
Metabolomics of biofluids : from analytical tools to data
interpretation
Nevedomskaya, E.

Citation
Nevedomskaya, E. (2011, November 23). Metabolomics of biofluids : from
analytical tools to data interpretation. Retrieved from
https://hdl.handle.net/1887/18135
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/18135
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18135


 

 

 
 
 

Chapter 
 

Cross-platform analysis of  
longitudinal data in metabolomics 

 
Nevedomskaya E., Mayboroda O.A., Deelder A.M. 

 
Molecular Biosystems, 2011, DOI: 10.1039/c1mb05280b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

128 

ABSTRACT 
Metabolic profiling is considered to be a very promising tool for diagnostic purposes, 

for assessing nutritional status and response to drugs. However, it is also evident that 
human metabolic profiles have a complex nature, influenced by many external factors. This, 
together with the understanding of the difficulty to assign people to distinct groups and a 
general move in clinical science towards personalized medicine, raises the interest to 
explore individual and variable metabolic features for each individual separately in 
longitudinal study design. In the current paper we have analyzed a set of metabolic profiles 
of a selection of six urine samples per person from a set of healthy individuals by 1H NMR 
and reversed-phase UPLC-MS. We have demonstrated that the method for recovery of 
individual metabolic phenotypes can give complementary information to another 
established method for analysis of longitudinal data—multilevel component analysis. We 
also show that individual metabolic signatures can be found not only in 1H NMR data, as 
has been demonstrated before, but also even more strongly in LC-MS data. 
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INTRODUCTION 
Metabolomics is a post-genomics technology, the aim of which is ‘‘profiling metabolism 

in complex systems’’.(1) The reasoning behind metabolomics experiments is that 
metabolites, compared to genes, transcripts and proteins, offer the closest representation of 
the phenotype.(2) Thus, they can contain valuable information on a disease development, 
in contrast to genetics that gives insight into predisposition to a disease. Conducting this 
type of research assumes the existence of specific biomarkers or metabolic signatures that 
can distinguish between pathological states. The potential of metabolomics to reveal 
signatures of pathological conditions has been demonstrated on a number of neurological 
disorders (Huntington’s disease,(3) Parkinson’s disease,(4) multiple sclerosis(5) etc.), 
various cancers (ovarian and breast,(6) pancreatic,(7) colorectal(8) and others), 
cardiological abnormalities (e.g. ischemia(9)) and many other diseases. 

It is, however, evident, that metabolic profiles reflect not only the disease/healthy state 
of the organism but, as a representation of a given phenotype, they strongly depend on 
factors such as gender, age and our daily habits, like, for example, diet, drugs and alcohol 
intake.(10,11) Another extremely important factor affecting metabolic profiles is gut 
microbiota. It has been shown that even for genetically identical laboratory animals gut 
microflora is influenced by environment and dietary factors.(12–14) For humans, in which 
genetic variation is enormous, gut microflora is much more diverse and is additionally 
affected by factors such as, for instance, stress.(15) 

Therefore, human metabolic profiles are highly dependent on environmental factors 
and may vary from day to day due to turbulent conditions of our fast and highly stressful 
modern lives. A way to overcome possible negative effects of this variability on the 
interpretation of metabolomics data is multiple sampling over time per individual. The 
main advantage of this approach is the possibility to get an insight into the biological 
processes, which are usually missed by a simple, static comparison of ‘‘diseased vs. healthy’’. 
The feasibility of the longitudinal sampling has been demonstrated more than once in 
toxicology experiments in animals,(16) in human intervention studies(17) and in 
monitoring cyclic dynamics in healthy women.(18) 

A number of statistical methods that can deal with longitudinal(19) or paired(20) data 
exist. One of the methods suitable for the analysis of such data is the multilevel approach 
that separates levels of variation present in the data into inter- and intra-individual.(21) 
Moreover, it has been shown that, despite the multiple sources of variability, present in 
human biofluids and particularly in urine, there are constant individual metabolic 
signatures, which are probably to a great extent determined by genetics.(22) Assfalg et al. 
used a combination of established statistical methods for individual classification, or in 
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other words person recognition, on the basis of Nuclear Magnetic Resonance (NMR) 
spectra of urine. The core of this approach was a variant of Principal Component Analysis 
(PCA), which was an innovative tool for face recognition 20 years ago,(23) and proved to be 
innovative for recognition of human urine metabolic signatures today. The existence of 
stable personal metabolic phenotypes is linked to the idea of homeostasis or, more precisely, 
to the idea that individual, self-regulatory, genetically controlled mechanisms maintain the 
homeostasis at any price. Consequently, the disruption of homeostasis means the beginning 
of a disease development.(24;25) Thus, monitoring of individual metabolic signatures, 
which represent dynamic, time-correlated changes of the phenotype, might ultimately 
develop into a preferred approach for practical personalized medicine. 

Thus, there are different statistical methods that can be applied to the metabolic profiles 
of multiple samples per individual and allow having various perspectives on the data. 
Besides, an enormous chemical diversity of metabolites has resulted in a broad spectrum of 
analytical approaches used in metabolomics, especially with regards to mass spectrometry. 
To select an auxiliary to NMR MS method, one has to make a choice between gas 
chromatography (GC), capillary electrophoresis (CE) and liquid chromatography (LC). 
Choosing the latter, one still remains with a range of possibilities like, for example, reverse 
phase or hydrophilic interaction liquid chromatography (rpLC or HILIC). 

In the current research we wanted to demonstrate that multilevel component analysis 
(MCA) and person recognition can be used in parallel, and that the information retrieved 
by the two methods is complimentary and together they can form a toolbox for analysis of 
longitudinal datasets. To this end we analyzed a set of urine samples from 8 healthy 
individuals (each of them donated 6 samples) by 1H NMR and reversed phase UPLC-MS, 
which requires relatively simple sample preparation and is one of the most widely used MS 
techniques in metabolomics. MCA and person recognition methods were applied to the 
data. We here show that individual metabolic phenotypes can be identified not only on the 
basis of 1H NMR spectra, as has been shown before, but also on the basis of LC-MS data. 
We also demonstrate the information extracted from this type of designed study using the 
two statistical approaches, based on diverse sources of variation in the data. The difference 
in information content of the data from the two analytical techniques is analyzed and 
discussed as well. 

 

MATERIALS AND METHODS 
Samples. Urine samples were collected, after written consent, from 8 self-declared 

healthy individuals from the same working environment (Leiden University Medical 
Center, the Netherlands). The volunteers were equally divided into men and women, aged 
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between 25 and 45 years old, all Caucasian. Each volunteer provided 6 urine samples of the 
first morning urine after over-night fasting on 6 different days (5 consecutive weekdays and 
one after the weekend). No diet restrictions were implied; none of the subjects was taking 
medication. Samples were collected in sterile 15 ml polypropylene tubes, kept at 4 °C, 
frozen within 8 h of collection, and stored for approximately 2 weeks at -20 °C until the 
measurement. In total 48 urine samples were analyzed. 

Sample preparation. Frozen samples were thawed at room temperature and vortexed 
before use. 

Sample preparation for 1H NMR experiments. Aliquots of urine sample (1000 μl) were 
centrifuged at 3000g for 15 min at 4 °C to remove any precipitate. 600 μl of each sample 
were transferred to a 96 deep-well plate, further preparation was automated using the 
Bruker Sample Track system and a Gilson 215 robotic system. Here 540 μl urine were added 
to 60 μl of pH 7.0 sodium phosphate buffer (0.2 M) in 10% D2O containing 0.53 mM 
sodium 3-trimethylsilyl-tetradeuteriopropionate (TSP) and 0.26 mM NaN3, thoroughly 
mixed and transferred to a new 96 deep-well plate. Samples were centrifuged at 3000g for 5 
min to remove any solid debris. A modified Gilson 215 robot was used to transfer 565 ml of 
sample from the plate into 5 mm SampleJet NMR tubes. 

Sample preparation for LC-MS experiments. 150 μl of each urine sample were mixed 
with 450 μl of water and subsequently centrifuged at 3000 rpm for 10 min. 5 μl of sample 
was used for injection. 

Data acquisitions.  
1H NMR experiments. All 1H NMR experiments were performed on a 600 MHz Bruker 

Avance II spectrometer (Bruker BioSpin, Karlsruhe, Germany) equipped with a 5 mm TCI 
cryogenic probe head with Z-gradient system and automatic tuning and matching. 
Temperature calibration was done prior to the measurements using the method of 
Findeisen et al.(40) 

One-dimensional 1H NMR spectra were recorded at 300 K using the first increment of a 
NOESY(41) pulse sequence with presaturation (γB1 = 50 Hz) during a relaxation delay of 4 
s and a mixing time of 10 ms for efficient water suppression. A total of 32 768 data points 
were recorded with 32 scans covering a sweep width of 12 336 Hz. The free induction decay 
(FID) was zero-filled to 65 536 complex data points prior to Fourier transformation and an 
exponential window function was applied with a line broadening factor of 1.0 Hz. 

A sample 1H NMR spectrum can be found in Supplementary Materials, Figure S1a. 
LC-MS experiments. The samples were analyzed on a UPLC-ESI-UHR-ToF system. 

The injection scheme was randomized and included quality control samples (mix of all of 
the urine samples, prepared in the same way as the individual samples), as well as a set of 
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analytical standards (mix of pesticides, see Supplementary Materials, Table S1) to ensure 
the robustness of the workflow and to evaluate the analytical variability. Quality control 
(QC) and analytical standards were injected at the beginning and at the end of the sequence, 
as well as every four biological samples. In total 28 QC runs were acquired. The UPLC 
(Ultimate 3000 RS tandem LC system, Dionex, Amsterdam, The Netherlands) was 
equipped with a pre-column (Acclaim 120 C18, 5 mm, 120 Å, 2 × 10 mm) and two 
analytical columns (Acclaim RSLC 120 C18, 2.2 mm, 120 Å, 2.1 × 100 mm) working 
alternatively to speed up the acquisition series. The UPLC flow was set at 400 μl min-1 and 
the mobile phases were water + 0.1% formic acid v/v (Phase A) and methanol+0.1% formic 
acid v/v (Phase B). The gradient was as follows: 1 min 0% phase B, then in 1 min to 10% 
phase B, held for 1 min at 10% phase B, and subsequently in 6,5 min to 100% phase B and 
held for 3 min at 100% phase B. Before each chromatographic run, a calibrant solution of 
sodium formate was injected in Flow Injection Analysis mode. 

The ESI-UHR-ToF (maXis, Bruker Daltonics, Bremen, Germany) was operated in the 
positive ionization mode and acquired data in the mass range from m/z 50 to 1500 with a 
spectra rate of 1 Hz. The capillary was set at 2500 V, the End Plate offset at -500 V, the 
Nebulizer gas at 2 bar and the dry gas at 8 l min-1 at 180 °C. 

A sample LC-MS chromatogram can be found in Supplementary Materials, Figure S1b. 
Data pre-processing. 1H NMR data pre-processing. All spectra were manually phase- 

and baseline-corrected using Topspin 2.1 (Bruker BioSpin, Karlsruhe, Germany) and 
automatically referenced to TSP signal (0.0 ppm). Each spectrum was integrated (binned) 
using 0.0095 ppm integral regions between 0.5 and 10 ppm, the residual water and urea 
region between 4.5 and 6 ppm was excluded, resulting in 842 bin regions used for the 
analysis. To account for any difference in concentration between the samples, each 
spectrum was normalized to its total area and subsequently by Probabilistic Quotient 
Normalization (PQN) (42) using average spectrum as a reference. 

LC-MS data pre-processing. All data files were recalibrated on the masses of sodium 
formiate clusters. The alignment of chromatograms and peak picking was performed using 
open-source XCMS software (The Scripps Research Institute, La Jolla, CA).(43) Finding 
peaks was performed using the ‘‘centWave’’ algorithm with m/z deviation set to 5 ppm, and 
the scan range between 20 and 700 scans. Grouping of peaks was done with parameters 
minsamp set to 28 (number of QC samples) and bandwidth to 10. Retention time 
correction was done with default parameters. The resulting table included the detected ion 
features and their peak areas. The peaks were filtered on the basis of QC samples: the peak 
was retained in the analysis if it was present in all the QC samples and relative standard 
deviation of the area in QC samples was less than 20%. The final table contained 965 ion 
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features, which areas were normalized on total areas of the samples and subsequently by 
PQN(42) with an average of QC samples taken as a reference. 

The consistency of the data and the absence of column-bias were checked using 
Principal Component Analysis (Supplementary Materials, Figure S2). 

Statistical data analysis. Principal Component Analysis was performed on 
logarithmically transformed, mean-centered and unit variance scaled data using the 
NIPALS algorithm.(44) 

Person recognition. The person recognition approach used in the current paper was 
based on the previously published classification method.(22) Among the classification 
methods used by Assfalg et al. the combination of Principal Component Analysis (PCA) for 
data reduction and canonical discriminant analysis (CA) was chosen as the most effective 
one. The accuracy of classification was assessed using test-set validation: in each round of 
validation one randomly selected sample per donor was taken out into the test-set, and a 
model was built based on the remaining samples. The test-set samples were projected into 
the PCA–CA subspace and classified according to the minimum distance to the mean of the 
discriminated groups. The resulting class labels were compared to the real ones and the 
number of correct classifications was evaluated. The validation was performed in 1000 
rounds and the results averaged throughout all the rounds (Supplementary Materials, 
Figure S3a). 

Recognition accuracies were also assessed in 100 rounds of Subject ID permutations and 
compared with the actual accuracies, statistical significance of the difference was assessed 
using the Mann–Whitney test. 

Multilevel Components Analysis (MCA). MCA is an effective method for separating the 
variation between- and within- individuals and analyzing them by different submodels. The 
method was implemented as described by Jansen et al.(21) PCA were performed on the 
data  matrix corresponding to the between-individual variation and on the within-
individual variation for each individual separately (Supplementary Materials, Figure S3b). 

All the data-preprocessing and statistical analysis were performed in a R statistical 
software environment (http://www.r-project.org/) using in-house developed scripts and 
open-source packages. 

 

RESULTS 
A set of longitudinal urine samples from healthy individuals was analyzed by 1H NMR 

and rpUPLC-MS and subsequently by various statistical methods in order to compare the 
information that can be retrieved from the data by different analytical and statistical 
approaches. PCA was performed on 1H NMR and LC-MS data. The scores plot of the first 
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two principal components for each of the techniques revealed some clustering by 
individuals; however no separation between the genders was observed (Fig. 1a and c). 
Difference between the genders was visible on the scores plot of the third and fourth 
principal components in the case of the 1H NMR data (Figure 1b), and of the second and 
third principal components in the case of the LC-MS data (Figure 1d). At a first glance, 
there appeared to be a similarity between the score plots of the first two principal 
components on 1H NMR and LC-MS data, for example, subject 7 is separated from the rest 
of the people. A way to give a numerical value to this similarity is the use of the RV-
coefficient, which is a multivariate extension of correlation coefficient. This has already 
been used before for estimation of the overlap of metabolomics data matrices, but in that 
case both matrices were derived from MS-based experiments.(26) For all the 8 principal 
components of the PCA the RV-coefficient was found to be not that high, not exceeding 
0.46. The RV-coefficient does not increase anymore after the fourth component, which 
explains 44 and 53% of the variation in the 1H NMR and LC-MS data respectively (Table 1). 
Hence, the relative positions of data points in the PCA subspace are different for 1H NMR 
and LC-MS, with little overlap. 

It was evident from the PCA analysis that there are different sources of variation present 
in the data, which this method is not capable of separating. One of the ways to dissect 
variations present at different levels in the data (e.g. between and within individuals) is to 
use multilevel analysis which has been successfully applied for a number of applications in 
social sciences, geography, public health (27) and recently also in metabolomics.(20,21) 
This method was applied to the data so that the variation at two levels—between individuals 
and within each of the individuals—was explored. It allows identification of spectral regions 
or peaks variable between individuals and peaks/regions variable between the time points 
for each individual. In Figure 2 the loading plots for the between and within-individual 
models are shown on the example of the 1H NMR data, demonstrating those variable areas. 
The RV-coefficient, calculated for the results of multilevel analysis (on the between-
individual score matrices), is higher than that for the PCA analysis, but is very stable even 
with the growth of the explained variance, again indicating that the two analytical 
techniques explain different relations between the samples (Table 2). 
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Figure 1. Scores plots of the PCA analysis of 1H NMR and LC-MS data from urine 
samples of 8 individuals sampled at six different time points. Samples are labeled by 
individuals’ IDs. Triangles represent urine samples of females, dots of males. (a) First 
two principal components of the PCA on NMR data cover 16.1 and 9.6% of variation 
respectively. (b) Third and fourth principal components of the PCA on NMR data cover 
7.3% and 6.6% of variation, respectively. (c) First two principal components of the PCA 
on LC-MS data cover 21.1 and 12.3% of variation, respectively. (d) Second and third 
principal components of the PCA on LC-MS data, the third component covers 7.5% of 
variation. 
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Table 1. Summary of principal component analysis performed on NMR and LC-MS data 
and multivariate correlation (RV-coefficient), calculated on the resulting score matrices. 

 Explained variation, %  

PC No. NMR LC-MS RV 

1 16.1 21.2 0.2 

2 25.7 33.5 0.24 

3 33 41 0.28 

4 39.6 47.9 0.4 

5 44.3 53 0.41 

6 48.3 57.7 0.42 

7 52.1 61.9 0.44 

8 55.6 65.9 0.46 
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Figure 2. Loadings plot of the multilevel component analysis of 1H NMR data of urine 
samples from 8 individuals sampled at six different time points: (a) loadings of the first 
component of the between-individual model, (b) loadings of the first component of the 
within-individual model for each person, colored by gender (grey—male, black—
female) and labeled by individuals’ IDs. 
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Depending on the research question, one might not be interested in the most variable 
regions for each individual, but in the most constant ones, person-specific features. Those 
unique patterns can be used to recognize each person from the rest. The existence of such 
fingerprints in 1H NMR data and a method to assess them were demonstrated previously 
(22) using an innovative combination of classical statistical methods—PCA and canonical 
discriminant analysis with thorough validation. We performed person recognition on the 
1H NMR data evaluating the accuracy with which each of the people is predicted. The 
recognition accuracy ranged from 59.5 to 99.5% which matches the estimated probability of 
correct classification for the same number of samples in the model described in the 
previous work.(22) The mean recognition was 84%, which is quite high taking into account 
that in each validation step the model is built only on 5 spectra. The accuracy of recognition 
was also calculated on the set with permuted person labels and it appeared to be 
significantly lower (mean accuracy 13%, p-value < 0.001) than the real recognition results 
(Supplementary Materials, Figure S4a). 

One of the advantages of the person recognition method is that it is possible to perform 
back-projection of scores in the canonical subspace into the PCA scores subspace and then 
into the original variables. As a result of this procedure individual metabolic phenotypes are 
obtained (Figure 3a). These metabolic phenotypes represent the characteristic spectral 
regions for each person and are, unlike the original profiles, easily clustered by e.g. 
hierarchical clustering per person (Supplementary Materials, Figure S5). 
 
Table 2. Summary of multilevel component analysis (between individuals) performed 
on NMR and LC-MS data and multivariate correlation (RV-coefficient), calculated on 
the resulting score matrices. 

 Explained variation, %  

PC No. NMR LC-MS RV 

1 39.4 49.8 0.64 

2 70 78.1 0.6 

3 87.8 88.1 0.6 

4 93.8 94.6 0.62 

5 96.9 97.3 0.63 

6 99 99.2 0.65 
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Figure 3. Individual metabolic phenotypes found within urine samples of 8 individuals 
sampled at six different time points. (a) Based on the 1H NMR spectra. (b) Based on LC-
MS data; one of the differential peaks (m/z of 558.3498) was used to construct the 
corresponding extracted ion chromatograms (inlet). Colored and labeled by individuals’ 
IDs. 
 

To illustrate the results and differences of person recognition and multilevel analysis 
methods we here show an example for one of the participants, using the 1H NMR spectra 
and its analysis. In Figure 4 the original binned 1H NMR spectra are shown together with 
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the individual metabolic profile of the person and his within- and between-individual 
loadings. As can be seen from the picture, there are peaks that contribute differently to the 
different types of analyses. For instance, the peak at 3.97 ppm appears in all of the six urine 
spectra, but its intensity is variable, so it contributes to both the individual metabolic profile 
and within-individual loadings. This peak is found to be also characteristic for separation 
between individuals, contributing to the between-individual loadings. Another peak at 3.81 
ppm appears only in one of the six spectra, and thus it contributes to the within-individual 
loadings, indicating its variability through the time course of the study, however, it is not 
characteristic of the person (does not appear in the individual metabolic profile), neither is 
responsible for the separation between the subjects. Another example is the peak at 3.57 
ppm which is present in all the samples and has quite a consistent intensity; it does not 
contribute to the within individual loadings, but is characteristic for the individual and 
drives the separation between the individuals. 

3.9 3.8 3.7 3.6 3.5
ppm

Binned NMR spectra
Individual metabolic phenotype
Within-individual loadings
Between-individual loadings

4.0

 
Figure 4.  Comparison of the statistical analyses of the urinary 1H NMR data from one 
individual. Grey lines show original (binned) 1H NMR spectra. Blue line indicates the 
mean individual metabolic profile, red is within-individual loadings of the first 
component, green—between-individual loadings of the first component. 
 

The individual metabolic profiles were found to exist not only in 1H NMR spectra, but 
also in UPLC-MS data. Moreover, the accuracies of the person recognition performed on 
LC-MS data were found to be significantly higher than those derived from 1H NMR data: 
the range of accuracies was between 92 and 100% and the mean recognition was 98.3% 
(Supplementary Materials, Figure S4b). Recognition accuracies in the randomized 
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experiment were significantly lower (mean 12.6%, p-value < 0.001) than the real values. In 
the same way as for 1H NMR, the LC-MS peaks specific for an individual can be found by 
back-projection (Figure 3b) and traced back in the original data. Indeed they show a 
differential profile across individuals. The recognition accuracies based on 1H NMR and 
LC-MS are not correlated across the subjects (correlation coefficient is -0.012): the 
individuals that are relatively badly recognized on the basis of 1H NMR may be well-
recognized on the basis of LC-MS and vice versa. 

Thus, in the current study a small longitudinal cohort of urine samples from healthy 
individuals was analyzed, and even with this limited sample set it was evident that various 
sources of variation are confounded. There are statistical methods available to extract this 
variation separately and examine the data from a different perspective. Those methods 
(multilevel component analysis and person recognition) can be applied to both 1H NMR 
and LC-MS data. The use of multiple analytical platforms also widens the information 
extracted from a study. 

 

DISCUSSION 
The importance of a personalized approach in health-related research is being widely 

accepted by the scientific community, (28) and metabolic profiling is recognized as a 
valuable tool for personalized medicine.(29) However in the majority of metabolomics 
studies a traditional ‘‘case–control’’ design is applied, although it is well-known that the 
definition of these groups, and especially the group of healthy individuals, is very vague.(30) 
In contrast, the definition of the physical individuality is very clear and monitoring an 
individual reaction to perturbations and its development in time is a promising approach 
for medicine and pharmacology. 

In metabolomics the advantages of the longitudinal study design that implies multiple 
sampling per individual have clearly been demonstrated for interventional studies where 
the dynamic response of the organism to the drug or other substance can be 
monitored.(31;32) It has also been demonstrated that ‘‘classical’’ data analysis methods used 
n metabolomics, such as PCA and PLS-DA, are suboptimal(20) for such dynamic data and 
other methods, separating levels of variation, should be used. The longitudinal design offers 
possibilities for differential analysis; depending on the question of interest one may focus 
on differences between the subjects, on variations within each subject or identification of 
unique profiles for each subjects. 

To illustrate some of the possibilities for the analysis of longitudinal metabolomics data 
we applied a series of statistical methods to the 1H NMR and LC-MS data of urines of 8 
individuals, 4 females and 4 males, each contributing 6 urine samples for the study. As no 
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special diet or life style restrictions were applied, it was obvious that the data would contain 
a lot of variation due to day-to-day differences, between-subjects diversity and certain 
grouping of the samples due to, for example, gender, age etc. This, indeed, was confirmed 
by PCA, which summarizes the variation present in the data. The clustering according to 
person was evident; however day-to-day variation for most of the people was much higher 
than the differences between individuals. Gender distinction was also present, but not in the 
first two components of PCA, suggesting that the between-gender difference is overruled by 
all the other sources of variation. 

In the PCA analysis LC-MS data showed more variation covered in the first principal 
components, than the 1H NMR data (Table 1). There was some similarity visible for the 
position of the data points along the first principal components in the two datasets; however 
RV-coefficients calculated on the principal component subspaces for the two techniques 
were rather low (Table 1). This suggests that the two analytical methods reveal different 
biological phenomena reflected in the metabolic composition of the same biological 
samples. 

PCA modeling has shown that the metabolic data with underlying design contain 
information from different sources—from the variation between the subjects, as well as the 
variation between the samples for each person. There is a class of multilevel statistical 
models which can separate the data into levels and as such are perfectly applicable to our 
data. In the case of MCA, applied in the current study, the overall variation present in the 
study was divided into between-individual and within-individual and separate analysis was 
performed on each block. This method reveals spectral regions differential between the 
people, as well as regions which are variable for each of the people through the time course 
of the analysis. 

Another method used, namely, person recognition, focuses on different parts of the 
spectra, which are consistent for the individual and thus characteristic. Before, this method 
was successfully applied to 1H NMR spectra, revealing the existence of individual metabolic 
signatures, which were found to be extremely stable over time and could be largely 
explained by genetics.(22,33) We successfully applied the described method to our data and 
observed a recognition accuracy corresponding to the number of samples used. We also 
demonstrated on an example how the individual metabolic profiles give information 
complementary to that derived from multilevel analysis. 

As can be seen from the analysis, different levels of variation can be recovered from a set 
of spectra. The choice of an appropriate method for statistical analysis should be based on 
the question posed by the investigation. The right answers can only be derived from a 
carefully designed and analyzed study. Consequently, longitudinal design offers possibilities 
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for real personalized medicine such as exploration of the effects not averaged between 
people, elimination of day-to-day variation, focusing on intrinsic individual properties 
reflected in the metabolic composition of urine. 

The person recognition strategy, to the best of our knowledge, has so far not been 
applied to LC-MS data, which is one of the most commonly used analytical techniques in 
metabolomics experiments.(34) One study evaluating the amount of ‘‘personalized’’ 
information present in a set of LC-MS data has been conducted,(35) however this study 
only described the features, unique for an individual (i.e. appearing in one set of the 
spectra), but not the unique patterns of the features as in a person recognition approach. 
Thus our report appeared to be the first ever attempt to do the person recognition analysis 
on LC-MS data. Despite the fact that the LC-MS has somewhat lower analytical 
reproducibility than 1H NMR, (36) person recognition accuracy was substantially higher in 
the case of LC-MS (all individuals were recognized with accuracy more than 92%, 
compared to 59% in 1H NMR). There was absolutely no correlation between recognition of 
people in 1H NMR and in LC-MS again pointing at the fact that the two techniques most 
probably provide different information concerning the samples. 

Of course, the differences in the metabolome coverage between 1H NMR and LC-MS 
come as no surprise. 1H NMR is a universal approach capable of detecting all the 
compounds that contain hydrogens, whereas MS-based methods are more targeted due to 
the selectivity of the separation and ionization techniques used.(36) On the other hand, 1H 
NMR has slightly lower sensitivity in comparison to MS. Thus, there is a certain ‘‘bias’’ in 
metabolomics experiments performed on a single analytical platform: the coverage of the 
metabolites is either limited by the sensitivity, or by the separation method. Thus, the 
observed ‘‘personalized’’ content of LC-MS data in comparison to 1H NMR might be a 
result of such analytical bias. This, however, has to be further explored; here we can make 
only a few assumptions about what is driving this difference. 

In general, 1H NMR-based metabolomics studies result in a systemic view on the studied 
phenomenon, due to the fact that a lot of the detected compounds are related to energy 
metabolism: TCA cycle intermediates, amino acids, etc. These molecules are highly 
abundant in biofluids, are also day-to-day variable depending on the diet and are also 
involved in many biochemical pathways. The latter means that they change in many states 
of the organism, which leads to the problem of ‘‘usual suspects’’(37) with many of the same 
metabolites discovered to be differential in a number of conditions.(38) 

In contrast to NMR, LC-MS is more specific due to the inherent selectivity of the 
separation method and high sensitivity of the detection. Reversed-phase UPLC-MS is highly 
suitable for separation of medium polar and non-polar compounds.(39) Most of the 
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molecules related to energy metabolism, amino and other organic acids will not be retained. 
Thus, the part of the metabolome, covered by rpUPLC-MS, might be less affected by diet 
and gut microflora and might provide a closer approximation of the phenotype. 

This phenomenon certainly would need more extensive investigation and might be an 
extremely important issue in the decision how to conduct a study using a certain analytical 
platform, depending on the study design and the question of interest. 

In total, the amount of biologically relevant information that can be derived from 
metabolomics experiments is enormous. However, the quality of this information depends 
on a clear definition of the goals and the study design as well as on the selection of the 
analytical platform and the subsequent statistical analysis. All of these factors are extremely 
important for obtaining successful results and generating a relevant hypothesis. 
Consequently, performing costly, labor-intensive metabolomics experiments with the sole 
aim to distinguish ‘‘diseased from healthy’’ might be seen as a suboptimal use of manpower, 
instrumental resources and, the most importantly patient material. The power of a 
longitudinal design and the flexibility of various statistical methods to analyze such a design 
may open new possibilities. Individual metabolic signatures, that represent dynamic, time-
correlated changes of phenotype, may actually be used as a phenotype-readout essential for 
practical personalized medicine. 

 

CONCLUSIONS 
In the metabolomics-related literature somewhat controversial ideas are present: on the 

one hand that metabolites can provide unique diagnostic information, and on the other 
hand that their concentrations are very sensitive to non-systemic external factors and vary 
even from day to day for one individual. However, it has been demonstrated that highly 
individual metabolic signatures exist in for instance urine, on top of which the other 
variation is superimposed. The available methods for the analysis of time-resolved data can 
focus either on variation between people or within the time course for an individual. In the 
current paper we have demonstrated the use and complementarity of the extracted 
information of some of these statistical methods on a set of data from healthy individuals. 

We have also shown that the detection of individual metabolic profiles is not solely the 
property of 1H NMR, but is also possible based on UPLC-MS data, interestingly—even with 
a higher accuracy. Based on this limited data set, it would appear that the parallel analysis of 
1H NMR and LC-MS indicates that the two techniques explain different phenomena in the 
data. The higher accuracy of person recognition in LC-MS further suggests that the method 
might be more sensitive to unique, individual-specific features, while 1H NMR might reflect 
a more systemic response. 
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SUPPLEMENTARY MATERIALS 
 
Table S1. The mix of pesticides used as the analytical standard. 

Name Molecular formula m/z [M+H] Retention time, min 
Pymetrozine C10H11N5O 218.1036 4.7 
Formetanate C11H15N3O2 222.1237 4.88 

Fenuron C9H12N2O 165.1022 4.89 
Carbendazim C9H9N3O2 192.0768 6.4 

2-Hydroxyatrazine C8H15N5O 198.1349 6.99 
Atrazine-Desisopropyl C5H8ClN5 174.0541 7.21 

Metamitron C10H10N4O 203.0927 7.71 
Acetamiprid C10H11ClN4 223.0745 7.86 
Chloridazone C10H8ClN3O 222.0429 7.88 

Crimidine C7H10ClN3 172.0636 7.89 
Pirimicarb C11H18N4O2 239.1503 8.13 

Atrazine-Desethyl C6H10ClN5 188.0697 8.16 
Atraton C9H17N5O 212.1506 8.29 

Metoxuron C10H13ClN2O2 229.0738 8.54 
2-4-Dimethylphenylformamide C9H11NO 150.0913 8.75 

Metolcarb C9H11NO2 166.0863 8.75 
Nicosulfuron C15H18N6O6S 411.1081 8.96 
Carbofuran C12H15NO3 222.1125 9.08 
Carboxin C12H13NO2S 236.074 9.26 

Fenpropidin C19H31N 274.2529 9.32 
Fosthiazate C9H18NO3PS2 284.0538 9.45 
Cyprazin C9H14ClN5 228.101 9.69 

DEET (diethyltoluamide) C12H17NO 192.1383 9.71 
Diuron C9H10Cl2N2O 233.0243 9.76 

Cycluron C11H22N2O 199.1805 9.82 
Phenmedipham C16H16N2O4 301.1183 9.87 

Azoxystrobin C22H17N3O5 404.1241 10.01 
Isoxaben C18H24N2O4 333.1809 10.23 

Methoxyfenozide C22H28N2O3 369.2173 10.27 
Chromafenozide C24H30N2O3 395.2329 10.42 

Metolachlor C15H22ClNO2 284.1412 10.65 
Fenothiocarb C13H19NO2S 254.1209 10.78 
Pencycuron C19H21ClN2O 329.1415 11.05 
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Figure S1. Sample 1H NMR spectrum of urine (a) and LC-MS base peak chromatrogram 
from the same urine sample (b). 
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Figure S2. Scores plot of the PCA performed on the entire dataset including QC 
samples. (A) marked by QCs (●) and individual urine samples (□); QC samples form a 
tight cluster, indicating the analytical reproducibility of the method. (B) Marked by 
column; no separation by column is visible. 
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Figure S3. Schematic representation of the two statistical methods used: (a) person 
recognition, (b) multilevel component analysis. 
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Figure S4. Person recognition based on 1H NMR and LC-MS data of urine samples from 
8 individuals. (a) Boxplot of the recognition accuracy based on 1H NMR spectra for 
actual (left) and permuted (right) person labels. (b) Boxplot of the recognition accuracy 
based on LC-MS data for actual (left) and permuted (right) person labels. 
 

 
Figure S5. Heatmap and hierarchical clustering of the initial binned 1H NMR table (a) 
and after back-projection (b). Samples are labeled by their ID and gender. 
     
 



 

 

 


