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Variability of genomes in populations is a necessary prerequisite for evolution. Owing to 
it, populations adapt to the changing environment, conquer new territories and new species 
evolve. However, this genetic variability can only be seen at the population level; at the level 
of the individual its genome is constant and static. The genome defines the possibilities of a 
given organism to adapt to the environment, but does not reflect its actual state. As in 
modern medicine there is a conceptual shift to personalized health, the attention is being 
redirected from populations to individuals. Though the importance of genetics is hard to 
overestimate, new ways of assessing human individuality, or, in other words, the phenotype, 
are sought. The biochemical representation of the phenotype is believed to be most closely 
approximated by the metabolome – a collection of low-molecular-weight (<1 kDa) 
compounds (metabolites) present in an organism.(1) Metabolites are the products of all the 
biochemical processes in the organism, which makes them a more appropriate target for 
phenotype-based research than transcripts and proteins, which are information messengers 
and executors of the biochemical reactions, respectively.    

The key words that characterize metabolomics are diversity and variation. These 
characteristics can be both virtue and vice for the metabolomics workflow (Figure 1). At 
different steps variation has either to be explored and used or reduced to the possible 
minimum. 
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Figure 1. Typical metabolomics workflow. 
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The variability that occurs in metabolomics, as well as in other ‘omics’-experiments, has 
three sources – biological, pre-analytical and analytical.(2) Unlike in animal experiments, in 
which it is relatively easy to standardize both the conditions under which the animals are 
kept and the handling of the samples, clinical experiments are much more susceptible to 
bias and interference. This variability affects the outcome of the existing clinical tests(3), 
and without question influences metabolomics results as well.    

Already at the stage of planning the experiments and the study design it is important to 
reduce the part of biological variation which is not related to the question addressed by the 
study. When, for example, two groups of patients or patients and healthy controls are to be 
compared, it is important that the selected groups have minimum differences not related to 
the research aim. These can be associated with gender, age and diet. These factors have been 
shown to have a large effect on metabolic profiles.(4;5) It also has been shown that the 
differences due to the fact that samples are collected in different countries and cities can be 
easily detected in urine metabolic profiles.(6;7) These extremes should be avoided of course, 
but it is not difficult to imagine that in a typical multi-center clinical study samples come 
from different hospitals, than the results obtained from the data should be considered with 
great caution. 

When samples are collected (Figure 1(A)) it is very important that the collection is 
highly standardized. First of all, the time of collection is an important factor to consider. 
Diurnal variation is not that obvious in case of blood plasma, but has a strong impact on 
metabolic profiles of urine.(8) The subjects should also either follow a certain diet or fast 
before the sample collection. Sample handling obviously also plays a role and such factors as 
the collection tubes, time on ice before freezing, temperature and time of storage, the 
number of thaw-freeze cycles can introduce a considerable bias.(9)     

Assuming that the study had been properly designed and that the samples had been 
collected, the aim of a metabolomics experiment would be to generate a comprehensive 
view on the low-molecular-weight components in the samples (Figure 1(B)). At this stage 
another issue of variability in metabolomics is faced: which is the diversity of metabolites 
themselves. And this represents a major difference between metabolomics and the other 
‘omics’ technologies. In genomics, transcriptomics and proteomics the molecules measured 
belong to the same chemical classes; metabolites, however, are extremely diverse in their 
chemical and physical properties. It is impossible to cover all of the metabolites by a single 
analytical technique, which is the reason why a number of analytical platforms are being 
used in the field.(10) Those platforms are either Mass-Spectrometry (MS) or Nuclear 
Magnetic Resonance (NMR) based. Both approaches have their specific advantages and 
disadvantages.(11) For example, NMR has a lower concentration sensitivity than MS, but 
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requires less sample pretreatment and is non-destructive. MS-based technologies are very 
sensitive, but the range of the compounds detected is defined by the separation method 
used, thus making it more targeted compared to 1H NMR, which is universal for all 
molecules containing hydrogen, which in case of biological samples means very few 
exceptions. The combination of analytical methods can increase the coverage of the 
metabolome and thus lead to better understanding of the biological process under study as 
well as improve identification of the compounds.(12) However, due to many factors, such 
as, for instance, the high costs of the different instruments, the whole range of the machines 
suitable for metabolomics experiments is rarely present in one lab. Though the analytical 
capabilities and drawbacks of each of the platforms are known, it is less known which 
impact they have on the recovery of biological information. This knowledge is essential for 
making a decision about the suitability of a given analytical method for a certain 
biological/clinical application. 

The reproducibility of analytical methods is not perfect and this obviously can result in 
variability in the data. MS-based methods are more prone to this variability compared to 
NMR, not only due to the nature of the instrumentation, but also because the samples need 
more extensive pre-treatment and preparation. The reproducibility of every technique 
should be carefully assessed in order to understand the possible drawbacks and the extent of 
post-processing needed. Also each of the methods has to be optimized to give minimum 
variability. A way to control the instrument performance while running long sequences of 
measurements is to use a set of analytical standards and quality control (QC) samples.(13)      

Despite all the efforts to get rid of the unwanted analytical variability in the final data, 
this can only be minimized. A common loss in repeatability is the drift in peak position in 
the spectra. In NMR this is related to the difference in pH and ion strength between the 
samples which is not completely abolished by the addition of buffer into the samples before 
the measurement. In chromatography-MS techniques misalignment of chromatographic 
peaks is caused by the sample matrix, pH, column ageing; the stability of the MS can also be 
compromised and cause run-to-run differences.(14) Peak shift is also considered a serious 
drawback of capillary electrophoresis.(15) A trivial method that allows overcoming the drift 
problem to a certain extent is binning – dividing the available data axis in short segments 
(bins) and integrating the signal intensity of each of them. More sophisticated extensions of 
the method are also available, such as, for example, adaptive binning (16) and Gaussian 
binning.(17) Binning is often used in case of NMR, although there are reasons to consider 
this method not optimal.(14) For chromatography-MS techniques it is even less 
advantageous due to the more complex nature of the data, the large number of variables 
generated and the loss of peak information. For this reason, in chromatography-MS a 
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combination of alignment and peak picking is most regularly used with a variety of 
available algorithms and software.(18-20)    

After all the manipulations mentioned above the only variability that should be left in a 
metabolomics dataset is of biological origin. The unwanted part of it is related to the 
different dilution of the samples, which is most prominent in the case of urine due to 
different water uptake by the subjects. Normalization is the step that removes this variation. 
For this, a few methods are available: normalization to the total sum, to some 
“housekeeping” molecules (e.g. to creatinine) and more sophisticated ones (e.g. Probabilistic 
Quotient Normalization(21)), but none of them are optimal for all cases and the choice 
should be made depending on the biological context.(22) 

The rest of the variation in the data has to be explored as this represents the biological 
variability (Figure 1(E)). The first step of the analysis is to investigate data structure in order 
to find patterns, natural grouping of the samples and possible outliers. This is done by 
means of unsupervised methods, which do not use any a priori information about the data 
and thus give an unbiased view. The most often used procedures are Principal Component 
Analysis (PCA) and its variations and clustering.  

PCA is a projection-based method that summarizes the variation present in the data in a 
lower-dimension space. When applied to data containing both biological and QC samples it 
is possible to estimate the analytical variation in the data in comparison to the biological 
variability: QCs must have orders of magnitude less variation than the real samples, thus 
clustering tightly together. PCA is also extremely useful for identifying abnormal samples 
(outliers), which may have to be removed prior to any further analysis, and for detecting 
any grouping of samples. The latter might be related to the question of interest, addressed 
by the study, or might be related to other phenomena. The first case is very encouraging for 
continuation of the analysis. The second does not mean that subsequent analysis cannot be 
done, because often the studied differences are subtle and masked by other sources of 
biological diversity; it however implies a more careful selection of strategies for 
discrimination and especially for validation, as natural clustering of the samples might 
influence the results of cross-validation. 

Clustering is a collection of unsupervised methods to assess inter-sample relations and 
identify natural groups of samples. There are many variants of clustering that use different 
measures for the distance between the samples (Euclidean, Mahalanobis, Manhattan etc.), 
different algorithms (hierarchical, partitioning etc.) and various initial assumptions (e.g. 
whether samples belong to only one or to multiple clusters). Clustering not only allows 
discovering grouping of samples, but also assessing the quality of the data. 
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As has already been mentioned above, in unsupervised methods the variation of interest 
is not necessarily reflected in the natural grouping of samples. The questions often posed in 
clinical metabolomics research are finding the differences between two and more groups of 
samples (from patients and controls, from subjects under various conditions and/or 
interventions) and predicting to which of the studied groups new samples belong. 
Statistically speaking the tasks are discrimination and classification, which are often carried 
out together in one method.  

The abundance of discrimination/classification methods may appear confusing: 
projection-based methods (Partial Least Square Discriminant analysis (PLS-DA) and 
Orthogonal PLS-DA (OPLS-DA), Soft Independent Modelling of Class Analogies 
(SIMCA)), k-nearest neighbor algorithm (k-NN), artificial neural networks (ANN), support 
vector machine and others. The choice of a particular method for a certain application 
might to a large extent be based on the expertise of the user; however there are some factors 
that should be taken into consideration when selecting the procedure to be applied. One of 
them is the assumption about the distribution of the data: if there is the information 
available parametric methods can be used (for example, projection-based methods); 
without such information non-parametric methods are the preferred choice (k-NN, ANN). 
SIMCA, ANN, k-NN cope better with a large number of classes than discrimination 
methods. Discrimination methods show the best performance when the classes are tight, 
homogeneous in terms of dispersion and covariance structure; otherwise, classes should be 
modeled separately by means of SIMCA, for example. If samples belong to a number of 
definite classes, discrimination techniques are used; if not, class modeling techniques 
should be chosen.(23) 

As mentioned above, most often in metabolomics and in particular in clinical 
metabolomics, the aim is to find the differences in profiles of two or more groups of 
samples. These differences might not be uncovered in a simple analysis. Thus larger groups 
have to be investigated in search of systematic variation and more sophisticated statistical 
methods are used. The latter can result in substantial overfitting and are more difficult to 
validate and interpret.  

Modeling groups against each other averages the effects between the samples from one 
group and reduces the individual-specific variability. It already has been recognized by the 
clinical and especially the pharmaceutical community that averaging health and medication 
intervention effects between people is a dead end street for the development of future 
medicine and that more personalized approaches have to be found.(24) 

The pharmaceutical industry was the first to respond to this need due to certain 
stagnation in the field, a decrease in development of new drug and the withdrawals of drugs 
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due to unforeseen side effects. With the genomics boom after the completion of the Human 
Genome project, the answers for personalized medical care and treatment were sought with 
the help of genomics and resulted in the emergence of a new discipline – 
pharmacogenomics. Despite all the expectations of this new research field, the number of 
genomics-driven drug discoveries is low.(25) A possible explanation is that, despite the 
importance of genes for defining the phenotype, they are not the only factors responsible 
for determining the actual physiological and/or pathological state of the organism, the 
response to treatment and the clinical outcome. The metabolome, on the other hand, is 
much closer to the phenotype in comparison to other ‘omes’. The switch from genetic to 
metabolic “individuality” thus is logical and the need for such a switch is already recognized 
by the community.(26) 

The idea of the connection of metabolism and human individuality and integrity is not 
new. It was first proposed and documented in the classical work of Sir Archibald E. Garrod 
“The incidence of alkaptonuria: a study in chemical individuality”, the title of which speaks 
for itself. "...No two individuals of a species are absolutely identical in bodily structure,” 
Garrod wrote as long ago as in 1902, “neither are their chemical processes carried out on 
exactly the same lines" .(27) The next progress in the field was made almost 50 years later by 
Roger J. Williams who demonstrated “evidence indicating that each individual possesses 
what may be called a "metabolic personality"-that is, a distinctive pattern of metabolic 
traits” and that these traits are maintained over a period of several months.(28)  

As many other fundamental ideas, the idea of “metabolic personality”, although maybe 
not enough appreciated at the time it appeared, came back in the 21st century. In the recent 
publications of Assfalg et al. and Bernini et al. the two collaborating groups elaborated and 
experimentally supported exactly the same basic thoughts – that “metabolic phenotypes” 
(the name changed slightly 60 years after R.J. Williams) do indeed exist and that they are 
stable over time.(29;30) As the analytical technologies have advanced enormously in the last 
decades, the analytical basis of the latest research is different from that of R.J. Williams – 
the use of NMR makes it possible to measure a large number of molecules in one run and to 
obtain precise quantitative information on these molecules. However, as shown by Assfalg 
et al., the full variety of metabolites assessed by NMR is not necessary to define the 
individual metabolic patterns – equally good results can be obtained using only a limited set 
of 12 compounds. The latter are even to a certain extent overlapping with those measured 
by Williams. The importance of metabolic phenotypes in relation to disease, nutrition and 
response to various stimuli has been outlined in both studies. 

All the environment and nutrition influences in, for instance, urine are superimposed 
on the invariant profiles represented by metabolic phenotypes.  The existence and stability 
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of such distinct profiles are related to homeostasis. Homeostasis is defined as “a state of 
dynamic balance with the variables fluctuating between tolerance limits”. The moment 
when “tolerance limits” are crossed and homeostasis lost can be considered as the moment 
of the onset of disease.(31) Detecting this occasion might enable early diagnosis, prognosis 
and possibilities for more successful intervention.  

Both health and disease are dynamic entities, understanding of which would be possible 
only by monitoring them in time. As has been mentioned above, the key feature of the 
genome is that it is static. The metabolome, on the contrary, is highly dynamic, reflecting 
the changes happening over time and the reaction of the organism to the altering 
environment. As such, time-correlated changes of the metabolome will likely have more 
diagnostic and prognostic power than a single time point measurement. 

There is an increasing awareness that metabolomics is of great importance for the 
medicine of the future due to its “personalized” and dynamic nature. However, to make this 
possible, the present strategies in metabolomics experiment design and data treatment 
should be changed. Currently metabolomics literature is dominated by “case-control” 
studies, which both average the effects between individuals and neglect the beneficial 
dynamic essence of metabolic profiles. Clinical metabolomics is not an exception, though 
the concept of “dynamic disease” has been around for a considerable time.(32) The 
advantages and the gain in information recovery obtained by dynamic profiling are starting 
to be recognized, but are not universally applied. In order to generalize its use it is 
important to change study design, sample collection and data analysis strategies. 

Even when dynamic metabolomics data is being collected, the advantages of it are not 
always exploited as it is sometimes analyzed with the use of “classical” statistical methods, 
such as PCA and PLS-DA.(33) However, it has been clearly shown that those methods are 
not optimal for such data and optimized or new strategies should be applied.(34) 

Metabolomics data generated by NMR and MS-based technologies is multivariate by its 
nature due to the large number of molecular species measured in one run. With the 
addition of the time dimension the data becomes also multilevel as different levels of 
variation, for instance, between- and within-individual, can be assessed. A collection of 
powerful methods for dealing with such data and for separating the levels of variability is 
thus called multilevel.(35;36) Exploring the between-individual variation allows neglecting 
the intra-individual changes, which may be non-systematic day-to-day differences that do 
not relate to the question of interest. On the other hand, the within-individual block 
comprises the time-related information and using this is a more personalized approach for 
data analysis as each person acts as its own control. 
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To sum up, metabolomics is an attractive methodology for clinical research as it is the 
most accurate reflection of the actual physiological and biochemical state of the organism. 
The dynamic and highly “individualized” nature of the metabolome is a strong indication 
that it could provide the means to make personalized medicine go all the way from an 
“elusive dream”(37), via “proof-of-principle”, to real application. The current thesis does 
not offer a recipe how to do it, but describes a number of essential components for the 
development of this new type of medicine, such as robust and reproducible analytical 
methods, pre-processing routines, various data analysis methods and also metabolomics 
applications to both animal and clinical experiments that use the longitudinal study design. 
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