
Metabolomics of biofluids : from analytical tools to data
interpretation
Nevedomskaya, E.

Citation
Nevedomskaya, E. (2011, November 23). Metabolomics of biofluids : from
analytical tools to data interpretation. Retrieved from
https://hdl.handle.net/1887/18135
 
Version: Corrected Publisher’s Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/18135
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18135


 

 

 
 
 

Chapter 
 

Alignment of capillary electrophoresis–mass 
spectrometry datasets using accurate mass 

information 
 

Nevedomskaya E., Derks R., Deelder A.M.,  
Mayboroda O.A., Palmblad M. 

 
Analytical and Bioanalytical Chemistry 2009,  

395, 2527–2533 
 
 
 
 

 
 
 

 
 



 

48 

ABSTRACT 
Capillary electrophoresis–mass spectrometry (CE–MS) is a powerful technique for the 

analysis of small soluble compounds in biological fluids. A major drawback of CE is the 
poor migration time reproducibility, which makes it difficult to combine data from 
different experiments and correctly assign compounds. A number of alignment algorithms 
have been developed but not all of them can cope with large and irregular time shifts 
between CE–MS runs. Here we present a genetic algorithm designed for alignment of CE–
MS data using accurate mass information. The utility of the algorithm was demonstrated on 
real data, and the results were compared with one of the existing packages. The new 
algorithm showed a significant reduction of elution time variation in the aligned datasets. 
The importance of mass accuracy for the performance of the algorithm was also 
demonstrated by comparing alignments of datasets from a standard time-of-flight (TOF) 
instrument with those from the new ultrahigh resolution TOF maXis (Bruker Daltonics). 
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INTRODUCTION 
Capillary electrophoresis (CE) is an ideal technique for separation of small soluble polar 

compounds that are present in biological fluids.(1) There are also other advantages of CE 
for analysis of biological fluids, such as relatively short separation times with good 
resolution and low sample consumption.(2) CE is often criticized for its low loading 
capacity. However, pre-concentration techniques such as pH-mediated stacking (3) can 
overcome this drawback. If a mass spectrometer is used as a detector (CE–mass 
spectrometry (MS)), additional information on mass and isotopic distribution (4) is 
provided, which enables compounds and potential biomarkers to be identified. For 
comparison of multiple samples, elution or migration time precision is also very important. 
This is a serious concern for CE which, especially when bare-fused silica capillaries are used, 
lacks reproducibility of migration time.(5) Low reproducibility of migration time affects not 
only identification of compounds and their synchronization between samples but also 
statistical analysis. Misalignment introduces variation in the data that will noticeably affect 
results of multivariate statistics (6) and for studies involving numerous samples, as typically 
encountered in clinical research, manually assisted alignment of CE–MS datasets is not 
feasible. 

The data produced by CE–MS is three-dimensional: intensity as a function of time and 
mass-to-charge ratio. There are two main strategies for alignment of this type of data: (1) to 
group features together in matrices that can be further statistically analyzed or (2) to 
transform all time axes to a common axis with further analysis of aligned signals. (7) The 
former works well for protein and peptide data, as some peaks can be identified and used as 
internal standards for quantification and correction, but is problematic in case of 
metabolomics.(8) In addition, for complex and overlapped electropherograms, peak 
assignment is less reliable.(9) For the second strategy, there are already many algorithms 
and software packages available. However, most of these programs have been developed for 
liquid chromatography- mass spectrometry (LC-MS) and cannot deal with the large and 
irregular time shifts typically encountered in CE–MS. Furthermore, a majority of these 
programs use only chromatographic information, aligning base peak or total ion 
chromatograms using different time warping procedures. As has been mentioned by 
Daszykowski et al.(10), the next step in the development of alignment methods should take 
advantage of mass as well as chromatographic information. 

Another issue for data processing tools is to have them platform independent, to be able 
to share results within the scientific community. Commercial software often works with 
data from certain instruments using their specific formats, making them vendor dependent. 
Free software is working with data formats that can be generated by a large number of tools 
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and programs for format conversion, such as mzXML.(11) Currently, mzXML is the 
preferred format to generate aligned CE–MS data as many programs exist which can read 
this format for further analysis. In this paper we describe the adaptation and application of 
an algorithm originally developed for LC–MS and LC–MS/MS (12) for alignment of CE–
MS datasets—msalign2. Previously published algorithm was developed for alignment of 
LC–MS and LC–MS/MS data generated by two different mass analyzers (for example, high 
resolution data of FTICR and low resolution data of ion-trap). The latter was used for 
confident identification of peptides, masses of which were then matched to masses in LC–
MS dataset. The new msalign2 is an alignment method for hyphenated MS applications. It 
is not limited to only capillary electrophoresis but can be as well used for any hyphenated 
technique, for instance LC–MS. CE–MS was chosen as it represents the most challenging 
task for alignment, and there is a demand for this type of software. 

The algorithm and ancillary software is implemented in C and R and is available as open 
source (http://www.ms-utils.org/msalign2/). The algorithm has been shown to work on real 
CE–MS datasets of urine that are representative of data from a biomedical study. The 
results have been compared with another alignment tool in the open-source package XCMS 
(13) in terms of efficiency and relevance of further statistical analysis, visually inspecting 
and comparing principal component analysis (PCA) results. Our algorithm showed 
reduced variance in the data and performed better for multivariate analysis. 

 

THEORY 
Two CE–MS datasets can be aligned by matching masses across samples and fitting a 

curve to these matches. The curve represents the relation between electropherograms. 
The shifts in migration time are not linear.(14) Non-linearity can be introduced by 

changes in conductivity and electroosmotic flow or the sheath liquid flow driven by a 
mechanical pump. That is why the natural solution to alignment problem in CE–MS (and 
LC–MS) is a piece-wise function of time that can cope with these irregularities.  

The problem of finding a function best fitting measured data is an optimization 
problem. Genetic algorithms are one class of methods for solving this problem. These 
algorithms were developed in the 1960s from earlier published computer simulations of 
evolution and artificial selection.(15) A genetic algorithm (GA) is able to find exact or 
approximate solutions for optimization problems. 

GA operates on a population of possible solutions for a problem, called chromosomes. 
The starting population is created randomly and then goes through a number of 
generations being transformed by the operators of inheritance: mutation, selection, and 
recombination. Chromosomes are encoded in such a way that they are suitable for applying 
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these operators. A function for computing the quality of each chromosome is required. 
Using this fitness function best candidate solutions are selected in each generation and 
allowed to reproduce. In the end the global optimum or its close approximation is found. 

For aligning CE–MS datasets, a candidate solution is set by breakpoints of the piece-
wise function. The fitness function F(si) for a candidate solution si is calculated as: 

∑
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where m are peaks out of all N matches with retention times xm in the dataset to be 
aligned, ym in the reference dataset; ni is the number of breakpoints in chromosome si, k is a 
cost per breakpoint, and σ2 is the residual variance between the datasets. The fitness 
function is the sum of likelihoods of observing peak m at a retention times xm and ym in the 
two datasets with the piece-wise function evaluating y(xm). The cost for a breakpoint is 
introduced so that the number of breakpoints in the alignment is not too large. The residual 
variance can be provided by the user based on the knowledge of the analytical system used, 
or, if absent, is estimated automatically by the software, as previously described. 

 In each generation, half of the chromosomes in the population with the lowest 
fitness are replaced by copies of half of the chromosomes with the highest fitness, applying 
three types of mutations: insertion (randomly adding a breakpoint anywhere in the 
alignment interval), deletion (removing a breakpoint), and shifting a breakpoint by a small 
random amount in both dimensions. After a single pass through the GA, the solution of the 
highest fitness was chosen as the alignment of the two datasets. 

 The genetic algorithm was run for 1,000 generations with a population size of 300 
candidate solutions with maximum number of breakpoints of 12 and the cost for 
breakpoint set to 0.5. 

 

MATERIALS AND METHODS 
Chemicals. Methanol (MeOH) HPLC-grade (Biosolve B.V., Netherlands), ultrapure 

water (18.2 MΩ/cm), and formic acid (FA) (Fluka, Germany) were used for solvent 
preparation. NH4OH was from Sigma-Aldrich, NaOH from J.T. Baker. 

Urine samples. Urine was collected and pooled from two groups of mice wild-type 129 
and Swiss mice and stored at −20 °C. Urine (4 μL) was mixed with 4 μL of MeOH, 11 μL of 
water, and 1 μL of BGE, centrifuged to eliminate any possible sediment remaining, and put 
into vials for injection into CE instrument.  

Instrumentation. CE was performed on a PA 800 (Beckman Coulter, Fullerton, CA, 
USA) as described before.(16) Uncoated fused silica capillaries (BGB-Analytik, Germany) 
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of total length of 100 cm with 50 μm inner diameter were used for separation. MeOH (20%) 
with 2 M FA was used as background electrolyte. Sample injection was performed 
hydrodynamically with pH-mediated stacking: a small plug (50 mbar, 9 s) of 12.5% NH4OH 
was injected before the sample plug (50 mbar, 90 s). 

The second set of mouse urine has been measured with 0.1 M NaOH washing step 
between the runs. 

MS was performed using two types of time-of-flight (TOF) mass spectrometers: the 
micrOTOF (Bruker Daltonics, Bremen, Germany) and the new ultrahigh resolution TOF 
(UHR-TOF), maXis from the same vendor. The acquisition and spraying parameters were 
optimized so that the total areas on both instruments were identical. Transfer parameters 
were optimized by direct infusion of an ESI tuning mix (Agilent Technologies, Waldbronn, 
Germany). Spectra were collected with a time resolution of 1 s. CE–MS coupling was 
realized by a co-axial sheath liquid interface (Agilent Technologies, Waldbronn, Germany) 
with methanol–water–formic acid (50:50:0.1, v/v/v) as sheath liquid. The following spray 
conditions were used: sheath liquid flow, 4 μL/min; dry gas temperature, 180 °C; nitrogen 
flow, 4 L/min; nebulizer pressure, 0.5 bar. Electrospray in positive ionization mode was 
achieved and ESI voltage was −4.5 kV. 

Data analysis. Electropherograms were aligned using in-house-developed genetic 
algorithm running 1,000 generations and by XCMS (The Scripps Research Institute, La 
Jolla, USA). Data were normalized using non-parametric algorithm as described earlier.(17) 
The results of alignment were analyzed by PCA in SIMCA-P+ software (Umetrics, Umeå, 
Sweden). All calculations were performed on a standard office PC (Core 2 Quad, 2.4 GHz, 2 
GB RAM). The alignment of 20 datasets took about 40 min and used up to 200 MB RAM. 
This time is tens of times less than the time needed for acquisition of the data, so it does not 
represent a bottleneck in the whole analysis pipeline. 

 

RESULTS AND DISCUSSION 
The algorithm works pair-wise, operating on two CE–MS datasets in the mzXML 

format, which makes it platform independent and suitable for alignment of data generated 
by any type of CE–MS instrumentation. To demonstrate the alignment performance of the 
algorithm, 20 electropherograms were aligned. Figure 1 represents the result of alignment.  
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Figure 1. Total ion electropherograms of 20 CE–MS datasets before and after alignment. 
In the region where compounds migrate the alignment works for each single dataset. 
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A visual inspection already shows a significant improvement in peak positions. As 
previously mentioned, migration time shifts are not linear, so the evaluation of alignments 
should be done not on a single peak but better on several peaks in different parts of the 
electropherogram. The relative standard deviations (RSD) in migration time were 
calculated for three peaks at the beginning, middle, and end of the electropherogram and 
ranged from 5.6% to 6.5% before alignment. The RSD was higher for peaks, which are 
closer to the end of electropherogram. This happens because toward the end of the run 
adsorption on the walls of the capillary accumulates, and shifts in migration times 
increase.(18) After the alignment, the RSD significantly improved and varied from 0.12% to 
0.99%. Only analytical window was used for alignment, excluding the time at the beginning 
of the run where the sodium clusters are migrating. It can be seen on the aligned 
chromatograms that at the beginning of the run, the variation in migration time is still 
present, whereas in the rest of the electropherogram, peaks are very well aligned.  

To show how alignment improves further statistical analysis, a case study consisting of 
two groups of measurements was selected. Two-group scenario of data analysis is common 
in clinical research where there are typically groups of samples of patients and controls or 
patients at different time points or with different treatments. For our study we used two 
groups, each consisting of nine electropherograms of pooled mouse urine from two strains 
of mice (129 and Swiss). The samples from the second group were measured with a NaOH 
washing step between samples, which introduces a systematic difference between the 
groups and allows to show the robustness of the algorithm. The washing step is important 
in CE–MS. When a biological matrix is introduced, the capillary is contaminated, leading to 
large shifts in migration time, clogging, or even breakdown of the capillary. This is 
especially the case when bare-fused silica in a low pH system is used. There are two 
principal solutions to this problem. The first is changing the capillaries after a certain 
number of runs, introducing some additional variation, and then aligning all the datasets 
using one of the available algorithms. Alternatively, it is possible to regenerate the capillary 
with sodium hydroxide after each run. The second option is more time consuming as it 
requires washing steps with NaOH followed by water. However as we also show here, the 
washing strategy gives better analytical results with less variation in the data. The variation 
in the data without the washing step cannot be entirely eliminated even when advanced 
alignment techniques are used. 

We compared the alignment of 18 electropherograms by our piece-wise alignment and 
by one of the existing methods — XCMS. XCMS was chosen because it is a very powerful 
and quite widely used package, for which our tool can be a useful complement. The 
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workflow of the alignment in XCMS is based on completely different principles and 
includes peak detection and matching prior to time correction. 

The ubiquitous creatinine peak was used for visual inspection and control of the 
alignment efficiency by two programs. The extracted ion chromatograms of creatinine (m/z 
114.12±0.05) are shown in Fig. 2. Both algorithms perform quite satisfactorily but it is 
apparent that XCMS leaves some of the peaks unaligned, whereas msalign2 successfully 
aligned all datasets. 

This may be because the large number of changeable parameters in XCMS makes it 
difficult for the user to optimize the process and find the ideal settings for given sets of data. 
In contrast, msalign2 has a minimum number of parameters, most of which never have to 
be changed between one sample and the next. The free parameters are mass measurement 
error, background threshold, start and end scans for the time interval for alignment, and 
expected variance in elution time. The last is optional, and if the user does not supply it, the 
program will automatically estimate the variance. Mass measurement error is given in ppm 
and depends on the type of mass spectrometer being used and not the separation technique. 
The background threshold should be chosen such that the number of matched masses 
across samples is on the order of 1,000 to get reliable alignments with a reasonable 
computational time. Start and end scan numbers are used to align only the informative part 
of the electropherograms, disregarding intense signals that commonly appear at the 
beginning and end of each run, such as sodium clusters and compounds that have attached 
to the capillary wall and are released during the washing step. The web-application 
contains, besides the alignment algorithm, a tool to estimate the background threshold 
needed to get specified number of matched features for the alignment. 

Another possibility why some misalignment appears in the case of XCMS is that the 
package was primarily designed for LC–MS and can give suboptimal results for CE–MS, 
which may have much larger shifts in time domain. Time shifts are crucial for the matching 
step performed in XCMS before the alignment. Nevertheless it does not decrease the 
applicability and usefulness of the XCMS package as it includes not only an alignment 
algorithm but also powerful peak picking that might for instance be used after performing 
alignment with msalign2. 

 
 



 

56 

16.6 20 23.3 26.6 30 31.616.6 20 23.3 26.6 30 31.6

Before

XCMS

msalign2

Migration time

In
te

ns
ity

In
te

ns
ity

In
te

ns
ity

16.6 20 23.3 26.6 30 31.616.6 20 23.3 26.6 30 31.6

Migration time

16.6 20 23.3 26.6 30 31.616.6 20 23.3 26.6 30 31.6

Migration time  
 

Figure 2. Extracted ion electropherograms of creatinine before alignment, aligned with 
XCMS, and aligned with msalign2. 
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The output of XCMS contains a table with detected features (chromatographic peaks) 
and their intensities throughout all samples. It can be directly used for analysis with any 
statistical package, for instance SIMCA-P+.(19) The output of our algorithm is an mzXML 
file with corrected retention times. This makes it easy to explore how well the alignment 
works. To apply further statistics, one can either perform binning or peak picking from 
these mzXML files. Here we used the peak picking from the XCMS package, so that the only 
difference between the two methods is the alignment step. The resulting tables from both 
alignments were normalized as described above and imported to the SIMCA-P+ software 
package for multivariate analysis. 

PCA is a usual first step in analyzing multivariate data. It shows the correlation structure 
present in the data and the directions of the largest variance. Tables produced by peak 
picking step were normalized and used as input for PCA. The scores plots are shown in Fig. 
3. 
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Figure 3. PCA scores plots: A data from peak picking by XCMS after genetic algorithm 
alignment and B data obtained from XCMS alignment. The variance explained by the 
components is indicated on arrows along the axes. Group 1 (without washing step) is 
indicated by black dots; group 2 (with washing step) is indicated by triangles. 
 

The overall picture is the same in both cases, with the two sample groups nicely 
separated. The datasets acquired with the washing step between each sample show 
significantly smaller variance. However, more variation (>50%) is explained by first two 
principal components with the msalign2 than with the XCMS alignment (<50%). This is 
due to the additional variation introduced by misalignment in XCMS. It is important to 
reduce systematic variability in the data as far as possible, and not introduce additional 
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variability by alignment or normalization procedures that can obscure the chemical species 
correlating with or being responsible for the actual phenomena under study. 

As mentioned above, an important feature of our algorithm is that it uses accurate mass 
information. In theory, the better the mass accuracy, the easier the alignment task. To test 
this hypothesis we generated electropherograms of the same pooled urine using two 
different mass spectrometers: a standard orthogonal TOF (Bruker micrOTOF) and the 
recently released ultrahigh resolution TOF instrument (Bruker maXis). Two main 
differences between these instruments are the resolving power (40,000 vs 20,000 at m/z 600) 
and mass measurement precision (0.8 vs 3 ppm). 

Mass electropherograms generated using these machines were indeed found to differ in 
resolution and mass accuracy. msalign2 performed well on both pairs of data, but as can be 
seen in Fig. 4, there are significantly fewer mismatched features between the maXis datasets 
(7%) than between the micrOTOF datasets (more than 40%). 
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Figure 4. Alignments of CE–MS datasets from two types of instruments—micrOTOF (a) 
and maXis (b). The matched features are presented as gray dots; black line represents 
the trend line found by genetic algorithm. 

 
These results demonstrate that more compounds can be correctly identified based on 

accurate mass with the new UHR-TOF instrument compared to the standard TOF. The 
alignment problem is easier to solve with better mass accuracy, but the genetic algorithm is 
sufficiently robust to find the correct global alignment also between the micrOTOF 
datasets. 
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The genetic algorithm and supporting software is implemented in C, R and is available 
as open source on http://www.ms-utils.org/msalign2. 

Here we presented the application of our algorithm to CE–MS alignment, which is the 
worst case among separation techniques in terms of time reproducibility. As our method 
does not depend on chromatographic parameters and quality, it can as well be used for 
alignment of LC–MS and GC–MS data. 

The analysis of large amounts of data generated by metabolomic, proteomic, 
peptidomic, or other types of “omic” experiments includes many steps, most of which need 
sophisticated algorithms and computational implementation. Small mistakes and 
imperfections on each of these steps can lead to incorrect data interpretation and 
misleading results. The consequences may be even more dramatic in the field of system 
biology when the data from different analytical platforms and from different levels of 
biological organization have to be combined. Alignment of chromato- (electrophero-) 
grams is just one of the steps of data analysis but is an important one and should be the 
subject of careful examination and optimization, as was performed in this study. 

 

CONCLUSIONS 
Here we present a platform-independent, open-source algorithm for alignment of 

complex CE–MS datasets. In contrast to other available alignment algorithms it efficiently 
uses mass information. Performance of MS instrumentation, mass accuracy, and resolving 
power positively affect alignment results. However, we have clearly shown that the 
algorithm is robust enough and performs even with relatively “low cost” MS 
instrumentation. It is shown also that the variation should be reduced not only by means of 
data processing but also by selecting proper experimental conditions. 

As a tool for alignment of CE–MS data, our algorithm outperforms such packages as 
XCMS resulting in reduced variation that appears in multivariate analysis. On the other 
hand, alignment is only a step in the data processing pipeline and as such our algorithm is 
fully complimentary to XCMS. 

Although in this paper we have focused on CE–MS as this approach represents one of 
the most challenging tasks for alignment, the algorithm can obviously as well be used for 
alignment of LC–MS and GC–MS datasets. 
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