
 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/22617 holds various files of this Leiden University 
dissertation. 
 
Author: Celler, Katherine Anna 
Title: A multidimensional study of streptomyces morphogenesis and development 
Issue Date: 2013-11-27 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22617
https://openaccess.leidenuniv.nl/handle/1887/1�


Dynamic Biological Visualization - 3D Modeling using WebGL 

 Chapter 6



90

Chapter 6

INTRODUCTION

During the initial implementation the Streptomyces morphological model presented 

in Chapter 6, the rational choice of tool for the task at hand was MATLAB®. A powerful, 

high-level, yet easy to use programming language, MATLAB is commonly used by scientists 

and engineers alike for technical computing. Using an object-oriented approach, the 

Streptomyces mycelium was modeled as a collection of branches, which in turn were 

modeled as a collection of points with various properties. Properties included whether a 

point was the start of a new branch or a cross wall location, and its compartment type 

(apical, subapical or hyphal). Point positions (x, y, z coordinates in 3D space) and properties 

(denoted in binary notation) were stored within matrices. During the simulation, the 

processes of growth, branching, cross wall formation, as well as fragmentation, were looped 

through sequentially, resulting in change of the morphology, and consequently, change in 

local oxygen concentration. The assumption was that continued growth and branching 

would deplete oxygen within a pellet, while increasing pellet density, affecting diffusion. 

Decreased local oxygen concentration would in turn affect growth and branching, resulting 

in a feed-forward, feed-back mechanism of pellet formation, as well as differentiation, which 

is known to correlate to productivity. Simulation results were matrices of branch points, 

reflecting the morphology resulting from a particular set of input parameters.

Matlab functionality allows plotting of two- or three-dimensional plots for data 

visualization. In this way, if the points of each branch in the mycelium were connected by 

lines, a simple visual representation of the mycelium could be obtained. To improve upon 

this still rather crude output, the freely available Persistance of Vision Ray-Tracing software 

(www.povray.org) was used to create more visually realistic images of simulated pellets 

(see Chapter 6). Pov-Ray uses ray tracing for image generation, which is a technique that 

involves tracing the path from a light source through pixels in an image plane and simulating 

the effects that this light beam would have as it encounters the virtual objects in its path. 

Although a high degree of visual realism could be achieved, Pov-Ray suffers from lack of 

dynamics, and individually rendered images need to be stitched together to generate a 

movie or simulation. Although the Pov-Ray output allowed us to demonstrate that model 

results provided a realistic portrait of mycelial morphology, this form of visualization was 

time-consuming and not intuitive.

To develop an interactive version of the model, and drawing inspiration from the Bio-

digital Human project (https://www.biodigitalhuman.com/home/) and the Open Worm 

Browser (http://browser.openworm.org/), part of the code was converted to Javascript so 



91

Dynamic Biological Visualization - WebGL

Ch
ap

te
r 6

as to generate a web-based 3D version of the model of Streptomyces pellet growth and 

morphological development. The idea was to create a dynamic model in the browser, where 

a user can see a pellet grow while adjusting parameters and immediately see the effect of 

parameter changes on pellet morphology, and ultimately, production. 

Use of the Web as a software deployment platform has only recently become possible 

with the emergence of the HTML5 (http://www.w3.org/TR/html5) and WebGL (http://

www.khronos.org/webgl) standards. HTML5 complements capabilities of the existing HTML 

standard in order to enable support of the latest multimedia, such as the embedding of audio 

and video directly into web pages, effectively to help in the transformation of the browser 

into a programming environment (Anttonen, Salminen et al. 2011). To give an example, the 

canvas element, a 2D graphics API (application programming interface) for defining shapes 

and bitmaps rendered directly in the web browser, is a new feature of HTML5, while WebGL 

enables visualization of Graphics Processing Unit (GPU) hardware-accelerated 3D graphics 

in the browser without additional software, plug-ins or extensions. With the help of THREE.

js, a lightweight, cross-browser Javascript library, a simplified version of the model could be 

reprogrammed as a WebGL 3D computer graphics element, able to run in the browser.

Programming of the model in Javascript involved re-thinking the way that the model is 

structured and coded. Javascript, or JS, is an interpreted language, originally implemented 

for web browsers to enable user interaction and change of document content via client-side 

control of the browser. The power, or rather difficulty of Javascipt, lies in the fact that it is 

weakly (or loosely) typed, meaning that variables do not have a type (ie. int or char), and can 

hold any object, without restrictions. In order to maintain the hierarchical structure of the 

model (a mycelium or pellet containing branches, which in turn contain points), an object-

oriented approach was used in Javascript, which involved creating different functions for 

each hierarchical level, with corresponding properties. 

During initialization of the page, a THREE.js scene is constructed, including the mycel 

(short for mycelium) object itself, consisting of branches, with associated branchunits (lines), 

as well as a camera, light source, and renderer. Application interaction is possible by using 

the mouse to rotate the pellet during growth and to zoom using the mouse wheel. One 

javascript function file contains all the variables involved, to be called from the other files as 

needed. A graphical user-interface (GUI) is provided with, for the moment, four variables: 

branching interval, tip growth rate, and tip growth angles phi and theta. 



92

Chapter 6

Adjusting the variables results in the development of various morphologies. A 

comparison between three different simulation runs with different parameter initializations 

is shown in Figure 1. The default parameters result in a dense pellet morphology (Figure 1A), 

while decreasing the growth rate demonstrates that in adverse conditions, small pellets may 

develop (Figure 1B). Increasing the tip growth rate as well as the interval between branches 

results in a mycelial mat morphology (Figure 1C). The simulations are a good illustration of 

the large difference in morphology that can result when only a few parameters are adjusted.   

Moreover, improving upon the MATLAB model, parameters can be changed during the 

simulation, illustrating how an influx of nutrients, or a change in fermentation parameters 

can potentially affect morphology. Figure 2 provides a screenshot from a simulation run 

during which parameters were changed dynamically. The resulting pellet is dense on the 

inside, but with a more open outgrowth of external branches. 

Figure 1. WebGL simulated morphologies. (A) Dense pellet formation. (B) A very small pellet results when the tip 

growth rate is decreased. In this simulation, branching interval was also set to 1 branch per 10 μm, but due to the 

very slow growth rate, the effect this has on morphology is not evident. (C) A mycelial mat structure results from a 

low branching interval and high growth rate. Tip angle variation was also increased in this simulation, resulting in 

hyphae which curl more during growth. Parameters are provided in the graphic user interface boxes to the right.



93

Dynamic Biological Visualization - WebGL

Ch
ap

te
r 6

FUTURE PERSPECTIVES

At the moment the WebGL simulation is a simplified version of what was previously coded 

in and achieved with Matlab and PovRay. The basis, however, is there. With some additional 

steps, the code can be improved and extended to provide a more realistic and useful 

morphological simulation.

Firstly, it is necessary to implement the oxygen diffusion algorithms to model oxygen 

diffusion and consumption by the growing pellet. Solving equations in the browser is 

something that is now possible to achieve in WebGL by using the graphics processor to 

simultaneously solve sets of parallel equations (Janik 2012). This is currently only possible for 

sets of linear equations, but developers are working on creating non-linear equation solvers 

for the browser. Secondly, collision detection should be implemented to prevent hyphae 

from overlapping within the centre of the pellet. Because of the large interest in the use of 

WebGL to create 3D games in the browser, numerous algorithms exist to implement collision 

detection. Thirdly, it would be beneficial to implement a pellet render function once growth 

Figure 2. Screenshot from simulation run, demonstrating the effect of parameter changes on morphology. An initially 

fast tip growth rate, and average branching interval resulted in rapid growth of the pellet. Branching interval was 

then decreased, resulting in larger distances between branches, and enabling extension of long branches outside 

of the pellet core. Near the end of the simulation, tip growth rate was set at a minimum, while branching interval 

was increased, resulting in short distances between the new branches emerging on the long outreaching hyphae.



94

Chapter 6

has completed to model the lines as three dimensional objects. Since immediate modeling 

of the hyphae as three-dimensional cylinders or tubes is very taxing on the browser, lines 

were chosen to visually represent the mycelium and give a realistic approximation of the 

morphology, albeit only at lower zoom levels. With the help of a pellet render function, 

during zooming and morphological analysis of the pellet, a user would be able to better 

visualize and analyze the pellet packing and calculate the void fractions corresponding to 

various modeling scenarios.

As the web technology for in-browser modeling improves, the power and speed of the 

simulation will also increase, facilitating model expansion and improvement. Adding and 

implementing new experimental data from fermentation trials based on different strains 

and morphologies, as well as gene expression data relating to morphogenesis, such as the 

effect of ssgA overexpression (van Wezel, Krabben et al. 2006), will increase the biological 

relevance of the model and may lead to new insights. In the future, such a dynamic, easily-

accessible, 3D-modeling approach may prove to be valuable for strain improvement, with 

modeling effectively a test-drive for the fermentation process to pre-assess the effect of 

variables on productivity (Celler et al. 2012). At present, it demonstrates the application 

of WebGL, a new web technology for three-dimensional modeling in the browser, for 

visualization and modeling of Streptomyces pellet growth. The tool can be used for teaching 

purposes to showcase the mathematical beauty and complexity of Streptomyces sp., and 

the intricacies of branching growth and morphogenesis in liquid cultures.


