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Variability of genomes in populations is a necessary prerequisite for evolution. Owing to 
it, populations adapt to the changing environment, conquer new territories and new species 
evolve. However, this genetic variability can only be seen at the population level; at the level 
of the individual its genome is constant and static. The genome defines the possibilities of a 
given organism to adapt to the environment, but does not reflect its actual state. As in 
modern medicine there is a conceptual shift to personalized health, the attention is being 
redirected from populations to individuals. Though the importance of genetics is hard to 
overestimate, new ways of assessing human individuality, or, in other words, the phenotype, 
are sought. The biochemical representation of the phenotype is believed to be most closely 
approximated by the metabolome – a collection of low-molecular-weight (<1 kDa) 
compounds (metabolites) present in an organism.(1) Metabolites are the products of all the 
biochemical processes in the organism, which makes them a more appropriate target for 
phenotype-based research than transcripts and proteins, which are information messengers 
and executors of the biochemical reactions, respectively.    

The key words that characterize metabolomics are diversity and variation. These 
characteristics can be both virtue and vice for the metabolomics workflow (Figure 1). At 
different steps variation has either to be explored and used or reduced to the possible 
minimum. 
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Figure 1. Typical metabolomics workflow. 
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The variability that occurs in metabolomics, as well as in other ‘omics’-experiments, has 
three sources – biological, pre-analytical and analytical.(2) Unlike in animal experiments, in 
which it is relatively easy to standardize both the conditions under which the animals are 
kept and the handling of the samples, clinical experiments are much more susceptible to 
bias and interference. This variability affects the outcome of the existing clinical tests(3), 
and without question influences metabolomics results as well.    

Already at the stage of planning the experiments and the study design it is important to 
reduce the part of biological variation which is not related to the question addressed by the 
study. When, for example, two groups of patients or patients and healthy controls are to be 
compared, it is important that the selected groups have minimum differences not related to 
the research aim. These can be associated with gender, age and diet. These factors have been 
shown to have a large effect on metabolic profiles.(4;5) It also has been shown that the 
differences due to the fact that samples are collected in different countries and cities can be 
easily detected in urine metabolic profiles.(6;7) These extremes should be avoided of course, 
but it is not difficult to imagine that in a typical multi-center clinical study samples come 
from different hospitals, than the results obtained from the data should be considered with 
great caution. 

When samples are collected (Figure 1(A)) it is very important that the collection is 
highly standardized. First of all, the time of collection is an important factor to consider. 
Diurnal variation is not that obvious in case of blood plasma, but has a strong impact on 
metabolic profiles of urine.(8) The subjects should also either follow a certain diet or fast 
before the sample collection. Sample handling obviously also plays a role and such factors as 
the collection tubes, time on ice before freezing, temperature and time of storage, the 
number of thaw-freeze cycles can introduce a considerable bias.(9)     

Assuming that the study had been properly designed and that the samples had been 
collected, the aim of a metabolomics experiment would be to generate a comprehensive 
view on the low-molecular-weight components in the samples (Figure 1(B)). At this stage 
another issue of variability in metabolomics is faced: which is the diversity of metabolites 
themselves. And this represents a major difference between metabolomics and the other 
‘omics’ technologies. In genomics, transcriptomics and proteomics the molecules measured 
belong to the same chemical classes; metabolites, however, are extremely diverse in their 
chemical and physical properties. It is impossible to cover all of the metabolites by a single 
analytical technique, which is the reason why a number of analytical platforms are being 
used in the field.(10) Those platforms are either Mass-Spectrometry (MS) or Nuclear 
Magnetic Resonance (NMR) based. Both approaches have their specific advantages and 
disadvantages.(11) For example, NMR has a lower concentration sensitivity than MS, but 
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requires less sample pretreatment and is non-destructive. MS-based technologies are very 
sensitive, but the range of the compounds detected is defined by the separation method 
used, thus making it more targeted compared to 1H NMR, which is universal for all 
molecules containing hydrogen, which in case of biological samples means very few 
exceptions. The combination of analytical methods can increase the coverage of the 
metabolome and thus lead to better understanding of the biological process under study as 
well as improve identification of the compounds.(12) However, due to many factors, such 
as, for instance, the high costs of the different instruments, the whole range of the machines 
suitable for metabolomics experiments is rarely present in one lab. Though the analytical 
capabilities and drawbacks of each of the platforms are known, it is less known which 
impact they have on the recovery of biological information. This knowledge is essential for 
making a decision about the suitability of a given analytical method for a certain 
biological/clinical application. 

The reproducibility of analytical methods is not perfect and this obviously can result in 
variability in the data. MS-based methods are more prone to this variability compared to 
NMR, not only due to the nature of the instrumentation, but also because the samples need 
more extensive pre-treatment and preparation. The reproducibility of every technique 
should be carefully assessed in order to understand the possible drawbacks and the extent of 
post-processing needed. Also each of the methods has to be optimized to give minimum 
variability. A way to control the instrument performance while running long sequences of 
measurements is to use a set of analytical standards and quality control (QC) samples.(13)      

Despite all the efforts to get rid of the unwanted analytical variability in the final data, 
this can only be minimized. A common loss in repeatability is the drift in peak position in 
the spectra. In NMR this is related to the difference in pH and ion strength between the 
samples which is not completely abolished by the addition of buffer into the samples before 
the measurement. In chromatography-MS techniques misalignment of chromatographic 
peaks is caused by the sample matrix, pH, column ageing; the stability of the MS can also be 
compromised and cause run-to-run differences.(14) Peak shift is also considered a serious 
drawback of capillary electrophoresis.(15) A trivial method that allows overcoming the drift 
problem to a certain extent is binning – dividing the available data axis in short segments 
(bins) and integrating the signal intensity of each of them. More sophisticated extensions of 
the method are also available, such as, for example, adaptive binning (16) and Gaussian 
binning.(17) Binning is often used in case of NMR, although there are reasons to consider 
this method not optimal.(14) For chromatography-MS techniques it is even less 
advantageous due to the more complex nature of the data, the large number of variables 
generated and the loss of peak information. For this reason, in chromatography-MS a 
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combination of alignment and peak picking is most regularly used with a variety of 
available algorithms and software.(18-20)    

After all the manipulations mentioned above the only variability that should be left in a 
metabolomics dataset is of biological origin. The unwanted part of it is related to the 
different dilution of the samples, which is most prominent in the case of urine due to 
different water uptake by the subjects. Normalization is the step that removes this variation. 
For this, a few methods are available: normalization to the total sum, to some 
“housekeeping” molecules (e.g. to creatinine) and more sophisticated ones (e.g. Probabilistic 
Quotient Normalization(21)), but none of them are optimal for all cases and the choice 
should be made depending on the biological context.(22) 

The rest of the variation in the data has to be explored as this represents the biological 
variability (Figure 1(E)). The first step of the analysis is to investigate data structure in order 
to find patterns, natural grouping of the samples and possible outliers. This is done by 
means of unsupervised methods, which do not use any a priori information about the data 
and thus give an unbiased view. The most often used procedures are Principal Component 
Analysis (PCA) and its variations and clustering.  

PCA is a projection-based method that summarizes the variation present in the data in a 
lower-dimension space. When applied to data containing both biological and QC samples it 
is possible to estimate the analytical variation in the data in comparison to the biological 
variability: QCs must have orders of magnitude less variation than the real samples, thus 
clustering tightly together. PCA is also extremely useful for identifying abnormal samples 
(outliers), which may have to be removed prior to any further analysis, and for detecting 
any grouping of samples. The latter might be related to the question of interest, addressed 
by the study, or might be related to other phenomena. The first case is very encouraging for 
continuation of the analysis. The second does not mean that subsequent analysis cannot be 
done, because often the studied differences are subtle and masked by other sources of 
biological diversity; it however implies a more careful selection of strategies for 
discrimination and especially for validation, as natural clustering of the samples might 
influence the results of cross-validation. 

Clustering is a collection of unsupervised methods to assess inter-sample relations and 
identify natural groups of samples. There are many variants of clustering that use different 
measures for the distance between the samples (Euclidean, Mahalanobis, Manhattan etc.), 
different algorithms (hierarchical, partitioning etc.) and various initial assumptions (e.g. 
whether samples belong to only one or to multiple clusters). Clustering not only allows 
discovering grouping of samples, but also assessing the quality of the data. 
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As has already been mentioned above, in unsupervised methods the variation of interest 
is not necessarily reflected in the natural grouping of samples. The questions often posed in 
clinical metabolomics research are finding the differences between two and more groups of 
samples (from patients and controls, from subjects under various conditions and/or 
interventions) and predicting to which of the studied groups new samples belong. 
Statistically speaking the tasks are discrimination and classification, which are often carried 
out together in one method.  

The abundance of discrimination/classification methods may appear confusing: 
projection-based methods (Partial Least Square Discriminant analysis (PLS-DA) and 
Orthogonal PLS-DA (OPLS-DA), Soft Independent Modelling of Class Analogies 
(SIMCA)), k-nearest neighbor algorithm (k-NN), artificial neural networks (ANN), support 
vector machine and others. The choice of a particular method for a certain application 
might to a large extent be based on the expertise of the user; however there are some factors 
that should be taken into consideration when selecting the procedure to be applied. One of 
them is the assumption about the distribution of the data: if there is the information 
available parametric methods can be used (for example, projection-based methods); 
without such information non-parametric methods are the preferred choice (k-NN, ANN). 
SIMCA, ANN, k-NN cope better with a large number of classes than discrimination 
methods. Discrimination methods show the best performance when the classes are tight, 
homogeneous in terms of dispersion and covariance structure; otherwise, classes should be 
modeled separately by means of SIMCA, for example. If samples belong to a number of 
definite classes, discrimination techniques are used; if not, class modeling techniques 
should be chosen.(23) 

As mentioned above, most often in metabolomics and in particular in clinical 
metabolomics, the aim is to find the differences in profiles of two or more groups of 
samples. These differences might not be uncovered in a simple analysis. Thus larger groups 
have to be investigated in search of systematic variation and more sophisticated statistical 
methods are used. The latter can result in substantial overfitting and are more difficult to 
validate and interpret.  

Modeling groups against each other averages the effects between the samples from one 
group and reduces the individual-specific variability. It already has been recognized by the 
clinical and especially the pharmaceutical community that averaging health and medication 
intervention effects between people is a dead end street for the development of future 
medicine and that more personalized approaches have to be found.(24) 

The pharmaceutical industry was the first to respond to this need due to certain 
stagnation in the field, a decrease in development of new drug and the withdrawals of drugs 
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due to unforeseen side effects. With the genomics boom after the completion of the Human 
Genome project, the answers for personalized medical care and treatment were sought with 
the help of genomics and resulted in the emergence of a new discipline – 
pharmacogenomics. Despite all the expectations of this new research field, the number of 
genomics-driven drug discoveries is low.(25) A possible explanation is that, despite the 
importance of genes for defining the phenotype, they are not the only factors responsible 
for determining the actual physiological and/or pathological state of the organism, the 
response to treatment and the clinical outcome. The metabolome, on the other hand, is 
much closer to the phenotype in comparison to other ‘omes’. The switch from genetic to 
metabolic “individuality” thus is logical and the need for such a switch is already recognized 
by the community.(26) 

The idea of the connection of metabolism and human individuality and integrity is not 
new. It was first proposed and documented in the classical work of Sir Archibald E. Garrod 
“The incidence of alkaptonuria: a study in chemical individuality”, the title of which speaks 
for itself. "...No two individuals of a species are absolutely identical in bodily structure,” 
Garrod wrote as long ago as in 1902, “neither are their chemical processes carried out on 
exactly the same lines" .(27) The next progress in the field was made almost 50 years later by 
Roger J. Williams who demonstrated “evidence indicating that each individual possesses 
what may be called a "metabolic personality"-that is, a distinctive pattern of metabolic 
traits” and that these traits are maintained over a period of several months.(28)  

As many other fundamental ideas, the idea of “metabolic personality”, although maybe 
not enough appreciated at the time it appeared, came back in the 21st century. In the recent 
publications of Assfalg et al. and Bernini et al. the two collaborating groups elaborated and 
experimentally supported exactly the same basic thoughts – that “metabolic phenotypes” 
(the name changed slightly 60 years after R.J. Williams) do indeed exist and that they are 
stable over time.(29;30) As the analytical technologies have advanced enormously in the last 
decades, the analytical basis of the latest research is different from that of R.J. Williams – 
the use of NMR makes it possible to measure a large number of molecules in one run and to 
obtain precise quantitative information on these molecules. However, as shown by Assfalg 
et al., the full variety of metabolites assessed by NMR is not necessary to define the 
individual metabolic patterns – equally good results can be obtained using only a limited set 
of 12 compounds. The latter are even to a certain extent overlapping with those measured 
by Williams. The importance of metabolic phenotypes in relation to disease, nutrition and 
response to various stimuli has been outlined in both studies. 

All the environment and nutrition influences in, for instance, urine are superimposed 
on the invariant profiles represented by metabolic phenotypes.  The existence and stability 
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of such distinct profiles are related to homeostasis. Homeostasis is defined as “a state of 
dynamic balance with the variables fluctuating between tolerance limits”. The moment 
when “tolerance limits” are crossed and homeostasis lost can be considered as the moment 
of the onset of disease.(31) Detecting this occasion might enable early diagnosis, prognosis 
and possibilities for more successful intervention.  

Both health and disease are dynamic entities, understanding of which would be possible 
only by monitoring them in time. As has been mentioned above, the key feature of the 
genome is that it is static. The metabolome, on the contrary, is highly dynamic, reflecting 
the changes happening over time and the reaction of the organism to the altering 
environment. As such, time-correlated changes of the metabolome will likely have more 
diagnostic and prognostic power than a single time point measurement. 

There is an increasing awareness that metabolomics is of great importance for the 
medicine of the future due to its “personalized” and dynamic nature. However, to make this 
possible, the present strategies in metabolomics experiment design and data treatment 
should be changed. Currently metabolomics literature is dominated by “case-control” 
studies, which both average the effects between individuals and neglect the beneficial 
dynamic essence of metabolic profiles. Clinical metabolomics is not an exception, though 
the concept of “dynamic disease” has been around for a considerable time.(32) The 
advantages and the gain in information recovery obtained by dynamic profiling are starting 
to be recognized, but are not universally applied. In order to generalize its use it is 
important to change study design, sample collection and data analysis strategies. 

Even when dynamic metabolomics data is being collected, the advantages of it are not 
always exploited as it is sometimes analyzed with the use of “classical” statistical methods, 
such as PCA and PLS-DA.(33) However, it has been clearly shown that those methods are 
not optimal for such data and optimized or new strategies should be applied.(34) 

Metabolomics data generated by NMR and MS-based technologies is multivariate by its 
nature due to the large number of molecular species measured in one run. With the 
addition of the time dimension the data becomes also multilevel as different levels of 
variation, for instance, between- and within-individual, can be assessed. A collection of 
powerful methods for dealing with such data and for separating the levels of variability is 
thus called multilevel.(35;36) Exploring the between-individual variation allows neglecting 
the intra-individual changes, which may be non-systematic day-to-day differences that do 
not relate to the question of interest. On the other hand, the within-individual block 
comprises the time-related information and using this is a more personalized approach for 
data analysis as each person acts as its own control. 

 



 

18 

To sum up, metabolomics is an attractive methodology for clinical research as it is the 
most accurate reflection of the actual physiological and biochemical state of the organism. 
The dynamic and highly “individualized” nature of the metabolome is a strong indication 
that it could provide the means to make personalized medicine go all the way from an 
“elusive dream”(37), via “proof-of-principle”, to real application. The current thesis does 
not offer a recipe how to do it, but describes a number of essential components for the 
development of this new type of medicine, such as robust and reproducible analytical 
methods, pre-processing routines, various data analysis methods and also metabolomics 
applications to both animal and clinical experiments that use the longitudinal study design. 
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ABSTRACT 
Gas Chromatography (GC)-Mass Spectrometry (MS) with Atmospheric Pressure (AP) 

interface was introduced more than 30 years ago but never became a mainstream technique, 
mainly because of technical difficulties and cost of instrumentation. A recently introduced 
multipurpose AP source created the opportunity to reconsider the importance of AP 
ionization for GC. Here, we present an analytical evaluation of GC/APCI-MS showing the 
benefits of soft atmospheric pressure chemical ionization for GC in combination with a 
Time of Flight (TOF) mass analyzer. During this study, the complete analytical procedure 
was optimized and evaluated with respect to characteristic analytical parameters, such as 
repeatability, reproducibility, linearity, and detection limits. Limits of detection (LOD) were 
found within the range from 11.8 to 72.5 nM depending on the type of compound. The 
intraday and interday repeatability tests demonstrate relative standard deviations (RSDs) of 
peak areas between 0.7%-2.1% and 3.8%-6.4% correspondingly. Finally, we applied the 
developed method to the analysis of human cerebrospinal fluid (CSF) samples to check the 
potential of this new analytical combination for metabolic profiling. 
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INTRODUCTION 
There are different definitions of metabolomics. However, regardless of terminology 

and phrasing differences, any definition implies an enormous analytical challenges to cover 
a wide range of polarities, concentrations, and sizes of chemical entities composing the 
human metabolome. In response to this challenge, more and more efforts are directed 
toward cross-platform analysis and integration of data obtained on different analytical 
platforms. At the same time, a revision and modernization of proven technologies like, for 
example, gas chromatography (GC) is taking place. Since it was invented by Martin and 
James (1) in 1952, GC became one of the most important and widely applied techniques in 
modern analytical chemistry. Even before the term “metabolomics” was introduced, there 
were a number of published studies with GC as main analytical method, which could be 
described as metabolomics or metabolic profiling.(2) However, only with the introduction 
of fused-silica capillary columns at the end of 1980s, which significantly improved the 
separation quality of GC, and GC-MS instrumentation, GC turned into the one of the most 
effective techniques for large scale metabolic profiling.(3-8) GC-MS was the first analytical 
technique implemented in a real metabolic profiling workflow. It includes all steps from 
sample preparation to the compound identification and remains flexible because of a 
number of options in selection of mass analyzer and ionization techniques. There are 
several types of mass analyzers routinely used with GC systems, namely, ion trap (IT), 
single (Q) and triple-quadrupoles (QqQ), and time of flight (TOF). However, the 
characteristics of a TOF mass analyzer are most favorable for such application as metabolic 
profiling. Speed, sensitivity, resolving power, and multiplex detection are clear advantages 
over scanning instruments, such as quadrupoles. These performance factors make TOF 
mass analyzers almost ideal for metabolomics, especially in combination with GC.(9) 
Moreover, modern TOF analyzers provide a data quality sufficient for identification of 
metabolites using a combination of accurate mass, isotopic distribution, and retention 
time.(10;11) 

Most of the commercial GC-MS systems use ionization under vacuum conditions: 
electron impact ionization (EI) and chemical ionization (CI).(12) EI is considered to be a 
hard ionization technique, meaning that the energy of the electrons is high enough to 
produce highly reproducible fragmentation patterns of small molecules. Characteristic 
fragmentation patterns make GC/EI-MS a powerful analytical technique for comparing the 
mass spectra of unknown substances to data sets of commercial and open source 70 eV EI 
mass spectral libraries. However, the fragmentation of the compounds is sometimes so 
strong that it impairs the structural significance of the parent ion. On the contrary, CI 
where ions are formed because of the reaction with reagent gas is a softer ionization 
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technique and energy transfer usually does not exceed 5 eV. Consequently, fewer fragments 
are formed and information about the precursor ion is preserved. Moreover, since the 
fragmentation pattern depends on the properties of the reagent gas, different structural 
information can be obtained from different reagent gases. Atmospheric pressure ionization 
sources (API), which are probably the key of the “overnight success” of MS detectors in 
analytical sciences because of coupling with liquid chromatography, are rarely used with 
GC instruments. The first APCI source for GC-MS was described more than 30 years ago 
by Horning et al.(13-16) Later, several papers were published in which the effluent from a 
GC is ionized at atmospheric pressure with an interface coupling the GC to a 63Ni ion 
source of a mass spectrometer built for APCI gas-phase studies.(17-19) Revelsky et al.(20) 
and Schiewek et al.(21) have applied GC/APPI-MS for analyzing a wide variety of volatile 
organic compounds, and ESI has been successfully applied for ionization of gaseous 
analytes separated by GC.(22;23) Even so, GC/API-MS has never become widely used, in 
part because of the high costs of the custom instrumentation needed for these analyses, in 
part because of availability of commercial “plug and play” EI and CI GC systems. Recently, 
Schiewek et al. introduced a new multipurpose API source, which for the first time offers a 
“user friendly” and robust solution for a GC/APCI technique.(24) In the current 
manuscript, we present a detailed analytical evaluation of GC/APCI in combination with a 
TOF mass spectrometer. In addition to the detailed examination of the analytical 
performance (repeatability, reproducibility, linearity, and detection limits), we demonstrate 
the applicability of this technique for metabolic profiling of cerebrospinal fluid (CSF). 

 

MATERIALS AND METHODS 
Chemicals. A standard solution of 17 amino acids at 1 mM each in 0.1 M HCl was 

purchased from Sigma-Aldrich. 4-Nitrobenzoic acid, dopamine hydrochloride, and Phe-
Gly hydrate were obtained from Fluka. Sarcosine, theophylline, caffeine, nortriptyline 
hydrochloride, hippuric acid, creatinine, 4-O-methyldopamine hydrochloride, 
homovanillyl alcohol, benzoic acid, uric acid, and 5-hydroxyindole-3-acetic acid were 
acquired from Sigma. Stock standard solutions of the 31 compounds under study were 
prepared in methanol at a concentration of 200 μM. N,O-
bis(Trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane (BSTFA + 1% TMCS) 
and N-methyl-N-trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane (MSTFA + 
1% TMCS) from Pierce (Rockford, IL, U.S.A.) were used as derivatization reagents. These 
reagents were used from freshly opened 1 mL bottles. Methoxyamine hydrochloride was 
purchased from Supelco. Methanol (HPLC grade) was acquired from Sigma-Aldrich and 
pyridine (>99%, ultrapure GC grade) was from Fluka. 
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Biological Samples. Human CSF samples were taken by lumbar puncture. The study 
was approved by the ethical committee at the Leiden University Medical Center. Samples 
were processed within 1 h, centrifuged at 300 × g to remove cells, aliquoted and stored at -
80 °C until use.  

Protein Precipitation and Metabolite Extraction. 250 μL sample aliquots were taken, 
600 μL of cold extraction solvent (MeOH) were added, and the sample was shaken 
vigorously for 20 s. The samples were placed in an ice bath for 2 h, and then centrifuged at 
20,800 rcf for 15 min. The liquid supernatant was collected and evaporated in a speed 
vacuum concentrator before derivatization. 

Derivatization. A speed vacuum concentrator or lyophilizer was used for drying the 
standard mixture (100 μL at 100 μM) and the CSF extracts to complete dryness. A mixture 
of 20 mg/mL of methoxyamine·HCl in pyridine was freshly prepared using an 
ultrasonicator. The dried samples were taken from store and warmed up to room 
temperature before starting derivatization. Methoxyamine + pyridine mixture (100 μL) was 
added to each GC vial, closing it immediately, and the samples were agitated for 2 min. 
Methoxyamination was performed at 40 °C for 60 min. After the addition of the 
derivatization reagent containing 1% TMCS as the catalyst (100 μL) the solution was 
vortexed again for 2 min. Trimethylsilylation reaction was performed at 40 °C for 30 min. A 
minimum of 2 h equilibration time was necessary before sample injection.  

GC-MS Analysis. The derivatized samples (1 μL) were applied by splitless injection with 
a programmable CTC PAL multipurposesampler (CTC Analytics AG, Zwingen, 
Switzerland) into an Agilent 7890A GC (Agilent, Palo Alto, U.S.A.) equipped with a HP-5-
MS column (30 m, 0.25 mm ID, 0.25 μm film thickness). Injection programs included 
sequential washing steps of the 10 μL syringe before and after the injection, and a sample 
pumping step for removal of small air bubbles. 

The injection temperature was set at 250 °C. Helium was used as carrier gas at a 
constant flow rate of 1 mL/min through the column. For every analysis splitless injection 
time was 60 s and after this the injector was purged at 20 mL/min flow rate. The column 
temperature was initially kept at 70 °C for 5 min and then raised at 5 °C/min over 42 min to 
280 °C and held for 10 min. 

The GC transfer line to the mass spectrometer was kept at 280 °C. The APCI source and 
MS were operated in positive mode, temperature and flow rate of the dry gas (nitrogen) 
were 250 °C and 5.00 L/min, respectively. The APCI vaporizer temperature was 450 °C; the 
pressure of the nebulizer gas (nitrogen) was set to 2 bar, and the voltage of the corona 
discharge needle was 2000 nA. Capillary voltage was set at -1000 V and the end-plate offset 
at -1000 V. 
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As a detector an orthogonal-accelerated TOF mass spectrometer (oaTOF-MS) 
MicroTOF (Bruker Daltonik, Bremen, Germany) was used. The polarity of the APCI 
interface and all the parameters of TOF MS detector were optimized using the area of the 
MS signal for the metabolites included in the standard mixture and the chromatographic 
resolution as analytical parameters. The position of the column in the transfer line, the 
transfer line temperature, the flow rate and pressure of nebulizer gas (nitrogen), the 
vaporizer temperature, voltages in the corona, source and ion transfer settings: all those 
parameters were optimized empirically. These are essential for optimal performance of an 
instrument but may vary from instrument to instrument. 

Data were acquired for mass range from 50 to 1000 m/z with a repetition rate of 1 Hz. 
DataAnalysis 4.0 software (Bruker Daltonik) was used for data processing. The 
SmartFormula tool within DataAnalysis was used for the calculation of elemental 
composition of compounds; it uses a CHNO algorithm, which provides standard 
functionalities such as minimum/maximum elemental range, electron configuration, and 
ring-plus double bonds equivalents, as well as a sophisticated comparison of the theoretical 
with the measured isotope pattern (Sigma-Value) for increased confidence in the suggested 
molecular formula.(11) 

The instrument was calibrated externally using an APCI calibration tune mix. Because 
of the compensation of temperature drift in the mass spectrometer, this external calibration 
provided consistent mass values for a complete experimental sequence. Moreover, an 
additional internal calibration was performed using cyclic-siloxanes, a typical background 
in GC-MS.(25;26) 

Linearity and Sensitivity. Linearity of the detector response (TOF-MS) was verified 
with standard solutions containing the 31 analytes under study at 5 different concentration 
levels over the range from the quantification limit to 100 μM. Each point of the calibration 
graph corresponded to the mean value from three independent replicate injections. 
Calibration curves were obtained for each standard by plotting the standard concentration 
as a function of the peak area obtained from GC/APCI-TOF MS analyses. The sensitivity of 
the analytical procedure was calculated by defining the limits of detection (LOD) and 
quantification (LOQ) for the individual analytes in standard solutions according to the 
IUPAC method.(27) The smallest concentration that could be detected with a reasonable 
certainty for our analytical procedure (LOD) was considered S/N = 3, while LOQ was S/N = 
10. 

Precision and Accuracy. The precision of the analytical procedure described was 
measured as repeatability and reproducibility. Quality control (QC) samples were tested in 
six replicates (at an intermediate concentration value of the calibration curve) and 
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calculated with calibration curves obtained daily. The precision of the analytical procedure 
was expressed as the relative standard deviation (RSD). The intra- and interday 
repeatability in the peak areas was determined as the RSD obtained for six consecutive 
injections of each metabolite at an intermediate concentration value of the calibration 
curve, carried out within the same day and on three different days. 

 

RESULTS AND DISCUSSION 
Selection of Derivatization Conditions. BSTFA (+1% TMCS) and MSTFA (+1% 

TMCS) were used as derivatization reagents. They react with a range of polar compounds 
by replacing active hydrogen in alcohols, amines, carboxylic acids, and so forth. To find 
optimal derivatization conditions, we studied effects of derivatization time and temperature 
and the concentration ratio of the derivatization reagent to the concentration of 
pyridine/methoxyamine. 

Regardless of the derivatization reagent, changing the reagent to 
pyridine/methoxyamine ratio from 0.8:1.2 until 1.2:0.8 did not affect peak areas of the test 
mixture significantly. Thus, the ratio 1:1 was chosen for further experiments. The effect of 
the derivatization time on peak areas was most significant in the interval between 10-30 
min. Starting from 30 min incubation peak areas remained constant and further increase of 
derivatization time had little impact on data quality (Supplementary Materials, Figure S1). 
Thus, to reduce the error and shorten time, 30 min was selected as derivatization time. The 
influence of temperature on peak areas was minimal, at least in the evaluated interval 
between room temperature and 80 °C. However, at 40 °C we observed more compounds 
with just one TMS derivative. Thus, the final derivatization protocol consisted of a 
methoxyamination step (40 °C for 60 min) and subsequent trimethylsilylation (MSTFA + 
1% TMCS, at 40 °C for 30 min). 

The stability of derivatized samples is an important factor for large scale metabolomics 
temperature and performed analysis in equal time intervals between 0 and 72 h. Data 
proved to be rather consistent from 0 to 65 h. However, data collected on later time points 
demonstrated steadily increasing variability. Nevertheless, to avoid any possible risk of 
derivatization-dependent variability, material should preferably be processed within the 
first 48 h. 

GC/APCI-TOF MS Analysis of Standard Mixture. A standard mixture consisting of 31 
compounds was used for the general test of performance and evaluation of analytical 
parameters. The compounds were selected with the aim to cover a range of polarities and 
molecular weights of the metabolites typically reported as components of body fluids. Table 
1 represents our test mixture grouped in different chemical families, such as amines, amino 
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acids, organic acids, alcohols, xanthines, compounds with indole or imidazole groups, and 
one dipeptide. 

 
Table 1. Compounds Included in the Standard Mixture 

amino acids alanine 
  arginine 
  aspartic acid 
  cysteine 
  glutamic acid 
  glycine 
  histidine 
  isoleucine 
  leucine 
  lysine 
  methionine 
  phenylalanine 
  proline 
  serine 
  threonine 
  tyrosine 
  valine 
  sarcosine 
organic acids benzoic acid 
  hippuric acid 
  4-nitrobenzoic acid 
alcohols homovanillyl alcohol 
xanthines and related coumpounds caffeine 
  theophylline 
  uric acid 
compound with indoles group 5-hydroxyindole-3-acetic acid 
amines nortriptyline hydrochloride 
Compounds with hydroxyl and amine groups dopamine hydrochloride 
  4-O-Methyldopamine hydrochloride 
compounds with imidazol groups creatinine 
dipeptides Phe-Gly hydrate 

 
Figure 1 represents a combined extracted ion chromatogram (EIC) of the standard 

mixture recorded with optimum GC and MS settings. 
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Figure 1. Extracted ion GC/APCI-TOF MS chromatograms of the 32 features 
corresponding to 25 compounds of the standard mix (100 μM). Numbering of 
compounds corresponds to Table 2. 

 
With an analytical window of approximately 30 min, we observed 32 peaks, which could 

be assigned to 25 compounds. Table 2 shows all analytes detected, with their formula, 
retention time, measured and theoretical m/z, error (mDa) and sigma value. All values were 
calculated from samples with concentrations close to the LOQ; nevertheless the mass 
position error remained within 1.0 mDa and high quality sigma fit values (<10 mSigma) 
were obtained for all compounds. 

However, the same table (Table 2) demonstrates that we failed in detecting a few 
components of our test mixture, namely, three amino acids (arginine, cysteine, and 
histidine), one organic acid (4-nitrobenzoic acid), homovanillyl alcohol, and creatinine. The 
thermal instability of amino acids, especially arginine and cysteine, is a known problem and 
has already been addressed in literature.(28;29) In addition, treatment with silylation 
reagents, even under the mild conditions generally employed in metabolite profiling, can 
lead to chemical conversion.(30) For example, arginine can be converted to ornithine. 
When studying metabolic processes in detail, particularly where the intermediate 
compounds may be reactive or unstable, one should always be aware of such possibilities 
when interpreting the results. If there is any doubt, alternative derivatization procedures for 
specific functional groups should be considered. 
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Table 2. Forms of the Different Compounds Included in the Standard Mixture (at a 
Concentration Close to LOQ) Detected with GC/APCI-TOF MS Method. 

peak 
ID 

compound 
formula 

(peak found) 
retention 

time 
m/z 

experimental 
m/z 

calculated 
error 

(mDa) 
mSigma 

value 
1 Valine+1TMS+H C8H20NO2Si 12.4 190.1256 190.1258 0.21 3.4 
2 Alanine+2TMS+H C9H24NO2Si2 13 234.1338 234.134 0.2 5.1 
3 Glycine+2TMS+H C8H22NO2Si2 13.5 220.1181 220.1184 0.31 4.6 
4 Sarcosine+2TMS+H C9H24NO2Si2 13.8 234.1338 234.134 0.21 4.4 
5 Leucine+1TMS+H C9H22NO2Si 14.4 204.1414 204.1414 0 1.8 
6 Proline+1TMS+H C8H18NO2Si 14.9 188.1108 188.1101 -0.7 2.2 
7 Isoleucine+1TMS+H C9H22NO2Si 15 204.1409 204.1414 0.49 1.8 
8 Uric acid+3TMS+H C14H29N4O3Si3 15.2 385.1545 385.1542 0.31 3.4 
9 Valine+2TMS+H C11H28NO2Si2 16.3 262.1656 262.1653 -0.29 6.1 

10 Benzoic acid+1TMS+H C10H15O2Si 17 195.087 195.0877 0.7 1.8 
11 Serine+2TMS+H C9H24NO3Si2 17.4 250.129 250.1289 -0.1 1.6 
12 Leucine+2TMS+H C12H30NO2Si2 17.9 276.1813 276.181 -0.3 8.9 
13 Isoleucine+2TMS+H C12H30NO2Si2 18.5 276.1802 276.181 0.8 6.4 
14 Glycine+3TMS+H C11H30NO2Si3 18.8 292.1578 292.1579 0.09 4.7 
14 Serine+3TMS+H C12H32NO3Si3 20.4 322.1681 322.1684 0.29 5.1 
16 Threonine+3TMS+H C13H34NO3Si3 21.1 336.1834 336.1841 0.71 2.9 
17 Methionine+2TMS+H C11H28NO2SSi2 24.2 294.1376 294.1374 -0.2 1.3 
18 Aspartic acid+3TMS+H C13H32NO4Si3 24.4 350.1631 350.1634 0.32 1.6 
19 Glutamic acid+3TMS+H C14H34NO4Si3 26.6 364.1786 364.179 0.4 5.5 
20 Phenylalanine+2TMS+H C15H28NO2Si2 26.7 310.1653 310.1653 0 5.8 
21 Phenyl-Gly+H C11H15N2O3 28.5 223.108 223.1077 -0.29 3.3 
22 Hippuric acid+1TMS+H C12H8NO3Si 31.1 252.1047 252.105 0.3 1.8 
23 Caffeine+H C8H11N4O2 31.2 195.0835 195.0836 0.1 3.2 
24 Theophylline+1TMS+H C10H17N4O2Si 32.6 253.1116 253.1115 -0.1 2.9 
25 Lysine+4TMS+H C18H47N2O2Si4 33 435.2699 435.2709 1 2.5 
26 Tyrosine+3TMS+H C18H36NO3Si3 33.3 398.1999 398.1998 -0.12 5.5 

27 
4-Methyldopamine 
hydrochlor+3Si+H 

C18H38NO2Si3 34.8 384.2199 384.2205 0.61 4.2 

28 
Dopamine 

hydrochlor+4TMS+H 
C20H44NO2Si4 35.9 442.2448 442.2444 -0.39 4 

29 Uric acid+4TMS+H C17H37N4O3Si4 36.5 457.1939 457.1937 -0.18 9.1 
30 Phenyl-Gly+2TMS+H C17H31N2O3Si2 37.2 367.1869 367.1868 -0.11 5.6 

31 
5-hydroxyindole-3-

acetic+3TMS+H 
C19H34NO3Si3 38.3 408.1842 408.1841 -0.08 7.7 

32 
Nortriptyline 

hydrochlor+H 
C19H22N 38.7 264.1744 264.1747 0.29 9.2 

  
Analysis of creatinine by GC requires rather selective conditions, which are optimal only 

for creatinine itself and a few related compounds. Creatinine can be converted, for instance, 
to the ethyl ester of N-(4,6-dimethyl-2-pyrimidinyl)-N-methylglycine,(31) or derivatized 
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with trifluoroacetic anhydride,(32) although the last one has been mainly analyzed by 
HPLC. The same is true for 4-nitrobenzoic acid or homovanillyl alcohol. In general, we can 
conclude that those two compounds are analyzed more properly by HPLC. 

At a first glance, the few compounds “missing” from our test mixture might be 
considered as serious drawback of the total workflow. However, metabolic profiling 
workflows always imply a compromise between analytical limitations of the methods and 
their applicability. Even more, as Fiehn et al.(33) formulated in their validation criteria for 
metabolite profiling protocols, comprehensiveness is more important than inclusion of a 
certain metabolite, and the overall dynamic range for the majority of the compounds is 
more important than the detection limit for one specific substance. Thus, we measured 
compounds belonging to nine different chemical families within one experiment 
(chromatogram). Moreover, the correct elementary composition of measured compounds 
was calculated from data acquired at levels close to the LOQ(11;34). Considering the 
chromatographic behavior, mass accuracy, and isotopic distribution, the described method 
could distinguish between isomers (i.e., Alanine/Sarcosine; Isoleucine/ Leucine). 

Analytical Parameters. Calibration curves were obtained for each standard by plotting 
the standard concentration as a function of the peak area obtained from GC/APCI-TOF MS 
analyses. The parameters of the calibration functions, LOD, calibration range, correlation 
coefficient, precision, and accuracy are summarized in Table 3. 

To calculate the calibration functions and LOD’s, we took the EIC of the most intense or 
base peak in the mass spectrum for each compound in the standard mixture. If the 
compound was represented by more than one silylated form, the one with higher linearity 
in the calibration range was used for calculation of analytical parameters. For example, in 
the case of glycine, we used glycine+3TMS+H; for isoleucine, isoleucine+1TMS+H; for 
leucine, leucine+1TMS+H; for serine, serine+3TMS+H; for valine, valine+1TMS+H; for 
uric acid, uric acid+4TMS+H; and in the case of Phe-Gly hydrate, we used Phe-Gly+H. The 
results summarized in Table 3 indicate that the GC/APCI-TOF MS method is a reliable 
approach for the analysis of a wide range of compounds. LODs were found within the range 
from 11.8 to 72.5 nM depending on the type of compound. To the best of our knowledge, 
these LOD values are considerably lower than the normal values previously described in 
literature for the determination of this kind of compounds by GC-MS.(29;35-37) Still, the 
brief overview of the values reported in literature (Supplementary Materials, Table S1) for 
more “classical” GC-MS systems shows how difficult it is to do a fair comparison with 
APCI-GC. LOD and LOQ values usually reported in the studies targeted to one or two 
classes of the metabolites. On the contrary, our standard mixture was designed to mimic a 
profiling condition and includes compounds belonging to nine different chemical families. 
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Moreover, a proper comparison of APCI and EI/CI could only be done if data are obtained 
on the same mass analyzer type, with the same sample preparation and derivatization 
strategies. At the end, the output still will not be 100% conclusive. We see as more beneficial 
the strategy, which will explore complementarities of both methods, combining high quality 
MS data generated under APCI condition with highly reproducible fragmentation spectra 
of EI. 

Finally, we calculated the two most important parameters for evaluation of the precision 
of the analytical procedure: repeatability and reproducibility. In terms of repeatability; 
calculated RSDs did not exceed 6.37%. Reproducibility was determined by calculation the 
RSDs values (%) from two consecutive injections with two different technicians and within 
two different days and it did not exceed 8.90%. 

Applicability of GC/APCI-TOF MS for Metabolic Profiling in Biological Samples. A 
human CSF pool was extracted, dried, derivatized, and analyzed by GC/APCI-TOF MS as 
described above (see Materials and Methods). At first, we compared the chromatograms of 
the human CSF with those obtained for the standard mixture. Confirmation of compounds 
identity was accomplished by comparing retention time, mass position, and isotopic pattern 
of standards and sample. 

Figure 2A shows the metabolic profile of human CSF as base peak chromatogram. The 
observed complexity and richness of the chromatogram demonstrates the potential of the 
method. In Figure 2B we show several EICs of metabolites, which were identified in the 
CSF. Several of them were assigned using only mass position and isotopic distribution. 
Supplementary Materials, Figure S2 shows an example of such assignment for N-acetyl-
aspartate. 

Table 4 contains information concerning the compounds of our standard mixture found 
in the human CSF (formula, retention time, experimental m/z and theoretical, mass error 
and sigma value). Even in this case of analyzing an extremely complex biological sample, 
the accurate measurements (very low mass error) and the isotopic distribution evaluation 
(sigma value) obtained by TOF MS could confirm the identity of the analytes. 
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Figure 2. GC/APCI-TOF MS analysis of CSF sample: (A) Base peak chromatogram of 
the derivatized CSF sample. (B) EICs of several identified metabolites; peaks 1 (Glycine), 
2 (Uric acid), 4 (Threonine) assigned with help of standards, peaks 3 (Glycerol), 5 
(Pyroglutamic acid), 6 (N-acetyl-aspartate), 7 (Ribitol), 8 (Glutamine), 9 (Glucose) 
assigned using mass position and isotopic pattern. 
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Table 4. Compounds Included in the Standard Mixture Found in Human CSF Samples 

compound 
formula  

(peak found) 
retention 

time 
m/z 

experimental 
m/z 

calculated 
error 

(mDa) 
mSigma 

value 
Valine+1TMS+H C8H20NO2Si 12.4 190.1245 190.1258 1.29 5.2 

Alanine+2TMS+H C9H24NO2Si2 13 234.133 234.134 1 4.5 
Glycine+2TMS+H C8H22NO2Si2 13.1 220.1171 220.1184 1.3 5.1 

Sarcosine+2TMS+H C9H24NO2Si2 13.8 234.1338 234.134 0.21 2.7 
Leucine+1TMS+H C9H22NO2Si 14.4 204.1404 204.1414 1 4.1 

Isoleucine+1TMS+H C9H22NO2Si 15 204.1422 204.1414 -0.79 2.7 
Uricacid+3TMS+H C14H29N4O3Si3 15.2 385.153 385.1542 1.19 3.7 
Valine+2TMS+H C11H28NO2Si2 16.3 262.1653 262.1653 0 5.3 

Benzoicacid+1TMS+H C10H15O2Si 17 195.0869 195.0877 0.8 8.4 
Serine+2TMS+H C9H24NO3Si2 17.4 250.129 250.1289 -0.1 1.9 

Leucine+2TMS+H C12H30NO2Si2 17.9 276.1815 276.181 -0.49 10.1 
Isoleucine+2TMS+H C12H30NO2Si2 18.5 276.1823 276.181 -1.3 6.4 

Glycine+3TMS+H C11H30NO2Si3 18.8 292.1574 292.1579 0.5 9.3 
Serine+3TMS+H C12H32NO3Si3 20.4 322.1689 322.1684 -0.52 5.2 

Threonine+3TMS+H C13H34NO3Si3 21.1 336.1861 336.1841 -1.98 5.6 
Methionine+2TMS+H C11H28NO2SSi2 24.2 294.138 294.1374 -0.59 7.4 
Asparticacid+3TMS+H C13H32NO4Si3 24.4 350.1631 350.1634 0.32 1.6 

Phenylalanine+2TMS+H C15H28NO2Si2 26.7 310.1663 310.1653 -0.99 6.9 
Phenyl-Gly+H C11H15N2O3 28.5 223.1082 223.1077 -0.49 3.3 

Hippuricacid+1TMS+H C12H8NO3Si 31.1 252.1047 252.105 0.3 1.8 
Caffeine+H C8H11N4O2 31.2 195.0835 195.0836 0.1 3.5 

Theophylline+1TMS+H C10H17N4O2Si 32.6 253.1116 253.1115 -0.1 2.9 
Lysine+4TMS+H C18H47N2O2Si4 33 435.2697 435.2709 1.22 2.5 

Tyrosine+3TMS+H C18H36NO3Si3 33.3 398.1999 398.1998 0.12 5.5 
Uricacid+4TMS+H C17H37N4O3Si4 36.5 457.1949 457.1937 -1.19 9.1 
5-hydroxyindole-3-

acetic+3TMS+H 
C19H34NO3Si3 38.3 408.1834 408.1841 0.69 7.7 

Nortriptyline+H C19H22N 38.7 264.1734 264.1747 1.29 9.2 

 
In total, our method was capable to determine more than 300 compounds with different 

isotopic features in the CSF sample. As commented before, the identity of some of those 
peaks could be corroborated by the standards included in our mixture, but in other cases, 
we used mass position and isotopic distribution to achieve the identification of the analytes 
present in the CSF according to their molecular formula. Some examples are included in 
Figure 2B, where we have shown the EICs of silylated forms of uric acid, glycerol, 
pyroglutamic acid, N-acetyl-aspartate, ribitol, glutamine, and glucose. The values of mass 
error and sigma value for the mentioned compounds were excellent, showing the capability 
of our GC/APCI-TOF MS method to confirm the identity of an important number of 
metabolites which can be found in CSF samples. However, being strict we should 
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discriminate between assignments validated by data from the standard mixture and those 
which were made solely based on sigma value calculation. If in the first case the reference to 
standard makes an assignment almost 100% correct, the second one is the best guess 
possible on the basis of available data. In Figure 3 we have shown MS spectra produced by 
GC/APCI-TOF MS for some compounds found in human CSF. Included compounds 
belong to different chemical families: amino acids, xanthines, organic acids, indoles and 
amines. 

Valine was detected as valine+1TMS+H (m/z 190.1245), according to the reaction 
described above [M+H]+ (in the current case [M+1TMS+H]+), observing mainly the 
mentioned m/z signal and not its fragments. In the case of glycine and aspartic acid, the 
main peak in the spectrum was the amino acid+3TMS+H. Because of in source-
fragmentation, some fragments were also observed. A neutral loss of 72.0387 appears after 
losing one of the trimethylsilane (TMS) groups, more precisely -OH replacement with -
OSi(CH3)3, (=[C3H8Si]), trimethylsiloxane. The loss of two TMS groups should lead to [M-
2TMS+H]+, resulting in a loss of 144.0785. Moreover, for glycine we detected a fragment 
produced for the loss of 82.0495, and for aspartic acid, another one after losing 118.1170. 
The last one could be the result of losing one TMS group and three CH3 groups. One of the 
xanthines, theophylline, showed in its spectrum [M+1TMS+H]+ and also [M-1TMS+H]+ 
with low intensity in comparison with [M+1TMS+H]+. [5-Hydroxyindole- 3-acetic 
acid+3TMS+H]+ was the peak we found in CSF for the compound containing an indole 
moiety. Again 72.0389 for the loss of one TMS group, 144.0801 for the loss of 2TMS, and 
118.1171 for the loss of one TMS group and three CH3 groups were observed. The amine 
nortriptyline hydrochloride showed up as [M+H]+ without undergoing any fragmentation. 

As commented before, Table 4 includes only a small fraction of compounds detected in 
CSF. We have detected more than 300 distinct features even using very strict peak finding 
criteria. This fact in combination with the here presented analytical characteristics (LODs, 
repeatability, and reproducibility) demonstrates the potential of GC/APCI-TOF MS for 
metabolic profiling. In other words, this analytical procedure might indeed be a valuable 
addition to the “metabolomics toolbox”. 

 



Chapter 1 

39 

 
Figure 3. Typical APCI MS spectra of silylated compounds from different chemical 
families: amino acids (a−c), dipeptide (d), organic acid (e), xanthine (f), indole (g), and 
amine (h). 

 

CONCLUSIONS 
EI and CI are the ionization techniques conventionally used in GC-MS, both operating 

under vacuum condition. EI mass spectra are mainly characterized by numerous fragments 
produced during the high energy ionization process, while the CI mass spectra exhibit both 
the protonated molecules and intense fragment ions. Commercial and in-house database 
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mass spectral libraries can then be used to identify the separated compounds or at least give 
structural clues to support the identification process. Here, we present an alternative to the 
classical GC-MS methods, namely, gas phase APCI as interface in combination with 
orthogonal TOF-MS. A very sensitive and accurate GC/APCI-TOF MS method was 
developed for the automated analysis of metabolites in biological samples. At present, the 
analytical evaluation of the method was made by using amino acids, organic acids, alcohols, 
xanthines, indoles, dipeptides, compounds with imidazole groups, amines, and analytes 
with hydroxyl and amine groups, demonstrating that 25 analytes of the 31 present in our 
mixture can be reliably determined. Excellent repeatability was obtained, with relative 
standard deviations (RSDs) of peak areas between 0.7% and 2.1% in the intraday study, and 
between 3.8% and 6.4% in the interday study. 

Analysis of CSF has demonstrated a rich chromatographic pattern consisting of 
hundreds of features. The high quality of the spectra creates an opportunity to make 
structural assignments of metabolites based on mass position and isotopic distribution. 
However, the use of more advanced mass analyzers such as hybrid quadrupole TOF will be 
beneficial to resolve more difficult cases and support identification by fragmentation data. 
In summary, GC/APCI-TOF MS is an analytical procedure, which combines the best of 
chromatography with one of the most robust MS interfaces, and as such, it has a potential 
to become one of the standard methods in metabolic profiling. 
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SUPPLEMENTARY MATERIALS 

 
Figure S1. Effect of derivatization conditions on peak area of several metabolites 
included in the standard mixture. A) volume ratio of derivatization reagent (μL) and 
pyridine (μL); B) derivatization time.  
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Figure S2. Assignment of N-acetyl-aspartate using accurate mass and isotopic 
distribution information. 
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ABSTRACT 
Capillary electrophoresis–mass spectrometry (CE–MS) is a powerful technique for the 

analysis of small soluble compounds in biological fluids. A major drawback of CE is the 
poor migration time reproducibility, which makes it difficult to combine data from 
different experiments and correctly assign compounds. A number of alignment algorithms 
have been developed but not all of them can cope with large and irregular time shifts 
between CE–MS runs. Here we present a genetic algorithm designed for alignment of CE–
MS data using accurate mass information. The utility of the algorithm was demonstrated on 
real data, and the results were compared with one of the existing packages. The new 
algorithm showed a significant reduction of elution time variation in the aligned datasets. 
The importance of mass accuracy for the performance of the algorithm was also 
demonstrated by comparing alignments of datasets from a standard time-of-flight (TOF) 
instrument with those from the new ultrahigh resolution TOF maXis (Bruker Daltonics). 
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INTRODUCTION 
Capillary electrophoresis (CE) is an ideal technique for separation of small soluble polar 

compounds that are present in biological fluids.(1) There are also other advantages of CE 
for analysis of biological fluids, such as relatively short separation times with good 
resolution and low sample consumption.(2) CE is often criticized for its low loading 
capacity. However, pre-concentration techniques such as pH-mediated stacking (3) can 
overcome this drawback. If a mass spectrometer is used as a detector (CE–mass 
spectrometry (MS)), additional information on mass and isotopic distribution (4) is 
provided, which enables compounds and potential biomarkers to be identified. For 
comparison of multiple samples, elution or migration time precision is also very important. 
This is a serious concern for CE which, especially when bare-fused silica capillaries are used, 
lacks reproducibility of migration time.(5) Low reproducibility of migration time affects not 
only identification of compounds and their synchronization between samples but also 
statistical analysis. Misalignment introduces variation in the data that will noticeably affect 
results of multivariate statistics (6) and for studies involving numerous samples, as typically 
encountered in clinical research, manually assisted alignment of CE–MS datasets is not 
feasible. 

The data produced by CE–MS is three-dimensional: intensity as a function of time and 
mass-to-charge ratio. There are two main strategies for alignment of this type of data: (1) to 
group features together in matrices that can be further statistically analyzed or (2) to 
transform all time axes to a common axis with further analysis of aligned signals. (7) The 
former works well for protein and peptide data, as some peaks can be identified and used as 
internal standards for quantification and correction, but is problematic in case of 
metabolomics.(8) In addition, for complex and overlapped electropherograms, peak 
assignment is less reliable.(9) For the second strategy, there are already many algorithms 
and software packages available. However, most of these programs have been developed for 
liquid chromatography- mass spectrometry (LC-MS) and cannot deal with the large and 
irregular time shifts typically encountered in CE–MS. Furthermore, a majority of these 
programs use only chromatographic information, aligning base peak or total ion 
chromatograms using different time warping procedures. As has been mentioned by 
Daszykowski et al.(10), the next step in the development of alignment methods should take 
advantage of mass as well as chromatographic information. 

Another issue for data processing tools is to have them platform independent, to be able 
to share results within the scientific community. Commercial software often works with 
data from certain instruments using their specific formats, making them vendor dependent. 
Free software is working with data formats that can be generated by a large number of tools 
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and programs for format conversion, such as mzXML.(11) Currently, mzXML is the 
preferred format to generate aligned CE–MS data as many programs exist which can read 
this format for further analysis. In this paper we describe the adaptation and application of 
an algorithm originally developed for LC–MS and LC–MS/MS (12) for alignment of CE–
MS datasets—msalign2. Previously published algorithm was developed for alignment of 
LC–MS and LC–MS/MS data generated by two different mass analyzers (for example, high 
resolution data of FTICR and low resolution data of ion-trap). The latter was used for 
confident identification of peptides, masses of which were then matched to masses in LC–
MS dataset. The new msalign2 is an alignment method for hyphenated MS applications. It 
is not limited to only capillary electrophoresis but can be as well used for any hyphenated 
technique, for instance LC–MS. CE–MS was chosen as it represents the most challenging 
task for alignment, and there is a demand for this type of software. 

The algorithm and ancillary software is implemented in C and R and is available as open 
source (http://www.ms-utils.org/msalign2/). The algorithm has been shown to work on real 
CE–MS datasets of urine that are representative of data from a biomedical study. The 
results have been compared with another alignment tool in the open-source package XCMS 
(13) in terms of efficiency and relevance of further statistical analysis, visually inspecting 
and comparing principal component analysis (PCA) results. Our algorithm showed 
reduced variance in the data and performed better for multivariate analysis. 

 

THEORY 
Two CE–MS datasets can be aligned by matching masses across samples and fitting a 

curve to these matches. The curve represents the relation between electropherograms. 
The shifts in migration time are not linear.(14) Non-linearity can be introduced by 

changes in conductivity and electroosmotic flow or the sheath liquid flow driven by a 
mechanical pump. That is why the natural solution to alignment problem in CE–MS (and 
LC–MS) is a piece-wise function of time that can cope with these irregularities.  

The problem of finding a function best fitting measured data is an optimization 
problem. Genetic algorithms are one class of methods for solving this problem. These 
algorithms were developed in the 1960s from earlier published computer simulations of 
evolution and artificial selection.(15) A genetic algorithm (GA) is able to find exact or 
approximate solutions for optimization problems. 

GA operates on a population of possible solutions for a problem, called chromosomes. 
The starting population is created randomly and then goes through a number of 
generations being transformed by the operators of inheritance: mutation, selection, and 
recombination. Chromosomes are encoded in such a way that they are suitable for applying 
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these operators. A function for computing the quality of each chromosome is required. 
Using this fitness function best candidate solutions are selected in each generation and 
allowed to reproduce. In the end the global optimum or its close approximation is found. 

For aligning CE–MS datasets, a candidate solution is set by breakpoints of the piece-
wise function. The fitness function F(si) for a candidate solution si is calculated as: 

∑
=

−
−

−=
N

m
i

xyy

i knesF
mm

1

2
))((

2

2

)( σ
  (1) 

where m are peaks out of all N matches with retention times xm in the dataset to be 
aligned, ym in the reference dataset; ni is the number of breakpoints in chromosome si, k is a 
cost per breakpoint, and σ2 is the residual variance between the datasets. The fitness 
function is the sum of likelihoods of observing peak m at a retention times xm and ym in the 
two datasets with the piece-wise function evaluating y(xm). The cost for a breakpoint is 
introduced so that the number of breakpoints in the alignment is not too large. The residual 
variance can be provided by the user based on the knowledge of the analytical system used, 
or, if absent, is estimated automatically by the software, as previously described. 

 In each generation, half of the chromosomes in the population with the lowest 
fitness are replaced by copies of half of the chromosomes with the highest fitness, applying 
three types of mutations: insertion (randomly adding a breakpoint anywhere in the 
alignment interval), deletion (removing a breakpoint), and shifting a breakpoint by a small 
random amount in both dimensions. After a single pass through the GA, the solution of the 
highest fitness was chosen as the alignment of the two datasets. 

 The genetic algorithm was run for 1,000 generations with a population size of 300 
candidate solutions with maximum number of breakpoints of 12 and the cost for 
breakpoint set to 0.5. 

 

MATERIALS AND METHODS 
Chemicals. Methanol (MeOH) HPLC-grade (Biosolve B.V., Netherlands), ultrapure 

water (18.2 MΩ/cm), and formic acid (FA) (Fluka, Germany) were used for solvent 
preparation. NH4OH was from Sigma-Aldrich, NaOH from J.T. Baker. 

Urine samples. Urine was collected and pooled from two groups of mice wild-type 129 
and Swiss mice and stored at −20 °C. Urine (4 μL) was mixed with 4 μL of MeOH, 11 μL of 
water, and 1 μL of BGE, centrifuged to eliminate any possible sediment remaining, and put 
into vials for injection into CE instrument.  

Instrumentation. CE was performed on a PA 800 (Beckman Coulter, Fullerton, CA, 
USA) as described before.(16) Uncoated fused silica capillaries (BGB-Analytik, Germany) 
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of total length of 100 cm with 50 μm inner diameter were used for separation. MeOH (20%) 
with 2 M FA was used as background electrolyte. Sample injection was performed 
hydrodynamically with pH-mediated stacking: a small plug (50 mbar, 9 s) of 12.5% NH4OH 
was injected before the sample plug (50 mbar, 90 s). 

The second set of mouse urine has been measured with 0.1 M NaOH washing step 
between the runs. 

MS was performed using two types of time-of-flight (TOF) mass spectrometers: the 
micrOTOF (Bruker Daltonics, Bremen, Germany) and the new ultrahigh resolution TOF 
(UHR-TOF), maXis from the same vendor. The acquisition and spraying parameters were 
optimized so that the total areas on both instruments were identical. Transfer parameters 
were optimized by direct infusion of an ESI tuning mix (Agilent Technologies, Waldbronn, 
Germany). Spectra were collected with a time resolution of 1 s. CE–MS coupling was 
realized by a co-axial sheath liquid interface (Agilent Technologies, Waldbronn, Germany) 
with methanol–water–formic acid (50:50:0.1, v/v/v) as sheath liquid. The following spray 
conditions were used: sheath liquid flow, 4 μL/min; dry gas temperature, 180 °C; nitrogen 
flow, 4 L/min; nebulizer pressure, 0.5 bar. Electrospray in positive ionization mode was 
achieved and ESI voltage was −4.5 kV. 

Data analysis. Electropherograms were aligned using in-house-developed genetic 
algorithm running 1,000 generations and by XCMS (The Scripps Research Institute, La 
Jolla, USA). Data were normalized using non-parametric algorithm as described earlier.(17) 
The results of alignment were analyzed by PCA in SIMCA-P+ software (Umetrics, Umeå, 
Sweden). All calculations were performed on a standard office PC (Core 2 Quad, 2.4 GHz, 2 
GB RAM). The alignment of 20 datasets took about 40 min and used up to 200 MB RAM. 
This time is tens of times less than the time needed for acquisition of the data, so it does not 
represent a bottleneck in the whole analysis pipeline. 

 

RESULTS AND DISCUSSION 
The algorithm works pair-wise, operating on two CE–MS datasets in the mzXML 

format, which makes it platform independent and suitable for alignment of data generated 
by any type of CE–MS instrumentation. To demonstrate the alignment performance of the 
algorithm, 20 electropherograms were aligned. Figure 1 represents the result of alignment.  
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Figure 1. Total ion electropherograms of 20 CE–MS datasets before and after alignment. 
In the region where compounds migrate the alignment works for each single dataset. 
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A visual inspection already shows a significant improvement in peak positions. As 
previously mentioned, migration time shifts are not linear, so the evaluation of alignments 
should be done not on a single peak but better on several peaks in different parts of the 
electropherogram. The relative standard deviations (RSD) in migration time were 
calculated for three peaks at the beginning, middle, and end of the electropherogram and 
ranged from 5.6% to 6.5% before alignment. The RSD was higher for peaks, which are 
closer to the end of electropherogram. This happens because toward the end of the run 
adsorption on the walls of the capillary accumulates, and shifts in migration times 
increase.(18) After the alignment, the RSD significantly improved and varied from 0.12% to 
0.99%. Only analytical window was used for alignment, excluding the time at the beginning 
of the run where the sodium clusters are migrating. It can be seen on the aligned 
chromatograms that at the beginning of the run, the variation in migration time is still 
present, whereas in the rest of the electropherogram, peaks are very well aligned.  

To show how alignment improves further statistical analysis, a case study consisting of 
two groups of measurements was selected. Two-group scenario of data analysis is common 
in clinical research where there are typically groups of samples of patients and controls or 
patients at different time points or with different treatments. For our study we used two 
groups, each consisting of nine electropherograms of pooled mouse urine from two strains 
of mice (129 and Swiss). The samples from the second group were measured with a NaOH 
washing step between samples, which introduces a systematic difference between the 
groups and allows to show the robustness of the algorithm. The washing step is important 
in CE–MS. When a biological matrix is introduced, the capillary is contaminated, leading to 
large shifts in migration time, clogging, or even breakdown of the capillary. This is 
especially the case when bare-fused silica in a low pH system is used. There are two 
principal solutions to this problem. The first is changing the capillaries after a certain 
number of runs, introducing some additional variation, and then aligning all the datasets 
using one of the available algorithms. Alternatively, it is possible to regenerate the capillary 
with sodium hydroxide after each run. The second option is more time consuming as it 
requires washing steps with NaOH followed by water. However as we also show here, the 
washing strategy gives better analytical results with less variation in the data. The variation 
in the data without the washing step cannot be entirely eliminated even when advanced 
alignment techniques are used. 

We compared the alignment of 18 electropherograms by our piece-wise alignment and 
by one of the existing methods — XCMS. XCMS was chosen because it is a very powerful 
and quite widely used package, for which our tool can be a useful complement. The 
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workflow of the alignment in XCMS is based on completely different principles and 
includes peak detection and matching prior to time correction. 

The ubiquitous creatinine peak was used for visual inspection and control of the 
alignment efficiency by two programs. The extracted ion chromatograms of creatinine (m/z 
114.12±0.05) are shown in Fig. 2. Both algorithms perform quite satisfactorily but it is 
apparent that XCMS leaves some of the peaks unaligned, whereas msalign2 successfully 
aligned all datasets. 

This may be because the large number of changeable parameters in XCMS makes it 
difficult for the user to optimize the process and find the ideal settings for given sets of data. 
In contrast, msalign2 has a minimum number of parameters, most of which never have to 
be changed between one sample and the next. The free parameters are mass measurement 
error, background threshold, start and end scans for the time interval for alignment, and 
expected variance in elution time. The last is optional, and if the user does not supply it, the 
program will automatically estimate the variance. Mass measurement error is given in ppm 
and depends on the type of mass spectrometer being used and not the separation technique. 
The background threshold should be chosen such that the number of matched masses 
across samples is on the order of 1,000 to get reliable alignments with a reasonable 
computational time. Start and end scan numbers are used to align only the informative part 
of the electropherograms, disregarding intense signals that commonly appear at the 
beginning and end of each run, such as sodium clusters and compounds that have attached 
to the capillary wall and are released during the washing step. The web-application 
contains, besides the alignment algorithm, a tool to estimate the background threshold 
needed to get specified number of matched features for the alignment. 

Another possibility why some misalignment appears in the case of XCMS is that the 
package was primarily designed for LC–MS and can give suboptimal results for CE–MS, 
which may have much larger shifts in time domain. Time shifts are crucial for the matching 
step performed in XCMS before the alignment. Nevertheless it does not decrease the 
applicability and usefulness of the XCMS package as it includes not only an alignment 
algorithm but also powerful peak picking that might for instance be used after performing 
alignment with msalign2. 
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Figure 2. Extracted ion electropherograms of creatinine before alignment, aligned with 
XCMS, and aligned with msalign2. 
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The output of XCMS contains a table with detected features (chromatographic peaks) 
and their intensities throughout all samples. It can be directly used for analysis with any 
statistical package, for instance SIMCA-P+.(19) The output of our algorithm is an mzXML 
file with corrected retention times. This makes it easy to explore how well the alignment 
works. To apply further statistics, one can either perform binning or peak picking from 
these mzXML files. Here we used the peak picking from the XCMS package, so that the only 
difference between the two methods is the alignment step. The resulting tables from both 
alignments were normalized as described above and imported to the SIMCA-P+ software 
package for multivariate analysis. 

PCA is a usual first step in analyzing multivariate data. It shows the correlation structure 
present in the data and the directions of the largest variance. Tables produced by peak 
picking step were normalized and used as input for PCA. The scores plots are shown in Fig. 
3. 
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Figure 3. PCA scores plots: A data from peak picking by XCMS after genetic algorithm 
alignment and B data obtained from XCMS alignment. The variance explained by the 
components is indicated on arrows along the axes. Group 1 (without washing step) is 
indicated by black dots; group 2 (with washing step) is indicated by triangles. 
 

The overall picture is the same in both cases, with the two sample groups nicely 
separated. The datasets acquired with the washing step between each sample show 
significantly smaller variance. However, more variation (>50%) is explained by first two 
principal components with the msalign2 than with the XCMS alignment (<50%). This is 
due to the additional variation introduced by misalignment in XCMS. It is important to 
reduce systematic variability in the data as far as possible, and not introduce additional 
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variability by alignment or normalization procedures that can obscure the chemical species 
correlating with or being responsible for the actual phenomena under study. 

As mentioned above, an important feature of our algorithm is that it uses accurate mass 
information. In theory, the better the mass accuracy, the easier the alignment task. To test 
this hypothesis we generated electropherograms of the same pooled urine using two 
different mass spectrometers: a standard orthogonal TOF (Bruker micrOTOF) and the 
recently released ultrahigh resolution TOF instrument (Bruker maXis). Two main 
differences between these instruments are the resolving power (40,000 vs 20,000 at m/z 600) 
and mass measurement precision (0.8 vs 3 ppm). 

Mass electropherograms generated using these machines were indeed found to differ in 
resolution and mass accuracy. msalign2 performed well on both pairs of data, but as can be 
seen in Fig. 4, there are significantly fewer mismatched features between the maXis datasets 
(7%) than between the micrOTOF datasets (more than 40%). 
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Figure 4. Alignments of CE–MS datasets from two types of instruments—micrOTOF (a) 
and maXis (b). The matched features are presented as gray dots; black line represents 
the trend line found by genetic algorithm. 

 
These results demonstrate that more compounds can be correctly identified based on 

accurate mass with the new UHR-TOF instrument compared to the standard TOF. The 
alignment problem is easier to solve with better mass accuracy, but the genetic algorithm is 
sufficiently robust to find the correct global alignment also between the micrOTOF 
datasets. 
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The genetic algorithm and supporting software is implemented in C, R and is available 
as open source on http://www.ms-utils.org/msalign2. 

Here we presented the application of our algorithm to CE–MS alignment, which is the 
worst case among separation techniques in terms of time reproducibility. As our method 
does not depend on chromatographic parameters and quality, it can as well be used for 
alignment of LC–MS and GC–MS data. 

The analysis of large amounts of data generated by metabolomic, proteomic, 
peptidomic, or other types of “omic” experiments includes many steps, most of which need 
sophisticated algorithms and computational implementation. Small mistakes and 
imperfections on each of these steps can lead to incorrect data interpretation and 
misleading results. The consequences may be even more dramatic in the field of system 
biology when the data from different analytical platforms and from different levels of 
biological organization have to be combined. Alignment of chromato- (electrophero-) 
grams is just one of the steps of data analysis but is an important one and should be the 
subject of careful examination and optimization, as was performed in this study. 

 

CONCLUSIONS 
Here we present a platform-independent, open-source algorithm for alignment of 

complex CE–MS datasets. In contrast to other available alignment algorithms it efficiently 
uses mass information. Performance of MS instrumentation, mass accuracy, and resolving 
power positively affect alignment results. However, we have clearly shown that the 
algorithm is robust enough and performs even with relatively “low cost” MS 
instrumentation. It is shown also that the variation should be reduced not only by means of 
data processing but also by selecting proper experimental conditions. 

As a tool for alignment of CE–MS data, our algorithm outperforms such packages as 
XCMS resulting in reduced variation that appears in multivariate analysis. On the other 
hand, alignment is only a step in the data processing pipeline and as such our algorithm is 
fully complimentary to XCMS. 

Although in this paper we have focused on CE–MS as this approach represents one of 
the most challenging tasks for alignment, the algorithm can obviously as well be used for 
alignment of LC–MS and GC–MS datasets. 
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ABSTRACT 
Metabolic profiling of biological samples is increasingly used to obtain more insight into 

the pathophysiology of diseases. For translational studies, biological samples from animal 
models are explored; however, the volume of these samples can be a limiting factor for 
metabolic profiling studies. For instance, only a few microliters of urine is often available 
from small animals like mice. Hence, there is a need for a tailor-made analytical method for 
metabolic profiling of volume-limited samples. In the present study, the feasibility of 
capillary electrophoresis time-of-flight mass spectrometry (CE-ToF-MS) for metabolic 
profiling of urine from mice is evaluated. Special attention is paid to the analytical 
workflow; that is, such aspects as sample preparation, analysis, and data treatment are 
discussed from the metabolomics viewpoint. We show that metabolites belonging to several 
chemical families can be analyzed in mouse urine with the CE-ToF-MS method using 
minimal sample pretreatment and an in-capillary pre-concentration procedure. This 
exemplifies the advantages of CE-ToF-MS for metabolic profiling of volume-limited 
samples as loss of material is minimized. The feasibility of the CE-ToF-MS-based workflow 
for metabolic profiling is illustrated by the analysis of urine samples from wild-type as well 
as from TTD mutant mice, which are a model for the accelerated aging, with osteoporosis 
being one of the main hallmarks. 
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INTRODUCTION 
Metabolomics is a rapidly developing field in the “postgenomic” research that focuses 

on the global profiling of small endogenous molecules present in body fluids.(1) As end-
points of biochemical processes, endogenous metabolites are directly associated with the 
phenotype of the organism.(2) Consequently, an overview of the metabolic composition of 
body fluids and urine in particular can be helpful for the phenotypic characterization of 
genetically modified animals and eventually for the understanding of the link between 
phenotypic trait and genetic background. 

At present, high-resolution 1H NMR spectroscopy is one of the key technologies for 
body fluid investigations as it is capable of producing fast and highly reproducible 
metabolic profiles in body fluids without the need for the preselection of analytical 
parameters or sample derivatization procedures. For volume-limited samples, a 
miniaturized NMR probe coil can be implemented for the analysis of volumes as low as a 
few microliters.(3) However, a major limitation of NMR still is the relatively poor 
concentration sensitivity compared to MS-based techniques. For GC-MS, 10-50 μL of 
sample is often a minimum volume requirement for sample pretreatment steps (such as for 
example, derivatization), and in LC-MS, injection volumes of 5-10 μL are commonly used 
for metabolic profiling studies. 

With regard to miniaturization, capillary electrophoresis-mass spectrometry (CE-MS) 
(4-6) is a well-suited method, as recently illustrated by single-cell and even subcellular level 
analyses.(7) Moreover, it is possible to simultaneously concentrate and separate analytes in 
a biological sample without any sample pretreatment, which is very advantageous for 
volume-limited samples.(8) 

In the present study, we describe an analytical workflow based on CE-MS for metabolic 
profiling of urine samples from mice. As a model we use TTD mice: fast-aging mice which 
carry a mutation in the XPD gene that is involved in the Nucleotide Excision Repair (NER) 
pathway.(9)  At a first glance, the phenotype of these animals would appear to require no 
additional analysis. They exhibit a series of clear phenotypical changes such as osteoporosis 
and kyphosis, osteosclerosis, early greying, cachexia, infertility, and reduced life-span. 
However, such a complex phenotype may conceal some basic physiological changes in 
animal metabolism essential for understanding the effect of the mutation. Using a 
previously developed CE-MS method for amino acid profiling in human urine as a starting 
point, (10) we here extend this method to metabolic profiling of urine samples from mice, 
including all steps required for the processing and statistical analysis of complex 
samples.(11;12) 
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MATERIALS AND METHODS 
Chemicals. Methanol (MeOH) (HPLC-grade, Biosolve B.V., The Netherlands), 

ultrapure water (18.2 MΩ/cm), and formic acid (FA) (Fluka, Germany) were used for 
solvent preparation. A standard solution of 17 amino acids at 1 mM each in 1 M HCl was 
purchased from Sigma (Sigma-Aldrich, Germany). Dopamine hydrochloride, folic acid, and 
Phe-Gly hydrate were purchased from Fluka (Germany). Sarcosine, theophylline, caffeine, 
nortriptyline hydrochloride, creatinine, 4-O-methyldopamine hydrochloride, homovanillyl 
alcohol, glutathione, thyroxin, and 5-hydroxyindole-3-acetid acid (5-HIAA) were acquired 
from Sigma (Germany). Stock solutions of the 30 reference compounds were prepared in 
water at a concentration of 200 μM. 

Mouse Urine Samples. Animals were housed at the Animal Resource Center (Erasmus 
University Medical Center), which operates in compliance with the “Animal Welfare Act” 
of the Dutch government, using the “Guide for the Care and Use of Laboratory Animals” as 
its standard. As required by Dutch law, formal permission to generate and use genetically 
modified animals was obtained from the responsible local and national authorities. All 
animal studies were approved by an independent Animal Ethical Committee. 

Experiments were performed in accordance with the “Principles of laboratory animal 
care” (NIH publication no. 86-23) and the guidelines approved by the Erasmus University 
animal care committee. The generation of XPDTTD alleles has been previously described.(13) 
XPDTTD homozygous mutant animals were obtained by crossing XPDTTD/+ with XPDTTD/+ 
mice in a pure C57Bl6J background. Wild-type littermates were used as controls. Mice were 
housed in individual ventilated cages with ad libitum access to AIN93 M synthetic food. 

In total, 75 mice were used; 38 TTD mutants and 37 wild-type. Groups were gender 
matched. The urine was collected at 4 time points, 26, 45, 52, and 65 weeks. Each mouse 
urine was collected on a piece of Parafilm between 11.00 and 13.00 h and stored at -70 °C. 
Four microliters of urine was mixed with 4 μL of MeOH, 11 μL of water, and 1 μL of 
background electrolyte (BGE); centrifuged to eliminate any possible sediment remaining; 
and put into vials for injection into the CE instrument. 

Instrumentation. CE was performed on a P/ACE ProteomeLab PA 800 (Beckman 
Coulter, Fullerton, CA). Fused silica capillaries (BGB-Analytik, Germany) with total length 
of 100 cm with 50 μm inner diameter were used for separation. Twenty percent MeOH with 
2 M FA was used as background electrolyte. Sample injection was performed 
hydrodynamically with pH-mediated stacking: a small plug (50 mbar, 9 s) of 12.5% 
ammonium hydroxide (NH4OH) was injected before the sample plug (50 mbar, 90 s). The 
sample plug injected corresponds to a volume of ca. 69 nL, which corresponds to 3.9% of 
total capillary volume. A washing step of 5 min with 0.1 M NaOH was included between the 
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runs. During rinsing with 0.1 M NaOH, the end plate voltage, capillary voltage, and the 
nebulizer were set to 0, which prevented the solution to enter the vacuum part of the MS. 
The separation voltage was +30 kV (yielding a current of ca. 23 μA). 

MS was performed using a micrOTOF (Bruker Daltonics, Bremen, Germany). Transfer 
parameters were optimized by direct infusion of an ESI tuning mix (Agilent Technologies, 
Waldbronn, Germany). Spectra were collected with a time resolution of 1 s. CE-MS 
coupling was realized by a coaxial sheath liquid interface (Agilent Technologies, 
Waldbronn, Germany) with methanol-water-formic acid (50:50:0.1, v/v/v) as sheath liquid. 
The following spray conditions were used: sheath liquid flow, 4 μL/min; dry gas 
temperature, 180 °C; nitrogen flow, 4 L/min; nebulizer pressure, 0.5 bar. Electrospray in 
positive ionization mode was achieved at -4.5 kV. The analytical performance of the CE-MS 
method was evaluated by the analysis of a standard mixture of metabolites throughout the 
experiments. 

Tandem MS analysis was performed using a micrOTOF-Q (Bruker Daltonics, Bremen, 
Germany) instrument.  

Data Analysis. All data files were recalibrated on the masses of sodium formiate 
clusters. For estimation of the number of detected compounds, Find Molecular Features 
algorithm within DataAnalysis (DA) software package (Bruker Daltonics) was used (signal-
to-noise cutoff set to 10, correlation coefficient 0.9). 

The alignment of electropherograms was performed using XCMS software (The Scripps 
Research Institute, La Jolla, CA).(14) The resulting table included the detected ion features 
and their peak areas, which were then normalized using nonparametric normalization.(15) 
Afterwards, data was imported into Simca-P+ software package, version 12.0 (Umetrics, 
Umeå, Sweden) for further multivariate analysis. Following principal component analysis 
(PCA), partial least-squares discriminant analysis (PLSDA), and orthogonal projections to 
latent structures discriminant analysis (OPLS-DA), compounds responsible for group 
separation were found. To identify metabolites of interest, rational chemical formulas were 
generated based on internally calibrated monoisotopic masses within 10 mDa mass error, 
using the SmartFormula tool within the DA. The chemically reasonable formulas were 
submitted to metabolome databases: Kyoto Encyclopedia of Genes and Genomes (KEGG) 
ligand database,(16) the Human Metabolome Database (HMDB),(17) and the METLIN 
database.(18) The isotopic distribution patterns of the matched metabolite candidates were 
simulated with the Simulate Pattern tool of DA and compared with observed mass spectra 
to reduce further the number of potential elemental compositions.(19) 

The results of MS/MS analysis confirmed previously acquired identity of the 
compounds with the help of public databases: HMDB, METLIN, and MassBank.(20) 
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RESULTS AND DISCUSSION 
Recently, we have developed a CE-ToF-MS method for the highly efficient and sensitive 

analysis of amino acids in human urine.(10) The application of this method for phenotype 
characterization using metabolic profiling demands broader coverage of the metabolites. 
Therefore, we first evaluated whether this method can be used for the profiling of diverse 
metabolites. For this, we have analyzed a standard mixture composed of compounds from 
different chemical families: amino acids, alcohols, xanthines, amines, dipeptides, and so 
forth (Supplementary Materials, Table S1). Under the conditions used for separation, pH 
1.8, all basic and amphoteric compounds are positively charged, allowing their migration 
toward the MS detector. Except for glycine, which is outside the selected mass window, all 
the compounds in the standard mix have been analyzed within 30 min (Supplementary 
Materials, Figure S1). Compounds that are doubly charged under the used conditions (e.g., 
lysine, creatinine, histidine) migrated first, followed by amino acids carrying a single charge 
(e.g., threonine, serine, valine, etc.) as well as small peptides (e.g., phenylalanyl-glycine, 
glutathione). The next group is formed by compounds containing phenyl group as well as 
acidic groups (e.g., thyroxin and folic acid). The clear separation of compounds present in 
our standard mix indicates that this CE-MS method can be used for the analysis of various 
classes of metabolites as required in metabolic profiling studies. 

For the evaluation study and testing of the CE-MS method for volume-limited samples, 
a cohort of urine samples from accelerated aging TTD mice was chosen. One of the model’s 
features is significantly reduced body weight: as a consequence the sampling of body fluids 
is difficult and only volume-limited samples can be collected. Thus, CE-MS is the method of 
choice for this particular set of samples. Our workflow included CE-ToF-MS measurement, 
data preprocessing (alignment and normalization), data analysis, and identification of 
metabolites of interest (Figure 1). 

By using pH-mediated stacking as an in-capillary pre-concentration step, around 600 
compounds were detected on average in mouse urine (see Supplementary Materials, Figure 
S2), which is an improvement of 50% compared to the analysis without pH-mediated 
stacking. A substantial fraction of those compounds could be identified on the basis of their 
accurate mass and isotopic pattern. 
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Figure 1. Analytical workflow. 
 

One of the frequently discussed drawbacks of CE-MS using bare fused silica capillaries 
is the lack of migration time reproducibility. Therefore, XCMS, which is a package 
combining alignment, peak picking, and statistical analysis, was used for data analysis.(14) 
The output contains detected ion features and their areas across all samples. To find 
features responsible for the separation of the groups of animals, a multivariate data analysis 
approach was used, including unsupervised as well as supervised methods. Prior to 
statistical analysis, nonparametric normalization was done, as previously described, (15) 
which unifies distributions of variables. Performing principal component analysis (PCA) on 
the set of standards run between blocks of mouse urine samples, it is clear that the variation 
present in the group of biological samples is much larger than the variation between 
standards (Figure 2A). This means that the analytical variation does not interfere with 
natural variation between the samples under study. PCA models were also computed for the 
whole cohort (Supplementary Materials, Figure S3) as well as for samples of male and 
female mice separately (Supplementary Materials, Figure S4). None of the PCA scores plots 
showed clustering of the samples according to genotype. This is not unusual in metabolic 
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profiling studies as the differences of interest might be small and obscured by the relatively 
large, intrinsic variation between biological samples. To reveal this information, supervised 
methods were used. Partial least squares discriminant analysis (PLS-DA) model for the 
whole cohort was quite poor (R2Y = 0.71, Q2 = 0.28). However PLS-DA models, computed 
for males and females separately, showed that for females the model was quite satisfactory 
with R2Y and Q2 parameters equal to 0.977 and 0.5, respectively, unlike for males with very 
low predictive ability (R2Y ) 0.78, Q2 < 0, Supplementary Materials, Figure S5). Female 
mice were chosen for modeling differences between wild-type and mutant phenotypes and 
retrieval of compounds responsible for separation between them. Next, orthogonal PLS-DA 
(OPLS-DA) was used to separate systemic noise from variation correlated with the studied 
classes’ discrimination. The scores plot for OPLS-DA model (Figure 2B) shows that the 
wild-type and mutants are clearly separated from each other. 

 

-15

-10

-5

0

5

10

15

20

-40 -20 0 20 40 60

PC
2

PC1

Samples
Standards

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

-3000 -2000 -1000 0 1000 2000 3000

PC
or

th
og

on
al

PC1

TTD
WT

A B

 
Figure 2. Multivariate data analysis of obtained CE-MS data. (A) PCA scores plot on 
samples (white boxes) and standards (black circles). First two principal components 
cover 56.8% of the variation. (B) OPLS-DA scores plot discriminating wild-type female 
mice (black circles) from mutant TTD female mice (white boxes). 
 

The compounds responsible for discrimination between classes have been chosen based 
on an S-plot, which shows the compounds’ importance and reliability (modeled covariance 
higher than 0.13 or less than -0.13, modeled correlation more than 0.2 or less than -0.2). 
Seven compounds fulfilled these criteria and were used for further analysis as possible 
markers of TTD phenotype (Table 1). 
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Identification of compounds of interest was performed using the SmartFormula tool 
within the Bruker Daltonics’ DataAnalysis software package and various databases. As some 
of the tentatively identified compounds were also present in the standard mixture, their 
migration times were compared and confirmed. The chemical structures of these 
compounds have been confirmed by tandem mass spectrometry. A sample MS/MS spectra 
for the compound with the mass 399.1459 (S-Adenosyl-L-Methionine) is shown in Figure 
3. Only one compound with mass 151.1443 has not been identified. 
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Figure 3. MS/MS spectrum for the compound of interest with mass 399.1459. 
 

Regardless of the analytical method used (NMR, LC-MS, GC-MS), the interpretation of 
the biological significance of metabolic profiles is based only on a fraction of the 
metabolome accessible to a particular technique, and CE-MS is not an exception. Despite 
the mentioned above bias toward polar, positively charged metabolites, our method was 
capable of revealing gender specific effects of the mutation. The identified classifiers 
contribute most significantly to the stability of OPLS model, but an attempt to build a 
biological interpretation solely on those classifiers could be misleading. The measured 
perturbation in the metabolic composition of mouse urine is a result of complex interplay 
of many physiological processes. Thus, it is more practical to treat those metabolites as a 
part of the metabolic “signature of the phenotype” rather than the fingerposts to the 
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particular pathways. Nevertheless, some of the identified metabolites deserve at least a brief 
comment. 

For example, one of these compounds, histidine, is a classical “usual suspect”.(21) Such 
compounds are often reported as differential metabolites in many pathological states (e.g., 
(22;23)), but because they are involved in a large number of biochemical processes, it is 
difficult to assign them to a specific pathway. L-lysine has been associated with effects on 
bone health, as it stimulates intestinal calcium absorption and cross-linking of bone 
collagen. Because TTD mice exhibit spontaneous development of osteoporosis, this 
particular molecule and its relation to bone density, for example, would be interesting to 
investigate further. N-acetylspermidine and trimethyl-L-lysine are linked in their 
biosynthesis to another identified classifier, S-adenosyl-L-methionine. Their simultaneous 
change can indicate the existence of an underlying mechanism regulating them. N-
Acetylspermidine is involved in processes of cell growth and differentiation, in adaptation 
of the cell to a range of stress conditions, and in protection of DNA, lipids, and proteins 
from oxidative damage. S-Adenosyl-L-methionine is a methyl donor; methylation is one of 
the mechanisms of regulation of cell growth and differentiation as well as the main 
epigenetics gear. It is also important for generation of an antioxidant glutathione. As these 
TTD mice suffer from oxidative damage of DNA that is not repaired by DNA-repair 
mechanism, up-regulation of the compounds related to antioxidant defense may indicate 
activation of other protective mechanisms. 

To summarize, we have shown that CE-ToF-MS is a very attractive method for 
metabolic profiling in urine especially in studies with mice where the sample amount is 
rather limited. Using this method, we have demonstrated differences in metabolic 
composition between wild-type and mutant animals. These differences were found to be 
more prominent within female mice, which is in accordance with other phenotypical 
observations. The identified discriminating compounds would appear to be an interesting 
group of molecules and need further investigation. 

 

CONCLUSIONS 
In this work, we have outlined an analytical workflow based on CE-MS for metabolic 

profiling of volume-limited samples, that is, mouse urine. We have shown that with a 
limited amount of sample a wide array of metabolite classes can be covered in mouse urine 
with the CE-MS method using minimal sample pretreatment and in-capillary 
preconcentration. The CE-MS method outlined here is especially suited for the profiling of 
cationic metabolites. In the near future, we will extend this methodology to the profiling of 
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acidic compounds at high pH separation conditions to further increase the detection 
coverage of metabolites in urine. 

The feasibility of the CE-MS-based workflow for small-sized samples was shown for 
urine samples from TTD mutant mice. Multivariate analysis of the preprocessed data 
showed that changes in cationic metabolites are more prominent in female mice. A number 
of classifiers were identified based on high-resolution MS data as well as fragmentation 
pattern in MS/MS experiments. These compounds are interesting and the alterations in 
their concentrations can be related to oxidative defense in the mutant animals. 
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SUPPLEMENTARY MATERIALS 
 
Table S1. Compounds included in the standard mixture. 

Alanine 
Arginine 

Aspartic acid 
Cysteine 

Glutamic acid 
Glycine 

Histidine 
Isoleucine 

Leucine 
Lysine 

Methionine 
Phenylalanine 

Proline 
Serine 

Threonine 
Tyrosine 

Valine 
Sarcosine 

Amino acids 

Thyroxine 
Alcohols Homovanillyl alcohol 
Pterins Folic acid 

Caffeine 
Xanthines and related coumpounds 

Theophylline 
Compound with Indoles group 5-hydroxyindole-3-acetic acid 

Amines Nortriptyline 
Dopamine 

Compounds with Hydroxyl and Amine groups 
4-O-Methyldopamine 

Compounds with Imidazol groups Creatinine 
Dipeptides Phe-Gly 
Tripeptides Glutathione 
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Figure S1. Combined extracted ion electropherograms of compounds present in 
standard mixture. 
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Figure S2. Typical metabolic profile of mouse urine by CE-MS. (A) Total ion 
electropherogram and extracted ion electropherograms. (B) Masses of the most intense 
peaks in the spectrum. 
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Figure S3. PCA scores plot for 75 mouse urine samples. 
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Figure S4. PCA scores plot for male (A) and female (B) mice. 
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Figure S5. Overview of PLS-DA models for male (A) and female (B) mice. 
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ABSTRACT 
Aging is a fundamental biological process for which the mechanism is still largely 

unknown due to its complex and multifactorial nature. Animal models allow us to simplify 
this complexity and to study individual factors separately. As there are many causative links 
between DNA repair deficiency and aging, we studied the ERCC1d/- mouse, which has a 
modified ERCC1 gene, involved in the Nucleotide Excision Repair, and as a result has a 
premature aging phenotype. Profiling of these mice on different levels can give an insight 
into the mechanisms underlying the aging phenotype. In the current study, we have 
performed metabolic profiling of serum and urine of these mice in comparison to wild type 
and in relation to aging by 1H NMR spectroscopy. Analysis of metabolic trajectories of 
animals from 8 to 20 weeks suggested that wild type and ERCC1d/- mutants have similar 
age-related patterns of changes; however, the difference between genotypes becomes more 
prominent with age. The main differences between these two genetically diverse groups of 
mice were found to be associated with altered lipid and energy metabolism, transition to 
ketosis, and attenuated functions of the liver and kidney. 
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INTRODUCTION 
Aging is a complex biological process that involves multiple systems at different 

regulation levels. Understanding of its mechanisms will allow better understanding of the 
impairment of human health that occurs at old age.(1) Despite many efforts, the etiology of 
aging is still largely unknown. It is evident that it cannot be explained by a single or a couple 
of mechanisms but rather by a complex network of interdependent processes involved.  

Several theories have been proposed for mechanisms of aging, one of them being “free 
radical theory of aging”.(2;3) According to this theory, free radicals represent the greatest 
danger for DNA, which is the blueprint for all genes and therefore RNAs and proteins. If 
DNA is irreversibly damaged, this has severe consequences for human health, which is 
illustrated by several human inherited DNA repair deficient disorders, which all show signs 
of premature aging. Examples of these diseases are Trichothiodystrophy and Cockayne 
syndrome, which both bear mutations in genes involved in nucleotide excision repair 
(NER) and as a result develop a plethora of premature aging symptoms including, but not 
limited to, neuronal problems, growth retardation, vision and hearing impairment, and a 
greatly reduced lifespan.(4) This illustrates the importance of DNA repair and hints at the 
fact that unrepaired DNA damage results in an aging phenotype. 

Due to its complex nature and the time involved to develop the phenotype, aging is 
difficult to study in humans. A possible alternative is the use of animal models such as mice, 
nematodes, and others.(5) The ERCC1-/- mouse with a single gene knockout in nucleotide 
excision repair system is one of such model animals.(6) The ERCC1 gene encodes a protein 
that is part of an endonuclease complex essential for both NER and interstrand cross-link 
repair (ICLR).(7) These mutant mice have a significantly reduced lifespan of up to 4 weeks 
only and a severe premature aging phenotype with a range of features including aging-like 
skin abnormalities, reduced growth, liver and kidney dysfunction, as well as others.(8) This 
extremely short lifetime makes it difficult to monitor the progression of aging, and the 
highly anomalous phenotype does not only reflect fast aging. The ERCC1d/- mouse 
combines knockout of ERCC1 in one allele and a truncated ERCC1 allele (9) and helps to 
overcome those extreme effects, as this delays the display of symptoms of aging and 
prolongs the lifespan. The resulting phenotype shows premature aging features such as 
neurological problems, impaired vision and hearing, growth retardation, a shortened 
lifespan of about 6 months (as compared to 2.5/3 years for a wild type mouse), and also 
accumulation of somatic mutations.(10)  

ERCC1d/- mice aging phenotype is expected to be reflected in the composition of 
biofluids. This can be the subject of investigation by proteomics, glycomics, or 
metabolomics. The latter is of particular interest as it is focused on studying small 
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molecules that are end-points of biochemical processes and can give insight into changes 
happening in the whole organism.(11;12)  

One of the established methods in metabolomics is nuclear magnetic resonance (NMR), 
which allows measurement and recovery of molecular information over a wide range of 
small compounds.(13;14) 

Two main questions arise with regard to metabolic profiling of ERCC1d/- mice. The first 
one is how different the metabolome of a particular biofluid of the mutant mice is from that 
of the wild type. The other one is how the metabolic profiles change with aging of ERCC1d/- 
animals in general and in comparison to changes that occur in normal mice. These 
questions imply that the experimental design should include both mutants and wild type 
mice as well as follow the same animals to monitor metabolic changes with aging in a 
longitudinal design. To answer these types of questions on the basis of NMR, data 
multivariate statistical analysis tools (e.g., Principal Component Analysis, Partial Least 
Squares etc.) are needed.(15;16) 

In the current study, we have analyzed cohorts of serum and urine samples from wild 
type and ERCC1d/- mutant mice by 1H NMR and have detected compounds that differ 
between the groups as well as specific age-related changes. The biological significance of 
these findings is discussed. 

 

MATERIALS AND METHODS 
Sample Collection. Experiments were performed in accordance with the “Principles of 

laboratory animal care” (NIH publication no. 86-23) and the guidelines approved by the 
Erasmus University animal care committee. The generation of ERCC1- and ERCC1d alleles 
has been previously described.(9) ERCC1d/- mice were obtained by crossing ERCC1- with 
ERCC1d/+ mice of C57Bl6J and FVB backgrounds to yield ERCC1d/- with C57Bl6J/FVB 
hybrid background. Wild-type littermates were used as controls. Mice were housed in 
individual ventilated cages with ad libitum access to standard mouse food (CRM pellets, 
SDS BP Nutrition Ltd.; gross energy content 18.36 kJ/g dry mass, digestible energy 13.4 
kJ/g) and water. Food intake was measured for animals individually; no difference for the 
studied group of ERCC1d/- mutants compared to wild type animals was observed for the 
studied age group relative to the body weight (table with body weights of groups of animals, 
Supplementary Materials, Table S1). 

Longitudinal serum samples were collected from 20 animals, 10 wild type and 10 
ERCC1d/- mutants, gender matched, at 4 time points - 8, 12, 16, and 20 weeks. Blood was 
collected via extraction from the tail vein, after which serum was collected by centrifugation 
at 6000 rpm and the supernatant was transferred to a fresh tube and stored at -70 °C. A few 
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samples were missing or had too small a volume, so that the total number of samples 
measured was 70. 

Urine samples were collected from 13 wild type animals and from 13 ERCC1d/- mutants, 
with unbiased selection of gender and age between 8 and 16 weeks. Urine of animals was 
collected on a piece of Parafilm between 11.00 and 13.00 h for each mouse and stored at -70 
°C. 

Blood glucose was measured using a Freestyle mini blood glucose measurement device 
(Abbott Diabetes Care). 

NMR Sample Preparation. For sample preparation, buffer was added to all samples to 
reduce variability in pH and supply a deuterated lock solvent. The specific buffers for urine 
and serum are described below. 

For serum preparation, 60 μL of 75 mM phosphate buffer in H2O/D2O (80/20) at pH 7.4 
containing 6.15 mM NaN3 and 4.64 mM sodium 3-[trimethylsilyl] d4-propionate (TSP) was 
added to 20 μL of serum and manually transferred into Bruker 1.7 mm NMR Match tubes. 

For urine preparation, 40 μL of 0.20 M phosphate buffer in D2O at pH 7.0 containing 
0.26 mM NaN3 and 0.53 mM TSP was added to 40 μL urine and manually transferred into 
Bruker 1.7 mm NMR Match tubes. 

NMR Spectroscopy. All NMR experiments were acquired on a 600 MHz Bruker Avance 
II spectrometer (Bruker BioSpin, Karlsruhe, Germany) equipped with a 5 mm TCI 
cryogenic probe head with Z-gradient system and automatic tuning and matching. 
Temperature calibration was done prior to each batch of measurements using the method 
of Findeisen et al.(17) 

For urine, one-dimensional 1H NMR spectra were recorded at 300 K using the first 
increment of a NOESY (18) pulse sequence with presaturation (γB1 = 50 Hz) during a 
relaxation delay of 4 s and a mixing time of 10 ms for efficient water suppression. A total of 
32 768 data points were recorded with 32 scans covering a sweep width of 12336 Hz. The 
free induction decay (FID) was zero-filled to 65 536 complex data points prior to Fourier 
transformation and an exponential window function was applied with a line broadening 
factor of 1.0 Hz. 

For serum, 1D NOESY and 1D diffusion edited(19) experiments were recorded at 310 
K. Presaturation with an effective field of 50 Hz during a relaxation delay of 4 s was applied 
and a total of 98 304 data points were recorded covering a sweep width of 18 029 Hz for 
both experiments. For 1D NOESY, a total of 32 scans were accumulated with water 
resonance saturation (γB1 = 50 Hz) during a mixing time of 10ms. For the diffusion edited 
1D experiment, a gradient echo delay of 116 ms was utilized and a total of 64 scans were 
recorded for each sample. For both experiments, the FID was zero-filled to 131 072 complex 
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data points prior to Fourier transformation and an exponential window function was 
applied with a line broadening factor of 1.0 Hz. All spectra were manually phase and 
baseline corrected using Topspin 2.1 (Bruker BioSpin, Karlsruhe, Germany) and 
automatically referenced to TSP (0.0 ppm). 

Data Analysis. Each spectrum was integrated using 0.04 ppm integral regions between 
11 and -1 ppm, excluding the residual water region in serum spectra from 5.0 to 4.6 ppm, 
the residual water and urea region in urine spectra from 5.0 to 4.7 ppm and from 6.2 to 5.6 
ppm respectively, and the TSP signal from 0.025 to -0.025 in both sets of spectra. The citrate 
region in urine spectra was integrated using spectral regions from 2.76 to 2.66 ppm and 
from 2.60 to 2.52 ppm to avoid effects introduced by positional noise of the peaks due to 
differences in ion strength and pH between the samples. To account for any difference in 
concentration between samples, each spectrum was normalized to its total area. 

Data sets were imported into SIMCA-P+ 12.0 (Umetrics, Umeå, Sweden) to perform 
multivariate statistics: principal component analysis (PCA) and partial least squares 
discriminant analysis (PLS-DA). The partial least squares (PLS) method was used for 
analysis of time changes in spectra with aging of the animals. Pareto scaling was used for all 
the statistical models. 

Identification of metabolites was facilitated by using the Statistical Total Correlation 
Spectroscopy (STOCSY) approach (20) using in-house developed routines written in R 
statistical language (http://www.r-project.org/). This method determines and visualizes 
correlations between peaks in sets of NMR spectra, allowing annotation of peaks belonging 
to the same molecule. Annotation of peaks was performed based on reference spectra from 
the Bruker Bioref database (Bruker BioSpin, Karlsruhe, Germany). 

For visualization of differentially expressed metabolites, spectra were aligned using the 
COW algorithm (21) and averaged. 

For glucose quantification, all non-normalized spectra were referenced to the doublet in 
the anomeric region. Quantification was performed by deconvolution and subsequent 
integration of glucose anomeric signal (5.25-5.22 ppm) using an in-house developed 
automation routine (see Supplementary Materials). The absolute concentrations were 
calculated based on internal reference TSP with correction for TSP protein binding and 
line-broadening effects. 

 

RESULTS 
Profiling of Serum Metabolites in ERCC1d/- Mice by 1H NMR. PCA analysis of the 

integrated (binned) NOESY data reflects both effects of genotype (differences between wild 
type and mutants) (Figure 1A) and age-related differences (Figure 1B). The first two 
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principal components cover more than 65% of the variation and reflect these biological 
processes. No gender-related separation was observed. 
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Figure 1. Multivariate statistical analysis of serum NMR data. (A) PCA scores plot, wild 
type (■) and ERCC1d/-mutant mice (Δ). (B) PCA scores plot, 8 weeks (■), 12 (Δ), 16 (◊) 
and 20 (□) weeks mouse samples. (C) Batch PLS scores plot of serum samples mapped 
across the different ages. Dashed horizontal lines show two and three standard 
deviations for the data set. Dashed lines represent wild type, grey lines represent 
ERCC1d/- mutants. (D) PLS-DA scores plot (for first two principal components R2Y = 
60.3%, Q2 = 56.9%) showing discrimination between wild type (■) and ERCC1d/-mutant 
mice (Δ). 
 

The PCA scores plot (Figure 1B) shows that profiles of both mutants and controls at 8 
weeks considerably differ from profiles at other ages. Dependence on the age was studied 
using PLS batch analysis; the clear trend on the age could only be seen along the first 
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principal component (Figure 1C), while along the other components variation is not related 
to the lifetime. Compounds associated with the age component were found to be mainly 
related to lipids and lipoproteins (Supplementary Materials, Figure S1). 

In addition, Figure 1C shows that while at 8 and 12 weeks there is overlap between wild 
type and mutant animals along the first component, at 16 weeks they start to separate and at 
20 weeks mutant animals are completely distinct from the wild type and show less 
intragroup variation. This observation was also confirmed by building separate PLS-DA 
models at all four ages. The separation efficiency and model quality increased with age; the 
explained variation of the response variable (R2Y) values for the models were from 50% at 8 
weeks to 87% at 20 weeks, while the variation of the response variable predicted by the 
model (Q2) increased from 10% to 80%. 

Further investigation of the differences between wild type animals and mutants and 
identification of the molecular discriminators was performed using a PLS-DA model built 
with the genotype as response variable (Figure 1D). Model validation using permutation 
test showed a good fit and validity of the model (Supplementary Materials, Figure S2). 
Spectral regions responsible for separation of the two groups were selected on the basis of 
VIP values (variable importance in the projection); variables with values over 1.5 were 
selected. The identity of the underlying compounds was investigated based on the chosen 
spectral regions. However, identification of chemical structures based only on a single peak 
that falls into a specified bin interval can be difficult. To assist annotation of key 
discriminators, the STOCSY approach was used. In this method correlations between a 
selected peak and all other peaks in the spectra are explored and visualized; peaks 
characterized by high correlations belong to the same molecule and can be confidently 
annotated using reference spectra (Supplementary Materials, Figure S4). 

As can be seen from Table 1, most of the compounds responsible for separation of 
mutant mice from wild type are related to lipoprotein distribution and concentrations and 
some of these regions were also found to be associated with age trajectories. 

In addition to changes in the lipid profile, lactate is decreased and alanine is increased. 
Averaged spectra from both of the groups with selected compounds highlighted are shown 
in Figure 2. 

Investigation of the line shapes of diffusion edited spectra in the region of aliphatic CH3 
and CH2 lipid resonances allows us to estimate relative changes of different classes of 
lipoproteins.(22) The differences in the lipid region between the two groups indicate that 
ERCC1d/- mutants show an increased level of high density lipoproteins (HDL) and a 
decreased level of low and very low density lipoproteins (LDL and VLDL respectively) 
compared to wild type (Figure 3). 
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Table 1. Integrated regions (bins), which show different concentrations between serum 
profiles of wild type and mutant animals. 

spectral region, ppm fold changea identity p-valueb 

1.52-1.48 1.1 Alanine 4.81E-12 

0.68-0.64 1.14 Unidentified 2.11E-10 

1.6-1.56 -1.15 Lipid CH2CH2CO 1.53E-09 

2.28-2.24 -1.24 Lipid CH2CO 2.13E-09 

2.08-2.04 -1.16 N-acetyl glycoproteins 3.84E-09 

1.12-1.08 1.09 Unidentified 6.62E-09 

0.92-0.88 -1.21 Lipoproteins 1.93E-08 

1.56-1.52 1.08 Unidentified 2.41E-08 

1.32-1.28 -1.49 Lipid (CH2)n 3.89E-08 

0.88-0.84 1.18 Lipoproteins 8.65E-08 

1.36-1.32 -1.28 Lactate 1.90E-07 

3.24-3.2 1.3 Choline –N(CH3)3 1.09E-06 

1.4-1.36 -1.16 Lipoproteins 1.46E-06 

2.12-2.08 -1.05 Unidentified 1.67E-06 

5.36-5.32 -1.34 Unsaturated lipids 5.89E-06 

1.24-1.2 1.16 Lipoproteins 1.57E-05 

2-1.96 1.05 Lipid 5.33E-05 

1.28-1.24 1.16 Lipoproteins 5.64E-05 

4.16-4.12 -1.1 Lactate 6.29E-05 

a Calculated as difference in mean levels in ERCC1d/- mutant relative to wild type animals. The + and - indicate the 
direction of the change, i.e. - for reduced level in ERCC1d/- samples, + for increased level in ERCC1d/- samples 
compared to wild type. 
b Unpaired t-test using a Benjamini–Hochberg correction for the p-values. 
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Figure 2. Averaged 1H NMR spectral regions of serum from wild type (above) and 
ERCC1d/- mutant (below) animals. Differential metabolites are highlighted; ▼stands for 
down-regulated,  ▲ for up-regulated compounds. 
 

Glucose was measured in blood samples by a glucose measurement device (Freestyle 
mini, Abbott Diabetes Care), and its concentrations were found to be different between the 
animals with different genetic backgrounds (Supplementary Materials, Figure S5A), p-value 
obtained by t test is 0.001. However, ppm regions corresponding to glucose did not appear 
to have an influence in multivariate analysis. The reason for this might be that there are 
broad signals that overlay the glucose peaks due to high protein content of the samples. 
That is why proper deconvolution and integration were needed to correctly quantify 
glucose. Results obtained from NMR data were similar to those received by a conventional 
method (Supplementary Materials, Figure S5B). The trend was the same: glucose is lower in 
ERCC1d/- animals than in wild type (p-value obtained by t test is <0.001). 
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Figure 3. Spectral region corresponding to lipoproteins, averaged diffusion edited 
spectra of wild type (dashed line), and ERCC1d/-mutants animals (grey line). 
 

Profiling of Urine Metabolites in ERCC1d/- Mice by 1H NMR. Global changes in 
biochemical processes in the organism should be reflected not in one particular biological 
fluid, such as blood, but should also be seen in others, for instance urine. Longitudinal 
collection of sufficient quantities of urine from the same animals from which serum was 
collected was not feasible due to the small size of the mutant animals and difficulties with 
their urination. However, we performed analysis of urine obtained from a different cohort. 

As a first step, a PCA model was built that showed clear separation of wild type animals 
from ERCC1d/- mutants (Figure 4A). PLS-DA was performed, which gave a very good 
model with R2Y = 91.7 and Q2 = 85.3% for the first two components. On the basis of this 
model, variables responsible were identified and annotated (Table 2). The average spectra 
from both of the groups with these compounds highlighted are shown in Figure 4B. There 
are other differential signals visible in averaged spectra, but those were not found to be 
statistically significant. 



 

94 

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

-0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8

P
C

2

PC1

Wild type
ERCC1d/-

0
0.

00
05

0.
00

10
0.

00
15

N
or

m
al

iz
ed

 in
te

ns
ity

4.5 4.0 3.5 3.0 2.0 1.5 1.0 0.5

0
0.

00
05

0.
00

10
0.

00
15

ppm

N
or

m
al

iz
ed

 in
te

ns
ity

Wild type

ERCC1d/-

mutant

hippurate

glycine
taurine

citrate
2-oxo-
glutarate

succinate

glutam
ine

lactate
3-hydroxy-butyrate

glucose

alpha-keto-acids

A B

 
Figure 4. Urine 1H NMR analysis. (A) PCA scores plot on urinary metabolic profiles 
scores plot, first two principal components cover 35.7% and 23.3% of variability, 
respectively. Separation between wild type (■) and ERCC1d/- mutant mice (Δ) is visible. 
(B) Averaged 1H NMR spectral regions of urine samples of wild type (above) and 
ERCC1d/- mutant (below) animals. Differential metabolites are highlighted; ▼ down-
regulated compounds, ▲ up-regulated compounds. 
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Table 2. Integrated Regions (Bins), which Show Different Concentrations between 
Urine Profiles of Wild Type and Mutant Animals. 

ppm fold changea identity p-valueb 

0.96-0.92 -1.56 Alpha-keto acids 7.48E-11 

2.64-2.6 -1.59 Ketoleucine 2.08E-10 

1.16-1.12 -1.7 Alpha-keto acids 1.60E-09 

2.76-2.64 2.18 Citrate 1.60E-05 

7.28-7.24 -2.07 Unidentified 4.46E-05 

0.92-0.88 -1.49 Alpha-keto acids 5.62E-05 

2.6-2.52 2.24 Citrate 9.03E-05 

2.16-2.12 1.76 Glutamine <0.0002 

3.24-3.2 1.53 Unidentified <0.0002 

1.36-1.32 2.12 Lactate 0.001 

3.56-3.52 1.39 Glucose 0.001 

7.56-7.52 -2.51 Hippuric acid 0.001 

7.84-7.8 -2.68 Hippuric acid <0.002 

3.28-3.24 1.32 TMAO 0.002 

4-3.96 -1.46 Hippuric acid 0.003 

3.32-3.28 -1.74 Taurine 0.006 

3.52-3.48 1.57 Glucose 0.007 

3.6-3.56 1.33 Glycine 0.02 

5.4-5.36 -1.19 Allantoin 0.03 

2.48-2.44 1.38 2-Oxoglutarate 0.05 

2.44-2.4 1.15 Succinate 0.14 

1.24-1.2 1.03 3-Hydroxybutyrate 0.43 

a Calculated as difference in mean levels in ERCC1d/- mutant relative to wild type animals. The + and - indicate the 
direction of the change, i.e. - for reduced level in ERCC1d/- samples, + for increased level in  ERCC1d/- samples 
compared to wild type. 
b unpaired t-test using a Benjamini–Hochberg correction for the p-values 
 

DISCUSSION 
ERCC1d/- mutant mice represent a model which can provide insight into the biological 

processes involved in aging.(9) While phenotypic changes that occur in these animals have 
been characterized before, this is the first study in which the global profiling on the 
metabolite level was done by NMR. 
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For both serum and urine, PCA was performed as a first step of data analysis to evaluate 
the structure present in the data. Unsupervised analysis of 1H NMR serum spectra showed 
that the major variance in the data matrix reflects two biological phenomena: animal 
genotype (Figure 1A) and their lifetime (Figure 1B); both are represented with the first two 
principal components covering together more than 65% of the variation. To explore the 
effects of those phenomena on metabolic profiles of the body fluids of the animals, 
supervised methods such as PLS-DA, for example, were employed. 

Batch PLS analysis was chosen to explore more in-depth age-related changes. This 
analysis as well as PCA showed that 8 weeks old mice are considerably different from mice 
at older age, and this is true for both wild type and mutant mice. This might be due to the 
fact that at around 10 weeks the maturity of mice sets in and this is expected to involve 
serious changes in the overall metabolism which are reflected in the NMR spectra. It was 
also found that the difference between the sample groups is more prominent at older ages, 
while at younger ages metabolic profiles of mutant and wild type animals are more similar. 
This fact indicates that ERCC1d/- mutant animals develop more or less normally until the 
point of a sexual maturity, but begin to exhibit accelerated aging after reaching maturity 
and hence are a very good model for senescence and biological aging.  

The effect of genotype on metabolic composition of serum was studied by PLS-DA 
which revealed a number of compounds altered between the groups. 

Most of the differences in serum between wild type and mutant animals were found to 
be associated with lipids, either increased or decreased in mutants compared to wild type 
mice. It has been hypothesized that fast aging mice, which have disruptions in the NER 
pathway, might have the corresponding adaptive “survival” response of the organism 
similar to that of caloric restriction.(23;24) In this respect, analysis of the relative changes in 
lipid and lipoproteins might be of special interest, because in caloric restriction a specific 
pattern of changes in lipoprotein composition of blood has been shown.(25) Line shapes in 
the lipoprotein region in diffusion-edited spectra indicate that in ERCC1d/- mutant mice 
LDL and VLDL are decreased and HDL is increased, and this pattern of changes indeed 
resembles the state of caloric restriction. 

Both the conventional method and NMR-based quantification showed that glucose is 
decreased in serum of ERCC1d/- mutants compared to wild type (Supplementary Materials, 
Figure S5). This is another indication for a phenotype that resembles caloric restriction. 
Low levels of another compound derived from the glucose metabolism, lactate, were 
observed in serum samples of ERCC1d/- mutants compared to controls; its decrease might 
be related to a decrease in the Cori cycle. 



Chapter 4 

97 

It is obviously of particular interest to see how the changes in serum are comparable 
with alterations in urine composition, if any of the biochemical processes reflected in one of 
the biofluids can as well be seen in the other. Therefore, we performed analysis of urine 
from a smaller cohort to investigate the involvement of the biochemical processes obtained 
by serum analysis. 

In contrast to serum, glucose and lactate were found to be elevated in urine of mutants 
compared to wild type animals. Compounds of the TCA cycle: citrate, succinate, and 2-
oxoglutarate - also showed higher levels in urine of ERCC1d/- mice compared to wild type 
animals. These compounds are involved in a large number of biochemical processes, and 
their alterations are difficult to interpret as they might occur due to a variety of reasons.(26) 
One of the possible explanations for the observed opposite changes of glucose metabolites 
in blood and urine is the kidney dysfunction, which leads to an impaired reabsorption of 
these molecules in renal tubules.(27) 

In urine, there is an indication of the altered energy metabolism as well; it was found to 
be switched to fatty-acids utilization, shown by the presence of 3-hydroxybutyrate, one of 
the ketone bodies. This compound was found present only in ERCC1d/- mice while in wild 
type animals there is another unidentified compound present with a singlet in the same 
region as the doublet of 3-hydroxybutyrate (Supplementary Materials, Figure S6). This 
would explain the low fold-change value in Table 2 for 3-hydroxybutyrate as the values are 
calculated for integrated intensities in the binned region. Together with low glucose in 
blood, the presence of 3-hydroxy-butyrate is an indication of ketosis.(28) in the mutant 
mice. It is important to note that no difference in food intake relative to the body weight 
was observed in ERCC1d/- mutants compared to wild type controls. This means that the 
switch to ketosis in these animals occurs not as a response to food deficiency.  

Other compounds observed that might be changing due to ketosis are alpha-keto acids 
(2-oxo-3-methylbutanoic, and 2-oxo-3-methylpentanoic acids), which can be used in liver 
as a source of energy and ketoleucine that can also be utilized in the liver, resulting in the 
production of ketone bodies.(29) 

However, the comparison of our findings with previous studies on caloric 
restriction(30;31) reveals not only the resemblance but some important differences such as 
dissimilar changes in lactate, hippurate, succinate, and other compounds. Thus, metabolic 
phenotype of ERCC1d/- mice cannot be reduced to the caloric restriction but reflects a 
complex, systemic effect of a mutation.  

The significantly increased level of citrate in urine of ERCC1d/- mice might point to 
metabolic alkalosis in these mice.(32) This supposition is strengthened by the fact that 
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glutamine, which is also related to maintaining acid-base balance,(33) was also found to be 
elevated in urine. 

Kidney malfunction may be the reason for the decrease of hippuric acid secretion, which 
normally occurs through renal tubules. The decrease of taurine in urine, an important 
component of bile, as well as the decrease of allantoin in urine may reflect liver 
dysfunction.(34) Hepatic dysfunction might also be indicated by increased alanine in blood. 
Although pronounced kidney and liver dysfunctions develop in ERCC1d/- mice at a much 
older age (after 30 weeks), these compounds found in urine point at attenuated function of 
these organs already at an earlier age. 

In conclusion, besides changes associated with malfunctions of some organs, the NMR 
data indicated that in ERCC1d/- mice a specific “survival” response is activated that 
primarily alters energy metabolism and leads to ketosis. These results are in line with the 
previous observations for the double knockout of ERCC1 gene in comparison to caloric 
restriction that showed almost identical changes in transcription and biochemistry 
mediated by insulin pathway.(8) 

 

CONCLUSIONS 
Using profiling by 1H NMR and subsequent multivariate statistical analysis, differences 

in metabolic composition of both serum and urine between wild type and ERCC1d/- mice 
were found. Dependence of the profiles on age was clearly present, showing that a major 
change happened between 8 and 12 weeks in both of the genetically different classes of 
animals, which most probably reflects the time of their sexual maturity. 

Differences in molecular composition assessed by NMR in serum and urine indicate a 
relative change of lipoproteins (decrease in LDL and VLDL, increase in HDL in mutants 
compared to controls), a shift of the energy metabolism to ketosis, as well as kidney and 
liver malfunction and possibly metabolic alkalosis in mutant mice. 
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SUPPLEMENTARY MATERIALS 
 
Table S1. Mean body weight, g (SD) of mice with different genetic background and at 
different ages. 

 Genotype Wild type ERCC1d/- 

Age, 

wks 
   

8  23.7(4.1) 14.7(1.7) 

12  25.7(5.3) 14.1(1.4) 

16  26.0(6.1) 14.3(1.8) 

20  30.3( 7.5) 12.9(1.4) 
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Figure S1. Metabolic compounds of serum related to age and their changes with age. 
Black lines represent changes in intensity of selected variables in wild type, red in 
ERCC1d/- mutants. 
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Figure S2. Validation plot of PLS-DA model for mouse serum NMR data with 100 
permutations; squares show the Q2 values and triangles are R2 values. 

 
 
Absolute Glucose Quantification. In general TSP and DSS are not suitable as reference 

for absolute metabolite quantification in serum and plasma due to their interaction with 
serum albumin which results in exchange broadening of the reference signal(35). However, 
for relatively similar plasma/serum samples (like metabonomics samples from 
individuals/animals collected under controlled conditions) a correction factor for the 
integral of the TSP signal can be calculated from comparison of samples with known TSP 
concentration in the presence and absence of serum/plasma. In first approximation 
assuming similar relaxation behavior between the metabolite in serum and free TSP, the 
metabolite concentration can then directly be calculated from the corrected TSP integrals in 
serum/plasma. 

For determination of the TSP correction factor an additional sample of 150  L pooled rat 
serum with addition of 150 μl of 1.5 M phosphate buffer in H2O/D2O (90/10) at pH 7.4 
containing 4% NaN3 and 2 mM TSP was prepared. As reference for free TSP a second 
sample was prepared by adding 150 μl of 1.5 M phosphate buffer in H2O/D2O (90 /10) at 
pH 7.4 containing 4% NaN3 and 2 mM TSP to 150 μl of 0.9% NaCl saline solution. Both 
samples were measured in 3mm NMR Match tubes using the first increment of a NOESY 
pulse sequence as described in the experimental section. 
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For quantification the deconvoluted TSP signals were used in order to avoid any 
interference with overlapping broad protein resonances in the case of the serum spectrum. 
The region between 0.2 and -0.2 ppm was baseline corrected automatically by subtraction of 
a 1st order polynomial removing any broad signals from proteins in this region. The TSP 
signal was then deconvoluted by fitting a mixed Lorentzian/Gaussian function (60/40) to 
the peak using the build-in MDCON command in Topspin (Version 2.1 pl4, Bruker 
Biospin). The parameters were adjusted for peak position and half width of the 
corresponding signal. The obtained deconvoluted signals were then quantified based on the 
area under the curve as determined by the MDCON algorithm. A correction factor of 1.93 
for TSP in serum compared to saline was determined after correction for differences in 
nc_proc (Supplementary Materiaks, Figure S3). 

Based on the determined correction factor, the absolute Glucose concentrations were 
calculated using the following formula: 

GT

TTG
G HI

HCIc
∗∗
∗∗

=
93.1

 

IG : Integral  -anomeric proton of Glucose 
HG: Number of protons of deconvoluted Glucose signal (0.36H assuming anomeric 

equilibrium – note only   anomeric proton is used for quantification) 
IT: Integral TSP signal 
HT: Number of protons of deconvoluted TSP signal (9H) 
CT: Concentration of TSP in sample  
Glucose concentrations in serum were calculated taking into account 4-time dilution of 

the serum sample with buffer . 
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Figure S3. Comparison of deconvoluted TSP signal from (a) 1mM TSP in Saline/Buffer 
solution (line width = 1.5 Hz / integral = 378.5) and (b) 1 mM TSP in Serum/Buffer 
solution (line width = 12.4 Hz / integral = 196.0). 
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Figure S4. One-dimensional STOCSY analysis for the selected variable from the urine 
spectrum corresponding to 7.55 ppm. The degree of correlation across the spectrum has 
been color coded and projected on the spectrum that has the maximum for this variable.  
A) spectrum between  8 and 3.5 ppm B) zoomed in region between 8 and 7.4 ppm. 
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Figure S5. Glucose concentration in blood (a) measured by a conventional method 
(Freestyle mini blood glucose measurement device) (b) quantified based on NMR 
spectra. Error bars indicate standard deviations. 
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Figure S6. Spectral region of 3-hydroxybutyric acid doublet in urine samples, spectra 
from wild type animals are represented by black lines and from ERCC1d/- mutants by red 
lines. 
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ABSTRACT 
Urinary Tract Infection (UTI) encompasses a variety of clinical syndromes that can 

range from mild to life-threatening conditions. As such, it represents an interesting model 
for the development of an analytically based scoring system of disease severity and/or host 
response. Here we test the feasibility of this concept using 1H NMR based metabolomics as 
the analytical platform. Using an exhaustively clinically characterized cohort and taking 
advantage of the multi-level study design, which opens possibilities for case-control and 
longitudinal modeling, we were able to identify molecular discriminators that characterize 
UTI patients. Moreover, we show that using such a design allows not only a better 
validation of the statistical models, but also helps dissecting various biological processes 
and, most importantly, significantly improves biological interpretation of the obtained 
results. 
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INTRODUCTION 
Despite the progress made in understanding the mechanistic basis of many diseases in 

the last century, medicine is still essentially “more an art than a science”.(1) Specific and 
sensitive biological markers are important contributors to the improved diagnostic methods 
as well as to patient care and drug discovery. Advanced “-omics” technologies, such as 
genomics, proteomics and metabolomics, enable identification of such markers. Of our 
particular interest is metabolomics that focuses on the analysis of metabolites present in 
biological fluids. Metabolites are end-points of all the biochemical processes of the 
organism and thus their collection – the metabolome is the closest approximation of the 
physiological phenotype and as such has a great potential for uncovering the biology 
underlying diseases and providing valuable markers of pathology.(2;3) 

The biological interpretation of results from metabolomics studies is rather complex 
and still in an early phase of development(4). The human body is a “super-organism” that 
unites its own network of interconnected tissues and organs with multiple colonies of 
microorganisms.(5) Interpretation of changes in concentration of metabolites found in 
biological fluids can readily be performed based on the underlying metabolic pathway; 
however, it is not always possible to link the observed change in systemic metabolite 
concentrations to a specific tissue or organ.(6) Especially in the case of disruption of highly 
abundant metabolites, e.g. from energy or amino acid metabolism, additional information 
would be required in order to interpret the data in respect to the tissue of origin. In 
addition, a change of such metabolites does not always improve the knowledge about the 
underlying cellular mechanisms and biology. A way to facilitate the interpretation of 
clinical metabolomics data is to integrate a plethora of available clinical parameters and to 
utilize a multilevel study design that should provide the opportunity to access the various 
levels of biological processes. 

One of the examples of a complex and heterogeneous clinical entity, for which current 
diagnostic methods are not straightforward, is Urinary Tract Infection (UTI)(7). Clinical 
manifestations of UTI can cover the range from mild cystitis to advanced pyelonephritis 
potentially leading to urosepsis and multiple-organ failure. Physical symptoms may vary 
from patient to patient and be similar to a number of other diseases, mainly of infectious 
origin.  Thus, the presence of bacteria and leucocytes in urine can not be considered as a 
sole common denominator for UTI and even if it was, the criterion for the colony count is 
variable and anyway considered insensitive(8). The correct and timely diagnosis relies on 
effective joint work of clinicians and microbiologists(8). All of this explains the considerable 
interest in providing new, specific and sensitive markers for UTI and for the uropathogen 
involved. The focus of the available metabolomics studies on UTI in the literature has so far 
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been on the identification of pathogens: in the work of Gupta et al. a beautiful method with 
the use of 1H NMR was proposed.(9-11) However, regrettably the method is not 
quantitative nor does it provide any information about the localization of the infection 
within the urinary tract, morbidity and preferred strategy of treatment. 

In the current study we investigated possibilities of using urinary metabolic profiles to 
monitor the health state of UTI patients, the degree of infection and the recovery process of 
UTI patients in the context of febrile, complicated UTI. We used a selection of samples 
from an exhaustively characterized cohort, with multiple urine samples available per 
individual and with the main pathogen identified as Escherichia coli, which is the most 
common pathogen for UTI. Samples from a group of age- and gender- matched UTI 
symptom-free subjects were included as control. The longitudinal design allowed studying 
various biological processes: not only the difference between the patients and controls, but 
also the recovery process, using each patient as its own control. 

 

MATERIALS AND METHODS 
Samples. The study protocol was approved by the ethical committee of the Leiden 

University Medical Center and all included patients gave written informed consent. 
Urine samples were collected at the Emergency Department and Primary Care 

Department. The sampling was carried out at several time points: the first urine samples 
were collected at the day of enrolment as baseline samples (t=0). Clean midstream-catch 
urine cultures were obtained and were analyzed using local standard microbiological 
methods. Three-four (t=4) and thirty days (t=30) after the day of enrolment, urine samples 
of the same patients were collected and new bacterial culture tests were performed 
(Supplementary Materials, Figure S1).  

For the current study, from a database of about 700 subjects enrolled, 40 subjects, for 
which urine culture confirmed E.coli-positive complicated febrile urinary tract infection 
that recovered after antibiotic treatment, were selected. Samples from age- and gender- 
matched subjects with low bacterial culture in urine and without evidence of inflammatory 
diseases were used as controls (Table 1). A number of samples were missing, a few removed 
from the analysis due to either insufficient spectra quality or high glucose content 
(Supplementary Materials, Figure S1). In the end the study included four classes of samples 
originating from UTI symptom-free (N = 35) at day 0 (baseline control), UTI patients (N = 
32) at day 0 (baseline), UTI  patients (N= 29) at day 4 and UTI patients after recovery from 
infection (N = 37) at day 30 (Supplementary Materials, Figure S1). 
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Table 1. Characteristics of the studied patients and controls groups at baseline (t=0). 
UTI patients Controls 

Characteristics n = 40 n = 40 p 

     
Age, years,  median (sd)  59 (14.6) 58 (17.9) 0.9 
     
Female, n (%)  22 (55) 22 (55) 1 
     
Smoking, n (%)  5 (12) 5 (12) 1 
     
Co-morbidity, n (%)     
 Urinary tract disorder 4 (10) 4 (10) 1 
 Malignancy 4 (10) 1 (3) 0.17 
 Heart failure 5 (13) 3 (8) 0.46 
 Renal insufficiency 1 (4) 0 (0) 0.13 
 Diabetes mellitus 6 (15) 2 (5) 0.14 
 Immunocompromised 1 (3) 1 (3) 1 
     
Urine dipstick results     
 Nitrate 26/37 (75)* 0/37 (0)* < 0.001 
 Leucocyte esterase 35/37 (95)* 5/37 (14)* < 0.001 

* 3 missing values 

 
Sample preparation. Samples were thawed, transferred into 96 deep-well plates and 

centrifuged at 3000g for 15 minutes at 4°C to remove any precipitate. For sample 
preparation 520 μL urine were mixed with 60 μL of pH 7.0 phosphate buffer (1.5 M) in 
100% D2O containing 4 mM sodium 3-trimethylsilyl-tetradeuteriopropionate (TSP) and 
2mM NaN3 in a 96 deep-well plate using a Gilson 215 liquid handler controlled by a Bruker 
Sample Track LIMS system (Bruker BioSpin, Karlsruhe, Germany). 

NMR experiments and processing. 1H NMR data were collected using a Bruker 600 
MHz AVANCE II spectrometer equipped with a 5 mm TCI cryogenic probehead and a z-
gradient system; a Bruker BEST (Bruker Efficient Sample Transfer) system was used in 
combination with a 120 μL CryoFIT™  flow insert for sample transfer. One-dimensional 
(1D) 1H NMR spectra were recorded at 300 K using the first increment of a NOESY pulse 
sequence(12) with presaturation (γB1=50 Hz) during a relaxation delay of 4 s and a mixing 
time of 10 ms for efficient water suppression(13). Eight scans of 65,536 points covering 
12,335 Hz were recorded and zero filled to 65,536 complex points prior to Fourier 
transformation, an exponential window function was applied with a line-broadening factor 
of 1.0 Hz. The spectra were manually phase and baseline corrected and automatically 
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referenced to the internal standard (TSP = 0.0 ppm). Phase offset artifacts of the residual 
water resonance were manually corrected using a polynomial of degree 5 least square fit 
filtering of the free induction decay (FID) (14). In order to monitor proper filling of the 
NMR flow cell and for quality control 1D gradient profiles (15) along the z-axis were 
recorded for each sample prior and post data acquisition. Duration of 90 degree pulses were 
automatically calibrated for each individual sample using a homonuclear-gated nutation 
experiment(16) on the locked and shimmed samples after automatic tuning and matching 
of the probe head. 

Statistical analysis. Each spectrum was integrated (binned) using 0.014 ppm integral 
regions between 10 and 1 ppm, the residual water and urea region between 6 and 4.5 ppm 
was excluded, resulting in 550 data points used for the analysis. To account for any 
difference in concentration between the samples, each spectrum was normalized to a total 
area of 1. Absolute values were log-transforsmed. All pre-processing was done using in-
house developed routines in R statistical environment (http://www.r-project.org/). 
Variables were centered and unit variance scaled prior to statistical analysis in SIMCA-P+ 
(version 12.0; Umetrics, Sweden) software package. For initial analysis and outlier 
detection, principal component analysis (PCA) was performed using 10 components. After 
the initial PCA analysis the following regions corresponding to paracetamol and its 
metabolites were excluded from the analysis: 7.5 – 6.75, 3.95 – 3.8, 3.7 – 3.45, 2.2 – 2.14 and 
1.84-1.88 ppm according to (17). For partial least squares-discriminant analysis (PLS-DA) 
(18) samples were categorized based on classes as defined by the study design. PLS model 
was built using 5 categories according to logarithm of bacterial count as a Y variable. 
Statistical models from supervised multivariate data analysis were validated by random 
permutation of the response variable and comparison of the goodness of fit (R2Y and Q2) 
(19;20). For random permutation tests 100 models were calculated and the goodness of fit 
was compared with the original model in a validation plot. Spectral regions responsible for 
the separation between classes in supervised models were identified based on the Variable 
Influence on Projection (VIP) values, which correspond to the importance of the variables 
(bins) for the model. The variables with a VIP value larger than 1.8 were considered 
significant and used for further analysis and identification of the responsible peak(s) within 
the spectrum. Prediction of class membership of samples by PLS-DA model was based on 
the predicted Y variable with the cut-off of 0.5. 

For multilevel components analysis (MCA) using an in-house developed script in R as 
described by Jansen et al.(21) data were not log-transformed. 

Univariate tests were performed to assess the statistical significance of the spectroscopic 
regions found using multivariate analysis: unpaired t-test was performed for the regions 



Chapter 5 

115 

found as discriminating between UTI patients and controls by PLS-DA; ANOVA was 
performed on the regions that showed association with bacterial count in PLS; paired t-test 
was carried out on the regions identified in multilevel analysis. All the corresponding p-
values were adjusted for multiple testing using Benjamini-Hochberg correction. 

Identification of compounds of interest. Annotation of identified peaks was 
performed based on reference spectra from the Bruker Bioref database and in-house 
reference data. Confident identification was facilitated by the use of Statistical Total 
Correlation SpectroscopY  method (STOCSY)(22).  

Quantification of paracetamol. Quantification was performed by deconvolution and 
subsequent integration of paracetamol-glucuronide resonance at 5.10 ppm (d, 7.1 Hz) using 
an in-house developed automation routine. The absolute concentrations were calculated 
based on internal reference TSP. Values were not corrected for differential attenuation of 
the signals caused by relaxation during the mixing time and rapid-pulsing saturation effects. 

 

RESULTS 
The initial PCA on baseline samples revealed a trend in separation between UTI patients 

and controls in the scores plot of the first two principal components as shown in Figure 1A. 
The loadings plot of this model was dominated by the spectral regions that belonged to one 
of the most commonly used over-the-counter analgesic, paracetamol (Supplementary 
Materials, Figure S2). The absolute concentration of paracetamol-glucuronide was used to 
stratify samples in the PCA plot: the direction of increase of paracetamol-glucuronide was 
found to match the direction of controls-patients separation (Figure 1B). As paracetamol is 
not an infection or morbidity marker, the further analysis was performed after the exclusion 
of the regions corresponding to the drug and its metabolites. 
 The PCA analysis of the baseline samples after the removal of spectral regions of 
paracetamol and its metabolites did not show separation between UTI patients and controls 
within the scores plot of the first two principal components; however, a clear trend was 
identified along the third principal component (Figure 2), which means that inter-
individual variability is to a certain extent more prominent than the disease effect. No 
outliers were detected based on distance to the model (DModX). 
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Figure 1. PCA scores plot of 1H NMR data from controls and UTI patients urine samples 
at baseline, first two principal components covering 14.5 and 10.2% of variation 
respectively. (A) Colored according to controls (□) and UTI patients (●). (B) Colored 
according to the logarithm of absolute concentration of paracetamol-glucuronide. 
 

 
Figure 2. PCA scores plots of 1H NMR data from controls (black) and UTI patients (red) 
urine samples at baseline after removal of the regions corresponding to paracetamol and 
its metabolites. First principal component covers 11.7%, second 11.2% and third 9.8% of 
variation. 
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In the next step a supervised PLS-DA model was built for t=0 using UTI/controls as a 
response variable.  In the scores plot of the resulting model the two groups were well 
separated (Figure 3). Cumulative explained variance (R2Y) of 0.88 and cross validated 
predictive fraction (Q2) of 0.63 were calculated for the model; the model validation plot 
showed intercepts of the R2Y and Q2 regression lines with the vertical axis at  0.63 and -
0.11, respectively, indicating a valid model. Molecular discriminators were identified based 
on relevant regions as identified by the corresponding VIP. A list of those regions, along 
with the p-values based on t-test (corrected for multiple testing), the direction of change 
and identities of the corresponding metabolites are summarized in Table 2. 

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

-10 -8 -6 -4 -2 0 2 4 6 8 10

C
V

sc
or

es
2

CV scores 1

Controls
UTI patients

 
Figure 3. Cross-validated PLS-DA scores plot of urine 1H NMR spectra of controls (□) 
and UTI patients at baseline (●), R2Y = 0.88, Q2 = 0.63. 

 
The advantage of PLS-based models is that they can easily be used to predict the class 

membership of new samples. Data of the UTI patients at t=4 were predicted using the two-
class PLS-DA model that was built as described above. Of a total of 29 urine samples 
included in the prediction set, 19 (65.5%) were classified as controls, whereas 10 (34.5%) 
samples were classified as UTI (Figure 4). Besides using data from the 4-days time point as 
prediction set, we also performed a separate analysis for the 30-days time point (Figure 4). 
In this case, out of 37 samples collected, 32 (86.5%) were attributed to the group of controls 
and 5 (13.5%) were categorized as UTI. 
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Table 2. Spectroscopic regions that appear as influential in various statistical models 
and statistical significance of the corresponding univariate tests adjusted for multiple 
testing using Benjamini-Hochberg method. 

  
Controls vs. 

UTI patientsa  
Bacteria 

concentrationb  
Recovery from 

t=0 to t=30c 

ppm region Identity 
t-test 

p-value change  
ANOVA 
p-value change  

paired 
t-test  

p-value change 
9.291 - 9.277 1-methylnicotinamide <0.0001 -  <0.001 -    
9.277 - 9.264 1-methylnicotinamide <0.01 -       
8.977 - 8.964 1-methylnicotinamide <0.01 -       
4.491 - 4.477 1-methylnicotinamide <0.01 -  <0.01 -    
1.941 - 1.927 Acetic acid <0.01 +  <0.01 +    
1.927 - 1.914 Acetic acid <0.0001 +  <0.0001 +    
3.196 - 3.182 Acetylcarnitine <0.01 +       
2.568 - 2.555 Citric acid <0.01 -       
2.541 - 2.527 Citric acid <0.01 -       
4.082 - 4.068 Creatinine 0.03 -       
3.073 - 3.059 Creatinine <0.01 -  0.07 -    
3.059 - 3.045 Creatinine 0.09 -       
7.709 - 7.696 Furoylglycine       <0.01 + 
7.696 - 7.682 Furoylglycine <0.01 -  <0.01 -    
3.959 - 3.946 Glycolic acid derivative <0.001 -  <0.01 -  <0.0001 + 
7.859 -7.846 Hippuric acid <0.01 -  <0.01 -    
7.668 - 7.655 Hippuric acid <0.001 -  <0.01 -    
7.655 - 7.641 Hippuric acid 0.01 -  0.02 -    
7.586 - 7.573 Hippuric acid <0.01 -  0.05 -    
3.973 - 3.959 Hippuric acid 0.01 -  0.03 -    
8.555 - 8.541 Hippuric acid (amide) <0.01 -       
8.541 - 8.527 Hippuric acid (amide) <0.001 -  <0.01 -    
1.341 - 1.327 Lactic acid <0.01 +  <0.01 +    
7.764 - 7.75 Para-aminohippuric       <0.001 + 

3.332 - 3.318 Scyllo-inositol       <0.01 + 
3.455 - 3.441 Taurine <0.0001 +  <0.001 +  <0.0001 - 
3.441 - 3.427 Taurine <0.0001 +  <0.001 +  <0.0001 - 
3.427 - 3.414 Taurine <0.0001 +  <0.01 +    
3.264 - 3.250 Taurine <0.001 +       
8.855 - 8.541 Trigonelline       0.01 + 
4.45 - 4.436 Trigonelline       <0.01 + 
2.896 -2.881 Trimethylamine <0.0001 +  <0.0001 +    
8.486 - 8.473 Unknown       <0.01 + 
7.968 - 7.955 Unknown       <0.001 + 
7.75 - 7.736 Unknown       <0.01 + 

7.518 - 7.505 Unknown    <0.01 +    
6.686 - 6.673 Unknown       <0.0001 + 
6.509 - 6.496 Unknown       0.04 + 
3.168 - 3.155 Unknown    <0.01 -    

a two-group t-test for the healthy controls and UTI patients at baseline; positive direction of change   corresponds to 
intensity of the region being higher in UTI patients compared to controls, negative – region intensity is lower in UTI 
patients compared to controls 
b ANOVA analysis for the number of bacteria present in urine; direction corresponds to the correlation to the number of 
bacteria: positive corresponds to the raise of the region intensity with the increase of the number of bacteria, negative - to 
the decrease of the region intensity with the increase of the number of bacteria  
c paired t-test for the UTI patients at baseline and 30 days; positive direction of change corresponds to intensity of the 
region being higher at 30 days compared to baseline, negative – region intensity is lower at 30 days compared to baseline 
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An important parameter characterizing UTI patients is the number of bacteria in urine; 
however, bacteria can also be present in urine of the individuals, who do not exhibit any 
symptoms of UTI(25). We built a PLS regression model from NMR data of urine at baseline 
using the result of bacterial culture as response variable. Since bacterial count and UTI 
classification do not fully correlate we expected to obtain a slightly different model as 
compared to the model built based on UTI classification for this timepoint. Using 2 
components a cumulative R2Y = 0.78 and Q2 = 0.44 were obtained and model validation 
showed intercepts of the R2Y and Q2Y regression lines with the vertical axis at 0.63 and -
0.12, respectively, in the model validation plot. As can be seen from the PLS scores plot 
(Figure 5) the samples with the highest bacteria concentration in urine were very distinct 
from the rest forming a separate cluster, whereas the rest of the samples were overlapping. 
The spectral regions responsible for the correlation of the 1H NMR data and bacterial count 
were chosen on the basis of the corresponding VIP. A list of those regions, along with the p-
values derived from ANOVA (corrected for multiple testing), the direction of change and 
identities of the corresponding metabolites are summarized in Table 2. 

To better understand the process of patient recovery and to find the spectroscopic 
regions that correlate with this process, we took advantage of the longitudinal study design. 
One of the statistical methods suitable for such analysis is multilevel component analysis 
(MCA) that separates variation present in the data into two levels: between-individual and 
within-individual. We performed this analysis on the 29 patients for which both the data 
from the baseline and from the 30-days time point were available and concentrated on the 
within-individual information. This should best reflect the recovery from the baseline, 
when patients are diagnosed as infected, to 30 days, when they are considered UTI 
symptom-free. PCA scores plot of the first two principle components that cover 15.8 and 
14.8% of the variation, respectively, showed good separation between baseline and t=30 
time points (data not shown). The PLS-DA model of this data had high quality parameters 
(R2Y = 0.98, Q2 = 0.78 for four components), performs significantly better then random 
models (p<10-15) and perfectly separated the two time points (data not shown). The NMR 
spectral regions responsible for the separation between baseline and the t=30 time point 
were identified based on VIP values. The underlying metabolites as well as the p-values 
from paired t-test (corrected for multiple testing) and the direction of change are 
summarized in Table 2. 
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Figure 5. Scores plot of the PLS model of urine 1H NMR spectra at baseline vs. the 
number of bacteria (CFU/mL) found in urine (R2Y = 0.78, Q2 = 0.44). Colored by the 
number of bacteria. 
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DISCUSSION 
UTI represents a complex clinical entity, for which diagnostics is not straightforward 

and based on consensus criteria (7). In the current paper we identified metabolites that 
characterize UTI and its pathology with the use of 1H NMR. We demonstrate how the use 
of clinical data and multiple samples per individual can enrich the biological interpretation 
of the findings. To reduce the heterogeneity typically posed by UTI research, as a first 
attempt the smaller selection of UTI subjects from a bigger cohort was used, with similar 
diagnosis and with the major pathogen being E.coli. A set of matched controls was also 
available.      

Unlike in animal experiments, in clinical research assigning people to certain groups is 
not always unconditional. The diagnosis of a disease can be fuzzy and defining the “healthy” 
group is even more difficult, as there is hardly a definition of healthy. Thus, it may be very 
advantageous to supplement a traditional “case-control” design with a more complex study 
design and the use of additional clinical data. When used without extra information, “case-
control” analysis might even be misleading. For example, the separation of the control and 
UTI groups was seen in the first two principal components of PCA; however, this 
discrimination was not disease-related, but the result of patients taking the antipyretic and 
analgesic drug paracetamol. An analysis strategy for such type of data is to identify all of the 
spectroscopic regions that contain signals from drug-related compounds and to exclude 
them prior to further analysis. However, it is not feasible to account for the whole range of 
the medication used and, more importantly within the context of clinical metabolomics 
studies in general, to account for drug-related shifts in metabolism, especially in the case of 
long-term treatment regimes of chronic conditions. It is essential to consider such effects 
when developing the study design in order to minimize or control such influences.       

Samples from 4 days after admission, when the patients were still under therapy, but on 
the way to recovery, were used to check if the modeled differences were related to the effect 
of medication or not. The fact that the majority of those samples were classified as healthy 
by the model built on baseline samples is an indication that the model is not reflecting 
therapy/drug intake, but is indeed related to the clinical difference between the groups. 

The samples from the 30-days time point, when UTI patients were symptom-free, could 
also be used to gain additional information on the performance of the model as well as to 
get insight into the underlying biology. When predicted using the PLS-DA model built on 
the baseline UTI infected and UTI symptom-free samples, most of the 30-days samples 
(86.5%) were projected to the control group. Those few, which were still predicted as 
infected UTI patients, may have another condition (as we do not know at this point how 
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specific our model is) or have asymptomatic UTI. On the other hand, they can be healthy 
and be false positives, as the predictive ability of our model, estimated by cross-validation 
was 63%. Despite that, considering the prediction of 30-days samples as an independent 
statistical test for our model, it gives very satisfactory results.  

Pair-wise analysis for baseline and 30-days samples from the same individuals was 
conducted in order to monitor the recovery process. It revealed a number of classifiers and 
improved their statistical significance. The identified metabolites overlapped with the 
compounds from the model discriminating healthy and UTI subjects, however a few of 
them were unique (para-aminohippuric acid, scyllo-inositol and a few unidentified 
compounds). 

Besides the multilevel design, the advantage of the current study was the exhaustive 
clinical characterization of the patients. Among the variety of clinical parameters available, 
the number of bacteria in urine was of specific importance. We performed regression-based 
analysis of the relation between the 1H NMR data and the bacterial load in urine as 
determined by bacterial culture. The classifiers that emerged from this analysis were to a 
certain extent overlapping with the classifiers derived from the discriminative model on 
baseline samples. This was no surprise, since UTI is generally characterized by the presence 
of bacteria in urine. 

When comparing the lists of discriminators obtained from the different models 
(discriminating UTI patients from controls, modeling the recovery process and modeling 
the data against the degree of bacterial contamination of urine) it is evident that there is a 
large overlap which makes biological interpretation of the results feasible. For instance, 
some of the overlapping metabolites were already known from the literature to be related to 
the bacterial contamination of urine: acetate, lactate and trimethylamine (9). Others, if they 
were found only in the comparative analysis of the two groups, could be attributed based on 
previous studies to certain phenomena. Hippuric acid, for example, is often associated with 
the gut microflora (26) and taurine with  liver toxicity (27). However, our findings suggest 
that they are also associated with the bacterial contamination of urine, which obviously 
does not mean that they are not related to the mentioned physiological processes as well, 
but that a complex network of interconnected factors is involved. The metabolites that 
appear to be related to the recovery process might be considered as potential morbidity 
markers. One of them, para-aminohippuric acid, is a well-established diagnostic marker for 
renal plasma flow and glomerular filtration.(28) The recovery from the complicated, tissue-
invasive UTI is associated with the resumption of the kidneys’ function, so the positive 
change in para-aminohippuric acid corroborates our assumption that some of the markers 
discovered in the paired analysis are the markers of morbidity. 
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CONCLUSIONS 
In the current paper we used a metabolomics approach to profile Urinary Tract 

Infection, which is on the one hand one of the most common infectious diseases among the 
adults, and on the other hand a disease that still lacks markers of morbidity. Using 1H NMR 
profiles of urine we generated various statistical models: a) discriminating UTI patients and 
control subjects, b) following the recovery process of UTI patients and c) associating urine 
metabolic content with bacterial contamination. The discriminative model was able to 
classify most of the independent samples correctly according to their diagnosis, which 
indicates its high predictive ability. Comparing the sets of molecules derived from different 
analyses, we concluded that some of the compounds (e.g. trimethylamine and acetate) can 
be attributed to the effect of bacterial contamination of urine, others (e.g. para-
aminohippuric acid, scyllo-inositol) can be considered markers of morbidity. 
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SUPPLEMENTARY MATERIALS 

253 Consecutive adults with 
febrile UTI

September 2006 – December 2009

139 Patients with febrile
E. coli UTI  

Urine culture result other than E. coli
n (%)

Enterococcus faecalis 3 (1)
Klebsiella spp. 12 (5)
Proteus spp. 8 (3)
Pseudomonas aeruginosa 7 (3)
Staphylococcus saprophyticus 2 (1)
Enterobacter spp. 4 (2)
other 3 (1)
none or contaminated 69 (27)
no culture performed 6 (2) 

40 Cases with febrile UTI 
selected for analysis

40 Healthy controls 
selected for analysis

137 Healthy controls 

Random selection
Random selection 

matched by 
age and sex

t=0
Day of 

enrolment

t=4
4 days after 
enrolment

t=30
30 days after 
enrolment

N=40
UTI subjects

6 missing
2 excluded due to high 

glucose content

N=40
healthy controls

5 missing

N=40
UTI subjects

9 missing
2 excluded due to bad

spectra quality

N=40
UTI subjects
(recovered,

symptom-free)

3 missing

A

B

 
Figure S1. Design of the study. 
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Figure S2. Loadings plot of the PCA model created using urine spectra of samples at 
baseline. Dots indicate variables that correspond to the spectral regions of paracetamol 
and its metabolites, triangles represent all the other variables. 
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ABSTRACT 
Metabolic profiling is considered to be a very promising tool for diagnostic purposes, 

for assessing nutritional status and response to drugs. However, it is also evident that 
human metabolic profiles have a complex nature, influenced by many external factors. This, 
together with the understanding of the difficulty to assign people to distinct groups and a 
general move in clinical science towards personalized medicine, raises the interest to 
explore individual and variable metabolic features for each individual separately in 
longitudinal study design. In the current paper we have analyzed a set of metabolic profiles 
of a selection of six urine samples per person from a set of healthy individuals by 1H NMR 
and reversed-phase UPLC-MS. We have demonstrated that the method for recovery of 
individual metabolic phenotypes can give complementary information to another 
established method for analysis of longitudinal data—multilevel component analysis. We 
also show that individual metabolic signatures can be found not only in 1H NMR data, as 
has been demonstrated before, but also even more strongly in LC-MS data. 
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INTRODUCTION 
Metabolomics is a post-genomics technology, the aim of which is ‘‘profiling metabolism 

in complex systems’’.(1) The reasoning behind metabolomics experiments is that 
metabolites, compared to genes, transcripts and proteins, offer the closest representation of 
the phenotype.(2) Thus, they can contain valuable information on a disease development, 
in contrast to genetics that gives insight into predisposition to a disease. Conducting this 
type of research assumes the existence of specific biomarkers or metabolic signatures that 
can distinguish between pathological states. The potential of metabolomics to reveal 
signatures of pathological conditions has been demonstrated on a number of neurological 
disorders (Huntington’s disease,(3) Parkinson’s disease,(4) multiple sclerosis(5) etc.), 
various cancers (ovarian and breast,(6) pancreatic,(7) colorectal(8) and others), 
cardiological abnormalities (e.g. ischemia(9)) and many other diseases. 

It is, however, evident, that metabolic profiles reflect not only the disease/healthy state 
of the organism but, as a representation of a given phenotype, they strongly depend on 
factors such as gender, age and our daily habits, like, for example, diet, drugs and alcohol 
intake.(10,11) Another extremely important factor affecting metabolic profiles is gut 
microbiota. It has been shown that even for genetically identical laboratory animals gut 
microflora is influenced by environment and dietary factors.(12–14) For humans, in which 
genetic variation is enormous, gut microflora is much more diverse and is additionally 
affected by factors such as, for instance, stress.(15) 

Therefore, human metabolic profiles are highly dependent on environmental factors 
and may vary from day to day due to turbulent conditions of our fast and highly stressful 
modern lives. A way to overcome possible negative effects of this variability on the 
interpretation of metabolomics data is multiple sampling over time per individual. The 
main advantage of this approach is the possibility to get an insight into the biological 
processes, which are usually missed by a simple, static comparison of ‘‘diseased vs. healthy’’. 
The feasibility of the longitudinal sampling has been demonstrated more than once in 
toxicology experiments in animals,(16) in human intervention studies(17) and in 
monitoring cyclic dynamics in healthy women.(18) 

A number of statistical methods that can deal with longitudinal(19) or paired(20) data 
exist. One of the methods suitable for the analysis of such data is the multilevel approach 
that separates levels of variation present in the data into inter- and intra-individual.(21) 
Moreover, it has been shown that, despite the multiple sources of variability, present in 
human biofluids and particularly in urine, there are constant individual metabolic 
signatures, which are probably to a great extent determined by genetics.(22) Assfalg et al. 
used a combination of established statistical methods for individual classification, or in 
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other words person recognition, on the basis of Nuclear Magnetic Resonance (NMR) 
spectra of urine. The core of this approach was a variant of Principal Component Analysis 
(PCA), which was an innovative tool for face recognition 20 years ago,(23) and proved to be 
innovative for recognition of human urine metabolic signatures today. The existence of 
stable personal metabolic phenotypes is linked to the idea of homeostasis or, more precisely, 
to the idea that individual, self-regulatory, genetically controlled mechanisms maintain the 
homeostasis at any price. Consequently, the disruption of homeostasis means the beginning 
of a disease development.(24;25) Thus, monitoring of individual metabolic signatures, 
which represent dynamic, time-correlated changes of the phenotype, might ultimately 
develop into a preferred approach for practical personalized medicine. 

Thus, there are different statistical methods that can be applied to the metabolic profiles 
of multiple samples per individual and allow having various perspectives on the data. 
Besides, an enormous chemical diversity of metabolites has resulted in a broad spectrum of 
analytical approaches used in metabolomics, especially with regards to mass spectrometry. 
To select an auxiliary to NMR MS method, one has to make a choice between gas 
chromatography (GC), capillary electrophoresis (CE) and liquid chromatography (LC). 
Choosing the latter, one still remains with a range of possibilities like, for example, reverse 
phase or hydrophilic interaction liquid chromatography (rpLC or HILIC). 

In the current research we wanted to demonstrate that multilevel component analysis 
(MCA) and person recognition can be used in parallel, and that the information retrieved 
by the two methods is complimentary and together they can form a toolbox for analysis of 
longitudinal datasets. To this end we analyzed a set of urine samples from 8 healthy 
individuals (each of them donated 6 samples) by 1H NMR and reversed phase UPLC-MS, 
which requires relatively simple sample preparation and is one of the most widely used MS 
techniques in metabolomics. MCA and person recognition methods were applied to the 
data. We here show that individual metabolic phenotypes can be identified not only on the 
basis of 1H NMR spectra, as has been shown before, but also on the basis of LC-MS data. 
We also demonstrate the information extracted from this type of designed study using the 
two statistical approaches, based on diverse sources of variation in the data. The difference 
in information content of the data from the two analytical techniques is analyzed and 
discussed as well. 

 

MATERIALS AND METHODS 
Samples. Urine samples were collected, after written consent, from 8 self-declared 

healthy individuals from the same working environment (Leiden University Medical 
Center, the Netherlands). The volunteers were equally divided into men and women, aged 
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between 25 and 45 years old, all Caucasian. Each volunteer provided 6 urine samples of the 
first morning urine after over-night fasting on 6 different days (5 consecutive weekdays and 
one after the weekend). No diet restrictions were implied; none of the subjects was taking 
medication. Samples were collected in sterile 15 ml polypropylene tubes, kept at 4 °C, 
frozen within 8 h of collection, and stored for approximately 2 weeks at -20 °C until the 
measurement. In total 48 urine samples were analyzed. 

Sample preparation. Frozen samples were thawed at room temperature and vortexed 
before use. 

Sample preparation for 1H NMR experiments. Aliquots of urine sample (1000 μl) were 
centrifuged at 3000g for 15 min at 4 °C to remove any precipitate. 600 μl of each sample 
were transferred to a 96 deep-well plate, further preparation was automated using the 
Bruker Sample Track system and a Gilson 215 robotic system. Here 540 μl urine were added 
to 60 μl of pH 7.0 sodium phosphate buffer (0.2 M) in 10% D2O containing 0.53 mM 
sodium 3-trimethylsilyl-tetradeuteriopropionate (TSP) and 0.26 mM NaN3, thoroughly 
mixed and transferred to a new 96 deep-well plate. Samples were centrifuged at 3000g for 5 
min to remove any solid debris. A modified Gilson 215 robot was used to transfer 565 ml of 
sample from the plate into 5 mm SampleJet NMR tubes. 

Sample preparation for LC-MS experiments. 150 μl of each urine sample were mixed 
with 450 μl of water and subsequently centrifuged at 3000 rpm for 10 min. 5 μl of sample 
was used for injection. 

Data acquisitions.  
1H NMR experiments. All 1H NMR experiments were performed on a 600 MHz Bruker 

Avance II spectrometer (Bruker BioSpin, Karlsruhe, Germany) equipped with a 5 mm TCI 
cryogenic probe head with Z-gradient system and automatic tuning and matching. 
Temperature calibration was done prior to the measurements using the method of 
Findeisen et al.(40) 

One-dimensional 1H NMR spectra were recorded at 300 K using the first increment of a 
NOESY(41) pulse sequence with presaturation (γB1 = 50 Hz) during a relaxation delay of 4 
s and a mixing time of 10 ms for efficient water suppression. A total of 32 768 data points 
were recorded with 32 scans covering a sweep width of 12 336 Hz. The free induction decay 
(FID) was zero-filled to 65 536 complex data points prior to Fourier transformation and an 
exponential window function was applied with a line broadening factor of 1.0 Hz. 

A sample 1H NMR spectrum can be found in Supplementary Materials, Figure S1a. 
LC-MS experiments. The samples were analyzed on a UPLC-ESI-UHR-ToF system. 

The injection scheme was randomized and included quality control samples (mix of all of 
the urine samples, prepared in the same way as the individual samples), as well as a set of 
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analytical standards (mix of pesticides, see Supplementary Materials, Table S1) to ensure 
the robustness of the workflow and to evaluate the analytical variability. Quality control 
(QC) and analytical standards were injected at the beginning and at the end of the sequence, 
as well as every four biological samples. In total 28 QC runs were acquired. The UPLC 
(Ultimate 3000 RS tandem LC system, Dionex, Amsterdam, The Netherlands) was 
equipped with a pre-column (Acclaim 120 C18, 5 mm, 120 Å, 2 × 10 mm) and two 
analytical columns (Acclaim RSLC 120 C18, 2.2 mm, 120 Å, 2.1 × 100 mm) working 
alternatively to speed up the acquisition series. The UPLC flow was set at 400 μl min-1 and 
the mobile phases were water + 0.1% formic acid v/v (Phase A) and methanol+0.1% formic 
acid v/v (Phase B). The gradient was as follows: 1 min 0% phase B, then in 1 min to 10% 
phase B, held for 1 min at 10% phase B, and subsequently in 6,5 min to 100% phase B and 
held for 3 min at 100% phase B. Before each chromatographic run, a calibrant solution of 
sodium formate was injected in Flow Injection Analysis mode. 

The ESI-UHR-ToF (maXis, Bruker Daltonics, Bremen, Germany) was operated in the 
positive ionization mode and acquired data in the mass range from m/z 50 to 1500 with a 
spectra rate of 1 Hz. The capillary was set at 2500 V, the End Plate offset at -500 V, the 
Nebulizer gas at 2 bar and the dry gas at 8 l min-1 at 180 °C. 

A sample LC-MS chromatogram can be found in Supplementary Materials, Figure S1b. 
Data pre-processing. 1H NMR data pre-processing. All spectra were manually phase- 

and baseline-corrected using Topspin 2.1 (Bruker BioSpin, Karlsruhe, Germany) and 
automatically referenced to TSP signal (0.0 ppm). Each spectrum was integrated (binned) 
using 0.0095 ppm integral regions between 0.5 and 10 ppm, the residual water and urea 
region between 4.5 and 6 ppm was excluded, resulting in 842 bin regions used for the 
analysis. To account for any difference in concentration between the samples, each 
spectrum was normalized to its total area and subsequently by Probabilistic Quotient 
Normalization (PQN) (42) using average spectrum as a reference. 

LC-MS data pre-processing. All data files were recalibrated on the masses of sodium 
formiate clusters. The alignment of chromatograms and peak picking was performed using 
open-source XCMS software (The Scripps Research Institute, La Jolla, CA).(43) Finding 
peaks was performed using the ‘‘centWave’’ algorithm with m/z deviation set to 5 ppm, and 
the scan range between 20 and 700 scans. Grouping of peaks was done with parameters 
minsamp set to 28 (number of QC samples) and bandwidth to 10. Retention time 
correction was done with default parameters. The resulting table included the detected ion 
features and their peak areas. The peaks were filtered on the basis of QC samples: the peak 
was retained in the analysis if it was present in all the QC samples and relative standard 
deviation of the area in QC samples was less than 20%. The final table contained 965 ion 
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features, which areas were normalized on total areas of the samples and subsequently by 
PQN(42) with an average of QC samples taken as a reference. 

The consistency of the data and the absence of column-bias were checked using 
Principal Component Analysis (Supplementary Materials, Figure S2). 

Statistical data analysis. Principal Component Analysis was performed on 
logarithmically transformed, mean-centered and unit variance scaled data using the 
NIPALS algorithm.(44) 

Person recognition. The person recognition approach used in the current paper was 
based on the previously published classification method.(22) Among the classification 
methods used by Assfalg et al. the combination of Principal Component Analysis (PCA) for 
data reduction and canonical discriminant analysis (CA) was chosen as the most effective 
one. The accuracy of classification was assessed using test-set validation: in each round of 
validation one randomly selected sample per donor was taken out into the test-set, and a 
model was built based on the remaining samples. The test-set samples were projected into 
the PCA–CA subspace and classified according to the minimum distance to the mean of the 
discriminated groups. The resulting class labels were compared to the real ones and the 
number of correct classifications was evaluated. The validation was performed in 1000 
rounds and the results averaged throughout all the rounds (Supplementary Materials, 
Figure S3a). 

Recognition accuracies were also assessed in 100 rounds of Subject ID permutations and 
compared with the actual accuracies, statistical significance of the difference was assessed 
using the Mann–Whitney test. 

Multilevel Components Analysis (MCA). MCA is an effective method for separating the 
variation between- and within- individuals and analyzing them by different submodels. The 
method was implemented as described by Jansen et al.(21) PCA were performed on the 
data  matrix corresponding to the between-individual variation and on the within-
individual variation for each individual separately (Supplementary Materials, Figure S3b). 

All the data-preprocessing and statistical analysis were performed in a R statistical 
software environment (http://www.r-project.org/) using in-house developed scripts and 
open-source packages. 

 

RESULTS 
A set of longitudinal urine samples from healthy individuals was analyzed by 1H NMR 

and rpUPLC-MS and subsequently by various statistical methods in order to compare the 
information that can be retrieved from the data by different analytical and statistical 
approaches. PCA was performed on 1H NMR and LC-MS data. The scores plot of the first 
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two principal components for each of the techniques revealed some clustering by 
individuals; however no separation between the genders was observed (Fig. 1a and c). 
Difference between the genders was visible on the scores plot of the third and fourth 
principal components in the case of the 1H NMR data (Figure 1b), and of the second and 
third principal components in the case of the LC-MS data (Figure 1d). At a first glance, 
there appeared to be a similarity between the score plots of the first two principal 
components on 1H NMR and LC-MS data, for example, subject 7 is separated from the rest 
of the people. A way to give a numerical value to this similarity is the use of the RV-
coefficient, which is a multivariate extension of correlation coefficient. This has already 
been used before for estimation of the overlap of metabolomics data matrices, but in that 
case both matrices were derived from MS-based experiments.(26) For all the 8 principal 
components of the PCA the RV-coefficient was found to be not that high, not exceeding 
0.46. The RV-coefficient does not increase anymore after the fourth component, which 
explains 44 and 53% of the variation in the 1H NMR and LC-MS data respectively (Table 1). 
Hence, the relative positions of data points in the PCA subspace are different for 1H NMR 
and LC-MS, with little overlap. 

It was evident from the PCA analysis that there are different sources of variation present 
in the data, which this method is not capable of separating. One of the ways to dissect 
variations present at different levels in the data (e.g. between and within individuals) is to 
use multilevel analysis which has been successfully applied for a number of applications in 
social sciences, geography, public health (27) and recently also in metabolomics.(20,21) 
This method was applied to the data so that the variation at two levels—between individuals 
and within each of the individuals—was explored. It allows identification of spectral regions 
or peaks variable between individuals and peaks/regions variable between the time points 
for each individual. In Figure 2 the loading plots for the between and within-individual 
models are shown on the example of the 1H NMR data, demonstrating those variable areas. 
The RV-coefficient, calculated for the results of multilevel analysis (on the between-
individual score matrices), is higher than that for the PCA analysis, but is very stable even 
with the growth of the explained variance, again indicating that the two analytical 
techniques explain different relations between the samples (Table 2). 
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Figure 1. Scores plots of the PCA analysis of 1H NMR and LC-MS data from urine 
samples of 8 individuals sampled at six different time points. Samples are labeled by 
individuals’ IDs. Triangles represent urine samples of females, dots of males. (a) First 
two principal components of the PCA on NMR data cover 16.1 and 9.6% of variation 
respectively. (b) Third and fourth principal components of the PCA on NMR data cover 
7.3% and 6.6% of variation, respectively. (c) First two principal components of the PCA 
on LC-MS data cover 21.1 and 12.3% of variation, respectively. (d) Second and third 
principal components of the PCA on LC-MS data, the third component covers 7.5% of 
variation. 
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Table 1. Summary of principal component analysis performed on NMR and LC-MS data 
and multivariate correlation (RV-coefficient), calculated on the resulting score matrices. 

 Explained variation, %  

PC No. NMR LC-MS RV 

1 16.1 21.2 0.2 

2 25.7 33.5 0.24 

3 33 41 0.28 

4 39.6 47.9 0.4 

5 44.3 53 0.41 

6 48.3 57.7 0.42 

7 52.1 61.9 0.44 

8 55.6 65.9 0.46 
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Figure 2. Loadings plot of the multilevel component analysis of 1H NMR data of urine 
samples from 8 individuals sampled at six different time points: (a) loadings of the first 
component of the between-individual model, (b) loadings of the first component of the 
within-individual model for each person, colored by gender (grey—male, black—
female) and labeled by individuals’ IDs. 
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Depending on the research question, one might not be interested in the most variable 
regions for each individual, but in the most constant ones, person-specific features. Those 
unique patterns can be used to recognize each person from the rest. The existence of such 
fingerprints in 1H NMR data and a method to assess them were demonstrated previously 
(22) using an innovative combination of classical statistical methods—PCA and canonical 
discriminant analysis with thorough validation. We performed person recognition on the 
1H NMR data evaluating the accuracy with which each of the people is predicted. The 
recognition accuracy ranged from 59.5 to 99.5% which matches the estimated probability of 
correct classification for the same number of samples in the model described in the 
previous work.(22) The mean recognition was 84%, which is quite high taking into account 
that in each validation step the model is built only on 5 spectra. The accuracy of recognition 
was also calculated on the set with permuted person labels and it appeared to be 
significantly lower (mean accuracy 13%, p-value < 0.001) than the real recognition results 
(Supplementary Materials, Figure S4a). 

One of the advantages of the person recognition method is that it is possible to perform 
back-projection of scores in the canonical subspace into the PCA scores subspace and then 
into the original variables. As a result of this procedure individual metabolic phenotypes are 
obtained (Figure 3a). These metabolic phenotypes represent the characteristic spectral 
regions for each person and are, unlike the original profiles, easily clustered by e.g. 
hierarchical clustering per person (Supplementary Materials, Figure S5). 
 
Table 2. Summary of multilevel component analysis (between individuals) performed 
on NMR and LC-MS data and multivariate correlation (RV-coefficient), calculated on 
the resulting score matrices. 

 Explained variation, %  

PC No. NMR LC-MS RV 

1 39.4 49.8 0.64 

2 70 78.1 0.6 

3 87.8 88.1 0.6 

4 93.8 94.6 0.62 

5 96.9 97.3 0.63 

6 99 99.2 0.65 
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Figure 3. Individual metabolic phenotypes found within urine samples of 8 individuals 
sampled at six different time points. (a) Based on the 1H NMR spectra. (b) Based on LC-
MS data; one of the differential peaks (m/z of 558.3498) was used to construct the 
corresponding extracted ion chromatograms (inlet). Colored and labeled by individuals’ 
IDs. 
 

To illustrate the results and differences of person recognition and multilevel analysis 
methods we here show an example for one of the participants, using the 1H NMR spectra 
and its analysis. In Figure 4 the original binned 1H NMR spectra are shown together with 
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the individual metabolic profile of the person and his within- and between-individual 
loadings. As can be seen from the picture, there are peaks that contribute differently to the 
different types of analyses. For instance, the peak at 3.97 ppm appears in all of the six urine 
spectra, but its intensity is variable, so it contributes to both the individual metabolic profile 
and within-individual loadings. This peak is found to be also characteristic for separation 
between individuals, contributing to the between-individual loadings. Another peak at 3.81 
ppm appears only in one of the six spectra, and thus it contributes to the within-individual 
loadings, indicating its variability through the time course of the study, however, it is not 
characteristic of the person (does not appear in the individual metabolic profile), neither is 
responsible for the separation between the subjects. Another example is the peak at 3.57 
ppm which is present in all the samples and has quite a consistent intensity; it does not 
contribute to the within individual loadings, but is characteristic for the individual and 
drives the separation between the individuals. 

3.9 3.8 3.7 3.6 3.5
ppm

Binned NMR spectra
Individual metabolic phenotype
Within-individual loadings
Between-individual loadings

4.0

 
Figure 4.  Comparison of the statistical analyses of the urinary 1H NMR data from one 
individual. Grey lines show original (binned) 1H NMR spectra. Blue line indicates the 
mean individual metabolic profile, red is within-individual loadings of the first 
component, green—between-individual loadings of the first component. 
 

The individual metabolic profiles were found to exist not only in 1H NMR spectra, but 
also in UPLC-MS data. Moreover, the accuracies of the person recognition performed on 
LC-MS data were found to be significantly higher than those derived from 1H NMR data: 
the range of accuracies was between 92 and 100% and the mean recognition was 98.3% 
(Supplementary Materials, Figure S4b). Recognition accuracies in the randomized 
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experiment were significantly lower (mean 12.6%, p-value < 0.001) than the real values. In 
the same way as for 1H NMR, the LC-MS peaks specific for an individual can be found by 
back-projection (Figure 3b) and traced back in the original data. Indeed they show a 
differential profile across individuals. The recognition accuracies based on 1H NMR and 
LC-MS are not correlated across the subjects (correlation coefficient is -0.012): the 
individuals that are relatively badly recognized on the basis of 1H NMR may be well-
recognized on the basis of LC-MS and vice versa. 

Thus, in the current study a small longitudinal cohort of urine samples from healthy 
individuals was analyzed, and even with this limited sample set it was evident that various 
sources of variation are confounded. There are statistical methods available to extract this 
variation separately and examine the data from a different perspective. Those methods 
(multilevel component analysis and person recognition) can be applied to both 1H NMR 
and LC-MS data. The use of multiple analytical platforms also widens the information 
extracted from a study. 

 

DISCUSSION 
The importance of a personalized approach in health-related research is being widely 

accepted by the scientific community, (28) and metabolic profiling is recognized as a 
valuable tool for personalized medicine.(29) However in the majority of metabolomics 
studies a traditional ‘‘case–control’’ design is applied, although it is well-known that the 
definition of these groups, and especially the group of healthy individuals, is very vague.(30) 
In contrast, the definition of the physical individuality is very clear and monitoring an 
individual reaction to perturbations and its development in time is a promising approach 
for medicine and pharmacology. 

In metabolomics the advantages of the longitudinal study design that implies multiple 
sampling per individual have clearly been demonstrated for interventional studies where 
the dynamic response of the organism to the drug or other substance can be 
monitored.(31;32) It has also been demonstrated that ‘‘classical’’ data analysis methods used 
n metabolomics, such as PCA and PLS-DA, are suboptimal(20) for such dynamic data and 
other methods, separating levels of variation, should be used. The longitudinal design offers 
possibilities for differential analysis; depending on the question of interest one may focus 
on differences between the subjects, on variations within each subject or identification of 
unique profiles for each subjects. 

To illustrate some of the possibilities for the analysis of longitudinal metabolomics data 
we applied a series of statistical methods to the 1H NMR and LC-MS data of urines of 8 
individuals, 4 females and 4 males, each contributing 6 urine samples for the study. As no 
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special diet or life style restrictions were applied, it was obvious that the data would contain 
a lot of variation due to day-to-day differences, between-subjects diversity and certain 
grouping of the samples due to, for example, gender, age etc. This, indeed, was confirmed 
by PCA, which summarizes the variation present in the data. The clustering according to 
person was evident; however day-to-day variation for most of the people was much higher 
than the differences between individuals. Gender distinction was also present, but not in the 
first two components of PCA, suggesting that the between-gender difference is overruled by 
all the other sources of variation. 

In the PCA analysis LC-MS data showed more variation covered in the first principal 
components, than the 1H NMR data (Table 1). There was some similarity visible for the 
position of the data points along the first principal components in the two datasets; however 
RV-coefficients calculated on the principal component subspaces for the two techniques 
were rather low (Table 1). This suggests that the two analytical methods reveal different 
biological phenomena reflected in the metabolic composition of the same biological 
samples. 

PCA modeling has shown that the metabolic data with underlying design contain 
information from different sources—from the variation between the subjects, as well as the 
variation between the samples for each person. There is a class of multilevel statistical 
models which can separate the data into levels and as such are perfectly applicable to our 
data. In the case of MCA, applied in the current study, the overall variation present in the 
study was divided into between-individual and within-individual and separate analysis was 
performed on each block. This method reveals spectral regions differential between the 
people, as well as regions which are variable for each of the people through the time course 
of the analysis. 

Another method used, namely, person recognition, focuses on different parts of the 
spectra, which are consistent for the individual and thus characteristic. Before, this method 
was successfully applied to 1H NMR spectra, revealing the existence of individual metabolic 
signatures, which were found to be extremely stable over time and could be largely 
explained by genetics.(22,33) We successfully applied the described method to our data and 
observed a recognition accuracy corresponding to the number of samples used. We also 
demonstrated on an example how the individual metabolic profiles give information 
complementary to that derived from multilevel analysis. 

As can be seen from the analysis, different levels of variation can be recovered from a set 
of spectra. The choice of an appropriate method for statistical analysis should be based on 
the question posed by the investigation. The right answers can only be derived from a 
carefully designed and analyzed study. Consequently, longitudinal design offers possibilities 
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for real personalized medicine such as exploration of the effects not averaged between 
people, elimination of day-to-day variation, focusing on intrinsic individual properties 
reflected in the metabolic composition of urine. 

The person recognition strategy, to the best of our knowledge, has so far not been 
applied to LC-MS data, which is one of the most commonly used analytical techniques in 
metabolomics experiments.(34) One study evaluating the amount of ‘‘personalized’’ 
information present in a set of LC-MS data has been conducted,(35) however this study 
only described the features, unique for an individual (i.e. appearing in one set of the 
spectra), but not the unique patterns of the features as in a person recognition approach. 
Thus our report appeared to be the first ever attempt to do the person recognition analysis 
on LC-MS data. Despite the fact that the LC-MS has somewhat lower analytical 
reproducibility than 1H NMR, (36) person recognition accuracy was substantially higher in 
the case of LC-MS (all individuals were recognized with accuracy more than 92%, 
compared to 59% in 1H NMR). There was absolutely no correlation between recognition of 
people in 1H NMR and in LC-MS again pointing at the fact that the two techniques most 
probably provide different information concerning the samples. 

Of course, the differences in the metabolome coverage between 1H NMR and LC-MS 
come as no surprise. 1H NMR is a universal approach capable of detecting all the 
compounds that contain hydrogens, whereas MS-based methods are more targeted due to 
the selectivity of the separation and ionization techniques used.(36) On the other hand, 1H 
NMR has slightly lower sensitivity in comparison to MS. Thus, there is a certain ‘‘bias’’ in 
metabolomics experiments performed on a single analytical platform: the coverage of the 
metabolites is either limited by the sensitivity, or by the separation method. Thus, the 
observed ‘‘personalized’’ content of LC-MS data in comparison to 1H NMR might be a 
result of such analytical bias. This, however, has to be further explored; here we can make 
only a few assumptions about what is driving this difference. 

In general, 1H NMR-based metabolomics studies result in a systemic view on the studied 
phenomenon, due to the fact that a lot of the detected compounds are related to energy 
metabolism: TCA cycle intermediates, amino acids, etc. These molecules are highly 
abundant in biofluids, are also day-to-day variable depending on the diet and are also 
involved in many biochemical pathways. The latter means that they change in many states 
of the organism, which leads to the problem of ‘‘usual suspects’’(37) with many of the same 
metabolites discovered to be differential in a number of conditions.(38) 

In contrast to NMR, LC-MS is more specific due to the inherent selectivity of the 
separation method and high sensitivity of the detection. Reversed-phase UPLC-MS is highly 
suitable for separation of medium polar and non-polar compounds.(39) Most of the 
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molecules related to energy metabolism, amino and other organic acids will not be retained. 
Thus, the part of the metabolome, covered by rpUPLC-MS, might be less affected by diet 
and gut microflora and might provide a closer approximation of the phenotype. 

This phenomenon certainly would need more extensive investigation and might be an 
extremely important issue in the decision how to conduct a study using a certain analytical 
platform, depending on the study design and the question of interest. 

In total, the amount of biologically relevant information that can be derived from 
metabolomics experiments is enormous. However, the quality of this information depends 
on a clear definition of the goals and the study design as well as on the selection of the 
analytical platform and the subsequent statistical analysis. All of these factors are extremely 
important for obtaining successful results and generating a relevant hypothesis. 
Consequently, performing costly, labor-intensive metabolomics experiments with the sole 
aim to distinguish ‘‘diseased from healthy’’ might be seen as a suboptimal use of manpower, 
instrumental resources and, the most importantly patient material. The power of a 
longitudinal design and the flexibility of various statistical methods to analyze such a design 
may open new possibilities. Individual metabolic signatures, that represent dynamic, time-
correlated changes of phenotype, may actually be used as a phenotype-readout essential for 
practical personalized medicine. 

 

CONCLUSIONS 
In the metabolomics-related literature somewhat controversial ideas are present: on the 

one hand that metabolites can provide unique diagnostic information, and on the other 
hand that their concentrations are very sensitive to non-systemic external factors and vary 
even from day to day for one individual. However, it has been demonstrated that highly 
individual metabolic signatures exist in for instance urine, on top of which the other 
variation is superimposed. The available methods for the analysis of time-resolved data can 
focus either on variation between people or within the time course for an individual. In the 
current paper we have demonstrated the use and complementarity of the extracted 
information of some of these statistical methods on a set of data from healthy individuals. 

We have also shown that the detection of individual metabolic profiles is not solely the 
property of 1H NMR, but is also possible based on UPLC-MS data, interestingly—even with 
a higher accuracy. Based on this limited data set, it would appear that the parallel analysis of 
1H NMR and LC-MS indicates that the two techniques explain different phenomena in the 
data. The higher accuracy of person recognition in LC-MS further suggests that the method 
might be more sensitive to unique, individual-specific features, while 1H NMR might reflect 
a more systemic response. 
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SUPPLEMENTARY MATERIALS 
 
Table S1. The mix of pesticides used as the analytical standard. 

Name Molecular formula m/z [M+H] Retention time, min 
Pymetrozine C10H11N5O 218.1036 4.7 
Formetanate C11H15N3O2 222.1237 4.88 

Fenuron C9H12N2O 165.1022 4.89 
Carbendazim C9H9N3O2 192.0768 6.4 

2-Hydroxyatrazine C8H15N5O 198.1349 6.99 
Atrazine-Desisopropyl C5H8ClN5 174.0541 7.21 

Metamitron C10H10N4O 203.0927 7.71 
Acetamiprid C10H11ClN4 223.0745 7.86 
Chloridazone C10H8ClN3O 222.0429 7.88 

Crimidine C7H10ClN3 172.0636 7.89 
Pirimicarb C11H18N4O2 239.1503 8.13 

Atrazine-Desethyl C6H10ClN5 188.0697 8.16 
Atraton C9H17N5O 212.1506 8.29 

Metoxuron C10H13ClN2O2 229.0738 8.54 
2-4-Dimethylphenylformamide C9H11NO 150.0913 8.75 

Metolcarb C9H11NO2 166.0863 8.75 
Nicosulfuron C15H18N6O6S 411.1081 8.96 
Carbofuran C12H15NO3 222.1125 9.08 
Carboxin C12H13NO2S 236.074 9.26 

Fenpropidin C19H31N 274.2529 9.32 
Fosthiazate C9H18NO3PS2 284.0538 9.45 
Cyprazin C9H14ClN5 228.101 9.69 

DEET (diethyltoluamide) C12H17NO 192.1383 9.71 
Diuron C9H10Cl2N2O 233.0243 9.76 

Cycluron C11H22N2O 199.1805 9.82 
Phenmedipham C16H16N2O4 301.1183 9.87 

Azoxystrobin C22H17N3O5 404.1241 10.01 
Isoxaben C18H24N2O4 333.1809 10.23 

Methoxyfenozide C22H28N2O3 369.2173 10.27 
Chromafenozide C24H30N2O3 395.2329 10.42 

Metolachlor C15H22ClNO2 284.1412 10.65 
Fenothiocarb C13H19NO2S 254.1209 10.78 
Pencycuron C19H21ClN2O 329.1415 11.05 
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Figure S1. Sample 1H NMR spectrum of urine (a) and LC-MS base peak chromatrogram 
from the same urine sample (b). 
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Figure S2. Scores plot of the PCA performed on the entire dataset including QC 
samples. (A) marked by QCs (●) and individual urine samples (□); QC samples form a 
tight cluster, indicating the analytical reproducibility of the method. (B) Marked by 
column; no separation by column is visible. 
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Figure S3. Schematic representation of the two statistical methods used: (a) person 
recognition, (b) multilevel component analysis. 
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Figure S4. Person recognition based on 1H NMR and LC-MS data of urine samples from 
8 individuals. (a) Boxplot of the recognition accuracy based on 1H NMR spectra for 
actual (left) and permuted (right) person labels. (b) Boxplot of the recognition accuracy 
based on LC-MS data for actual (left) and permuted (right) person labels. 
 

 
Figure S5. Heatmap and hierarchical clustering of the initial binned 1H NMR table (a) 
and after back-projection (b). Samples are labeled by their ID and gender. 
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Metabolomics is an essential part of system biology and as such it can improve our 
understanding of the complex network of biochemical reactions and regulatory 
mechanisms in the organism.(1) It also has a great potential in medical research: it can 
provide new means for diagnosis and prognosis of diseases, dissection of underlying 
pathology and prediction of treatment outcome.(2;3)  

Unlike in other disciplines that contribute to system biology, for instance, in genomics 
and proteomics, the object of metabolomics studies (metabolites) is characterized by an 
enormous diversity in physical and chemical properties, as well as in the dynamic range.(4) 
A universal technology that could cover all the metabolites in a single experiment does not 
yet exist and it is unlikely that it will be developed in the near future, if ever. Therefore a 
number of different analytical platforms are used in the field and additional techniques are 
being developed. Even within the scope of the current thesis we had to use several methods 
to address various metabolomics questions. Analytical evaluation of the existing and new 
methods is an essential step that should precede biological experiments. Each of the 
analytical methods has its own advantages and disadvantages. For example, Nuclear 
Magnetic Resonance spectroscopy (NMR) is a more universal method in comparison to 
hyphenated Mass Spectrometry (MS) techniques that are focused on a certain class of 
metabolites depending on the separation method used (polar compounds in case of 
capillary electrophoresis (CE), more hydrophobic in case of reversed-phase liquid 
chromatography (LC) and volatile in gas chromatography (GC) if no derivatization is 
applied). On the other hand, NMR has orders of magnitude lower sensitivity then MS-based 
methods.(5) These features have to be taken into account when making a choice for an 
optimal platform to be used for a specific metabolomics study. This choice should to a large 
extent be guided by the research question under study and the availability of any prior 
biological information. However, there might be other more practical factors involved. For 
instance, if samples are only available in small volumes, this can limit the selection of the 
analytical method. In this case one of the techniques of choice is CE-MS, which can be used 
for metabolic profiling for such an extremely small sample, as a single cell.(6) In this thesis 
we also demonstrated the feasibility of a workflow based on CE-MS for volume-limited 
samples on the example of urine from mutant mice. 

As mentioned above, there is no single method for the fully comprehensive view of the 
metabolome. Therefore there is an increasing awareness that the data from different 
platforms have to be integrated in order to increase the coverage of metabolome, enrich 
biochemical information and generate diagnostic patterns with higher statistical 
significance. Data integration can be performed at different levels: on the level of raw data 
tables, on the level of extracted spectroscopic features and on the level of statistics 
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outputs.(7) A number of methods are available for merging metabolomics data that take 
into account specific features of this type of data, for instance its multivariate nature.(8;9) 

Regardless of the analytical methods used, assessing the quality of the data, as well as 
minimizing the possible inconsistency of the data, is of great importance. This includes 
optimization and evaluation of the analytical reproducibility of the method and 
development of robust pre-processing routines. The latter include alignment of the data 
that should reduce the shifts in peak position resulting from difference in pH, ionic strength 
or any other biological matrix characteristics and are necessary for both NMR and 
hyphenated MS methods. Peak-picking is also an essential step in data pre-processing, 
along with normalization, transformation and scaling of the data. All these steps reduce the 
effects that are introduced by both the unwanted biological and analytical variability and 
prepare the data for statistical analysis.(10)    

Despite the extensive developments in analytical, statistical and computer technology, 
which allow performing large-scale ‘omics’ experiments, extracting biologically relevant 
information from such studies is still an art. Metabolomics is no exception to this rule. A 
correctly and carefully organized study design with well-defined, characterized and 
matched groups is an essential step towards successful interpretation of the data. 
Unfortunately, in human studies it is impossible to fully control the influence of the 
environment and remove all the confounding factors. A study design with longitudinal 
sampling to a certain extent enables separating the influence of the environment and stable 
intrinsic profiles and might provide a direction towards personalized medicine and 
biomarker discovery. 

In case of human body fluids interpreting the results of metabolic profiling studies is not 
straightforward due to the nature of the studied object. The human body comprises an 
extremely complex network of tissues, organs and microbial communities and the cross-
talk between them is still poorly understood. Biological fluids are the “filtrates” of this 
system, and thus relating their components directly to certain biochemical processes is 
hardly possible and can be potentially misleading. The use of clinical parameters in 
combination with complex study design offer possibilities to separate the sources of 
information in the data and relate metabolites to certain biochemical processes.        

 
Future prospects    
The potential benefits of applying metabolomics in medical research are widely 

accepted. This explains the large number of applications of metabolomics to various 
pathological conditions. However, investigating the “healthy” metabolome should not be 
overlooked. Investigating “normality” has been long recognized in psychology as a “subject 
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really much more fascinating than abnormality, presenting incomparably greater variety 
and richness of material, and much more worthy of study”(11). Understanding the stability 
of an organism’s metabolome and the limits within which it can change in the healthy state 
can be very helpful for dissecting the causes that drive it to abnormality, or in other words 
to disease. 

Taking into account the extremely personalized nature of metabolic profiles and the 
abundance of very subtle, “silent” perturbations of metabolism, which do not bring an 
organism out of homeostasis and are not easily noticed, it is the question whether a healthy 
profile can be generalized and determined for a whole population, or whether it can only be 
referred to an individual. In the latter, “extreme” situation the disease can also only be 
related to the healthy state of the same individual and typical “case-control” studies would 
be of little help. 

The design of the study aiming to understanding whether “health” is a population- or an 
individual-based characteristic should on the one hand contain a large number of subjects 
in order to eliminate the individual-specific variation, and on the other follow them in time 
to define the borders of “normality” for each person. 

Hopefully, the work presented in this thesis can be helpful for the future fundamental 
metabolomics investigation on health. Certainly, robust analytical methods will always be 
the basis of such research together with effective pre-processing methods. They will allow 
focusing on extracting valuable biological information, without interfering analytical 
variation. We believe that for extracting this information datasets with multiple sampling 
per individual and multilevel design can be very helpful and thus have presented methods 
for dealing with such data. 
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SUMMARY 
 
Metabolomics is the quantitative measurement of metabolites present in biological 

samples. It can be used to characterize phenotypes that occur due to a certain genetic 
background, understand the organism’s reaction to an intervention or toxins and in 
biomarker discovery. The metabolomics workflow includes study design, sample collection, 
data acquisition, data pre-processing, data analysis and biological interpretation of the 
findings. On the level of study design and sample collection the problems faced in metabolic 
research are similar to those in other disciplines of systems biology and in biochemical 
research in general: study groups have to be carefully selected and all the possible bias 
minimized. Data acquisition in metabolomics poses different challenges in comparison to 
other ‘omics’ fields due to the diversity of the chemical and physical properties of 
metabolites and the absence of a single analytical platform capable of covering the whole 
metabolome. The choice of the statistical method for data analysis should take specific 
features of metabolic profiles, such as the megavariate and highly correlated structure of the 
data, into account. When all the requirements at the different steps of the workflow are 
fulfilled, metabolomics has a great potential for clinical research not only for traditional 
“case-control” studies, but also for more “individualized” research ultimately aiming at 
personalized medicine. 

 
In Part I of this thesis novel we presented and evaluated methods for obtaining and pre-

processing metabolomics data. Part II was dedicated to metabolic profiling in animal 
models. Part III addressed applications of metabolomics in humans.  

 
Part I Method Development 
In Chapter 1 a novel combination of a separation technique (gas chromatography), 

ionization (atmospheric pressure chemical ionization) and detection method (time of flight 
mass spectrometry (ToF-MS)) (GC/APCI-MS) was evaluated. The whole analytical method, 
including derivatization and acquisition parameters, was optimized. A comprehensive mix 
of analytical standards was used to assess linearity, limits of detection, reproducibility and 
repeatability of the method. The latter two are of great importance especially for clinical 
experiments in which cohorts of multiple samples have to be measured. And finally we 
demonstrated the applicability of the method for one of the biological fluids, namely 
cerebrospinal fluid (CSF), by showing that it was possible to detect more than 300 different 
molecules and confident identification of these entities based on the accurate mass and 
isotopic distribution. 
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Regardless of the analytical method applied, the generated data can not be directly used 
for the statistical analysis without prior pre-processing. One of the essential steps of pre-
processing is peak alignment, which is necessary for metabolomics data independently of 
whether it is based on nuclear magnetic resonance (NMR) or hyphenated MS 
measurements. Various methods exist for chromatographic time correction, but very few of 
them use available mass information. In Chapter 2 we introduced such a method that is 
based on pair-wise matching masses across samples, finding the curve best fitting to the 
distribution of those matches using a genetic algorithm and correcting the 
retention/migration times according to the curve. The algorithm can be applied to any 
hyphenated MS dataset, but in order to demonstrate its utility we chose one of the most 
difficult cases for the alignment: capillary electrophoresis (CE) coupled to MS. CE is known 
for its large and irregular shifts in migration time. On a set of electropherograms of mouse 
urines we demonstrated that our algorithm significantly improved peak positions, which 
was very advantageous for the subsequent statistical analysis. On the examined dataset the 
genetic algorithm outperformed one of the often used algorithms for alignment. As 
mentioned above, the described algorithm is based on matching masses across samples, 
thus the mass accuracy in the dataset is an important parameter. Though the genetic 
algorithm was robust enough to fit a curve to the matches in the case of a lower mass 
accuracy, the improved accuracy of the novel mass analyzer was beneficial for the 
performance of the alignment. 

 
Part II Application to Animal Studies 
As we have demonstrated, the major drawback of CE-MS, the low reproducibility of 

migration time, can be diminished by the use of advanced data processing methods. Thus, 
the specific advantages of the technology can be used more efficiently. These include 
separation efficiency and the small sample volume needed. In Chapter 3 we demonstrated 
the feasibility of CE-ToF-MS for metabolic profiling of volume-limited samples. The 
method was able to efficiently separate compounds belonging to diverse chemical families. 
We discussed the whole analytical workflow, including sample preparation, analysis and 
data treatment. The feasibility of the approach was demonstrated on the comparative 
metabolic analysis of wild type mice versus accelerated aging TTD mutant mice, the latter 
animals delivering only very limited volumes of urine, which made this study an excellent 
example for our CE-MS method. The differential compounds were putatively identified 
using accurate mass information and isotopic distribution and subsequently their identity 
was confirmed by using MS/MS analysis. Some of these compounds, for instance S-
Adenosyl-L-methionine, are associated with oxidative stress defense. They can be of
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potential interest as biomarkers of osteoporosis, which is one of the main abnormalities 
affecting TTD mutants. 

Metabolomics studies in experimental animals are of great importance as they allow 
developing and testing new methodologies and are an essential part of translational 
medicine. In Chapter 4 we investigated metabolic perturbations in serum and urine of 
ERRC1d/- mutant mice, which show accelerated aging, in comparison to wild type controls 
by profiling with 1H NMR. The advantage of the study set-up was that serum samples were 
collected from the same mice over time. Such a longitudinal design opened possibilities for 
monitoring the changes in metabolic profiles in time. We observed that the difference in 
metabolic composition of serum of mutant and wild type animals becomes more prominent 
after maturation. The differential molecules were identified in both serum and urine. 
Interestingly, the changes in both of the biological fluids pointed towards the same 
phenomenon: ERCC1d/- animals exhibit a similar biochemical phenotype as mice under 
calorie restricted diet. We found a specific change in the relative abundance of lipoprotein 
particles in serum (very low and low density lipoproteins decreased and high density 
lipoproteins increased) that is characteristic for caloric restriction. 3-Hydroxybutyrate, 
which is a compound released in urine in ketosis, was found in urine of mutant animals and 
was absent in the urine of wild type animals. This finding is in agreement with previous 
research done on other levels of biological regulation, such as, for instance, gene expression. 
Other differences observed in the mutants in our study were related to altered energy 
metabolism, as well as kidney and liver malfunction. 

Using animal studies we demonstrated the applicability of metabolic profiling for the 
analysis of body fluids and its potential for obtaining biochemical information and 
discovery of putative biomarkers. The approach is even more beneficial when a complex 
study design such as a longitudinal one is used. In the following chapters the method was 
applied to two human studies with such an underlying design. 

 
Part III Application to Human Studies 
The object of investigation in Chapter 5 was Urinary Tract Infection (UTI) which is the 

most common bacterial infection among adults. Based on the metabolic profiles of urine, 
obtained with 1H NMR, we were able to identify molecular discriminators of UTI. Using the 
availability of clinical characteristics of the cohort and the longitudinal design of the study 
with multiple samples available for UTI patients, we associated some of those 
discriminators with bacterial contamination of urine (e.g. acetate, hippurate and 
trimethylamine) and found that others might be potential markers of morbidity (e.g. para-
aminohippuric acid and scyllo-inositol). Thus, such a design offered possibilities for 
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improved biological interpretation of the data. The samples from the time point at which 
the patients were considered to be symptom-free were used to test the predictive ability of 
the discriminative model: most of them were classified as controls, which suggested that our 
model can be of potential use for predicting the status of new samples. Another time point, 
at which the patients were under therapy, served as proof that our model was not reflecting 
therapy, but a real disease-related phenomenon.    

We have shown that a longitudinal design improves interpretation of metabolomics 
studies. With the use of various statistical methods available for the analysis of such a design 
it is possible to go further and look at the different levels of biological variation present in 
longitudinal metabolomics data. In Chapter 6 we demonstrated this approach on a small 
selection of urine samples that were collected from healthy individuals over a few days. The 
two statistical methods applied to the data yielded complementary information: individual-
specific profiles were produced with person recognition approach, while within- or 
between-individual variation was recovered with multilevel component analysis. We also 
showed for the first time that individual profiles are present not only in 1H NMR, but also 
in liquid chromatography coupled to MS (LC-MS) data. Comparing the two analytical 
techniques we discovered that they may reflect different biological phenomena.  

 
The chapters that comprised this thesis covered a broad range of subjects from 

analytical method development to clinical application of metabolic profiling. They were 
united by the facts that all of these studies aimed at analysis of biological fluids and that the 
presented methods and approaches may ultimately become parts of a robust metabolomics 
workflow that might be used in a future personalized medicine. 
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Nederlandse samenvatting 
 
Metabolomics houdt zich bezig met de kwantitatieve analyse van metabolieten in 

biologische monsters. Het kan gebruikt worden voor de karakterisering van fenotypen in 
relatie tot een bepaalde genetische achtergrond, de bepaling van de reaktie van een 
organisme op een interventie of giftige stof en in de zoektocht naar biomarkers. 

Een metabolomics onderzoek start met de opzet van de studie en het verzamelen van de 
monsters gevolgd door data acquisitie, data voorbewerking, data analyse en biologische 
interpretatie van de resultaten. Voor wat betreft de opzet van de studie en het verzamelen 
van de monsters gelden voor metabolomics onderzoek dezelfde regels als voor 
systeembiologie en biochemisch onderzoek: de studiegroepen moeten zorgvuldig 
geselecteerd worden en alle mogelijke bias moet zoveel mogelijk geminimaliseerd worden. 
Als gevolg van de grote verscheidenheid aan fysisch-chemische eigenschappen van 
metabolieten kent de data acquisitie binnen metabolomics, in vergelijking met andere 
“omics”-technologiën, grotere uitdagingen omdat er geen enkel analytisch platform 
beschikbaar is dat al deze metabolieten tegelijkertijd kan analyseren. Bij de keuze van de 
statistische methoden voor de analyse van metabolomics data moet daarnaast specifiek 
rekening gehouden worden met het sterk gecorreleerde en megavariate karakter van deze 
data. Als aan al de bovengenoemde voorwaarden is voldaan, biedt metabolomics grote 
mogelijkheden binnen het klinisch onderzoek, niet alleen voor traditioneel case-control 
onderzoek maar ook voor op het individu-gericht onderzoek met als doel om tot een 
persoonsgerichte geneeskunde te komen. 

 
In Deel I van dit proefschrift zijn nieuwe methoden voor het verkrijgen en 

voorbewerken van metabolomics data gepresenteerd en geëvalueerd. Deel II is gericht op 
metabolomics analyse in diermodellen. In Deel III is metabolomics toegepast op patiënten 
studies. 

 
Deel I Methode ontwikkeling 
In Hoofdstuk 1 is een nieuwe combinatie van technieken voor de scheiding 

(gaschromatografie), ionisatie (chemische ionisatie bij atmosferische druk (APCI: 
“Atmospheric Pressure Chemical Ionisation”)) en detectie (“Time-of-Flight” 
massaspectrometrie (ToF-MS)) van metabolieten (GC/APCI-MS) geëvalueerd. Hiervoor 
hebben we de gehele analytische methode, inclusief de derivatisering en data acquisitie 
geoptimaliseerd. Een complex mengsel van analytische standaarden is gebruikt om de
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lineariteit, gevoeligheid, reproduceerbaarheid en herhaalbaarheid van de methode te 
bepalen. De twee laatste parameters zijn zeer belangrijk voor klinische studies waarbij grote 
cohorten met meerdere monsters per individu geanalyseerd moeten worden. Als laatste 
hebben we de toepasbaarheid van de methode voor de analyse van een lichaamsvloeistof 
(CSF) aangetoond; meer dan 300 verschillende moleculen konden hierin worden 
geïdentificeerd op basis van hun accurate massa en isotopenverdeling. 

Ongeacht de analytische methode die wordt toegepast kunnen de gegenereerde data niet 
direct met statistische methoden worden geanalyseerd voordat er een voorbewerking heeft 
plaatsgevonden. Eén van de essentiële stappen is het uitlijnen (tijds- of frequentiecorrectie 
(“alignen”)) van de gemeten pieken, wat zowel nodig is voor metabolomics data afkomstig 
van nucleair magnetische resonantie (NMR) metingen als voor MS data afkomstig van 
systemen waarbij een scheidingstechniek is toegepast. Voor de correctie van de verschillen 
in chromatografische elutietijden zijn al verscheidene methoden ontwikkeld maar van de 
beschikbare accurate massa wordt hiervoor slechts zelden gebruik gemaakt. In Hoofdstuk 2 
wordt een dergelijke methode gepresenteerd waarbij drie stappen van belang zijn: het 
paarsgewijs koppelen van identieke massa’s in verschillende monsters, het vinden van de 
curve die de distributie van deze massa’s op basis van een genetisch algoritme het beste 
beschrijft, en vervolgens het corrigeren van de retentie- c.q. migratietijden op basis van deze 
curve. In principe is het ontwikkelde algoritme algemeen toepasbaar voor analyses waarbij 
MS aan een scheidingstechniek gekoppeld is. Wij hebben ervoor gekozen om deze aanpak 
te testen op een methode waar een relatief grote tijdcorrectie nodig is, capillaire 
electroforese (CE), vanwege de grote, onregelmatige verschuivingen in migratietijden die 
inherent zijn aan deze techniek. Gebruikmakend van een set aan electropherogrammen van 
urines van muizen konden we aantonen dat het algoritme de variatie in de positie van 
pieken in de verschillende runs sterk vermindert. Dit heeft een groot voordeel voor 
daaropvolgende statistische analyses. Daarnaast bleek dat dit nieuwe genetische algoritme 
voor deze dataset duidelijk beter werkte dan één van de tot dan toe meest gebruikte 
methoden. Zoals hierboven aangegeven, wordt het algoritme gebruikt nadat dezelfde 
massa’s in de verschillende runs aan elkaar gekoppeld zijn. Daardoor speelt de massa-
nauwkeurigheid van de dataset een belangrijke rol. Ondanks het feit dat het algoritme 
robuust is en toepasbaar bleek op datasets met een relatief lage massa-nauwkeurigheid, was 
de uiteindelijke uitlijning duidelijk beter als er van een nieuwe massaspectrometer met een 
hogere massa-nauwkeurigheid gebruik werd gemaakt. 
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Deel II Toepasbaarheid in studies van diermodellen 
Zoals boven beschreven kan de belangrijkste tekortkoming van CE-MS, de lage 

reproduceerbaarheid van migratietijden, sterk verminderd worden door gebruik te maken 
van geavanceerde datavoorbewerking. Hierdoor kunnen de specifieke voordelen van de 
techniek, zoals het grote scheidend vermogen en de mogelijkheid tot het gebruik van hele 
kleine volumina, beter tot hun recht komen. In Hoofdstuk 3 hebben we aangetoond dat het 
mogelijk is om CE-ToF-MS te gebruiken voor het genereren van profielen van metabolieten 
in monsters waarvan de hoeveelheid gelimiteerd is. De methode bleek geschikt om een 
grote verscheidenheid aan chemische componenten te scheiden. De hele analytische 
methode is onder de loep genomen, inclusief de monstervoorbereiding, analyse en 
dataverwerking. Daarnaast hebben we de toepasbaarheid van deze methode aangetoond in 
een vergelijkende studie, waarbij met deze methode metabolische profielen van wild type en 
snel verouderende (TTD) muizen zijn gegenereerd. Omdat van de TTD muizen slechts zeer 
beperkte hoeveelheden urine aanwezig waren, vormde dit een uitstekend model voor onze 
CE-MS methode. De identiteit van de discriminerende moleculen kon in eerste instantie op 
basis van accurate massa en isotopenverdeling worden voorspeld en vervolgens worden 
bevestigd aan de hand van MS/MS experimenten. Sommige van deze componenten, zoals 
S-adenosyl-L-methionine, worden geassocieerd met de oxidatieve stress response. Het zou 
mogelijk kunnen dienen als een biomarker voor osteoporose, wat één van de belangrijkste 
aandoeningen is in TTD muizen. 

Metabolomics studies in diermodellen zijn van groot belang omdat ze de mogelijkheid 
bieden om nieuwe methodologieën te ontwikkelen en te testen, en vormen als zodanig een 
belangrijke bijdrage in de translationele geneeskunde. In Hoofdstuk 4 hebben we met 
behulp van 1H NMR de metabolische veranderingen in serum en urine van mutante, snel 
verouderende, ERRCd/- muizen onderzocht in vergelijking met wild type muizen. Het 
voordeel van deze studie was dat op meerdere momenten tijdens de studie serum monsters 
verzameld en gemeten konden worden. Een dergelijke longitudinale studie gaf nieuwe 
mogelijkheden om de veranderingen in de metabolische profielen te bestuderen. We 
konden aantonen dat de verschillen in dergelijke profielen in serum van mutante versus 
wild type muizen het grootst waren nadat de dieren geslachtsrijp waren. De moleculen die 
ten grondslag lagen aan de verschillen in de profielen van zowel serum als urine konden 
worden geïdentificeerd. Het was heel interessant om te zien dat de veranderingen in beide 
lichaamsvloeistoffen in de richting van eenzelfde verschijnsel duidden, namelijk, dat 
ERRCd/- muizen een biochemisch fenotype vertonen dat lijkt op dat van muizen op een 
caloriebeperkend dieet. We vonden o.a. specifieke veranderingen in de relatieve 
hoeveelheden van lipoproteïne deeltjes in serum (vermindering van heel lage en lage 
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dichtheid lipoproteïnen en verhoging van hoge dichtheid lipoproteïnen) die karakteristiek 
zijn voor caloriebeperkende omstandigheden. Daarnaast werd alleen in urine van mutante 
muizen 3-hydroxybutaraat, een molecuul dat alleen bij ketose in de urine wordt 
uitgescheiden, aangetoond. Dit is in overeenstemming met eerder onderzoek dat op andere 
niveaus van biologische regulatie, zoals genexpressie, in dit model zijn uitgevoerd. Andere 
verschillen die wij in onze analyse vonden waren gerelateerd aan veranderingen in energie 
metabolisme en verstoringen in nier- en leverfuncties. 

 Door gebruik te maken van de diermodellen hebben we dus laten zien dat het 
haalbaar is om metaboliet-profielen van lichaamsvloeistoffen te bepalen en op die manier 
biochemische veranderingen en potentiële biomarkers aan te tonen. Deze benadering biedt 
extra voordelen wanneer een complexe studie, zoals een longitudinale, wordt gebruikt en in 
de daaropvolgende hoofdstukken hebben we dit toegepast binnen een dergelijke studie van 
patiëntenpopulaties.  

 
Deel III Toepasbaarheid in patiënten studies 
In Hoofdstuk 5 is onderzoek verricht aan urineweginfecties, de meest voorkomende 

bacteriële infectie bij volwassenen. Door vergelijking van de metaboliet-profielen die 
werden gegenereerd met behulp van 1H NMR, konden we verschillende moleculen 
aantonen die specifiek geassocieerd waren met deze infecties. Gebruikmakend van de 
klinische gegevens van het studiecohort en de longitudinale studieopzet, waarbij meerdere 
urinemonsters van dezelfde patiënten beschikbaar waren, konden een aantal veranderingen 
geassocieerd worden met bacteriële verontreiniging van de urine (bv. acetaat, hippuraat en 
trimethylamine) terwijl andere mogelijke markers zijn voor morbiditeit (bv. para-
aminohippurinezuur en scyllo-inositol). Een dergelijke studieopzet geeft dus mogelijkheden 
voor een meer verfijnde biologische interpretatie van de data. De urinemonsters die werden 
verzameld op het moment dat de patiënten als symptoomvrij werden beschouwd, werden 
vervolgens gebruikt om de voorspellende kracht van het model te testen; de meeste werden 
hierbij geclassificeerd als niet-geïnfecteerde controles wat aangeeft dat ons model mogelijk 
gebruikt kan worden om de status van onbekende urinemonsters te bepalen. De gegevens 
van een ander tijdpunt gedurende de behandeling van de patiënten werden gebruikt om aan 
te tonen dat ons model niet de gebruikte therapie weerspiegelde maar inderdaad de status 
van de infectie. 

We hebben aangetoond dat een longitudinale studieopzet de interpretatie van 
metabolomics studies verbetert. Door gebruik te maken van verschillende statistische 
methoden die specifiek geschikt zijn voor een dergelijke studieopzet is het zelfs mogelijk om 
nog dieper op de data in te gaan en de verschillende niveaus van de biologische variatie die 
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in metabolomics data aanwezig zijn, te bestuderen. In Hoofdstuk 6 is deze benadering 
toegepast op een relatief kleine selectie van urinemonsters die over verschillende dagen bij 
gezonde personen zijn verzameld. De twee gebruikte statistische methoden leverden 
complementaire informatie op: persoonsgebonden profielen konden worden gegenereerd 
door middel van een persoonsherkenning benadering terwijl de intra- en inter-individuele 
variatie met behulp van een “multilevel component” analyse konden worden geëxtraheerd. 
We konden hiermee voor het eerst laten zien dat een individu-specifiek profiel niet alleen in 
1H NMR maar ook in LC-MS data (vloeistofchromatografie gekoppeld aan 
massaspectrometrie) aanwezig is. Vergelijking van de twee analytisch technieken liet verder 
zien dat de technieken mogelijk verschillende verschijnselen weerspiegelen. Onze analyse 
suggereert dat LC-MS data meer individu-specifieke kenmerken bevat dan 1H NMR data. 

 
De hoofdstukken in dit proefschrift bestreken een breed scala aan onderwerpen met 

betrekking tot analytische methodeontwikkeling en de klinische toepassing van de analyse 
van metaboliet-profielen. Bij beide stond de analyse van biologische lichaamsvloeistoffen 
centraal en hopelijk kunnen de beschreven methoden en benaderingen in de toekomst 
onderdeel worden van een robuuste metabolomics pijplijn die een belangrijke bijdrage kan 
leveren aan de ontwikkeling van persoonsgebonden geneeskunde. 
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