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ABSTRACT 
Urinary Tract Infection (UTI) encompasses a variety of clinical syndromes that can 

range from mild to life-threatening conditions. As such, it represents an interesting model 
for the development of an analytically based scoring system of disease severity and/or host 
response. Here we test the feasibility of this concept using 1H NMR based metabolomics as 
the analytical platform. Using an exhaustively clinically characterized cohort and taking 
advantage of the multi-level study design, which opens possibilities for case-control and 
longitudinal modeling, we were able to identify molecular discriminators that characterize 
UTI patients. Moreover, we show that using such a design allows not only a better 
validation of the statistical models, but also helps dissecting various biological processes 
and, most importantly, significantly improves biological interpretation of the obtained 
results. 
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INTRODUCTION 
Despite the progress made in understanding the mechanistic basis of many diseases in 

the last century, medicine is still essentially “more an art than a science”.(1) Specific and 
sensitive biological markers are important contributors to the improved diagnostic methods 
as well as to patient care and drug discovery. Advanced “-omics” technologies, such as 
genomics, proteomics and metabolomics, enable identification of such markers. Of our 
particular interest is metabolomics that focuses on the analysis of metabolites present in 
biological fluids. Metabolites are end-points of all the biochemical processes of the 
organism and thus their collection – the metabolome is the closest approximation of the 
physiological phenotype and as such has a great potential for uncovering the biology 
underlying diseases and providing valuable markers of pathology.(2;3) 

The biological interpretation of results from metabolomics studies is rather complex 
and still in an early phase of development(4). The human body is a “super-organism” that 
unites its own network of interconnected tissues and organs with multiple colonies of 
microorganisms.(5) Interpretation of changes in concentration of metabolites found in 
biological fluids can readily be performed based on the underlying metabolic pathway; 
however, it is not always possible to link the observed change in systemic metabolite 
concentrations to a specific tissue or organ.(6) Especially in the case of disruption of highly 
abundant metabolites, e.g. from energy or amino acid metabolism, additional information 
would be required in order to interpret the data in respect to the tissue of origin. In 
addition, a change of such metabolites does not always improve the knowledge about the 
underlying cellular mechanisms and biology. A way to facilitate the interpretation of 
clinical metabolomics data is to integrate a plethora of available clinical parameters and to 
utilize a multilevel study design that should provide the opportunity to access the various 
levels of biological processes. 

One of the examples of a complex and heterogeneous clinical entity, for which current 
diagnostic methods are not straightforward, is Urinary Tract Infection (UTI)(7). Clinical 
manifestations of UTI can cover the range from mild cystitis to advanced pyelonephritis 
potentially leading to urosepsis and multiple-organ failure. Physical symptoms may vary 
from patient to patient and be similar to a number of other diseases, mainly of infectious 
origin.  Thus, the presence of bacteria and leucocytes in urine can not be considered as a 
sole common denominator for UTI and even if it was, the criterion for the colony count is 
variable and anyway considered insensitive(8). The correct and timely diagnosis relies on 
effective joint work of clinicians and microbiologists(8). All of this explains the considerable 
interest in providing new, specific and sensitive markers for UTI and for the uropathogen 
involved. The focus of the available metabolomics studies on UTI in the literature has so far 
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been on the identification of pathogens: in the work of Gupta et al. a beautiful method with 
the use of 1H NMR was proposed.(9-11) However, regrettably the method is not 
quantitative nor does it provide any information about the localization of the infection 
within the urinary tract, morbidity and preferred strategy of treatment. 

In the current study we investigated possibilities of using urinary metabolic profiles to 
monitor the health state of UTI patients, the degree of infection and the recovery process of 
UTI patients in the context of febrile, complicated UTI. We used a selection of samples 
from an exhaustively characterized cohort, with multiple urine samples available per 
individual and with the main pathogen identified as Escherichia coli, which is the most 
common pathogen for UTI. Samples from a group of age- and gender- matched UTI 
symptom-free subjects were included as control. The longitudinal design allowed studying 
various biological processes: not only the difference between the patients and controls, but 
also the recovery process, using each patient as its own control. 

 

MATERIALS AND METHODS 
Samples. The study protocol was approved by the ethical committee of the Leiden 

University Medical Center and all included patients gave written informed consent. 
Urine samples were collected at the Emergency Department and Primary Care 

Department. The sampling was carried out at several time points: the first urine samples 
were collected at the day of enrolment as baseline samples (t=0). Clean midstream-catch 
urine cultures were obtained and were analyzed using local standard microbiological 
methods. Three-four (t=4) and thirty days (t=30) after the day of enrolment, urine samples 
of the same patients were collected and new bacterial culture tests were performed 
(Supplementary Materials, Figure S1).  

For the current study, from a database of about 700 subjects enrolled, 40 subjects, for 
which urine culture confirmed E.coli-positive complicated febrile urinary tract infection 
that recovered after antibiotic treatment, were selected. Samples from age- and gender- 
matched subjects with low bacterial culture in urine and without evidence of inflammatory 
diseases were used as controls (Table 1). A number of samples were missing, a few removed 
from the analysis due to either insufficient spectra quality or high glucose content 
(Supplementary Materials, Figure S1). In the end the study included four classes of samples 
originating from UTI symptom-free (N = 35) at day 0 (baseline control), UTI patients (N = 
32) at day 0 (baseline), UTI  patients (N= 29) at day 4 and UTI patients after recovery from 
infection (N = 37) at day 30 (Supplementary Materials, Figure S1). 
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Table 1. Characteristics of the studied patients and controls groups at baseline (t=0). 
UTI patients Controls 

Characteristics n = 40 n = 40 p 

     
Age, years,  median (sd)  59 (14.6) 58 (17.9) 0.9 
     
Female, n (%)  22 (55) 22 (55) 1 
     
Smoking, n (%)  5 (12) 5 (12) 1 
     
Co-morbidity, n (%)     
 Urinary tract disorder 4 (10) 4 (10) 1 
 Malignancy 4 (10) 1 (3) 0.17 
 Heart failure 5 (13) 3 (8) 0.46 
 Renal insufficiency 1 (4) 0 (0) 0.13 
 Diabetes mellitus 6 (15) 2 (5) 0.14 
 Immunocompromised 1 (3) 1 (3) 1 
     
Urine dipstick results     
 Nitrate 26/37 (75)* 0/37 (0)* < 0.001 
 Leucocyte esterase 35/37 (95)* 5/37 (14)* < 0.001 

* 3 missing values 

 
Sample preparation. Samples were thawed, transferred into 96 deep-well plates and 

centrifuged at 3000g for 15 minutes at 4°C to remove any precipitate. For sample 
preparation 520 μL urine were mixed with 60 μL of pH 7.0 phosphate buffer (1.5 M) in 
100% D2O containing 4 mM sodium 3-trimethylsilyl-tetradeuteriopropionate (TSP) and 
2mM NaN3 in a 96 deep-well plate using a Gilson 215 liquid handler controlled by a Bruker 
Sample Track LIMS system (Bruker BioSpin, Karlsruhe, Germany). 

NMR experiments and processing. 1H NMR data were collected using a Bruker 600 
MHz AVANCE II spectrometer equipped with a 5 mm TCI cryogenic probehead and a z-
gradient system; a Bruker BEST (Bruker Efficient Sample Transfer) system was used in 
combination with a 120 μL CryoFIT™  flow insert for sample transfer. One-dimensional 
(1D) 1H NMR spectra were recorded at 300 K using the first increment of a NOESY pulse 
sequence(12) with presaturation (γB1=50 Hz) during a relaxation delay of 4 s and a mixing 
time of 10 ms for efficient water suppression(13). Eight scans of 65,536 points covering 
12,335 Hz were recorded and zero filled to 65,536 complex points prior to Fourier 
transformation, an exponential window function was applied with a line-broadening factor 
of 1.0 Hz. The spectra were manually phase and baseline corrected and automatically 
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referenced to the internal standard (TSP = 0.0 ppm). Phase offset artifacts of the residual 
water resonance were manually corrected using a polynomial of degree 5 least square fit 
filtering of the free induction decay (FID) (14). In order to monitor proper filling of the 
NMR flow cell and for quality control 1D gradient profiles (15) along the z-axis were 
recorded for each sample prior and post data acquisition. Duration of 90 degree pulses were 
automatically calibrated for each individual sample using a homonuclear-gated nutation 
experiment(16) on the locked and shimmed samples after automatic tuning and matching 
of the probe head. 

Statistical analysis. Each spectrum was integrated (binned) using 0.014 ppm integral 
regions between 10 and 1 ppm, the residual water and urea region between 6 and 4.5 ppm 
was excluded, resulting in 550 data points used for the analysis. To account for any 
difference in concentration between the samples, each spectrum was normalized to a total 
area of 1. Absolute values were log-transforsmed. All pre-processing was done using in-
house developed routines in R statistical environment (http://www.r-project.org/). 
Variables were centered and unit variance scaled prior to statistical analysis in SIMCA-P+ 
(version 12.0; Umetrics, Sweden) software package. For initial analysis and outlier 
detection, principal component analysis (PCA) was performed using 10 components. After 
the initial PCA analysis the following regions corresponding to paracetamol and its 
metabolites were excluded from the analysis: 7.5 – 6.75, 3.95 – 3.8, 3.7 – 3.45, 2.2 – 2.14 and 
1.84-1.88 ppm according to (17). For partial least squares-discriminant analysis (PLS-DA) 
(18) samples were categorized based on classes as defined by the study design. PLS model 
was built using 5 categories according to logarithm of bacterial count as a Y variable. 
Statistical models from supervised multivariate data analysis were validated by random 
permutation of the response variable and comparison of the goodness of fit (R2Y and Q2) 
(19;20). For random permutation tests 100 models were calculated and the goodness of fit 
was compared with the original model in a validation plot. Spectral regions responsible for 
the separation between classes in supervised models were identified based on the Variable 
Influence on Projection (VIP) values, which correspond to the importance of the variables 
(bins) for the model. The variables with a VIP value larger than 1.8 were considered 
significant and used for further analysis and identification of the responsible peak(s) within 
the spectrum. Prediction of class membership of samples by PLS-DA model was based on 
the predicted Y variable with the cut-off of 0.5. 

For multilevel components analysis (MCA) using an in-house developed script in R as 
described by Jansen et al.(21) data were not log-transformed. 

Univariate tests were performed to assess the statistical significance of the spectroscopic 
regions found using multivariate analysis: unpaired t-test was performed for the regions 
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found as discriminating between UTI patients and controls by PLS-DA; ANOVA was 
performed on the regions that showed association with bacterial count in PLS; paired t-test 
was carried out on the regions identified in multilevel analysis. All the corresponding p-
values were adjusted for multiple testing using Benjamini-Hochberg correction. 

Identification of compounds of interest. Annotation of identified peaks was 
performed based on reference spectra from the Bruker Bioref database and in-house 
reference data. Confident identification was facilitated by the use of Statistical Total 
Correlation SpectroscopY  method (STOCSY)(22).  

Quantification of paracetamol. Quantification was performed by deconvolution and 
subsequent integration of paracetamol-glucuronide resonance at 5.10 ppm (d, 7.1 Hz) using 
an in-house developed automation routine. The absolute concentrations were calculated 
based on internal reference TSP. Values were not corrected for differential attenuation of 
the signals caused by relaxation during the mixing time and rapid-pulsing saturation effects. 

 

RESULTS 
The initial PCA on baseline samples revealed a trend in separation between UTI patients 

and controls in the scores plot of the first two principal components as shown in Figure 1A. 
The loadings plot of this model was dominated by the spectral regions that belonged to one 
of the most commonly used over-the-counter analgesic, paracetamol (Supplementary 
Materials, Figure S2). The absolute concentration of paracetamol-glucuronide was used to 
stratify samples in the PCA plot: the direction of increase of paracetamol-glucuronide was 
found to match the direction of controls-patients separation (Figure 1B). As paracetamol is 
not an infection or morbidity marker, the further analysis was performed after the exclusion 
of the regions corresponding to the drug and its metabolites. 
 The PCA analysis of the baseline samples after the removal of spectral regions of 
paracetamol and its metabolites did not show separation between UTI patients and controls 
within the scores plot of the first two principal components; however, a clear trend was 
identified along the third principal component (Figure 2), which means that inter-
individual variability is to a certain extent more prominent than the disease effect. No 
outliers were detected based on distance to the model (DModX). 
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Figure 1. PCA scores plot of 1H NMR data from controls and UTI patients urine samples 
at baseline, first two principal components covering 14.5 and 10.2% of variation 
respectively. (A) Colored according to controls (□) and UTI patients (●). (B) Colored 
according to the logarithm of absolute concentration of paracetamol-glucuronide. 
 

 
Figure 2. PCA scores plots of 1H NMR data from controls (black) and UTI patients (red) 
urine samples at baseline after removal of the regions corresponding to paracetamol and 
its metabolites. First principal component covers 11.7%, second 11.2% and third 9.8% of 
variation. 
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In the next step a supervised PLS-DA model was built for t=0 using UTI/controls as a 
response variable.  In the scores plot of the resulting model the two groups were well 
separated (Figure 3). Cumulative explained variance (R2Y) of 0.88 and cross validated 
predictive fraction (Q2) of 0.63 were calculated for the model; the model validation plot 
showed intercepts of the R2Y and Q2 regression lines with the vertical axis at  0.63 and -
0.11, respectively, indicating a valid model. Molecular discriminators were identified based 
on relevant regions as identified by the corresponding VIP. A list of those regions, along 
with the p-values based on t-test (corrected for multiple testing), the direction of change 
and identities of the corresponding metabolites are summarized in Table 2. 
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Figure 3. Cross-validated PLS-DA scores plot of urine 1H NMR spectra of controls (□) 
and UTI patients at baseline (●), R2Y = 0.88, Q2 = 0.63. 

 
The advantage of PLS-based models is that they can easily be used to predict the class 

membership of new samples. Data of the UTI patients at t=4 were predicted using the two-
class PLS-DA model that was built as described above. Of a total of 29 urine samples 
included in the prediction set, 19 (65.5%) were classified as controls, whereas 10 (34.5%) 
samples were classified as UTI (Figure 4). Besides using data from the 4-days time point as 
prediction set, we also performed a separate analysis for the 30-days time point (Figure 4). 
In this case, out of 37 samples collected, 32 (86.5%) were attributed to the group of controls 
and 5 (13.5%) were categorized as UTI. 
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Table 2. Spectroscopic regions that appear as influential in various statistical models 
and statistical significance of the corresponding univariate tests adjusted for multiple 
testing using Benjamini-Hochberg method. 

  
Controls vs. 

UTI patientsa  
Bacteria 

concentrationb  
Recovery from 

t=0 to t=30c 

ppm region Identity 
t-test 

p-value change  
ANOVA 
p-value change  

paired 
t-test  

p-value change 
9.291 - 9.277 1-methylnicotinamide <0.0001 -  <0.001 -    
9.277 - 9.264 1-methylnicotinamide <0.01 -       
8.977 - 8.964 1-methylnicotinamide <0.01 -       
4.491 - 4.477 1-methylnicotinamide <0.01 -  <0.01 -    
1.941 - 1.927 Acetic acid <0.01 +  <0.01 +    
1.927 - 1.914 Acetic acid <0.0001 +  <0.0001 +    
3.196 - 3.182 Acetylcarnitine <0.01 +       
2.568 - 2.555 Citric acid <0.01 -       
2.541 - 2.527 Citric acid <0.01 -       
4.082 - 4.068 Creatinine 0.03 -       
3.073 - 3.059 Creatinine <0.01 -  0.07 -    
3.059 - 3.045 Creatinine 0.09 -       
7.709 - 7.696 Furoylglycine       <0.01 + 
7.696 - 7.682 Furoylglycine <0.01 -  <0.01 -    
3.959 - 3.946 Glycolic acid derivative <0.001 -  <0.01 -  <0.0001 + 
7.859 -7.846 Hippuric acid <0.01 -  <0.01 -    
7.668 - 7.655 Hippuric acid <0.001 -  <0.01 -    
7.655 - 7.641 Hippuric acid 0.01 -  0.02 -    
7.586 - 7.573 Hippuric acid <0.01 -  0.05 -    
3.973 - 3.959 Hippuric acid 0.01 -  0.03 -    
8.555 - 8.541 Hippuric acid (amide) <0.01 -       
8.541 - 8.527 Hippuric acid (amide) <0.001 -  <0.01 -    
1.341 - 1.327 Lactic acid <0.01 +  <0.01 +    
7.764 - 7.75 Para-aminohippuric       <0.001 + 

3.332 - 3.318 Scyllo-inositol       <0.01 + 
3.455 - 3.441 Taurine <0.0001 +  <0.001 +  <0.0001 - 
3.441 - 3.427 Taurine <0.0001 +  <0.001 +  <0.0001 - 
3.427 - 3.414 Taurine <0.0001 +  <0.01 +    
3.264 - 3.250 Taurine <0.001 +       
8.855 - 8.541 Trigonelline       0.01 + 
4.45 - 4.436 Trigonelline       <0.01 + 
2.896 -2.881 Trimethylamine <0.0001 +  <0.0001 +    
8.486 - 8.473 Unknown       <0.01 + 
7.968 - 7.955 Unknown       <0.001 + 
7.75 - 7.736 Unknown       <0.01 + 

7.518 - 7.505 Unknown    <0.01 +    
6.686 - 6.673 Unknown       <0.0001 + 
6.509 - 6.496 Unknown       0.04 + 
3.168 - 3.155 Unknown    <0.01 -    

a two-group t-test for the healthy controls and UTI patients at baseline; positive direction of change   corresponds to 
intensity of the region being higher in UTI patients compared to controls, negative – region intensity is lower in UTI 
patients compared to controls 
b ANOVA analysis for the number of bacteria present in urine; direction corresponds to the correlation to the number of 
bacteria: positive corresponds to the raise of the region intensity with the increase of the number of bacteria, negative - to 
the decrease of the region intensity with the increase of the number of bacteria  
c paired t-test for the UTI patients at baseline and 30 days; positive direction of change corresponds to intensity of the 
region being higher at 30 days compared to baseline, negative – region intensity is lower at 30 days compared to baseline 
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An important parameter characterizing UTI patients is the number of bacteria in urine; 
however, bacteria can also be present in urine of the individuals, who do not exhibit any 
symptoms of UTI(25). We built a PLS regression model from NMR data of urine at baseline 
using the result of bacterial culture as response variable. Since bacterial count and UTI 
classification do not fully correlate we expected to obtain a slightly different model as 
compared to the model built based on UTI classification for this timepoint. Using 2 
components a cumulative R2Y = 0.78 and Q2 = 0.44 were obtained and model validation 
showed intercepts of the R2Y and Q2Y regression lines with the vertical axis at 0.63 and -
0.12, respectively, in the model validation plot. As can be seen from the PLS scores plot 
(Figure 5) the samples with the highest bacteria concentration in urine were very distinct 
from the rest forming a separate cluster, whereas the rest of the samples were overlapping. 
The spectral regions responsible for the correlation of the 1H NMR data and bacterial count 
were chosen on the basis of the corresponding VIP. A list of those regions, along with the p-
values derived from ANOVA (corrected for multiple testing), the direction of change and 
identities of the corresponding metabolites are summarized in Table 2. 

To better understand the process of patient recovery and to find the spectroscopic 
regions that correlate with this process, we took advantage of the longitudinal study design. 
One of the statistical methods suitable for such analysis is multilevel component analysis 
(MCA) that separates variation present in the data into two levels: between-individual and 
within-individual. We performed this analysis on the 29 patients for which both the data 
from the baseline and from the 30-days time point were available and concentrated on the 
within-individual information. This should best reflect the recovery from the baseline, 
when patients are diagnosed as infected, to 30 days, when they are considered UTI 
symptom-free. PCA scores plot of the first two principle components that cover 15.8 and 
14.8% of the variation, respectively, showed good separation between baseline and t=30 
time points (data not shown). The PLS-DA model of this data had high quality parameters 
(R2Y = 0.98, Q2 = 0.78 for four components), performs significantly better then random 
models (p<10-15) and perfectly separated the two time points (data not shown). The NMR 
spectral regions responsible for the separation between baseline and the t=30 time point 
were identified based on VIP values. The underlying metabolites as well as the p-values 
from paired t-test (corrected for multiple testing) and the direction of change are 
summarized in Table 2. 
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Figure 5. Scores plot of the PLS model of urine 1H NMR spectra at baseline vs. the 
number of bacteria (CFU/mL) found in urine (R2Y = 0.78, Q2 = 0.44). Colored by the 
number of bacteria. 
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DISCUSSION 
UTI represents a complex clinical entity, for which diagnostics is not straightforward 

and based on consensus criteria (7). In the current paper we identified metabolites that 
characterize UTI and its pathology with the use of 1H NMR. We demonstrate how the use 
of clinical data and multiple samples per individual can enrich the biological interpretation 
of the findings. To reduce the heterogeneity typically posed by UTI research, as a first 
attempt the smaller selection of UTI subjects from a bigger cohort was used, with similar 
diagnosis and with the major pathogen being E.coli. A set of matched controls was also 
available.      

Unlike in animal experiments, in clinical research assigning people to certain groups is 
not always unconditional. The diagnosis of a disease can be fuzzy and defining the “healthy” 
group is even more difficult, as there is hardly a definition of healthy. Thus, it may be very 
advantageous to supplement a traditional “case-control” design with a more complex study 
design and the use of additional clinical data. When used without extra information, “case-
control” analysis might even be misleading. For example, the separation of the control and 
UTI groups was seen in the first two principal components of PCA; however, this 
discrimination was not disease-related, but the result of patients taking the antipyretic and 
analgesic drug paracetamol. An analysis strategy for such type of data is to identify all of the 
spectroscopic regions that contain signals from drug-related compounds and to exclude 
them prior to further analysis. However, it is not feasible to account for the whole range of 
the medication used and, more importantly within the context of clinical metabolomics 
studies in general, to account for drug-related shifts in metabolism, especially in the case of 
long-term treatment regimes of chronic conditions. It is essential to consider such effects 
when developing the study design in order to minimize or control such influences.       

Samples from 4 days after admission, when the patients were still under therapy, but on 
the way to recovery, were used to check if the modeled differences were related to the effect 
of medication or not. The fact that the majority of those samples were classified as healthy 
by the model built on baseline samples is an indication that the model is not reflecting 
therapy/drug intake, but is indeed related to the clinical difference between the groups. 

The samples from the 30-days time point, when UTI patients were symptom-free, could 
also be used to gain additional information on the performance of the model as well as to 
get insight into the underlying biology. When predicted using the PLS-DA model built on 
the baseline UTI infected and UTI symptom-free samples, most of the 30-days samples 
(86.5%) were projected to the control group. Those few, which were still predicted as 
infected UTI patients, may have another condition (as we do not know at this point how 
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specific our model is) or have asymptomatic UTI. On the other hand, they can be healthy 
and be false positives, as the predictive ability of our model, estimated by cross-validation 
was 63%. Despite that, considering the prediction of 30-days samples as an independent 
statistical test for our model, it gives very satisfactory results.  

Pair-wise analysis for baseline and 30-days samples from the same individuals was 
conducted in order to monitor the recovery process. It revealed a number of classifiers and 
improved their statistical significance. The identified metabolites overlapped with the 
compounds from the model discriminating healthy and UTI subjects, however a few of 
them were unique (para-aminohippuric acid, scyllo-inositol and a few unidentified 
compounds). 

Besides the multilevel design, the advantage of the current study was the exhaustive 
clinical characterization of the patients. Among the variety of clinical parameters available, 
the number of bacteria in urine was of specific importance. We performed regression-based 
analysis of the relation between the 1H NMR data and the bacterial load in urine as 
determined by bacterial culture. The classifiers that emerged from this analysis were to a 
certain extent overlapping with the classifiers derived from the discriminative model on 
baseline samples. This was no surprise, since UTI is generally characterized by the presence 
of bacteria in urine. 

When comparing the lists of discriminators obtained from the different models 
(discriminating UTI patients from controls, modeling the recovery process and modeling 
the data against the degree of bacterial contamination of urine) it is evident that there is a 
large overlap which makes biological interpretation of the results feasible. For instance, 
some of the overlapping metabolites were already known from the literature to be related to 
the bacterial contamination of urine: acetate, lactate and trimethylamine (9). Others, if they 
were found only in the comparative analysis of the two groups, could be attributed based on 
previous studies to certain phenomena. Hippuric acid, for example, is often associated with 
the gut microflora (26) and taurine with  liver toxicity (27). However, our findings suggest 
that they are also associated with the bacterial contamination of urine, which obviously 
does not mean that they are not related to the mentioned physiological processes as well, 
but that a complex network of interconnected factors is involved. The metabolites that 
appear to be related to the recovery process might be considered as potential morbidity 
markers. One of them, para-aminohippuric acid, is a well-established diagnostic marker for 
renal plasma flow and glomerular filtration.(28) The recovery from the complicated, tissue-
invasive UTI is associated with the resumption of the kidneys’ function, so the positive 
change in para-aminohippuric acid corroborates our assumption that some of the markers 
discovered in the paired analysis are the markers of morbidity. 
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CONCLUSIONS 
In the current paper we used a metabolomics approach to profile Urinary Tract 

Infection, which is on the one hand one of the most common infectious diseases among the 
adults, and on the other hand a disease that still lacks markers of morbidity. Using 1H NMR 
profiles of urine we generated various statistical models: a) discriminating UTI patients and 
control subjects, b) following the recovery process of UTI patients and c) associating urine 
metabolic content with bacterial contamination. The discriminative model was able to 
classify most of the independent samples correctly according to their diagnosis, which 
indicates its high predictive ability. Comparing the sets of molecules derived from different 
analyses, we concluded that some of the compounds (e.g. trimethylamine and acetate) can 
be attributed to the effect of bacterial contamination of urine, others (e.g. para-
aminohippuric acid, scyllo-inositol) can be considered markers of morbidity. 
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SUPPLEMENTARY MATERIALS 

253 Consecutive adults with 
febrile UTI

September 2006 – December 2009

139 Patients with febrile
E. coli UTI  

Urine culture result other than E. coli
n (%)

Enterococcus faecalis 3 (1)
Klebsiella spp. 12 (5)
Proteus spp. 8 (3)
Pseudomonas aeruginosa 7 (3)
Staphylococcus saprophyticus 2 (1)
Enterobacter spp. 4 (2)
other 3 (1)
none or contaminated 69 (27)
no culture performed 6 (2) 

40 Cases with febrile UTI 
selected for analysis

40 Healthy controls 
selected for analysis

137 Healthy controls 

Random selection
Random selection 

matched by 
age and sex

t=0
Day of 

enrolment

t=4
4 days after 
enrolment

t=30
30 days after 
enrolment

N=40
UTI subjects

6 missing
2 excluded due to high 

glucose content

N=40
healthy controls

5 missing

N=40
UTI subjects

9 missing
2 excluded due to bad

spectra quality

N=40
UTI subjects
(recovered,

symptom-free)

3 missing

A

B

 
Figure S1. Design of the study. 
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Figure S2. Loadings plot of the PCA model created using urine spectra of samples at 
baseline. Dots indicate variables that correspond to the spectral regions of paracetamol 
and its metabolites, triangles represent all the other variables. 


