put

ωE/S := 0∗Ω1
E/S,

which is a line bundle on S. In particular, for N > 4 and k ∈ Z we can consider the line bun-
dle ω

⊗k
EC/Y1(N)C

on Y1(N)C, using the notation of (1.21). Using the same construction of ωE/S
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in an analytic context, the sheaf ω
⊗k
((C×H)/Λ)/H

is a free OH-module of rank 1, generated by

(dw)⊗k, where w denotes the coordinate on the factor C. In particular, any holomorphic func-
tion f : H→ C can be seen as the section f (z)(dw)⊗k of ω

⊗k
((C×H)/Λ)/H

and vice versa. The

action of γ =
(

a
c

b
d

)
∈ SL2(Z) on (C×H)/Λ sends f (z)(dw)⊗k to (cz + d)−k f (γz)(dw)⊗k.

Using that Γ1(N) acts freely on H, we see now that H0(Y1(N)(C),ω⊗k) is isomorphic to
the space of holomorphic functions on H that satisfy the weight k modular transformation
property for Γ1(N).

Now, we extend this to EC/X1(N)C. Global sections of H0(X1(N)(C),ω⊗k) can still be seen
as holomorphic functions f : H→C satisfying the weight k modular transformation property
for Γ1(N). Using the description of neighbourhoods of cusps as Tate curves, one can see that
the extra condition at the cusps is simply that f has to be holomorphic at the cusps. So we
have an isomorphism

Mk(Γ1(N))∼= H0
(

X1(N)C,ω⊗k
EC/X1(N)C

)
.

Cusps forms are modular forms that vanish at the cusps, so we have

Sk(Γ1(N))∼= H0
(

X1(N)C,ω⊗k
EC/X1(N)C

(−cusps)
)

.

Here, cusps denotes the divisor of all cusps, all counted with multiplicity 1. The above
isomorphisms inspire us to write down the definition of Katz modular forms

Definition 1.7. Let N > 4 and k be integers. Let A be a Z[1/N]-algebra. Then the space of
Katz modular forms for Γ1(N) over A is defined to be the A-module

Mk(Γ1(N),A) := H0
(

X1(N)A,ω⊗k
EA/X1(N)A

)
and the space of Katz cusp forms over A is defined as the A-module

Sk(Γ1(N),A) := H0
(

X1(N)A,ω⊗k
EA/X1(N)A

(−cusps)
)

.

Let us remark that there is an isomorphism of line bundles

ω
⊗2
E/X1(N)

∼−→Ω
1
X1(N)/Z[1/N](cusps),

called the Kodaira-Spencer isomorphism, see [35, Subsection A1.3.17]. Over C it is defined
by f (z)(dw)⊗2 7→ (2πi)−1 f (z)dz. It is compatible with base-change. A consequence of this
isomorphism is

S2(Γ1(N),A)∼= H0
(

X1(N)A,Ω1
X1(N)A/A

)
,

which is something that we shall use later in our calculations.
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q-expansions

We can define the q-expansion of a Katz modular form of level N and weight k algebraically.
Let A be an algebra over Z[1/N,ζN ] and consider the Tate curve Eq over A[[q]] together
with the point t = ζN mod qZ on it. By Theorem 1.10, the pair (Eq,ζN modqZ) is the base-
change of E/X1(N) along an A[[q]]-valued point of X1(N). This base-change gives a pull-
back homomorphism

Mk(Γ1(N),A) = H0
(

X1(N)A,ω⊗k
EA/X1(N)A

)
→ H0

(
SpecA[[q]],ω⊗k

Eq/A[[q]]

)
.

The latter object is a free module over A[[q]] generated by (dt/t)⊗k, where dt/t is the standard
differential on Eq. So we obtain a homomorphism of A-modules

Mk(Γ1(N),A)→ A[[q]]
(

dt
t

)⊗k

.

Applying this homomorphism and dropping the factor (dt/t)⊗k defines for f ∈Mk(Γ1(N),A)
its q-expansion in A[[q]]. Formation of this q-expansion commutes with base-change. Over
C this q-expansion coincides with the usual q-expansion of f ∈ Mk(Γ1(N)) since the pair
(Eq,ζN modqZ) corresponds to a neighbourhood of the cusp ∞.

A thorn in the eye here is that the ring A has to contain a primitive N-th root of unity, while
we wish to work, for instance, over Q. Luckily, we can resolve this problem. So let A be a
Z[1/N]-algebra. Remember that we have an isomorphism

X1(N)∼= Xµ(N).

This induces an isomorphism

Mk(Γ1(N),A)∼= H0
(

Xµ(N),ω⊗k
(E/〈P〉)A/Xµ (N)A

)
.

Now, consider the pair (Eq, ι) over A[[q]] with ι the canonical injection µN,A ↪→ Eq via the
t-coordinate. We repeat the above argument and obtain a map

Mk(Γ1(N),A)→ A[[q]].

Over C, the q-series of f ∈ Mk(Γ1(N),A) obtained in this way coincides with the usual
q-expansion of WN( f ). So we have the following proposition:

Proposition 1.1. Let N and k be positive integers with N > 4. Let A be a subring of C in
which N is invertible. Then the image of the canonical map

Mk(Γ1(N),A)→Mk(Γ1(N))

consist exactly of those forms f for which the q-expansion of WN( f ) has coefficients in A.
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1.2.5 Diamond and Hecke operators
On the modular curve X1(N) we have a diamond operator 〈d〉 for d ∈ (Z/NZ)× that we have
in fact already mentioned before. It acts on a pair (E,P) by

〈d〉(E,P) 7→ (E,dP).

By pull-back it defines an operator on the space Sk(Γ1(N),Q) for any Z[1/N]-algebra A.
Over C this coincides with the usual diamond operator on Sk(Γ1(N)).

Hecke operators are defined on the Jacobian J1(N)Q of X1(N)Q as follows. For a positive in-
teger n, we let Tn be the endomorphism of J1(N)Q induced by the following map on divisors:

Tn : (E,P) 7→ ∑
C⊂E subgroup of order n,

C∩〈P〉=0

(E/C, P mod C).

Here, E is a true elliptic curve, not a generalised one. Now choose a rational point Q in
X1(N)Q, for instance (N-gon, (1,1)). Then we can embed X1(N)Q into J1(N)Q by sending P
to P−Q. This embedding induces an isomorphism

H0
(

J1(N)Q,Ω1
J1(N)Q/Q

)
∼−→ H0

(
X1(N)Q,Ω1

X1(N)Q/Q

)
∼= S2(Γ1(N),Q)

which is independent of the choice of Q. The Hecke operators on J1(N)Q induce opera-
tors on the space S2(Γ1(N),Q) via this isomorphism. Over C, they coincide with the usual
Hecke operators on S2(Γ1(N)). For a general definition of Hecke operators on the space
Sk(Γ1(N),Q), see [35, 1.11].

Eichler-Shimura relation

Consider the modular curve X1(N) and let p be a prime not dividing N. On the Jacobian
J1(N)Fp of X1(N)Fp we have several operators. First of all, we have the Frobenius oper-
ator Frobp, defined on coordinates by x 7→ xp. This operator has a dual Verp, called the
Verschiebung. It satisfies Frobp ◦Verp = Verp ◦Frobp = p as endomorphisms of J1(N)Fp .
Viewing the Jacobian as a covariant (Albanese) functor of curves, the diamond operator 〈p〉
on X1(N)Fp defines an operator on J1(N)Fp that we shall also denote by 〈p〉. Furthermore,
the Hecke operator Tp on J1(N)Q defines an operator on the Néron model of J1(N)Q over Z.
The fibre of this Néron model over p is J1(N)Fp so we have an operator Tp on J1(N)Fp as
well. The following relation between all these operators holds in End(J1(N)Fp):

Tp = Frobp +〈p〉Verp . (1.26)

This relation is called the Eichler-Shimura relation in End(J1(N)Fp).

1.3 Galois representations associated to newforms
Modular forms turn out to be strongly related to the representation theory of Gal(Q/Q),
in particular to the 2-dimensional representations over finite fields and `-adic fields. As
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in the previous sections, we will not present the material in its most general and complete
form. Interested readers could consult for example [19] or [65] for a general treatment of
representation theory and [62] or [85] for Galois representations.

1.3.1 Basic definitions
Let G be a group and let K be a field. Assume that both G and K are equipped with a
topology; when for groups or fields considered in this text no standard topology exists or no
topology has been specified, the topology will be assumed to be discrete. For n ∈ Z≥0, an
n-dimensional linear representation of G over K is a continuous homomorphism

ρ : G→ GLn(K)

or, equivalently, a continuous linear action of G on an n-dimensional vector space over K. A
topology on GLn(K) is defined in the following way: embed GLn(K) into Mn(K)×Mn(K)
by g 7→ (g,g−1) and give Mn(K)×Mn(K)∼= Kn2

the product topology. This is to ensure that
the map g 7→ g−1 will be continuous.

The conventions here are not completely standard. In the literature, infinite-dimensional
and non-continuous representations are considered as well. Representations of G on two K-
vector spaces V and V ′ are called isomorphic if there is a linear isomorphism between V and
V ′ that respects the G-action.

A representation ρ : G→ GL(V ) is said to be irreducible if V is nonzero and the only sub-
spaces of V fixed by G are 0 and V . It is said to be absolutely irreducible if the representation
G→ GL(V ⊗K K) obtained from ρ is irreducible. A representation ρ : G→ GL(V ) is said
to be semi-simple if it can be written as a direct sum of irreducible representations. If G
is a finite group then any finite-dimensional representation of G over a field of character-
istic not dividing #G is semi-simple (Maschke’s theorem). An example of a representation
that is not semi-simple can be obtained as follows: Let p be any prime number and take
ρ : Z/pZ→ GL2(Fp) defined by

ρ(x) =
(

1
0

x
1

)
(1.27)

The following two theorems on semi-simple representations are important to us.

Theorem 1.11 (cf. [10, Proposition 3.12]). Let G be a group, let K be a field of characteristic
0 and let ρ and ρ ′ be n-dimensional semi-simple representations of G over K. If tr(ρ(g)) =
tr(ρ ′(g)) holds for all g ∈ G then ρ and ρ ′ are isomorphic.

Theorem 1.12 (Brauer-Nesbitt, [19, Theorem 30.16]). Let G be a finite group and let ρ and
ρ ′ be finite-dimensional semi-simple representations of G over a field. If for all g ∈ G the
characteristic polynomials of ρ(g) and ρ ′(g) coincide, then ρ and ρ ′ are isomorphic.

To any finite-dimensional representation ρ : G→GL(V ) we can attach a semi-simple repre-
sentation ρss : G→GL(V ) as follows. There is a maximal chain 0 = V0 ( V1 ( · · ·( Vr = V
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of G-stable subspaces. The action of G on V induces an action on each successive quotient
Vi+1/Vi and we define ρss to be the action of G on the direct sum of these successive quo-
tients. The representation ρss is called the semi-simplification of ρ; by the Jordan-Hölder
theorem it is well-defined, i.e. independent of the chosen chain. In any case, the process of
semi-simplification does not affect the function g 7→ charpol(ρ(g)).

1.3.2 Galois representations
Let now G be the group Gal(Q/Q) with its Krull topology. For each prime p, we fix an
embedding Q ↪→Qp. This defines an embedding Gal(Qp/Qp) ↪→Gal(Q/Q) whose image is
a decomposition group Dp at p; we will identify Gal(Qp/Qp) with Dp. Every representation
ρ of Gal(Q/Q) defines a representation ρp of Gal(Qp/Qp) by restriction. A representation
ρ : Gal(Qp/Qp)→ GLn(K) is called unramified if it is trivial on its inertia subgroup. In
that case it factors through the quotient Gal(Qp/Qp) � Gal(Fp/Fp) and we have a well-
defined element ρ(Frobp) ∈ GL2(K). A representation ρ : Gal(Q/Q)→ GLn(K) is called
unramified at p if the restriction of ρ at p is unramified; this notion is independent of the
choice of Gal(Qp/Qp) ↪→ Gal(Q/Q). If ρ is unramified at p then ρ(Frobp) is well-defined
up to conjugacy; in particular charpol(ρ(Frobp)) will be well-defined in that case.

One-dimensional Galois representations

The Kronecker-Weber theorem allows us to classify the 1-dimensional representations of
Gal(Q/Q). The maximal abelian extension of Q is the field Q(µ∞) obtained by adjoining all
roots of unity in Q to Q. Its Galois group Gal(Q(µ∞)/Q) is canonically isomorphic to Ẑ×;
the isomorphism Ẑ× ∼−→Gal(Q(µ∞)/Q) is given by letting α ∈ Ẑ× send a root unity ζ to ζ α

(which is well-defined). This implies that for any topological field K, giving a 1-dimensional
representation of Gal(Q/Q) is equivalent to giving a continuous homomorphism Ẑ×→ K×.

A particular example that is interesting to us is the case K = Q`. We canonically have a
surjection Ẑ× � Z×` and an embedding Z×` ↪→Q×` ⊂Q×` . Composing these two homomor-
phisms gives a Q×` -valued character of Ẑ× that corresponds to a 1-dimensional representation
of Gal(Q/Q) that is known as the `-adic cyclotomic character and that is denoted by χ`. The
representation χ` is unramified outside ` and for all primes p 6= ` we have

χ`(Frobp) = p ∈Q×` .

This representation factors through Gal(Q(µ`∞)/Q), where Q(µ`∞) is the extension of Q ob-
tained by adjoining all roots of unity of `-primary order.

For each N ∈ Z>0 we have a canonical surjection Ẑ×� (Z/NZ)× and we can write down a
character of Z× by writing down a character ε : (Z/NZ)×→ µ(Q`). By abuse of notation,
we will also write the corresponding character of Gal(Q/Q) as ε . It is unramified outside N,
factors through Gal(Q(µN)/Q) and using our abusive notation it satisfies ε(Frobp) = ε(p)
for all p - N. In particular we can make 1-dimensional representations of Gal(Q/Q) over Q`
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of the form εχn
` where ε is associated to a character of (Z/NZ)× for some N and n is an

integer.

We can also take K = F`. Any continuous homomorphism ε : Ẑ×→ F×` factors as

ε : Ẑ×� (Z/NZ)×→ F×
λ
⊂ F×`

for some N ∈ Z>0 and some finite extension Fλ of F`. Again if we denote the corre-
sponding character of Gal(Q/Q) by ε as well then we have the abusively written iden-
tity ε(Frobp) = ε(p) ∈ F×` for p - N. A special example is the mod ` cyclotomic charac-
ter χ`. Here we take N = ` and use the canonical map (Z/`Z)× → F×` ⊂ F×` . It satisfies
χ`(Frobp) = p ∈ F×` for p 6= `. This corresponds to the well-known canonical isomorphism
Gal(Q(µ`)/Q) ∼−→ (Z/`Z)×.

1.3.3 `-Adic representations associated to newforms
It was a conjecture of Ramanujan and Petersson that for a newform f of level N and weight
k, the inequality

|ap| ≤ 2p(k−1)/2

holds for all primes p - N. The inequality |τ(p)| ≤ 2p11/2 mentioned in Subsection 1.1.2 is
a special case of this, conjectured by Ramanujan; Petersson formulated the conjecture for
more general newforms. Later, Serre refined this conjecture to a more delicate conjecture
about Galois representations, which was already known to hold by Eichler and Shimura for
weight k = 2, and later proved by Deligne for weights k > 2 [21] and by Deligne and Serre
for k = 1 [23]. The proven form of the conjecture is as follows:

Theorem 1.13. Let k and N be positive integers. Let f ∈ Sk(Γ1(N)) be a newform and let
K f be the coefficient field of f . Choose a rational prime ` and a prime λ of K f lying over `.
Then there is an irreducible representation

ρ = ρ f ,λ : Gal(Q/Q)→ GL2(K f ,λ )

that is unramified outside N` and such that for each prime p - N` the characteristic polyno-
mial of ρ(Frobp) satisfies

charpol(ρ(Frobp)) = x2−ap( f )x+ ε f (p)pk−1.

Furthermore, the representation ρ is unique up to isomorphism and for each p - N` the com-
plex roots of charpol(Frobp) both have their absolute value equal to p(k−1)/2.

The representation ρ in the theorem is called the λ -adic representation associated to f . It
is clear that this theorem implies the conjecture of Ramanujan and Petersson, as the trace
is the sum of the roots of the characteristic polynomial. Also, it follows from this theorem
that ρ = ρ f ,λ is odd, which means that for a complex conjugation c ∈ Gal(Q/Q) we have
detρ(c) =−1. This holds because of detρ = ε f χ

k−1
` and the fact that the character and the

weight of a newform have the same parity. Let us for completeness say what happens with
|ap( f )| for p | N.
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Theorem 1.14. Let f ∈ Sk(N,ε) be a newform and let p be a prime dividing N. Then we
have

|ap( f )|=


p(k−1)/2 if N(ε) - N

p ,

p(k−2)/2 if N(ε) | N
p and p2 - N,

0 if N(ε) | N
p and p2 | N.

For a proof of this, see [58, Theorems 2 & 3 and Corollary 1] or [50, Theorem 3].

We will now indicate where the representations ρ f ,λ can be found. Let f ∈ Sk(Γ1(N))
be a newform, let T be the Hecke algebra associated to Sk(Γ1(N)) and consider the map
θ f : T→ C defined by Tn 7→ an( f ) and 〈d〉 7→ ε f (d). Also, choose a rational prime ` and a
prime λ | ` of K f .

For k = 2 we can find the representation as follows. First of all, we have the `-adic Tate
module of J1(N):

T`(J1(N)) := lim←−
n

J1(N)(Q)[`n],

where the maps in the projective system are multiplication by `. This is a free Z`-module of
rank 2g(X1(N)), equipped with an linear action of Gal(Q/Q). Let T be the Hecke algebra
associated to S2(Γ1(N)). Integration defines a perfect pairing between H1(X1(N)(C),C) and
S2(Γ1(N))⊕ S2(Γ1(N)). Also, T acts on H1(X1(N)(C),Z) ∼= H1(J1(N)(C),Z) and this ac-
tion is self-adjoint with respect to the integration pairing. If follows that T`(J1(N))⊗Z`

Q`

is a free TQ`
-module of rank 2. We can describe the space Vf ,λ as the tensor product of

T`(J1(N)) and K f ,` over TZ`
. Here K f obtains its T-module structure via θ f and it gets the

action ρ ′f ,λ of Gal(Q/Q) from the one on T`(J1(N)).

Now, let p - N` be a prime. By proper smooth base-change, the action of Frobp ∈Gal(Q/Q)
on T`(J1(N)) coincides with the action of Frobp on T`(J1(N)Fp). From the Eichler-Shimura
relation (1.26) it already follows that ρ ′f ,λ (Frobp) is a root of x2− ap( f )x + ε f (p)p. Now,
if ρ ′f ,λ (Frobp) is not a scalar matrix, this already shows that x2− ap( f )x + ε f (p)p is in-
deed its characteristic polynomial. Using the Weil pairing on T`(J1(N)Q) one can show that
detρ ′f ,λ = ε f χ` so that in general we have charpol(ρ ′f ,λ ) = x2− ap( f )x + ε f (p)p and thus
ρ f ,λ
∼= ρ ′f ,λ .

For k > 2 the construction is more technical and uses étale cohomology. Replace N by a
multiple rN with gcd(r,N) = 1 if this is necessary to obtain N > 4. Consider the universal
elliptic curve π : EQ→ Y1(N)Q and the `-adic étale sheaf

Fk,` := Symk−2 R1
π∗Q`.

This is a locally free sheaf of Q`-vector spaces of dimension k−1. Now put

W` := HomQ`

(
H1

ét(X1(N)Q, j∗Fk,`),Q`

)
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with j : Y1(N) ↪→ X1(N) the natural embedding. It can be shown that there are natural actions
of Tk(N) and Gal(Q/Q) on W` that allow us to obtain ρ f ,λ as the tensor product of W` with
K f ,λ over TQ. We won’t be using this construction in our calculations and we refer to [21]
for the details.

In the case k = 1 no direct geometric construction is known, but a proof of existence was
given by Deligne and Serre [23]. The essential idea of their proof is as follows. For any
prime `, a form of weight one is congruent to a form of weight ` modulo `, a case in which
the existence of a representation is already known. Reducing mod a prime above ` we get a
representation ρ f ,` over F`. Combining asymptotic properties of ap( f ) mod ` for large ` and
|ap( f )| they concluded that the set {ap( f )} should be finite and that in fact a representation
over K f should exist for f . So not only over all K f ,λ there exists a representation in this case
but also over C.

1.3.4 Mod ` representations associated to newforms

The representations ρ f ,λ are uncountable objects. This implies that we will not be able to
compute them precisely, except in some special cases. So if we want to compute them then
we have to approximate them, like one approximates real numbers by floating point numbers.
The approximations that we will study are representations ρ = ρ f ,λ : Gal(Q/Q)→GL2(Fλ )
that have charpol(ρ(Frobp)) congruent to X2−ap( f )X + ε(p)pk−1 modλ .

Let G be a compact group, let K be an `-adic field with residue field k and let ρ : G→GLn(K)
be a semi-simple representation. From the compactness of G it follows that Kn has a G-stable
OK-sublattice: if Λ ⊂ Kn is any OK-lattice, then the OK-module generated by GΛ is a G-
stable OK-lattice. Reducing this lattice modulo the prime λ of K we obtain a 2-dimensional
representation of G over k. This representation depends in general on the choice of the lat-
tice. However, the Brauer-Nesbitt theorem shows that its semi-simplification ρ is unique up
to isomorphism (note that since k is finite, the representation factors through a finite quotient
of G). This semi-simple representation ρ is called the reduction of ρ modulo λ .

This shows that the above mentioned representations ρ f ,λ at least do exist. We can also
find them concretely. Assume for this that ρ f ,λ is absolutely irreducible, which is the most
interesting case anyway.

The case k = 2

The above mentioned construction of ρ f ,λ suggests that we should look inside Jacobians of
modular curves.

Theorem 1.15 (Boston-Lenstra-Ribet [9, Theorem 2]). Let f ∈ S2(Γ1(N)) be a newform and
let λ be a prime of K f such that ρ f ,λ is absolutely irreducible. Let T be the Hecke algebra
associated to S2(Γ1(N)) and consider the map θ f ,λ : T→ Fλ defined by Tn 7→ an modλ and
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〈d〉 7→ ε f (d)modλ . Let m = m f ⊂ T be the kernel of θ f ,λ . Then the (T/m)[Gal(Q/Q)]-
module J1(N)(Q)[m] is a direct sum of copies of ρ f ,λ .

If we take m as in the theorem then from the construction of ρ f ,λ it follows a priori that
ρ f ,λ is an irreducible constituent of J1(N)(Q)[mr] for some r > 0. An argument of Mazur
[52, Section 14] shows that we can in fact take r = 1 here, showing that the number of copies
in Theorem 1.15 is positive. The map θ f ,λ mentioned in Theorem 1.15 need not be surjective.
So it may happen that the representation ρ f ,λ is actually defined over a field that is smaller
than Fλ .

The case k 6= 2

If we write N = N′`n with ` - N′ then it can be shown that there is a newform f ′ of weight
k and level dividing N′, a prime λ ′ of K f ′ and embeddings of Fλ and F′

λ
into F` such that

for all n coprime to N we have in F` an equality of an( f ) mod λ with an( f ′) mod λ ′. For a
proof of this see [61, Theorem 2.1] and [12, Proposition 1.1]. In other words, without loss of
generality we can and do assume ` - N.

If we let the weight vary, we can find more congruences. In fact, [61, Theorem 2.2] states
that for k ≤ `+ 1 there is a newform f ′ of level dividing N` and weight 2 such that in the
notation as above, an( f )modλ is equal to an( f ′)modλ ′ for n coprime to N`. So also in
this case, we can find the representation inside the Jacobian of a modular curve. If we have
k > `+ 1 then the representation ρ = ρ f ,λ might not always be present inside the `-torsion
of some J1(M) but there is a twist

ρ⊗χ
n
` : σ 7→ ρ(σ)χ

n
`(σ)

which does belong to a form of weight at most `+1, hence can be reduced to weight 2 again;
see [27, Section 7].

In conclusion, if ρ f ,λ is absolutely irreducible, we can always reduce to weight 2 and work
inside the `-torsion of the Jacobian of some modular curve X1(M).

Multiplicity one

The number of copies of ρ f ,λ in Theorem 1.15 is called the multiplicity of ρ f ,λ . In general,
let f ∈ Sk(Γ1(N)) be a newform and λ is a prime of K f such that ρ = ρ f ,λ is absolutely
irreducible. Then we define the multiplicity of ρ f ,λ as the multiplicity of its twist that is
associated to a weight 2 form of minimal level. This multiplicity is equal to 1 in most cases,
exceptions are only possible if a list of very strong conditions are satisfied.

Theorem 1.16 (Multiplicity one theorem, cf. [13, Theorem 6.1]). Let N and k be positive
integers and let f ∈ Sk(Γ1(N)) be a newform. Furthermore, let ` - N be a prime and suppose
2≤ k ≤ `+1. Take a prime λ of K f above ` such that ρ = ρ f ,` is an absolutely irreducible
representation of multiplicity not equal to one. Then k is equal to `, the representation ρ is
unramified at ` and ρ(Frob`) is a scalar matrix.
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With some possible exceptions for ` = 2, the converse of the theorem also holds; for a proof
of this, see [87, Corollary 4.5]. For computational examples on representations of multiplic-
ity not equal to one, see [41].

1.3.5 Examples

Let us give some examples of Galois representations associated to modular forms now. If one
relaxes Theorem 1.13 a bit and does neither demand the representation to be irreducible nor
the roots of ρ(Frobp) to have absolute value p(k−1)/2 then the Eisenstein series Gψ,φ

k have
Galois representations as well. From the q-expansion (1.8) of G = Gk one can immediately
read off that

ρG,` =
(

ψ

0
0

φ χ
k−1
`

)
is an `-adic representation for G, where we denote a Dirichlet character and its associated
Gal(Q/Q)-character by the same symbol.

The Ramanujan tau function

For the Ramanujan tau function, we also have representations. We are unable to write down
the `-adic ones so we’ll display some of the mod ` representations for the tau function.
The congruences for τ(n) described in Subsection 1.1.2 enable us to write down explicit
representations ρ∆,` for ` ∈ {2,3,5,7,23,691}. For ` ∈ {2,3,5,7,691} they are reducible,
for instance

ρ∆,5 ∼
(

χ5
0

0
χ

2
5

)
and ρ∆,691 ∼

(
1
0

0
χ

11
691

)
.

For ` = 23 we have to do a little more work to write it down. Consider the field Q(
√
−23)

and let H be its Hilbert class field. The field H is a splitting field of x3− x− 1 over Q and
has Galois group Gal(H/Q)∼= S3; we fix an isomorphism of these two groups. Consider the
space V ⊂ F3

23 consisting of the vectors whose coordinates sum up to zero. The group S3 acts
on F3

23 by permuting the basis vectors and V is stable under this action. We claim that ρ∆,23
is the composition

ρ∆,23 : Gal(Q/Q)→ Gal(H/Q)∼= S3→ GL(V )∼= GL2(F23).

Indeed: primes p with
( p

23

)
=
(
−23

p

)
=−1 are inert in Q(

√
−23) so are sent to a transposi-

tion in S3; transpositions have trace 0 in GL(V ). Primes of the form a2 +23b2 are known to
split completely in H so are sent to the identity matrix which has trace 2. The other primes
p 6= 23 have

(
−23

p

)
= 1 but do not split completely in H so must be sent to a 3-cycle which

has trace −1.

Another interesting case is ` = 11. From the above we know that we can obtain ρ∆,11
as the action of Gal(Q/Q) on a 2-dimensional subspace of J1(11)(Q)[11]. Because of
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g(X1(11)) = 1, the space J1(11)(Q)[11] is 2-dimensional itself and E := J1(11) is an elliptic
curve; a minimal Weierstrass equation for it is

E : y2− y = x3− x2.

So ρ∆,11 is isomorphic to the action of Gal(Q/Q) on E[11]. In particular we have the con-
gruence τ(p)≡ p+1−#E(Fp) mod 11 for p 6= 11. Schoof’s algorithm [63] can be used to
compute #E(Fp) mod ` efficiently for p 6= 11 and small ` 6= p.

Remarks

Serre [64] has explained that the existence of simple congruences for τ(p) depends on what
type of representation ρ∆,` is. As already remarked, it is reducible for ` ∈ {2,3,5,7,691}.
Furthermore, it is dihedral for ` = 23: a representation ρ : Gal(Q/Q)→ GL2(Fq) is called
dihedral if it is irreducible and over an algebraic closure of Fq its image is contained in a

subgroup conjugate to
{(
∗
0

0
∗

)}
∪
{(

0
∗
∗
0

)}
.

For all other primes `, the representation ρ∆,` is non-exceptional: a Galois representation
ρ : Gal(Q/Q)→ GL2(Fq) with q = pr is called exceptional if its image does not contain a
subgroup conjugate to SL2(Fp). So ρ∆,` is exceptional for ` ∈ {2,3,5,7,23,691} and for all
other ` its image contains SL2(F`). We have seen that reducible and dihedral representations
are exceptional. These are not the only types of exceptional representations; there are also
representations whose projective image is contained in a group isomorphic to the symme-
try group of a regular polyhedron, but these do not occur very often. For more details on
the exceptional representations for τ(p) and related functions, the reader is referred to [83]
and [84].

1.4 Serre’s conjecture
Let ` be a prime and let ρ : Gal(Q/Q)→GL2(F`) be an odd irreducible representation. Serre
made the striking conjecture that such a ρ can always be obtained from a modular form, of
a prescribed level and weight. In this section we will give the definitions for the level and
the weight of the representation, which are called its Serre invariants; they depend on local
properties of ρ . After this, we will formulate the conjecture, which is nowadays a theorem.
The main reference for this material is [70]; other references include [27], [20], [42], [62]
and [37].

1.4.1 Some local Galois theory
In this subsection we shall give some basic definitions from local Galois theory that we shall
be using later on. However, to understand this material well, it is recommended to study
[67], especially [67, Chapter IV].
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Let K be a field that is complete with respect to a discrete valuation v = vK , having perfect
residue field κ . A field satisfying these conditions will be called a local field here. We also
take as convention that discrete valuations map K× surjectively to Z. The ring of elements
of a local field K with nonnegative valuation will be denoted by OK and π = πK will denote
a uniformiser of K.

Lower numbering

Let L/K be a finite Galois extension of local fields, with residue fields λ/κ . For s∈ [−1,+∞[,
define the subgroups Gs and G+

s of Gal(L/K) as

Gs = {σ ∈ Gal(L/K) : vL(σπL−πL)≥ s+1} ,
G+

s = {σ ∈ Gal(L/K) : vL(σπL−πL) > s+1} ;

this does not depend on the choice of πL. In particular, G−1 is equal to Gal(L/K) and
G−1/G+

−1 is canonically isomorphic to Gal(λ/κ). If s is not an integer, then we have
G+

s = Gs and if s is an integer, we have G+
s = Gs+1.

The group G0 is called the inertia subgroup of Gal(L/K) and is usually denoted by I. The
group G+

0 is called the wild ramification subgroup of Gal(L/K) and we denote usually by Iw.
The wild ramification group can only be non-trivial if p = char(κ) is positive; in that case it
is the unique Sylow p-subgroup of I. Also, G0/G+

0 is called the tame ramification or tame
inertia subquotient of Gal(L/K) and is denoted by It .

We have an injective homomorphism

θ0 = θ
L/K
0 : It ↪→ O×L /(1+πLOL)∼= λ

×, σ 7→ σπ

π
mod (1+πLOL),

which is independent of the choice of a uniformiser of L. The group G−1/G+
−1 acts by

conjugation on G0/G+
0 ; via θ0, this action is compatible with the natural action of Gal(λ/κ)

on λ×. To be more precise, for σ ∈ G−1 and τ ∈ G0 the following formula holds:

θ0(στσ−1) = σ (θ0(τ)) , (1.28)

where the action of G−1 on λ× is the one that is obtained from the canonical isomorphism
G−1/G+

−1
∼= Gal(λ/κ).

Upper numbering

Let again a finite Galois extension L/K of local fields be given and consider its lower num-
bering filtration. Define a function φ : [−1,+∞[→ [−1,+∞[ by

φ(s) =
∫ s

0

#Gt

#G0
dt.
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This is a concave piecewise linear strictly increasing function. In particular it has an inverse,
which we will call ψ . Now the upper numbering is defined by

Gs = G
ψ(s) and Gs+ = G+

ψ(s).

The jumps in this filtration have rational index, not necessarily at integers. The real-valued
indices allow us to use integrals in order to compactify a lot of notation. Note that for
s ∈ [−1,0] we have Gs = Gs and G+

s = Gs+.

If L is an infinite Galois extension of K, then we can still define an upper numbering on
Gal(L/K): the upper numbering is compatible with taking Galois subfields, thus with taking
quotients of Galois groups. Therefore, we can simply take projective limits to obtain an
upper numbering Gal(L/K)s and Gal(L/K)s+ that is compatible with taking finite Galois
subextensions of L/K. In particular, we can speak of I(L/K), Iw(L/K) and It(L/K)

Tame characters

We will now restrict to the case K = Q` and study the structure of the tame ramification
group of Q`/Q`. For every finite Galois extension L/Q` with residue field λ there is a
canonical embedding θ

L/Q`
0 : It(L/Q`) ↪→ λ× as we saw above. If M/L/Q` is a tower of

Galois extensions with µ/λ/F×` the corresponding extensions of residue fields, then the
diagram

It(M/Q`) // //
� _

θ0
��

It(L/Q`)� _

θ0
��

µ×
Norm // //

λ×

commutes. If we put L = Q`(ζm, m
√

`) with m = `n−1 then θ
L/Q`
0 maps It(L/Q`) isomorphi-

cally to F×`n . This gives us an isomorphism

It(Q`/Q`)∼= lim←−
n

F×`n,

where the maps in the projective system are the norm maps F`n → F`m for m | n.

Giving a character φ : It(Q`/Q`)→ F×` boils thus down to giving an n and a homomorphism
of groups F×`n → F×` . The smallest n that can be used here is called the level of φ . For a
given n, exactly n of the homomorphisms F×`n → F×` come from field embeddings F`n ↪→ F`;
if a character ψ : It(Q`/Q`)→ F×` can be given in this way, then we call ψ a fundamental
character of level n.

Every character φ : It(Q`/Q`)→ F×` is a power of any fundamental character of the same
level. The fundamental character of level 1 is the restriction of the mod ` cyclotomic χ`

character to I, which we will abusively write as χ` as well.
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Peu/très ramifiée

Let L/Q` be a Galois extension whose wild ramification group Iw is killed by `. Let K ⊂ L be
the maximal tamely ramified subextension, i.e. the fixed field of Iw and consider the extension
L(ζ`)/K(ζ`). By Kummer theory, there is a unique subgroup A < K(ζ`)×/K(ζ`)×` with
L(ζ`) = K(ζ`)(

√̀
A). If A is a subgroup of O×K(ζ`)

modK(ζ`)×` then we say that the extension

L/Q` is peu ramifiée and otherwise that it is très ramifiée. A representation ρ of Gal(Q`/Q`)
is called peu/très ramifiée if the field extension Qker(ρ)

` /Q` is.

1.4.2 The level
Let V be a finite dimensional vector space over F` and let ρ : Gal(Q/Q)→ GL(V ) be a
representation. For a prime p 6= ` we consider the representation ρ|Dp of G = Gal(Qp/Qp)
and set

n(p,ρ) =
∫ +∞

−1
dim(V/V Gs

)ds. (1.29)

It is a non-trivial fact that n(p,ρ) is a non-negative integer (cf. [67, Ch. VI]), equal to 0 for
all but finitely many p. We define the level N(ρ) of ρ as

N(ρ) := ∏
p6=`prime

pn(p,ρ). (1.30)

The integer defined in this way is known as the prime-to-` part of the Artin conductor of ρ .

We can also use the lower numbering to define the level. The field K := Qker(ρ) is a finite
Galois extension of Q and the representation ρ factors through Gal(K/Q). Again, let p 6= `
be a prime and choose a prime p of K above p. Then G = Gal(Kp/Qp) can be seen as a
subgroup of Gal(K/Q). The formula (1.29) is equivalent to

n(p,ρ) =
∞

∑
i=0

dim(V/V Gi)
[G0 : Gi]

.

In any case, we can read off from these formulas that n(p,ρ) = 0 if and only if ρ is unrami-
fied at p and n(p,ρ) = dim(V/V I) if and only if ρ is (at most) tamely ramified at p.

This definition of level comes from Artin L-series. Let V be a finite-dimensional vector space
over C and let ρ : Gal(Q/Q)→ GL(V ) be a representation. For each prime p, consider the
subspace V Ip of V . The action of Frobp on V Ip is well-defined up to conjugacy. We define
the L-series of ρ to be

L(ρ,s) := ∏
pprime

det
(
1− p−s

ρ(Frobp);V Ip
)
.

This series converges absolutely and uniformly in any right half plane {s∈C : ℜ(s) > 1+δ}
with δ > 0 and it has a meromorphic continuation to all of C. Any complex conjugation in
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Gal(Q/Q) will be sent to a matrix with eigenvalues equal to 1 and −1; let n+ and n− their
respective multiplicities. Define the completed L-series to be

Λ(ρ,s) := N(ρ)s/2
(

π
s/2

Γ(
s
2
)
)n+(

π
(s+1)/2

Γ(
s+1

2
)
)n−

L(ρ,s),

where N(ρ) is defined by the same formulas as above except that we don’t exclude a prime
called ` in the product (1.30). If we let ρ ′ be the representation obtained by composing ρ

with complex conjugation in GL(V ) then we have a functional equation

Λ(ρ,s) = W (ρ)Λ(ρ ′,1− s)

where W (ρ) ∈ C has absolute value 1. For details on these matters, the reader is referred
to [56, Chapter VII].

1.4.3 The weight
The weight of ρ is defined in terms of ρ|D`

. Serre’s original definition [70, Section 2] differs
slightly from Edixhoven’s one in [27, Section 4]. The difference is due to the fact that Serre
considers only classical modular forms, whereas Edixhoven considers the more geometric
Katz modular forms. Spaces of Katz modular forms in positive characteristic can sometimes
be bigger than their classical counterparts. Because of this, Serre avoids the cases k = 1 and
odd k for ` = 2. It is however true that those Katz modular forms can always be lifted to
classical modular forms, but the weight may have to be adjusted.

A representation Gal(Q`/Q`)→GL2(F`) can have several shapes and to define the weight it
seems inevitable to do an investigation on the possible shapes that can occur. Using the fact
that im(ρ|I`) is an extension of a cyclic group by an `-group one can show that ρ|I` has to be
reducible. It follows that (ρ|I`)ss the direct sum of two characters, which have to be tame as
the order of the image is coprime to `:

(ρ|I`)
ss ∼

(
φ

0
0
φ ′

)
,

say. Using (1.28) one can show that either φ and φ ′ are both of level 1 or φ and φ ′ are both
of level 2. To define the weight we will distinguish on these two cases, starting with the level
2 case as it has less subcases than the level 1 case.

The case that φ and φ ′ have level 2

From (1.28) it follows that φ and φ ′ are each others `-th power and in fact that ρ|D`
is dihe-

dral. If we choose a fundamental character ψ of level 2 then we can find a,b ∈ {0, . . . , `−1}
with

φ = ψ
a+`b and φ

′ = ψ
`a+b.

We define the weight of ρ now as

k(ρ) := 1+ ` ·min(a,b)+max(a,b).

Let us remark that choosing another ψ just exchanges a and b and furthermore that a and b
are distinct as otherwise the level of φ and φ ′ would be 1.
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The case that φ and φ ′ have level 1 and ρ|I` is tamely ramified

In this case φ and φ ′ are powers of the cyclotomic character χ` and ρ|I` is semi-simple, so
we can write

ρ|I` ∼
(

χ
a
`

0
0

χ
b
`

)
with a,b ∈ {0, . . . , `− 2}. There is a difference between the definitions of Serre and Edix-
hoven. Edixhoven puts

k(ρ) := 1+ ` ·min(a,b)+max(a,b)

and Serre’s definition is the same except for a = b = 0 where he puts k(ρ) := `.

The case that φ and φ ′ have level 1 and ρ|I` is wildly ramified

Here, φ and φ ′ are again powers of χ`, but ρ|I` is not semi-simple. We write

ρ|I` ∼
(

χ
a
`

0
∗

χ
b
`

)
,

with a ∈ {1, . . . , `−1} and b ∈ {0, . . . , `−2}.

Suppose first that we have a = b+1 and ρ|D`
is très ramifiée over Q`. Then we have again a

difference between Serre and Edixhoven. Edixhoven puts

k(ρ) := `+ ` ·min(a,b)+max(a,b)

and Serre’s definition has one exception to Edixhoven’s one: Serre puts k(ρ) := 4 in the case
` = 2. In all other cases (i.e. if either a 6= b+1 holds or ρ is peu ramifiée at `) the weight is
defined by

k(ρ) := 1+ ` ·min(a,b)+max(a,b).

Remarks

Sticking to Edixhoven’s definitions, we have 1≤ k(ρ)≤ `2−1 in all cases. We have k(ρ) = 1
if and only if ρ is unramified at `. There is a twist ρ⊗ χ

n
` of minimal weight. This minimal

weight is at most `+ 1 and is called the reduced weight of ρ; it is denoted by k̃(ρ). For a
representation ρ that is wildly ramified at `, an interesting theorem of Moon and Taguchi
relates the reduced weight of ρ to the `-part of the discriminant of the number field Qker(ρ):

Theorem 1.17 (Moon & Taguchi, [55, Theorem 3]). Consider a wildly ramified representa-
tion ρ : Gal(Q`/Q`)→ GL2(F`). Let n ∈ Z satisfy k̃ := k̃(ρ) = k(ρ⊗χ

n
`). Define a number

d by d = gcd(b, k̃−1, `−1) and define m ∈ Z by letting `m be the wild ramification degree
of K := Qker(ρ)

` over Q`. Then we have

v`(DK/Q`
) =

{
1+ k̃−1

`−1 −
k̃−1+d
(`−1)`m if 2≤ k̃ ≤ `,

2+ 1
(`−1)` −

2
(`−1)`m if k̃ = `+1,

where DK/Q`
denotes the different of K over Q` and v` is normalised by v`(`) = 1.
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1.4.4 The conjecture
Let us now state the conjecture. It has a weak form and a strong form.

Conjecture 1.1 (Serre’s conjecture, weak form, [70, Conjecture 3.2.3]). Consider an odd
irreducible representation ρ : Gal(Q/Q) → GL2(F`). Then there exists a newform f of
some level and some weight, a prime λ of K f above ` and an embedding Fλ ↪→ F` such that
ρ ∼= ρ f ,λ holds, where we view ρ f ,λ as a representation over F` via the embedding Fλ ↪→ F`.

Conjecture 1.2 (Serre’s conjecture, strong form, [70, Conjecture 3.2.6]). In the notation and
statement of Conjecture 1.1 there exists an f of level dividing N(ρ) and weight k(ρ).

It is a result of many people that the weak version is equivalent to the strong version; instead
of compiling a complete list of names here, we refer to the overview article [42]. Serre’s
conjecture has been proven subsequently for level one in [38], for representations of odd
level over fields of odd characteristic in [39] and finally in general in [43]. In all cases, the
main ideas originate from the proof of the modularity theorem for elliptic curves by Taylor
and Wiles [86].
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Chapter 2

Computations with modular forms

In this chapter we will discuss several aspects of computations with modular forms. Let us
warn the reader on beforehand that we will focus on how to compute in practice, not on
theoretical aspects of computability. What in theory can be proven to be computable, can
often not be computed in practice and what in practice can be computed, can often not be
proven to be computable in theory.

2.1 Modular symbols
Modular symbols provide a way of doing symbolic calculations with modular forms, as well
as the homology of modular curves. In this section as well, our intention is to give the reader
an idea of what is going on rather than a complete and detailed account of the material. For
more details and further reading on the subject of modular symbols, the reader could take a
look at [51], [72] and [53]. A computational approach to the material can be found in [78]
and [79].

2.1.1 Definitions
Let A be the free abelian group on the symbols {α,β} with α,β ∈ P1(Q). Consider the
subgroup I ⊂ A generated by all elements of the forms

{α,β}+{β ,γ}+{γ,α}, {α,β}+{β ,α}, and {α,α}.

We define the group
M2 := (A/I)/torsion

as the quotient of A/I by its torsion subgroup. By a slight abuse of notation, we will denote
the class of {α,β} in this quotient also by {α,β}. We have an action GL+

2 (Q) on M2 by

γ{α,β} := {γα,γβ},

where γ acts on P1(Q) by fractional linear transformations.

43
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For k ≥ 2, we consider also the abelian group Z[x,y]k−2 ⊂ Z[x,y] of homogeneous polyno-
mials of degree k− 2 and we let matrices in GL+

2 (Q) with integer coefficients act on it on
the left by (

a
c

b
d

)
P(x,y) := P(dx−by,−cx+ay).

We define
Mk := Z[x,y]k−2⊗M2,

and we equip Mk with the component-wise action of integral matrices in GL+
2 (Q) (that is

γ(P⊗α) = γ(P)⊗ γ(α)).

Definition 2.1. Let k≥ 2 be an integer. Let Γ⊂ SL2(Z) be a subgroup of finite index and let
I ⊂Mk be the subgroup generated by all elements of the form γx−x with γ ∈ Γ and x ∈Mk.
Then we define the space of modular symbols of weight k for Γ to be the quotient of Mk/I
by its torsion subgroup and we denote this space by Mk(Γ):

Mk(Γ) := (Mk/I)/torsion.

In the special case Γ = Γ1(N), which we will mostly be interested in, Mk(Γ) is called the
space of modular symbols of weight k and level N. The class of {α,β} in Mk(Γ) will be
denoted by {α,β}Γ or, if no confusion exists, by {α,β}.

The group Γ0(N) acts naturally on Mk(Γ1(N)) and hence induces an action of (Z/NZ)×

on Mk(Γ1(N)). We denote this action by the diamond symbol 〈d〉. The operator 〈d〉 on
Mk(Γ1(N)) is called a diamond operator. This leads to the notion of modular symbols with
character.

Definition 2.2. Let ε : (Z/NZ)× → C× be a Dirichlet character. Denote by Z[ε]⊂ C the
subring generated by all values of ε . Let I ⊂ Mk(Γ1(N))⊗Z[ε] be the Z[ε]-submodule
generated by all elements of the form 〈d〉x− ε(d)x with d ∈ (Z/NZ)× and x ∈Mk(Γ1(N)).
Then we define the space Mk(N,ε) of modular symbols of weight k, level N and character ε

as the Z[ε]-module

Mk(N,ε) :=
(
Mk(Γ1(N))⊗Z[ε]/I

)
/torsion.

We denote the elements of Mk(N,ε) by {α,β}N,ε or simply by {α,β}. If ε is trivial, then
we have Mk(N,ε)∼= Mk(Γ0(N)).

Let B2 be the free abelian group on the symbols {α} with α ∈ P1(Q) with action of SL2(Z)
by γ{α}= {γα} and define Bk := Z[x,y]k−2⊗B2 with component-wise SL2(Z)-action. El-
ements of Bk are called boundary modular symbols. For a subgroup Γ < SL2(Z) of finite
index, we define Bk(Γ) as

Bk(Γ) := (Bk/I)/torsion

where I is the subgroup of Bk generated by all elements γx− x with γ ∈ Γ and x ∈ Bk.
We define Bk(N,ε) to be the quotient of (Bk(Γ1(N))⊗Z[ε])/I by its torsion submodule,
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where I is the Z[ε]-submodule of Bk(Γ1(N))⊗Z[ε] generated by the elements γx− ε(γ)x
with γ ∈ Γ0(N).

We have boundary homomorphisms δ : Mk(Γ)→ Bk(Γ) and δ : Mk(N,ε)→ Bk(N,ε), de-
fined by

δ (P⊗{α,β}) = P⊗{β}−P⊗{α}.

The spaces of cuspidal modular symbols, denoted by Sk(Γ) and Sk(N,ε) respectively are
defined as the kernel of δ .

2.1.2 Properties

One can interpret the symbol {α,β} as a smooth path in H∗ from the cusp α to the cusp β ,
lying in H except for the endpoints α and β . It can be shown that this interpretation induces
an isomorphism

M2(Γ)∼= H1 (XΓ,cusps,Z) .

Here the homology is taken of the topological pair (X1(N),cusps). We also get an isomor-
phism

S2(Γ)∼= H1 (XΓ,Z) .

So we immediately see that there is a perfect pairing

(S2(Γ(N))⊗C)×
(
S2(Γ(N))⊕S2(Γ(N))

)
→ C

defined by

({α,β}, f ⊕g) 7→
∫

β

α

(
f

dq
q

+g
dq
q

)
.

More generally, there is a pairing

Mk(Γ1(N))×
(
Sk(Γ1(N))⊕Sk(Γ1(N))

)
→ C (2.1)

defined by

(P⊗{α,β}, f ⊕g) 7→ 2πi
∫

β

α

( f (z)P(z,1)dz−g(z)P(z,1)dz) ,

which becomes perfect if we restrict and tensor the left factor to Sk(Γ(N))⊗C. This pairing
induces a pairing

(Mk(N,ε))×
(
Sk(N,ε)⊕Sk(N,ε)

)
→ C

which is perfect when the left factor is restricted and tensored to Sk(N,ε)⊗Z[ε] C. From now
on we will denote all these pairings with the notation

(x, f ) 7→ 〈x, f 〉.
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The star involution

On the spaces Mk(Γ1(N)) and Mk(N,ε) we have an involution ι∗ defined by

ι
∗(P(x,y)⊗{α,β}) :=−P(x,−y)⊗{−α,−β},

which is called the star involution. It preserves cuspidal subspaces. We define Sk(Γ1(N))+

and Sk(Γ1(N))− subspaces of Sk(Γ1(N)) where ι∗ acts as +1 and −1 respectively and we
use similar definitions for Sk(N,ε)±. It can be shown that the pairing (2.1) induces perfect
pairings

(Sk(Γ1(N))+⊗C)×Sk(Γ1(N))→ C

and
(Sk(Γ1(N))−⊗C)×Sk(Γ1(N))→ C

and similarly for the spaces with character. This allows us to work sometimes in modular
symbols spaces of half the dimension of the full cuspidal space.

2.1.3 Hecke operators
Hecke operators on modular symbols are defined in a similar way as on modular forms
(see Subsection 1.1.4). Let k ≥ 2 and N ≥ 1 be given. Then for γ ∈ GL+

2 (Q)∩M2(Z) we
define an operator Tγ on Mk(Γ1(N)) by letting γ1, . . . ,γr be double coset representatives for
Γ1(N)\Γ1(N)γΓ1(N) and putting

Tγ(x) :=
r

∑
i=1

γix for x ∈Mk(Γ1(N)). (2.2)

It follows from [72, Theorem 4.3] that this operator is well-defined. For a prime number
p we put Tp = Tγ for γ =

(
1
0

0
p

)
and for positive integers n we define Tn by means of the

relations (1.13). The operators Tn are called Hecke operators.

The Hecke operators preserve the subspace Sk(Γ1(N)) and induce an action on the spaces
Mk(N,ε) and Sk(N,ε). Furthermore, from [72, Theorem 4.3] one can conclude that the
diamond and Hecke operators are self-adjoint with respect to the pairings defined in the
previous subsection:

〈T x, f 〉= 〈x,T f 〉. (2.3)

for any modular symbol x, cusp form f and diamond or Hecke operator T for which this re-
lation is well-defined. Furthermore, the Hecke operators commute with the star involution ι∗.

In conclusion, we see how we can write cusp forms spaces as the dual of modular symbols
spaces. The computation of Hecke operators on these modular symbols spaces would enable
us to compute q-expansions of cusp forms: q-coefficients of newforms can be computed once
we can compute the eigenvalues of Hecke operators. But because of (2.3) this reduces to the
computation of the eigenvalues of Hecke operators on modular symbols spaces. In com-
putations one often works with the spaces Sk(N,ε)+⊗Z[ε] Q(ε) because these have smaller
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dimension than Sk(Γ1(N))⊗Q. Since we also know how all cusp forms arise from newforms
of possibly lower level (see Theorem 1.5), this allows us to compute the q-expansions of a
basis for the spaces Sk(Γ1(N)) and Sk(N,ε). For precise details on how these computations
work, please read [79, Chapter 9].

2.1.4 Manin symbols
If we want to do symbolic calculations with modular symbols, then the above definitions are
not quite applicable since the groups of which we take quotients are not finitely generated.
The Manin symbols enable us to give finite presentations for the spaces of modular symbols.

First we need some definitions and lemmas. For a positive integer N we define a set

EN :=
{
(c,d) ∈ (Z/NZ)2 : gcd(N,c,d) = 1

}
.

Define the following equivalence relation on EN :

(c,d)∼ (c′,d′) def⇐⇒ there is an a ∈ (Z/NZ)× such that (c,d) = (ac′,ad′)

and the denote the quotient by PN :

PN := EN/∼ . (2.4)

The following lemma is easily verified:

Lemma 2.1. Let N be a positive integer. Then the maps

Γ1(N)\SL2(Z)→ EN :
(

a
c

b
d

)
7→ (c,d) and

Γ0(N)\SL2(Z)→ PN :
(

a
c

b
d

)
7→ (c,d)

are well-defined and bijective.

This lemma enables us to write down an explicit set of coset representatives for the orbit
spaces Γ1(N)\SL2(Z) and Γ0(N)\SL2(Z). The following lemma provides us a first step in
reducing the set of generators for the spaces of modular symbols:

Lemma 2.2. Each space M2(Γ1(N)) or M2(N,ε) is generated by the symbols {a/c,b/d}
with a,b,c,d ∈ Z and ad−bc = 1, where in this notation a fraction with denominator equal
to zero denotes the cusp at infinity.

Calculating the continued fraction expansion at each cusp in Q gives us immediately an algo-
rithm to write a given element of M2 in terms of the generators in the lemma. Furthermore,
note that {

a
c
,

b
d

}
=
(

a
c

b
d

)
{∞,0},
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so that we can write each element of M2 as a sum of γ{∞,0} with γ ∈ SL2(Z).

Let’s consider the space M2(Γ1(N)). As we saw, it is generated by the elements γ{∞,0}
where γ runs through SL2(Z). Now, two matrices γ define the same element this way if
they are in the same coset of the quotient Γ1(N)\SL2(Z). According to Lemma 2.1 such a
coset can be uniquely identified with a pair (c,d) ∈ (Z/NZ)2. The corresponding element in
M2(Γ1(N)) is also denoted by (c,d). This element (c,d) is called a Manin symbol. Clearly,
there are only a finite number of Manin symbols so we now know a finite set of generators
for M2(Γ1(N)).

For arbitrary k we define the Manin symbols in Mk(Γ1(N)) as the symbols of the form
P⊗ (c,d) where P is a monomial in Z[x,y]k−2 and (c,d) a Manin symbol in M2(Γ1(N)). In
this case as well there are finitely many Manin symbols and they generate the whole space.

In the modular symbols spaces with character ε , we have γ(α) = ε(α) for γ ∈ Γ0(N).
Now for each element of PN we choose according to Lemma 2.1 a corresponding element
γ ∈ SL2(Z) and hence an element in M2(N,ε), which we call again a Manin symbol. Note
that this Manin symbol depends on the choice of γ , but because of the relation γ(x) = ε(x)
these chosen Manin symbols always form a finite set of generators for M2(N,ε) as a Z[ε]-
module. Likewise, Mk(N,ε) is generated by elements P⊗ (c,d) with P a monomial in
Z[x,y]k−2 and (c,d) a Manin symbol in M2(N,ε).

If we want to do symbolic calculations, then besides generators we also need to know the
relations between the Manin symbols. For Mk(Γ1(N)) one can do the following.

Proposition 2.1. Let N be a positive integer and let A be the free abelian group on the Manin
symbols of the space Mk(Γ1(N)). Let I ⊂ A be the subgroup generated by the following
elements:

P(x,y)⊗ (c,d) + P(−y,x)⊗ (−d,−c),
P(x,y)⊗ (c,d) + P(−y,x− y)⊗ (−d,−c−d) + P(−x+ y,−x)⊗ (−c−d,−c),
P(x,y)⊗ (c,d) − P(−x,−y)⊗ (c,d),

where P(x,y)⊗(c,d) runs through all Manin symbols. Then Mk(Γ1(N)) is naturally isomor-
phic to the quotient of A/I by its torsion subgroup.

For the modular symbols spaces Mk(N,ε) we have a similar proposition.

Proposition 2.2. Let N and ε be given. Let A be the free Z[ε]-module on the Manin symbols
of Mk(N,ε). Let I ⊂ A be the submodule generated by the elements given in Proposition 2.1
plus for each n ∈ (Z/NZ)× the elements

P(x,y)⊗ (nc,nd) − ε(n)P(x,y)⊗ (c,d).

Then Mk(N,ε) is naturally isomorphic to the quotient of A/I by its torsion submodule.
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These presentations enable us to perform symbolic calculations very efficiently.

A remark on the computation of Hecke operators is in order here. The formula (2.2) does not
express the Hecke action on Manin symbols in terms of Manin symbols. Instead, one uses
other formulas to compute Hecke operators. The following theorem, due to Merel, allows us
to express Hecke operators more directly in terms of Manin symbols:

Theorem 2.1 (see [53, Theorem 2]). On the spaces Mk(Γ1(N)) and Mk(N,ε) the Hecke
operator Tn satisfies the following relation:

Tn(P(x,y)⊗ (u,v)) = ∑
′

a>b≥0
d>c≥0

ad−bc=n

P(ax+by,cx+dy)⊗ (au+ cv,bu+dv),

where the prime in the sum notation means that terms with gcd(N,au+cv,bu+dv) 6= 1 have
to be omitted.

One would also like to express Sk(Γ1(N)) and Sk(N,ε) in terms of the Manin symbols. The
following proposition will help us.

Proposition 2.3 (See [53, Proposition 4]). Let integers N ≥ 1 and k ≥ 2 be given. Define an
equivalence relation on the vector space Q[Γ1(N)\Q2] by

[λx]∼ sign(λ )k[x] for λ ∈Q× and x ∈Q2.

Then the map
µ : Bk(Γ1(N))→Q[Γ1(N)\Q2]/∼

given by

µ : P⊗
{a

b

}
7→ P(a,b)

[(a
b

)]
(a,b coprime integers)

is well-defined and injective.

The vector space Q[Γ1(N)\Q2]/∼ is finite dimensional. The above proposition shows that
Sk(Γ1(N)) is the kernel of µδ , which is a map that can be computed in terms of Manin
symbols. The computation of Sk(N,ε) can be done in a similar way, see [79, Section 8.4].

2.2 Basic numerical evaluations

In this section we will describe how to perform basic numerical evaluations, such as the
evaluation of a cusp form at a point in H and the evaluation of an integral of a cusp form
between to points in H∗. Again, the paradigm will be performing actual computations.
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2.2.1 Period integrals: the direct method
In this subsection we will stick to the case k = 2, referring to [79, Chapter 10] for a more
general approach (see also [18, Section 2.10] for a treatment of Γ0(N)). So fix a positive
integer N and an f ∈ S2(Γ1(N)). Our goal is to efficiently evaluate 〈x, f 〉 for x ∈ S2(Γ1(N)).

Let us indicate why it suffices to look at newforms f . Because of Theorem 1.5, it suffices
to look at f = αd( f ′) with f ′ ∈ Sk(Γ1(M)) a newform for some M | N and d | N/M. By
[72, Theorem 4.3] we have

〈x, f 〉= 〈x,αd( f ′)〉= d1−k
〈(

d
0

0
1

)
x, f ′

〉
so that computing period integrals for f reduces to computing period integrals of the new-
form f ′.

Let us now make the important remark that for each z ∈ H we can numerically compute∫ z
∞

f dq/q by formally integrating the q-expansion of f :∫ z

∞

f
dq
q

= ∑
n≥1

an( f )
n

qn where q = exp(2πiz). (2.5)

The radius of convergence of this series is 1 and the coefficients are small (that is, estimated
by Õ(n(k−3)/2)). So if ℑz� 0 then we have |q| � 1 and the series converges rapidly. To be
more concrete, for ℑz > M we have |qn|< exp(−2πMn) so if we want to compute

∫ z
∞

f dq/q
to a precision of p decimals, we need to compute about p log10

2πM ≈ 0.37 p
M terms of the series.

To compute a period integral we remark that for any γ ∈ Γ1(N) and any z ∈ H∗ any continu-
ous, piecewise smooth path δ in H∗ from z to γz, the homology class of δ pushed forward to
X1(N)(C) depends only on γ [51, Proposition 1.4]. Let us denote this homology class by

{∞,γ∞} ∈ S2(Γ1(N))∼= H1(X1(N)(C),Z)

and remark that all elements of H1(X1(N)(C),Z) can be written in this way. As we also have
S2(Γ1(N))∼= H0(X1(N)C,Ω1), this means we can calculate

∫
{∞,γ∞} f dq

q by choosing a smart
path in H∗: ∫

γ∞

∞

f
dq
q

=
∫

γz

z
f

dq
q

=
∫

γz

∞

f
dq
q
−
∫ z

∞

f
dq
q

.

If we write γ =
(

a
c

b
d

)
then a good choice for z is

z =−d
c

+
i
|c|

.

In this case we have ℑz = ℑγz = 1/|c| so in view of (2.5), to compute the integral to a preci-
sion of p decimals we need about pc log10

2π
≈ 0.37pc terms of the series.
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Another thing we can use is the Hecke compatibility from (2.3). Put

Wf :=
(
S2(Γ1(N))/I f S2(Γ1(N))

)
⊗Q,

where I f is the Hecke ideal belonging to f . The space Wf has the structure of a vector space
over T/I f ∼= K f of dimension 2. This means that computing any period integral of f , we
only need to precompute 2 period integrals. So one tries to find a K f -basis of Wf consisting
of elements {∞,γ∞} where γ ∈ Γ1(N) has a very small c-entry. In practice it turns out that
we do not need to search very far.

2.2.2 Period integrals: the twisted method
In this subsection we have the same set-up as in the previous subsection. There is another
way of computing period integrals for f ∈ S2(Γ1(N)) which sometimes beats the method
described in the previous subsection. The method described in this subsection is similar to
[18, Section 2.11] and makes use of winding elements and twists.

The winding element of M2(Γ1(N)) is simply defined as the element {∞,0} (some authors
define it as {0,∞} but this is only a matter of sign convention). Integration over this element
is easy to perform because we can break up the path in a very neat way:∫ 0

∞

f
dq
q

=
∫ i/
√

N

∞

f
dq
q

+
∫ 0

i/
√

N
f

dq
q

=
∫ i/
√

N

∞

f
dq
q

+
∫

∞

i/
√

N
WN( f )

dq
q

=
∫ i/
√

N

∞

( f −WN( f ))
dq
q

.

Now, choose an odd prime ` - N and a primitive Dirichlet character χ : Z→ C of conductor
`. If f ∈ Sk(Γ1(N)) is a newform then f ⊗χ is a newform in Sk(Γ1(N`2)), where

f ⊗χ = ∑
n≥1

an( f )χ(n)qn.

The following formula to express χ as a linear combination of additive characters is well-
known:

χ(n) =
g(χ)

`

`−1

∑
ν=1

χ(−ν)exp
(

2πiνn
`

)
,

where g(χ) is the Gauss sum of χ (see (1.7)). It follows now immediately that

f ⊗χ =
g(χ)

`

`−1

∑
ν=1

χ(−ν) f
(

z+
ν

`

)
=

g(χ)
`

`−1

∑
ν=1

χ(−ν) f
∣∣∣∣( `

0
ν

`

)
. (2.6)

For f ∈ S2(Γ1(N)) we now get the following useful formula for free:

〈{∞,0}, f ⊗χ〉= g(χ)
`

〈
l−1

∑
ν=0

χ(−ν)
{

∞,
ν

`

}
, f

〉
. (2.7)
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The element ∑
l−1
ν=0 χ(−ν)

{
∞, ν

`

}
of Mk(Γ1(N))⊗Z[χ] or of some other modular symbols

space where it is well-defined is called a twisted winding element or, more precisely the
χ-twisted winding element. Because of formula (2.7), we can calculate the pairings of new-
forms in S2(Γ1(N)) with twisted winding elements quite efficiently as well.

We can describe the action of the Atkin-Lehner operator WN`2 on f ⊗χ:

WN`2( f ⊗χ) =
g(χ)
g(χ)

ε(`)χ(−N)λN( f ) f̃ ⊗χ,

where f̃ = ∑n≥1 an( f )qn (see for example [3, Section 3]). So in particular we have the
following integral formula for a newform f ∈ S2(N,ε):

∫ 0

∞

f ⊗χ
dq
q

=
∫ i/(`

√
N)

∞

( f ⊗χ−WN`2( f ⊗χ))
dq
q

=
∫ i/(`

√
N)

∞

(
f ⊗χ− g(χ)

g(χ)
χ(−N)ε(`)λN( f ) f̃ ⊗χ

)
dq
q

.

(2.8)

So to calculate 〈
l−1

∑
ν=0

χ(−ν)
{

∞,
ν

`

}
, f

〉
we need to evaluate the series (2.5) at z with ℑz = 1/(`

√
N) which means that for a precision

of p decimals we need about p`
√

N log10
2π

≈ 0.37p`
√

N terms of the series. In the spirit of the
previous subsection, we try several ` and χ , as well as the untwisted winding element {∞,0},
until we can make a K f -basis for Wf . It follows from [71, Theorems 1 and 3] that we can
always find such a basis. Also here, it turns out that in practice we do not need to search very
far.

2.2.3 Computation of q-expansions at various cusps

The upper half plane H is covered by neighbourhoods of the cusps. If we want to evaluate
a cusp form f ∈ Sk(Γ1(N)) or an integral of a cusp form at a point in such a neighbourhood
then it is useful to be able to calculate the q-expansion of f at the corresponding cusp. We
shall mean by this the following: A cusp a/c can be written as γ∞ with γ =

(
a
c

b
d

)
∈ SL2(Z).

Then a q-expansion of f at a/c is simply the q-expansion of f |kγ . This notation is abusive,
since it depends on the choice of γ . The q-expansion will be an element of the power series
ring C[[q1/w]] where w is the width of the cusp a/c and q1/w = exp(2πiz/w).

If the level N is square-free this can be done symbolically. However for general N it is
not known how to do this but we shall give some attempts that do at least give numerical
computations of q-expansions. We use that we can compute the q-expansions of newforms
in Sk(Γ1(N)) at ∞ using modular symbols methods.



2.2. BASIC NUMERICAL EVALUATIONS 53

The case of square-free N

The method we present here is due to Asai [2]. Let N be square-free and let f ∈ Sk(Γ1(N))
be a newform of character ε . The main reason for being able to compute q-expansions at
all cusps in this case is because the group generated by Γ0(N) and all wQ (see (1.18)) acts
transitively on the cusps.

So let γ =
(

a
c

b
d

)
∈ SL2(Z) be given. Put

c′ =
c

gcd(N,c)
, and Q =

N
gcd(N,c)

.

Let r ∈ Z be such that d ≡ cr mod Q and define b′,d′ ∈ Z by

Qd′ = d− cr and b′ = b−ar.

Then we have (
a
c

b
d

)
=
(

Qa
Nc′

b′

Qd′

)(
Q−1

0
rQ−1

1

)
.

We know how
(

Qa
Nc′

b′
Qd′

)
acts on q-expansions by Theorems 1.6 and 1.8. The action of(

Q−1

0
rQ−1

1

)
on q-expansions is simply

∑
n≥1

anqn 7→ Q1−k
∑
n≥1

anζ
rn
Q qn/Q with ζQ = exp(2πi

Q ).

This shows how the q-expansion of f |kγ can be derived from the q-expansion of f .

Let us now explain how to do it for oldforms as well. By induction and Theorem 1.5 we may
suppose f = αp( f ′) with p | N prime, f ′ ∈ Sk(Γ1(N/p)) and that we know how to compute

the q-expansions of f ′ at all the cusps. Let γ =
(

a
c

b
d

)
be given. Then we have

f |kγ = p1−k f ′
∣∣
k

(
p
0

0
1

)
γ = p1−k f ′

∣∣
k

(
pa
c

pb
d

)
.

We will now distinguish on two cases: p | c and p - c. If p | c then we have a decomposition(
pa
c

pb
d

)
=
(

a
c/p

pb
d

)(
p
0

0
1

)
and we know how both matrices on the right hand side act on q-expansions. If p - c, choose
b′,d′ with pad′−b′c = 1. Then we have(

pa
c

pb
d

)
=
(

pa
c

b′

d′

)
β

with β ∈ GL+
2 (Q) upper triangular, so also in this case we know how both matrices on the

right hand side act on q-expansions.
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The general case

In a discussion with Peter Bruin, the author figured out an attempt to drop the assumption
that N be square-free and compute q-expansions of cusp forms numerically in this case. The
idea is to generalise the WQ operators from Subsection 1.1.7.

So let N be given. Let Q be a divisor of N and put R = gcd(Q,N/Q). Let wQ be any matrix
of the form

wQ =
(

RQa
RNc

b
Qd

)
with a,b,c,d ∈ Z

such that detwQ = QR2 (the conditions guarantee us that such matrices do exist). One can
then verify

Γ1(NR2) < w−1
Q Γ1(N)wQ,

so that slashing with wQ defines a linear map

Sk(Γ1(N))⊕Sk(Γ1(N))
|wQ−→ Sk(Γ1(NR2))⊕Sk(Γ1(NR2))

which is injective since the slash operator defines a group action on the space of all functions
H→ C.

On the other hand, wQ defines an operation on Mk which can be shown to induce a linear
map

wQ : Sk(Γ1(NR2))⊗Q→ Sk(Γ1(N))⊗Q

that satisfies the following compatibility with respect to the integration pairing between mod-
ular symbols and cusp forms (see [72, Theorem 4.3]):

〈wQx, f 〉= 〈x, f |kwQ〉. (2.9)

Let (x1, . . . ,xr) and (y1, . . . ,ys) be bases of Sk(Γ1(N))⊗Q and Sk(Γ1(NR2))⊗Q respec-
tively. Then one can write down a matrix A in terms of these basis that describes the map
wQ since we can express any symbol P⊗{α,β} in terms of Manin symbols. The matrix At

then defines the action of wQ in terms of the bases of the cusp forms spaces that are dual to
(x1, . . .xr) and (y1, . . . ,ys).

Now, let ( f1, . . . , fr) be a basis of Sk(Γ1(N))⊕ Sk(Γ1(N)) and let (g1, . . . ,gs) be a basis of
Sk(Γ1(NR2))⊕Sk(Γ1(NR2)) (for instance we could take bases consisting of eigenforms for
the Hecke operators away from N). Define matrices

B :=
(
〈xi, f j〉

)
i, j and C :=

(
〈yi,g j〉

)
i, j .

These can be computed numerically as the entries are period integrals. Then the matrix
C−1AtB describes the map ·|kwQ in terms of the bases ( f1, . . . , fr) and (g1, . . . ,gs). Hence if
we can invert C efficiently, then we can numerically compute the q-expansion of f |kwQ with
f ∈ Sk(Γ1(N)).
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Let now a matrix γ =
(

a
c

b
d

)
∈ SL2(Z) be given. Put

c′ := gcd(N,c) and Q := N/c′.

Because of gcd(c/c′,Q) = 1 we can find α ∈ (Z/QZ)× with αc/c′ ≡ 1modQ. If we lift
α to (Z/NZ)× then we have αc ≡ c′modN. Let now d′ ∈ Z be a lift of αd. We have
gcd(c′,d′) = gcd(c′,d′,N) = 1 so we can find a′,b′ ∈Z that satisfy a′d′−b′c′= 1. According
to Lemma 2.1, we have

γ = γ0

(
a′

c′
b′

d′

)
with γ0 ∈ Γ0(N).

Put R = gcd(c′,Q). Then we have gcd(NR,Q2Ra′) = QRgcd(c′,Qa′) = QR2 so there exist
b′′,d′′ ∈ Z with

wQ :=
(

QRa′

NR
b′′

Qd′′

)
having determinant QR2. One can now verify that we have

(
a′
c′

b′
d′

)
= wQβ with β ∈GL+

2 (Q)
upper triangular. So in the decomposition

γ = γ0wQβ

we can compute the slash action of all three matrices on the right hand side in terms of
q-expansions, hence also of γ .

In conclusion we see that in this method we have to increase the level and go to Sk(Γ1(NR2))
for the square divisors R2 of N to compute q-expansions of cusp forms in Sk(Γ1(N)) at
arbitrary cusps.

2.2.4 Numerical evaluation of cusp forms
For f ∈ Sk(Γ1(N)) and a point P∈H we wish to compute f (P) to a high numerical precision.
Before we do this let us say some words on how P should be represented. Looking at Figure
1.1 on page 2 we convince ourselves that representing P as x+ iy with x,y ∈ R is not a good
idea, as this would be numerically very unstable when P is close to the real line. Instead, we
represent P as

P = γz with γ ∈ SL2(Z), z = x+ iy, x� ∞ and y� 0. (2.10)

For instance, one could demand z ∈F , although this is not strictly necessary.

So let P = γz be given, with γ =
(

a
c

b
d

)
∈ SL2(Z) and ℑz > M, say. Let w = w(γ) be the

width of the cusp γ∞ with respect to Γ1(N). To compute f (P) we make use of a q-expansion
of f at γ∞:

f (P) = (cz+d)k( f |kγ)(z) = (cz+d)k
∑
n≥1

anqn/w where q1/w = exp(2πiz/w).
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The radius of convergence is 1 and the coefficients are small (estimated by Õ(n(k−1)/2)). So
to compute f (P) to a precision of p decimals we need about pw log10

2πM ≈ 0.37 pw
M terms of the

q-expansion of f |kγ .

Of course, we have some freedom in choosing γ and z to write down P. We want to find γ

such that P = γz with ℑz/w(γ) as large as possible. In general, one can always write P = γz
with z ∈F so one obtains

max
γ∈SL2(Z)

ℑγ−1P
w(γ)

≥
√

3
2N

. (2.11)

We see that in order to calculate f (P) to a precision of p decimals it suffices to use about
pN log10√

3π
≈ 0.42pN terms of the q-expansions at each cusp. Although for most points P there

is a better way of writing it as γz in this respect than taking z ∈F , it seems hard to improve
the bound

√
3

2N in general.

We wish to adjust the representation sometimes from P = γz to P = γ ′z′ where γ ′ ∈ SL2(Z)
is another matrix, for instance because during our calculations ℜz has become too large or
ℑz has become too small (but still within reasonable bounds). We can make ℜz smaller by
putting z′ := z−n for appropriate n ∈ Z and putting γ ′ := γ

(
1
0

n
1

)
. Making ℑz larger is very

easy as well. We want to find γ ′′ =
(

a
c

b
d

)
∈ SL2(Z) such that

ℑγ
′′z =

ℑz
|cz+d|2

is large. But this simply means that we have to find a small vector cz+d in the lattice Zz+Z,
something which can be done easily if ℜz� ∞ and ℑz� 0. If c and d are not coprime we
can divide both by their greatest common divisor to obtain a smaller vector. The matrix γ ′′

can now be completed and we put z′ := γ ′′z and γ ′ := (γ ′′)−1.

2.2.5 Numerical evaluation of integrals of cusp forms
In this subsection we will describe for f ∈ S2(Γ1(N)) and P ∈H how to evaluate the integral∫ P

∞
f dq/q. As in the previous subsection, we assume P to be given by means of (2.10). The

path of integration will be broken into two parts: first we go from ∞ to a cusp α near P and
then we go from α to P.

Integrals over paths between cusps

The pairing (2.1) gives a map

Θ : M2(Γ1(N))→ HomC (S2(Γ1(N)),C) ,

which is injective when restricted to S2(Γ1(N)). The image of Θ is a lattice of full rank,
hence the induced map

S2(Γ1(N))⊗R→ HomC (S2(Γ1(N)),C)
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is an isomorphism. In particular we obtain a map

Φ : M2(Γ1(N))→ S2(Γ1(N))⊗R,

which is an interesting map to compute if we want to calculate integrals of cusp forms along
paths between cusps. The map Φ is called a period mapping.

The Manin-Drinfel’d theorem (see [51, Corollary 3.6] and [26, Theorem 1]) tells us that
im(Φ) ⊂ S2(Γ1(N))⊗Q. This is equivalent to saying that each degree 0 divisor of X1(N)
which is supported on cusps is a torsion point of J1(N). The proof given in [26] already
indicates how to compute Φ with symbolic methods: let p be a prime that is 1 mod N. Then
the operator p + 1− Tp on M2(Γ1(N)) has its image in S2(Γ1(N)). The same operator is
invertible on S2(Γ1(N))⊗Q. So we simply have

Φ = (p+1−Tp)−1(p+1−Tp),

where the rightmost p + 1−Tp denotes the map M2(Γ1(N))→ S2(Γ1(N)) and the leftmost
p+1−Tp denotes the invertible operator on S2(Γ1(N))⊗Q. For other methods to compute
Φ, see [79, Section 10.6]. So we can express the integral of f dq/q between any two cusps α

and β in terms of period integrals, which we have already seen how to compute:

∫
β

α

f
dq
q

= 〈Φ({α,β}), f 〉.

Integrals over general paths

We can imitate the previous subsection pretty much. Write P ∈H as P = γz with γ ∈ SL2(Z)
such that ℑz/w(γ∞) is as large as possible. Then we have∫ P

∞

f
dq
q

=
∫

γ∞

∞

f
dq
q

+
∫

γz

γ∞

f
dq
q

=
∫

γ∞

∞

f
dq
q

+
∫ z

∞

( f |2γ)
dq
q

. (2.12)

The integral
∫

γ∞

∞
f dq

q is over a path between two cusps so we can compute it by the above

discussion and the integral
∫ z

∞
( f |2γ)dq

q can be computed using the q-expansion of f |2γ:

∫ z

∞

( f |2γ)
dq
q

= w ∑
n≥1

an

n
qn/w,

where w = w(γ), q1/w = exp(2πiz/w) and f |2γ = ∑anqn/w. Because of (2.11), computing
about pN log10√

3π
≈ 0.42pN terms of the series should suffice to compute

∫ P
∞

f dq
q for any P ∈H.

Note also that we can use formula (2.12) to compute the pseudo-eigenvalue λQ( f ) by plug-
ging in γ = wQ and a z for which both imz and imwQz are high and for which

∫ z
∞

Wq( f )dq/q
is not too close to zero.
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2.3 Computation of modular Galois representations

In this section, we will give a short overview of the project [28] to which the research of this
thesis belongs. Here we omit many details which can be found in [28]. However, we will
not give precise references to sections or theorems, since at the time of writing the present
section, the paper [28] is undergoing a huge revision. In the first few subsections we will
explain the theoretical ideas and in Subsection 2.3.3 we will discuss how to perform actual
computations.

A motivational question is: how fast can the q-coefficients of a modular form be computed?
Our main example here will be the Ramanujan tau function, but we remark that most tech-
niques that we discuss here can be generalised.

From the recurrence properties on page 6 it follows that we can compute τ(n) if we can
factor n and compute τ(p) for all prime factors p | n. Also, in [4] it was shown that we can
factor numbers n = pq where p and q are distinct unknown primes if we can compute τ(n)
and τ(n2), provided at least one of these numbers is non-zero. The idea is as follows: put
α = τ(p)/p11 and β = τ(q)/q11. We can compute α and β because their product is τ(n)/n11

and their sum is (τ(n)2−τ(n2)−n11)/n11. The primes p and q can now be obtained by look-
ing at the denominators of α and β .

Because of the above discussion, it seems reasonable to focus on computing τ(p) for p prime.
A strategy for this is computing τ(p) mod ` for many small primes `. If the product of all
these primes ` exceeds 4p11/2 then by the bound |τ(p)| ≤ 2p11/2 we know exactly what τ(p)
is. The main theorem of [28] is the following:

Theorem 2.2. There exists a probabilistic algorithm that on input two prime numbers p and
` with p 6= ` can compute τ(p) mod ` in expected time polynomial in log p and `.

Corollary 2.1. There exists a probabilistic algorithm that on input a prime number p can
compute τ(p) in expected time polynomial in log p.

2.3.1 Computing representations for τ(p) mod `

We saw in Subsection 1.1.2 that for some values of `, called exceptional primes, there exist
simple formulas for τ(p) mod `. So assume from now that ` is non-exceptional. We can
work with the residual representations ρ` := ρ∆,`, see Subsections 1.3.4 and 1.3.5. For p 6= `
we have

τ(p)≡ tr(ρ(Frobp)) mod `.

If we put K` := Qker(ρ`) then ρ` factors through Gal(K`/Q). Our main task is to give a poly-
nomial P̀ whose splitting field is K`. Since imρ` acts faithfully and transitively on F2

` −{0}
(remember that ` is non-exceptional), we will demand that P̀ has degree `2−1 and that the
number field K′` defined by P̀ is the subfield of K` that is fixed by the stabiliser of a point in



2.3. COMPUTATION OF MODULAR GALOIS REPRESENTATIONS 59

F2
` −{0}.

We can find ρ` inside the Jacobian of X1(`). If T ⊂ End(J1(`)) is the algebra generated by
the diamond and Hecke operators acting on J1(`) then we have a homomorphism

θ = θ∆,` : T→ F`, θ : 〈d〉 7→ d10 mod `, θ : Tn 7→ τ(n) mod `.

If I ⊂ T denotes the kernel of θ , then ρ` can be defined as Gal(Q/Q) acting on V` :=
J1(`)(Q)[I], which is a 2-dimensional F`-linear subspace of J1(`)(Q)[`]. One can express
this space in terms of modular symbols since we have isomorphisms

J1(`)(C)[`]∼= H1(X1(`)(C),F`)∼= S2(Γ1(`))⊗F`

and the action of T on S2(Γ1(`)) can be computed.

Let g be the genus of X1(`). If we choose an effective divisor D of degree g on X1(`) then
we have a morphism

φ : X1(`)g→ J1(`), (Q1, . . . ,Qg) 7→
g

∑
i=1

Qi−D

which induces a birational morphism

φ
′ : Symg X1(`)→ J1(`). (2.13)

Suppose that D is such that φ is étale over V`. Take a function f ∈ Q(X1(`)) such that for
any (Q1, . . . ,Qg) ∈ φ−1(V`−{0}) it has no poles at the Qi and such that the induced map
f∗ : Symg(X1(`))→ Symg(P1

Q) is injective on φ ′−1(V`−{0}).

The field K′` is the field of definition of a point P ∈ V`−{0}. Put φ ′−1(P) = (Q1, . . . ,Qg).
Then certainly K′` contains ei( f (Q1), . . . , f (Qg)) for all i, where ei is the i-th elementary
symmetric polynomial in g variables. But in fact we have an equality

K′` = Q
(
e1( f (Q1), . . . , f (Qg)) , . . . , eg( f (Q1), . . . , f (Qg))

)
.

This can be seen as follows: the field on the right hand side, say L, is the field of definition
of f∗(φ ′−1(P)). The group Gal(Q/L) acts on Symg P1(Q) and fixes f∗(φ ′−1(P)). But f∗ is
injective on φ ′−1(V`−{0}) so Gal(Q/L) fixes P as well. So L contains, hence is equal to, K′`.

In practice, it often suffices to take D = g · [0] (remember from Subsection 1.2.3 that the cusp
0 is defined over Q) and any non-constant f . The field K′` will almost always be equal to
Q( f (Q1)+ · · ·+ f (Qg)). If we assume that all of this is correct, then P̀ will be equal to

P̀ = ∏
P∈V`−{0}

(
x−∑

i
f (Qi)

)
where (Q1, . . . ,Qg) = φ ′−1(P). (2.14)

In theory however, to show that a good divisor D and a good function f can be found, one
has to work with X1(5`)Q(ζ`) instead of X1(`). In this thesis, we will ignore these theoretical
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complications. The main reasons for this are that we want to compute actual polynomials
and we want to explain ideas rather than technical details.

To compute the polynomial P̀ we will use numerical methods. The idea is to approximate
the coefficients of P̀ . This could be done in several ways, for instance approximating them
p-adically for one or more primes p or approximating them in R. In [17] and [40] one
can find methods to compute with modular curves over Fp which can be used to compute
P̀ mod p for primes p. Note that this is a special case of p-adically approximating P̀ . In
Subsection 2.3.3 we will describe how to approximate Pλ over the reals, in a way that is
practically convenient.

Heights

If the used precision for the approximation of P̀ is high enough, we can compute the exact
coefficients in Q. To know how high this precision should actually be, we use height bounds.

Definition 2.3. Let K be a number field and take α ∈ K. Then the (logarithmic) field height
of α is defined as

htK(α) := ∑
v

[Kv : Qv] logmax(1, |α|v).

Here, the sum is taken over all places of K and the absolute value is normalised by demand-
ing |p|v = 1/p for v finite lying above p and |x|v = |σ(x)| for v infinite belonging to the
embedding σ : K ↪→ C. The absolute (logarithmic) height of α is defined as

ht(α) :=
htK(α)
[K : Q]

.

The absolute height of an algebraic number is independent of the number field we put around
it. Also note that for a rational number p/q written in lowest terms we have ht(p/q) =
logmax(|p|, |q|).

Definition 2.4. Let K be a number field and consider a point P = (α0 : . . . : αn) ∈ Pn(K).
Then the (logarithmic) field height of P is defined as

htK(P) := ∑
v

[Kv : Qv] logmax
i
|αi|v,

using the same conventions for valuations as in Definition 2.3. The absolute (logarithmic)
height of P is defined as

ht(P) :=
htK(P)
[K : Q]

.

It is a fact that this definition is consistent in the sense that the height does not depend on the
scaling of projective coordinates. Again, the absolute height of P ∈ Pn(Q) does not depend
on the chosen number field. If we write P ∈ Pn(Q) as (p0 : . . . : pn) with pi coprime integers,
then ht(P) = logmaxi |pi|.
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For P = anxn + · · ·+a0 ∈ K[x] with K a number field we define the height of P as the height
of (a0 : . . . : an) ∈ Pn(K). If P ∈Q[x] is an irreducible polynomial of degree d and α ∈Q is a
root of P then we have the following estimations between the height of P and the field height
of α in Q(α):

ht(P)−d log2≤ d ht(α)≤ htP+ log(d +1)/2.

This means that bounding the height of Pλ is equivalent with bounding the height of its
roots. One can embed X1(`) into projective space. Bounding the roots of Pλ boils then down
to bounding the Qi occurring in formula (2.14), or rather the version of this formula that
can be proven to be correct. Using a vast amount of highly non-trivial Arakelov geometry,
Bas Edixhoven and Robin de Jong succeeded in bounding the Qi and using this to show that
ht(P̀ ) is bounded polynomially in `.

Their method relies on the fact that ∆ is a modular form of level one. In fact, this method
works for any newform of level one. At the time of writing this section, it is not known how
to produce bounds for more general levels but some progress on this is expected to be made
soon.

Suppose now that a height bound for a rational number x = p/q (written in lowest terms
with q > 0) is known, say ht(x) < C. Using non-archimedean local approximations of x
one can find a large integer M > 0 with gcd(q,M) = 1 and with x mod M congruent to
a given number a. Using real approximations, one can find a small ε > 0 and a ξ such
that |x− ξ | ≤ ε|x| < ε

expC
q . If one doesn’t use non-archimedian approximations, one can

take M = 1 and if one doesn’t use real approximations one can put ξ = 0 and ε = 1. If
the approximations are close enough to satisfy log M

2ε
> 2C then they determine the number

x: suppose that x′ = p′/q′ is another rational number satisfying the same approximation
conditions as x. Then we have

2ε
exp(2C)

qq′
> ε exp(C)

(
1
q

+
1
q′

)
> |x−ξ |+ |x′−ξ | ≥ |x− x′| ≥ M

|qq′|
, (2.15)

leading to a contradiction with log M
2ε

> 2C.

We want to actually compute x from its approximations and height bound. Note that the
above reasoning is still valid if we weaken the condition p/q≡ a mod M to p≡ qa mod M,
dropping the assumption gcd(q,M) = 1. We will change our notation a bit and assume that
the approximation ξ is given in terms of a rational number ξ = m/n with n > 0 (so typically
n will be a power of 2 or 10). We thus assume∣∣∣∣ pq − m

n

∣∣∣∣< 1
2n

(2.16)

and the condition that we need to determine p/q uniquely is

log
Mn
q

> C.
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We can use the extended Euclidean algorithm [73, Section 4.2] with (na−m,nM) as input to
generate a sequence of triples (qi,ri,si) satisfying (na−m)qi +nMri = si with |si| decreasing
and |qiri+1− qi+1ri| = 1 for all i. Put r = (p− qa)/M and s = pn− qm. From (2.16) it
follows that the triple (q,r,s) satisfies (na−m)q + nMr = s with |s| < q

2 < Mn
2exp(C) . By

[73, Theorem 4.9] the first index i for which the bound |si| ≤ d Mn
2exp(C)e− 1 holds satisfies

|qi| ≤ dexp(C)e−1 and ri/qi = r/q, thus also p/q = (qia+Mri)/qi.

2.3.2 Computing τ(p) mod ` from P̀

The image of ρ` is a group G between SL2(F`) and GL2(F`). The stabiliser subgroup of a
basis of F2

` in G is trivial, so K` can be obtained by adjoining two roots of P̀ ; make sure that
the second root is not in the field generated by the first root. There are methods to compute
this [45, Corollary 6]. Also, we have obtained P̀ from approximations in J1(`). From this
we can deduce a bijection between the roots of P̀ and V`−{0} that induces an isomorphism
Gal(K`/Q)∼= G which defines ρ`.

Let p be a prime different from `. We want to compute the conjugacy class [Frobp] inside
Gal(K`/Q). This would give us ρ`(Frobp) and thus τ(p) mod `. To do this, one first com-
putes the maximal order OK`

of K` [11, Theorem 1.4]. For a prime p of K` above p we have
that Frobp/p is equal to the unique σ ∈G that satisfies σ(p) = p and σ(x)≡ xp mod p for all
x ∈OK`

. We have a decomposition

OK`
/(p)∼= ∏

p|p
OK`

/p.

So Frobp/p is the element that fixes OK`
/p in this decomposition and acts there as x 7→ xp. To

check whether σ ∈ G is equal to Frobp/p for at least one p | p we do the following. Both σ

and x→ xp are Fp-linear maps from OK`
/(p) to itself; compute them. We have σ = Frobp/p

if and only if the image of the map σ − (x→ xp) is contained in p. From this it follows that
σ is equal to at least one of the Frobp/p if and only if the ideal in OK`

/(p) generated by the
image of σ − (x→ xp) is not the unit ideal. So given p, we can obtain [Frobp] by checking
the above for all σ ∈ G.

2.3.3 Explicit numerical computations

Let now an arbitrary positive integer N be given and let f ∈ S2(Γ1(N)) be a newform with
character ε (remember from Subsection 1.3.4 that we can reduce to the weight 2 case). Also,
let ` be a prime number and let λ be a prime of K f lying above `. Assume that the repre-
sentation ρ f ,λ is absolutely irreducible and let T be the Hecke algebra acting on J1(N). In
Subsection 1.3.4 we saw that there is a subspace Vλ of J1(N)(Q)[`] on which both T and
Gal(Q/Q) act, such that the action of Gal(Q/Q) defines ρ f ,λ .
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Approximation of torsion points

The Jacobian J1(N)C can be described as follows. Pick a basis f1, . . . , fg of S2(Γ1(N)). Put

Λ :=
{∫

γ

( f1, . . . , fg)
dq
q

: [γ] ∈ H1(X1(N)(C),Z)
}
⊂ Cg.

This is a lattice in Cg of full rank. By the Abel-Jacobi theorem we have an isomorphism

J1(N)(C) ∼−→ Cg/Λ,
[
∑

i
([Qi]− [Ri])

]
7→∑

i

∫ Qi

Ri

( f1, . . . , fg)
dq
q

.

Let again a divisor D = ∑
g
i=1[Ri] on X1(N) be given. Identifying J1(N)(C) with Cg/Λ in this

way, the map (2.13) becomes a birational morphism

φ
′ : Symg X1(N)(C)→ Cg/Λ, (Q1, . . . ,Qg) 7→

g

∑
i=1

∫ Qi

Ri

( f1, . . . , fg)
dq
q

.

The homology group H1(X1(N)(C),Z) is canonically isomorphic to the modular symbols
space S2(Γ1(N)). The period lattice Λ can thus be computed numerically using the methods
from Subsections 2.2.1 and 2.2.2. Since we can compute the action of T on S2(Γ1(N))∼= Λ,
we can write down the points in 1

` Λ/Λ⊂Cg/Λ that correspond to the points of Vλ . The aim
is now to compute the divisors on X1(N)C that map to these points along φ ′. In our compu-
tations, we assume without proof that φ is étale above Vλ .

We start calculating with a small precision. Let P ∈ Vλ (C) ⊂ Cg/Λ be given. First we try
out a lot of random points Q = (Q1, . . . ,Qg) ∈ X1(N)(C). Here, each Qi will be written as
Qi = γiwi, with γi in a set of representatives for Γ1(N)\SL2(Z) and wi ∈F . We can compute
φ ′(Q) using methods from Subsection 2.2.5. We work with the point Q for which φ ′(Q) is
closest to P. If we in fact already know some points Q with φ ′(Q) approximately equal to a
point in Vλ (C), then we could also take one of those points as a starting point Q to work with.

The next thing to do is adjust Q so that φ ′(Q) comes closer to P. We’ll make use of the
Newton-Raphson approximation method. Let φ ′′ : Hg→ Cg/Λ be the function defined by

φ
′′(z1, . . .zg) = φ

′(γ1z1, . . .γgzg).

We observe that for a small vector h = (h1, . . .hg) ∈ Cg we have

φ
′′(w1 +h1, . . . ,wg +hg) = φ

′(Q)+hD+O(‖h‖2)

with

D =


∂φ ′′1
∂ z1

· · · ∂φ ′′g
∂ z1... . . . ...

∂φ ′′1
∂ zg

· · · ∂φ ′′g
∂ zg


∣∣∣∣∣∣∣∣
(w1,...,wg)

.



64 CHAPTER 2. COMPUTATIONS WITH MODULAR FORMS

From the definition of φ ′ we can immediately deduce

∂φ ′′i
∂ z j

(w1, . . . ,wg) = 2πi( fi|2γ j)(w j),

where we apologise for the ambiguous i. We can thus compute the matrix D using the
methods of Subsection 2.2.4. Now choose a small vector v = (v1, . . . ,vg) ∈ Cg such that
φ ′(Q)+ v is closer to P than φ ′(Q) is. For example, v can be chosen among all vectors of a
bounded length so that φ ′(Q)+ v is closest to P. If we write

h = vD−1,

then we expect φ ′′(w1 + h1, . . . ,wg + hg) to be approximately equal to φ ′(Q)+ v. If this is
not the case, then we try the same thing with a smaller v. It could be that this still fails, for
instance because we are too close to the non-étale locus of the map φ . In that case, we start
with a new random point Q.

We repeat the above adjustments until we are (almost) as close as we can get, considering
our calculation precision. It might happen that the wi become too wild, i.e. |ℜwi| becomes
too large or ℑwi becomes too small. If this is the case we adjust the way we write Qi as γiwi
using the method described in Subsection 2.2.4. We can always replace the γi then by a small
matrix in the same coset of Γ1(N)\SL2(Z).

Once we have for each P ∈ Vλ a point Q such that φ ′(Q) is approximately equal to P, we
can start increasing the precision. We double our calculation precision and repeat the above
adjustments (φ ′(Q)+ v will in this case be equal to P). We repeat this a few times until we
have very good approximations.

Computation of polynomials

Now, we have to choose a function in h ∈ Q(X1(N)). Since h multiplies heights of points
roughly by deg(h), we want to find a function of small degree. Take any k and a basis
h1, . . . ,hn of Sk(Γ1(N)) such that the q-expansions of the hi lie in Z[[q]] and such that the
exponents of the first non-zero terms of these q-expansions form a strictly increasing se-
quence. We propose to use h = WN(hn−1)/WN(hn) as a function to use (assuming n ≥ 2).
Remember from Subsection 1.2.4 that Sk(Γ1(N)) is the space of global sections of the line
bundle L = ω⊗k(−cusps) on X1(N), base changed to C. Remember also that the cusp ∞

is not defined over Q, but the cusp 0 is. Since we demand the q-expansions to have rational
coefficients, the sections WN(h1), . . . ,WN(hn) are defined over Q and they have increasing
order at 0. One can now verify that for h = WN(hn−1)/WN(hn) we have

deg(h)≤ deg(L )−ord∞(hn−1)≤ deg(L )−dimH0(L )+2≤ g+1.

For k = 2 and g ≥ 2 we have L ∼= Ω1(X1(N)) and we get g as an upper bound for deg(h).
Using methods from Subsection 2.2.4, we can evaluate h numerically. The author is not
aware of a sophisticated method for finding a function h ∈ Q(X1(N)) of minimal degree in
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general; this minimal degree is called the gonality of the curve X1(N). Published results on
these matters seem to either be limited to X0(N) or to concern only lower bounds for the
gonality of modular curves, see for example [1], [5, Chapter 3] or [60].

Now put

αP =
g

∑
i=1

h(Qi), for P ∈Vλ (C)−{0} and where φ ′(Q1, . . . ,Qg) = P.

We work out the product in

Pλ (x) := ∏
P∈Vλ (C)−{0}

(x−αi) =
n

∑
k=0

akxk, where n = degPλ .

The coefficients ak are rational numbers that we have computed numerically. Since the height
of Pλ is expected to be not too large, the denominators of the ak should have a relative small
common denominator. The LLL algorithm can be used to compute integers p0, . . . , pn−1,q
such that |pk− akq| is small for all k, see [49, Proposition 1.39]. If the sequence (ak) is
arbitrary, then we’ll be able to find pk and q such that |pk−akq| is roughly of order q−1/n for
each k, but not much better than that. So if it happens that we find pk and q with |pk−akq|
much smaller than q−1/n for all k, then we guess that ak is equal to pk/q. If we cannot find
such pk and q then we will double the precision and repeat all the calculations described
above.

Heuristically, the calculation precision that is needed to find the true value of ak is about
(1 + 1/n)ht(Pλ )/ log(10) decimals. Another way of finding rational approximations of the
ak is by approximating them using continued fractions. For this method, the precision needed
to find the true value of ak would be about 2ht(Pλ )/ log(10) decimals.

Since the degree of Pλ will be quite large, we won’t be able to do many further calculations
with it. In particular it may be hard to verify whether all the guesses we made were indeed
correct. Instead, we will look at the following variant. If m is the Hecke ideal of f mod
λ , then Vλ is a vector space over T/m. The representation ρ f ,λ induces an action ρ̃λ of
Gal(Q/Q) on the set P(Vλ ) of lines in Vλ . We can attach a polynomial P̃λ to this projectivised
representation ρ̃λ , analogously to the way this was done for ρ . This polynomial will have
smaller a degree than Pλ . We put

P̃λ (x) = ∏
L∈P(V`)

(
x − ∑

P∈L−{0}
αP
)

=
m

∑
k=0

bkxk, where m = deg P̃λ .

As above, if the calculation precision is sufficient we can use lattice reduction algorithms to
compute the exact values of the bk.

Reduction of polynomials

Although the polynomial P̃ will not have a very huge height, its height is still too large to
do any useful computations with it. The first step in making a polynomial of smaller height
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defining the same number field is computing the maximal order of that number field. Let q
be the common denominator of the coefficients and put pk = bkq. Consider the polynomial

Q(x) = q · P̃λ (x) = qxm + pm−1xm−1 + · · ·+ p0.

We make ourselves confident that we correctly computed Q(x) (although we won’t prove
anything at this point yet). For instance, we verify that Q(x) is irreducible and that its dis-
criminant has the prime factors of N` in it. We can also compute for several primes p not
dividing Disc(Q(x)) the decomposition type of Q(x)mod p and verify that it could be equal
to the cycle type of ρ̃(Frobp). If not, we again double the precision and repeat the above
calculations.

Let now α be a root of P̃λ (x) and write down the order

O := Z+
m−1

∑
k=1

(
Z ·

k−1

∑
j=0

am− jα
k− j

)
,

which is an order that is closer to the maximal order than Z[qα] (see [48, Subsection 2.10]).
Being confident in the correctness of Q(x), we know where the number field K defined by it
ramifies and thus we can compute its maximal order (see [11, Section 6 and Theorems 1.1
and 1.4]). Having done this, we embed OK as a lattice into Cm in the usual way and we use
the LLL algorithm to compute a basis of small vectors in OK . We can then search for an
element of small length in OK that generates K over Q. Its defining polynomial P̃′

λ
will have

small coefficients. See also [16].

In the computation of the polynomials Pλ and P̃′
λ

we made several guesses and assumptions
that we cannot prove to be correct. In Chapters 3 and 4, we work out in special cases how
we can use established parts of Serre’s conjecture to prove afterwards for polynomials of the
style P̃′

λ
that they indeed belong to the modular Galois representations that we claim they

belong to. In the unlikely case that such tests may fail we can of course make adjustments
like choosing another function h or another divisor D.

Further refinements

The Jacobian J1(N) has large dimension (for N prime it is (N− 5)(N− 7)/24). It could be
that our newform f is an element of S2(Γ) with Γ1(N) � Γ < Γ0(N). In that case we work
with the curve XΓ, which is given its Q-structure by defining it as a quotient of X1(N). The
Jacobian JΓ of XΓ is isogenous to an abelian subvariety of J1(N) that contains Vλ , so this
works perfectly well.

In the case Γ = Γ0(N) we can sometimes go a step further. The operator WN on X0(N)
is defined over Q. If f is invariant under WN , one can work with the curve X+

0 (N) :=
X0(N)/〈WN〉. Its Jacobian J+

0 (N) is isogenous to an abelian subvariety of J1(N) that con-
tains Vλ , so also here it works. Some words on the computation of the homology of X+

0 (N)
are in order. The action of WN on X0(N) induces an action on H1(X0(N)(C),Z) and on
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H1(X0(N)(C),cusps,Z). Since paths between cusps on X+
0 (N)(C) lift to paths between

cusps on X0(N)(C) we have a surjection

H1(X0(N),cusps,Z) � H1(X+
0 (N)(C),cusps,Z).

The kernel of this surjection consists of the elements [γ] ∈ H1(X0(N),cusps,Z) satisfying
WN([γ]) =−[γ]. So modular symbols methods allow us to compute H1(X+

0 (N)(C),cusps,Z)
as a quotient of M2(Γ0(N)). Let B+

2 (Γ0(N)) be the free abelian group on the cusps of
X+

0 (N)(C) and define

δ : H1(X+
0 (N)(C),cusps,Z)→ B+

2 (Γ0(N)), {α,β} 7→ {β}−{α}.

Then H1(X+
0 (N)(C)) = ker(δ ).
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Chapter 3

A polynomial with Galois group SL2(F16)

This chapter consists of an article that has been published as [7], with some slight lay-out
modifications.

Abstract. In this paper we display an explicit polynomial having Galois group SL2(F16),
filling in a gap in the tables of Jürgen Klüners and Gunter Malle. Furthermore, the poly-
nomial has small Galois root discriminant; this fact answers a question of John Jones and
David Roberts. The computation of this polynomial uses modular forms and their Galois
representations.

3.1 Introduction
It is a computational challenge to construct polynomials with a prescribed Galois group; see
[44] for methods and examples. Here, by the Galois group of a polynomial f ∈ Q[x] we
mean the Galois group of a splitting field of f over Q together with its natural action on
the roots of f in this splitting field. Jürgen Klüners informed me about an interesting group
for which a polynomial had not been found yet, namely SL2(F16) with its natural action on
P1(F16). This action is faithful because of char(F16) = 2. It must be noted that the existence
of such a polynomial was already known to Mestre (unpublished). In this paper we will give
an explicit example.

Proposition 3.1. The polynomial

P(x) := x17−5x16 +12x15−28x14 +72x13−132x12 +116x11−74x9

+90x8−28x7−12x6 +24x5−12x4−4x3−3x−1 ∈Q[x]

has Galois group isomorphic to SL2(F16) with its natural action on P1(F16).

What is still unknown is whether there exists a regular extension of Q(T ) with Galois group
isomorphic to SL2(F16); regular here means that it contains no algebraic elements over Q
apart from Q itself. In Section 3.2 we will say some words about the calculation of the
polynomial and the connection with modular forms. We’ll indicate how one can verify that it

69
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has the claimed Galois group in Section 3.3 using computational Galois theory. We will show
in Section 3.4 that this polynomial gives a Galois representation associated to an explicitly
given modular form.

3.1.1 Further remarks

In algebraic number theory, the root discriminant of a number field K is defined as d(K) :=
|Disc(OK)|1/[K:Q]. This way of measuring number fields appears to be very useful in asymp-
totic analysis on the set of all number fields (inside a fixed algebraic closure of Q, say). An
excellent survey paper on this material is [57]. Let us mention some interesting results here
as well. For example it is known that the bounds

22.38≈ 4πeγ ≤ liminf
K

d(K)≤ 82.11

hold; see [59, Section 7] for the lower bound and [30, Section 3.2] for the upper bound.
Under the assumption of the Generalised Riemann Hypothesis we even have

liminf
K

d(K)≥Ω := 8πeγ ≈ 44.76,

see [69]. In view of this lower bound, root discriminants below Ω are called small and it is
interesting to construct number fields that have small root discriminant. A paper focusing
on the construction of Galois number fields with small root discriminant is [33]. A question
asked in that paper is whether there exists such a field of which the Galois group contains
a subgroup isomorphic to SL2(F16) (see [33, Section 13]). The splitting field of the poly-
nomial in Proposition 3.1 has root discriminant 215/8 ·1371/2 ≈ 42.93 and thus answers this
question affirmatively.

The example given in Proposition 3.1 is not the only polynomial that the author could pro-
duce. Here are the other examples of polynomials having Galois group SL2(F16) computed
so far:

x17 + x16−4x15−2x14 +54x13 +6x12−36x11−16x10 +714x9

−1238x8 +484x7 +764x6−1084x5−520x4 +668x3 +776x2 +382x+74

and

x17 + x16 +18x15 +10x14 +194x13 +250x12 +442x11 +1006x10 +1176x9

−392x8 +1178x7 +4490x6 +4790x5 +1606x4 +286x3 +38x2 +25x+1.

The former polynomial defines a number field that ramifies above 2 and 173 and the num-
ber field defined by the latter polynomial ramifies above 2 and 199. The root discrimi-
nants of their splitting fields are not small, as they are equal to 215/81731/2 ≈ 48.25 and
215/81991/2 ≈ 51.74 respectively.
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3.2 Computation of the polynomial

In this section we will briefly indicate how one can find a polynomial like the one in Propo-
sition 3.1. We will make use of modular forms. For an overview as well as many further
references on this subject the reader is referred to [24].

Let N be a positive integer and consider the space S2(Γ0(N)) of holomorphic cusp forms
of weight 2 for Γ0(N). A newform f ∈ S2(Γ0(N)) has a q-expansion f = ∑anqn where the
coefficients an are in a number field. The smallest number field containing all the coefficients
is denoted by K f . To a given prime number ` and a place λ of K f above ` one can attach
a semi-simple Galois representation ρ f = ρ f ,λ : Gal(Q/Q)→ GL2(Fλ ) unramified outside
N` satisfying the following property: for each prime p - N` and any Frobenius element Frobp
in Gal(Q/Q) attached to p we have

tr(ρ f (Frobp))≡ ap modλ and det(ρ f (Frobp))≡ pmodλ . (3.1)

The representation ρ f is unique up to isomorphism. The fixed field of ker(ρ f ) in Q is Galois
over Q with Galois group isomorphic to im(ρ f ). For ` = 2 and any λ above ` equation (3.1)
together with Chebotarev’s density theorem imply that im(ρ f ) is contained in SL2(Fλ ). So
to show that there is an extension of Q with Galois group isomorphic to SL2(F16) it suffices
to find an N and a newform f ∈ S2(Γ0(N)) such that there is a prime λ of degree 4 above
2 in K f and im(ρ f ) is the full group SL2(Fλ ). Using modular symbols we can calculate
the coefficients of f , hence traces of matrices that occur in the image of ρ f . For a survey
paper on how this works, see [80]. A subgroup Γ of SL2(F16) contains elements of every
trace if and only if Γ equals SL2(F16); this can be shown in several ways, either by a direct
calculation or by invoking a more general classification result like [82, Theorem III.6.25].
With this in mind, after a small computer search in which we check the occurring values of
tr(ρ f (Frobp)) up to some moderate bound of p, one finds that a suitable modular form f
exists in S2(Γ0(137)). It turns out that we have K f ∼= Q(α) with the minimal polynomial of
α equal to x4 +3x3−4x−1 and that f is the form whose q-expansion starts with

f = q+αq2 +(α3 +α
2−3α−2)q3 +(α2−2)q4 + · · · .

Now the next question comes in: knowing this modular form, how does one produce a poly-
nomial? In general, one can use the Jacobian J0(N) to construct ρ f . In this particular case
we can do that in the following way. We observe that K f is of degree 4 and that the prime
2 is inert in it. Furthermore we can verify that the subspace of S2(Γ0(137)) fixed by the
Atkin-Lehner operator w137 is exactly the subspace generated by all the complex conju-
gates of f . These observations imply that ρ f is isomorphic to the action of Gal(Q/Q) on
Jac(X0(137)/〈w137〉)[2], where we give this latter space an F16-vector space structure via
the action of the Hecke operators. Note that im(ρ f ) = SL2(F16) implies surjectivity of the
natural map T→OK, f /(2)∼= F16, where T is the Hecke algebra attached to S2(Γ0(N)). The
methods described in [28, Sections 11 & 24] allow us now to give complex approximations
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of the 2-torsion points of Jac(X0(137)/〈w137〉) to a high precision. This part of the calcu-
lation took by far the most effort; the author will write more details about how this works
in a future paper (or thesis). We use this to give a real approximation of a polynomial with
Galois group isomorphic to SL2(F16). The results from [28, Sections 14 to 19] do, at least
implicitly, give a theoretical upper bound for the height of the coefficients of the polynomial
hence an upper bound for the calculation precision to get an exact result. Though this upper
bound is small in the sense that it leads to a polynomial time algorithm, it is still far too
high to be of use in practice. However it turns out that we can use a much smaller precision
to obtain our polynomial, the only drawback being that this does not give us a proof of its
correctness, so we have to verify this afterwards.

The polynomial P′ obtained in this way has coefficients of about 200 digits so we want to find
a polynomial of smaller height defining the same number field K. To do this, we first compute
the ring of integers OK of K. In [11, Section 6] an algorithm to do this is described, provided
that one knows the square-free factorisation of Disc( f ) [11, Theorem 1.4] and even if we
don’t know the square-free factorisation of the discriminant, the algorithm produces a ’good’
order in K (see [11, Theorem 1.1]). Assuming that our polynomial P′ is correct we know
that K is unramified outside 2 · 137 so we can easily calculate the square-free factorisation
of Disc( f ) and hence apply the algorithm. Having done this we obtain an order in K with
a discriminant small enough to be able to factor and hence we know that this is indeed the
maximal order OK . Explicitly, the discriminant is equal to

Disc(OK) = 230 ·1378. (3.2)

We embed OK as a lattice into C[K:Q] in the natural way and use lattice basis reduction, see
[49, (1.15)], to compute a short vector α ∈OK−Z. The minimal polynomial of α has small
coefficients. In our particular case [K : Q] is equal to 17, which is a prime number, hence this
new polynomial must define the full field K. This method gives us also a way of expressing
α as an element of Q(x)/(P′(x)).

3.3 Verification of the Galois group
Now that we have computed a polynomial P(x), we want to verify that its Galois group
Gal(P) is really isomorphic to SL2(F16) and that we can identify the set Ω(P) of roots of P
with P1(F16) in such a way that the action of Gal(P) on Ω(P) is identified with the action of
SL2(F16) on P1(F16).

For completeness let us remark that it is easy to verify that P(x) is irreducible since it is
irreducible modulo 5. The irreducibility of P implies that Gal(P) is a transitive permutation
group of degree 17. The transitive permutation groups of degree 17 have been classified,
see for example [75, Section 5]. It follows from [82, Theorem III.6.25] that up to conjugacy
there is only one subgroup of index 17 in SL2(F16), namely the group of upper triangular
matrices. This implies that up to conjugacy there is exactly one transitive G < S17 that is iso-
morphic to SL2(F16). Hence if Gal(P) ∼= SL2(F16) is an isomorphism of groups then there
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is an identification of Ω(P) with P1(F16) such that the group actions become compatible.

It follows from the classification in [75, Section 5] that if the order of a transitive G < S17
is divisible by 5, then G contains a transitive subgroup isomorphic to SL2(F16). To show
5 | #Gal(P) we use the fact that for a prime p - Disc(P) the decomposition type of P modulo
p is equal to the cycle type of any Frobenius element in Gal(P) attached to p. One can verify
that modulo 7 the polynomial P has an irreducible factor of degree 15, showing that indeed
5 | #Gal(P) holds, hence Gal(P) contains SL2(F16) as a subgroup.

To show that Gal(P) cannot be bigger than SL2(F16) it seems inevitable to use heavy com-
puter calculations. We will use ideas from [29], in particular we will use [29, Algorithm 6.1],
which combines the absolute resolvent method from [76] with an improved version of the
relative resolvent method from [77]. It would be interesting to see how Gal(P)∼= SL2(F16)
can be proven without using heavy calculations.

Note that the action of SL2(F16) on P1(F16) is sharply 3-transitive. So first we show that
Gal(P) is not 4-transitive to prove that it does not contain A17. To do this we start with
calculating the polynomial

Q(x) := ∏
{α1,α2,α3,α4}⊂Ω(P)

(X−α1−α2−α3−α4) , (3.3)

where the product runs over all subsets of {1, . . . ,17} consisting of exactly 4 elements. This
implies deg(Q) = 2380. One can calculate Q(x) using symbolic methods [15, Section 2.1].
Suppose that Gal(P) acting on Ω(P) is 4-transitive. Then the action on Ω(Q) is transitive
hence if Q(x) is square-free it is irreducible. So if we can show that Q(x) is reducible and
square-free, we have shown that Gal(P) is not 4-transitive.

We have two ways to find a nontrivial factor of Q(x): the first way is use a factorisation
algorithm and the second way is to produce a candidate factor ourselves. An algorithm that
works very well for our type of polynomial is Van Hoeij’s algorithm [31, Section 2.2]. One
finds that Q(x) is the product of 3 distinct irreducible polynomials of degrees 340, 1020 and
1020 respectively. A more direct way to produce a candidate factorisation is as follows. The
calculation of the 2-torsion in the Jacobian mentioned in Section 3.2 gives a bijection be-
tween the set of complex roots of P′ and the set P1(F16) such that the action of Gal(P′) on
Ω(P′) corresponds to the action of SL2(F16) on P1(F16), assuming the outcome is correct.
From the previous section we know how to express the roots of P as rational expressions
in the roots of P hence this gives us a bijection between Ω(P) and P1(F16), conjecturally
compatible with the group actions of Gal(P) and SL2(F16) respectively. A calculation shows
that the action of SL2(F16) on the set of unordered four-tuples of elements of P1(F16) has
3 orbits, of size 340, 1020 and 1020 respectively. Using approximations to a high precision
of the roots, we use these orbits to produce sub-products of (3.3), round off the coefficients
to the nearest integer and verify afterwards that the obtained polynomials are indeed factors
of Q(x).
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Let us remark that the group SL2(F16).4 := SL2(F16)o Aut(F16) with its natural action on
P1(F16) is a transitive permutation group of degree 17, and the same holds for its normal
subgroup SL2(F16).2 := SL2(F16)o 〈Frob2

2〉. Furthermore, it is well-known that SL2(F16).4
is isomorphic to Aut(SL2(F16)) (where SL2(F16) acts by conjugation and Aut(F16) acts
on matrix entries) and actually inside S17 this group is the normaliser of both SL2(F16)
and itself. According to the classification of transitive permutation groups of degree 17 in
[75, Section 5] these two groups are the only ones that lie strictly between SL2(F16) and A17.
Once we have fixed SL2(F16) inside S17, these two groups are actually unique subgroups of
S17, not just up to conjugacy.

From A17 6< Gal(P) we can thus conclude Gal(P) < SL2(F16).4. To proceed we consult
[29, Theorem 2.17], which gives a good computational method to move down over small
steps in a lattice of transitive permutation groups. Using this method we can easily go from
Gal(P)<SL2(F16).4 to Gal(P)<SL2(F16).2 and from there to Gal(P)<SL2(F16). So indeed
we have Gal(P)∼= SL2(F16).

3.4 Does P indeed define ρ f ?

So now that we have shown Gal(P) ∼= SL2(F16) we can wonder whether we can prove that
P comes from the modular form f we used to construct it with. Once an isomorphism
of Gal(P) with SL2(F16) is given, P defines a representation ρP : Gal(Q/Q)→ SL2(F16).
Above we mentioned that that Out(SL2(F16)) is isomorphic to Aut(F16) acting on matrix
entries. Hence, up to an automorphism of F16, the map sending σ ∈ Gal(Q/Q) to the char-
acteristic polynomial of ρP in F16[x] is determined by P and in fact the isomorphism class of
ρP is well-defined up to an automorphism of F16. More concretely, we have to show that the
splitting field of P, which we will denote by L, is the fixed field of ker(ρ f ).

A continuous representation ρ : Gal(Q/Q)→ GL2(F`) has a level, denoted by N(ρ), and a
weight, denoted by k(ρ). Instead of repeating the full definitions here, which are lengthy (at
least for the weight) and can be found in [70, Sections 1.2 and 2] (see also [27, Section 4] for
a discussion on the definition of the weight), we will just say that they are defined in terms of
the local representations ρ p : Gal(Qp/Qp)→GL2(F`) obtained from ρ . The level is defined
in terms of the representations ρ p with p 6= ` and the weight is defined in terms of ρ`. The
following conjecture is due to Serre:

Conjecture 3.1 (Serre’s strong conjecture, [70, Conjecture 3.2.4]). Let ` be a prime and
let ρ : Gal(Q/Q)→ GL2(F`) be a continuous odd irreducible Galois representation (a rep-
resentation is called odd if the image of a complex conjugation has determinant −1). Then
there exists a modular form f of level N(ρ) and weight k(ρ) which is a normalised eigenform
and a prime λ | ` of K f such that ρ and ρ f ,λ become isomorphic after a suitable embedding
of Fλ into F`.

In 2006, Khare and Wintenberger proved the following part of Serre’s strong conjecture:
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Theorem 3.1 (Khare & Wintenberger, [39, Theorem 1.2]). Conjecture 3.1 holds in each of
the following cases:

• N(ρ) is odd and ` > 2.

• ` = 2 and k(ρ) = 2.

With Theorem 3.1 in mind it is sufficient to prove that a representation ρ = ρP attached to P
has level 137 and weight 2, which are the level and weight of the modular form f we used to
construct it with and that of all eigenforms in S2(Γ1(137)), the form f is one which gives rise
to ρP. Therefore, in the remainder of this section we will verify the following proposition.

Proposition 3.2. Let f be the cusp form from Section 3.2. Up to an automorphism of F16,
the representations ρP and ρ f ,(2) are isomorphic. In particular, the representation ρP has
Serre-level 137 and Serre-weight 2.

Let us argue that it is not clear how to prove the modularity of ρP using only results that
are older than Theorem 3.1. The older results deal with cases that are ’small’ in some sense.
For example, [55, Thms 1 & 2] deal with ρ that satisfy N(ρ) = 1 or k(ρ) = 1 and focus
on proving non-existence of Galois representations. Also, the group SL2(F16) is too big to
apply other results. It is a non-solvable group and in that case there are some old results
dealing with imρ ⊂ GL2(Fq) for q ∈ {22,32,5,7}, but not for q = 16 (see [37, Section 1.3]
for a survey). Neither is it clear how to do a computer search of whichever kind that will
eliminate the possibility that ρP is not isomorphic to ρ f ,(2), as the group SL2(F16) and the
degree 17 are simply too big.

3.4.1 Verification of the level
The level is the easiest of the two to verify. Here we have to do local computations in p-adic
fields with p 6= 2. According to the definition of N(ρ) in [70, Section 1.2] it suffices to verify
that ρ is unramified outside 2 and 137, tamely ramified at 137 and the local inertia subgroup
I at 137 leaves exactly one line of F2

16 point-wise fixed. That ρP is unramified outside 2 and
137 follows immediately from (3.2).

From (3.2) and the fact that 1378‖Disc(P) it follows that the monogenous order defined by
P is maximal at 137. Modulo 137, the polynomial P factors as

P = (x+14)(x2 +6x+101)2(x2 +88x+97)2(x2 +106x+112)2(x2 +133x+110)2

into irreducibles. Let v be any prime above 137 in L. From the above factorisation it follows
that the prime 137 decomposes in K as a product of 5 primes; one of them has its inertial
and ramification degree equal to 1 and the other four ones have their inertial and ramification
degrees equal to 2. Thus deg(v) is a power of 2, as L is obtained by successively adjoining
roots of P and in each step the relative inertial and ramification degrees of the prime below
v are both at most 2. In particular, Gal(Lv/Q137) is a subgroup of SL2(F16) whose order is
a power of 2. Now, {

(
1
0
∗
1

)
} is a Sylow 2-subgroup of SL2(F16), so Gal(Lv/Q137) is, up to
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conjugacy, a subgroup of {
(

1
0
∗
1

)
}. Hence I is also conjugate to a subgroup of {

(
1
0
∗
1

)
} and

it is actually nontrivial because 137 ramifies in L (so I is of order 2 since the tame inertia
group of any finite Galois extension of local fields is cyclic).

It is immediate that ρ is tamely ramified at 137 as no power of 2 is divisible by 137. Also,
it is clear that I leaves exactly one line of F2

16 point-wise fixed since {
(∗

0

)
} is the only point-

wise fixed line of any nontrivial element of {
(

1
0
∗
1

)
}. This establishes the verification of

N(ρ) = 137.

3.4.2 Verification of the weight
Because the weight is defined in terms of the induced local representation ρ2, we will try to
compute some relevant properties of the splitting field Lv of P over Q2, where v is any place
of L above 2. In p-adic fields one can only do calculations with a certain precision, but this
does not give any problems since practically all properties one needs to know can be verified
rigorously using a bounded precision calculation and the error bounds in the calculations can
be kept track of exactly.

The polynomial P does not define an order which is maximal at the prime 2. Instead we use
the polynomial

R = x17−11x16 +64x15−322x14 +916x13 +276x12−5380x11 +2748x10

+6904x9−23320x8 +131500x7−140744x6−16288x5−39752x4

−48840x3 +102352x2 +234466x−1518,

which is the minimal polynomial of(
36863+22144α +123236α

2 +154875α
3−416913α

4 +436074α
5

+229905α
6−1698406α

7 +1857625α
8−467748α

9−2289954α
10

+2838473α
11−1565993α

12 +605054α
13−263133α

14 +112104α
15

−22586α
16)/8844,

where α is a root of P. We can factor R over Q2 and see that it has one root in Q2 which
happens to be odd, and an Eisenstein factor of degree 16, which we will call E. This type
of decomposition can be read off from the Newton polygon of R and it also shows that the
order defined by R is indeed maximal at 2. From the oddness of the root and (3.2) we see

v2(Disc(E)) = 30. (3.4)

For the action of Gal(Q2/Q2) on P1(F16) the factorisation means that there is one fixed point
and one orbit of degree 16. If we adjoin a root β of E to Q2 and factor E over Q2(β ) then
we see that it has an irreducible factor of degree 15; in [14, Section 6] one can find methods
for factorisation and irreducibility testing that can be used to verify this. This means that
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[Lv : Q2] is at least 240.

A subgroup of SL2(F16) that fixes a point of P1(F16) has to be conjugate to a subgroup of
the group

H :=
{(∗

0
∗
∗

)}
⊂ SL2(F16),

which is the stabiliser subgroup of [
(∗

0

)
]. But we have #H = 240 so Gal(Lv/Q2) is isomorphic

to H and from now on we will identify these two groups with each other. We can filter H by
normal subgroups:

H ⊃ I ⊃ I2 ⊃ {e},

where I is the inertia subgroup and I2 is the wild ramification subgroup, which is the unique
Sylow 2-subgroup of I. We wish to determine the groups I and I2. Let k(v) be the residue
class field of Lv. The group H/I is isomorphic to Gal(k(v)/F2) and I/I2 is isomorphic to
a subgroup of k(v)∗. In particular [I : I2] | (2[H:I]−1) follows. The group H has the nice
property

[H,H] =
{(

1
0
∗
1

)}
∼= F16,

which is its unique Sylow 2-subgroup. As H/I is abelian, we see that [H,H] ⊂ I. We con-
clude that I2 = [H,H], since above we remarked that I2 is the unique Sylow 2-subgroup of I.
The restriction [I : I2] | (2[H:I]−1) leaves only one possibility for I, namely I = I2.

Let L′v be the subextension of Lv/Q2 fixed by I. Then L′v is the maximal unramified subex-
tension as well as the maximal tamely ramified subextension. It is in fact isomorphic to Q215 ,
the unique unramified extension of Q2 of degree 15 and the Eisenstein polynomial E from
above, being irreducible over any unramified extension of Q2, is a defining polynomial for
the extension Lv/Q215 . According to [55, Theorem 3] we can relate the discriminant of Lv to
k(ρ) as follows:

v2(Disc(Lv)) =
{

240 · 15
8 = 450 if k(ρ) = 2

240 · 19
8 = 570 if k(ρ) 6= 2

It follows from (3.4) that v2(Disc(Lv/Q2)) = 30 ·15 = 450, so indeed k(ρ) = 2.

3.4.3 Verification of the form f

Now we know N(ρP) = 137 and k(ρP) = 2, Theorem 3.1 shows that there is an eigenform
g ∈ S2(Γ1(137)) giving rise to ρP. Using [12, Corollary 2.7] we see that if such a g exists,
then there actually exists such a g of trivial Nebentypus, i.e. g ∈ S2(Γ0(137)) (as SL2(F16)
is non-solvable ρP cannot be an induced Hecke character from Q(i)).

A modular symbols calculation shows that there exist two Galois orbits of newforms in
S2(Γ0(137)): the form f we used for our calculations and another form, g say. The prime
2 decomposes in Kg as a product λ 3µ , where λ has inertial degree 1 and µ has inertial
degree 4. So it could be that gmod µ gives rise to ρP. We will show now that f mod(2)
and gmod µ actually give the same representation. The completions of OK f and OKg at the
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primes (2) and µ respectively are both isomorphic to Z16, the unramified extension of Z2
of degree 4. After a choice of embeddings of OK f and OKg into Z16 we obtain two modu-
lar forms f ′ and g′ with coefficients in Z16 and we wish to show that a suitable choice of
embeddings exists such that they are congruent modulo 2. According to [81, Theorem 1], it
suffices to check there is a suitable choice of embeddings that gives an( f ′) ≡ an(g′)mod2
for all n≤ [SL2(Z) : Γ0(137)]/6 = 23 (in [81] this theorem is formulated for modular forms
with coefficients in the ring of integers of a number field, but the proof also works for p-adic
rings). Using a modular symbols calculation, this can be easily verified. The bound on the
indices up to which one has to check such a congruence is usually referred to as the Sturm
bound or Hecke bound.

3.5 MAGMA code used for computations
All the calculations were done using MAGMA (see [6]); for most of them the author used the
MEDICIS cluster (http://medicis.polytechnique.fr). The MAGMA code used for the
computation of the polynomials, together with a short instruction on how to use it, has been
included as an add-on to this paper and may be found at

http://www.lms.ac.uk/jcm/10/lms2007-024/appendix-a

Acknowledgements. I would like to thank Jürgen Klüners for proposing this computa-
tional challenge and explaining some computational Galois theory to me. Furthermore I
want to thank Bas Edixhoven for teaching me about modular forms and the calculation of
their coefficients. Thanks also go to David Roberts, for making me aware of the small root
discriminant problem and the fact that this polynomial provides an example for it. For being
able to make use of the MEDICIS cluster I want to thank Marc Giusti and Pierre Lafon.



Chapter 4

Some polynomials for level one forms

The contents of this chapter will appear in the final version of the manuscript [28] that will
eventually be published as a volume of the Annals of Mathematics Studies.

4.1 Introduction
In this chapter we explicitly compute mod ` Galois representations associated to modular
forms. To be precise, we look at cases with ` ≤ 23 and the modular forms considered will
be cusp forms of level 1 and weight up to 22. We present the result in terms of polynomials
associated to the projectivised representations. As an application, we will improve a known
result on Lehmer’s non-vanishing conjecture for Ramanujan’s tau function (see [47, p. 429]) .

To fix a notation, for any k ∈Z satisfying dimSk(SL2(Z)) = 1 we will denote the unique nor-
malised cusp form in Sk(SL2(Z)) by ∆k. We will denote the coefficients of the q-expansion
of ∆k by τk(n):

∆k(z) = ∑
n≥1

τk(n)qn ∈ Sk(SL2(Z)).

From dimSk(SL2(Z)) = 1 it follows that the numbers τk(n) are integers. For every ∆k and
every prime ` there is a continuous representation

ρ∆k,` : Gal(Q/Q)→ GL2(F`)

such that for every prime p 6= ` we have that the characteristic polynomial of ρ∆k,`(Frobp) is
congruent to X2− τk(p)X + pk−1 mod `. For a summary on the exceptional representations
ρ∆k,` and the corresponding congruences for τk(n), see [83].

4.1.1 Notational conventions

Throughout this chapter, for every field K we will fix an algebraic closure K and all algebraic
extension fields of K will be regarded as subfields of K. Furthermore, for each prime number
p we will fix an embedding Q ↪→Qp and hence an embedding Gal(Qp/Qp) ↪→ Gal(Q/Q),

79
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whose image we call Dp. We will use Ip to denote the inertia subgroup of Gal(Qp/Qp).

For any field K, a linear representation ρ : G→ GLn(K) defines a projective representation
ρ̃ : G→ PGLn(K) via the canonical map GLn(K)→ PGLn(K). We say that a projective
representation ρ̃ : G→ PGLn(K) is irreducible if the induced action of G on Pn−1(K) fixes
no proper subspace. So for n = 2 this means that every point of P1(K) has its stabiliser
subgroup not equal to G. Representations are assumed to be continuous.

4.1.2 Statement of results

Theorem 4.1. For every pair (k, `) occurring in Table 4.1 on page 87, let the polynomial
Pk,` be defined as in that same table. Then the splitting field of each Pk,` is the fixed field of
Ker(ρ̃∆k,`) and has Galois group PGL2(F`). Furthermore, if α ∈Q is a root of Pk,` then the
subgroup of Gal(Q/Q) fixing α corresponds via ρ̃∆k,` to a subgroup of PGL2(F`) fixing a
point of P1(F`).

For completeness we also included the pairs (k, `) for which ρk,` is isomorphic to the action
of Gal(Q/Q) on the `-torsion of an elliptic curve. These are the pairs in Table 4.1 with
` = k−1, as there the representation is the `-torsion of J0(`), which happens to be an elliptic
curve for ` ∈ {11,17,19}. A simple calculation with division polynomials [46, Chapter II]
can be used to treat these cases. In the general case, one has to work in the more complicated
Jacobian variety J1(`), which has dimension 12 for ` = 23 for instance.

We can apply Theorem 4.1 to verify the following result.

Corollary 4.1. The non-vanishing of τ(n) holds for all

n < 22798241520242687999≈ 2 ·1019.

In [34], the non-vanishing of τ(n) was verified for all

n < 22689242781695999≈ 2 ·1016.

To compute the polynomials, the author used a weakened version of algorithms described
elsewhere in this book. After a suggestion of Couveignes, Complex approximations were
used. We worked directly in X1(`) rather than X1(5`)Q(ζ`) and we guessed the rational coef-
ficients of our polynomials using lattice reduction techniques [49, Proposition 1.39]. instead
of computing the height first. Also reduction techniques were used to make the coefficients
smaller [16]; after the initial computations some of the polynomials had coefficients of al-
most 2000 digits. The used algorithms do not give a proven output, so we have to concentrate
on the verification. We will show how to verify the correctness of the polynomials in Sec-
tion 4.3 after setting up some preliminaries about Galois representations in Section 4.2. In
Section 4.4 we will point out how to use Theorem 4.1 in a calculation that verifies Corollary
4.1. All the calculations were performed using MAGMA (see [6]).
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4.2 Galois representations
This section will be used to state some results on Galois representations that we will need in
the proof of Theorem 4.1.

4.2.1 Liftings of projective representations

Let G be a topological group, let K be a topological field and let ρ̃ : G→ PGLn(K) be a
projective representation. Let L be an extension field of K. By a lifting of ρ̃ over L we shall
mean a representation ρ : G→ GLn(L) that makes the following diagram commute:

G
ρ̃

//

ρ

��

PGLn(K)� _

��

GLn(L) // // PGLn(L)

where the maps on the bottom and the right are the canonical ones. If the field L is not spec-
ified then by a lifting of ρ̃ we shall mean a lifting over K.

An important theorem of Tate arises in the context of liftings. For the proof we refer to [66,
Section 6]. Note that in the reference representations over C are considered, but the proof
works for representations over arbitrary algebraically closed fields.

Theorem 4.2 (Tate). Let K be a field and let ρ̃ : Gal(Q/Q)→ PGLn(K) be a projective
representation. For each prime number p, there exists a lifting ρ ′p : Dp→ GLn(K) of ρ̃|Dp .
Assume that these liftings ρ ′p have been chosen so that all but finitely many of them are
unramified. Then there is a unique lifting ρ : Gal(Q/Q)→ GLn(K) such that for all primes
p we have

ρ|Ip = ρ
′
p|Ip.

Lemma 4.1. Let p be a prime number and let K be a field. Suppose that we are given a
projective representation ρ̃p : Gal(Qp/Qp)→ PGLn(K) that is unramified. Then there exists
a lifting ρp : Gal(Qp/Qp)→ GLn(K) of ρ̃p that is unramified as well.

Proof. Since ρ̃ is unramified, it factors through Gal(Fp/Fp) ∼= Ẑ and is determined by the
image of Frobp ∈ Gal(Fp/Fp). By continuity, this image is an element of PGLn(K) of finite
order, say of order m. If we take any lift F of ρ̃(Frobp) to GLn(K) then we have Fm = a for
some a ∈ K×. So F ′ := α−1F , where α ∈ K is any m-th root of a, has order m in GLn(K).
Hence the homomorphism Gal(Qp/Qp)→ GLn(K) obtained by the composition

Gal(Qp/Qp) // // Gal(Fp/Fp)
∼ // Ẑ // // Z/mZ 17→F ′// GLn(K)

lifts ρ̃ and is continuous as well as unramified.
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4.2.2 Serre invariants and Serre’s conjecture
Let ` be a prime. A Galois representation ρ : Gal(Q/Q)→ GL2(F`) has a level N(ρ) and
a weight k(ρ). The definitions were introduced by Serre (see [70, Sections 1.2 & 2]). Later
on, Edixhoven found an improved definition for the weight, which is the one we will use,
see [27, Section 4]. The level N(ρ) is defined as the prime-to-` part of the Artin conductor
of ρ and equals 1 if ρ is unramified outside `. The weight is defined in terms of the local
representation ρ|D`

; its definition is rather lengthy so we will not write it out here. When
we need results about the weight we will just state them. Let us for now mention that one
can consider the weights of the twists ρ ⊗ χ of a representation ρ : Gal(Q/Q)→ GL2(F`)
by a character χ : Gal(Q/Q)→ F×` . If one chooses χ so that k(ρ⊗ χ) is minimal, then we
always have 1≤ k(ρ⊗χ)≤ `+1 and we can in fact choose our χ to be a power of the mod`
cyclotomic character.

Serre conjectured [70, Conjecture 3.2.4] that if ρ is irreducible and odd, then ρ belongs to
a modular form of level N(ρ) and weight k(ρ). Oddness here means that the image of a
complex conjugation has determinant −1. A proof of this conjecture in the case N(ρ) = 1
has been published by Khare and Wintenberger:

Theorem 4.3 (Khare & Wintenberger, [38, Theorem 1.1]). Let ` be a prime number and
let ρ : Gal(Q/Q)→ GL2(F`) be an odd irreducible representation of level N(ρ) = 1. Then
there exists a modular form f of level 1 and weight k(ρ) which is a normalised eigenform
and a prime λ | ` of K f such that ρ and ρ f ,λ become isomorphic after a suitable embedding
of Fλ into F`.

4.2.3 Weights and discriminants
If a representation ρ : Gal(Q/Q)→GL2(F`) is wildly ramified at ` it is possible to relate the
weight to discriminants of certain number fields. In this subsection we will present a theorem
of Moon and Taguchi on this matter and derive some results from it that are of use to us.

Theorem 4.4 (Moon & Taguchi, [55, Theorem 3]). Consider a wildly ramified represen-
tation ρ : Gal(Q`/Q`)→ GL2(F`). Let α ∈ Z be such that k(ρ ⊗ χ

−α

` ) is minimal where
χ` : Gal(Q`/Q`)→ F×` is the mod ` cyclotomic character. Put k̃ = k(ρ ⊗ χ

−α

` ), put d =

gcd(α, k̃−1, `−1) and put K = QKer(ρ)
` . Define m ∈ Z by letting `m be the wild ramification

degree of K over Q`. Then we have

v`(DK/Q`
) =

{
1+ k̃−1

`−1 −
k̃−1+d
(`−1)`m if 2≤ k̃ ≤ `,

2+ 1
(`−1)` −

2
(`−1)`m if k̃ = `+1,

where DK/Q`
denotes the different of K over Q` and v` is normalised by v`(`) = 1.

We can simplify this formula to one which is useful in our case. In the proof of the following
corollaries, v` denotes a valuation at a prime above ` normalised by v`(`) = 1.
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Corollary 4.2. Let ρ̃ : Gal(Q/Q)→ PGL2(F`) be an irreducible projective representation
that is wildly ramified at `. Take a point in P1(F`), let H ⊂ PGL2(F`) be its stabiliser sub-
group and let K be the number field defined as

K = Qρ̃−1(H)
.

Then the `-primary part of Disc(K/Q) is related to the minimal weight k of the liftings of ρ̃

by the following formula:
v`(Disc(K/Q)) = k + `−2.

Proof. Let ρ be a lifting of ρ̃ of minimal weight. Since ρ is wildly ramified, after a suitable
conjugation in GL2(F`) we may assume

ρ|I` =

(
χ

k−1
`

0
∗
1

)
, (4.1)

where χ` : I`→ F×` denotes the mod ` cyclotomic character; this follows from the definition
of weight. The canonical map GL2(F`)→ PGL2(F`) is injective on the subgroup

(∗
0
∗
1

)
, so

the subfields of Q` cut out by ρ|I` and ρ̃|I` are equal, call them K2. Also, let K1 ⊂ K2 be
the fixed field of the diagonal matrices in Imρ|I` . We see from (4.1) that in the notation of
Theorem 4.4 we can put α = 0, m = 1 and d = gcd(`−1,k−1). So we have the following
diagram of field extensions:

K2
χ

k−1
`

{{
{{

{{
{{ (

χ
k−1
`

0
∗
1

)
K1

deg = ` BB
BB

BB
BB

Qun
`

The extension K2/K1 is tamely ramified of degree (`−1)/d hence we have

v`(DK2/K1) =
(`−1)/d−1
(`−1)`/d

=
`−1−d
(`−1)`

.

Consulting Theorem 4.4 for the case 2≤ k ≤ ` now yields

v`(DK1/Qun
`

) = v`(DK2/Qun
`

)− v`(DK2/K1)

= 1+
k−1
`−1

− k−1+d
(`−1)`

− `−1−d
(`−1)`

=
k + `−2

`

and also in the case k = `+1 we get

v`(DK1/Qun
`

) = 2+
1

(`−1)`
− 2

(`−1)`
− `−2

(`−1)`
=

k + `−2
`

.

Let L be the number field QKer(ρ̃). From the irreducibility of ρ̃ and the fact that Im ρ̃ has
an element of order ` it follows that the induced action of Gal(Q/Q) on P1(F`) is transitive
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and hence that L is the normal closure of K in Q. This in particular implies that K/Q is
wildly ramified. Now from [K : Q] = `+ 1 it follows that there are two primes in K above
`: one is unramified and the other has inertia degree 1 and ramification degree `. From
the considerations above it now follows that any ramification subgroup of Gal(L/Q) at `
is isomorphic to a subgroup of

(∗
0
∗
1

)
⊂ GL2(F`) of order (`− 1)`/d with d | `− 1. Up to

conjugacy, the only subgroup of index ` is the subgroup of diagonal matrices. Hence K1 and
Kun

λ2
are isomorphic field extensions of Qun

` , from which

v`(Disc(K/Q)) = v`(Disc(K1/Qun
` )) = ` · v`(DK1/Qun

`
) = k + `−2.

follows.

Corollary 4.3. Let ρ̃ : Gal(Q/Q)→ PGL2(F`) be an irreducible projective representation
and let ρ be a lifting of ρ̃ of minimal weight. Let K be the number field belonging to a point
of P1(F`), as in the notation of Corollary 4.2. If k ≥ 3 is such that

v`(Disc(K/Q)) = k + `−2

holds, then we have k(ρ) = k.

Proof. From v`(Disc(K/Q)) = k + `− 2 ≥ `+ 1 it follows that ρ̃ is wildly ramified at ` so
we can apply Corollary 4.2.

4.3 Proof of the theorem

To prove Theorem 4.1 we need to do several verifications. We will derive representations
from the polynomials Pk,` and verify that they satisfy the conditions of Theorem 4.3. Then
we know there are modular forms attached to them that have the right level and weight and
uniqueness follows then easily.

First we we will verify that the polynomials Pk,` from Table 4.1 have the right Galois group.
The algorithm described in [29, Algorithm 6.1] can be used perfectly to do this verification;
proving A`+1 6< Gal(Pk,`) is the most time-consuming part of the calculation here. It turns
out that in all cases we have

Gal(Pk,`)∼= PGL2(F`). (4.2)

That the action of Gal(Pk,`) on the roots of Pk,` is compatible with the action of PGL2(F`)
follows from the following well-known lemma:

Lemma 4.2. Let ` be a prime and let G be a subgroup of PGL2(F`) of index `+1. Then
G is the stabiliser subgroup of a point in P1(F`). In particular any transitive permutation
representation of PGL2(F`) of degree `+1 is isomorphic to the standard action on P1(F`).

Proof. This follows from [82, Proof of Theorem 6.25].
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So now we have shown that the second assertion in Theorem 4.1 follows from the first one.

Next we will verify that we can obtain representations from this that have the right Serre
invariants. Let us first note that the group PGL2(F`) has no outer automorphisms. This
implies that for every Pk,`, two isomorphisms as in (4.2) define isomorphic representations
Gal(Q/Q)→ PGL2(F`) via composition with the canonical map Gal(Q/Q) � Gal(Pk,`). In
other words, every Pk,` gives a projective representation ρ̃ : Gal(Q/Q)→ PGL2(F`) that is
well-defined up to isomorphism.

Now, for each (k, `) in Table 4.1, the polynomial Pk,` is irreducible and hence defines a
number field

Kk,` := Q[x]/(Pk,`),

whose ring of integers we will denote by Ok,`. It is possible to compute Ok,` using the
algorithm from [11, Section 6] (see also [11, Theorems 1.1 & 1.4]), since we know what
kind of ramification behaviour to expect. In all cases it turns out that we have

Disc(Kk,`/Q) = (−1)(`−1)/2`k+`−2.

We see that for each (k, `) the representation ρ̃k,` is unramified outside `. From Lemma 4.1
it follows that for each p 6= `, the representation ρ̃k,`|Gal(Qp/Qp) has an unramified lifting.

Above we saw that via ρ̃k,` the action of Gal(Q/Q) on the set of roots of Pk,` is compatible
with the action of PGL2(F`) on P1(F`), hence we can apply Corollary 4.3 to show that the
minimal weight of a lifting of ρ̃k,` equals k. Theorem 4.2 now shows that every ρ̃k,` has a
lifting ρk,` that has level 1 and weight k. From Im ρ̃k,` = PGL2(F`) it follows that each ρk,`
is absolutely irreducible.

To apply Theorem 4.3 we should still verify that ρk,` is odd. Let (k, `) be given and suppose
ρk,` is even. Then a complex conjugation Gal(Q/Q) is sent to a matrix M ∈GL2(F`) of deter-
minant 1 and of order 2. Because ` is odd, this means M =±1 so the image of M in PGL2(F`)
is the identity. It follows now that Kk,` is totally real. One could arrive at a contradiction by
approximating the roots of Pk,` to a high precision, but to get a proof one should use only
symbolic calculations. The fields Kk,` with ` ≡ 3 mod 4 have negative discriminant hence
cannot be totally real. Now suppose that a polynomial P(x) = xn + an−1xn−1 + · · ·+ a0 has
only real roots. Then a2

n−1−2an−2, being the sum of the squares of the roots, is non-negative
and for a similar reason a2

1−2a0a2 is non-negative as well. One can verify immediately that
each of the polynomials Pk,` with ` ≡ 1 mod 4 fails at least one of these two criteria, hence
none of the fields Kk,` is totally real. This proves the oddness of the representations ρk,`.
Of course, this can also be checked with more general methods, like considering the trace
pairing on Kk,` or invoking Sturm’s theorem [32, Theorem 5.4].

So now that we have verified all the conditions of Theorem 4.3 we remark as a final step that
all spaces of modular forms Sk(SL2(Z)) involved here are 1-dimensional. So the modularity
of each ρk,` implies immediately the isomorphism ρk,`

∼= ρ∆k,`, hence also ρ̃k,`
∼= ρ̃∆k,` , which

completes the proof of Theorem 4.1.



86 CHAPTER 4. SOME POLYNOMIALS FOR LEVEL ONE FORMS

4.4 Proof of the corollary
If τ vanishes somewhere, then the smallest positive integer n for which τ(n) is zero is a
prime (see [47, Theorem 2]). Using results on the exceptional representations for τ(p), Serre
pointed out [68, Section 3.3] that if p is a prime number with τ(p) = 0 then p can be written
as

p = hM−1

with
M = 2143753691 = 3094972416000,(

h+1
23

)
= 1 and h≡ 0,30 or 48 mod 49.

In fact p is of this form if and only if τ(p) ≡ 0 mod 23 · 49 ·M holds. Knowing this,
we will do a computer search on these primes p and verify whether τ(p)≡ 0 mod ` for
` ∈ {11,13,17,19}. To do that we will use the following lemma.

Lemma 4.3. Let K be a field of characteristic not equal to 2. Then the following conditions
on M ∈ GL2(K) are equivalent:

(1) trM = 0.

(2) For the action of M on P1(K), there are 0 or 2 orbits of length 1 and all other orbits
have length 2.

(3) The action of M on P1(K) has an orbit of length 2.

Proof. We begin with verifying (1)⇒ (2). Suppose trM = 0. Matrices of trace 0 in GL2(K)
have distinct eigenvalues in K because of char(K) 6= 2. It follows that two such matri-
ces are conjugate if and only if their characteristic polynomials coincide. Hence M and
M′ :=

(
0

−detM
1
0

)
are conjugate so without loss of generality we assume M = M′. Since M2

is a scalar matrix, all the orbits of M on P1(K) have length 1 or 2. If there are at least 3 orbits
of length 1 then K2 itself is an eigenspace of M hence M is scalar, which is not the case.
If there is exactly one orbit of length 1 then M has a non-scalar Jordan block in its Jordan
decomposition, which contradicts the fact that the eigenvalues are distinct.

The implication (2)⇒ (3) is trivial so that leaves proving (3)⇒ (1). Suppose that M has an
orbit of length 2 in P1(K). After a suitable conjugation, we may assume that this orbit is
{[
(1

0

)
], [
(0

1

)
]}. But this means that M ∼

(
0
b

a
0

)
for certain a,b ∈ K hence trM = 0.

Combining this lemma with Theorem 4.1 one sees that for ` ∈ {11,13,17,19} and p 6= ` we
have τ(p)≡ 0 mod ` if and only if the prime p decomposes in the number field Q[x]/(P12,`)
as a product of primes of degree 1 and 2, with degree 2 occurring at least once. For
p - Disc(P12,`), which is a property that all primes p satisfying Serre’s criteria possess, we
can verify this condition by checking whether P12,` has an irreducible factor of degree 2
over Fp. This can be easily checked by verifying

xp2
= x and xp 6= x in Fp[x]/(P12,`).
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Having done a computer search, it turns out that the first few primes satisfying Serre’s criteria
as well as τ(p)≡ 0 mod 11 ·13 ·17 ·19 are

22798241520242687999, 60707199950936063999, 93433753964906495999.

Remark. The unpublished paper [34] in which Bruce Jordan and Blair Kelly obtained the
previous bound for the verification of Lehmer’s conjecture seems to be unfindable. Kevin
Buzzard asked me the question what method they could have used. If we weaken the above
search to using only the prime ` = 11 we obtain the same bound as Jordan and Kelly did.
So our speculation is that they searched for primes p satisfying Serre’s criteria as well as
τ(p) ≡ 0 mod 11. This congruence can be verified using an elliptic curve computation, as
was already remarked in Subsection 4.1.2.

4.5 The table of polynomials
In this section we present the table of polynomials that is referred to throughout this chapter.

Table 4.1: Polynomials belonging to projective modular rep-
resentations

(k, `) Pk,`

(12,11) x12−4x11 +55x9−165x8 +264x7−341x6 +330x5

−165x4−55x3 +99x2−41x−111
(12,13) x14 +7x13 +26x12 +78x11 +169x10 +52x9−702x8−1248x7

+494x6 +2561x5 +312x4−2223x3 +169x2 +506x−215
(12,17) x18−9x17 +51x16−170x15 +374x14−578x13 +493x12

−901x11 +578x10−51x9 +986x8 +1105x7 +476x6 +510x5

+119x4 +68x3 +306x2 +273x+76
(12,19) x20−7x19 +76x17−38x16−380x15 +114x14 +1121x13−798x12

−1425x11 +6517x10 +152x9−19266x8−11096x7 +16340x6

, +37240x5 +30020x4−17841x3−47443x2−31323x−8055
(16,17) x18−2x17−17x15 +204x14−1904x13 +3655x12 +5950x11

−3672x10−38794x9 +19465x8 +95982x7−280041x6−206074x5

+455804x4 +946288x3−1315239x2 +606768x−378241
(16,19) x20 + x19 +57x18 +38x17 +950x16 +4389x15 +20444x14

+84018x13 +130359x12−4902x11−93252x10 +75848x9

−1041219x8−1219781x7 +3225611x6 +1074203x5

−3129300x4−2826364x3 +2406692x2 +6555150x−5271039
Continued on next page
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Table 4.1 – continued from previous page

(k, `) Pk,`

(16,23) x24 +9x23 +46x22 +115x21−138x20−1886x19 +1058x18

+59639x17 +255599x16 +308798x15−1208328x14

−6156732x13−10740931x12 +2669403x11 +52203054x10 +106722024x9

+60172945x8−158103380x7−397878081x6−357303183x5

+41851168x4 +438371490x3 +484510019x2 +252536071x+55431347
(18,17) x18−7x17 +17x16 +17x15−935x14 +799x13 +9231x12−41463x11

+192780x10 +291686x9−390014x8 +6132223x7−3955645x6 +2916112x5

+45030739x4−94452714x3 +184016925x2−141466230x+113422599
(18,19) x20 +10x19 +57x18 +228x17−361x16−3420x15 +23446x14 +88749x13

−333526x12−1138233x11 +1629212x10 +13416014x9 +7667184x8

−208954438x7 +95548948x6 +593881632x5−1508120801x4

−1823516526x3 +2205335301x2 +1251488657x−8632629109
(18,23) x24 +23x22−69x21−345x20−483x19−6739x18 +18262x17

+96715x16−349853x15 +2196684x14−7507476x13 +59547x12

+57434887x11−194471417x10 +545807411x9 +596464566x8

−9923877597x7 +33911401963x6−92316759105x5 +157585411007x4

−171471034142x3 +237109280887x2−93742087853x+97228856961
(20,19) x20−5x19 +76x18−247x17 +1197x16−8474x15 +15561x14−112347x13

+325793x12−787322x11 +3851661x10−5756183x9 +20865344x8

−48001353x7 +45895165x6−245996344x5 +8889264x4

−588303992x3−54940704x2−538817408x+31141888
(20,23) x24− x23−23x22−184x21−667x20−5543x19−22448x18

+96508x17 +1855180x16 +13281488x15 +66851616x14

+282546237x13 +1087723107x12 +3479009049x11 +8319918708x10

+8576048755x9−19169464149x8−111605931055x7−227855922888x6

−193255204370x5 +176888550627x4 +1139040818642x3

+1055509532423x2 +1500432519809x+314072259618
(22,23) x24−2x23 +115x22 +23x21 +1909x20 +22218x19 +9223x18 +121141x17

+1837654x16−800032x15 +9856374x14 +52362168x13−32040725x12

+279370098x11 +1464085056x10 +1129229689x9 +3299556862x8

+14586202192x7 +29414918270x6 +45332850431x5−6437110763x4

−111429920358x3−12449542097x2 +93960798341x−31890957224
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Samenvatting

Expliciete berekeningen met modulaire Galoisrepresentaties

De tekst van deze samenvatting is gebaseerd op het door de auteur geschreven populairwe-
tenschappelijke artikel [8].

Galoistheorie
Op de middelbare school leert iedereen een kwadratische vergelijking ax2 +bx+ c = 0 op-
lossen met behulp van de abc-formule:

x =
−b±

√
b2−4ac

2a
.

Voor vergelijkingen van graad 3 bestaat er een soortgelijke formule, in 1545 gepubliceerd
door Cardano, na het gestolen te hebben van Tartaglia: de nulpunten van het polynoom
ax3 +bx2 + cx+d zijn gelijk aan

x =
3
√

C +
√

D+
3
√

C−
√

D− b
3a

,

waarbij

C =
−b3

27a3 +
bc
6a2 −

d
2a

, D = C2 +
(

c
3a
− b2

9a2

)3

en de derdemachtswortels geschikt gekozen dienen te worden. We zien dat de nulpunten van
tweedegraads- en derdegraadspolynomen gegeven kunnen worden als uitdrukkingen in de
coëfficiënten, waarbij we de operaties +, −, ·, / en n

√ gebruiken. We zullen in zo’n geval
zeggen dat het polynoom oplosbaar is. We kunnen ons afvragen of dit ook geldt voor poly-
nomen van willekeurige graad. Ferrari, een student van Cardano, had in 1540 al aangetoond
dat vierdegraadsvergelijkingen oplosbaar zijn, onder de voorwaarde dat derdegraadsvergelij-
kingen oplosbaar zijn.

Naar een formule voor de nulpunten van polynomen van graad 5 en hoger heeft men sinds-
dien eeuwenlang tevergeefs gezocht. In 1799 vond de Italiaanse wiskundige Ruffini zelfs
een bewijs dat zo’n formule in het algemeen niet bestaat! Niemand geloofde hem echter,
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totdat Abel in 1826 eveneens een bewijs vond. Zelfs vandaag de dag zijn er nog ongelovige
thomassen die, uiteraard zonder succes, formules voor oplossingen van vijfdegraadsvergelij-
kingen proberen te vinden. Laten we hierbij wel opmerken dat het niet zo is dat geen enkele
vergelijking van graad 5 of hoger opgelost kan worden. De nulpunten van x5− x− 1 kun
je weliswaar niet uitdrukken in elementaire formules, maar die van x5−2 wel: dat zijn alle
waarden van 5

√
2.

In 1832 vond Galois een nieuw bewijs voor het feit dat vergelijkingen vanaf graad 5 niet op
te lossen zijn met +, −, ·, / en n

√. Het bewijs van Galois is zeer interessant omdat het veel
meer inzicht en structuur aan een polynoom geeft dan alleen ‘ja, het kan’ of ‘nee, het kan
niet’.

Laten we eens kijken hoe Galois het deed. Kies je favoriete polynoom

P(x) = anxn + · · ·+a0 ∈Q[x] met nulpunten α1, . . . ,αn ∈ C.

We zullen veronderstellen dat de nulpunten verschillend zijn; dit is geen grote belemmering
want we kunnen meervoudige factoren makkelijk vinden. Er zijn allerlei relaties tussen de
nulpunten. Zo kunnen we het product uitwerken in de identiteit

an(x−α1) · · ·(x−αn) = anxn + · · ·+a0

en dan vinden we bij elke coëfficiënt een symmetrische relatie, bijvoorbeeld

α1 + · · ·+αn =
−an−1

an
en α1 · · ·αn =

(−1)na0

an
.

Afhankelijk van het polynoom kunnen er meerdere relaties tussen de nulpunten zijn dan de-
genen die je direct uit de symmetrische relaties kunt afleiden. Galois kwam op het idee om
de groep van alle permutaties van de nulpunten te bekijken die alle relaties tussen deze nul-
punten vasthouden; deze groep heet vandaag de dag de Galoisgroep van het polynoom P en
noteren we met Gal(P). Als er niet meer relaties tussen de nulpunten zijn dan degenen die
je uit de symmetrische relaties kunt afleiden, dan zal Gal(P) uit alle mogelijk permutaties
tussen de nulpunten bestaan en dus isomorf zijn met Sn, de volledige symmetrische groep
van graad n. Als er echter meer relaties zijn, dan leggen deze restricties op de permutaties op
en zal Gal(P) dus kleiner zijn.

De oplosbaarheid van een polynoom P kan nu worden uitgedrukt in abstracte eigenschappen
van de Galoisgroep G = Gal(P). We gaan een rij

G = G1 ⊃ G2 ⊃ ·· ·

van ondergroepen van G maken aan de hand van het volgende recept: Begin met G1 = G en
neem daarna telkens de commutatorondergroep:

Gi+1 = [Gi,Gi] := 〈ghg−1h−1 : g,h ∈ G〉.
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Men kan laten zien dat P oplosbaar is dan en slechts dan als ergens in deze rij de triviale
groep voorkomt. We zeggen in zo’n geval ook wel dat de groep G oplosbaar is.

Een groep die erg cruciaal is in deze context is Gal(Q/Q), de automorfismengroep van het
lichaam van algebraı̈sche getallen. Het is een topologische groep waarin de Galoisgroepen
van alle polynomen in Q[x] gecodeerd zitten. Voor eindige groepen G is het geven van een
polynoom met Galoisgroep G (grofweg) equivalent met het geven van een continu surjectief
homomorfisme Gal(Q/Q)→ G. De groep Gal(Q/Q) is binnen deze theorie dus een soort
allesomvattend object en daarmee ook meteen heel moeilijk te begrijpen.

Modulaire vormen en Galoisrepresentaties
Modulaire vormen spelen een belangrijke rol in de getaltheorie. Grofweg zijn het holomorfe
functies op het complexe bovenhalfvlak H die aan bepaalde groeivoorwaarden en aan be-
paalde symmetrierelaties ten aanzien van transformaties van de vorm z 7→ az+b

cz+d voldoen.

Een belangrijk voorbeeld van een modulaire vorm die veel wiskundigen heeft beziggehouden
is de functie

∆(z) = q ∏
n≥1

(1−qn)24, waarbij q = e2πiz. (4.3)

De groeivoorwaarde voor deze functie is limℑz→∞ ∆(z) = 0 en de symmetrierelatie luidt in
dit geval dat ∆(z) voldoet aan

∆

(
az+b
cz+d

)
= (cz+d)12

∆(z)

voor alle z∈H en a,b,c,d ∈Z met ad−bc = 1. We kunnen deze transformaties visualiseren
in een plaatje dat laat zien hoe het complexe bovenhalfvlak in driehoeken wordt opgedeeld;
zie de figuur op bladzijde 2. Als we het product in (4.3) uitwerken dan krijgen we een
machtreeks

∆(z) = q−24q2 +252q3−1472q4 +4830q5 + · · ·= ∑
n≥1

τ(n)qn,

met τ(n) geheel. De functie τ : Z>0→ Z die op deze manier gedefinieerd is heet de Rama-
nujan tau-functie. Ramanujan merkte een aantal merkwaardige eigenschappen van zijn tau-
functie op. Onder andere waren daar de volgende drie eigenschappen, die hij niet kon bewij-
zen:

• Als m en n ondeelbaar zijn dan geldt τ(mn) = τ(m)τ(n).

• Voor priemmachten geldt de recursie τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1).

• Voor priemgetallen hebben we een ongelijkheid |τ(p)| ≤ 2p11/2.

De eerste twee eigenschappen zijn in 1917 door Mordell bewezen, maar de derde is lange
tijd onopgelost geweest.
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Behalve de bovengenoemde eigenschappen vond Ramanujan ook nog congruenties voor τ(n)
modulo (machten van) de priemgetallen 2, 3, 5, 7, 23 en 691, bijvoorbeeld

τ(n)≡ 1+n11 voor alle n.

Serre begon zich af te vragen waarom zulke congruenties niet bestaan modulo andere priem-
getallen. In 1968 formuleerde hij een vermoeden waarin werd gesteld dat τ(p) uit te drukken
is in termen van 2-dimensionale Galoisrepresentaties, dat wil zeggen continue homomorfis-
men ρ : Gal(Q/Q)→ GL2(K) waarbij K een zeker lichaam is. Hij bracht op die manier het
modulo ` gedrag van τ(p) in verband met de grens |τ(p)| ≤ 2p11/2. Het lukte Deligne in
1969 om het bestaan van zulke representaties aan te tonen en in 1974 slaagde hij erin om
hiermee |τ(p)| ≤ 2p11/2 te bewijzen. Het bewijs van Deligne gebruikt diepe resultaten uit
de algebraı̈sche meetkunde; het totale aantal pagina’s dat je krijgt als je alles helemaal vanaf
het begin zou uitschrijven wordt geschat op ongeveer 2000.

De vorm ∆ is niet uniek hierin. Eigenschappen die vergelijkbaar zijn met die voor de vorm
∆ gelden voor veel meer modulaire vormen. De modulaire vormen in kwestie heten ei-
genvormen omdat het eigenvectoren zijn voor bepaalde lineaire operatoren op ruimten van
modulaire vormen, de zogenaamde Heckeoperatoren. Bij elke eigenvorm blijken er Galois-
representaties gemaakt te kunnen worden.

De afgelopen decennia is het verband tussen eigenvormen en Galoisrepresentaties zeer in-
tensief bestudeerd. Een van de grote resultaten die hieruit voortkwam is Wiles’ bewijs voor
de Laatste Stelling van Fermat. Een ander groot resultaat, dat sterk in verband staat met het
werk van Wiles, is het bewijs voor het Serrevermoeden, gegeven door Khare, Wintenberger
en Kisin. Dit Serrevermoeden stelt dat een representatie ρ : Gal(Q/Q)→ GL2(K) met K
een eindig lichaam slechts aan een paar hele milde voorwaarden hoeft te voldoen om al van
een eigenvorm afkomstig te zijn.

Het berekenen van τ(n)

Een vraag die René Schoof aan Bas Edixhoven stelde is of het mogelijk is om τ(n) efficiënt
uit te rekenen. Als we τ(p) kunnen uitrekenen voor priemgetallen p en n kunnen factorise-
ren in priemgetallen dan kunnen we, wegens de observaties van Ramanujan, τ(n) uitrekenen.
Het zou mooi zijn om τ(n) snel te kunnen uitrekenen zonder te hoeven factoriseren; in dat
geval zou het bekende en veelgebruikte cryptosysteem RSA namelijk gekraakt zijn. Voor-
lopig is het echter niet duidelijk hoe dit aangepakt zou kunnen worden en kunt u nog veilig
internetbankieren.

Als we nu τ(p) mod ` uitrekenen voor zo veel priemgetallen ` dat hun product groter dan
4p11/2 is, dan ligt, gezien de grens voor |τ(p)| hiermee τ(p) zelf vast. Met dit in het achter-
hoofd is Edixhoven een project gestart waarin hij het probleem tracht aan te pakken door de
bijbehorende Galoisrepresentaties uit te rekenen. Dit proefschrift vormt een onderdeel van
het project. Het basisidee van de berekeningen komt uit de meetkunde: de Galoisrepresen-
tatie die bij τ(p) mod ` hoort voor een gegeven ` kan worden gerealiseerd in een variëteit
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die J1(`) genoemd wordt en dimensie (`− 5)(`− 7)/24 heeft. Jean-Marc Couveignes had
het idee om hierbij numerieke berekeningen te gebruiken. Om deze ideeën hard te maken
lijkt het echter onvermijdelijk om Arakelovmeetkunde te gebruiken; op dit punt kon Robin
de Jong zijn steentje bijdragen aan het project. Hierbij is gebruikgemaakt van een resultaat
van Franz Merkl, iemand uit de kansrekening.

Een nadeel van het algoritme van Edixhoven, Couveignes en De Jong is dat het praktisch
niet goed werkt. Zo is de rekenprecisie te hoog en moeten we in plaats van J1(`) de variëteit
J1(5`) gebruiken, waarvan de dimensie (`−2)2 is.

In de praktijk kunnen we deze bezwaren negeren en gewoon gaan rekenen. We krijgen poly-
nomen met coëfficiënten van een hoge precisie (denk hier aan enkele duizenden decimalen).
We weten dat de coëfficiënten benaderingen zijn van rationale getallen. Als de benadering
sterk genoeg is, dan gokken we dat de rationale getallen waar ze dichtbij liggen de daad-
werkelijke coëfficiënten zijn van de polynomen die bij de representaties horen. We moeten
dan wel nog achteraf nagaan dat het verkregen polynoom correct is. Dankzij het feit dat het
Serrevermoeden nu bewezen is, is dit allemaal goed te doen. Uiteraard geldt ook hier dat
we niet tot de tau-functie beperkt zijn. De rekenmethoden werken met eigenvormen in het
algemeen.

Dit proefschrift
In Hoofdstuk 1 van dit proefschrift zullen wij de theorie van modulaire vormen behandelen.
Voorts zullen wij in Hoofdstuk 2 bespreken hoe er gerekend kan worden aan modulaire vor-
men en Galoisrepresentaties. In de Hoofdstukken 3 en 4 zullen we enkele resultaten van de
berekeningen presenteren die zijn uitgevoerd.

In Hoofdstuk 3 betreft deze berekening de oplossing van een probleem uit de computationele
inverse Galoistheorie dat Jürgen Klüners, een van de grote wereldexperts op dit gebied, mij
had voorgelegd. In de computationele inverse Galoistheorie tracht men voor zo veel moge-
lijk groepen G een polynoom te vinden waarvan G de Galoisgroep is. De groep in Hoofdstuk
3 betreft SL2(F16), de groep van 2 bij 2 matrices met determinant 1 en coëfficiënten in het
lichaam van 16 elementen. Verschillende mensen waren naar zo’n polynoom op zoek. Of er
ook voor elke groep G een polynoom bestaat met Galoisgroep G is een zeer moeilijk onop-
gelost probleem in de getaltheorie.

De resultaten van Hoofdstuk 4, betreffen enkele berekeningen aan Galoisrepresentaties voor
de tau-functie en daaraan gerelateerde functies. In dat hoofdstuk zullen we projectieve re-
presentaties voor deze functies modulo de priemgetallen ` ≥ 23 geven. Als toepassing ver-
beteren we de grens waarvoor het Lehmervermoeden geverifiëerd is met meer dan een factor
duizend. Dit vermoeden stelt dat de tau-functie nergens de waarde nul aanneemt. Het resul-
taat van het hoofdstuk is interessant omdat het een toepassing geeft van het Serrevermoeden,
een theoretisch resultaat, in een computationele context.
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