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Chapter 3

Normality of spaces of
operators and quasi-lattices

This chapter has been submitted for publication as M. Messerschmidt, “Normality of
spaces of operators and quasi-lattices”. It is available as arXiv:1307.1415.

3.1 Introduction

This paper’s main aim is to investigate normality and monotonicity (defined in Sec-
tion 3.3) of pre-ordered spaces of operators between pre-ordered Banach spaces.
This investigation is motivated by the relevance of this notion in the theory of posi-
tive semigroups on pre-ordered Banach spaces [6], and in the positive representation
theory of groups and pre-ordered algebras on pre-ordered Banach spaces [12].

If X and Y are Banach lattices an elementary calculation shows that the space
B(X,Y ) is absolutely monotone, i.e., for T, S ∈ B(X,Y ), if ±T ≤ S, then ‖T‖ ≤
‖S‖. If X and Y are general pre-ordered Banach spaces the situation is not so clear,
and raises a number of questions: If B(X,Y ) is, e.g., absolutely monotone, does this
necessarily imply that X and Y are Banach lattices? If not, what are examples of
pre-ordered Banach spaces X and Y , not being Banach lattices, such that B(X,Y )
is absolutely monotone? What are the more general necessary and/or sufficient
conditions X and Y have to satisfy for B(X,Y ) to be absolutely monotone? This
paper will attempt to answer such questions through an investigation of the notions
of normality and conormality of pre-ordered Banach spaces which describe various
ways in which cones interact with norms.

A substantial part will devoted to introducing a class of ordered Banach spaces,
called quasi-lattices, which will furnish us with many examples that are not neces-
sarily Banach lattices. Quasi-lattices occur in two slightly different forms, one of
which includes all Banach lattices (cf. Proposition 3.5.2). We give a brief sketch of
their construction.

There are many pre-ordered Banach spaces with closed proper generating cones
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44 Chapter 3: Normality of spaces of operators and quasi-lattices

that are not normed Riesz spaces, e.g., the finite dimensional spaces Rn (with n ≥ 3)
endowed with Lorentz cones or endowed with polyhedral cones whose bases (in
the sense of [2, Section 1.7]) are not (n − 1)-simplexes. Although there is often
an abundance of upper bounds of arbitrary pairs of elements, none of them is a
least upper bound with respect to the ordering defined by the cone. An interesting
situation arises when one takes the norm into account when studying the set of
upper bounds of arbitrary pairs of elements. Even though there might not exist
a least upper bound with respect to the ordering defined by the cone, there often
exists a unique upper bound, called the quasi-supremum, which minimizes the sum
of the distances from this upper bound to the given two elements. This allows us to
define what will be called a quasi-lattice structure on certain ordered Banach spaces
which might not be lattices (cf. Definition 3.5.1). Surprisingly, many elementary
vector lattice properties for Riesz spaces carry over nearly verbatim to such spaces
(cf. Theorem 3.5.8), and in the case that a space is a Banach lattice, its quasi-lattice
structure and lattice structure actually coincide (cf. Proposition 3.5.2).

Quasi-lattices occur in relative abundance, in fact, every strictly convex reflex-
ive ordered Banach space with a closed proper generating cone is a quasi-lattice
(cf Theorem 3.6.1). This will be used to show that every Hilbert space H endowed
with a Lorentz cone is a quasi-lattice (which is not a Banach lattice if dim(H) ≥ 3).
Such spaces will serve as examples of spaces, which are not Banach lattices, such
that the spaces of operators between them are absolutely monotone (cf. Theorem
3.7.10), hence resolving the question of the existence of such spaces as posed above.

We briefly describe the structure of the paper.
After giving preliminary definitions and terminology in Section 3.2, we introduce

various versions of the concepts of normality and conormality of pre-ordered Banach
spaces with closed cones in Section 3.3. Normality is a more general notion than
monotonicity, and roughly is a measure of ‘the obtuseness/bluntness of a cone’ (with
respect to the norm). Conormality roughly is a measure of ‘the acuity/sharpness
of a cone’ (with respect to the norm). Normality and conormality properties often
occur in dual pairs, where a pre-ordered Banach space with a closed cone has a
normality property precisely when its dual has the appropriate conormality property
(cf. Theorem 3.3.7). The terms ‘monotonicity’ and ‘normality’ are fairly standard
throughout the literature. However, the concept of conormality occurs scattered
under many names throughout the literature (chronologically, [23, 7, 3, 21, 11, 34,
45, 35, 47, 44, 39, 48, 6, 9, 37]). Although the definitions and results in Section
3.3 are not new, they are collected here in an attempt to give an overview and to
standardize the terminology.

In Section 3.4, with X and Y pre-ordered Banach spaces with closed cones, we
investigate the normality of B(X,Y ) in terms of the normality and conormality of
X and Y . Roughly, excluding degenerate cases, some form of conormality of X and
normality of Y is necessary and sufficient for having some form of normality of the
pre-ordered Banach space B(X,Y ) (cf. Theorems 3.4.1 and 3.4.2). Again, certain
results are not new, but are included for the sake of completeness.

In Section 3.5 we introduce quasi-lattices, a class of pre-ordered Banach spaces
spaces that strictly includes the Banach lattices. We establish their basic properties,
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in particular, basic vector lattice identities which carry over from Riesz spaces to
quasi-lattices (cf. Theorem 3.5.8).

In Section 3.6 we prove one of our main results: Every strictly convex reflexive
pre-ordered Banach space with a closed proper and generating cone is a quasi-lattice.
Hence there are many quasi-lattices.

Finally, in Section 3.7, we show that real Hilbert spaces endowed with Lorentz
cones are quasi-lattices and satisfy an identity analogous to the elementary identity
‖|x|‖ = ‖x‖ which holds for all elements x of a Banach lattice. This is used to show,
for real Hilbert spaces H1 and H2 endowed with Lorentz cones, that B(H1,H2) is
absolutely monotone.

3.2 Preliminary definitions and notation

Let X be a Banach space over the real numbers. Its topological dual will be denoted
by X ′. A subset C ⊆ X will be called a cone if C + C ⊆ C and λC ⊆ C for all
λ ≥ 0. If a cone C satisfies C ∩ (−C) = {0}, it will be called a proper cone, and if
X = C − C, it will be said to be generating (in X).

Definition 3.2.1. A pair (X,C), with X a Banach space and C ⊆ X a cone, will
be called a pre-ordered Banach space. If C is a proper cone, (X,C) will be called
an ordered Banach space. We will often suppress explicit mention of the pair and
merely say that X is a (pre-)ordered Banach space. When doing so, we will denote
the implicit cone by X+ and refer to it as the cone of X. For any x, y ∈ X, by
x ≥ y we will mean x − y ∈ X+. We do not exclude the possibilities X+ = {0} or
X+ = X, and we do not assume that X+ is closed.

Let X and Y be pre-ordered Banach spaces. The space of bounded linear op-
erators from X to Y will be denoted by B(X,Y ) and by B(X) if X = Y . Unless
otherwise mentioned, B(X,Y ) is always endowed with the operator norm. The
space B(X,Y ) is easily seen to be a pre-ordered Banach space when endowed with
the cone B(X,Y )+ := {T ∈ B(X,Y ) : TX+ ⊆ Y+}. In particular, the topologi-
cal dual X ′ also becomes a pre-ordered Banach space when endowed with the dual
cone X ′+ := B(X,R)+. For any f ∈ X ′ and y ∈ Y , we will define the operator
f ⊗ y ∈ B(X,Y ) by (f ⊗ y)(x) := f(x)y for all x ∈ X. It is easily seen that
‖f ⊗ y‖ = ‖f‖‖y‖.

3.3 Normality and Conormality

In the current section we will define some of the possible norm-cone interactions
that may occur in pre-ordered Banach spaces, and investigate how they relate to
norm-cone interactions in the dual. Historically, these properties have been assigned
to either the norm or the cone (e.g., ‘a cone is normal’ and ‘a norm is monotone’).
We will not follow this convention and rather assign these labels to the pre-ordered
Banach space as a whole to emphasize the norm-cone interaction.
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We attempt to collect all known results and to standardize the terminology. The
definitions and results in the current section are essentially known, but are scattered
throughout the literature under quite varied terminology1. References are provided
when known to the author.
Definition 3.3.1. Let X be a pre-ordered Banach space with a closed cone and
α > 0.

We define the following normality properties:

(1) We will say X is α-max-normal if, for any x, y, z ∈ X, z ≤ x ≤ y implies
‖x‖ ≤ αmax{‖y‖, ‖z‖}.

(2) We will say X is α-sum-normal if, for any x, y, z ∈ X, z ≤ x ≤ y implies
‖x‖ ≤ α(‖y‖+ ‖z‖).

(3) We will say X is α-absolutely normal if, for any x, y ∈ X, ±x ≤ y implies
‖x‖ ≤ α‖y‖. We will say X is absolutely monotone if it is 1-absolutely normal.

(4) We will say X is α-normal if, for any x, y ∈ X, 0 ≤ x ≤ y implies ‖x‖ ≤ α‖y‖.
We will say X is monotone if it is 1-normal.

We define the following conormality properties:

(1) We will say X is α-sum-conormal if, for any x ∈ X, there exist some a, b ∈ X+

such that x = a − b and ‖a‖ + ‖b‖ ≤ α‖x‖. We will say X is approximately
α-sum-conormal if, for any x ∈ X and ε > 0, there exist some a, b ∈ X+ such
that x = a− b and ‖a‖+ ‖b‖ < α‖x‖+ ε.

(2) We will say X is α-max-conormal if, for any x ∈ X, there exist some a, b ∈ X+

such that x = a−b and max{‖a‖, ‖b‖} ≤ α‖x‖. We will say X is approximately
α-max-conormal if, for any x ∈ X and ε > 0, there exist some a, b ∈ X+ such
that x = a− b and max{‖a‖, ‖b‖} < α‖x‖+ ε.

(3) We will say X is α-absolutely conormal if, for any x ∈ X, there exist some
a ∈ X+ such that ±x ≤ a and ‖a‖ ≤ α‖x‖. We will say X is approximately
α-absolutely conormal if, for any x ∈ X and ε > 0, there exist some a ∈ X+

such that ±x ≤ a and ‖a‖ < α‖x‖+ ε.

(4) We will say X is α-conormal if, for any x ∈ X, there exist some a ∈ X+ such
that 0, x ≤ a and ‖a‖ ≤ α‖x‖. We will say X is approximately α-conormal if,

1A note on terminology: The terms ‘normality’ (due to Krein [28]) and ‘monotonicity’ are fairly
standard terms throughout the literature. Our consistent use of the adjective ‘absolute’ is inspired
by [47] and mimics its use in the term ‘absolute value’.

The concept that we will call ‘conormality’ has seen numerous equivalent definitions and the
nomenclature is rather varied in the existing literature. The term ‘conormality’ is due to Walsh
[44], who studied the property in the context of locally convex spaces. What we will call ‘1-max-
conormality’ occurs under the name ‘strict bounded decomposition property’ in [8]. The properties
that we will call ‘approximate 1-absolute conormality’ and ‘approximate 1-conormality’, were first
defined (but not named) respectively by Davies [11] and Ng [34]. Batty and Robinson give equivalent
definitions for our conormality properties which they call ‘dominating’ and ‘generating’ [6].
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for any x ∈ X and ε > 0, there exist some a ∈ X+ such that {0, x} ≤ a and
‖a‖ < α‖x‖+ ε.

The following two results show the relationship between different (co)normality
properties and for the most part are immediate from the definitions.
Proposition 3.3.2. For any fixed α > 0, the following implications hold between
normality properties of a pre-ordered Banach space X with a closed cone:

α-max-normality

��

+3 α-absolute-normality

��
α-sum-normality

��

+3 α-normality

��

+3 (α+ 1)-sum-normality

2α-max-normality X+ is proper

Proof. The only implication that is not immediate from the definitions is that α-
normality implies (α + 1)-sum-normality. As to this, let X be an α-normal pre-
ordered Banach space with a closed cone and x, y, z ∈ X such that z ≤ x ≤ y. Then
0 ≤ x− z ≤ y − z, so that, by α-normality and the reverse triangle inequality,

‖x‖ − ‖z‖ ≤ ‖x− z‖ ≤ α‖y − z‖ ≤ α(‖y‖+ ‖z‖).

Hence ‖x‖ ≤ α‖y‖+ (α+ 1)‖z‖ ≤ (α+ 1)(‖y‖+ ‖z‖).

Similar relationships hold between conormality properties as do between normal-
ity properties. All implications follow immediately from the definitions, with one
exception. That is, if a pre-ordered Banach space has a closed generating cone, then
there exists a constant β > 0 such that it is β-max-conormal (and hence 2β-sum-
conormal). This is a result due to Andô [3, Lemma 1], and is the bottom implication
in the following proposition (although [3, Lemma 1] assumes the cone to be proper,
this is not necessary for its statement to hold, cf. Theorem 3.3.6).
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Proposition 3.3.3. For any fixed α > 0, the following implications hold between
conormality properties of a pre-ordered Banach space X with a closed cone:

α-sum-conorm.

��

+3

&.UUUUUUUUUUUUUUUUU

UUUUUUUUUUUUUUUUU approx. α-sum-conorm.

��

|�

α-abs.-conorm.

��

+3 approx. α-abs.-conorm.

��

α-max-conorm.

�� &.VVVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVVV
+3 α-conorm.

'/WWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWW

2α-sum-conorm. approx. α-max-conorm. +3 approx. α-conorm.

��
∃β > 0 : β-sum-conorm. X+ is generatingks

Remark 3.3.4. The direct analogue to Andô’s Theorem [3, Lemma 1] (the bottom
implication in Proposition 3.3.3) in Proposition 3.3.2 would be that having X+

proper implies that X is β-max-normal for some β > 0. This is false. Example 3.6.7
gives a space which has a proper cone but is not α-normal for any α > 0.
Remark 3.3.5. For the sake of completeness, we note that Andô’s Theorem [3,
Lemma 1] (the bottom implication in Proposition 3.3.3) can be improved, in that
the decomposition of elements into a difference of elements from the cone can be
chosen in a continuous, as well as bounded and positively homogeneous manner. The
following result is a special case of [13, Theorem 4.1], which is a general principle for
Banach spaces that are the sum of (not necessarily countably many) closed cones. Its
proof proceeds through an application of Michael’s Selection Theorem [1, Theorem
17.66] and a generalization of the usual Open Mapping Theorem [13, Theorem 3.2]:
Theorem 3.3.6. Let X be a pre-ordered Banach space with a closed generating
cone. Then there exist continuous positively homogeneous functions (·)± : X → X+

and a constant α > 0 such that x = x+ − x− and ‖x±‖ ≤ α‖x‖ for all x ∈ X.
Normality and conormality properties often appear in dual pairs. Roughly, a

pre-ordered Banach space has a normality property if and only if its dual has a
corresponding conormality property, and vice versa. The following theorem provides
an overview of these normality-conormality duality relationships as known to the
author.
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Theorem 3.3.7. Let X be a pre-ordered Banach space with a closed cone.

(1) The following equivalences hold:

(a) For α > 0, the space X is α-max-normal if and only if X ′ is α-sum-
conormal.

(b) For α > 0, the space X is α-sum-normal if and only if X ′ is α-max-
conormal.

(c) For α > 0, the space X is α-absolutely normal if and only if X ′ is α-
absolutely conormal.

(d) For α > 0, the space X is α-normal if and only if X ′ is α-conormal.

(e) There exists an α > 0 such that X is α-max-normal if and only if X ′+ is
generating.

(2) The following equivalences hold:

(a) For α > 0, the space X is approximately α-sum-conormal if and only if
X ′ is α-max-normal.

(b) For α > 0, the space X is approximately α-max-conormal if and only if
X ′ is α-sum-normal.

(c) For α > 0, the space X is approximately α-absolutely conormal if and
only if X ′ is α-absolutely normal.

(d) For α > 0, the space X is approximately α-conormal if and only if X ′ is
α-normal.

(e) The cone X+ is generating if and only if there exists an α > 0 such that
X ′ is α-max-normal.

The result (1)(a) was first proven by Grosberg and Krein in [23] (via [21, Theorem
7]). The result (2)(a) was established by Ellis [21, Theorem 8]. For α = 1, the results
(1)(c),(d), (2)(c) and (d) are due to Ng [34, Proppositions 5, 6; Theorems 6, 7]. The
fully general results (1)(d) and (2)(d) appear first in [39, Theorem 1.1] by Robinson
and Yamamuro, and later in [37, Theorems 1,2] by Ng an Law. Proofs of (1)(a)
(again), (1)(b), (1)(c), (1)(d) (again), and (2)(a) (again), (2)(b), (2)(c), and (2)(d)
(again) are due to Batty and Robinson in [6, Theorems 1.1.4, 1.3.1, 1.2.2]. The
results (1)(e) and (2)(e) are due to Andô [3, Theorem 1].

Bonsall proved an analogous duality result for locally convex spaces in [7, Theo-
rem 2].

The following lemma shows that conormality properties and approximate conor-
mality properties of dual spaces are equivalent. Ng proved (3) for the case α = 1 in
[34, Theorem 6]:
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Lemma 3.3.8. Let X be a pre-ordered Banach space with a closed cone. Then the
following equivalences hold:

(1) For α > 0, the space X ′ is approximately α-sum-conormal if and only if X ′ is
α-sum-conormal.

(2) For α > 0, the space X ′ is approximately α-max-conormal if and only if X ′ is
α-max-conormal.

(3) For α > 0, the space X ′ is approximately α-absolutely conormal if and only if
X ′ is α-absolutely conormal.

(4) For α > 0, the space X ′ is approximately α-conormal if and only if X ′ is
α-conormal.

Proof. That a conormality property implies the associated approximate conormality
property is trivial. We will therefore only prove the forward implications.

We prove (1). Let X ′ be approximately α-sum-conormal. Then, for any β > α
and any 0 6= f ∈ X, by taking ε = (β−α)‖f‖ > 0, we have that there exist g, h ∈ X ′+
such that f = g − h and ‖g‖ + ‖h‖ ≤ α‖f‖ + (β − α)‖f‖ = β‖f‖. Therefore, X ′
is β-sum-conormal for every β > α. Now, by part (1)(a) of Theorem 3.3.7, X is β-
max-normal for every β > α. Therefore, if x, y, z ∈ X are such that z ≤ x ≤ y, then
‖x‖ ≤ βmax{‖y‖, ‖z‖} for all β > α, and hence ‖x‖ ≤ infβ>α βmax{‖y‖, ‖z‖} =
αmax{‖y‖, ‖z‖}. We conclude that X is α-max-normal, and, again by part (1)(a)
Theorem 3.3.7, that X ′ is α-sum-conormal.

The assertions (2), (3) and (4) follow through similar arguments.

By Theorem 3.3.7 and Lemma 3.3.8, a pre-ordered Banach space with a closed
cone possesses both a normality property and its paired approximate conormality
property (with the same constant) if and only if its dual possesses the same properties
(cf. Corollary 3.3.11). Such spaces are called regular and were first studied by Davies
in [11] and Ng in [34].
Definition 3.3.9. Let X be a pre-ordered Banach space with a closed cone. We
define the following regularity properties:2

(1) For α > 0, we will say X is α-Ellis-Grosberg-Krein regular if X is both α-max-
normal and approximately α-sum-conormal.

(2) For α > 0, we will say X is α-Batty-Robinson regular if X is both α-sum-
normal and approximately α-max-conormal.

(3) For α > 0, we will say X is α-absolutely Davies-Ng regular if X is both α-
absolutely normal and approximately α-absolutely conormal.

(4) For α > 0, we will say X is α-Davies-Ng regular if X is both α-normal and
approximately α-conormal.

2The term ‘regularity’ is due to Davies [11]. Our naming convention is to attach the names
of the persons who (to the author’s knowledge) first proved the relevant normality-conormality
duality results of the defining properties (cf. Theorem 3.3.7).
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(5) We will say X is Andô regular if X+ is generating and there exists an α > 0
such that X is α-max-normal.

It should be noted that every Banach lattice is 1-absolutely Davies-Ng regular.
The following result combines Propositions 3.3.2 and 3.3.3 to provide relation-

ships that exist between regularity properties.

Proposition 3.3.10. For any fixed α > 0, the following implications hold between
regularity properties of a pre-ordered Banach space with a closed cone:

α-Ellis-Grosberg-Krein regularity

��

+3 α-Batty-Robinson regularity

��
α-absolute Davies-Ng regularity +3 α-Davies-Ng regularity

��
∃β > 0 : β-Ellis-Grosberg-Krein regularity Andô regularityks

Proof. The only implication that does not follow immediately from Propositions
3.3.2 and 3.3.3, is that Andô regularity implies β-Ellis-Grosberg-Krein regularity for
some β > 0. As to this, letX be an Andô regular ordered Banach space with a closed
cone. By Proposition 3.3.3, since X+ is generating, there exists some δ > 0 such
that X is δ-sum-conormal. By assumption, there exists an α > 0, such that X is
α-max-normal. By taking β := max{δ, α}, we see that X is also β-max-normal and
(approximately) β-sum-conormal. We conclude that X is β-Ellis-Grosberg-Krein
regular.

A straightforward application of Theorem 3.3.7 and Lemma 3.3.8 then yields:

Corollary 3.3.11. Let X be a pre-ordered Banach space with a closed cone. Then
the following equivalences hold:

(1) For α > 0, the space X is α-Ellis-Grosberg-Krein regular if and only if X ′ is
α-Ellis-Grosberg-Krein regular.

(2) For α > 0, the space X is α-Batty-Robinson regular if and only if X ′ is α-
Batty-Robinson regular.

(3) For α > 0, the space X is α-absolutely Davies-Ng regular if and only if X ′ is
α-absolutely Davies-Ng regular.

(4) For α > 0, the space X is α-Davies-Ng regular if and only if X ′ is α-Davies-Ng
regular.

(5) The space X is Andô regular if and only if X ′ is Andô regular.
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3.4 The normality of pre-ordered Banach spaces of
bounded linear operators

If X and Y are pre-ordered Banach spaces with closed cones, we investigate nec-
essary and sufficient conditions for the pre-ordered Banach space B(X,Y ) to have
a normality property. Where results are known to the author from the literature,
references are provided.

We begin, in the following result, by investigating necessary conditions forB(X,Y )
to have a normality property. Parts (2) and (3) in the special case X = Y and α = 1
in the following theorem are due Yamamuro [48, 1.2–3]. Batty and Robinson also
proved part (2) for X = Y and α = 1, and part (3) for α = β = 1 [6, Corollary
1.7.5, Proposition 1.7.6]. Part (5) is due to Wickstead [45, Theorem 3.1].
Theorem 3.4.1. Let X and Y be non-zero pre-ordered Banach spaces with closed
cones and α > 0.

(1) The cone B(X,Y )+ is proper if and only if X = X+ −X+ and Y+ is proper.

(2) Let B(X,Y ) be α-normal. If Y+ 6= {0}, then X is approximately α-conormal.
If X ′+ 6= {0}, then Y is α-normal.

(3) Let B(X,Y ) be α-absolutely normal. If Y+ 6= {0}, then X is approximately
α-absolutely conormal. If X ′+ 6= {0}, then Y is α-absolutely normal.

(4) Let B(X,Y ) be α-sum-normal. If Y+ 6= {0}, then X is approximately α-max-
conormal. If X ′+ 6= {0}, then Y is α-sum-normal.

(5) Let B(X,Y ) be α-max-normal. If Y+ 6= {0}, then X is approximately α-sum-
conormal. If X ′+ 6= {0}, then Y is α-max-normal.

Proof. We prove (1). Let B(X,Y )+ be proper. Suppose X 6= X+ −X+. By
the Hahn-Banach Theorem there exists a non-zero functional f ∈ X ′ such that
f |X+−X+

= 0. Let 0 6= y ∈ Y , then ±f ⊗ y ≥ 0 since f ⊗ y|X+ = 0. Therefore
B(X,Y )+ is not proper, contradicting our assumption. Suppose Y+ is not proper.
Let 0 6= y ∈ Y+ ∩ (−Y+) and 0 6= f ∈ X ′. Then ±f ⊗ y ≥ 0, and hence B(X,Y )+ is
not proper, contradicting our assumption.

Let X = X+ −X+ and Y+ be proper. If T ∈ B(X,Y )+ ∩ (−B(X,Y )+), then,
since Y+ is proper, TX+ = {0}. Hence T (X+ − X+) = {0}, and by density of
X+ −X+ in X, we have T = 0.

We prove (2). Let B(X,Y ) be α-normal. With Y+ 6= {0}, by Theorem 3.3.7, to
conclude that X is approximately α-conormal, it is sufficient to prove that X ′ is α-
normal. Let f, g ∈ X ′ satisfy 0 ≤ f ≤ g, and let 0 6= y ∈ Y+. Then 0 ≤ f⊗y ≤ g⊗y,
and by the α-normality of B(X,Y ),

‖f‖‖y‖ = ‖f ⊗ y‖ ≤ α‖g ⊗ y‖ = α‖g‖‖y‖.

Therefore ‖f‖ ≤ α‖g‖, and henceX ′ is α-conormal. WithX ′+ 6= {0}, let 0 6= f ∈ X ′+
be arbitrary, and y, z ∈ Y such that 0 ≤ y ≤ z. Then 0 ≤ f ⊗ y ≤ f ⊗ z in B(X,Y ),
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and by the α-normality of B(X,Y ),

‖f‖‖y‖ = ‖f ⊗ y‖ ≤ α‖f ⊗ z‖ = α‖f‖‖z‖.

Hence ‖y‖ ≤ α‖z‖ and we conclude that Y is α-normal.
We prove (3). Let B(X,Y ) be α-absolutely normal. With Y+ 6= {0}, by Theorem

3.3.7, to conclude that X is approximately α-absolutely conormal, it is sufficient
to prove that X ′ is α-absolutely normal. Let f, g ∈ X ′ satisfy ±f ≤ g, and let
0 6= y ∈ Y+. Then ±f ⊗ y ≤ g ⊗ y, and by the α-absolute normality of B(X,Y ),

‖f‖‖y‖ = ‖f ⊗ y‖ ≤ α‖g ⊗ y‖ = α‖g‖‖y‖.

Therefore ‖f‖ ≤ α‖g‖, and hence X ′ is α-absolutely normal. With X ′+ 6= {0}, let
0 6= f ∈ X ′+ be arbitrary, and y, z ∈ Y such that ±y ≤ z. Then ±f ⊗ y ≤ f ⊗ z in
B(X,Y ), and by the α-absolute normality of B(X,Y ),

‖f‖‖y‖ = ‖f ⊗ y‖ ≤ α‖f ⊗ z‖ = α‖f‖‖z‖

Hence ‖y‖ ≤ α‖z‖ and we conclude that Y is α-absolutely normal.
We prove (4). Let B(X,Y ) is α-sum-normal. With Y+ 6= {0}, by Theorem 3.3.7,

it is sufficient to prove that X ′ is α-sum-normal to conclude that X is approximately
α-max-conormal. Let 0 6= y ∈ Y+ and f, g, h ∈ X ′ satisfy g ≤ f ≤ h. Then
g ⊗ y ≤ f ⊗ y ≤ h⊗ y in B(X,Y ), and by the α-sum-normality of B(X,Y ),

‖f‖‖y‖ = ‖f ⊗ y‖ ≤ α (‖g ⊗ y‖+ ‖h⊗ y‖) = α(‖g‖+ ‖h‖)‖y‖.

Hence ‖f‖ ≤ α(‖g‖+ ‖h‖) and X ′ is α-sum-normal. With X ′+ 6= {0}, to prove that
Y is α-sum-normal, let u, v, y ∈ Y satisfy u ≤ y ≤ v and let 0 6= f ∈ X ′+. Then
f ⊗ u ≤ f ⊗ y ≤ f ⊗ v in B(X,Y ), and hence, ‖y‖ ≤ α(‖u‖+ ‖v‖) as before.

The proof of (5) is analogous to that of (4).

Converse-like implications to the previous result also hold, giving sufficient con-
ditions for B(X,Y ) to have a normality property. Part (1) and the case α = β = 1
of part (3) are due to Batty and Robinson Batty and Robinson [6, Proposition 1.7.3,
Corollary 1.7.5]. The special case X = Y and α = β = 1 of part (3) is due to
Yamamuro [48, 1.3]. The case where X is approximately α-sum-conormal and Y is
β-max-normal of part (4) is due to Wickstead [45, Theorem 3.1].
Theorem 3.4.2. Let X and Y be pre-ordered Banach spaces with closed cones and
α, β > 0.

(1) If X+ is generating and Y is α-normal, then there exists some γ > 0 for which
B(X,Y ) is γ-normal.

(2) If X is approximately α-conormal and Y is β-normal, then B(X,Y ) is (2α+
1)β-normal.

(3) If X is approximately α-absolutely conormal and Y is β-absolutely normal,
then B(X,Y ) is αβ-absolutely normal.
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(4) If X is approximately α-sum-conormal and Y is β-normal (β-absolutely nor-
mal, β-max-normal, β-sum-normal respectively), then B(X,Y ) is αβ-normal
(αβ-absolutely normal, αβ-max-normal, αβ-sum-normal respectively)

Proof. We prove (1). By Andô’s Theorem [3, Lemma 1], the fact that X+ is gener-
ating in X implies that there exists some β > 0 such that X is β-max-conormal. Let
T, S ∈ B(X,Y ) be such that 0 ≤ T ≤ S. Then, for any x ∈ X, let a, b ∈ X+ be such
that x = a − b and max{‖a‖, ‖b‖} ≤ β‖x‖, so that 0 ≤ Ta ≤ Sa and 0 ≤ Tb ≤ Sb.
By α-normality of Y ,

‖Tx‖ ≤ ‖Ta‖+ ‖Tb‖ ≤ α(‖Sa‖+ ‖Sb‖) ≤ α‖S‖(‖a‖+ ‖b‖) ≤ 2αβ‖S‖‖x‖,

hence ‖T‖ ≤ 2αβ‖S‖.
We prove (2). Let T, S ∈ B(X,Y ) be such that 0 ≤ T ≤ S. Let x ∈ X be

arbitrary. Then, for every ε > 0, there exists some a ∈ X+ such that {0, x} ≤ a and
‖a‖ ≤ α‖x‖+ ε. Since x = a− (a−x) and a, a−x ≥ 0, we obtain 0 ≤ Ta ≤ Sa and
0 ≤ T (a− x) ≤ S(a− x), and hence

‖Tx‖ = ‖Ta− T (a− x)‖
≤ ‖Ta‖+ ‖T (a− x)‖
≤ β‖Sa‖+ β‖S(a− x)‖
≤ β‖S‖(α‖x‖+ ε) + β‖S‖(α‖x‖+ ε+ ‖x‖)
= (2α+ 1)β‖S‖‖x‖+ 2εβ‖S‖.

Since ε > 0 was chosen arbitrarily, we conclude that ‖T‖ ≤ (2α+ 1)β‖S‖.
We prove (3). Let T, S ∈ B(X,Y ) satisfy±T ≤ S. Let x ∈ X be arbitrary. Then,

for every ε > 0, there exists some a ∈ X+ satisfying ±x ≤ a and ‖a‖ < α‖x‖ + ε.
Then

Tx = T

(
a+ x

2

)
− T

(
a− x

2

)
,

and hence,

±Tx = ±T
(
a+ x

2

)
∓ T

(
a− x

2

)
.

Since (a+ x)/2 ≥ 0, (a− x)/2 ≥ 0 and ±T ≤ S, we find

±Tx ≤ S
(
a+ x

2

)
+ S

(
a− x

2

)
= Sa.

Now, because Y is β-absolutely normal, we obtain

‖Tx‖ ≤ β‖Sa‖ ≤ β‖S‖‖a‖ ≤ αβ‖S‖‖x‖+ εβ‖S‖.

Since ε > 0 was chosen arbitrarily, we conclude that B(X,Y ) is αβ-absolutely
normal.

We prove (4). Let X be approximately α-sum-conormal and let Y be β-normal.
Let T,U ∈ B(X,Y ) satisfy 0 ≤ T ≤ U and let x ∈ X be arbitrary. Then, for every
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ε > 0, there exist x1, x2 ∈ X+ such that x = x1 − x2 and ‖x1‖+ ‖x2‖ < α‖x‖+ ε.
Also, 0 ≤ Txi ≤ Uxi implies ‖Txi‖ ≤ β‖Uxi‖ for i = 1, 2. Therefore,

‖Tx‖ ≤ ‖Tx1‖+ ‖Tx2‖
≤ β‖Ux1‖+ β‖Ux2‖
≤ β‖U‖(‖x1‖+ ‖x2‖)
≤ αβ‖U‖‖x‖+ εβ‖U‖.

Since x ∈ X and ε > 0 were arbitrary, we may conclude that B(X,Y ) is αβ-normal.
The case where X is approximately α-sum-conormal and Y is β-absolutely normal
follows similarly.

Let X be approximately α-sum-conormal and let Y be β-max-normal. Let
T,U, V ∈ B(X,Y ) satisfy U ≤ T ≤ V and let x ∈ X be arbitrary. Then, for every
ε > 0, there exist x1, x2 ∈ X+ such that x = x1 − x2 and ‖x1‖+ ‖x2‖ < α‖x‖+ ε.
Also, Uxi ≤ Txi ≤ V xi implies ‖Txi‖ ≤ βmax{‖Uxi‖, ‖V xi‖} for i = 1, 2. There-
fore,

‖Tx‖ ≤ ‖Tx1‖+ ‖Tx2‖
≤ βmax{‖Ux1‖, ‖V x1‖}+ βmax{‖Ux2‖, ‖V x2‖}
≤ βmax{‖U‖, ‖V ‖}(‖x1‖+ ‖x2‖)
≤ αβmax{‖U‖, ‖V ‖}‖x‖+ εβmax{‖U‖, ‖V ‖}.

Since x ∈ X and ε > 0 were arbitrary, we may conclude that B(X,Y ) is αβ-max-
normal. The case whereX is approximately α-sum-conormal and Y is β-sum-normal
follows similarly.

If one has further knowledge of the behavior of the positive bounded linear opera-
tors, specifically that their norms are determined by their behavior on the cone, then
one can improve the constant in (2) of the above theorem. This will be discussed in
the rest of this section.

Definition 3.4.3. Let X be a pre-ordered Banach space with a closed cone and Y a
Banach space. For T ∈ B(X,Y ), we define ‖T‖+ := sup{‖Tx‖ : x ∈ X+, ‖x‖ = 1}.

If X = X+ −X+, then ‖ · ‖+ is a norm on B(X,Y ), called the Robinson norm
(as named by Yamamuro in [48]). We will say that the operator norm on B(X,Y )
is positively attained (as named by Batty and Robinson in [6]) if ‖T‖ = ‖T‖+ for all
positive operators T ∈ B(X,Y )+.

If X+ is closed and generating, ‖ · ‖+ is in fact equivalent to the usual operator
norm on B(X,Y ). The following result is a slight refinement of a remark by Batty
and Robinson [6, p. 248].

Proposition 3.4.4. If X is a pre-ordered Banach space with a closed generating
cone and Y a Banach space, then the Robinson norm is equivalent to the operator
norm on B(X,Y ).
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Proof. By Andô’s Theorem [3, Lemma 1], X is α-max-conormal for some α > 0. Let
x ∈ X and T ∈ B(X,Y ) be arbitrary, then there exist a, b ∈ X+ such that x = a− b
and max{‖a‖, ‖b‖} ≤ α‖x‖. Hence

‖Tx‖ = ‖Ta− Tb‖
≤ ‖Ta‖+ ‖Tb‖
≤ ‖T‖+(‖a‖+ ‖b‖)
≤ 2α‖T‖+‖x‖.

Therefore, ‖T‖+ ≤ ‖T‖ ≤ 2α‖T‖+.

Part (2) of Theorem 3.4.2 can be improved if we know that the operator norm
is positively attained.
Proposition 3.4.5. Let X and Y be pre-ordered Banach spaces with closed cones,
with Y α-normal for some α > 0. If the operator norm on B(X,Y ) is positively
attained, then B(X,Y ) is α-normal.

Proof. Let T, S ∈ B(X,Y ) satisfy 0 ≤ T ≤ S. Then, for any x ∈ X+, 0 ≤ Tx ≤ Sx,
and hence ‖Tx‖ ≤ α‖Sx‖. We then see that

‖T‖ = ‖T‖+
= sup{‖Tx‖ : x ∈ X+, ‖x‖ ≤ 1}
≤ α sup{‖Sx‖ : x ∈ X+, ‖x‖ ≤ 1}
= α‖S‖+
= α‖S‖,

and conclude that B(X,Y ) is α-normal.

The following theorem gives one necessary condition and some sufficient condi-
tions to have that an operator norm is positively attained. The sufficiency of (1)3,
(2), and the necessity of approximate 1-conormality in the following theorem are
due to Batty and Robinson in [6, Proposition 1.7.8.].
Theorem 3.4.6. Let X and Y be pre-ordered Banach spaces with closed cones.

If Y+ 6= {0} and the operator norm on B(X,Y ) is positively attained, then X is
approximately 1-conormal.

Any of the following conditions is sufficient for the operator norm on B(X,Y )
to be positively attained:

(1) The space X is approximately 1-max-conormal and Y is 1-max-normal.

(2) The space X is approximately 1-absolutely conormal and Y is absolutely mono-
tone (i.e., if X = Y , X is 1-absolutely Davies-Ng regular).

3There is a small error in the statement of (1) in [6, Proposition 1.7.8.]. We give its correct
statement and proof.
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(3) The space X is approximately 1-sum-conormal (in which case ‖T‖ = ‖T‖+
even holds for all T ∈ B(X,Y )).

Proof. We prove the necessity of approximate 1-conormality of X when Y+ 6= {0}
and the operator norm on B(X,Y ) is positively attained. Let f ∈ X ′+ be arbitrary
and let 0 6= y ∈ Y+. Then, since the operator norm on B(X,Y ) is positively attained,

‖f‖‖y‖ = ‖f ⊗ y‖ = ‖f ⊗ y‖+ = ‖f‖+‖y‖,

so that ‖f‖ = ‖f‖+. For all f, g ∈ X ′ satisfying 0 ≤ f ≤ g, we obtain ‖f‖ = ‖f‖+ ≤
‖g‖+ = ‖g‖. Therefore X ′ is monotone, and by part (2)(d) of Theorem 3.3.7, X is
approximately 1-conormal.

We prove the sufficiency of (1). Let T ∈ B(X,Y )+. Let x ∈ X and ε > 0
be arbitrary. Then, since X is 1-max-conormal, there exist a, b ∈ X+ such that
x = a − b and max{‖a‖, ‖b‖} < ‖x‖ + ε. We notice that −b ≤ x ≤ a and T ≥ 0
imply that −Tb ≤ Tx ≤ Ta. Then, since Y is 1-max-normal,

‖Tx‖ ≤ max{‖Ta‖, ‖Tb‖} ≤ ‖T‖+ max{‖a‖, ‖b‖} ≤ ‖T‖+(‖x‖+ ε).

Because ε > 0 was chosen arbitrarily, we conclude that ‖T‖+ ≤ ‖T‖ ≤ ‖T‖+.
We prove the sufficiency of (2). Let T ∈ B(X,Y )+. Let x ∈ X and ε > 0 be

arbitrary, then there exists a z ∈ X+ such that {−x, x} ≤ z and ‖z‖ < ‖x‖ + ε.
Then, since T ≥ 0, we see that {−Tx, Tx} ≤ Tz, and therefore, since Y is absolutely
monotone,

‖Tx‖ ≤ ‖Tz‖ ≤ ‖T‖+‖z‖ ≤ ‖T‖+(‖x‖+ ε).

Because ε > 0 was chosen arbitrarily, we conclude that ‖T‖+ ≤ ‖T‖ ≤ ‖T‖+.
We prove the sufficiency of (3). Let x ∈ X be arbitrary. SinceX is approximately

1-sum-conormal, for every ε > 0, there exist a, b ∈ X+ such that x = a − b and
‖a‖+ ‖b‖ < ‖x‖+ ε. For any T ∈ B(X,Y ), we have

‖Tx‖ ≤ ‖Ta‖+ ‖Tb‖ ≤ ‖T‖+(‖a‖+ ‖b‖) ≤ ‖T‖+(‖x‖+ ε).

Since ε > 0 and x ∈ X were chosen arbitrarily, we obtain ‖T‖+ ≤ ‖T‖ ≤ ‖T‖+.

3.5 Quasi-lattices and their basic properties
In this section we will define quasi-lattices, establish their basic properties and pro-
vide a number of illustrative (non-)examples.

Let X be a pre-ordered Banach space and A any subset of X. For x ∈ X, by
A ≤ x we mean that a ≤ x for all a ∈ A and say x is an upper bound of A. We will
use the Greek letter ‘upsilon’ to denote the set of all upper bounds of A, written as
υ(A). If x ∈ X is such that A ≤ x and, for any y ∈ X, A ≤ y ≤ x implies x = y,
we say that x is a minimal upper bound of A. We will use the Greek letter ‘mu’ to
denote the set of all minimal upper bounds of A, written as µ(A). We note that
υ(A) and µ(A) could be empty for some A ⊆ X.
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For any fixed x, y ∈ X, we define the function σx,y : X → R≥0 by σx,y(z) :=
‖z − x‖+ ‖z − y‖ for all z ∈ X, and note that σx,y(z) ≥ ‖x− y‖ for all x, y, z ∈ X.
We will refer to σx,y as the distance sum to x and y.

We introduce the following definitions and notation:
Definition 3.5.1. Let X be a pre-ordered Banach space with a closed cone.

(1) We say that X is an υ-quasi-lattice if, for every pair of elements x, y ∈ X,
υ({x, y}) is non-empty and there exists a unique element z ∈ υ({x, y}) mini-
mizing σx,y on υ({x, y}). The element z will be called the υ-quasi-supremum
of {x, y}.

(2) We say that X is a µ-quasi-lattice if, for every pair of elements x, y ∈ X,
µ({x, y}) is non-empty and there exists a unique element z ∈ µ({x, y}) mini-
mizing σx,y on µ({x, y}). The element z will be called the µ-quasi-supremum
of {x, y}.

We immediately note that all Banach lattices are µ-quasi-lattices:
Proposition 3.5.2. If X is a lattice ordered Banach space with a closed cone (in
particular, if X is a Banach lattice), then X is a µ-quasi-lattice and its lattice
structure coincides with its µ-quasi-lattice structure.

Proof. Since for every x, y ∈ X, µ({x, y}) = {x ∨ y} is a singleton, this is clear.

Remark 3.5.3. If X is a pre-ordered Banach space with a closed cone, then, for
x, y ∈ X, the set υ({x, y}) is closed and convex, and hence techniques from convex
optimization can be used to establish whether a pre-ordered Banach space is an
υ-quasi-lattice (cf. Theorem 3.6.1). The set µ({x, y}) need not be convex in general
(cf. Example 3.5.9), and hence it is usually more difficult to determine whether or
not a space is a µ-quasi-lattice than an υ-quasi-lattice.

Except in the case of monotone υ-quasi-lattices which are also µ-quasi-lattices
with coinciding υ– and µ-quasi-lattice structures (cf. Theorem 3.5.12), no further
relationship is known between υ– and µ-quasi-lattices. Example 3.5.5 will provide
a Banach lattice, and hence µ-quasi-lattice, that is not an υ-quasi-lattice. Further-
more, Example 3.5.13 will provide a non-monotone υ-quasi-lattice, which exhibits
υ-quasi-suprema that are not minimal, hence if this space were a µ-quasi-lattice
(which is currently not known), then its υ– and µ-quasi-lattice structures will not
coincide.

To avoid repetition, we will often use the term quasi-lattice when it is unimpor-
tant whether a space is an υ– or µ-quasi-lattice, i.e., a quasi-lattice is either an υ– or
µ-quasi-lattice. In such cases we will refer to the relevant υ– or µ-quasi-supremum
as just the quasi-supremum. When it is indeed important whether a space is an υ–
or µ-quasi-lattice, we will mention it explicitly.

The following notation will be used for both υ– and µ-quasi-lattices. Let X be
a quasi-lattice and x, y ∈ X arbitrary. We will denote the quasi-supremum of {x, y}
by x∨̃y. This operation is symmetric, i.e., x∨̃y = y∨̃x. We define the quasi-infimum
of {x, y} by x∧̃y := −((−x)∨̃(−y)). It is elementary to see that x∧̃y ≤ {x, y}. We
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define the quasi-absolute value of x by dxe := (−x)∨̃(x). We will often use the
notation x+ := 0∨̃x and x− := 0∨̃(−x).

Before establishing the basic properties of quasi-lattices, we will give a few ex-
amples of spaces that are (not) quasi-lattices.

The following is an example of a quasi-lattice that is not a Riesz space, and hence
not a Banach lattice:
Example 3.5.4. The space {R3, ‖ · ‖2}, endowed with the Lorentz cone

C := {(x1, x2, x3) : x1 ≥ (x2
2 + x2

3)1/2}.

There are many minimal upper bounds of, e.g., {(0, 0, 0), (0, 0, 2)} (cf. Example 3.5.9
and Proposition 3.7.5). Hence no supremum exists, and this space is not a Riesz
space. Another method to establish this would be to note that C has more than
distinct 3 extreme rays, while every lattice cone in R3 has at most 3 disinct extreme
rays [2, Theorem 1.45].

This space is (simultaneously an υ-quasi-lattice and) a µ-quasi-lattice. Intu-
itively, this can be seen by taking arbitrary elements, x, y ∈ R3, and seeing that
there exists a unique element in µ({x, y}) with least first coordinate, which is then
the quasi-supremum. It is possible give a more explicit proof, but this is not needed
in view of the general Theorem 3.7.10 which is applicable to this example.

The following is an example of a Banach lattice, hence a µ-quasi-lattice, that is
not an υ-quasi-lattice:
Example 3.5.5. Consider the space {R3, ‖ · ‖∞} with the standard cone. Let x :=
(1,−1, 0). Then

υ({0, x}) = {(z1, z2, z3) ∈ R3 : z1 ≥ 1, z2, z3 ≥ 0},

and hence, for all z ∈ υ({0, x}), we see σ0,x(z) = ‖z‖∞ + ‖(z1 − 1, z2 + 1, z3)‖∞ ≥
1 + 1 = 2. But, for every t ∈ [0, 1], {0, x} ≤ zt := (1, 0, t) is such that

σx,0(zt) = ‖zt − x‖∞ + ‖zt − 0‖∞ = ‖(0, 1, t)‖∞ + ‖(1, 0, t)‖∞ = 2,

so that there exists no unique upper bound of {x, 0} minimizing the distance sum
to x and 0. We conclude that this space is not an υ-quasi-lattice.

There do exist ordered Banach spaces endowed with closed proper generating
cones that are not normed Riesz spaces, nor µ-quasi-lattices or υ-quasi-lattices:
Example 3.5.6. Let {R3, ‖ · ‖∞} be endowed with the cone defined by the four
extreme rays {(±1,±1, 1)}. Let x := (0, 0, 0) and y := (2, 0, 0). It can be seen that
µ({x, y}) = {(1, t, 1) ∈ R3 : t ∈ [−1, 1]}. Since this set is not a singleton, this space
is not a Riesz space. Moreover, σx,y takes the constant value 2 on µ({x, y}), and
hence there does not exist a unique element minimizing σx,y on µ({x, y}). Therefore
this space is not a µ-quasi-lattice. Furthermore, if z ∈ υ({x, y}) and z3 > 1, then
σx,y(z) > 2, and since υ({x, y}) ∩ {z ∈ R3 : z3 ≤ 1} = µ({x, y}), all minimizers of
σx,y in υ({x, y}) must be elements of µ({x, y}). Since σx,y is constant on µ({x, y}),
this space is not an υ-quasi-lattice.
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The following results establish some basic properties of quasi-lattices.
Proposition 3.5.7. If X is a quasi-lattice, then X+ is a proper and generating
cone.

Proof. If X+ is not proper, there exists an x ∈ X such that x > 0 and −x > 0. Let
z ≥ {0, x} be arbitrary. Then z − x > z ≥ 0 > x, so that z > z − x ≥ {0, x}. Hence
no upper bound of {0, x} is minimal and therefore X cannot be a µ-quasi-lattice.

Moreover, every z ∈ {λx : λ ∈ [−1, 1]} minimizes σ−x,x on υ({x,−x}), therefore
X cannot be an υ-quasi-lattice either.

For all x ∈ X, since υ({x, 0}) is non-empty, taking any z ∈ υ({x, 0}) and writing
x = z − (z − x) shows that X+ is generating in X.

Surprisingly, many elementary Riesz space properties have direct analogues in
quasi-lattices. Many of the proofs below follow arguments from [49, Sections 5, 6]
nearly verbatim.
Theorem 3.5.8. Let X be a quasi-lattice, and x, y, z ∈ X arbitrary. Then:

(1) x∨̃x = x∧̃x = x.

(2) For α ≥ 0, (αx)∨̃(αy) = α(x∨̃y) and (αx)∧̃(αy) = α(x∧̃y).

(3) For α ≤ 0, (αx)∨̃(αy) = α(x∧̃y) and (αx)∧̃(αy) = α(x∨̃y).

(4) (x∨̃y) + z = (x+ z)∨̃(y + z) and (x∧̃y) + z = (x+ z)∧̃(y + z).

(5) x± ≥ 0, x− = (−x)+.

(6) dxe ≥ 0 and, for all α ∈ R, dαxe = |α| dxe. In particular d−xe = dxe.

(7) x = x+ − x−; x+∧̃x− = 0 and dxe = x+ + x−.

(8) If x ≥ 0, then x∧̃0 = 0 and x = x+ = dxe.

(9) ddxee = dxe.

(10) x∨̃y + x∧̃y = x+ y and x∨̃y − x∧̃y = dx− ye.

(11) x∨̃y = 1
2 (x+ y) + 1

2 dx− ye and x∧̃y = 1
2 (x+ y)− 1

2 dx− ye.

Proof. Assertion (1) follows from x ≤ x and the fact that σx,x(x) = 0 and σx,x(y) > 0
for all y 6= x.

We prove the assertion (2) for µ-quasi-lattices. The case α = 0 follows from (1),
hence we assume α > 0. By definition, x∨̃y is a minimal upper bound of {x, y}. Since
α > 0, the element α(x∨̃y) is then a minimal upper bound of {αx, αy}. Suppose
that α(x∨̃y) 6= (αx)∨̃(αy), then there exists a minimal upper bound of {αx, αy},
say z0, such that

σαx,αy(z0) = ‖z0 − αx‖+ ‖z0 − αy‖ < ‖α(x∨̃y)− αx‖+ ‖α(x∨̃y)− αy‖.
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But then α−1z0 is a minimal upper bound for {x, y}, and

σx,y(α−1z0) = ‖α−1z0 − x‖+ ‖α−1z0 − y‖ < ‖(x∨̃y)− x‖+ ‖(x∨̃y)− y‖,

contradicting the definition of x∨̃y ∈ µ({x, y}) as the unique element minimizing
σx,y on µ({x, y}). We conclude that (αx)∨̃(αy) = α(x∨̃y). The same argument
holds for υ-quasi-lattices by ignoring the word ‘minimal’ in the previous argument.
By using what was just established, showing that (αx)∧̃(αy) = α(x∧̃y) holds is an
elementary calculation.

The assertion (3) follows from applying (2) with β := −α ≥ 0.
The assertion (4) follows from the translation invariance of both the metric de-

fined by the norm and the partial order, and (5) is immediate from the definitions.
To establish (6), we notice that {x,−x} ≤ dxe implies 0 ≤ x − x ≤ 2 dxe. The

second part follows by noticing that (−αx)∨̃(αx) = (−|α|x)∨̃(|α|x) and applying
(2).

We prove (7). By (4), x+ − x = (x∨̃0)− x = (x− x)∨̃(−x) = 0∨̃(−x) = x−, so
x = x+− x−. By this, we then have 0 = −x−+ x− = x∧̃0 + x− = (x+ x−)∧̃(x−) =
(x+)∧̃(x−). By (2) and (4), dxe = (−x)∨̃x = (−x)∨̃x+x−x = 0∨̃(2x)−x = 2x+−
x+ + x− = x+ + x−.

We prove (8). Let x ≥ 0, then 0 is an upper bound of {0,−x}. Moreover, since
the cone is proper, 0 is a minimal upper bound for {0,−x}. But, for any z ∈ X
(and in particular all (minimal) upper bounds of {0,−x}), we have

σ−x,0(0) = ‖0− (−x)‖+ ‖0− 0‖ = ‖0− (−x)‖ ≤ σ−x,0(z).

Hence we have 0 = (−x)∨̃0 = x−, and hence, by (7), x = x+ = dxe.
The assertion (9) follows from (6) and (8).
We prove (10). We observe that x∨̃y = ((x − y)∨̃0) + y = (x − y)+ + y, and

x∧̃y = x + (0∧̃(y − x)) = x − (x − y)+. Adding these two equations yields x∨̃y +
x∧̃y = x+ y, and subtracting gives x∨̃y−x∧̃y = 2(x− y)+ + y−x = (2(x− y)∨̃0)−
(x− y) = ((x− y)∨̃(−(x− y)) = dx− ye.

The assertion (11) follows by adding and subtracting the equations established
in (10).

In a sense the more interesting results concerning quasi-lattices are ones outlining
how they may differ from Riesz spaces and Banach lattices. An important remark,
that may at first sight be counterintuitive, is the following: For elements x, y, z in
a quasi-lattice, x ≤ z and y ≤ z does not, in general, imply that x∨̃y ≤ z. The
following example shows how this may happen:
Example 3.5.9. We continue with Example 3.5.4. Let x = (0, 0, 0) and y = (0, 0, 2),
then x∨̃y = (1, 0, 1). The set of minimal upper bounds of {x, y} forms a branch of a
hyperbola. Choosing z from this hyperbola such that z and x∨̃y are not comparable,
say any z = (

√
t2 + 1,±t, 1) with t > 0, we see that, although x ≤ z and y ≤ z, it

does not hold that x∨̃y ≤ z.
The previous example shows how it may sometimes happen in quasi-lattices that

the quasi-supremum operation is not monotone: x ≤ y does not necessarily imply
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x+ ≤ y+. We can therefore not expect distributive laws, Birkhoff type inequalities
or the Riesz decomposition property to hold in general quasi-lattices.

The following example shows how a quasi-supremum operation need not even be
associative:
Example 3.5.10. Let {R3, ‖ · ‖2} be endowed with a ‘half Lorentz cone’

C := {(x1, x2, x3) : x1 ≥ (x2
2 + x2

3)1/2, x2 ≥ 0}.

By Corollary 3.6.2, this space is a µ-quasi-lattice.
For any x, y ∈ R3, we claim that (x∨̃y)2 = max{x2, y2}. To this end, let z ≥

{x, y} be arbitrary and define z′ := (z1,max{x2, y2}, z3). We first show that z′ ≥
{x, y}. Firstly, z′2 − x2 = max{x2, y2}− x2 ≥ 0 and z′2 − y2 = max{x2, y2}− y2 ≥ 0.
Since z2−x2 ≥ 0 and z2− y2 ≥ 0, we also have z2 ≥ z′2. Also, where we use the fact
that (z2 − z′2)(z2 − x2) ≥ 0 and (z2 − z′2)2 ≥ 0 in the last step,

z′1 − x1 = z1 − x1

≥
√

(z2 − x2)2 + (z3 − x3)2

=
√

(z2 − z′2 + z′2 − x2)2 + (z3 − x3)2

=
√

(z2 − z′2)2 + 2(z2 − z′2)(z2 − x2) + (z′2 − x2)2 + (z′3 − x3)2

≥
√

(z′2 − x2)2 + (z′3 − x3)2.

Similarly z′1 − y1 ≥
√

(z′2 − y2)2 + (z′3 − y3)2, so that z′ ≥ {x, y}. We claim that
σx,y(z) ≥ σx,y(z′). Indeed, again since (z2 − z′2)(z2 − x2) ≥ 0 and (z2 − z′2)2 ≥ 0,

‖z − x‖2
=

√
(z1 − x1)2 + (z2 − x2)2 + (z3 − x2)2

=
√

(z1 − x1)2 + (z2 − z′2 + z′2 − x2)2 + (z3 − x2)2

=
√

(z1 − x1)2 + (z2 − z′2)2 + 2(z2 − z′2)(z′2 − x2) + (z′2 − x2)2 + (z3 − x2)2

≥
√

(z1 − x1)2 + (z′2 − x2)2 + (z3 − x2)2

=
√

(z′1 − x1)2 + (z′2 − x2)2 + (z′3 − x2)2

= ‖z′ − x‖2.

Similarly we have ‖z − y‖2 ≥ ‖z′ − y‖2. Therefore σx,y(z) = ‖z − x‖2 + ‖z − y‖2 ≥
σx,y(z′). We conclude that (x∨̃y)2 = max{x2, y2}, else, by the above construction,
there would exist an upper bound of {x, y} different from x∨̃y, but which also
minimizes σx,y on µ({x, y}).

Now let a := (0, 0, 0), b := (0,−1, 1) and c := (0 − 1,−1). Using what was
just proven and the fact that the space is a µ-quasi-lattice, it can be seen that a∨̃b
must be an element of the plane {x ∈ R3 : x2 = 0} and must be a minimal upper
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bound of {a, b}. The minimal upper bounds of {a, b} that are elements of {x ∈ R3 :
x2 = 0} can be parameterized by γ : t 7→ (

√
1 + (1− t)2, 0, t) with t ∈ (−∞, 1]

and the function t 7→ σa,b(γ(t)) attains its minimum at t =
√

3 − 1. Therefore
a∨̃b = (2

√
2−
√

3, 0,
√

3 − 1). Again, using similar reasoning, it can be verified

(using a computer algebra system) that (a∨̃b)∨̃c = (

√
1 + (1 + κ)

2
, 0, κ), where

κ := 23−1
(
−29− 8

√
2 + 9

√
3 + 12

√
6
)
. Also, since (1,−1, 0) is the only minimal

upper bound of {b, c} that is an element of the plane {x ∈ R3 : x2 = −1}, we must
have b∨̃c = (1,−1, 0). It can then be verified that a∨̃(b∨̃c) = (2, 0, 0). We conclude
that a∨̃(b∨̃c) 6= (a∨̃b)∨̃c.

The triangle and reverse triangle inequality take the following form in quasi-
lattices. They reduce to the familiar ones in lattice-ordered µ-quasi-lattices.
Theorem 3.5.11. (Triangle and reverse triangle inequality) Let X be a quasi-lattice
and x, y ∈ X be arbitrary. Then

{x+ y,−(x+ y)} ≤ dxe+ dye ,

and
{x− dye ,−x− dye , y − dxe ,−y − dxe} ≤ dx± ye .

Proof. By Theorem 3.5.8 (7), for all z ∈ X, we have dze ≥ z± ≥ ±z, and hence we
obtain dxe+ dye ≥ x+ + y+ ≥ x+ y and dxe+ dye ≥ x− + y− ≥ −x− y. Therefore
dxe+ dye is an upper bound of {x+ y,−(x+ y)}.

To establish the second inequality, we use what was just established to see,
by Theorem 3.5.8 (6) and (9), that {x,−x} = {(x ± y) ∓ y,−((x ± y) ∓ y)} ≤
dx± ye + d∓ye = dx± ye + dye. Hence {x − dye ,−x − dye} ≤ dx± ye. Similarly,
{y−dxe ,−y−dxe} ≤ dx± ye, and finally we conclude that {x−dye ,−x−dye , y−
dxe ,−y − dxe} ≤ dx± ye.

The following result allows us to conclude that monotone υ-quasi-lattices are in
fact µ-quasi-lattices:
Theorem 3.5.12. Every monotone υ-quasi-lattice is a µ-quasi-lattice, and its υ–
and µ-quasi-lattice structures coincide.

Proof. We first claim that, if X is a monotone ordered Banach space, then, for
x, y ∈ X, if z0 ∈ υ({x, y}) is such that ‖z − x‖+ ‖z − y‖ > ‖z0 − x‖+ ‖z0 − y‖ for
all z ∈ υ({x, y}) with z 6= z0, then z0 is a minimal upper bound of {x, y}.

As to this, by translating, we may assume that y = 0. Let z ∈ X be any element
satisfying {x, 0} ≤ z ≤ z0. Then 0 ≤ z ≤ z0 and 0 ≤ z−x ≤ z0−x. By monotonicity,
‖z‖ ≤ ‖z0‖ and ‖z − x‖ ≤ ‖z0 − x‖, so that ‖z‖+ ‖z − x‖ ≤ ‖z0‖+ ‖z0 − x‖. The
hypothesis on z0 then implies that z = z0. Hence z0 is a minimal upper bound of
{x, y}, establishing the claim.

Let X be a monotone υ-quasi-lattice and x, y ∈ X arbitrary. By the above
claim, the υ-quasi-supremum of {x, y} is a minimal upper bound of {x, y}. Since
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µ({x, y}) ⊆ υ({x, y}) we have that the υ-quasi-supremum of {x, y} is also the µ-
quasi-supremum. We conclude that X is also a µ-quasi-lattice, and that its υ– and
µ-quasi-lattice structures coincide.

The following example shows that there exist υ-quasi-lattices in which some υ-
quasi-suprema are not minimal upper bounds.
Example 3.5.13. Consider the space {R3, ‖ · ‖2}, endowed with the cone

C := {(a, b, c) ∈ R3 : ax2 + bx+ c ≥ 0 for all x ∈ [0, 1]}.

By Theorem 3.6.1, this space is an υ-quasi-lattice. Let x := (0, 1, 0), y := (0,−1, 1).
It can be verified (using a computer algebra system) that

x∨̃y = (2−1(2−
√

3),−2−1(2−
√

3), 1),

while {x, y} ≤ (1,−1, 1) < x∨̃y. Therefore x∨̃y /∈ µ({x, y}).
By comparing the norms of the elements in 0 ≤ (0,−1, 1) ≤ (0, 0, 1), we see

that this space is not monotone. We can therefore not draw any conclusion from
Theorem 3.5.12 as to whether this space is a µ-quasi-lattice. A valid conclusion we
may draw is that, if this space is indeed also a µ-quasi-lattice in addition to being
an υ-quasi-lattice, its µ– and υ-quasi-lattice structures will not coincide.

3.6 A concrete class of quasi-lattices
In the previous section we have already noted that lattice ordered Banach spaces
are µ-quasi-lattices (cf. Proposition 3.5.2) and gave a number of examples of quasi-
lattices. We begin this section by proving that quite a large class of (not necessarily
lattice ordered) ordered Banach spaces with closed generating cones are in fact quasi-
lattices. Afterwards, we briefly investigate conditions under which a space has a
quasi-lattice as a dual, or is the dual of a quasi-lattice.

We recall that a normed space X is strictly convex or rotund if, for x, y ∈ X,
‖x+y‖ = ‖x‖+‖y‖ implies that either x or y is a non-negative multiple of the other
[29, Definition 5.1.1, Proposition 5.1.11].

The following theorem shows that there exist relatively many quasi-lattices:
Theorem 3.6.1. Every strictly convex reflexive ordered Banach space X with a
closed proper generating cone is an υ-quasi-lattice.

Proof. We need to prove that every pair of elements x0, y0 ∈ X has an υ-quasi-
supremum in X.

If x0 and y0 are comparable, by exchanging the roles of x0 and y0 if necessary,
we may assume x0 ≤ y0. We may further assume that x0 = 0 by translating over
−x0. We will denote the distance sum to 0 and y0 by σ instead of σ0,y0 .

If y0 = 0, then σ(z) = 0 if and only if z = 0, so that 0∨̃0 = 0. If 0 6= y0 ≥ 0,
we have that y0 ∈ υ({0, y0}) and, for all z ∈ υ({0, y0}), we have σ(z) = ‖y0 − z‖+
‖z‖ ≥ ‖y0‖ = σ(y0). Suppose that z0 ∈ υ({0, y0}) is such that σ(y0) = σ(z0). We
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must have z0 6= 0, else 0 ≤ y0 ≤ z0 = 0 hence, since X+ is proper, y0 = 0, while
y0 6= 0. Then, since

‖y0 − z0 + z0‖ = ‖y0‖ = σ(y0) = σ(z0) = ‖y0 − z0‖+ ‖z0‖,

by strict convexity we obtain y0 − z0 = λz0 for some λ ≥ 0. Hence z0 ≥ y0 = (1 +
λ)z0 ≥ z0 and then, since X+ is proper, y0 = z0. Therefore 0∨̃y0 = y0.

We consider the case where neither x0 ≤ y0 nor y0 ≤ x0. Again, by translating,
we may assume without loss of generality that x0 = 0, and that neither y0 ≤ 0 nor
0 ≤ y0. We again denote the distance sum to 0 and y0 by σ instead of σ0,y0 .

Since X+ is generating, υ({y0, 0}) = X+ ∩ (y0 + X+) is non-empty, hence let
z0 ∈ X+ ∩ (y +X+). Consider the non-empty closed bounded and convex set

K := X+ ∩ (y0 +X+) ∩ {x ∈ X : σ(x) ≤ σ(z0)}.

We note that 0, y0 /∈ K, since we had assumed that neither y0 ≤ 0 nor 0 ≤ y0 holds.
The function σ is continuous and convex and, since K is bounded closed and

convex and X is reflexive, by [5, Theorem 2.11], there exists an element zm ∈ K
minimizing σ on K. We claim that zm is the unique minimizer of σ on K. To prove
this claim it is sufficient to establish that σ is strictly convex on K, i.e., if z, z′ ∈ K
with z 6= z′ and t ∈ (0, 1), then σ(tz + (1− t)z′) < tσ(z) + (1− t)(z′).

We first claim that the line Ry0 does not intersect K. Indeed, if λy0 ∈ K for
some λ ∈ R, then we must have λ 6= 0, since 0 /∈ K. But then λy0 ∈ K ⊆ X+

implies that either y0 ≤ 0 or 0 ≤ y0, contrary to our assumption that neither y0 ≤ 0
nor 0 ≤ y0.

We now prove that σ is strictly convex on K. Let z, z′ ∈ K be arbitrary but
distinct and t ∈ (0, 1). If z 6= λz′ for all λ ≥ 0, then, by strict convexity of X,
‖tz+(1−t)z′‖ < t‖z‖+(1−t)‖z′‖, and hence σ(tz+(1−t)z′) < tσ(z)+(1−t)σ(z′).
On the other hand, if z′ = λz for some λ ≥ 0, we must have that λ 6= 1 (since z 6= z′)
and λ 6= 0 (since 0 /∈ K). Therefore, supposing that

‖(1− t)(y0 − z) + t(y0 − z′)‖ = (1− t)‖y0 − z‖+ t‖y0 − z′‖,

by strict convexity ofX, we obtain (1−t)(y0−z) = ρt(y0−z′) for some ρ > 0 (if ρ = 0,
then y0 = z ∈ K contradicts y0 /∈ K). By rewriting, we obtain ((1−t)−ρt)y0 = ((1−
t)− ρtλ)z. If ((1− t)− ρtλ) = 0, then ((1− t)− ρt) 6= 0 since λ 6= 1 and ρt 6= 0, and
hence y0 = 0, contradicting the assumption that neither y0 ≤ 0 nor 0 ≤ y0. Therefore
((1−t)−ρtλ) 6= 0, and z ∈ K∩Ry0, contracting the fact thatK and Ry0 are disjoint.
Therefore, we must have ‖(1−t)y0−(1−t)z+ty0−tz′‖ < (1−t)‖y0−z‖+t‖y0−z′‖,
and hence σ(tz + (1− t)z′) < tσ(z) + (1− t)σ(z′).

We conclude that σ is strictly convex on K, and that zm ∈ K is the unique
minimizer of σ onK. Then clearly zm is also the unique minimizer of σ on υ({0, y0}).

Theorem 3.6.1 and Theorem 3.5.12 together yield the following two corollaries:
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Corollary 3.6.2. Every strictly convex reflexive monotone ordered Banach space
with a closed proper generating cone is both an υ-quasi-lattice and a µ-quasi-lattice
(and its υ– and µ-quasi-lattice structures coincide).
Corollary 3.6.3. For 1 < p < ∞, every Lp-space endowed with a closed proper
generating cone is an υ-quasi-lattice. In particular, every `p-space and every space
{Rn, ‖·‖p} that is endowed with a closed proper generating cone is an υ-quasi-lattice.
If, in addition, the space is monotone, it is also a µ-quasi-lattice (and its υ– and
µ-quasi-lattice structures coincide).

Proof. That an Lp-space is strictly convex for every 1 < p < ∞ is a consequence
of [29, Theorem 5.2.11]. The result then follows from the previous theorem and
Theorem 3.5.12.

The remainder of this section will be devoted to dual considerations, specifically
to the question of when the dual of a pre-ordered Banach space is a quasi-lattice.
The following result gives necessary conditions for this to be the case.
Proposition 3.6.4. If a pre-ordered Banach space X with a closed cone has a quasi-
lattice as dual, then:

(1) There exists an α > 0 such that X is α-max-normal.

(2) X+ −X+ is dense in X.

Proof. By Proposition 3.5.7, the dual cone is proper and generating. By part (1)(e)
of Theorem 3.3.7, there exists an α > 0 such that X is α-max-normal. By [2,
Theorem 2.13(2)], X+ − X+ is weakly dense in X. Since X+ − X+ is convex, its
weak closure and norm closure coincide, and X+ − X+ is therefore norm dense in
X.

Corollary 3.6.5. Let X be a pre-ordered Banach space with a closed generating
cone. If X has a quasi-lattice as dual, then there exists an α > 0 such that X is
α-Ellis-Grosberg-Krein regular.

Proof. By the previous result, there exists a β > 0 such that X is β-max-normal.
The cone X+ was assumed to be generating, and therefore X is Andô-regular. By
Proposition 3.3.10 there exists an α > 0 such that X is α-Ellis-Grosberg-Krein
regular.

The following theorem provides sufficient conditions for a pre-ordered Banach
space to have a quasi-lattice as dual.

We recall that a normed space X is smooth if, for every x ∈ X with ‖x‖ = 1,
there exists a unique element φ ∈ X ′ with ‖φ‖ = 1 such that φ(x) = 1 [29, Definition
5.4.1, Corollary 5.4.3].
Theorem 3.6.6. If, for some α > 0, X is an α-normal smooth reflexive pre-ordered
Banach space with a closed cone such that X+ −X+ is dense in X, then its dual is
an υ-quasi-lattice.

If, in addition, X is approximately 1-conormal, its dual is a µ-quasi-lattice (and
its υ– and µ-quasi-lattice structures coincide).
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Proof. By [2, Corollary 2.14, Theorem 2.40], the dual cone is proper and generating
in X ′. That the dual cone is closed is elementary. By [29, Proposition 5.4.7], X ′
is strictly convex, since X was assumed to be smooth. Therefore X ′ satisfies the
hypotheses of Theorem 3.6.1, and is an υ-quasi-lattice.

If we make the extra assumption that X is approximately 1-conormal, then by
part (2)(d) of Theorem 3.3.7, X ′ is monotone. Then, by Theorem 3.5.12, X ′ is a
µ-quasi-lattice.

The following example shows that there exist υ-quasi-lattices that are not α-
normal for any α > 0. It cannot have a quasi-lattice as dual, nor is it the dual of a
quasi-lattice. Indeed, by Proposition 3.6.4 its dual is not a quasi-lattice. Moreover,
by part (2)(e) of Theorem 3.3.7, since the space is not α-normal for any α > 0, its
cone is not the dual cone of a pre-ordered Banach space with a closed generating
cone, and in particular, it is not the dual of a quasi-lattice.
Example 3.6.7. Consider the following subset of `2:

C :=

x ∈ `2 : x1 ≥

( ∞∑
m=2

1

m
x2
m

)1/2
 .

Clearly, C ∩ (−C) = {0} and λC ⊆ C for all λ ≥ 0. Also, by Minkowski’s
inequality, C + C ⊆ C so that we may conclude that C is a proper cone. For any
x ∈ `2, taking y := λ(1, 0, 0, . . .) ∈ C with λ ≥ |x1| +

(∑∞
m=2

1
mx

2
m

)1/2, we see x =
y− (y−x) ∈ C−C, so that C is generating in `2. Since the map ρ0 : `2 → R defined
by ρ0 : x 7→

(∑∞
m=2

1
mx

2
m

)1/2 is a continuous seminorm, the map ρ : x 7→ x1− ρ0(x)
is also continuous. Since C = ρ−1(R≥0), we conclude that C is closed. By Theorem
3.6.1, this space is an υ-quasi-lattice.

We claim that this space is not α-normal for any α > 0. It is sufficient to show,
for every α ≥ 1, that there exist x, y ∈ `2 with 0 ≤ x ≤ y, such that ‖x‖ > α‖y‖.
To this end, we set y := (2, 0, . . .). We define x as follows: let N 3 nα > (2α)2 and
x = (1, 0, . . . , 0,

√
nα, 0, . . .) with

√
nα occurring at the nα-th coordinate. We then

see that 0 ≤ x ≤ y, while

‖x‖ = (1 + nα)
1
2 > n

1
2
α > 2α = α‖y‖.

We conclude that this space is not α-normal for any α > 0.

3.7 A class of quasi-lattices with absolutely mono-
tone spaces of operators

In this section we show that a real Hilbert space H endowed with a Lorentz cone (de-
fined below) is a 1-absolutely Davies-Ng regular µ-quasi-lattice (that is not a Banach
lattice if dimH ≥ 3). Through an application of Theorem 3.4.2, this will resolve
the question posed in the introduction of whether there exist non-Banach lattice
pre-ordered Banach spaces X and Y for which B(X,Y ) is absolutely monotone.
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Results established in this section will be collected in Theorem 3.7.10. In par-
ticular it will be shown that ‖x‖ = ‖ dxe ‖ for all x ∈ H (which is analogous to the
identity ‖x‖ = ‖|x|‖ which holds for all elements x of a Banach lattice). Then, for
α > 0 and pre-ordered Banach spaces X and Y that are respectively approximately
α-absolutely conormal and α-absolutely normal, the spaces of operators B(X,H)
and B(H, Y ) are shown to be α-absolutely normal. Furthermore, if α = 1 (in partic-
ular if X and Y are Hilbert spaces endowed with Lorentz cones), then the operator
norms of B(X,H) and B(H, Y ) are positively attained.

We begin with the following lemma which outlines sufficient conditions for es-
tablishing 1-absolute Davies-Ng regularity of absolutely monotone quasi-lattices:
Lemma 3.7.1. Let X be an absolutely monotone quasi-lattice satisfying ‖x‖ =
‖ dxe ‖ for all x ∈ X. Then X is 1-absolutely Davies-Ng regular.

Proof. The fact that ‖x‖ = ‖ dxe ‖ for all x ∈ X implies that X is 1-absolutely
conormal. Therefore X is 1-absolutely Davies-Ng regular.

Every Banach lattice satisfies the hypotheses of the previous proposition. The
rest of this section will be devoted to proving that there exist quasi-lattices that are
not Banach lattices, but still satisfy the hypothesis of the previous proposition.
Definition 3.7.2. Let H be a real Hilbert space. For a norm-one element v ∈ H,
let P be the orthogonal projection onto {v}⊥. We define the Lorentz cone

Lv := {x ∈ H : 〈v|x〉 ≥ ‖Px‖}.

As in Example 3.6.7, it is elementary to see that this cone is closed, proper and
generating in H.

It is widely known that the Hilbert space R3 ordered by the Lorentz cone Le1 ⊆
R3 is not a Riesz space (cf. Example 3.5.4). This is actually true for arbitrary Hilbert
spaces endowed with a Lorentz cone as we will now proceed to show. The following
two lemmas will be used in the proof of Proposition 3.7.5 which establishes this fact.
Lemma 3.7.3. Let H be a real Hilbert space endowed with a Lorentz cone Lv where
v ∈ H is such that ‖v‖ = 1. If x ∈ Lv is such that 〈x|v〉 = ‖Px‖ and z1, z2 ∈ Lv are
such that x = z1 + z2, then z1, z2 ∈ {λx : λ ≥ 0}.

Proof. Let P be the orthogonal projection onto {v}⊥. If x = 0, since Lv is proper,
the statement is clear. Let 0 6= x ∈ Lv be such that 〈x|v〉 = ‖Px‖. Then 〈x|v〉 =
‖Px‖ > 0, else x = 0. Suppose z1,z2 ∈ Lv are such that x = z1 + z2. Then

〈x|v〉 = 〈z1 + z2|v〉 ≥ ‖Pz1‖+ ‖Pz2‖ ≥ ‖P (z1 + z2)‖ = ‖Px‖ = 〈x|v〉.

Therefore ‖Pz1‖+‖Pz2‖ = ‖Pz1+Pz2‖ = ‖Px‖ > 0, and hence Pz1 and Pz2 cannot
both be zero. We assume Pz1 6= 0, and then, by strict convexity of H, Pz2 = λPz1

for some λ ≥ 0. If 〈z1|v〉 > ‖Pz1‖ or 〈z2|v〉 > ‖Pz2‖, then 〈x|v〉 = 〈z1|v〉+ 〈z2|v〉 >
‖Pz1‖ + ‖Pz2‖ = ‖Px‖, contradicting the assumption that 〈x|v〉 = ‖Px‖. Hence,
since z1, z2 ∈ Lv, we must have 〈z1|v〉 = ‖Pz1‖ and 〈z2|v〉 = ‖Pz2‖, and therefore
〈z2|v〉 = ‖Pz2‖ = λ‖Pz1‖ = λ〈z1|v〉. Now, since 〈z2|v〉 = λ〈z1|v〉 and Pz2 = λPz1,
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we obtain z2 = 〈z2|v〉v+Pz2 = λz1, and hence x = z1 +z2 = (1+λ)z1. We conclude
that z1, z2 ∈ {λx : λ ≥ 0}.

Lemma 3.7.4. Let H be a real Hilbert space endowed with a Lorentz cone Lv where
v ∈ H is such that ‖v‖ = 1. If x ∈ Lv is such that 〈x|v〉 = ‖Px‖ and 0 ≤ y ≤ x,
then y ∈ {λx : λ ∈ [0, 1]}.

Proof. Since Lv is proper, this is clear if x = 0. If 0 ≤ y ≤ x 6= 0, then x = y+(x−y)
with y, (x−y) ∈ Lv, so that by the previous lemma y = λx for some λ ≥ 0. If λ > 1,
then x ≤ λx = y ≤ x, since Lv is proper and y = λx, implies x = y = 0 contradicting
the assumption x 6= 0. We conclude that λ ∈ [0, 1].

Proposition 3.7.5. Let H be a real Hilbert space endowed with a Lorentz cone Lv
where v ∈ H such that ‖v‖ = 1. If dim(H) ≥ 3, then H is not a Riesz space (and
hence not a Banach lattice).

Proof. Let P be the orthogonal projection onto {v}⊥ and {v, e1, e2} ⊆ H be any
orthonormal set. For t ∈ R, we have

{0, 2e1} ≤ e1 + te2 +
√
t2 + 1v =: zt.

We claim that each zt is a minimal upper bound of {0, 2e1}. We have 〈zt|v〉 = ‖Pzt‖,
and hence by the previous lemma, if {0, 2e1} ≤ y ≤ zt, we must have y = λzt for
some λ ∈ [0, 1]. If λ < 1, then λ

√
t2 + 1 = 〈y − 2e1|v〉 and

‖P (y − 2e1)‖2 = ‖P (λe1 + λte2 + λ
√
t2 + 1v − 2e1)‖2

= ‖(λ− 2)e1 + λte2‖2

= (λ− 2)2 + λ2t2

> 1 + λ2t2

> λ2 + λ2t2.

Hence 〈y − 2e1|v〉 = λ
√
t2 + 1 < ‖P (y − 2e1)‖, contradicting 2e1 ≤ y. Therefore we

must have λ = 1, and y = zt, and hence zt is a minimal upper bound of {0, 2e1} for
every t ∈ R. Clearly all zt are distinct, and therefore there exists no supremum of
{0, 2e1}.

Since every Hilbert space is strictly convex, and knowing that Lorentz cones are
closed proper and generating, we conclude from Theorem 3.6.1 that every Hilbert
space endowed with a Lorentz cone is an υ-quasi-lattice. We will now proceed to
show that these spaces are absolutely monotone. Once this has been established,
Theorem 3.5.12 will imply that they are in fact µ-quasi-lattices.

The following lemma will be applied in Propositions 3.7.7 and 3.7.9, which to-
gether will show that Hilbert spaces endowed with a Lorentz cones are in fact 1-
absolutely Davies-Ng regular.
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Lemma 3.7.6. Let H be a real Hilbert space endowed with a Lorentz cone Lv where
v ∈ H is such that ‖v‖ = 1. Let x ∈ H and Q be the orthogonal projection onto
span{x, v}. If {−x, x} ≤ y, then {−x, x} ≤ Qy.

Proof. Let P be the orthogonal projection onto {v}⊥ and Q the orthogonal projec-
tion onto span{x, v}. Let Q⊥ := id − Q. We note that ran(Id − P ) = span{v} ⊆
ran(Q), so that Id−P and Q commute, and hence P and Q also commute. Therefore,
from

〈v|Qy ± x〉 = 〈v|Qy +Q⊥y −Q⊥y ± x〉
= 〈v|y ± x〉 − 〈v|Q⊥y〉
= 〈v|y ± x〉
≥ ‖P (y ± x)‖
≥ ‖QP (y ± x)‖
= ‖P (Qy ±Qx)‖
= ‖P (Qy ± x)‖,

we conclude that Qy ≥ {−x, x}.

The following proposition, together with Theorem 3.5.12, will show that every
Hilbert space endowed with a Lorentz cone is in fact a µ-quasi-lattice.
Proposition 3.7.7. A real Hilbert space endowed with a Lorentz cone is absolutely
monotone.

Proof. Let H be a real Hilbert space ordered by a Lorentz cone Lv, where v ∈ H is a
norm-one element. Let P be the orthogonal projection onto {v}⊥. Let {−x, x} ≤ y
and let Q denote the orthogonal projection onto V := span{x, v}. By Lemma 3.7.6,
{−x, x} ≤ Qy.

If x ∈ span{v}, then Px = 0. Also V = span{v}, so that PQ = 0. Therefore
{−x, x} ≤ Qy implies 〈v|Qy ± x〉 ≥ ‖PQ(y ± x)‖ = ‖Px‖ = 0, and hence 〈v|Qy〉 ≥
|〈v|x〉|. Then ‖Qy‖ = |〈v|Qy〉| ≥ 〈v|Qy〉 ≥ |〈v|x〉| = ‖x‖, and hence ‖x‖ ≤ ‖Qy‖ ≤
‖y‖ as was to be shown.

If x /∈ span{v}, since 0 6= Px = x− 〈v|x〉v ∈ V , we see that

e± := (
√

2‖Px‖)−1(±Px+ ‖Px‖v)

are orthonormal elements of V ∩Lv. We claim that V ∩Lv = {λe++λ′e− : λ, λ′ ≥ 0}.
Let a ∈ V ∩ Lv. Since x /∈ span{v}, 0 6= Px ∈ V is orthogonal to v, and hence
{Px, v} is a basis of V . Then, by writing a = αPx+βv for some α, β ∈ R, we obtain
β = 〈a|v〉 ≥ ‖Pa‖ = |α|‖Px‖. Hence, by

〈a|e±〉 = (
√

2‖Px‖)−1〈αPx+ βv| ± Px+ ‖Px‖v〉
= (

√
2‖Px‖)−1(±α〈Px|Px〉+ β‖Px‖)

= (
√

2‖Px‖)−1(±α‖Px‖2 + β‖Px‖)
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≥ (
√

2‖Px‖)−1(±α‖Px‖2 + |α|‖Px‖2)

≥ 0,

we conclude that V ∩ Lv = {λe+ + λ′e− : λ, λ′ ≥ 0}. Now Qy ± x ∈ V ∩ Lv implies
〈Qy ± x|e±〉 ≥ 0, so that 〈Qy|e±〉 ≥ |〈x|e±〉|, and hence ‖x‖ ≤ ‖Qy‖ ≤ ‖y‖ as was
to be shown.

Remark 3.7.8. If x /∈ span{v} we note that (V, V ∩Lv) in the previous proposition
is isometrically order isomorphic to the Banach lattice {R2, ‖ · ‖2} with the standard
cone through mapping e+ ∈ V and e− ∈ V to (1, 0) =: e1 ∈ R2 and (0, 1) =: e2 ∈ R2

respectively.
We can now show that real Hilbert spaces endowed with Lorentz cones satisfy

the hypotheses of Lemma 3.7.1:
Proposition 3.7.9. Let H be a real Hilbert space endowed with a Lorentz cone.
Then ‖x‖ = ‖ dxe ‖ for all x ∈ H. Hence H is 1-absolutely conormal.

Proof. Let v ∈ H be a norm one element and order H with the Lorentz cone Lv.
We again denote the projection onto {v}⊥ by P . Let x ∈ H be arbitrary.

If x ≥ 0 or x ≤ 0, then, by Theorem 3.5.8 (6) and (8), dxe = x or dxe = −x,
respectively, so that ‖x‖ = ‖ dxe ‖.

It remains to show that ‖x‖ = ‖ dxe ‖ when neither x ≥ 0 nor x ≤ 0. Then
x /∈ span{v}. We define the two dimensional subspace V := span{x, v}, denote the
orthogonal projection onto V by Q, and define Q⊥ := Id − Q. By Lemma 3.7.6, if
{−x, x} ≤ w, then {−x, x} ≤ Qw.

When w /∈ V , we see that Q⊥w 6= 0 implies

‖w − x‖+ ‖w + x‖

=
√
‖Q(w − x)‖2 + ‖Q⊥(w − x)‖2 +

√
‖Q(w + x)‖2 + ‖Q⊥(w + x)‖2

=
√
‖Qw − x‖2 + ‖Q⊥w‖2 +

√
‖Qw + x‖2 + ‖Q⊥w‖2

> ‖Qw − x‖+ ‖Qw + x‖.

We conclude that dxe must be an element of V . Furthermore, by Proposition 3.7.7
and Theorem 3.5.12, H is a µ-quasi-lattice, and hence dxe ∈ V is a minimal upper
bound of {−x, x}.

Finally, V endowed with the cone Lv ∩ V is seen to be isometrically order iso-
morphic to {R2, ‖ · ‖2} with the standard cone (cf. Remark 3.7.8). Viewing V as
a Banach lattice, we notice that the Banach lattice absolute value |x| in V is the
only minimal upper bound for {−x, x} in H that is also an element of V . By the
argument in the previous paragraph, we conclude that dxe = |x|, and hence that
‖ dxe ‖ = ‖|x|‖ = ‖x‖, by invoking the Banach lattice property ‖|x|‖ = ‖x‖ in V .

We collect the results established in this section and some of their consequences
in the following theorem. We note that (8) below resolves the question alluded to
in the introduction of the existence pre-ordered Banach spaces X and Y , which are
not Banach lattices, while B(X,Y ) is absolutely monotone.
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Theorem 3.7.10. Let H be a real Hilbert space endowed with a Lorentz cone. Then:

(1) If dim(H) ≥ 3, then H is not a Riesz space (and hence not a Banach lattice).

(2) H is an υ-quasi-lattice.

(3) H is absolutely monotone.

(4) H is a µ-quasi-lattice (and its υ– and µ-quasi-lattice structures coincide).

(5) For every x ∈ H, ‖x‖ = ‖ dxe ‖. Hence H is 1-absolutely conormal.

(6) H is 1-absolutely Davies-Ng regular.

(7) If X and Y are pre-ordered Banach spaces with closed cones, with X ap-
proximately 1-absolutely conormal and Y absolutely monotone, then the op-
erator norms of both B(X,H) and B(H, Y ) are positively attained, i.e., ‖T‖ =
sup{‖Tx‖ : x ≥ 0, ‖x‖ = 1} for T ∈ B(X,H)+ or T ∈ B(H, Y )+. In particu-
lar, if H1 is another real Hilbert space endowed with a Lorentz cone, then the
operator norm of B(H,H1) is positively attained.

(8) If α > 0 and X and Y are pre-ordered Banach spaces with closed cones, with
X approximately α-absolutely conormal and Y α-absolutely normal, then both
B(X,H) and B(H, Y ) are α-absolutely normal. In particular, if H1 is another
real Hilbert space endowed with a Lorentz cone, then B(H,H1) is absolutely
monotone.

Proof. The assertion (1) is Proposition 3.7.5. The assertion (2) follows from Theorem
3.6.1. The assertion (3) was established in Proposition 3.7.7 and hence (4) follows
from Corollary 3.6.2. The assertion (5) was established in Proposition 3.7.9, and
hence (6) follows from Lemma 3.7.1. The assertion (7) follows from (6) and part
(2) of Theorem 3.4.6. The assertion (8) is then immediate from (6) and part (3) of
Theorem 3.4.2.
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