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Chapter 4

Crossed products of Banach
algebras

This chapter has been submitted for publication as M. de Jeu, M. Messerschmidt and
M. Wortel,“Crossed products of Banach algebras. II.”. It is available as arXiv:1305.
2304.

4.1 Introduction and overview

This paper is an analytical continuation of [19] where, motivated by the theory of
crossed products of C∗-algebras and its relevance for the theory of unitary group
representations, a start was made with the theory of crossed products of Banach al-
gebras. General Banach algebras lack the convenient rigidity of C∗-algebras where,
e.g., morphisms are automatically continuous and even contractive, and this makes
the task of developing the basics more laborious than it is for crossed products of C∗-
algebras. Apart from some first applications, including the usual description of the
non-degenerate (involutive) representations of the crossed product associated with
a C∗-dynamical system (cf. [19, Theorem 9.3]), [19] is basically concerned with one
theorem, the General Correspondence Theorem [19, Theorem 8.1], most of which is
formulated as Theorem 4.2.1 below. If R is a non-empty class of non-degenerate con-
tinuous covariant representations of a Banach algebra dynamical system (A,G, α)
– all notions will be reviewed in Section 4.2 – then Theorem 4.2.1 gives a bijection
between the non-degenerate R-continuous covariant representations of (A,G, α) and
the non-degenerate bounded representations of the crossed product (AoαG)R, pro-
vided that A has a bounded approximate left identity. In the current paper, the
basic theory is developed further and, in addition, a substantial part is concerned
with generalized Beurling algebras L1(G,A, ω;α) and their representations. These
are weighted Banach spaces of (equivalence classes) of A-valued functions that are
also associative algebras with a multiplication that is continuous in both variables,
but they are not Banach algebras in general, since the norm need not be submul-
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74 Chapter 4: Crossed products of Banach algebras

tiplicative. If A equals the scalars, they reduce to the ordinary Beurling algebras
L1(G,ω) (which are true Banach algebras) for a not necessarily abelian group G.
We will describe the non-degenerate bounded representations of generalized Beurling
algebras as a consequence of the General Correspondence Theorem, which is thus
seen to be a common underlying principle for (at least) both crossed products of
C∗-algebras and generalized Beurling algebras.

We will now briefly describe the contents of the paper.
In Section 4.2 we review the relevant definitions and results of [19]. In Section

4.3 it is investigated how the crossed product (AoαG)R depends on R, and it is also
shown that there exists an isometric representation of this algebra on a Banach space.
The latter result is used in Section 4.4. Loosely speaking, (A oα G)R “generates”
all non-degenerate R-continuous covariant representations of (A,G, α), and under
two mild additional hypotheses it is shown to be the unique such algebra, up to
isomorphism (cf. Theorem 4.4.4). This result parallels work of Raeburn’s [38]. It is
also shown (cf. Proposition 4.4.3) that the left regular representation of (Aoα G)R

is a topological embedding into its left centralizer algebra Ml((A oα G)R). Since
(AoαG)R need not have a bounded approximate right identity, this is not automatic.

Next, in Section 4.5 the generalized Beurling algebras L1(A,G, ω;α) make their
appearance. These algebras can be defined for any Banach algebra dynamical sys-
tem (A,G, α) and weight ω on G, provided that α is uniformly bounded. If A has
a bounded approximate right identity, then it can be shown that L1(A,G, ω;α) is
isomorphic to (A oα G)R, for a suitably chosen class R (cf. Theorem 4.5.17). Via
this isomorphism the General Correspondence Theorem therefore predicts, if A has
a bounded two-sided approximate identity, what the non-degenerate bounded repre-
sentations of L1(A,G, ω;α) are, in terms of the non-degenerate continuous covariant
representations of (A,G, α) (cf. Theorem 4.5.20), and some classical results are thus
seen to be obtainable from the General Correspondence Theorem. As the easiest
example, we retrieve the usual description of the non-degenerate left L1(G)-modules
in terms of the uniformly bounded strongly continuous representations of G. Natu-
rally, there is a similar description of the non-degenerate right L1(G)-modules, but
an intermediate procedure is needed to obtain such a result from the General Cor-
respondence Theorem, where one always ends up with left modules over the crossed
product. This is taken up in Section 4.6, where we investigate all “reasonable” varia-
tions on the theme that π : A→ B(X) and U : G→ B(X) should be multiplicative,
and that Urπ(a)U−1

r = π(αr(a)) should hold for all a ∈ A and r ∈ G. We argue that
there are only three more “reasonable” requirements (cf. Table 4.1). One of these
is, e.g., that π and U are anti-multiplicative and that Urπ(a)U−1

r = π(αr−1(a))
for all a ∈ A and r ∈ G; for A = K and α = triv this covers the case of right
G-modules. Moreover, we show that a pair (π, U) of each of the other three types
can be reinterpreted as a covariant representation in the usual sense for a suitable
“companion” Banach algebra dynamical system. The example (π, U) given above,
where there are three “flaws” in the properties of (π, U), is a covariant representation
for the opposite Banach algebra dynamical system (Ao, Go, αo). Therefore, if one
seeks a Banach algebra of which the non-degenerate bounded (multiplicative) rep-
resentations “encode” a family of such pairs (π, U), then a crossed product of type
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(Aoα G)R is not what one should look at, but (Ao oαo Go)R
o

is to be considered.
Section 4.7 shows, as a particular case of Theorem 4.7.5, how the encoding for var-

ious types can be collected in one Banach algebra. For example, the non-degenerate
bounded representations of (A oα G)R⊗̂(Ao oαo Go)R

o

correspond to commuting
non-degenerate bounded representations of (A oα G)R and (Ao oαo Go)R

o

. These
representations can then be respectively related to a usual covariant representation
of (A,G, α) and a thrice “flawed” pair (π, U) as above, which again commute.

In the final Section 4.8 we combine the results from Sections 4.5, 4.6 and 4.7.
Using the procedure from Section 4.6 and the results from Section 4.5, the rela-
tion between thrice “flawed” pairs (π, U) as above and the non-degenerate bounded
representations of L1(Go, Ao, ωo;αo) is easily established. Since coincidentally the
generalized Beurling algebra L1(Go, Ao, ωo;αo) turns out to be anti-isomorphic to
L1(A,G, ω;α), these pairs (π, U) can then also be related to the non-degenerate
right L1(A,G, ω;α)-modules (cf. Theorem 4.8.3). It is then easy to describe the si-
multaneous left L1(A,G, ω;α)– and right L1(B,H, η;β)-modules, where the actions
commute (cf. Theorem 4.8.4). In particular this describes the bimodules over a gen-
eralized Beurling algebra L1(A,G, ω;α). Specializing to the case where A equals the
scalars yields a description of the non-degenerate bimodules over an ordinary Beurl-
ing algebra L1(G,ω) in terms of G-bimodules. Specializing still further to ω = 1 the
classical description of the non-degenerate L1(G)-bimodules in terms of a uniformly
bounded G-bimodule is retrieved as the simplest case in the general picture.

4.2 Preliminaries and recapitulation

For the sake of self-containment we provide a brief recapitulation of definitions and
results from earlier papers [18, 19].

Throughout this paper X and Y will denote Banach spaces. The algebra of
bounded linear operators on X will be denoted by B(X). By A and B we will
denote Banach algebras, not necessarily unital, and by G and H locally compact
groups (which are always assumed to be Hausdorff). We will always use the same
symbol λ to denote the left regular representation of various Banach algebras instead
of distinguishing between them, as the context will always make precise what is
meant. If A is a Banach algebra, X a Banach space, and π : A→ B(X) is a Banach
algebra representation, when confusion could arise, we will write Xπ instead of X to
make clear that the Banach space X is related to the representation π. We do not
assume that Banach algebra representations of unital Banach algebras are unital.
Representations of algebras and groups are always multiplicative (so that we are
considering left modules), unless explicitly stated otherwise.

Let A be a Banach algebra, G a locally compact Hausdorff group and α : G →
Aut(A) a strongly continuous representation of G on A. Then the triple (A,G, α) is
called a Banach algebra dynamical system.

Let (A,G, α) be a Banach algebra dynamical system, X a Banach space with
π : A→ B(X) and U : G→ B(X) representations of the algebra A and group G on
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X respectively. If (π, U) satisfies

π(αs(a)) = Usπ(a)U−1
s ,

for all a ∈ A and s ∈ G, the pair (π, U) is called a covariant representation of
(A,G, α) on X. The pair (π, U) is said to be continuous if π is norm-bounded
and U is strongly continuous. The pair (π, U) is called non-degenerate if π is non-
degenerate (i.e., the span of π(A)X lies dense in X).

Integrals of compactly supported continuous Banach space valued functions are,
as in [19], defined by duality, following [40, Section 3]. Let Cc(G,A) denote the space
of all continuous compactly supported A-valued functions. For any f, g ∈ Cc(G,A)
and s ∈ G defining the twisted convolution

[f ∗ g](s) :=

ˆ
G

f(r)αr(g(r−1s)) dr

gives Cc(G,A) the structure of an associative algebra, where integration is with
respect to a fixed left Haar measure on G.

If (π, U) is a continuous covariant representation of (A,G, α) on X, then, for
f ∈ Cc(G,A), we define π o U(f) ∈ B(X), as in [19, Section 3], by

π o U(f)x :=

ˆ
G

π(f(s))Usx ds (x ∈ X).

The map π o U : Cc(G,A) → B(X) is a representation of the algebra Cc(G,A) on
X, and is called the integrated form of (π, U).

Let R be a class of covariant representations of (A,G, α). Then R is called
a uniformly bounded class of continuous covariant representations if there exist a
constant C ≥ 0 and function ν : G → [0,∞) which is bounded on compact sets,
such that, for any (π, U) ∈ R, we have that ‖π‖ ≤ C and ‖Ur‖ ≤ ν(r) for all r ∈ G.
We will always tacitly assume that such a class R is non-empty. With R as such,
it follows that ‖π o U(f)‖ ≤ C

(
supr∈supp(f) ν(r)

)
‖f‖1 for all (π, U) ∈ R and

f ∈ Cc(G,A) [19, Remark 3.3].
We define the algebra seminorm σR on Cc(G,A) by

σR(f) := sup
(π,U)∈R

‖π o U(f)‖ (f ∈ Cc(G,A)),

and denote the completion of the quotient Cc(G,A)/ kerσR by (A oα G)R, with
‖ · ‖R denoting the norm induced by σR. The Banach algebra (Aoα G)R is called
the crossed product corresponding to (A,G, α) and R. The quotient homomorphism
is denoted by qR : Cc(G,A)→ (Aoα G)R.

A covariant representation of (A,G, α) is called R-continuous if it is continuous
and its integrated form is bounded with respect to the seminorm σR. For any
Banach space X and linear map T : Cc(G,A)→ X, if T is bounded with respect to
the σR seminorm, we will denote the canonically induced linear map on (Aoα G)R

by TR : (Aoα G)R → X, as detailed in [19, Section 3].
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If A has a bounded approximate left (right) identity, then it can be shown that
(Aoα G)R also has a bounded approximate left (right) identity, with estimates for
its bound, [19, Theorem 4.4 and Corollary 4.6].

We will denote the left centralizer algebra of a Banach algebra B byMl(B). As-
suming B has a bounded approximate left identity (ui), any non-degenerate bounded
representation T : B → B(X) induces a non-degenerate bounded representation
T : Ml(B) → B(X), by defining T (L) := SOT-limiT (Lui) for all L ∈ Ml(B), so
that the following diagram commutes (cf. [18, Theorem 4.1]):

B
T //

λ

""EE
EE

EE
EE

E B(X)

Ml(B)

T

OO

Moreover, T (L)T (a) = T (La) for all a ∈ B and L ∈ Ml(B). We will often use this
fact.

With (A,G, α) a Banach algebra dynamical system and R a uniformly bounded
class of continuous covariant representations, we define the homomorphisms iA :
A→ End(Cc(G,A)) and iG : G→ End(Cc(G,A)) by

(iA(a)f)(s) := af(s),
(iG(r)f)(s) := αr(f(r−1s)),

for all a ∈ A, f ∈ Cc(G,A) and r, s ∈ G. For each a ∈ A and r ∈ G, the maps

iA(a), iG(r) : (Cc(G,A), σR)→ (Cc(G,A), σR)

are bounded [19, Lemma 6.3], and

‖iA(a)‖R ≤ sup(π,U)∈R ‖π(a)‖,
‖iG(r)‖R ≤ sup(π,U)∈R ‖Ur‖.

Defining iRA (a)qR(f) := qR(iA(a)f) and iRG(r)qR(f) := qR(iG(r)f) for all a ∈ A,
r ∈ G and ∈ Cc(G,A), we obtain bounded maps

iRA (a), iRG(r) : (Aoα G)R → (Aoα G)R.

Moreover, the maps a 7→ iRA (a) and r 7→ iRG(r) map A and G intoMl((AoαG)R). If
A has a bounded approximate left identity andR is a uniformly bounded class of non-
degenerate continuous covariant representations, then (iRA , i

R
G) is a non-degenerate

R-continuous covariant representation of (A,G, α) on (AoαG)R [19, Section 6] and
the integrated form (iRA o iRG)R equals the left regular representation of (Aoα G)R

[19, Theorem 7.2].
The main theorem from [19] establishes, amongst others, a bijective relationship

between the non-degenerate R-continuous covariant representations of (A,G, α) and
the non-degenerate bounded representations of (Aoα G)R, by letting (π, U) corre-
spond to (π o U)R. This result will play a fundamental role throughout the rest of
this paper, and the relevant part of [19, Theorem 8.1] can be stated as follows:
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Theorem 4.2.1. (General Correspondence Theorem, cf. [19, Theorem 8.1]) Let
(A,G, α) be a Banach algebra dynamical system, where A has a bounded approximate
left identity. Let R be a uniformly bounded class of non-degenerate continuous co-
variant representations of (A,G, α). Then the map (π, U) 7→ (πoU)R is a bijection
between the non-degenerate R-continuous covariant representations of (A,G, α) and
the non-degenerate bounded representations of (Aoα G)R.

More precisely:

(1) If (π, U) is a non-degenerate R-continuous covariant representation of (A,G, α),
then (πoU)R is a non-degenerate bounded representation of (Aoα G)R, and

((π o U)R ◦ iRA , (π o U)R ◦ iRG) = (π, U),

where (π o U)R is the representation of Ml((A oα G)R) as described above,
cf. [19, Section 7].

(2) If T is a non-degenerate bounded representation of (A oα G)R, then the pair
(T ◦ iRA , T ◦ iRG) is a non-degenerate R-continuous covariant representation of
(A,G, α), and

(T ◦ iRA o T ◦ iRG)R = T.

4.3 Varying R
For a given Banach algebra dynamical system (A,G, α), one may ask what rela-
tionship exists between the crossed products (A oα G)R1 and (A oα G)R2 for two
uniformly bounded classes R1 and R2 of possibly degenerate continuous covariant
representations on Banach spaces. This section investigates this question.

Since uniformly bounded classes of covariant representations might be proper
classes, we must take some care in working with them. Nevertheless, we can always
choose a set from a uniformly bounded class R of covariant representations of a Ba-
nach algebra dynamical system (A,G, α) so that this set determines σR. Indeed for
every f ∈ Cc(G,A), looking at the subset {‖πoU(f)‖ : (π, U) ∈ R} of R (subclasses
of sets are sets), we may choose a sequence from {‖πoU(f)‖ : (π, U) ∈ R} converg-
ing to σR(f) and regard only those corresponding covariant representations. In this
way, we can chose a set S from R of cardinality at most |Cc(G,A) × N| such that
σS(f) = sup(π,U)∈S ‖π o U(f)‖ = σR(f) for all f ∈ Cc(G,A). Hence the following
definition is meaningful; it will be required in Definition 4.3.3 and Proposition 4.3.4.
Definition 4.3.1. Let R be a uniformly bounded class of possibly degenerate con-
tinuous covariant representations of (A,G, α). We define [R] to be the collection
of all uniformly bounded classes S that are actually sets and satisfy σR = σS on
Cc(G,A). Elements of some [R] will be called uniformly bounded sets of continuous
covariant representations.

Before addressing the question laid out in the first paragraph, we consider the
following aside which will play a key role in Section 4.4.
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Definition 4.3.2. Let I be an index set and {Xi : i ∈ I} a family of Banach spaces.
For 1 ≤ p ≤ ∞, we will denote the `p-direct sum of {Xi : i ∈ I} by `p{Xi : i ∈ I}.

Definition 4.3.3. Let (A,G, α) be a Banach algebra dynamical system and R a
uniformly bounded class of continuous covariant representations. For S ∈ [R] and
1 ≤ p < ∞, suppressing the p-dependence in the notation, we define the represen-
tations (⊕Sπ) : A→ B(`p{Xπ : (π, U) ∈ S}) and (⊕SU) : G→ B(`p{Xπ : (π, U) ∈
S}) by (⊕Sπ)(a) :=

⊕
(π,U)∈S π(a) and (⊕SU)r :=

⊕
(π,U)∈S Ur for all a ∈ A and

r ∈ G respectively.
It is easily seen that ((⊕Sπ), (⊕SU)) is a continuous covariant representation,

that
((⊕Sπ) o (⊕SU))(f) =

⊕
(π,U)∈S

π o U(f),

and that ‖((⊕Sπ) o (⊕SU))(f)‖ = σS(f) = σR(f), for all f ∈ Cc(G,A).
We hence obtain the following (where the statement concerning non-degeneracy

is an elementary verification).
Proposition 4.3.4. Let (A,G, α) be a Banach algebra dynamical system and R a
uniformly bounded class of continuous covariant representations. For any S ∈ [R]
and 1 ≤ p < ∞, there exists an R-continuous covariant representation of (A,G, α)
on `p{Xπ : (π, U) ∈ S}, denoted ((⊕Sπ), (⊕SU)), such that its integrated form
satisfies ‖((⊕Sπ)o (⊕SU))(f)‖ = σR(f) for all f ∈ Cc(G,A) and hence induces an
isometric representation of (Aoα G)R on `p{Xπ : (π, U) ∈ S}.

If every element of S is non-degenerate, then ((⊕Sπ), (⊕SU)) is non-degenerate.
The previous theorem shows, in particular, that crossed products can always be

realized isometrically as closed subalgebras of bounded operators on some (rather
large) Banach space.

We now return to the original question. The following results examine relations
that may exist between crossed products defined by using two different uniformly
bounded classes of continuous covariant representations of a Banach algebra dynam-
ical system.
Proposition 4.3.5. Let (A,G, α) be a Banach algebra dynamical system. Let R1

and R2 be uniformly bounded classes of possibly degenerate continuous covariant
representations of (A,G, α) and M ≥ 1 a constant. Then the following are equiva-
lent:

(1) There exists a homomorphism h : (AoαG)R2 → (AoαG)R1 such that ‖h‖ ≤
M and h ◦ qR2(f) = qR1(f) for all f ∈ Cc(G,A).

(2) The seminorms σR1 and σR2 satisfy σR1(f) ≤MσR2(f) for all f ∈ Cc(G,A).

(3) There exist uniformly bounded sets of continuous covariant representations
R′1 ∈ [R1], R′2 ∈ [R2] and R′3 such that R′1∪R′2 ⊆ R′3 and σR

′
2(f) ≤ σR′3(f) ≤

MσR
′
2(f) for all f ∈ Cc(G,A).
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(4) If (π, U) is an R1-continuous covariant representation of (A,G, α) andM ′ ≥ 0
is such that ‖π o U(f)‖ ≤ M ′σR1(f) for all f ∈ Cc(G,A), then (π, U) is
an R2-continuous covariant representation of (A,G, α), and ‖π o U(f)‖ ≤
M ′MσR2(f) for all f ∈ Cc(G,A).

(5) For any bounded representation T : (AoαG)R1 → B(X) there exists a bounded
representation S : (Aoα G)R2 → B(X) such that T ◦ qR1(f) = S ◦ qR2(f) for
all f ∈ Cc(G,A) and ‖S‖ ≤M‖T‖.

Proof. We prove that (1) implies (5). Let T : (A oα G)R1 → B(X) be a bounded
representation. Then S := T ◦ h : (A oα G)R2 → B(X) satisfies T ◦ qR1(f) = T ◦
h ◦ qR2(f) = S ◦ qR2(f) for all f ∈ Cc(G,A), and ‖S‖ ≤ ‖T‖‖h‖ ≤M‖T‖.

We prove that (5) implies (4). Let (π, U) be R1-continuous and M ′ ≥ 0 be such
that ‖π o U(f)‖ ≤ M ′σR1(f) for all f ∈ Cc(G,A). Then, for the bounded repre-
sentation (π o U)R1 : (Aoα G)R1 → B(Xπ), there exists a bounded representation
S : (Aoα G)R2 → B(Xπ) such that

π o U(f) = (π o U)R1 ◦ qR1(f) = S ◦ qR2(f)

for all f ∈ Cc(G,A), and ‖S‖ ≤ M‖(π o U)R1‖ ≤ MM ′. Hence, (π, U) is R2-
continuous, and ‖πoU(f)‖ = ‖S◦qR2(f)‖ ≤MM ′σR2(f) holds for all f ∈ Cc(G,A).

We prove that (4) implies (2). Every (π, U) ∈ R1 is R1-continuous and satisfies
‖π o U(f)‖ ≤ σR1(f) for all f ∈ Cc(G,A). Then, by hypothesis, (π, U) is R2-
continuous and

‖π o U(f)‖ ≤MσR2(f)

for all f ∈ Cc(G,A). Taking the supremum over all (π, U) ∈ R1, we obtain σR1(f) ≤
MσR2(f) for all f ∈ Cc(G,A).

We prove that (2) implies (1). Since kerσR2 ⊆ kerσR1 , a homomorphism

h : Cc(G,A)/ kerσR2 → Cc(G,A)/ kerσR1

can be defined by h(qR2(f)) := qR1(f) for all f ∈ Cc(G,A), and then satisfies ‖h‖ ≤
M . The map h therefore extends to a homomorphism h : (AoαG)R2 → (AoαG)R1

with the same norm.
We prove that (2) implies (3). Let R′1 ∈ [R1] and R′2 ∈ [R2] and define R′3 :=

R′1 ∪ R′2. By construction we have that σR
′
2(f) ≤ σR

′
3(f) for all f ∈ Cc(G,A). By

hypothesis we have that σR
′
1(f) ≤MσR

′
2(f) for all f ∈ Cc(G,A), as well as M ≥ 1.

Therefore,

σR
′
2(f) ≤ σR

′
3(f) = max{σR

′
1(f), σR

′
2(f)} ≤ max{MσR

′
2(f), σR

′
2(f)} = MσR

′
2(f).

We prove that (3) implies (2). Let R′1 ∈ [R1], R′2 ∈ [R2] and R′3 be such that
R′1 ∪R′2 ⊆ R′3 and σR

′
2(f) ≤ σR′3(f) ≤MσR

′
2(f) for all f ∈ Cc(G,A). Then

σR1(f) = σR
′
1(f) ≤ σR

′
3(f) ≤MσR

′
2(f) ≤MσR2(f).

We can now describe the relationship between R and the isomorphism class of
the pair ((Aoα G)R, qR).
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Corollary 4.3.6. Let (A,G, α) be a Banach algebra dynamical system and R1 and
R2 be uniformly bounded classes of possibly degenerate continuous covariant repre-
sentations of (A,G, α). Then the following are equivalent:

(1) There exists a topological algebra isomorphism h : (Aoα G)R1 → (Aoα G)R2

such that the following diagram commutes:

(Aoα G)R1

h

��

Cc(G,A)

qR1
88ppppppppppp

qR2 &&NNNNNNNNNNN

(Aoα G)R2

(2) The seminorms σR1 and σR2 on Cc(G,A) are equivalent.

(3) There exist uniformly bounded sets of possibly degenerate continuous covariant
representations R′1 ∈ [R1], R′2 ∈ [R2] and R′3 with R′1∪R′2 ⊆ R′3 and constants
M1,M2 ≥ 0, such that

σR
′
1(f) ≤ σR′3(f) ≤M1σ

R′1(f),

σR
′
2(f) ≤ σR′3(f) ≤M2σ

R′2(f),

for all f ∈ Cc(G,A).

(4) The R1-continuous covariant representations of (A,G, α) coincide with the
R2-continuous covariant representations of (A,G, α). Moreover, there exist
constants M1,M2 ≥ 0, with the property that, if M ′ ≥ 0 and (π, U) is R1-
continuous, such that ‖π o U(f)‖ ≤ M ′σR1(f) for all f ∈ Cc(G,A), then
‖π o U(f)‖ ≤M1M

′σR2(f) for all f ∈ Cc(G,A), and likewise for the indices
1 and 2 interchanged.

(5) There exist constants M1,M2 ≥ 0 with the property that, for every bounded
representation T : (Aoα G)R1 → B(X) there exists a bounded representation
S : (Aoα G)R2 → B(X) with ‖S‖ ≤M1‖T‖, such that the diagram

(Aoα G)R1

T

&&LLLLLLLLLL

Cc(G,A)

qR1
88ppppppppppp

qR2 &&NNNNNNNNNNN
B(X)

(Aoα G)R2

S

88rrrrrrrrrr

commutes, and likewise with the indices 1 and 2 interchanged.

Proof. This follows from Proposition 4.3.5.
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4.4 Uniqueness of the crossed product
Theorem 4.2.1 asserts, amongst others, that all non-degenerate R-continuous covari-
ant representations of a Banach algebra dynamical system (A,G, α) can be gener-
ated from the non-degenerate bounded representations of (A oα G)R, with the aid
ofMl((A oα G)R) and the pair (iRA , i

R
G). In this section we show that, under mild

additional hypotheses, (AoαG)R is the unique Banach algebra with this generating
property. These results are similar in nature as Raeburn’s for the crossed product
of a C∗-algebra, see [38] or [46, Theorem 2.61].

We start with the general framework of how to generate many non-degenerate
R-continuous covariant representations from a suitable basic one, on a Banach space
that is a Banach algebra.
Lemma 4.4.1. Let (A,G, α) be a Banach algebra dynamical system, and let R be
a uniformly bounded class of continuous covariant representations of (A,G, α). Let
C be a Banach algebra with a bounded approximate left identity, and let (kA, kG) be
a non-degenerate R-continuous covariant representation of (A,G, α) on the Banach
space C, such that kA(A), kG(G) ⊆ Ml(C). Suppose T : C → B(X) is a non-
degenerate bounded representation of C on a Banach space X. Let T : Ml(C) →
B(X) be the non-degenerate bounded representation ofMl(C) such that the following
diagram commutes:

C

λ

""EE
EE

EE
EE

E
T // B(X)

Ml(C)

T

OO

Then the pair (T ◦kA, T ◦kG) is a non-degenerate R-continuous covariant represen-
tation of (A,G, α), and (T ◦ kA) o (T ◦ kG) = T ◦ (kA o kG).

Proof. It is clear that T ◦ kA is a continuous representation of A on X. Since T
is unital [18, Theorem 4.1], T ◦ kG is a representation of G on X. Using that
T (L)T (c) = T (Lc) for L ∈ Ml(C) and c ∈ C, (cf. [18, Theorem 4.1]), we find, for
r ∈ G, c ∈ C and x ∈ X, that (T ◦ kG(r))T (c)x = T (kG(r)c)x. Since kG is strongly
continuous and T is continuous, we see that

lim
r→e

(T ◦ kG(r))T (c)x = lim
r→e

T (kG(r)c)x = T (c)x,

for all c ∈ C and x ∈ X. The non-degeneracy of T , together with [19, Corollary
2.5] then imply that T ◦ kG is strongly continuous. It is a routine verification that
(T ◦ kA, T ◦ kG) is covariant, so that (T ◦ kA, T ◦ kG) is a continuous covariant
representation of (A,G, α) on C.

We claim that kA o kG : Cc(G,A) → B(C) has its image in Ml(C), and that
(T ◦kA)o (T ◦kG) = T ◦ (kAokG). The R-continuity of (kA, kG) and the continuity
of T then show that (T ◦ kA, T ◦ kG) is R-continuous. As to this claim, note that,
for f ∈ Cc(G,A), the integrand in kA o kG(f) =

´
G
kA(f(r))kG(r) dr takes values

in the SOT-closed subspace Ml(C) of B(C), hence the integral is likewise in this
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subspace. Hence T ◦ (kA o kG) : Cc(G,A) → B(X) is a meaningfully defined map.
Using that that continuous operators can be pulled through the integral [40, Ch. 3,
Exercise 24] and the definition of operator valued integrals [19, Proposition 2.19],
we then have for all x ∈ X:

T (kA o kG(f))T (c)x = T (kA o kG(f)c)x

= T

(ˆ
G

kA(f(r))kG(r) dr c

)
x

= T

(ˆ
G

kA(f(r))kG(r)c dr

)
x

=

ˆ
G

T (kA(f(r))kG(r)c)x dr

=

ˆ
G

T (kA(f(r))kG(r))T (c)x dr

=

ˆ
G

T ◦ kA(f(r))T ◦ kG(r)T (c)x dr

=

(ˆ
G

T ◦ kA(f(r))T ◦ kG(r) dr

)
T (c)x

=
(
(T ◦ kA) o (T ◦ kG)(f)

)
T (c)x.

Since T is non-degenerate, this establishes the claim.
It remains to show that T ◦ kA is non-degenerate. Let x ∈ X and ε > 0 be arbi-

trary. Since T is non-degenerate [18, Theorem 4.1], there exist finite sets {ci}ni=1 ⊆ C
and {xi}ni=1 ⊆ X such that ‖

∑n
i=1 T (ci)xi − x‖ < ε/2. Since kA is non-degenerate,

for every i ∈ {1, . . . , n}, there exist finite sets {ai,j}mi
j=1 ⊆ A and {di,j}mi

j=1 ⊆ C such
that ‖T‖‖xi‖‖ci −

∑mi

j=1 kA(ai,j)di,j‖ < ε/2n. Then

∥∥∥∥∥∥x−
n∑
i=1

mi∑
j=1

(
T ◦ kA(ai,j)

)
T (di,j)xi

∥∥∥∥∥∥
=

∥∥∥∥∥∥x−
n∑
i=1

mi∑
j=1

T (kA(ai,j)di,j)xi

∥∥∥∥∥∥
≤

∥∥∥∥∥x−
n∑
i=1

T (ci)xi

∥∥∥∥∥+

∥∥∥∥∥∥
n∑
i=1

T (ci)xi −
n∑
i=1

mi∑
j=1

T (kA(ai,j)di,j)xi

∥∥∥∥∥∥
≤

∥∥∥∥∥x−
n∑
i=1

T (ci)xi

∥∥∥∥∥+

n∑
i=1

‖T‖

∥∥∥∥∥∥ci −
mi∑
j=1

kA(ai,j)di,j

∥∥∥∥∥∥ ‖xi‖
<

ε

2
+
ε

2
.

We conclude that T ◦ kA is non-degenerate.
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Naturally any Banach algebra C ′ isomorphic to C as in the previous lemma has a
similar “generating pair” (k′A, k

′
G). The details are in the following result, the routine

verification of which is left to the reader.
Lemma 4.4.2. Let (A,G, α), R, C and (kA, kG) be as in Lemma 4.4.1. Suppose
C ′ is a Banach algebra and ψ : C → C ′ is a topological isomorphism. Then:

(1) ψl : Ml(C) → Ml(C
′), defined by ψl(L) := ψLψ−1 for L ∈ Ml(C), is a

topological isomorphism.

(2) The pair (k′A, k
′
G) := (ψl ◦ kA, ψl ◦ kG) is a non-degenerate R-continuous co-

variant representation of (A,G, α) on C ′, such that k′A(A), k′G(G) ⊆Ml(C
′).

(3) If T : C → B(X) is a non-degenerate bounded representation, then so is
T ′ : C ′ → B(X), where T ′ := T ◦ ψ−1.

(4) If T : C → B(X) is a non-degenerate bounded representation, and T ′ :
Ml(C

′)→ B(X) is the non-degenerate bounded representation ofMl(C
′) such

that the diagram

C ′

λ

##FF
FF

FF
FF

F
T ′ // B(X)

Ml(C
′)

T ′

OO

commutes, then T ◦ kA = T ′ ◦ k′A and T ◦ kG = T ′ ◦ k′G.

Now let R be a uniformly bounded class of non-degenerate continuous covari-
ant representations of (A,G, α), where A has a bounded approximate left identity.
Then, according to [19, Theorem 7.2], (A oα G)R has a bounded approximate left
identity, and the maps iRA : A→ B((Aoα G)R) and iRG : G→ B((Aoα G)R) form
a non-degenerate R-continuous covariant representation of (A,G, α) on the Banach
space (A oα G)R, with images in Ml((A oα G)R). According to Lemma 4.4.1,
the triple ((AoαG)R, iRA , i

R
G) can be used to produce non-degenerate R-continuous

covariant representations of (A,G, α) from non-degenerate bounded representations
of (A oα G)R, and, according to Theorem 4.2.1, all non-degenerate R-continuous
covariant representations are thus obtained. According to Lemma 4.4.2, any Ba-
nach algebra isomorphic to (A oα G)R has the same property. We will now pro-
ceed to show the converse: If (B, kA, kG) is a triple generating all non-degenerate
R-continuous covariant representations of (A,G, α), then it can be obtained from
((Aoα G)R, iRA , i

R
G) as in Lemma 4.4.2.

We start with a preliminary observation that is of some interest in its own right.
Proposition 4.4.3. Let (A,G, α) be a Banach algebra dynamical system where A
has a bounded approximate left identity. Let R be a uniformly bounded class of non-
degenerate continuous covariant representations. Then the left regular representation
λ : (Aoα G)R →Ml((Aoα G)R) is a topological embedding.
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Proof. According to Proposition 4.3.4, there exists a non-degenerate R-continuous
covariant representation (π, U) such that (π o U)R is a non-degenerate isometric
representation of (A oα G)R. According to Theorem 4.2.1, π = (π o U)R ◦ iRA and
U = (π o U)R ◦ iRG . Furthermore, according to Lemma 4.4.1,

((π o U)R ◦ iRA ) o ((π o U)R ◦ iRG) = (π o U)R ◦ (iRA o iRG).

We recall [19, Theorem 7.2] that (iRA o iRG)R = λ. Combining all this, we see, with
M denoting an upper bound for an approximate left identity of (A oα G)R [19,
Corollary 4.6], that, for f ∈ Cc(G,A):

‖qR(f)‖R = ‖(π o U)R(qR(f))‖
= ‖π o U(f)‖
= ‖((π o U)R ◦ iRA ) o ((π o U)R ◦ iRG)(f)‖
= ‖(π o U)R ◦ (iRA o iRG)(f)‖
= ‖(π o U)R ◦ (iRA o iRG)R(qR(f))‖
= ‖(π o U)R(λ(qR(f)))‖
≤ M‖(π o U)R‖‖λ(qR(f))‖
= M‖λ(qR(f))‖.

Since the inequality ‖λ(qR(f))‖ ≤ ‖qR(f)‖ is trivial, the result follows from the
density of qR(Cc(G,A)) in (Aoα G)R.

Since qR(Cc(G,A)) is dense in (A oα G)R, we conclude that λ ◦ qR(Cc(G,A))
is dense in λ((Aoα G)R), i.e., that (iRA o iRG)(Cc(G,A)) is dense in λ((Aoα G)R).
Together with Proposition 4.4.3 this gives the two additional hypotheses alluded to
before, under which the following uniqueness theorem can now be established. As
mentioned earlier, this should be compared with Raeburn’s result for the crossed
product of a C∗-algebra, see [38] or [46, Theorem 2.61].
Theorem 4.4.4. Let (A,G, α) be a Banach algebra dynamical system, where A has
a bounded approximate left identity. Let R be a uniformly bounded class of non-
degenerate continuous covariant representations of (A,G, α). Let B be a Banach
algebra with a bounded approximate left identity, such that λ : B → Ml(B) is
a topological embedding. Let (kA, kG) be a non-degenerate R-continuous covariant
representation of (A,G, α) on the Banach space B, such that

(1) kA(A), kG(G) ⊆Ml(B)

(2) (kA o kG)(Cc(G,A)) ⊆ λ(B)

(3) (kA o kG)(Cc(G,A)) is dense in λ(B).

Suppose that, for each non-degenerate R-continuous covariant representation (π, U)
of (A,G, α) on a Banach space X, there exists a non-degenerate bounded repre-
sentation T : B → B(X) such that the non-degenerate bounded representation
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T :Ml(B)→ B(X) in the commuting diagram

B

λ

""EE
EE

EE
EE

E
T // B(X)

Ml(B)

T

OO

generates (π, U) as in Lemma 4.4.1, i.e., is such that T ◦ kA = π and T ◦ kG = U .
Then there exists a unique topological isomorphism ψ : (A oα G)R → B, such

that the induced topological isomorphism ψl :Ml((Aoα G)R)→Ml(B), defined by
ψl(L) := ψLψ−1 for L ∈Ml((AoαG)R), induces (kA, kG) as in Lemma 4.4.2 from
(iRA , i

R
G), i.e., is such that kA = ψl ◦ iRA and kG = ψl ◦ iRG .

Proof. Proposition 4.3.4 provides a non-degenerate R-continuous covariant repre-
sentation (π, U) such that (πoU)R is an isometric representation of (Aoα G)R. If
T : B → B(X) is a non-degenerate bounded representation such that T ◦ kA = π
and T ◦ kG = U , then Lemma 4.4.1 shows that (T ◦ kA)o (T ◦ kG) = T ◦ (kA o kG),
i.e., that π o U = T ◦ (kA o kG). Hence, for f ∈ Cc(G,A):

‖qR(f)‖R = ‖(π o U)R(qR(f))‖
= ‖π o U(f)‖
= ‖T ◦ (kA o kG)(f)‖
≤ ‖T‖‖kA o kG(f)‖
= ‖T‖‖(kA o kG)R(qR(f))‖.

Since (kA, kG) is R-continuous, ‖(kA o kG)R(qR(f))‖ ≤ ‖(kA o kG)R‖‖(qR(f))‖R,
for all f ∈ Cc(G,A), hence we can now conclude, using (2) and (3) and the fact that
λ(B) is closed, that (kAokG)R : (AoαG)R → λ(B) is a topological isomorphism of
Banach algebras. Since λ : B →Ml(B) is assumed to be a topological embedding,

ψ := λ−1 ◦ (kA o kG)R : (Aoα G)R → B

is a topological isomorphism.
We proceed to show that ψl induces kA and kG. As a preparation, note that, since

(πoU)R is isometric and (πoU)R = T ◦ (kAokG)R, the map T :Ml(B)→ B(X)
is injective on (kA o kG)R((A oα G)R) = λ(B). Now by [19, Proposition 5.3], for
a ∈ A and f ∈ Cc(G,A), we have

(π o U)R(iRA (a)qR(f)) = π o U(iA(a)f)

= π(a)π o U(f)

= T ◦ kA(a)(π o U)R(qR(f))

= T ◦ kA(a)T ◦ (kA o kG)R(qR(f))

= T
(
kA(a)(kA o kG)R(qR(f))

)
.
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Since λ(B) is a left ideal in Ml(B) (as is the case for every Banach algebra), we
note that kA(a)(kA o kG)R(qR(f)) ∈ λ(B). On the other hand, we also have

(π o U)R(iRA (a)qR(f)) = T
(
(kA o kG)R(iRA (a)qR(f))

)
.

Hence the injectivity of T on λ(B) shows that

kA(a)(kA o kG)R(qR(f)) = (kA o kG)R(iRA (a)qR(f)).

We now apply λ−1 to both sides, and use that λ−1(L◦λ(b)) = L(b) for all L ∈Ml(B)
and b ∈ B, to see that

ψ(iRA (a)qR(f)) = λ−1 ◦ (kA o kG)R(iRA (a)qR(f))

= λ−1
(
kA(a)(kA o kG)R(qR(f))

)
= λ−1

(
kA(a) ◦ λ ◦ λ−1 ◦ (kA o kG)R(qR(f))

)
= λ−1

(
kA(a) ◦ λ ◦ ψ(qR(f))

)
= kA(a)ψ(qR(f)).

By density, we conclude that ψ ◦ iRA (a) = kA(a) ◦ ψ, for all a ∈ A, i.e., that kA =
ψl ◦ iRA . A similar argument yields kG = ψl ◦ iRG .

As to uniqueness, suppose that φ : (AoαG)R → B is a topological isomorphism
such that kA = φl ◦ iRA and kG = φl ◦ iRG . Remembering that (iRA o iRG)R = λ [19,
Theorem 7.2], this readily implies that, for f ∈ Cc(G,A),

φ ◦ (λ(qR(f)) ◦ φ−1 = φ ◦ (iRA o iRG)R(qR(f)) ◦ φ−1

= (kA o kG)R(qR(f)),

hence
(kA o kG)R(qR(f)) ◦ φ = φ ◦ λ(qR(f)).

Applying this to qR(g), for g ∈ Cc(G,A), we find

(kA o kG)R(qR(f))φ(qR(g)) = φ
(
λ(qR(f))qR(g)

)
= φ(qR(f)qR(g))

= φ(qR(f))φ(qR(g))

= λ(φ(qR(f)))φ(qR(g)).

By density, we conclude that (kAokG)R(qR(f)) = λ(φ(qR(f))), for all f ∈ Cc(G,A).
Again by density, we conclude that

φ = λ−1 ◦ (kA o kG)R = ψ.
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4.5 Generalized Beurling algebras as crossed prod-
ucts

In this section we give sufficient conditions for a crossed product of a Banach al-
gebra to be topologically isomorphic to a generalized Beurling algebra (see Defi-
nition 4.5.4), cf. Theorem 4.5.13 and Corollary 4.5.14. Since these conditions can
always be satisfied, all generalized Beurling algebras are topologically isomorphic
to a crossed product (cf. Theorem 4.5.17). Through an application of the General
Correspondence Theorem (Theorem 4.2.1) we then obtain a bijection between the
non-degenerate bounded representations of such a generalized Beurling algebra and
the non-degenerate continuous covariant representations of the Banach algebra dy-
namical system where the group representation is bounded by a multiple of the
weight, cf. Theorem 4.5.20. When the Banach algebra in the Banach algebra dy-
namical system is taken to be the scalars, and the weight on the group G taken to
be the constant 1 function, then Corollary 4.5.14 shows that L1(G) is isometrically
isomorphic to a crossed product, and Theorem 4.5.20 reduces to the classical bijec-
tive correspondence between uniformly bounded strongly continuous representations
of G and non-degenerate bounded representations of L1(G), cf. Corollary 4.5.22.

We start with the topological isomorphism between a generalized Beurling alge-
bra and a crossed product.

Definition 4.5.1. For a locally compact group G, let ω : G→ [0,∞) be a non-zero
submultiplicative Borel measurable function. Then ω is called a weight on G.

Note that we do not assume that ω ≥ 1, as is done in some parts of the literature.
The fact that ω is non-zero readily implies that ω(e) ≥ 1. More generally, if K ⊆ G
is a compact set, there exist a, b > 0 such that a ≤ ω(s) ≤ b for all s ∈ K [26,
Lemma 1.3.3].

Let (A,G, α) be a Banach algebra dynamical system, andR a uniformly bounded
class of continuous covariant representations of (A,G, α). We recall that CR :=
sup(π,U)∈R ‖π‖ and νR : G → R≥0 is defined by νR(r) := sup(π,U)∈R ‖Ur‖ as in
[19, Definition 3.1]. We note that the map νR is a weight on G. It is clearly
submultiplicative, and, being the supremum of a family of continuous maps {r 7→
‖Urx‖ : (π, U) ∈ R, x ∈ Xπ, ‖x‖ ≤ 1}, the map νR is lower semicontinuous, hence
Borel measurable.

Let ω be a weight on G, such that νR ≤ ω. Then, for all f ∈ Cc(G,A),

σR(f) = sup
(π,U)∈R

∥∥∥∥ˆ
G

π(f(s))Us ds

∥∥∥∥
≤ sup

(π,U)∈R

ˆ
G

‖π(f(s))‖‖Us‖ ds

≤ CR
ˆ
G

‖f(s)‖νR(s) ds
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≤ CR
ˆ
G

‖f(s)‖ω(s) ds

= CR‖f‖1,ω, (4.5.1)

where ‖ · ‖1,ω denotes the ω-weighted L1-norm. In Theorem 4.5.13, we will give
sufficient conditions under which a reverse inequality holds. Then σR is actually a
norm on Cc(G,A) and is equivalent to a weighted L1-norm, so that (Aoα G)R will
be isomorphic to a generalized Beurling algebra to be defined shortly.
Definition 4.5.2. Let X be a Banach space, 1 ≤ p < ∞, and ω : G → [0,∞) a
weight on G. We define the weighted p-norm on Cc(G,X) by

‖h‖p,ω :=

(ˆ
G

‖h(s)‖pω(s) ds

)1/p

,

and define Lp(G,X, ω) as the completion of Cc(G,X) with this norm.
Remark 4.5.3. By definition Lp(G,A, ω) with 1 ≤ p <∞ has Cc(G,A) as a dense
subspace. In view of the central role of Cc(G,A) in our theory of crossed products
of Banach algebras, this is clearly desirable, but it would be unsatisfactory not to
discuss the relation with spaces of Bochner integrable functions. We will now address
this and explain that for p = 1 (our main space of interest in the sequel), L1(G,A, ω)
is (isometrically isomorphic to) a Bochner space.

In most of the literature, the theory of the Bochner integral is developed for finite
(or at least σ-finite) measures, and sometimes the Banach space in question is as-
sumed to be separable. Since ωdµ (where µ is the left Haar measure on G) need not
be σ-finite and A need not be separable, this is not applicable to our situation. In [10,
Appendix E], however, the theory is developed for an arbitrary measure µ on a σ-
algebra A of subsets of a set Ω, and functions f : Ω→ X with values in an arbitrary
Banach spaceX. Such a function f is called Bochner integrable if f−1(B) ∈ A for ev-
ery Borel subset of X, f(Ω) is separable, and

´
Ω
‖f(ξ)‖dµ(ξ) <∞ (the measurability

of ξ 7→ ‖f(ξ)‖ is an automatic consequence of the Borel measurability of f). Identi-
fying Bochner integrable functions that are equal µ-almost everywhere, one obtains
a Banach space L1(Ω,A, µ,X), where the norm is given by ‖[f ]‖ =

´
Ω
‖f(ξ)‖ dµ(ξ)

with f any representative of the equivalence class [f ] ∈ L1(Ω,A, µ,X). Although
it is not stated as such, it is in fact proved [10, p. 352] that the simple Bochner
integrable functions (i.e., all functions of the form

∑n
i=1 χAi ⊗ xi, where Ai ∈ A,

µ(Ai) <∞ and xi ∈ X) form a dense subspace of L1(Ω,A, µ,X).
We claim that our space L1(G,A, ω) is isometrically isomorphic to the Bochner

space L1(G,B, ωdµ,A), where B is the Borel σ-algebra of G, and µ is the left Haar
measure on G again. To start with, if f ∈ Cc(G,A), then certainly f is Bochner
integrable, so that we obtain a (clearly isometric) inclusion map j : Cc(G,A) →
L1(G,B, ωdµ,A), that can be extended to an isometric embedding of L1(G,A, ω) into
L1(G,B, ωdµ,A). To see that the image is dense, it is, in view of the density of the
simple Bochner integrable functions in L1(G,B, ωdµ,A), sufficient to approximate
χS⊗a with elements from Cc(G,A), for arbitrary a ∈ A and S ∈ B with

´
G
χSωdµ <

∞. Since Cc(G) is dense in L1(G,ωdµ) [26, Lemma 1.3.5], we can choose a sequence
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(fn) ⊆ Cc(G) such that fn → χS in L1(G,ωdµ), and then

‖fn ⊗ a− χS ⊗ a‖ = ‖a‖
ˆ
G

|fn(r)− χS(r)|ω(r) dµ(r)→ 0.

Hence the image of j : Cc(G,A)→ L1(G,B, ωdµ,A) is dense and our claim has been
established.

For the sake of completeness, we note that one cannot argue that ωdµ is “clearly”
a regular Borel measure on G, so that Cc(G) is dense in L1(G,ωdµ) by the standard
density result [22, Proposition 7.9]. Indeed, although [22, Exercises 7.2.7–9] give
sufficient conditions for this to hold (none of which applies in our general case), the
regularity is not automatic, see [22, Exercise 7.2.13]. The proof of the density of
Cc(G) in L1(G,ωdµ) in [26, Lemma 1.3.5] is direct and from first principles. It uses
in an essential manner that ω is bounded away from zero on compact subsets of G,
but not that the Haar measure should be σ-finite or that ω should be integrable.

With (A,G, α) a Banach algebra dynamical system and ω a weight on G, if α is
uniformly bounded, say ‖αs‖ ≤ Cα for some Cα ≥ 0 and all s ∈ G, then, using the
submultiplicativity of ω, it is routine to verify that

‖f ∗ g‖1,ω ≤ Cα‖f‖1,ω‖g‖1,ω (f, g ∈ Cc(G,A)).

Hence the Banach space L1(G,A, ω) can be supplied with the structure of an asso-
ciative algebra, such that

‖u ∗ v‖1,ω ≤ Cα‖u‖1,ω‖v‖1,ω (u, v ∈ L1(G,A, ω)).

If Cα = 1 (i.e., if α lets G act as isometries on A), then L1(G,A, ω) is a Banach alge-
bra, and when Cα 6= 1, as is well known, there is an equivalent norm on L1(G,A, ω)
such that it becomes a Banach algebra. We will show below (cf. Theorem 4.5.17)
that such a norm can always be obtained from a topological isomorphism between
L1(G,A, ω) and the crossed product (Aoα G)R for a suitable choice of R.
Definition 4.5.4. Let (A,G, α) be a Banach algebra dynamical system with α
uniformly bounded and ω a weight on G. The Banach space L1(G,A, ω) endowed
with the continuous multiplication induced by the twisted convolution on Cc(G,A),
given by

[f ∗ g](s) :=

ˆ
G

f(r)αr(g(r−1s)) dr (f, g ∈ Cc(G,A), s ∈ G),

will be denoted by L1(G,A, ω;α) and called a generalized Beurling algebra.
As a special case, we note that for A = K, the generalized Beurling algebra

reduces to the classical Beurling algebra L1(G,ω), which is a true Banach algebra.
Obtaining such a reverse inequality to (4.5.1) rests on inducing a covariant rep-

resentation of (A,G, α) from the left regular representation λ : A → B(A) of A,
analogous to [46, Example 2.14]. The key result is Proposition 4.5.12 and we will
now start working towards it.
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Definition 4.5.5. Let (A,G, α) be a Banach algebra dynamical system and let
π : A → B(X) be a bounded representation of A on a Banach space X. We define
the induced algebra representation π̃ and left regular group representation Λ on the
space of all functions from G to X by the formulae:

[π̃(a)h](s) := π(α−1
s (a))h(s),

(Λrh)(s) := h(r−1s),

where h : G→ X, r, s ∈ G and a ∈ A.
A routine calculation, left to the reader, shows that (π̃,Λ) is covariant.
We need a number of lemmas in preparation for the proof of Proposition 4.5.12.
The following is clear.

Lemma 4.5.6. If (A,G, α) is a Banach algebra dynamical system with α uniformly
bounded by a constant Cα, and ω : G→ [0,∞) a weight, then for any bounded repre-
sentation π : A→ B(X) on a Banach space X, both the maps π̃ : A→ B(C0(G,X))
(as defined in Definition 4.5.5) and π̃ : A → B(Lp(G,X, ω)) for 1 ≤ p < ∞ (the
canonically induced representation π̃ of A on Lp(G,X, ω) as completion of Cc(G,X)
with the ‖·‖p,ω-norm) are representations with norms bounded by Cα‖π‖. Moreover,
Cc(G,X) is invariant under both A-actions.
Lemma 4.5.7. If (A,G, α) is a Banach algebra dynamical system and X a Ba-
nach space and ω a weight on G, then both the left regular representations Λ :
G → B(C0(G,X)) (as defined in Definition 4.5.5), and Λ : G → B(Lp(G,X, ω))
for 1 ≤ p < ∞ (the canonically induced representation Λ of G on Lp(G,X, ω) as
completion of Cc(G,X) with the ‖ · ‖p,ω-norm) are strongly continuous group rep-
resentations. The representation Λ : G → B(C0(G,X)) acts as isometries, and
Λ : G→ B(Lp(G,X, ω)) is bounded by ω1/p. Moreover, Cc(G,X) is invariant under
both G-actions.

Proof. That Λ : G→ B(C0(G,X)) acts on C0(G,X) as isometries is clear.
That Λ : G→ B(Lp(G,X, ω)) is bounded by ω1/p follows from left invariance of

the Haar measure and submultiplicativity of ω: For any h ∈ Cc(G,X) and s ∈ G,

‖Λsh‖pp,ω =

ˆ
G

‖[Λsh](t)‖pω(t) dt

=

ˆ
G

‖h(s−1t)‖pω(t) dt

=

ˆ
G

‖h(t)‖pω(st) dt

≤ ω(s)

ˆ
G

‖h(t)‖pω(t) dt

= ω(s)‖h‖pp,ω.

Therefore Λs induces a map on Lp(G,X, ω) with the same norm, denoted by the
same symbol, and ‖Λs‖ ≤ ω(s)1/p.
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To prove strong continuity of Λ : G→ B(C0(G,X)) and Λ : G→ B(Lp(G,X, ω)),
it is sufficient to establish strong continuity at e ∈ G on dense subsets of both
C0(G,X) of Lp(G,X, ω) respectively [19, Corollary 2.5]. By the uniform continuity
of elements in Cc(G,X) [46, Lemma 1.88] and the density of Cc(G,X) in C0(G,X),
the result follows for Λ : G→ B(C0(G,X)).

To establish the result for Lp(G,X, ω), let ε > 0 and h ∈ Cc(G,X) be arbitrary.
Let K := supp(h) and W a precompact neighbourhood of e ∈ G. By uniform
continuity of h, there exists a symmetric neighbourhood V ⊆W of e ∈ G such that
‖Λsh− h‖p∞ < εp/ (supr∈WK ω(r))µ(WK) for all s ∈ V . Then, for s ∈ V ,

‖Λsh− h‖pp,ω =

ˆ
WK

‖h(s−1r)− h(r)‖pω(r) dr

≤ εp

(supr∈WK ω(r)p)µ(WK)

ˆ
WK

ω(r) dr

≤ εp.

By the density of Cc(G,X) in Lp(G,X, ω), the result follows.

Lemma 4.5.8. Let (A,G, α) be a Banach algebra dynamical system where α is
uniformly bounded by a constant Cα and ω a weight on G. Let π : A→ B(X) be a
non-degenerate bounded representation on a Banach space X. If f ∈ Cc(G,X), then
there exist a compact subset K of G, containing supp(f), and a sequence (fn) ⊆
span (π̃(A)(Cc(G) ⊗ X)) such that supp(fn) ⊆ K for all n, and (fn) converges
uniformly to f on G. Consequently the representations π̃ : A → B(C0(G,X)) and
π̃ : A → B(Lp(G,X, ω)) for 1 ≤ p < ∞ (as yielded by Definition 4.5.5) are then
non-degenerate.

Proof. Let f ∈ Cc(G,X) and ε > 0 be arbitrary. Since supp(f) is compact, we can
fix some precompact open set Uf containing supp(f). Since π is non-degenerate,
for every s ∈ G, there exist finite sets {ai,s}ns

i=1 and {xi,s}ns
i=1 such that ‖f(s) −∑ns

i=1 π(ai,s)xi,s‖ < ε. Since α is strongly continuous, for each s ∈ G and i ∈
{1, . . . , ns}, there exists some precompact neighbourhood Wi,s of s, such that t ∈
Wi,s implies ns‖π‖‖xi,s‖‖ai,s−α−1

t ◦αs(ai,s)‖ < ε. Furthermore, for any s ∈ G, we
can choose a precompact neighbourhood Vs of s such that t ∈ Vs implies ‖f(s) −
f(t)‖ < ε. Define Ws :=

⋂ns

i=1Wi,s ∩ Vs ∩ Uf . Now {Ws}s∈G is an open cover
of supp(f), hence let {Wsj}mj=1 be a finite subcover. Let {uj}mj=1 ⊆ Cc(G) be a
partition of unity such that, for all j ∈ {1, . . . ,m}, 0 ≤ uj(t) ≤ 1 for t ∈ G,
supp(uj) ⊆ Wsj ,

∑m
j=1 uj(t) = 1 for t ∈ supp(f), and

∑m
j=1 uj(t) ≤ 1 for t ∈ G.

Then, for t ∈ G,∥∥∥∥∥∥f(t)−

 m∑
j=1

nsj∑
i=1

π̃(αsj (ai,sj ))uj ⊗ xi,sj

 (t)

∥∥∥∥∥∥
=

∥∥∥∥∥∥f(t)−
m∑
j=1

nsj∑
i=1

uj(t)π(α−1
t ◦ αsj (ai,sj ))xi,sj

∥∥∥∥∥∥
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=

∥∥∥∥∥∥
m∑
j=1

uj(t)f(t)−
m∑
j=1

uj(t)f(sj) +

m∑
j=1

uj(t)f(sj)−
m∑
j=1

uj(t)

nsj∑
i=1

π(ai,sj )xi,sj

+

m∑
j=1

uj(t)

nsj∑
i=1

π(ai,sj )xi,sj −
m∑
j=1

nsj∑
i=1

uj(t)π(α−1
t ◦ αsj (ai,sj ))xi,sj

∥∥∥∥∥∥
≤

m∑
j=1

uj(t) ‖f(t)− f(sj)‖+

m∑
j=1

uj(t)

∥∥∥∥∥∥f(sj)−
nsj∑
i=1

π(ai,sj )xi,sj

∥∥∥∥∥∥
+

∥∥∥∥∥∥
m∑
j=1

uj(t)

nsj∑
i=1

π(ai,sj )xi,sj −
m∑
j=1

nsj∑
i=1

uj(t)π(α−1
t ◦ αsj (ai,sj ))xi,sj

∥∥∥∥∥∥
≤ ε+ ε+

∥∥∥∥∥∥
m∑
j=1

uj(t)

nsj∑
i=1

π(ai,sj )xi,sj −
m∑
j=1

nsj∑
i=1

uj(t)π(α−1
t ◦ αsj (ai,sj ))xi,sj

∥∥∥∥∥∥
≤ ε+ ε+

m∑
j=1

uj(t)

nsj∑
i=1

∥∥π(ai,sj )xi,sj − π(α−1
t ◦ αsj (ai,sj ))xi,sj

∥∥
≤ ε+ ε+

m∑
j=1

uj(t)

nsj∑
i=1

‖π‖‖xi,sj‖‖ai,sj − α−1
t ◦ αsj (ai,sj )‖

≤ ε+ ε+

m∑
j=1

uj(t)

nsj∑
i=1

ε

nsj

≤ ε+ ε+ ε.

Since
m∑
j=1

nsj∑
i=1

π̃(αsj (ai,sj ))uj ⊗ xi,sj

is supported in the fixed compact set Uf , the result follows.

Combining the previous three lemmas yields:
Corollary 4.5.9. If (A,G, α) is a Banach algebra dynamical system with α uni-
formly bounded by a constant Cα, ω a weight on G and π : A → B(X) a bounded
representation on a Banach space X, then the pair (π̃,Λ) (as yielded by Defini-
tion 4.5.5) is a continuous covariant representation of (A,G, α) on C0(G,X) or
Lp(G,X, ω) for 1 ≤ p <∞ respectively. Moreover:

(1) Both representations π̃ : A → B(C0(G,X)) and π̃ : A → B(Lp(G,X, ω))
satisfy ‖π̃‖ ≤ Cα‖π‖.

(2) The left regular group representation Λ : G→ B(C0(G,X)) acts as isometries
on C0(G,X), and the left regular group representation Λ : G→ B(Lp(G,X, ω))
is bounded by ω1/p on G.
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(3) The space Cc(G,X), seen as a subspace of C0(G,X) or Lp(G,X, ω), is in-
variant under actions of both A and G on C0(G,X) or Lp(G,X, ω) through
the representations π̃ : A → B(C0(G,X)) and Λ : G → B(C0(G,X)), or
π̃ : A→ B(Lp(G,X, ω)) and Λ : G→ B(Lp(G,X, ω)), respectively.

(4) If π : A → B(X) is non-degenerate, so are both representations π̃ : A →
B(C0(G,X)) and π̃ : A→ B(Lp(G,X, ω)).

If α is uniformly bounded by Cα ≥ 0, Corollary 4.5.9 shows that the left regular
representation λ : A→ B(A) of A is such that the covariant representation (λ̃,Λ) of
(A,G, α) on L1(G,A, ω) (as yielded by Definition 4.5.5) is continuous with ‖λ̃‖ ≤ Cα
and ‖Λs‖ ≤ ω(s). Moreover, if A has a bounded left or right approximate identity,
then λ is non-degenerate, and hence (λ̃,Λ) is non-degenerate.

We need two more results before Proposition 4.5.12 can be established.
Lemma 4.5.10. Let (A,G, α) be a Banach algebra dynamical system with α uni-
formly bounded. Let ω be a weight on G, and λ : A → B(A) the left regular rep-
resentation of A. Let (λ̃,Λ) be the continuous covariant representation of (A,G, α)
on L1(G,A, ω) (as yielded by Definition 4.5.5). Then, for all f ∈ Cc(G,A), λ̃ o
Λ(f) ∈ B(L1(G,A, ω)) leaves the subspace Cc(G,A) of L1(G,A, ω) invariant. In
fact, if h ∈ Cc(G,A) ⊆ L1(G,A, ω), then λ̃ o Λ(f)h ∈ L1(G,A, ω) is given by the
pointwise formula

[λ̃o Λ(f)h](s) =

ˆ
G

α−1
s (f(r))h(r−1s) dr (s ∈ G).

Proof. We proceed indirectly, via C0(G,A), and write (λ̃0,Λ0) and (λ̃1,Λ1) for the
continuous covariant representations of (A,G, α) on C0(G,A) and L1(G,A, ω), re-
spectively. Let f, h ∈ Cc(G,A) and consider the integral

λ̃1 o Λ1(f)h =

ˆ
G

λ̃1(f(r))Λ1,rh dr ∈ L1(G,A, ω).

Let K := supp(f) · supp(h), and put C0(G,A)K := {g ∈ C0(G,A) : supp(g) ⊆
K}. Then C0(G,A)K is a closed subspace of C0(G,A) and the inclusion jK :
C0(G,A)K → L1(G,A, ω) is bounded, since ω is bounded on compact sets. Define
ψ : G → C0(G,A)K by ψ(r) := λ̃0(f(r))Λ0,rh for all r ∈ G. Then ψ is continuous
and supported on the compact set supp(f) ⊆ G. Now, by the boundedness of jK ,ˆ

G

λ̃1(f(r))Λ1,rh dr =

ˆ
G

jK ◦ ψ(r) dr = jK

(ˆ
G

ψ(r) dr

)
.

Since
´
G
ψ(r) dr ∈ C0(G,A)K , we conclude that λ̃1 o Λ1(f)h ∈ Cc(G,A).

Since the evaluations evs : C0(G,A)K → A, sending g ∈ C0(G,A)K to g(s) ∈ A,
are bounded for all s ∈ G, we find that, for all s ∈ G,(ˆ

G

ψ(r) dr

)
(s) = evs

(ˆ
G

ψ(r) dr

)
=

ˆ
G

evs ◦ ψ(r) dr
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=

ˆ
G

ψ(r)(s) dr

=

ˆ
G

α−1
s (f(r))h(r−1s) dr.

Therefore [λ̃1 o Λ1(f)h](s) =
´
G
α−1
s (f(r))h(r−1s) dr.

Lemma 4.5.11. Let A be a Banach algebra with bounded approximate right identity
(ui) and let K ⊆ A be compact. Then, for any ε > 0, there exists an index i0 such
that ‖aui‖ ≥ ‖a‖ − ε for all a ∈ K and all i ≥ i0.

Proof. Let M ≥ 1 be an upper bound for (ui) and ε > 0 be arbitrary. By compact-
ness of K, there exist a1, . . . , an ∈ K such that for all a ∈ K there exists an index
k ∈ {1, . . . , n} with ‖a− ak‖ < ε/3M ≤ ε/3. Let i0 be such that ‖akui − ak‖ < ε/3
for all k ∈ {1, . . . , n} and all i ≥ i0.

Now, for a ∈ K arbitrary, let k0 ∈ {1, . . . , n} be such that ‖a− ak0‖ < ε/3. For
any i ≥ i0,

‖aui‖ ≥ ‖a‖ − ‖aui − ak0ui‖ − ‖ak0ui − ak0‖ − ‖ak0 − a‖

> ‖a‖ − ε

3M
M − ε

3
− ε

3
= ‖a‖ − ε.

Finally, we combine Lemmas 4.5.6–4.5.11 to obtain the following:
Proposition 4.5.12. Let (A,G, α) be a Banach algebra dynamical system where A
has an M -bounded approximate right identity and α is uniformly bounded by a con-
stant Cα. Let ω be a weight on G, and λ : A→ B(A) the left regular representation
of A. Let W ⊆ G be a precompact neighbourhood of e ∈ G. Then the non-degenerate
continuous covariant representation (λ̃,Λ) of (A,G, α) on L1(G,A, ω) (as yielded by
Definition 4.5.5) satisfies

‖λ̃o Λ(f)‖ ≥ 1

CαM sups∈W ω(s)
‖f‖1,ω

for all f ∈ Cc(G,A). Consequently λ̃o Λ : Cc(G,A)→ B(L1(G,A, ω)) is a faithful
representation.

Proof. Let (ui) be an M -bounded approximate right identity of A and W ⊆ G any
precompact neighbourhood of e ∈ G. Let f ∈ Cc(G,A) and ε > 0 be arbitrary.
By the uniform continuity of f , there exists a symmetric neighbourhood V ⊆ W of
e ∈ G such that ‖f(r)− f(rs)‖ < ε/2CαM for all s ∈ V and r ∈ G. By continuity
of all maps involved and the assumption that f is compactly supported, the set
{α−1

s (f(s)) : s ∈ G} ⊆ A is compact. Lemma 4.5.11 then asserts the existence of an
index i0, such that ‖aui0‖ ≥ ‖a‖ − ε/2 for all a ∈ {α−1

s (f(s)) : s ∈ G}.
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By Urysohn’s Lemma, let h0 : G → [0, 1] be continuous with h0(e) = 1 and
supp(h0) ⊆ V , so that h0 ∈ Cc(G). We may assume h0(r) = h0(r−1) for all r ∈ G,
by replacing h0 with r 7→ max{h0(r), h0(r−1)}. Define

h :=

(ˆ
G

h0(t) dt

)−1

h0 ⊗ ui0 ∈ Cc(G,A).

Then

‖h‖1,ω =

(ˆ
G

h0(t) dt

)−1 ˆ
G

h0(r)‖ui0‖ω(r) dr

≤ M sup
r∈V

ω(r)

≤ M sup
r∈W

ω(r).

For every s ∈ G, we find, using the reverse triangle inequality, noting that
‖f(s)‖ = ‖αs ◦αs−1(f(s))‖ ≤ Cα‖αs−1(f(s))‖, remembering that h0 is supported in
V , and applying Lemma 4.5.10, that

‖[λ̃o Λ(f)h](s)‖

=

∥∥∥∥ˆ
G

α−1
s (f(r))h(r−1s) dr

∥∥∥∥
=

∥∥∥∥ˆ
G

α−1
s (f(sr))h(r−1) dr

∥∥∥∥
=

(ˆ
G

h0(t) dt

)−1 ∥∥∥∥ˆ
G

h0(r−1)α−1
s (f(sr))ui0 dr

∥∥∥∥
≥

(ˆ
G

h0(t) dt

)−1 ∥∥∥∥ˆ
G

h0(r−1)α−1
s (f(s))ui0 dr

∥∥∥∥
−
(ˆ

G

h0(t) dt

)−1 ∥∥∥∥ˆ
G

h0(r−1)α−1
s (f(s)− f(sr))ui0 dr

∥∥∥∥
≥

(ˆ
G

h0(t) dt

)−1(ˆ
G

h0(r) dr

)∥∥α−1
s (f(s))ui0

∥∥
−
(ˆ

G

h0(t) dt

)−1 εCαM
(´
G
h0(r) dr

)
2CαM

≥ ‖αs−1(f(s))‖ − ε

2
− ε

2

≥ 1

Cα
‖f(s)‖ − ε.
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Hence, with L := sups∈supp(f) ω(s), which is finite since ω is bounded on com-
pact sets,

‖λ̃o Λ(f)h‖1,ω ≥
ˆ
supp(f)

‖[λ̃o Λ(f)h](s)‖ω(s) ds

≥
ˆ
supp(f)

(
1

Cα
‖f(s)‖ − ε

)
ω(s) ds

≥ 1

Cα
‖f‖1,ω − εµ(supp(f))L.

Now, since ‖h‖1,ω ≤M supr∈W ω(r), we obtain

‖λ̃o Λ(f)‖ ≥ 1

CαM supr∈W ω(r))
‖f‖1,ω −

εL

M supr∈W ω(r)
µ(supp(f)).

Because ε > 0 was chosen arbitrarily, ‖λ̃ o Λ(f)‖ ≥ (CαM supr∈W ω(r))−1‖f‖1,ω
now follows.

We now combine our previous results, notably (4.5.1) and Proposition 4.5.12,
to obtain sufficient conditions for a crossed product (A oα G)R to be isomorphic
to a generalized Beurling algebra, and also collect a number of direct consequences
in the following result. The desired reverse inequality to (4.5.1) is a consequence of
Proposition 4.5.12, supplying the first inequality in (4.5.2) and the second inequality
in (4.5.2), which follows from the assumption that (λ̃,Λ) is R-continuous.
Theorem 4.5.13. Let (A,G, α) be a Banach algebra dynamical system where A has
an M -bounded approximate right identity and α is uniformly bounded by a constant
Cα. Let ω be a weight on G. Let R be a uniformly bounded class of continuous co-
variant representations of (A,G, α) with CR = sup(π,U)∈R ‖π‖ < ∞ and satisfying
νR(r) = sup(π,U)∈R ‖Ur‖ ≤ ω(r) for all r ∈ G. Let λ be the left regular representa-
tion of A, and suppose that the non-degenerate continuous covariant representation
(λ̃,Λ) of (A,G, α) on L1(G,A, ω) (as yielded by Definition 4.5.5) is R-continuous.
Then, for all f ∈ Cc(G,A), with Z denoting a neighbourhood base of e ∈ G of which
all elements are contained in a fixed compact set,(

1

CαM infW∈Z supr∈W ω(r)

)
‖f‖1,ω ≤ ‖λ̃o Λ(f)‖ (4.5.2)

≤ ‖λ̃o Λ‖σR(f) ≤ ‖λ̃o Λ‖CR‖f‖1,ω.

In particular, σR is a norm on Cc(G,A), so that Cc(G,A) can be identified with a
subspace of (AoαG)R. Since the norms σR and ‖ · ‖1,ω on Cc(G,A) are equivalent,
there exists a topological isomorphism between the Banach algebra (A oα G)R and
the generalized Beurling algebra L1(G,A, ω;α) that is the identity on Cc(G,A).

The multiplication on the common dense subspace Cc(G,A) of the spaces (Aoα
G)R and L1(G,A, ω;α) is given by

[f ∗ g](s) :=

ˆ
G

f(r)αr(g(r−1s)) dr (f, g ∈ Cc(G,A), s ∈ G).
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The faithful representation λ̃ o Λ : Cc(G,A) → B(L1(G,A, ω)) extends to a
topological embedding (λ̃oΛ)R : (AoαG)R → B(L1(G,A, ω)) of the Banach algebra
(Aoα G)R into B(L1(G,A, ω)).

Using Corollary 4.5.9, we have the following consequence of Theorem 4.5.13,
where the isomorphism between (Aoα G)R and L1(G,A, ω;α) is isometric.
Corollary 4.5.14. Let (A,G, α) be a Banach algebra dynamical system where A has
a 1-bounded approximate right identity and α lets G act as isometries on A. Let ω be
a weight on G, and λ the left regular representation of A. Then the non-degenerate
continuous covariant representation (λ̃,Λ) on L1(G,A, ω) (as yielded by Definition
4.5.5) is such that λ̃ is contractive and Λ is bounded by ω.

Suppose furthermore that infW∈Z supr∈W ω(r) = 1, with Z denoting a neigh-
bourhood base of e ∈ G of which all elements are contained in a fixed compact set,
and that R is a uniformly bounded class of continuous covariant representations with
(λ̃,Λ) ∈ R, and satisfying

CR = sup
(π,U)∈R

‖π‖ ≤ 1,

and
νR(r) = sup

(π,U)∈R
‖Ur‖ ≤ ω(r) (r ∈ G).

Then σR(f) = ‖f‖1,ω for f ∈ Cc(G,A), and hence (A oα G)R is isometrically
isomorphic to the generalized Beurling algebra L1(G,A, ω;α).

Moreover, (λ̃ o Λ)R : (A oα G)R → B(L1(G,A, ω)) is an isometric embedding
as a Banach algebra.

Proof. Since (λ̃,Λ) ∈ R, we have ‖λ̃oΛ‖ ≤ 1, and by hypothesis CR ≤ 1. Therefore,
by Theorem 4.5.13, for every f ∈ Cc(G,A),

‖f‖1,ω ≤ ‖λ̃o Λ(f)‖ ≤ ‖λ̃o Λ‖σR(f) ≤ CR‖λ̃o Λ‖‖f‖1,ω ≤ ‖f‖1,ω.

We conclude that CR = ‖λ̃o Λ‖ = 1, and the result now follows.

Remark 4.5.15. Certainly if the weight ω : G→ [0,∞) is continuous in e ∈ G and
ω(e) = 1, then infW∈Z supr∈W ω(r) = 1, for example if ω is taken to be a continuous
positive character of G.
Remark 4.5.16. We note that the representation

(λ̃o Λ)R : L1(G,A, ω;α)→ B(L1(G,A, ω;α))

does not equal the left regular representation of L1(G,A, ω;α) in general, but they
are always conjugate. To see this, define, for h ∈ Cc(G,A) and s ∈ G, ȟ(s) :=

αs−1(h(s)), ĥ(s) := αs(h(s)). Then ·̂ : Cc(G,A) → Cc(G,A) and ·̌ : Cc(G,A) →
Cc(G,A) are mutual inverses and, since α is uniformly bounded, extend to mutually
inverse Banach space isomorphisms of L1(G,A, ω;α) onto itself. Then (λ̃oΛ)R and
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the left regular representation λ of L1(G,A, ω;α) are conjugate under ·̂. Indeed by
Lemma 4.5.10, for f, h ∈ Cc(G,A) and s ∈ G,(

λ̃o Λ(f)ȟ
)∧

(s) = αs

(
[λ̃o Λ(f)ȟ](s)

)
= αs

(ˆ
G

α−1
s (f(r))ȟ(r−1s) dr

)
= αs

(ˆ
G

α−1
s (f(r))αs−1r(h(r−1s)) dr

)
=

ˆ
G

f(r)αr(h(r−1s)) dr

= [f ∗ h](s)

= [λ(f)h](s).

Hence (λ̃o Λ)R and the left regular representation

λ : L1(G,A, ω;α)→ B(L1(G,A, ω;α))

of L1(G,A, ω;α) are conjugate as claimed. Note that ·̂ is the identity if α = triv,
hence in that case (λ̃o Λ)R = λ.

We continue the main line with the following trivial but important observation:
If (λ̃,Λ) ∈ R, for example, by taking R := {(λ̃,Λ)}, then certainly (λ̃,Λ) is R-
continuous, hence the conclusions in Theorem 4.5.13 hold, and in particular the
algebras (A oα G)R and L1(G,A, ω;α) are topologically isomorphic. A similar re-
mark is applicable to Corollary 4.5.14, giving sufficient conditions for the mentioned
topological isomorphism to be isometric. Hence we have the following:
Theorem 4.5.17. Let (A,G, α) be a Banach algebra dynamical system where A
has a bounded approximate right identity and α is uniformly bounded. Let ω be a
weight on G and let the non-degenerate continuous covariant representation (λ̃,Λ)
of (A,G, α) on L1(G,A, ω) be as yielded by Definition 4.5.5. Then the general-
ized Beurling algebra L1(G,A, ω;α) and the crossed product (A oα G)R with R :=
{(λ̃,Λ)} are topologically isomorphic via an isomorphism that is the identity on
Cc(G,A).

Furthermore, the map λ̃oΛ : Cc(G,A)→ B(L1(G,A, ω)) extends to a topological
embedding of L1(G,A, ω;α) into B(L1(G,A, ω)).

If A has a 1-bounded two-sided approximate identity, α lets G act as isometries on
A and infW∈Z supr∈W ω(r) = 1, with Z denoting a neighbourhood base of e ∈ G of
which all elements are contained in a fixed compact set, then the isomorphism between
(A oα G)R and L1(G,A, ω;α) is an isometry, and the embedding of L1(G,A, ω;α)
into B(L1(G,A, ω)) is isometric.

Remark 4.5.18. As noted in Remark 4.5.16, when α = triv, then (λ̃ o Λ)R

equals the left regular representation λ : L1(G,A, ω;α) → B(L1(G,A, ω;α)) of
L1(G,A, ω;α).
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Remark 4.5.19. We note that, for (A,G, α) = (K, G, triv), the second part of Theo-
rem 4.5.17 asserts that (KotrivG)R is isometrically isomorphic to the classical Beurl-
ing algebra L1(G,ω), provided that infW∈Z supr∈W ω(r) = 1 (which is certainly true
if ω is continuous at e ∈ G and ω(e) = 1). In particular L1(G) is isometrically isomor-
phic to a crossed product. Under the condition infW∈Z supr∈W ω(r) = 1, combining
Remark 4.5.16 and Theorem 4.5.17 also shows that the left regular representation
of L1(G,ω) is an isometric embedding of L1(G,ω) into B(L1(G,ω)).

Hence, provided that A has a bounded approximate right identity, the generalized
Beurling algebras L1(G,A, ω;α), and in particular the classical Beurling algebras
L1(G,ω) for A = K, are isomorphic to a crossed product associated with a Banach
algebra dynamical system. Therefore, in the case where the algebra A has a two-
sided identity, the General Correspondence Theorem (Theorem 4.2.1) determines
the non-degenerate bounded representations of generalized Beurling algebras. This
we will elaborate on in the rest of the section. In cases where the algebra is trivial,
i.e., A = K, we regain classical results on the representation theory of L1(G) and
other classical Beurling algebras.

Assume, in addition to the hypothesis in Theorem 4.5.13, that A has an M -
bounded two-sided approximate identity and that all continuous covariant represen-
tations in R are non-degenerate. In that case, we claim that the non-degenerate
R-continuous covariant representations are precisely the non-degenerate continuous
covariant representations (π, U) of (A,G, α), with no further restriction on π, but
with U such that ‖Ur‖ ≤ CUω(r) for all r ∈ G and a U -dependent constant CU . To
see this, we start by noting that, for f ∈ Cc(G,A),

‖π o U(f)‖ ≤
ˆ
G

‖π(f(r))‖‖Ur‖ dr

≤
ˆ
G

‖π‖‖f(r)‖CUω(r) dr

≤ CU‖π‖
ˆ
G

‖f(r)‖ω(r) dr

= CU‖π‖‖f‖1,ω
≤ C ′(π,U)σ

R(f)

for some C ′(π,U) ≥ 0, since ‖ · ‖1,ω and σR are equivalent.
For the converse, we use that A has a bounded approximate left identity and

that R consists of non-degenerate continuous covariant representations. If (π, U) is
a non-degenerate R-continuous representation of (A,G, α), then the General Corre-
spondence Theorem (Theorem 4.2.1) asserts that

(π, U) = ((π o U)R ◦ iRA , (π o U)R ◦ iRG),

where (π o U)R :Ml((A oα G)R) → B(Xπ) is the non-degenerate bounded repre-
sentation induced by the non-degenerate bounded representation (π o U)R : (Aoα
G)R → B(Xπ). However if T : (A oα G)R → B(X) is any non-degenerate
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bounded representation, then [19, Proposition 7.1] asserts that there exists a con-
stant CT := MRl ‖T‖, with MRl a bound for a bounded approximate left identity in
(Aoα G)R, such that

‖T ◦ iRG(r)‖ ≤ CT νR(r) ≤ CTω(r) (r ∈ G). (4.5.3)

Therefore, r 7→ ‖Ur‖ is bounded by a multiple of ω, as claimed.
We now take R := {(λ̃,Λ)} as in Theorem 4.5.17. Theorem 4.5.17 shows that

the non-degenerate bounded representations of L1(G,A, ω;α) can be identified with
those of (Aoα G)R. By the General Correspondence Theorem (Theorem 4.2.1) the
latter are in natural bijection with the non-degenerate R-continuous covariant repre-
sentations of (A,G, α) and these we have just described. Hence the non-degenerate
bounded representations of L1(G,A, ω;α) are in natural bijection with pairs (π, U)
as above. Furthermore, slightly simplified versions of [19, Equations (8.1) and (8.2)]
(cf. Remark 4.5.21) give explicit formulas for retrieving (π, U) from a non-degenerate
bounded representation T of (A oα G)R ' L1(G,A, ω;α). Combining all this, we
obtain the following correspondence between the non-degenerate continuous covari-
ant representations of (A,G, α) and the non-degenerate bounded representations of
the generalized Beurling algebra L1(G,A, ω;α):
Theorem 4.5.20. Let (A,G, α) be a Banach algebra dynamical system where A
has a two-sided approximate identity and α is uniformly bounded by Cα. Let ω
be a weight on G. Then the following maps are mutual inverses between the non-
degenerate continuous covariant representations (π, U) of (A,G, α) on a Banach
space X, satisfying ‖Ur‖ ≤ CUω(r) for some CU ≥ 0 and all r ∈ G, and the non-
degenerate bounded representations T : L1(G,A, ω;α) → B(X) of the generalized
Beurling algebra L1(G,A, ω;α) on X:

(π, U) 7→
(
f 7→

ˆ
G

π(f(r))Ur dr

)
=: T (π,U) (f ∈ Cc(G,A)),

determining a non-degenerate bounded representation T (π,U) of the generalized Beurl-
ing algebra L1(G,A, ω;α), and,

T 7→
(
a 7→ SOT-lim(V,i)T (zV ⊗ aui),
s 7→ SOT-lim(V,i)T (zV (s−1·)⊗ ui)

)
=: (πT , UT ),

where Z is a neighbourhood base of e ∈ G, of which all elements are contained in a
fixed compact subset of G, zV ∈ Cc(G,A) is chosen such that zV ≥ 0, supported in
V ∈ Z,

´
G
zV (r)dr = 1, and (ui) is any bounded approximate left identity of A.

Furthermore, if A has anM -bounded approximate left identity, then the following
bounds for T (π,U) and (πT , UT ) hold:

(1) ‖T (π,U)‖ ≤ CU‖π‖,

(2) ‖πT ‖ ≤ (infV ∈Z supr∈V ω(r)) ‖T‖,

(3) ‖UTs ‖ ≤M (infV ∈Z supr∈V ω(r)) ‖T‖ω(s) (s ∈ G).
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Proof. Except for the claimed bounds for ‖TU‖, ‖πT ‖ and ‖UT ‖, all statements
have been proven preceding the statement of the theorem. We will now establish
these three bounds.

We prove (1). Let (π, U) be a non-degenerate continuous covariant representa-
tions of (A,G, α) on a Banach space X, satisfying ‖Ur‖ ≤ CUω(r) for some CU ≥ 0
and all r ∈ G. Then, for any f ∈ Cc(G,A),

‖T (π,U)(f)‖ =

∥∥∥∥ˆ
G

π(f(r))Ur dr

∥∥∥∥
≤
ˆ
G

‖π‖‖f(r)‖‖Ur‖ dr

≤ ‖π‖CU
ˆ
G

‖f(r)‖ω(r) dr

= ‖π‖CU‖f‖1,ω.

Therefore ‖T (π,U)‖ ≤ ‖π‖CU .
We prove (2). Let T : L1(G,A, ω;α) → B(X) be a non-degenerate bounded

representations of the generalized Beurling algebra L1(G,A, ω;α) on X. Choose a
bounded two-sided approximate identity (ui) of A. Then, for any a ∈ A,

‖T (zV ⊗ aui)‖ ≤ ‖T‖‖zV ⊗ aui‖1,ω

≤ ‖T‖
ˆ
G

zV (r)‖aui‖ω(r) dr

= ‖T‖‖aui‖
ˆ
G

zV (r)ω(r) dr

≤ ‖T‖‖aui‖ sup
r∈V

ω(r)

ˆ
G

zV (r) dr

= ‖T‖‖aui‖ sup
r∈V

ω(r).

Since, in particular, (ui) is an approximate right identity of A, for any ε1 > 0, there
exists an index i0 such that i ≥ i0 implies ‖aui‖ ≤ ‖a‖ + ε1. Also, for any ε2 > 0,
there exists some V0 ∈ Z such that supr∈V0

ω(r) ≤ infV ∈Z supr∈V ω(r) + ε2. Now,
if (V, i) ≥ (V0, i0), then V0 ⊇ V and i ≥ i0, and hence

‖T (zV ⊗ aui)‖ ≤ ‖T‖‖aui‖ sup
r∈V

ω(r)

≤ ‖T‖‖aui‖ sup
r∈V0

ω(r)

≤ ‖T‖(‖a‖+ ε1)

(
inf
V ∈Z

sup
r∈V

ω(r) + ε2

)
.
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Therefore, if x ∈ X, then

‖πT (a)x‖ = lim
(V,i)
‖T (zV ⊗ aui)x‖

= lim
(V,i)≥(V0,i0)

‖T (zV ⊗ aui)x‖

≤ ‖T‖(‖a‖+ ε1)

(
inf
V ∈Z

sup
r∈V

ω(r) + ε2

)
‖x‖.

Since ε1 and ε2 we chosen arbitrarily, ‖πT ‖ ≤ ‖T‖ (infV ∈Z supr∈V ω(r)) now follows.
We prove (3). Let (ui) be an M -bounded approximate left identity of A. Fix

s ∈ G. Let ε > 0 be arbitrary and let V0 ∈ Z be such that supr∈V0
ω(r) ≤

infV ∈Z supr∈V ω(r) + ε. Fix some index i0, then, for every (V, i) ≥ (V0, i0),

‖T (zV (s−1·)⊗ ui)‖ ≤ ‖T‖‖zV (s−1·)⊗ ui‖1,ω

= ‖T‖
ˆ
G

zV (s−1r)‖ui‖ω(r) dr

≤ M‖T‖
ˆ
G

zV (r)ω(sr) dr

≤ M‖T‖
ˆ
G

zV (r)ω(s)ω(r) dr

= M‖T‖ω(s)

ˆ
V

zV (r)ω(r) dr

≤ M‖T‖
(

sup
r∈V0

ω(r)

)
ω(s)

ˆ
V

zV (r) dr

≤ M‖T‖
(

inf
V ∈Z

sup
r∈V

ω(r) + ε

)
ω(s).

Therefore, if x ∈ X, then

‖UTs x‖ = lim
(V,i)
‖T (zV (s−1·)⊗ ui)x‖

= lim
(V,i)≥(V0,i0)

‖T (zV (s−1·)⊗ ui)x‖

≤ M‖T‖
(

inf
V ∈Z

sup
r∈V

ω(r) + ε

)
ω(s)‖x‖.

Since ε > 0 was chosen arbitrarily, ‖UTr ‖ ≤ M‖T‖ (infV ∈Z supr∈V ω(r))ω(s) now
follows.

Remark 4.5.21. Our reconstruction formulas in Theorem 4.5.20 differs slightly
from those given in [19, Equations (8.1) and (8.2)], where the reconstruction formula
for UT is given as

s 7→ SOT-lim(V,i)T (zV (s−1·)⊗ αs(ui)), (4.5.4)
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with (ui) any bounded approximate left identity of A. However, if (ui) is any
bounded approximate left identity of A and s ∈ G is fixed, then (αs−1(ui)) is also a
bounded approximate left identity of A, and using this particular choice in (4.5.4)
gives the formula in Theorem 4.5.20.

For the Banach algebra dynamical system (K, G, triv) and weight ω on G, The-
orem 4.5.20 simplifies. We collect the statements from Theorem 4.5.20 concern-
ing representations and some material from Remark 4.5.16, Corollary 4.5.14 in the
following result, which contains a few classical results as special cases: For one-
dimensional representations, the result reduces to the bijection between ω-bounded
characters of G and multiplicative functionals of the Beurling algebra L1(G,ω), see,
e.g., [26, Theorem 2.8.2] (where, contrary to our general groups, G is assumed to be
abelian). In the case where ω is the constant 1, the result reduces to the classical
bijection between uniformly bounded strongly continuous representations of G and
non-degenerate bounded representations of L1(G), see, e.g., [24, Assertion VI.1.32].
Corollary 4.5.22. Let ω be a weight on G. With (zV ) as in Theorem 4.5.20, the
maps

U 7→
(
f 7→

ˆ
G

f(r)Ur dr

)
=: TU (f ∈ Cc(G)),

determining a non-degenerate bounded representation TU of the Beurling algebra
L1(G,ω), and

T 7→
(
s 7→ SOT-limV T (zV (s−1·))

)
=: UT

are mutual inverses between the strongly continuous group representations U of G on
a Banach space X, satisfying ‖Ur‖ ≤ CUω(r), for some CU ≥ 0 and all r ∈ G, and
the non-degenerate bounded representations T : L1(G,ω) → B(X) of the Beurling
algebra L1(G,ω) on X).

If the weight satisfies infW∈Z supr∈W ω(r) = 1, where Z is a neighbourhood base
of e ∈ G, of which all elements are contained in a fixed compact subset of G, then
‖TU‖ = supr∈G ‖Ur‖/ω(r) and ‖UTr ‖ ≤ ‖T‖ω(r) for all r ∈ G.

Proof. The only statement that does not follow directly from Theorem 4.5.20 is that
‖TU‖ = supr∈G ‖Ur‖/ω(r), when supW∈Z(supr∈W ω(r))−1 = 1.

To establish this, we note that

‖Ur‖ = ω(r)
‖Ur‖
ω(r)

≤
(

sup
s∈G

‖Us‖
ω(s)

)
ω(r).

Therefore, we can replace CU with supr∈G ‖Ur‖/ω(r), and, by the bound (1) in
Theorem 4.5.20, ‖TU‖ ≤ supr∈G ‖Ur‖/ω(r). The reverse inequality follows from (3)
in Theorem 4.5.20, when noting that the maps U 7→ TU and T 7→ UT are mutual
inverses.

Remark 4.5.23. For one-dimensional representations, Corollary 4.5.22 implies that
continuous characters χ : G → C× of G, such that |χ(r)| ≤ Cχω(r) for some Cχ
and all r ∈ G, are in natural bijection with the one-dimensional representations of
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L1(G,ω). Since this is a Banach algebra, such representations are contractive, and
the final part of Corollary 4.5.22 then asserts that one can actually take Cχ = 1
(cf. [26, Lemma 2.8.2] for abelian G). One can also verify this directly by noting
that, if there exists some s ∈ G for which |χ(s)| > ω(s), then, for all n ∈ N, by
submultiplicativity of ω,(

|χ(s)|
ω(s)

)n
=
|χ(sn)|
ω(s)n

≤ Cχ
ω(sn)

ω(s)n
≤ Cχ.

Therefore, since |χ(s)| > ω(s), we must have that Cχ =∞, which is absurd. Hence
|χ(r)| ≤ ω(r) for all r ∈ G.

4.6 Other types for (π, U)

For a given Banach algebra dynamical system (A,G, α) we have thus far been con-
cerned with a uniformly bounded class of pairs (π, U), where π : A → B(X) and
U : G → B(X) are multiplicative representations, U is strongly continuous, and
satisfy the covariance condition

Urπ(a)U−1
r = π(αr(a))

for all r ∈ G and a ∈ A. On the other hand, in [19, Proposition 6.5], we have
encountered an example of a pair (π, U) where π and U are both anti-multiplicative
and satisfy the anti-covariance condition

Urπ(a)U−1
r = π(αr−1(a))

for all r ∈ G and a ∈ A. Suppose one has a uniformly bounded class R of such pairs
(π, U), with U strongly continuous, π non-degenerate and that A has a bounded
“appropriately sided” approximate identity, can one then find a Banach algebra of
crossed product type again, such that its non-degenerate bounded (perhaps anti-)
representations are in natural bijection with theR-continuous pairs (ρ, V ), satisfying
the aforementioned requirements for elements of R? What about pairs (π, U) where
π is multiplicative, U is anti-multiplicative and a covariance condition is satisfied?
Can one, to ask a more fundamental question, expect a meaningful theory to exist
for such pairs?

In this section we address these matters. We start by determining what appears
to be the natural “reasonable” requirements in this vein on (π, U) for a meaningful
theory to exist (and which are not met in the second-mentioned example). There
turn out to be four cases. For each case we indicate a Banach algebra dynamical
system (B,H, β) such that B = A and H = G as sets, and such that the given maps
π : B → B(X) and U : H → B(X) are now multiplicative and satisfy a covariance
condition. This brings us back into the realm of the correspondence as in Theorem
4.2.1 or [19, Theorem 8.1], but we leave it to the reader to formulate the resulting
correspondence theorem for the other three types of uniformly bounded classes of
non-degenerate continuous pairs (π, U).
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After this, we turn to actions of A and G on Cc(G,A). While this is not, in
general, a Banach space, several Banach spaces are naturally obtained from Cc(G,A)
via quotients and/or completions, hence it is for this space that we list sixteen
canonical pairs of actions, with each of the four “reasonable” properties occurring
four times. We then explain that, even though the formulas look quite different,
there is essentially only one pair, and the fifteen others can be derived from it. We
conclude with natural pairs (π, U) of commuting actions on Cc(G,A).

This section is, in a sense, elementary and almost entirely algebraic in nature.
Nevertheless, we thought it worthwhile to make a systematic inventorization, once
and for all, of the “reasonable” properties of pairs (π, U), the natural actions on A-
valued function spaces on G, and the interrelations between the various formulas. A
particular case of the results in the present section will be instrumental in Section 4.8
where we explain how non-degenerate right– and bimodules over generalized Beurling
algebras fit into the general framework of crossed products of Banach algebras.

To start with, let (A,G, α) be a Banach algebra dynamical system. What are
the “reasonable” properties of (π, U) that can lead to a meaningful theory? Let us
assume that π : A → B(X) is linear and multiplicative or anti-multiplicative, that
U : G→ B(X) is a multiplicative or anti-multiplicative map of G into the group of
invertible elements of B(X), and that

Urπ(a)U−1
r = π(δr(a)) (4.6.1)

for all a ∈ A and r ∈ G, where δ is a multiplicative or anti-multiplicative map from
G into the automorphisms or anti-automorphisms of A. This is “asking for the most
general setup”. We start by arguing that δ should map G into the automorphisms
of A. Indeed, if π is multiplicative, r ∈ G and a1, a2 ∈ A, then

π(δr(a1a2)) = Urπ(a1a2)U−1
r

= Urπ(a1)U−1
r Urπ(a2)U−1

r

= π(δr(a1))π(δr(a2))

= π(δr(a1)δr(a2)).

If π is anti-multiplicative, then again

π(δr(a1a2)) = Urπ(a1a2)U−1
r

= Urπ(a2)U−1
r Urπ(a1)U−1

r

= π(δr(a2))π(δr(a1))

= π(δr(a1)δr(a2)).

Hence one is led to assume that δ maps G into Aut(A), still leaving open the possible
choice of δ : G→ Aut(A) being multiplicative or anti-multiplicative.

To continue, if U is anti-multiplicative, then (4.6.1) implies, for a ∈ A and
r1, r2 ∈ G,

π(δr1r2(a)) = Ur1r2π(a)U−1
r1r2
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= Ur2Ur1π(a)U−1
r1 U

−1
r2

= π(δr2 ◦ δr1(a)).

Therefore, unless one imposes a further relation between π and U , it seems that
only the possibility that δ is also anti-multiplicative will lead to a meaningful theory.
Likewise, the multiplicativity of U “implies” that δ should be multiplicative. Using
that δr is multiplicative on A for r ∈ G, it is easily seen that the covariance condition
yields no implications on the nature of π.

With (A,G, α) given, the relevant non-trivial choice for a multiplicative δ is α,
and for an anti-multiplicative δ it is αo where αor := αr−1 for all r ∈ G; the reason
for this notation will become clear in a moment. We will consider these non-trivial
choices for δ first, and return to δ = triv later.

Hence we have to consider four meaningful possibilities for a pair (π, U) and
the relation between π and U . If we let, e.g., (a,m) denote the case where π is
anti-multiplicative and U is multiplicative, then, for (m,m) and (a,m), one should
require

Urπ(a)U−1
r = π(αr(a)),

and for (m, a) and (a, a), one should require

Urπ(a)U−1
r = π(αr−1(a)) = π(αor(a))

for all a ∈ A and r ∈ G.
Now note that, with Go denoting the opposite group, αo : Go → Aut(A) is a

multiplicative strongly continuous map if α is. Therefore, if (A,G, α) is a Banach
algebra dynamical system, then so is (A,Go, αo). Furthermore, if Ao is the opposite
algebra, then Aut(A) = Aut(Ao). Therefore, if (A,G, α) is a Banach algebra dy-
namical system, so is (Ao, G, α). Combining these two, a Banach algebra dynamical
system has a third natural companion Banach algebra dynamical system, namely
(Ao, Go, αo). In each of these three cases, the Banach algebra is A as a set, and the
group is G as a set. Hence the given maps π : A → B(X) and U : G → B(X) can
be viewed unaltered as maps for the new system, denoted by π̃ and Ũ . The crux
is, then, that anti-multiplicative representations of A correspond to multiplicative
representations of Ao, and likewise for G and Go. Hence, regardless of the type
of (π, U), one can always pass to a suitable companion Banach algebra dynamical
system to ensure that the same pair of maps is a pair of type (m,m) for the com-
panion Banach algebra dynamical system. For example, if (π, U) is of type (a, a)
for (A,G, α) and satisfies Urπ(a)U−1

r = π(αr−1(a)) for a ∈ A and r ∈ G, then
π̃ : Ao → B(X) and Ũ : Go → B(X) form a pair of type (m,m) for (Ao, Go, αo),
satisfying Ũrπ̃(a)Ũ−1

r = π(αor(a)) for a ∈ Ao and r ∈ Go. Hence, (π̃, Ũ) is a co-
variant pair of type (m,m) for (Ao, Go, αo), and we are back at our original type of
objects. One can argue similarly for the types (a,m) and (m, a), and this leads to
Table 4.1.

We can now point out how classes of pairs (π, U) of other types than (m,m)
can be related to representations of a crossed product of a Banach algebra. For
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Type of (π, U) Should require (π̃, Ũ) is type
for (A,G, α) that Urπ(a)U−1

r = (m,m) for Ũrπ̃(a)Ũr
−1

=

(m,m) π(αr(a)) (A,G, α) π̃(αr(a))
(m, a) π(αr−1(a)) (A,Go, αo) π̃(αor(a))
(a,m) π(αr(a)) (Ao, G, α) π̃(αr(a))
(a, a) π(αr−1(a)) (Ao, Go, αo) π̃(αor(a))

Table 4.1

example, suppose that R is a uniformly bounded class (as in Section 4.2) of non-
degenerate continuous pairs (π, U) where π : A → B(X) and U : G → B(X) are
both anti-multiplicative satisfying Urπ(a)U−1

r = π(αr−1(a)). We pass to the system
(Ao, Go, αo) and consider the class R̃ consisting of all pairs (π̃, Ũ) = (π, U), for
(π, U) ∈ R. Then R̃ is a uniformly bounded class of non-degenerate continuous
covariant representations of (Ao, Go, αo), and the general correspondence theorem,
Theorem 4.2.1 or [19, Theorem 8.1] furnishes a bijection between the non-degenerate
bounded (multiplicative) representations of (AooαoGo)R̃ and the non-degenerate R̃-
continuous covariant representations of (Ao, Go, αo). It is then a matter of routine,
left to the reader, to reformulate the latter class as pairs (π, U) of type (a, a) for
(A,G, α) again, being aware that the Haar measure for G differs from that of Go by
the modular function. The remaining types (m, a) and (a,m) can be treated similarly
and bring the non-degenerate bounded (always multiplicative) representations of
(Aoαo Go)R̃ and (Ao oα G)R̃, respectively, into play.

We now turn to what can perhaps be regarded as the sixteen canonical types of
actions of A and G on the linear space Cc(G,A) (and hence on many natural Banach
spaces). They are listed in Table 4.2 and were originally obtained by judiciously
experimenting with various candidate expressions. In this table a ∈ A, r, s ∈ G,
f ∈ Cc(G,A) and χ : G→ C× is a continuous character. The possibility of inserting
χ enables one to arrange, by choosing the modular function, that the group actions
as in the lines 3, 8, 11 and 16 are isometric on Lp-type spaces for 1 ≤ p <∞.

We will now explain why, essentially, there is only one canonical type of action
from which all others can be derived. To start with, note that the spaces Cc(G,A),
Cc(G

o, A), Cc(G,Ao) and Cc(Go, Ao) can all be identified. This can be put to good
use as follows: Suppose one has verified that the formulas in line 1 yield a pair (π, U)
of type (m,m) for any Banach algebra dynamical system. Then one can apply this
to (A,Go, αo) and view the resulting actions of A and Go on Cc(Go, A), which are of
type (m,m), as actions of A and G on Cc(G,A). It is immediate that the resulting
pair (π, U) will be of type (m, a) for (A,G, α). In fact, it is line 5 in the table.
Likewise, line 1 for (Ao, G, α) and for (Ao, Go, αo) yields line 9 and 13 for (A,G, α),
respectively. Similarly line 2 yields the lines 6, 10 and 14, line 3 yields the lines
7, 11 and 15, and line 4 yields the lines 8, 12 and 16. Thus the actions in lines 1
through 4 generate all others via passing to companion Banach algebra dynamical
systems. These four actions of (A,G, α) of type (m,m) are, in turn, also essentially
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No. (π(a)f)(s) (Urf)(s) Type (π, U) Urπ(a)U−1
r

1 af(s) χrαr(f(r−1s)) (m,m) π(αr(a))
2 af(s) χrαr(f(sr)) (m,m) π(αr(a))
3 αs(a)f(s) χrf(sr) (m,m) π(αr(a))
4 αs−1(a)f(s) χrf(r−1s) (m,m) π(αr(a))
5 af(s) χrαr−1(f(sr−1)) (m, a) π(αr−1(a))
6 af(s) χrαr−1(f(rs)) (m, a) π(αr−1(a))
7 αs−1(a)f(s) χrf(rs) (m, a) π(αr−1(a))
8 αs(a)f(s) χrf(sr−1) (m, a) π(αr−1(a))
9 f(s)a χrαr(f(r−1s)) (a,m) π(αr(a))
10 f(s)a χrαr(f(sr)) (a,m) π(αr(a))
11 f(s)αs(a) χrf(sr) (a,m) π(αr(a))
12 f(s)αs−1(a) χrf(r−1s) (a,m) π(αr(a))
13 f(s)a χrαr−1(f(sr−1)) (a, a) π(αr−1(a))
14 f(s)a χrαr−1(f(rs)) (a, a) π(αr−1(a))
15 f(s)αs−1(a) χrf(rs) (a, a) π(αr−1(a))
16 f(s)αs(a) χrf(sr−1) (a, a) π(αr−1(a))

Table 4.2

the same: They are, in fact, equivalent under linear automorphisms of Cc(G,A). In
order to see this, define, for a continuous character χ : G → C×, the linear order 2
automorphism Tχ : Cc(G,A)→ Cc(G,A) by

(Tχf)(s) := χsf(s−1)

for all s ∈ G and f ∈ Cc(G,A). Adding line numbers in brackets in the obvious way,
one then verifies that

π(2)(a) = Tχ(1)χ(2)−1π(1)(a)T−1
χ(1)χ(2)−1

for all a ∈ A, and
U(2),r = Tχ(1)χ(2)−1U(1),rT

−1
χ(1)χ(2)−1

for all r ∈ G. Thus the actions in the lines 1 and 2 are equivalent. Likewise,

π(4)(a) = Tχ(4)χ(3)−1π(3)(a)T−1
χ(4)χ(3)−1

for all a ∈ A, and
U(4),r = Tχ(4)χ(3)−1U(3),rT

−1
χ(4)χ(3)−1

for all r ∈ G. Hence the actions in the lines 3 and 4 are equivalent. Furthermore,
with χ : G→ C× a continuous character as before, we let Sχ : Cc(G,A)→ Cc(G,A)
be defined by

(Sχf)(s) := χs−1αs−1(f(s))
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for all s ∈ G and f ∈ Cc(G,A). Then Sχ is a linear automorphism of Cc(G,A) and
its inverse is given by

(S−1
χ f)(s) = χsαs(f(s)).

It is then straightforward to check that

π(4)(a) = Sχ(1)χ(4)−1π(1)(a)S−1
χ(1)χ(4)−1

for all a ∈ A, and
U(4),r = Sχ(1)χ(4)−1U(1),rS

−1
χ(1)χ(4)−1

for all r ∈ G. Thus the actions in the lines 1 and 4 are equivalent, and hence all
actions of type (m,m) in the lines 1 through 4 are equivalent. Therefore, in spite
of the different appearances, there is essentially only one type of canonical action in
Table 4.2.

We conclude this section with a discussion of the remaining case δ = triv in
(4.6.1), i.e., commuting actions of A and G. It is interesting to note that, given
a Banach algebra dynamical system (A,G, α), we have eight canonical commuting
actions of A and G on Cc(G,A). They are listed in Table 4.3, with the same
notational conventions as in Table 4.2.

No. (π(a)f)(s) (Urf)(s) Type (π, U) Urπ(a)U−1
r

1 αs(a)f(s) χrαr(f(r−1s)) (m,m) π(a)
2 αs−1(a)f(s) χrαr(f(sr)) (m,m) π(a)
3 αs−1(a)f(s) χrαr−1(f(sr−1)) (m, a) π(a)
4 αs(a)f(s) χrαr−1(f(rs)) (m, a) π(a)
5 f(s)αs(a) χrαr(f(r−1s)) (a,m) π(a)
6 f(s)αs−1(a) χrαr(f(sr)) (a,m) π(a)
7 f(s)αs−1(a) χrαr−1(f(sr−1)) (a, a) π(a)
8 f(s)αs(a) χrαr−1(f(rs)) (a, a) π(a)

Table 4.3

We employ a similar mechanism as before. Indeed, suppose we have verified that,
for any Banach algebra dynamical system, the formulas in line 1 yield commuting
actions of type (m,m). Applying this to (A,Go, αo) one obtains a commuting pair of
type (m, a): line 3 in Table 4.3. Likewise, line 1 for (Ao, G, α) and for (Ao, Go, αo)
yield line 5 and line 7, respectively. Similarly line 2 yields the lines 4, 6 and 8.
Furthermore, with 1 : G→ C× denoting the trivial character, one checks that

π(2)(a) = T1π(1)(a)T−1
1

for all a ∈ A, and
U(2),r = T1U(1),rT

−1
1

for all r ∈ G. Thus the actions in lines 1 and 2 are equivalent, and again there is
essentially only one pair of actions in Table 4.3. In this case, one can even go a bit
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further: Define

(π̃(a)f)(s) := af(s)

(Ũrf)(s) := f(r−1s)

for all a ∈ A, r ∈ G and f ∈ Cc(G,A). Then (π̃, Ũ) is “the” canonical covariant pair
of type (m,m) for (A,G, triv), and one verifies that

π(1)(a) = S−1
χ(1)π̃(a)Sχ(1)

for all a ∈ A, and
U(1),r = S−1

χ(1)ŨrSχ(1)

for all r ∈ G. Hence all the commuting actions for A and G in Table 4.3 essentially
originate from the canonical covariant pair (π̃, Ũ) for (A,G, triv).

4.7 Several Banach algebra dynamical systems and
classes

Suppose (Ai, Gi, αi), with i ∈ {1, . . . , n}, are finitely many Banach algebra dynami-
cal systems, and that Ri is a non-empty uniformly bounded class of non-degenerate
continuous covariant representations of (Ai, Gi, αi). We will show (cf. Theorem
4.7.5) that, for a Banach space X, there is a natural bijection between the non-
degenerate bounded representations of the projective tensor product

⊗̂n

i=1(Ai oαi

Gi)
Ri on X and the n-tuples ((π1, U1), . . . , (πn, Un)), where, for each i ∈ {1, . . . , n},

(πi, Ui) is a non-degenerate Ri-continuous covariant representation of (Ai, Gi, αi) on
X, and (πi, Ui) commutes (to be defined below) with (πj , Uj) for all i, j ∈ {1, . . . , n}
with i 6= j,. Such situations are quite common. For example if X is a G-bimodule
(i.e., X is supplied with a left action U of G and a right action V of G that commute),
then this can be interpreted as commuting non-degenerate continuous covariant rep-
resentations (id, U) and (id, V ) of (K, G, triv) and (K, Go, triv), respectively (where
Go denotes the opposite group of G). In a similar vein, if (π, U) is a non-degenerate
continuous covariant representation of (A,G, α) onX, and (ρ, V ) is a non-degenerate
continuous pair of type (a, a) (in the terminology of Section 4.6) and (π, U) and
(ρ, V ) commute, then (π, U) and (ρ, V ) can be interpreted as a pair of commuting
non-degenerate continuous covariant representations of (A,G, α) and (Ao, Go, αo),
respectively (where Ao and Go are, respectively, the opposite Banach algebra and
group of A and G, with αor := αr−1 for all r ∈ G as in Section 4.6). Theorem 4.7.5
explains, as a special case, how such a pair of commuting non-degenerate covari-
ant representations (π, U) and (ρ, V ) can be related to a non-degenerate bounded
representation of (A oα G)R1⊗̂(Ao oαo Go)R2 , where R1 and R2 are uniformly
bounded classes of non-degenerate continuous covariant representations of (A,G, α)
and (Ao, Go, αo) respectively, and (π, U) and (ρ, V ) are respectively R1-continuous
and R2-continuous.

We will now proceed to establish Theorem 4.7.5, and start with a rather obvious
definition.
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Definition 4.7.1. Let X be a Banach space and let ϕi : Si → B(X) be maps
from sets Si into B(X) for i ∈ {1, 2}. Then ϕ1 and ϕ2 are said to commute if
ϕ1(s1)ϕ2(s2) = ϕ2(s2)ϕ1(s1) for all s1 ∈ S1 and s2 ∈ S2.

Let (A1, G1, α1) and (A2, G2, α2) be Banach algebra dynamical systems with
(π1, U1) and (π2, U2) pairs of maps π1 : A1 → B(X), U1 : G1 → B(X) and π2 :
A2 → B(X), U2 : G2 → B(X). Then the pairs (π1, U1) and (π2, U2) are said to
commute if each of π1 and U1 commutes with both π2 and U2.

We then have the following:
Lemma 4.7.2. Let X be a Banach space. For i ∈ {1, 2}, let (Ai, Gi, αi) be a Banach
algebra dynamical system and let (πi, Ui) be a non-degenerate continuous covariant
representation of (Ai, Gi, αi) on X. Then the following are equivalent:

(1) (π1, U1) and (π2, U2) commute.

(2) π1 o U1 : Cc(G1, A1)→ B(X) and π2 o U2 : Cc(G2, A2)→ B(X) commute.

If, for i ∈ {1, 2}, Ri is a non-empty class of continuous covariant representations of
(Ai, Gi, αi), such that (πi, Ui) is Ri-continuous, then (1) and (2) are also equivalent
to

(3) (π1oU1)R1 : (A1oα1
G1)R1 → B(X) and (π2oU2)R2 : (A2oα2

G2)R2 → B(X)
commute.

Proof. That (1) implies (2) can be seen through repeated application of [19, Propo-
sition 5.5.iii]. We note that non-degeneracy is not required in this step.

That (2) implies (1) follows again by repeated applications of [19, Propositions
5.5.iii], and relies on the non-degeneracy of (πi, Ui) for i ∈ {1, 2}.

That (2) is equivalent to (3) follows from the density of qRi(Cc(Gi, Ai)) in (Aioαi

Gi)
Ri and the fact that (πi oUi)

Ri(qRi(f)) = πi oUi(f) for all f ∈ Cc(Gi, Ai), for
i ∈ {1, 2}. We again note that non-degeneracy is not required in this step.

The next step is to investigate the bounded representations of the projective
tensor product B1⊗̂B2 of two Banach algebras B1 and B2 (which will later be taken
to be crossed products). We refer to [26, Section 1.5] for the details concerning the
(canonical) algebra structure on the underlying projective tensor product B1⊗̂B2 of
the Banach spaces B1 and B2, and start with a lemma.
Lemma 4.7.3. Let B1 and B2 be Banach algebras with commuting bounded repre-
sentations π1 : B1 → B(X) and π2 : B2 → B(X) on the same Banach space X.
Then the map π1 � π2 : B1 ⊗B2 → B(X) given by

π1 � π2

(
n∑
i=1

b
(i)
1 ⊗ b

(i)
2

)
:=

n∑
i=1

π1(b
(i)
1 )π2(b

(i)
2 ),

where b(i)j ∈ Bj for j ∈ {1, 2} and i ∈ {1, . . . , n}, is well defined and extends uniquely
to a bounded representation π1�̂π2 : B1⊗̂B2 → B(X).

Furthermore,
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(1) ‖π1�̂π2‖ ≤ ‖π1‖‖π2‖,

(2) π1�̂π2 : B1⊗̂B2 → B(X) is non-degenerate if and only if π1 : B1 → B(X)
and π2 : B2 → B(X) are non-degenerate.

Proof. It is routine to verify that π1 � π2 is well defined and that ‖π1 � π2‖ ≤
‖π1‖‖π2‖. The fact that π1 and π2 commute implies that π1�π2 is a representation
of B1⊗B2, and then the existence of π1�̂π2 as a bounded representation of B1⊗̂B2

is clear, as is (1).
Since obviously span(π1�̂π2(B1⊗̂B2)X) ⊆ span(πi(Bi)X) for i ∈ {1, 2}, the

non-degeneracy of π1�̂π2 implies the non-degeneracy of both π1 and π2.
Conversely, assume that both π1 and π2 are non-degenerate, and let x ∈ X and

ε > 0 be arbitrary. Choose b(j)1 ∈ B1 and x(j) ∈ X with j ∈ {1, . . . , n} such that∥∥∥x−∑n
j=1 π1(b

(j)
1 )x(j)

∥∥∥ ≤ ε/2. Next, choose b(j,k)
2 ∈ B2 and x(j,k) ∈ X with j ∈

{1, . . . , n} and k ∈ {1, . . . ,mj} such that ‖π1(b
(j)
1 )‖

∥∥∥x(j) −
∑mj

k=1 π2(b
(j,k)
2 )x(j,k)

∥∥∥ ≤
ε/2n for all j ∈ {1, . . . , n}. Then∥∥∥∥∥∥x−

n∑
j=1

mj∑
k=1

π1 � π2(b
(j)
1 ⊗ b

(j,k)
2 )x(j,k)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥x−
n∑
j=1

π1(b
(j)
1 )x(j)

∥∥∥∥∥∥+

∥∥∥∥∥∥
n∑
j=1

π1(b
(j)
1 )x(j) −

n∑
j=1

mj∑
k=1

π1 � π2(b
(j)
1 ⊗ b

(j,k)
2 )x(j,k)

∥∥∥∥∥∥
≤ ε

2
+

n∑
j=1

‖π1(b
(j)
1 )‖

∥∥∥∥∥x(j) −
mj∑
k=1

π2(b
(j,k)
2 )x(j,k)

∥∥∥∥∥
< ε.

Hence π1�̂π2 is non-degenerate.

If both B1 and B2 have a bounded approximate left identity, then all non-
degenerate bounded representations of B1⊗̂B2 arise in this fashion for unique (neces-
sarily non-degenerate, in view of Lemma 4.7.3) bounded π1 and π2. More precisely,
we have the following result, for which we have not been able to find a reference.
Proposition 4.7.4. Let B1 and B2 be Banach algebras both having a bounded ap-
proximate left identity, and let X be a Banach space. If π1 : B1 → B(X) and
π2 : B2 → B(X) are commuting non-degenerate bounded representations, then
π1�̂π2 : B1⊗̂B2 → B(X) is a non-degenerate bounded representation, and all non-
degenerate bounded representations of B1⊗̂B2 are obtained in this fashion, for unique
non-degenerate bounded representations π1 and π2. Then

(1) ‖π1�̂π2‖ ≤ ‖π1‖‖π2‖

(2) If, for i ∈ {1, 2}, Bi has an Mi-bounded approximate left identity, then ‖πi‖ ≤
M1M2‖λBi

‖‖π1�̂π2‖, with λBi
: Bi → B(Bi) denoting the left regular repre-

sentation of Bi.
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Proof. Part of the proposition, including (1), has already been established in Lemma
4.7.3. We start from a given non-degenerate bounded representation π : B1⊗̂B2 →
B(X) and construct the non-degenerate bounded representations π1 and π2 such that
π = π1�̂π2. First, we note that B1⊗̂B2 has an approximate left identity bounded
by M1M2 [26, Lemma 1.5.3]. Therefore, if we let π : Ml(B1⊗̂B2) → B(X) denote
the non-degenerate bounded representations ofMl(B1⊗̂B2) such that the diagram

B1⊗̂B2
π //

λ

&&MMMMMMMMMM
B(X)

Ml(B1⊗̂B2)

π

OO

commutes, then ‖π‖ ≤ M1M2‖π‖ [18, Theorem 4.1]. We will now compose π with
bounded homomorphisms of B1 and B2 intoMl(B1⊗̂B2) to obtain the sought rep-
resentations π1 and π2. For b1 ∈ B1 consider λB1

(b1)⊗̂idB2
∈ B(B1⊗̂B2), where

λB1
(b1) is the image under the left regular representation λB1

: B1 → B(B1) of
B1. Clearly, ‖λB1

(b1)⊗̂idB2
‖ = ‖λB1

(b1)‖ ≤ ‖λB1
‖‖b1‖, and one readily veri-

fies that λB1(b1)⊗̂idB2 ∈ Ml(B1⊗̂B2). If we define l1 : B1 → Ml(B1⊗̂B2) by
l1(b1) := λB1(b1)⊗̂idB2 for b1 ∈ B1, then l1 is a bounded homomorphism, and
‖l1‖ ≤ ‖λB1

‖. Likewise, l2 : B2 →Ml(B1⊗̂B2), defined by l2(b2) := idB1
⊗̂λB2

(b2)
for b2 ∈ B2, is a bounded homomorphism, and ‖l2‖ ≤ ‖λB2

‖. Now, for i ∈ {1, 2}, de-
fine πi : Bi → B(X) as πi := π ◦ li. We note that ‖πi‖ ≤ ‖π‖‖li‖ ≤M1M2‖λBi

‖‖π‖.
Since l1 and l2 obviously commute, the same holds true for π1 and π2. Therefore
π1�̂π2 : B1⊗̂B2 → B(X) is a bounded representation.

We will proceed to show that π1�̂π2 = π, and that π1 and π2 are uniquely
determined. We compute, for x ∈ X, b(1)

1 , b
(2)
1 ∈ B1 and b(1)

2 , b
(2)
2 ∈ B2:

π1�̂π2(b
(1)
1 ⊗ b

(1)
2 )π(b

(2)
1 ⊗ b

(2)
2 )x

= π1(b
(1)
1 )π2(b

(1)
2 )π(b

(2)
1 ⊗ b

(2)
2 )x

= π(λB1
(b

(1)
1 )⊗̂idB2

)π(idB1
⊗̂λB2

(b
(1)
2 ))π(b

(2)
1 ⊗ b

(2)
2 )x

= π(λB1
(b

(1)
1 )⊗̂idB2

)π(idB1
⊗̂λB2

(b
(1)
2 )(b

(2)
1 ⊗ b

(2)
2 ))x

= π(λB1
(b

(1)
1 )⊗̂idB2

(b
(2)
1 ⊗ b

(1)
2 b

(2)
2 ))x

= π(b
(1)
1 b

(2)
1 ⊗ b

(1)
2 b

(2)
2 )x

= π(b
(1)
1 ⊗ b

(1)
2 )π(b

(2)
1 ⊗ b

(2)
2 )x.

Since π is non-degenerate and B1 ⊗ B2 is dense in B1⊗̂B2, the restriction of π to
B1⊗B2 is also non-degenerate. Hence we conclude from the above that π1�̂π2(b1⊗
b2) = π(b1 ⊗ b2) for all b1 ∈ B1 and b2 ∈ B2, i.e., that π1�̂π2 = π. It is now clear
that ‖πi‖ ≤M1M2‖λBi

‖‖π1�̂π2‖. As already mentioned preceding the proposition,
π1 and π2 are necessarily non-degenerate.

As to uniqueness, assume that ρ1 : B1 → B(X) and ρ2 : B2 → B(X) are
commuting bounded representations such that ρ1�̂ρ2 = π. Then, for x ∈ X, b1, b′1 ∈
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B and b′2 ∈ B2,

ρ1(b1)π(b′1 ⊗ b′2)x = ρ1(b1)ρ1�̂ρ2(b′1 ⊗ b′2)x

= ρ1(b1)ρ1(b′1)ρ2(b′2)x

= ρ1(b1b
′
1)ρ2(b′2)x

= ρ1�̂ρ2(b1b
′
1 ⊗ b′2)x

= π(λB1
(b1)⊗̂idB2

(b′1 ⊗ b′2))x

= π(λB1(b1)⊗̂idB2)π(b′1 ⊗ b′2)x

= π1(b1)π(b′1 ⊗ b′2)x.

The non-degeneracy of π then implies that necessarily ρ1 = π1 and likewise that
ρ2 = π2.

The following is now simply a matter of combining the General Correspondence
Theorem (Theorem 4.2.1), Lemma 4.7.3, Proposition 4.7.4, and an induction argu-
ment.
Theorem 4.7.5. For i ∈ {1, . . . , n}, let (Ai, Gi, αi) be a Banach algebra dynamical
system, where Ai has a bounded approximate left identity, and Ri is a non-empty
uniformly bounded class of non-degenerate continuous covariant representations of
(Ai, Gi, αi). Let X be a Banach space. Let ((π1, U1), . . . , (πn, Un)) be an n-tuple
where, for each i ∈ {1, . . . , n}, the pair (πi, Ui) is a non-degenerate Ri-continuous
covariant representation of (Ai, Gi, αi) on X, and all (πi, Ui) and (πj , Uj) commute
for all i, j ∈ {1, . . . , n} with i 6= j. Then the map sending ((π1, U1), . . . , (πn, Un)) to
the representation⊙̂n

i=1
(πi o Ui)

Ri :
⊗̂n

i=1
(Ai oαi

Gi)
Ri → B(X),

is a bijection between the set of all such n-tuples and the set of all non-degenerate
bounded representations of

⊗̂n

i=1(Ai oαi
Gi)
Ri on X.

For the sake of completeness, we mention that the commutativity assumption
applies only to the non-degenerate Ri-continuous covariant representations (πi, Ui),
not to the elements of Ri.

In Remark 4.8.5 we will apply Theorem 4.7.5 to relate bimodules over generalized
Beurling algebras to left modules over a projective tensor product of the algebra
acting on the left and the opposite algebra of the one acting on the right.

4.8 Right and bimodules over generalized Beurling
algebras

Let (A,G, α) be a Banach algebra dynamical system, where A has a bounded two-
sided approximate identity and α is uniformly bounded, and let ω be a weight on
G. In Section 4.5 we have seen that the Banach space L1(G,A, ω) has the structure
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of an associative algebra, denoted L1(G,A, ω;α), with multiplication continuous in
both variables, determined by

[f ∗α g](s) :=

ˆ
G

f(r)αr(g(r−1s)) dµ(r) (f, g ∈ Cc(G,A), s ∈ G).

Here we have written ∗α rather than ∗ to indicate the α-dependence of the multipli-
cation (twisted convolution) on Cc(G,A), as another multiplication will also appear.
For the same reason we have now also written dµ for the chosen left Haar measure
on G. Furthermore, we have seen in Section 4.5 that L1(G,A, ω;α) is isomorphic
to the Banach algebra (Aoα G)R, when R is chosen suitably. As a consequence of
the General Correspondence Theorem (Theorem 4.2.1), it was then shown that if
(π, U) is a non-degenerate continuous covariant representation of (A,G, α), such that
‖Ur‖ ≤ CUω(r) for all r ∈ G, then π o U(f) =

´
π(f)Ur dµ(r), for f ∈ Cc(G,A),

determines a non-degenerate bounded representation of L1(G,A, ω;α), and that all
non-degenerate bounded representations of L1(G,A, ω;α) are uniquely determined
in this way by such pairs (π, U).

In the current section we will explain how the non-degenerate bounded anti-
representations of L1(G,A, ω;α) (i.e., non-degenerate right L1(G,A, ω;α)-modules)
are in natural bijection with the pairs (π, U), where π : A→ B(X) is non-degenerate,
bounded and anti-multiplicative, U : G → B(X) is strongly continuous and anti-
multiplicative, satisfy

Urπ(a)U−1
r = π(αr−1(a)) (a ∈ A, r ∈ G),

(i.e., with the non-degenerate continuous pairs (π, U) of type (a, a) as in Section 4.6,
called thrice “flawed” in the introduction) and are such that ‖Ur‖ ≤ CUω(r), for
some CU ≥ 0 and all r ∈ G. This may look counterintuitive to the idea of Section
4.6, where it was argued that one can “always” reinterpret given data so as to end up
with pairs of type (m,m) for a (companion) Banach algebra dynamical system, and
then formulate a General Correspondence Theorem involving the non-degenerate
bounded representations of a companion crossed product: anti-representations of
the resulting crossed product never enter the picture. Yet this is precisely what we
will do, but it is only the first step.

In this first step the relevant crossed product will, as in Section 4.5, turn out
to be topologically isomorphic to L1(Go, Ao, ωo;αo) (where ωo equals ω, seen as a
weight on Go). As it happens, L1(Go, Ao, ωo;αo) is topologically anti-isomorphic
to L1(G,A, ω;α). Hence, in the second step, the non-degenerate bounded repre-
sentations of L1(Go, Ao, ωo;αo) are viewed as the non-degenerate bounded anti-
representations of L1(G,A, ω;α), which are thus, in the end, related to pairs (π, U) of
type (a, a) as above. For this result, therefore, one should not think of L1(G,A, ω;α)
as being topologically isomorphic to a crossed product as in Section 4.5. Although
this is also the case, its main feature here is that it is anti-isomorphic to the algebra
L1(Go, Ao, ωo;αo) which, in turn, is topologically isomorphic to the crossed product
that “actually” explains the situation.

Once this has been completed, we remind ourselves again that L1(G,A, ω;α)
itself is topologically isomorphic to a crossed product, and combine the results in



Section 4.8 117

the first part of this section with those in Sections 4.5 and 4.7 in Theorem 4.8.4,
to describe for two Banach algebra dynamical systems (A,G, α) and (B,H, β) the
non-degenerate simultaneously left L1(G,A, ω;α)– and right L1(H,B, η;β)-modules,
and, in the special case where (A,G, α) = (B,H, β), the non-degenerate L1(G,A, ω;α)-
bimodules.

To start, recall that the canonical left invariant measure µ on the opposite group
Go of G is given by µo(E) := µ(E−1), for E a Borel subset of G. Then, recalling
that

´
G
f dµ =

´
G
f(r−1)∆(r−1) dµ(r) [46, Lemma 1.67], for f ∈ Cc(G), we have

ˆ
Go

f(r) dµo(r) =

ˆ
G

f(r−1) dµ(r) =

ˆ
G

f(r)∆(r−1) dµ(r).

We recall from Section 4.6 if (A,G, α) is a Banach algebra dynamical system, then so
is (Ao, Go, αo), where Ao is the opposite algebra of A, Go is the opposite group of G,
and αo : Go → Aut(Ao) = Aut(A) is given by αos = αs−1 for all s ∈ Go. The vector
spaces Cc(G,A) and Cc(G

o, Ao) can be identified, but there are two convolution
structures on it. If } denotes the multiplication in Ao and Go, then

[f ∗α g](s) =

ˆ
G

f(r)αr(g(r−1s)) dµ(r) (f, g ∈ Cc(G,A), s ∈ G),

and

[f ∗αo g](s) =

ˆ
G

f(r)} αor(g(r−1 } s)) dµo(r) (f, g ∈ Cc(Go, Ao), s ∈ Go).

Hence we have two associative algebras: Cc(G,A) with multiplication ∗α, and
Cc(G

o, Ao) with multiplication ∗αo , having the same underlying vector space. The
first observation we need is then the following:
Lemma 4.8.1. Let (A,G, α) be a Banach algebra dynamical system with companion
opposite system (Ao, Go, αo), and let χ : G → C× be a continuous character of G.
For f ∈ Cc(G,A), define f̂ ∈ Cc(Go, Ao) by f̂(s) := χ(s−1)αs−1(f(s)) for s ∈ Go.
Then the map f 7→ f̂ is an anti-isomorphism of the associative algebras Cc(G,A)
with multiplication ∗α, and Cc(Go, Ao) with multiplication ∗αo . The inverse is given
by g 7→ ǧ, where ǧ(s) := χ(s)αs(g(s)) for g ∈ Cc(Go, Ao) and s ∈ G.

Proof. It is clear that ·̂ and ·̌ are mutually inverse linear bijections. As to the
multiplicative structures, we compute, for f, g ∈ Cc(G,A) and s ∈ Go,

[f̂ ∗αo ĝ](s) =

ˆ
Go

f̂(r)} αor−1(ĝ(r−1 } s)) dµo(r)

=

ˆ
G

f̂(r−1)} αor−1(ĝ(r } s)) dµ(r)

=

ˆ
G

αr(ĝ(sr))f̂(r−1) dµ(r)

=

ˆ
G

αr(χ((sr)−1)α(sr)−1g(sr))χ(r)αr(f(r−1)) dµ(r)
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= χ(s−1)

ˆ
G

αs−1(g(sr))αr(f(r−1)) dµ(r)

= χ(s−1)αs−1

(ˆ
G

g(sr))αsr(f(r−1)) dµ(r)

)
= χ(s−1)αs−1

(ˆ
G

g(r))αr(f(r−1s)) dµ(r)

)
= (g ∗α f)∧(s).

Choosing χ suitably, we obtain a topological isomorphism in the next result.
Proposition 4.8.2. Let (A,G, α) be a Banach algebra dynamical system, where α is
uniformly bounded. Let ω be a weight on G and view ωo := ω also as a weight on Go.
Then the map f 7→ f̂ , where f̂(s) := ∆(s)αs−1(f(s)) for f ∈ Cc(G,A) and s ∈ Go de-
fines a topological anti-isomorphism between L1(G,A, ω;α) and L1(Go, Ao, ωo;αo).
The inverse map is determined by g 7→ ǧ where ǧ(s) := ∆(s−1)αs(g(s)) for g ∈
Cc(G

o, Ao) and s ∈ G.

Proof. In view of Lemma 4.8.1, we need only show that ·̂ and ·̌ are isomorphisms
between the normed spaces (Cc(G,A), ‖ · ‖1,ω) and (Cc(G

o, Ao), ‖ · ‖1,ωo). Let α be
uniformly bounded by Cα. If f ∈ Cc(G,A), then

‖f̂‖1,ωo =

ˆ
Go

‖f̂(r)‖ωo(r) dµo(r)

=

ˆ
Go

‖∆(r)αr−1(f(r))‖ω(r) dµo(r)

≤ Cα

ˆ
Go

‖f(r)‖ω(r)∆(r) dµo(r)

= Cα

ˆ
G

‖f(r−1)‖ω(r−1)∆(r−1) dµ(r)

= Cα

ˆ
G

‖f(r)‖ω(r) dµ(r)

= Cα‖f‖1,ω.

Similarly ‖f̌‖1,ω ≤ Cα‖f‖1,ωo for all f ∈ Cc(Go, Ao).

It is now an easy matter to combine the ideas of Sections 4.5 and 4.6 with the
above Proposition 4.8.2.

Let X be a Banach space and let (A,G, α) be a Banach algebra dynamical
system, where A has a bounded two-sided approximate identity and α is uniformly
bounded. As in Section 4.6, the pairs (π, U), where π : A→ B(X) is non-degenerate,
bounded and anti-multiplicative, U : G → B(X) is strongly continuous and anti-
multiplicative, and U−1

r π(a)Ur = π(αr−1(a)) for a ∈ A and r ∈ G, can be identified
with the pairs (πo, Uo), where πo : Ao → B(X), with πo(a) := π(a) for a ∈ A, is
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non-degenerate, bounded and multiplicative, Uo : Go → B(X), with Uor = Ur for
all r ∈ Go, is strongly continuous and multiplicative, and Uor πo(a)Uo−1

r = πo(αor(a))
for a ∈ Ao and r ∈ Go. Furthermore, if ω is a weight on G, also viewed as a weight
ωo := ω on Go, then there exists a constant CU such that ‖Ur‖ ≤ CUω(r) for all
r ∈ G if and only if there exists a constant CUo such that ‖Uor ‖ ≤ CUoωo(r) for all
r ∈ Go: take the same constant. Now the collection of all such pairs (πo, Uo) is, in
view of Theorem 4.5.20, in natural bijection with the collection of all non-degenerate
bounded representations of L1(Go, Ao, ωo;αo) on X. As a consequence of Proposi-
tion 4.8.2, this can in turn be viewed as the collection of all non-degenerate bounded
anti-representations of L1(G,A, ω;α) on X. Combining these three bijections, we
can let pairs (π, U) as described above correspond bijectively to the non-degenerate
bounded anti-representations of L1(G,A, ω;α) on X: If (π, U) is such a pair, we
associate with it the non-degenerate bounded anti-representation of L1(G,A, ω;α)

determined by sending f ∈ Cc(G,A) to πo o Uo(f̂). Explicitly, for f ∈ Cc(G,A),

πo o Uo(f̂) =

ˆ
Go

πo(f̂(r))Uor dµ
o(r)

=

ˆ
Go

π(∆(r)αr−1(f(r)))Ur dµ
o(r)

=

ˆ
G

π(αr(f(r−1)))Ur−1∆(r−1) dµ(r)

=

ˆ
G

π(αr−1(f(r)))Ur dµ(r)

=

ˆ
G

UrU
−1
r π(αr−1(f(r)))Ur dµ(r)

=

ˆ
G

Urπ(αr ◦ αr−1(f(r))) dµ(r)

=

ˆ
G

Urπ(f(r)) dµ(r).

To retrieve the pair (π, U) from a non-degenerate bounded anti-representation
T of L1(G,A, ω;α), we note that, by Proposition 4.8.2, T ◦ ·̌ is a non-degenerate
bounded representation of L1(Go, Ao, ωo;αo), and hence, we can apply [19, Equa-
tions (8.1) and (8.2)] to T ◦ ·̌. A bounded approximate left identity of Ao is then
needed, and for this we take a bounded approximate right identity (ui) of A. Fur-
thermore, if V runs through a neighbourhood base Z of e ∈ G, of which all elements
are contained in a fixed compact set of G, and zV ∈ Cc(G) is positive, supported
in V , and

´
G
zV (r−1) dµ(r) =

´
Go zV (r) dµo(r) = 1, then the zV ∈ Cc(G) are as

required for [19, Equations (8.1) and (8.2)]. Hence, again taking Remark 4.5.21 into
account, we have, for a ∈ A,

π(a) = πo(a) = SOT-lim(V,i)T ((zV ⊗ a} ui)∨)

= SOT-lim(V,i)T ((zV ⊗ uia)∨),
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where (zV ⊗ uia)∨(r) = ∆(r−1)zV (r)αr(aui) for r ∈ G, and, for s ∈ G,

Us = Uos = SOT-lim(V,i)T ((zV (s−1 } ·)⊗ ui)∨)

= SOT-lim(V,i)T ((zV (·s−1)⊗ ui)∨),

where (zV (·s−1)⊗ ui)∨(r) = ∆(r−1)zV (rs−1)αr(ui) for r ∈ G.
All in all, we have the following result in analogy to Theorem 4.5.20:

Theorem 4.8.3. Let (A,G, α) be a Banach algebra dynamical system where A has
a two-sided approximate identity and α is uniformly bounded by a constant Cα, and
let ω be a weight on G. Let X be a Banach space. Let the pair (π, U) be such that
π : A → B(X) is a non-degenerate bounded anti-representation, U : G → B(X) is
a strongly continuous anti-representation satisfying Urπ(α)U−1

r = π(αr−1(a)) for
all a ∈ A and r ∈ G, and with CU a constant such that ‖Ur‖ ≤ CUω(r) for
all r ∈ G. Let T : L1(G,A, ω;α) → B(X) be a non-degenerate bounded anti-
representation of L1(G,A, ω;α) on X. Then the following maps are mutual inverses
between all such pairs (π, U) and the non-degenerate bounded anti-representations T
of L1(G,A, ω;α):

(π, U) 7→
(
f 7→

ˆ
G

Urπ(f(r)) dr

)
=: T (π,U) (f ∈ Cc(G,A)),

determining a non-degenerate bounded anti-representation T (π,U) of the generalized
Beurling algebra L1(G,A, ω;α), and,

T 7→
(
a 7→ SOT-lim(V,i)T ((zV ⊗ uia)∨),
s 7→ SOT-lim(V,i)T ((zV (·s−1)⊗ ui)∨)

)
=: (πT , UT ),

where Z is a neighbourhood base of e ∈ G, of which all elements are contained in
a fixed compact subset of G, zV ∈ Cc(G) is chosen such that zV ≥ 0, supported in
V ∈ Z,

´
G
zV (r−1) dr = 1, and (ui) is any bounded approximate right identity of A.

Furthermore, if A has an M -bounded approximate right identity, then the follow-
ing bounds for T (π,U) and (πT , UT ) hold:

(1) ‖T (π,U)‖ ≤ CU‖π‖,

(2) ‖πT ‖ ≤ (infV ∈Z supr∈V ω(r)) ‖T‖,

(3) ‖UTs ‖ ≤M (infV ∈Z supr∈V ω(r)) ‖T‖ω(s) (s ∈ G).

Proof. Except for the bounds, all statements were proven in the discussion preceding
the statement of the theorem. Establishing the bound (1) proceeds as in Theorem
4.5.20.

To establish (2), we choose a bounded two-sided approximate identity (ui) of
A. Let a ∈ A and ε1, ε2, ε3 > 0 be arbitrary. There exists an index i0 such that
‖uia‖ ≤ ‖a‖+ε1 for all i ≥ i0. There exists some W1 ∈ Z such that supr∈W1

ω(r) ≤
infV ∈Z supr∈V ω(r) + ε2. Since r 7→ ‖αr‖ is lower semicontinuous and ‖αe‖ = 1,
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there exists some W2 ∈ Z such that ‖αr‖ ≤ 1 + ε3 for all r ∈ W2. Let V0 ∈ Z be
such that V0 ⊆W1 ∩W2. If (V, i) ≥ (V0, i0), then V ⊆ V0 and i ≥ i0, hence

‖T ((zV ⊗ uia)∨)‖ ≤ ‖T‖ ‖(zV ⊗ uia)∨‖1,ω

= ‖T‖
ˆ
G

‖(zV ⊗ uia)∨(r)‖ω(r) dr

= ‖T‖
ˆ
G

∆(r−1)zV (r)‖αr(aui)‖ω(r) dr

≤ ‖T‖‖aui‖(1 + ε3)

(
sup
r∈V

ω(r)

)ˆ
G

∆(r−1)zV (r) dr

≤ ‖T‖(‖a‖+ ε1)(1 + ε3)

(
sup
r∈V0

ω(r)

) ˆ
G

zV (r−1) dr

≤ ‖T‖(‖a‖+ ε1)(1 + ε3)

(
inf
V ∈Z

sup
r∈V

ω(r) + ε2

)
.

From this, the bound in (2) now follows as in the proof of Theorem 4.5.20.
As to (3), we fix s ∈ G. The operator UTs = SOT-lim(V,i)T ((zV (·s−1) ⊗ ui)∨)

does not depend on the particular choice of the bounded approximate right identity
(ui) (see Remark 4.5.21). If (ui) is an M -bounded approximate right identity of A,
then (αs−1(ui)) is also a bounded approximate right identity of A, and hence UTs =
SOT-lim(V,i)T ((zV (·s−1)⊗αs−1(ui))

∨). Let ε1, ε2 > 0 be arbitrary. Choose W1 ∈ Z
such that ‖αr‖ ≤ 1 + ε1 for all r ∈ W1, and W2 ∈ Z such that supr∈W2

ω(r) ≤
infV ∈Z supr∈V ω(r)+ε2. Let V0 ∈ Z be such that V0 ⊆W1∩W2. If (V, i) ≥ (V0, i0),
then V ⊆ V0 and i ≥ i0, hence

‖T ((zV (·s−1)⊗ αs−1(ui))
∨)‖

≤ ‖T‖
∥∥(zV (·s−1)⊗ αs−1(ui))

∨∥∥
1,ω

= ‖T‖
ˆ
G

‖(zV ⊗ αs−1(ui))
∨(r)‖ω(r) dr

= ‖T‖
ˆ
G

∆(r−1)zV (rs−1)‖αrs−1(ui)‖ω(r) dr

= ‖T‖
ˆ
G

zV (r−1s−1)‖αr−1s−1(ui)‖ω(r−1) dr

= ‖T‖
ˆ
G

zV (r−1)‖αr−1(ui)‖ω(r−1s) dr

≤ ‖T‖
ˆ
G

zV (r−1)‖αr−1(ui)‖ω(r−1)ω(s) dr

≤ ‖T‖
ˆ
G

zV (r−1)(1 + ε1)‖ui‖
(

sup
r∈V −1

ω(r−1)

)
ω(s) dr

≤ ‖T‖(1 + ε1)M

(
sup
r∈V −1

ω(r−1)

)
ω(s)

ˆ
G

zV (r−1) dr
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≤ ‖T‖(1 + ε1)M

(
sup
r∈V0

ω(r)

)
ω(s)

≤ ‖T‖(1 + ε1)M

(
inf
V ∈Z

sup
r∈V

ω(r) + ε2

)
ω(s).

Once again, the bound in (3) now follows as in the proof of Theorem 4.5.20.

We will now describe the non-degenerate bimodules over generalized Beurling
algebras as a special case of a more general result. Let (A,G, α) and (B,H, β) be
Banach algebra dynamical systems, where A and B have bounded two-sided approx-
imate identities, and both α and β are uniformly bounded. Let ω be a weight on
G, and η a weight on H. Remembering that L1(G,A, ω;α) and L1(H,B, η;β) are
themselves also (isomorphic to) a crossed product of a Banach algebra dynamical
system, Theorem 4.5.13, it is now easy to describe the non-degenerate simultane-
ously left L1(G,A, ω;α)– and right L1(H,B, η;β)-modules, as follows: Let X be
a Banach space. Suppose that Tm : L1(G,A, ω;α) → B(X) is a non-degenerate
bounded representation of L1(G,A, ω;α) on X, and T a : L1(H,B, η;β) → B(X)
is a non-degenerate bounded anti-representation, such that Tm and T a commute.
We know from Theorem 4.5.20 and Theorem 4.8.3 that Tm and T a correspond
to pairs (πm, Um) and (πa, Ua), respectively, each with the appropriate proper-
ties. But then (πm, Um) and (πa, Ua) must also commute in the sense of Definition
4.7.1. Indeed, (πa, Ua) corresponds to T a as being the pair such that the integrated
form of (πa,o, Ua,o) gives rise to the non-degenerate bounded representation T a of
L1(Ho, Bo, ηo;βo) on X. But since L1(Ho, Bo, ηo;βo) is (isomorphic to) a crossed
product, and likewise for L1(G,A, ω;α), the fact that (πm, Um) and (πa,o, Ua,o)
commute then follows from Lemma 4.7.2 and the fact that Tm and T a commute.
Since πa,o = πa and Ua,o = Ua as set-theoretic maps, (πm, Um) and (πa, Ua) also
commute. The same kind of arguments show that the converse is equally true.

Combining these results, we obtain the following following description of the non-
degenerate simultaneously left L1(G,A, ω;α)– and right L1(H,B, η;β)-modules. If
(A,G, α) = (B,G, β) and ω = η it describes the non-degenerate L1(G,A, ω;α)-
bimodules.

Theorem 4.8.4. Let (A,G, α) and (B,H, β) be a Banach algebra dynamical sys-
tems, where A and B have bounded two-sided approximate identities, and both α and
β are uniformly bounded. Let ω be a weight on G, and η a weight on H. Let X be
a Banach space.

Suppose that (πm, Um) is a non-degenerate continuous covariant representation
of (A,G, α) on X such that ‖Umr ‖ ≤ CUmω(r) for some constant CUm and all r ∈ G.
Suppose that the pair (πa, Ua) is such that πa : B → B(X) is a non-degenerate
bounded anti-representation, that Ua : H → B(X) is a strongly continuous anti-
representation, such that Uas πa(b)Ua−1

s = πa(αs−1(b)) for all b ∈ B and s ∈ H, and
‖Uas ‖ ≤ CUaη(s) for some constant CUa and all s ∈ H. Furthermore, let (πm, Um)
and (πa, Ua) commute.
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Then the map

Tm(f) :=

ˆ
G

πm(f(r))Umr dµG(r) (f ∈ Cc(G,A))

determines a non-degenerate bounded representation of L1(G,A, ω;α) on X, and the
map

T a(g) :=

ˆ
H

Uas π
a(g(s)) dµH(s) (g ∈ Cc(H,B))

determines a non-degenerate bounded anti-representation of L1(H,B, η;β) on X.
Moreover, Tm : L1(G,A, ω;α)→ B(X) and T a : L1(H,B, η;β)→ B(X) commute.

All pairs (Tm, T a), where Tm and T a commute, are non-degenerate, bounded,
Tm is a representation of L1(G,A, ω;α) on X, and T a is an anti-representation of
L1(H,B, η;β) on X, are obtained in this fashion from unique (necessarily commut-
ing) pairs (πm, Um) and (πa, Ua) with the above properties.

For reasons of space, we do not repeat the formulas in Theorem 4.5.20 and
Theorem 4.8.3 retrieving (πm, Um) from Tm and (πa, Ua) from T a, or the upper
bounds therein.
Remark 4.8.5. The results of Section 4.6 make it possible to establish a bijec-
tion between the commuting pairs (πm, Um) and (πa, Ua) as in Theorem 4.8.4
and the non-degenerate bounded representations of one single algebra (rather than
two). To see this, note that, though L1(G,A, ω;α) and L1(Ho, Bo, ηo;βo) are not
Banach algebras in general, the continuity of the multiplication still implies that
L1(G,A, ω;α)⊗̂L1(Ho, Bo, ηo;βo) can be supplied with the structure of an asso-
ciative algebra such that multiplication is continuous. If L1(G,A, ω;α) ' C1 and
L1(Ho, Bo, ηo;βo) ' C2 as topological algebras, where C1 and C2 are crossed prod-
ucts of the relevant Banach algebra dynamical systems as in Section 4.5, then clearly

L1(G,A, ω;α)⊗̂L1(H,B, η;β)o ' L1(G,A, ω;α)⊗̂L1(Ho, Bo, ηo;βo) ' C1⊗̂C2

where Proposition 4.8.3 was used in the first step. From Theorem 4.7.5 we know
what the non-degenerate bounded representations of C1⊗̂C2 are. Hence, combin-
ing all information, we see that the commuting pairs (πm, Um) and (πa, Ua) as in
Theorem 4.8.4 are in bijection with the non-degenerate bounded representations of
L1(G,A, ω;α)⊗̂L1(H,B, η;β)o, by letting (πm, Um) and (πa, Ua) correspond to the
non-degenerate bounded representation Tm � T a, where Tm and T a are as in The-
orem 4.8.4 (the latter now viewed as a non-degenerate bounded representation of
L1(H,B, η;β)o). Our notation is slightly imprecise here, since L1(G,A, ω;α) and
L1(H,B, η;β)o are not Banach algebras in general, but it is easily seen that Lemma
4.7.4 is equally valid when the norm need not be submultiplicative, but multiplica-
tion is still continuous.

Finally, we note that the special case where (A,G, α) = (B,H, β) = (K, G, triv)
in Theorem 4.8.4 states that the non-degenerate bimodules over L1(G,ω) correspond
naturally to the G-bimodules determined by a pair (Um, Ua) of commuting maps
Um and Ua, where Um : G → B(X) is a strongly continuous representation, Ua :
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G→ B(X) is a strongly continuous anti-representation, and ‖Umr ‖ ≤ CUmω(r) and
‖Uar ‖ ≤ CUaω(r) for some constants CUm and CUa and all r ∈ G. Specializing
further by taking ω = 1, we see that the non-degenerate bimodules over L1(G)
correspond naturally to the G-bimodules determined by a commuting pair (Um, Ua)
as above, with now each of Um and Ua uniformly bounded. This is a classical result,
cf. [25, Proposition 2.1].


