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Chapter 2

Right inverses of surjections
from cones onto Banach spaces

This chapter has been submitted for publication as M. de Jeu and M. Messerschmidt,
“Right inverses of surjections from cones onto Banach spaces”. It is available as
arXiv:1302.2822.

2.1 Introduction

Consider the following question, that arose in other research of the authors: Let
X be a real Banach space, ordered by a closed generating proper cone X+, and
let Ω be a topological space. Then the Banach space C0(Ω, X), consisting of the
continuous X-valued functions on Ω vanishing at infinity, is ordered by the natural
closed proper cone C0(Ω, X+). Is this cone also generating? If X is a Banach
lattice, then the answer is affirmative. Indeed, if f ∈ C0(Ω, X), then f = f+ − f−,
where f±(ω) := f(ω)± (ω ∈ Ω). Since the maps x 7→ x± are continuous, f± is
continuous, and since ‖f±(ω)‖ ≤ ‖f(ω)‖ (ω ∈ Ω), f± vanishes at infinity. Thus
a decomposition as desired has been obtained. For general X, the situation is not
so clear. The natural approach is to consider a pointwise decomposition as in the
Banach lattice case, but for this to work we need to know that at the level of X the
constituents x± in a decomposition x = x+ − x− can be chosen in a continuous and
simultaneously also bounded (in an obvious terminology) fashion, as x varies over
X. Boundedness is certainly attainable, due to the following classical result:

Theorem 2.1.1. (Andô’s Theorem [3]) Let X be a real Banach space ordered by a
closed generating proper cone X+ ⊆ X. Then there exists a constant K > 0 with
the property that, for every x ∈ X, there exist x± ∈ X+ such that x = x+ − x− and
‖x±‖ ≤ K‖x‖.

Continuity is not asserted, however. Hence we are not able to settle our question
in the affirmative via Andô’s Theorem alone and stronger results are needed. With
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22 Chapter 2: Right inverses of surjections from cones onto Banach spaces

Ω a compact Hausdorff space, it is a consequence of a result due to Asimow and
Atkinson [4, Theorem 2.3] that C(Ω, X+) is generating in C(Ω, X) when X+ is
closed and generating in X. A similar result due to Wickstead [45, Theorem 4.4]
establishes this for C0(Ω, X) when Ω is locally compact (cf. Remark 2.4.6). We will
also retrieve these results, but by a different method, namely by establishing the
general existence of a continuous bounded decompositions, analogous to that for
Banach lattices, as a special case of Theorem 2.4.5 below.

In fact, although the above question and results are in the context of ordered
Banach spaces, it will become clear in this paper that for these spaces one is merely
looking at a particular instance of more general phenomena. In short: if T : C →
X is a continuous additive positively homogeneous surjection from a closed not
necessarily proper cone in a Banach space onto a Banach space, then T has a well-
behaved right inverse, and (stronger) versions of theorems such as Andô’s, where
several cones in one space are involved, are then almost immediately clear. We will
now elaborate on this, and at the same time explain the structure of the proofs.

The usual notation to express that X+ is generating is to write X = X+ −X+,
but the actually relevant point turns out to be that X = X+ + (−X+) is a sum of
two closed cones: the fact that these are related by a minus sign is only a peculiarity
of the context. In fact, if X is the sum of possibly uncountably many closed cones,
which need not be proper (this is redundant in Andô’s Theorem), then it is possible
to choose a bounded decomposition: this is the content of the first part of Theorem
2.4.1. However, this is in itself a consequence of the following more fundamental
result, a special case of Theorem 2.3.2. Since a Banach space is a closed cone in
itself, it generalizes the usual Open Mapping Theorem for Banach spaces, which is
used in the proof.
Theorem 2.1.2. (Open Mapping Theorem) Let C be a closed cone in a real or
complex Banach space, not necessarily proper. Let X be a real or complex Banach
space, not necessarily over the same field as the surrounding space of C, and T :
C → X a continuous additive positively homogeneous map. Then the following are
equivalent:

(1) T is surjective;

(2) There exists some constant K > 0 such that, for every x ∈ X, there exists
some c ∈ C with x = Tc and ‖c‖ ≤ K‖x‖;

(3) T is an open map;

(4) 0 is an interior point of T (C).

As an illustration of how this can be applied, suppose X =
∑
i∈I Ci is the sum of

a finite (for the ease of formulation) number of closed not necessarily proper cones.
We let Y be the sum of |I| copies of X, and let C ⊂ Y be the direct sum of the
Ci’s. Then the natural summing map T : C → X is surjective by assumption, so
that part (2) of Theorem 2.1.2 provides a bounded decomposition. Andô’s Theorem
corresponds to the case where X is the image of X+ × (−X+) ⊂ X ×X under the
summing map.
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In this fashion, generalizations of Andô’s Theorem are obtained as a consequence
of an Open Mapping Theorem. However, this still does not resolve the issue of a
decomposition that is not only bounded, but continuous as well. A possible attempt
to obtain this would be the following: if T : Y → X is a continuous linear sur-
jection between Banach spaces (or even Fréchet spaces), then T has a continuous
right inverse, see [1, Corollary 17.67]. The proof is based on Michael’s Selection
Theorem, which we will recall in Section 2. Conceivably, the proof as in [1] could
be modified to yield a similar statement for a continuous surjective additive posi-
tively homogeneous T : C → X from a closed cone C in a Banach space onto X.
In that case, if X =

∑
i∈I Ci is a finite (say) sum of closed not necessarily proper

cones, the setup with product cone and summing map would yield the existence
of a continuous decomposition, but unfortunately this time there is no guarantee
for boundedness. Somehow the generalized Open Mapping Theorem as in Theorem
2.1.2 and Michael’s Selection Theorem must be combined. The solution lies in a
refinement of the correspondences to which Michael’s Selection Theorem is to be
applied, and take certain subadditive maps on C into account from the very be-
ginning. In the end, one of these maps will be taken to be the norm on C, and
this provides the desired link between the generalized Open Mapping Theorem and
Michael’s Selection Theorem, cf. the proof of Proposition 2.3.5. It is along these lines
that the following is obtained. It is a special case of Theorem 2.3.6 and, as may be
clear by now, it implies the existence of a continuous bounded (and even positively
homogeneous) decomposition if X =

∑
i∈I Ci. It also shows that, if T : Y → X is

a continuous linear surjection between Banach spaces, then it is not only possible
to choose a bounded right inverse for T (a statement equivalent to the usual Open
Mapping Theorem), but also to choose a bounded right inverse that is, in addition,
continuous and positively homogenous.
Theorem 2.1.3. Let X and Y be real or complex Banach spaces, not necessarily
over the same field, and let C be a closed not necessarily proper cone in Y . Let
T : C → X be a surjective continuous additive positively homogeneous map.

Then there exists a constant K > 0 and a continuous positively homogeneous
map γ : X → C, such that:

(1) T ◦ γ = idX ;

(2) ‖γ(x)‖ ≤ K‖x‖, for all x ∈ X.

The underlying Proposition 2.3.5 is the core of this paper. It is reworked into
the somewhat more practical Theorems 2.3.6 and 2.3.7, but this is all routine, as
are the applications in Section 2.4. For example, the following result (Corollary
2.4.2) is virtually immediate from Section 2.3. We cite it in full, not only because it
shows concretely how Andô’s Theorem figuring so prominently in our discussion so
far can be strengthened, but also to enable us to comment on the interpretation of
the various parts of this result and similar ones.
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Theorem 2.1.4. Let X be a real (pre)-ordered Banach space, (pre)-ordered by a
closed generating not necessarily proper cone X+. Let J be a finite set, possibly
empty, and, for all j ∈ J , let ρj : X × X → R be a continuous seminorm or a
continuous linear functional. Then:

(1) There exist a constant K > 0 and continuous positively homogeneous maps
γ± : X → X+, such that:

(a) x = γ+(x)− γ−(x), for all x ∈ X;

(b) ‖γ+(x)‖+ ‖γ−(x)‖ ≤ K‖x‖, for all x ∈ X.

(2) If K > 0 and αj ∈ R (j ∈ J) are constants, then the following are equivalent:

(a) For every ε > 0, there exist maps γ±ε : SX → X+, where SX := {x ∈ X :
‖x‖ = 1}, such that:

(i) x = γ+
ε (x)− γ−ε (x), for all x ∈ SX ;

(ii) ‖γ+
ε (x)‖+ ‖γ−ε (x)‖ ≤ (K + ε), for all x ∈ SX ;

(iii) ρj((γ+
ε (x), γ−ε (x)) ≤ (αj + ε), for all x ∈ SX and j ∈ J .

(b) For every ε > 0, there exist continuous positively homogeneous maps
γ±ε : X → X+, such that:

(i) x = γ+
ε (x)− γ−ε (x), for all x ∈ X;

(ii) ‖γ+
ε (x)‖+ ‖γ−ε (x)‖ ≤ (K + ε)‖x‖, for all x ∈ X;

(iii) ρj((γ+
ε (x), γ−ε (x)) ≤ (αj + ε)‖x‖, for all X and j ∈ J .

The existence of a bounded continuous positively homogeneous decomposition in
part (1) is of course a direct consequence of Theorem 2.1.3. Naturally, the argument
as for Banach lattices then shows that C0(Ω, X) = C0(Ω, X+) − C0(Ω, X+) for an
arbitrary topological space Ω, so that our original question has been settled in the
affirmative.

The equivalence under (2) has the following consequence: If there exist maps
γ± : SX → X+, such that x = γ+(x) − γ−(x), ‖γ+(x)‖ + ‖γ−(x)‖ ≤ K, and
ρj((γ

+(x), γ−(x)) ≤ αj , for all x ∈ SX and j ∈ J , then certainly maps as under
(2)(a) exist (take γ±ε = γ±, for all ε > 0), and hence a family of much better behaved
global versions exists as under (2)(b), at an arbitrarily small price in the constants.

The possibility to include the ρj ’s in part (2) (with similar occurrences in other
results) is a bonus from the refinement of the correspondences to which Michael’s
Selection Theorem is applied. For several issues, such as our original question con-
cerning C0(Ω, X), it will be sufficient to use part (1) and conclude that a continuous
bounded decomposition exists. In this paper we also include some applications of
part (2) with non-empty J . Corollary 2.4.3 shows that approximate α-conormality
of a (pre)-ordered Banach space is equivalent with continuous positively homoge-
neous approximate α-conormality, and Corollary 2.4.9 shows that approximate α-
conormality of X is inherited by various spaces of continuous X-valued functions on
a topological space.
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We emphasize that, although Banach spaces that are a sum of cones, and ordered
Banach spaces in particular, have played a rather prominent role in this introduction,
the actual underlying results are those in Section 2.3, valid for a continuous additive
positively homogeneous surjection T : C → X from a closed not necessarily proper
cone C in a Banach space onto a Banach space X. That is the heart of the matter.

This paper is organized as follows.
Section 2.2 contains the basis terminology and some preliminary elementary re-

sults. The terminology is recalled in detail, in order to avoid a possible misunder-
standing due to differing conventions.

In Section 2.3 the Open Mapping Theorem for Banach spaces and Michael’s
Selection Theorem are used to investigate surjective continuous additive positively
homogeneous maps T : C → X.

Section 2.4 contains the applications, rather easily derived from Section 2.3. Ba-
nach spaces that are a sum of closed not necessarily proper cones are approached via
the naturally associated closed cone in a Banach space direct sum and the summing
map. The results thus obtained are then in turn applied to a (pre)-ordered Banach
space X and to various spaces of continuous X-valued functions.

2.2 Preliminaries

In this section we establish terminology, include a few elementary results concerning
metric cones for later use, and recall Michael’s Selection Theorem.

If X is a normed space, then SX := {x ∈ X : ‖x‖ = 1} denotes its unit sphere.

2.2.1 Subsets of vector spaces

For the sake of completeness we recall that a non-empty subset A of a real vector
space X is star-shaped with respect to 0 if λx ∈ A, for all x ∈ A and 0 ≤ λ ≤ 1, and
that it is balanced if λx ∈ A, for all x ∈ A and −1 ≤ λ ≤ 1. A is absorbing in X if,
for all x ∈ X, there exists λ > 0 such that x ∈ λA. A is symmetric if A = −A.

The next rather elementary property will be used in the proof of Proposition
2.3.1.
Lemma 2.2.1. Let X be a real vector space and suppose A,B ⊆ X are star-shaped
with respect to 0 and absorbing. Then A ∩ B is star-shaped with respect to 0 and
absorbing.

Proof. It is clear that A∩B is star-shaped with respect to 0. Let x ∈ X, then, since
A is absorbing, x ∈ λA for some λ >0. The fact that A is star-shaped with respect
to 0 then implies that x ∈ λ′A for all λ′ ≥ λ. Likewise, x ∈ µB for some µ > 0, and
then x ∈ µ′B for all µ′ ≥ µ. Hence x ∈ max(λ, µ)(A ∩B).

A subset C of the real or complex vector space X is called a cone in X if
C + C ⊆ C and λC ⊆ C, for all λ ≥ 0. We note that we do not require C to be a
proper cone, i.e., that C ∩ (−C) = {0}.
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2.2.2 Cones
The cones figuring in the applications in Section 2.4 are cones in Banach spaces,
but one of the two main results leading to these applications, the Open Mapping
Theorem (Theorem 2.3.2), can be established for the following more abstract objects.
Definition 2.2.2. Let C be a set equipped with operations + : C × C → C and
· : R≥0 × C → C. Then C will be called an abstract cone if there exists an element
0 ∈ C, such that the following hold for all u, v, w ∈ C and λ, µ ∈ R≥0:

(1) u+ 0 = u;

(2) (u+ v) + w = u+ (w + v);

(3) u+ v = v + u;

(4) u+ v = u+ w implies v = w;

(5) 1u = u and 0u = 0;

(6) (λµ)u = λ(µu);

(7) (λ+ µ)u = λu+ µu;

(8) λ(u+ v)=λu+ λv.

Here we have written λ · u as λu for short, as usual.
The natural class of maps between two cones C1 and C2 consists of the additive

and positively homogeneous maps, i.e., the maps T : C1 → C2 such that T (u+ v) =
Tu+ Tv and T (λu) = λu, for all u, v ∈ C and λ ≥ 0.
Definition 2.2.3. A pair (C, d) will be called a metric cone if C is an abstract cone
and d : C × C → R≥0 is a metric, satisfying

d(0, λu) = λd(0, u), (2.2.1)
d(u+ v, u+ w) ≤ d(v, w), (2.2.2)

for every u, v, w ∈ C and λ ≥ 0 . A metric cone (C, d) is a complete metric cone if
it is a complete metric space.
Remark 2.2.4. (1) Once Michael’s Selection Theorem is combined with the Open

Mapping Theorem (Theorem 2.3.2), C will be a closed not necessarily proper
cone in a Banach space, and the metric will be induced by the norm. In
that case it is translation invariant, but for the Open Mapping Theorem as
such requiring (2.2.2) is already sufficient. The natural similar requirement
d(0, λu) ≤ λd(0, u), which is likewise sufficient for the proofs, is easily seen to
be actually equivalent to requiring equality as in (2.2.1) above.

(2) Although we will not use this, we note that, if (C, d) is a metric cone, then
+ : C × C → C is easily seen to be continuous, as is the map λ → λu from
R≥0 into C, for each u ∈ C.
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The following elementary results will be needed in the proof of Proposition 2.3.1.
Lemma 2.2.5. Let (C, d) be a metric cone as in Definition 2.2.2.

(1) If c1, . . . , cn ∈ C, then d(0,
∑n
i=1 ci) ≤

∑n
i=1 d(0, ci).

(2) Let X be a real or complex normed space and suppose T : C → X is positively
homogeneous and continuous at 0. Then T maps metrically bounded subsets
of C to norm bounded subsets of X

Proof. For the first part, using the triangle inequality and (2.2.2) we conclude that
d(0,

∑n
i=1 ci) ≤ d(0, cn) +d(cn,

∑n
i=1 ci) ≤ d(0, cn) +d(0,

∑n−1
i=1 ci), so the statement

follows by induction.
As to the second part, by continuity of T at zero there exists some δ > 0 such

that ‖Tc‖ < 1 holds for all c ∈ C satisfying d(0, c) < δ. If U ⊆ C is bounded, choose
r > 0 such that U ⊆ {c ∈ C : d(0, c) < r}. Since d(0, λu) = λd(0, u), for all u ∈ C
and λ ≥ 0, δr−1U ⊆ {c ∈ C : d(0, c) < δ}. Then by positive homogeneity of T ,
supu∈U ‖Tu‖ ≤ δ−1r <∞.

2.2.3 Correspondences
Our terminology and definitions concerning correspondences follow that in [1]. Let
A,B be sets. A map ϕ from A into the power set of B is called a correspondence
from A into B, and is denoted by ϕ : A � B. A selector for a correspondence
ϕ : A � B is a function σ : A → B such that σ(x) ∈ ϕ(x) for all a ∈ A. If A
and B are topological spaces, we say a correspondence ϕ is lower hemicontinuous
if, for every a ∈ A and every open set U ⊆ B with ϕ(a) ∩ U 6= ∅, there exists an
open neighborhood V of a in A such that ϕ(a′) ∩ U 6= ∅ for every a′ ∈ V . The
following result is the key to the proof of Proposition 2.3.4 concerning the existence
of continuous sections for surjections of cones onto normed spaces.
Theorem 2.2.6. (Michael’s Selection Theorem [1, Theorem 17.66]) Let ϕ : A� Y
be a correspondence from a paracompact space A into a real or complex Fréchet space
Y . If ϕ is lower hemicontinuous and has non-empty closed convex values, then it
admits a continuous selector.

2.3 Main results
In this section we establish our main results, Theorems 2.3.2, 2.3.6 and 2.3.7. Theo-
rem 2.3.2 is an Open Mapping Theorem for surjections from complete metric cones
onto Banach spaces; its proof is based on the usual Open Mapping Theorem. To-
gether with the technical Proposition 2.3.4 (based on Michael’s Selection Theorem)
it yields the key Proposition 2.3.5. This is then reworked into two more practical
results. The first of these, Theorem 2.3.6, guarantees the existence of continuous
bounded positively homogeneous right inverses, while the second, Theorem 2.3.7,
shows that the existence of a family of possibly ill-behaved local right inverses im-
plies the existence of a family well-behaved global ones.
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As before, if X is a normed space, then SX := {x ∈ X : ‖x‖ = 1} is its unit
sphere.

We start with the core of the proof of the Open Mapping Theorem, which employs
a certain Minkowski functional. The use of such functionals when dealing with cones
and Banach spaces goes back to Klee [27] and Andô [3].
Proposition 2.3.1. Let (C, d) be a complete metric cone as in Definition 2.2.2.
Let X be a real Banach space and T : C → X a continuous additive positively
homogeneous surjection. Let B := {c ∈ C : d(0, c) ≤ 1} denote the closed unit
ball around zero in C, and define V := T (B) ∩ (−T (B)). Then V is an absorbing
convex balanced subset of X and its Minkowski functional ‖ · ‖V : X → R, given by
‖x‖V := inf{λ > 0 : x ∈ λV }, for x ∈ X, is a norm on X that is equivalent to the
original norm on X.

Proof. It follows from Lemma 2.2.5 and Definition 2.2.3 that B := {c ∈ C : d(0, c) ≤
1} is convex. Hence T (B) is convex and contains zero, since T is additive and
positively homogeneous. Since 0 ∈ T (B), its convexity implies that T (B) is star-
shaped with respect to 0. Furthermore, T (B) is absorbing, as a consequence of the
surjectivity and positive homogeneity of T and (2.2.1). Thus T (B) is star-shaped
with respect to 0 and absorbing, and since this implies the same properties for
−T (B), Lemma 2.2.1 shows that V := T (B) ∩ (−T (B)) is star-shaped with respect
to 0 and absorbing. As V is clearly symmetric, its star-shape with respect to 0
implies that it is balanced. Furthermore, the convexity of T (B) implies that V is
convex. All in all, V is an absorbing convex balanced subset of the real vector space
X, and hence its Minkowski functional ‖ · ‖V is a seminorm by [40, Theorem 1.35].
Because T is continuous at 0, Lemma 2.2.5 implies that supy∈V ‖y‖ ≤ M for some
M > 0. If x ∈ X and λ > ‖x‖V , then the definition of ‖ · ‖V and the star-shape of
V with respect to 0 imply that x ∈ λV , so that ‖x‖ ≤ λM . Hence

‖x‖ ≤M‖x‖V (x ∈ X). (2.3.1)

We conclude that ‖ · ‖V is a norm on X. In view of (2.3.1), the equivalence of ‖ · ‖V
and ‖ · ‖ is an immediate consequence of the Bounded Inverse Theorem for Banach
spaces, once we know that (X, ‖ ·‖V ) is complete. We will now proceed to show this,
using the completeness of (C, d).

To this end, it suffices to show ‖·‖V -convergence of all ‖·‖V -absolutely convergent
series. Let {xi}∞i=1 be a sequence in X such that

∑∞
i=1 ‖xi‖V < ∞. Since ‖x‖ ≤

M‖x‖V for all x ∈ X,
∑∞
i=1 ‖xi‖ < ∞ also holds, hence by completeness of X the

‖ · ‖-sum x0 :=
∑∞
i=1 xi exists. We claim that

∥∥∥x0 −
∑N−1
i=1 xi

∥∥∥
V
→ 0 as N → ∞,

i.e., that x0 is also the ‖ · ‖V -sum of this series.
In order to establish this, we start by noting that, for x ∈ X, there exists x′ ∈ V

such that x = 2‖x‖V x′. This is clear if ‖x‖V = 0. If ‖x‖V 6= 0, then 2‖x‖V > ‖x‖V
and, as already observed earlier, this implies that x ∈ 2‖x‖V V . Therefore for every
i ∈ N there exists x′i ∈ V satisfying xi = 2‖xi‖V x′i. Since V ⊂ T (B), for every i ∈ N
there exists bi ∈ B such that Tbi = x′i, so that xi = 2‖xi‖V Tbi = T (2‖xi‖V bi). Note
that d(0, 2‖xi‖V bi) = 2‖xi‖V d(0, bi) ≤ 2‖xi‖V .
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From (2.2.2) and Lemma 2.2.5 it then follows that, for any fixed N ∈ N and all
n,m ∈ N with N ≤ m ≤ n,

d

(
m∑
i=N

2‖xi‖V bi,
n∑

i=N

2‖xi‖V bi

)
≤ d

(
0,

n∑
i=m+1

2‖xi‖V bi

)

≤
n∑

i=m+1

d(0, 2‖xi‖V bi)

≤
n∑

i=m+1

2‖xi‖V .

We conclude that, for any fixed N ∈ N, {
∑n
i=N 2‖xi‖V bi}

∞
n=N

is a Cauchy sequence
in (C, d) and hence, by completeness, converges to some cN ∈ C. Using Lemma
2.2.5 again we find that

d(0, cN ) = lim
n→∞

d

(
0,

n∑
i=N

2‖xi‖V bi

)
≤ lim sup

n→∞

n∑
i=N

d(0, 2‖xi‖V bi) ≤
∞∑
i=N

2‖xi‖V ,

so that cN ∈ (
∑∞
i=N 2‖xi‖V )B, as a consequence of (2.2.1). By the continuity,

additivity and positive homogeneity of T , TcN = limn→∞ T (
∑n
i=N 2‖xi‖V bi) =

limn→∞
∑n
i=N T (2‖xi‖V bi) = limn→∞

∑n
i=N xi =

∑∞
i=N xi with respect to the ‖ ·‖-

topology. Hence

x0 −
N−1∑
i=1

xi =

∞∑
i=N

xi = TcN ∈

( ∞∑
i=N

2‖xi‖V

)
T (B).

Similarly, the inclusion V ⊂ −T (B) implies that, for every i ∈ N, there exists b̃i ∈ B
such that −T b̃i = x′i. Then c̃N = limn→∞

∑n
i=N 2‖xi‖V b̃i exists for all N ∈ N,

c̃N ∈ (
∑∞
i=N 2‖xi‖V )B, and T c̃N = −

∑∞
i=N xi, so that

x0 −
N−1∑
i=1

xi =

∞∑
i=N

xi = −T c̃N ∈

( ∞∑
i=N

2‖xi‖V

)
(−T (B)).

We conclude that x0 −
∑N−1
i=1 xi ∈ (

∑∞
i=N 2‖xi‖V )V . Therefore,∥∥∥∥∥x0 −

N−1∑
i=1

xi

∥∥∥∥∥
V

≤
∞∑
i=N

2‖xi‖V → 0

as N →∞, and hence (X, ‖ · ‖V ) is complete.
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The Open Mapping Theorem is now an easy consequence.

Theorem 2.3.2. (Open Mapping Theorem) Let (C, d) be a complete metric cone
as in Definition 2.2.2; for example, C could be a closed not necessarily proper cone
in a Banach space. Let X be a real or complex Banach space and T : C → X a
continuous additive positively homogeneous map. Then the following are equivalent:

(1) T is surjective;

(2) There exists some constant K > 0 such that, for every x ∈ X, there exists
some c ∈ C with x = Tc and d(0, c) ≤ K‖x‖;

(3) T is an open map;

(4) 0 is an interior point of T(C).

Proof. Given the nature of the statements in (1)-(4), we may assume that X is a
real Banach space, by viewing a complex one as such if necessary. We first prove
that (1) implies (2). By Proposition 2.3.1, there exists a constant L > 0 such that
‖x‖V ≤ L‖x‖, for all x ∈ X. If ‖x‖ 6= 0, then 2L‖x‖ > L‖x‖ ≥ ‖x‖V . Hence
x ∈ 2L‖x‖V , which is also trivially true if x = 0. In particular, for all x ∈ X
there exists some c ∈ B such that x = 2L‖x‖T (c). Then x = T (2L‖x‖c), and
d(0, 2L‖x‖c) = 2L‖x‖d(0, c) ≤ 2L‖x‖.

Next, we prove that (2) implies (3). Let U ⊆ C be an open set, and let x ∈ T (U)
be arbitrary with b ∈ U satisfying Tb = x. Since U is open, there exists some r > 0
such that W := {c ∈ C : d(b, c) < r} is contained in U . We define W ′ := {c ∈ C :
d(0, c) < r}. Then b + W ′ ⊆ W , since d(b, b + w′) ≤ d(0, w′) < r for all w′ ∈ W ′.
Now, by hypothesis, for every x′ ∈ X with ‖x′‖ < rK−1 there exists some w′ ∈ W ′
with Tw′ = x′. With BX := {x ∈ X : ‖x‖ < 1}, by additivity of T , it follows that
x+ rK−1BX ⊆ T (b+W ′) ⊆ T (W ) ⊆ T (U). We conclude that T (U) is open.

That (3) implies (4) is trivial, and (4) implies (1) by the positive homogeneity of
T .

Remark 2.3.3. (1) Since a real or complex Banach space is a complete metric
cone, Theorem 2.3.2 generalizes the Open Mapping Theorem for Banach spaces
that was used in the proof of the preparatory Proposition 2.3.1.

(2) If C is a closed cone in a Banach space, X is a topological vector space, and
T : C → X is continuous, additive and positively homogeneous, then we can
conclude that T is an open map, provided that we know beforehand that the
closure of {Tc : c ∈ C, ‖c‖ ≤ 1} is a neighborhood of 0 in X. This follows
from [36, Theorem 1] . Since we do not have such a hypothesis, this result
does not imply ours. The difference is not only that in our case T is assumed
to be surjective, but, more fundamentally, that our image space is in fact a
Banach space, for which an Open Mapping Theorem is already known to hold
that serves as a stepping stone for the more general result.
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(3) In [43] an Open Mapping Theorem is established for maps between two abstract
cones in a certain class, provided that we know beforehand that these maps
satisfy a so-called almost-openess condition. Since we do not have such a
hypothesis, this result does not imply ours. Again the difference lies in the
image space: in our context this is not just a cone, but actually a full Banach
space with accompanying Open Mapping Theorem.

We will now proceed with the second basic result, Proposition 2.3.4, which is
concerned with families of continuous right inverses for a surjective (this follows
from the hypotheses) map.
Proposition 2.3.4. Let X be a real or complex normed space and let Y be a real
or complex topological vector space, not necessarily Hausdorff and not necessarily
over the same field as X, with C ⊆ Y a closed not necessarily proper cone. Let I
be a finite set, possibly empty. For each i ∈ I, let αi ∈ R and let ρi : C → R be a
continuous subadditive positively homogeneous map.

Suppose that T : C → X is a continuous additive positively homogeneous map
with the property that, for every ε > 0, there exists a map σε : SX → C, such that:

(1) T ◦ σε = idSX
;

(2) ρi(σε(x)) ≤ αi + ε, for all x ∈ SX and i ∈ I;

(3) σε(SX) is bounded in Y .

Then, for every ε > 0, the correspondence ϕε : SX � Y , defined by

ϕε(x) := {y ∈ C : Ty = x, ρi(y) ≤ αi + ε for all i ∈ I} (x ∈ SX),

has non-empty closed convex values, and is lower hemicontinuous on SX .
If Y is a Fréchet space, there exist continuous maps σ′ε : SX → C, for all ε > 0,

satisfying:

(a) T ◦ σ′ε = idSX
;

(b) ρi(σ′ε(x)) ≤ αi + ε, for all x ∈ SX and i ∈ I.

If ε > 0 and σ′ε(SX) is bounded in Y in the sense of topological vector spaces, then
σ′ε can be extended to a continuous positively homogeneous map σ′ε : X → C on the
whole space, satisfying:

(a) T ◦ σ′ε = idX ;

(b) ρi(σ′ε(x)) ≤ (αi + ε)‖x‖ , for all x ∈ X and i ∈ I.

Before embarking on the proof, let us point out that the salient point lies in the
fact that the right inverses σ′ε of T on the unit sphere of X are continuous, whereas
this is not required for the original family of the σε’s, and that this extra property can
be achieved retaining the relevant inequalities. It is for this that Michael’s Selection
Theorem is used. The subsequent conditional extension of such a σ′ε to the whole
space is rather trivial.
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Furthermore, we note that, although in the applications we have in mind the
constants αi will be positive and each ρi will be the restriction to C of a continuous
seminorm or (if Y is a Banach space) a continuous real-linear functional on the whole
space Y , the present proof does not require this.

Proof. Let ε > 0 be arbitrary. Since σε(x) ∈ ϕε(x), for all x ∈ SX , ϕε is non-empty-
valued. By continuity of T and the ρi’s, ϕε is closed-valued. Since T is affine on the
convex set C, and each ρi, if any, is subadditive and positively homogeneous, ϕε is
convex-valued.

We will now show that ϕε is lower hemicontinuous, for any fixed ε > 0. To this
end, let x ∈ SX be arbitrary, and let U ⊆ Y be open such that ϕε(x) ∩ U 6= ∅.

We start by establishing that there exists some y ∈ ϕε(x) ∩ U such that ρi(y) <
αi + ε, for all i ∈ I (if any), where the inequality that is valid for σε(x) has been
improved to strict inequality for y. As to this, choose y′ in the non-empty set
ϕε(x) ∩ U , and define yt := tσε/2(x) + (1 − t)y′, for t ∈ [0, 1]. Then yt ∈ C and
Tyt = x, for all t ∈ [0, 1]. Now, for all t ∈ (0, 1] and all i ∈ I,

ρi(yt) ≤ tρi(σε/2(x)) + (1− t)ρi(y′)

≤ t
(
αi +

ε

2

)
+ (1− t) (αi + ε)

< t (αi + ε) + (1− t) (αi + ε)

= (αi + ε) .

Since U is open, there exists some t0 > 0 such that y := yt0 ∈ U . Then y is as
required.

Having found and fixed this y, we define η := mini∈I{αi+ε−ρi(y)} > 0 if I 6= ∅,
and η := 1 if I = ∅; here we use that I is finite.

Next, let W ⊆ Y be an open neighborhood of zero such that y + W ⊆ U .
Since ση/2(SX) is bounded by assumption, we can fix some 0 < r ≤ 1 such that
r′ση/2(SX) ⊆W , for all 0 ≤ r′ < r, and αir′ < η/2, for all 0 ≤ r′ < r and all i ∈ I.

Now, if x′ ∈ X satisfies 0 < ‖x′‖ < r, then

y + ‖x′‖ση/2
(

x′

‖x′‖

)
∈ C,

T

(
y + ‖x′‖ση/2

(
x′

‖x′‖

))
= x+ x′,

and
y + ‖x′‖ση/2

(
x′

‖x′‖

)
∈ y + ‖x′‖ση/2(SX) ⊂ y +W ⊂ U.

Furthermore, for such x′ and for i ∈ I we find, using αi‖x′‖ < η/2 and ‖x′‖ < r ≤ 1,
that

ρi

(
y + ‖x′‖ση/2

(
x′

‖x′‖

))
≤ ρi(y) + ‖x′‖ρi

(
ση/2

(
x′

‖x′‖

))
≤ ρi(y) + ‖x′‖

(
αi +

η

2

)
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< ρi(y) +
η

2
+
η

2
= ρi(y) + η

≤ ρi(y) + αi + ε− ρi(y)

= αi + ε.

Therefore, if x+ x′ ∈ SX with 0 < ‖x′‖ < r, we conclude that

y + ‖x′‖ση/2(x′/‖x′‖) ∈ ϕε(x+ x′) ∩ U.

Hence ϕε is lower hemicontinuous on SX , as was to be proved.
If Y is a Fréchet space then, since SX as a metric space is paracompact [42],

Michael’s Selection Theorem (Theorem 2.2.6), applied to each individual ϕε, supplies
a family of continuous maps σ′ε : SX → C, such that σε(x) ∈ ϕε(x), for all ε > 0
and all x ∈ SX . Then the σ′ε are as required.

If ε > 0 and σ′ε(SX) happens to be bounded in the topological vector space Y ,
we extend σ′ε : SX → C to a positively homogeneous C-valued map on all of X, also
denoted by σ′ε, by defining

σ′ε(x) :=

{
0 for x = 0;

‖x‖σ′ε
(

x
‖x‖

)
for x 6= 0.

The continuity of σ′ε at 0 then follows from the boundedness of σ′ε(SX), and at other
points it is immediate. It is easily verified that such a global σ′ε has the properties
as claimed.

Combination of Theorem 2.3.2 and Proposition 2.3.4 yields the following key
result on right inverses of surjections from cones onto Banach spaces. The structure
of the proofs makes it clear that it is ultimately based on the Open Mapping Theorem
for Banach spaces and Michael’s Selection Theorem.
Proposition 2.3.5. Let X and Y be real or complex Banach spaces, not necessarily
over the same field, and let C be a closed not necessarily proper cone in Y . Let
T : C → X be a surjective continuous additive positively homogeneous map.

Furthermore, let J be a finite set, possibly empty, and, for all j ∈ J , let ρj : C →
R be a continuous subadditive positively homogeneous map. For example, each ρj
could be the restriction to C of a globally defined continuous seminorm or continuous
real-linear functional.

(1) If ρj is bounded from above on SY ∩C, for all j ∈ J , then there exist constants
K > 0, αj ∈ R (j ∈ J), and a map γ : SX → C, such that:

(a) T ◦ γ = idSX
;

(b) ‖γ(x)‖ ≤ K, for all x ∈ SX ;
(c) ρj(γ(x)) ≤ αj, for all x ∈ SX and j ∈ J .
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(2) If K > 0, αj ∈ R (j ∈ J), and γ : SX → C satisfy (a), (b) and (c) in part (1),
then, for every ε > 0, there exists a continuous positively homogeneous map
γε : X → C such that:

(a) T ◦ γε = idX ;

(b) ‖γε(x)‖ ≤ (K + ε)‖x‖, for all x ∈ X;

(c) ρj(γ(x)) ≤ (αj + ε)‖x‖, for all x ∈ X and j ∈ J .

Proof. As to the first part, we start by applying part (2) of Theorem 2.3.2 and obtain
K > 0 and a map γ : SX → C, such that T ◦ γ = idSX

and ‖γ(x)‖ ≤ K (x ∈ SX).
If j ∈ J , and βj ∈ R is such that ρj(c) ≤ βj for all c ∈ SY ∩ C, where we may

assume that βj ≥ 0, then ρj(γ(x)) ≤ Kβj , for all x ∈ SX . Indeed, this is obvious if
γ(x)=0, and if γ(x) 6= 0 we have

ρj (γ(x)) = ‖γ(x)‖ρj
(

γ(x)

‖γ(x)‖

)
≤ Kβj .

The existence of the αj := Kβj is then clear.
As to the second part, suppose that K > 0, αj ∈ R (j ∈ J) and γ : SX → C

satisfy (a), (b) and (c) in part (1). We augment J to I := J ∪{‖ ‖}, where we choose
an index symbol ‖ ‖ /∈ J , and let ρ‖ ‖(c) := ‖c‖, for c ∈ C, and put α‖ ‖ := K.
We can now apply Proposition 2.3.4 with σε = γ for all ε > 0, since its hypotheses
(1), (2) and (3) are then satisfied. The continuous σ′ε : SX → C as furnished by
Proposition 2.3.4 are, in particular, such that ρ‖ ‖(σ′ε(x)) ≤ α‖ ‖ + ε, i.e., such that
‖σ′ε(x)‖ ≤ K + ε, for all x ∈ SX . Hence each of the sets σ′ε(SX) is bounded in Y ,
and the last part of Proposition 2.3.4 applies, yielding global σ′ε : X → C that can
be taken as the required γε.

Let us remark explicitly that the αj ’s need not be non-negative and that in part
(2) the ρj ’s are not required to be bounded from above on SY ∩C as in part (1), but
rather on γ(SX) (as a consequence of the hypothesized validity of (1)(c)), which is
a weaker hypothesis.

We extract two practical consequences from Proposition 2.3.5. First of all, if
the ρj ’s are bounded from above on SY ∩ C then part (1) of Proposition 2.3.5 is
applicable and its conclusion shows that the hypothesis of part (2) are satisfied.
Taking ε = 1, say, we therefore have the following.

Theorem 2.3.6. Let X and Y be real or complex Banach spaces, not necessarily
over the same field, and let C be a closed not necessarily proper cone in Y . Let
T : C → X be a surjective continuous additive positively homogeneous map.

Furthermore, let J be a finite set, possibly empty, and, for all j ∈ J , let ρj :
C → R be a continuous subadditive positively homogeneous map that is bounded
from above on SY ∩ C. For example, each ρj could be the restriction to C of a
globally defined continuous seminorm or continuous real-linear functional.
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Then there exist constants K > 0 and αj ∈ R (j ∈ J) and a continuous positively
homogeneous map γ : X → C, such that:

(1) T ◦ γ = idX ;

(2) ‖γ(x)‖ ≤ K‖x‖, for all x ∈ X;

(3) ρj(γ(x)) ≤ αj‖x‖, for all x ∈ X and j ∈ J .
The next consequence of Proposition 2.3.5 states that the existence of a family

of possibly ill-behaved right inverses on the unit sphere is actually equivalent with
the existence of a family of well-behaved global ones. Note that, compared with
Theorem 2.3.6, the boundedness assumption from above for the ρj ’s on SY ∩C has
been replaced with the assumptions (1)(c) and (2)(c) below.
Theorem 2.3.7. Let X and Y be real or complex Banach spaces, not necessarily
over the same field, and let C be a closed not necessarily proper cone in Y . Let
T : C → X be a surjective continuous additive positively homogeneous map.

Furthermore, let J be a finite set, possibly empty, and, for all j ∈ J , let ρj : C →
R be a continuous subadditive positively homogeneous map. For example, each ρj
could be the restriction to C of a globally defined continuous seminorm or continuous
real-linear functional.

If K > 0 and αj ∈ R (j ∈ J) are constants, then the following are equivalent:

(1) For every ε > 0, there exists a map γε : SX → C, such that:

(a) T ◦ γε = idSX
;

(b) ‖γε(x)‖ ≤ K + ε, for all x ∈ SX ;
(c) ρj(γε(x)) ≤ αj + ε, for all x ∈ SX and j ∈ J .

(2) For every ε > 0, there exists a continuous positively homogeneous map γε :
X → C such that:

(a) T ◦ γε = idX ;
(b) ‖γε(x)‖ ≤ (K + ε)‖x‖, for all x ∈ X;
(c) ρj(γε(x)) ≤ (αj + ε)‖x‖, for all x ∈ X and j ∈ J .

Proof. Clearly the second part implies the first. For the converse implication, let
ε > 0 be given. Then, by assumption, there exists a map (we add accents to avoid
notational confusion) γ′ε/2 : SX → C, such that:

(1) T ◦ γ′ε/2 = idSX
;

(2) ‖γ′ε/2(x)‖ ≤ K + ε/2, for all x ∈ SX ;

(3) ρj(γ′ε/2(x)) ≤ αj + ε/2, for all x ∈ SX and j ∈ J .

We can now apply part (2) of Proposition 2.3.5, with K replaced with K + ε/2,
αj with αj + ε/2, γ with γ′ε/2, and ε with ε/2. The map γε/2 as furnished by part
(2) of Proposition 2.3.5 can then be taken as the map γε in part (2) of the present
Theorem.
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2.4 Applications
By varying C and the ρj ’s various types of consequences of Theorems 2.3.6 and 2.3.7
can be obtained, and we collect some in the present section, considering situations
where the ρj ’s are restrictions to C of globally defined continuous seminorms or
continuous real-linear functionals. This seems to be a natural context to work in,
but we note that it is not required as such by these two underlying Theorems, nor
by the key Proposition 2.3.5, so that applications of another type are conceivable.

As in earlier sections, if X is a normed space, then SX := {x ∈ X : ‖x‖ = 1} is
its unit sphere.

To start with, Theorems 2.3.6 and 2.3.7 are clearly applicable when T : C → X
is the restriction to C of a global continuous linear map T : Y → X and (as already
mentioned in these Theorems) each of the ρj ’s is the restriction of a globally defined
continuous seminorm or continuous real-linear functional. Furthermore, Y is a closed
cone in itself, so that these Theorems can be specialized to yield statements on well-
behaved right inverses for continuous linear surjections between Banach spaces. For
reasons of space, we refrain from explicitly formulating all these quite obvious special
cases.

Instead, we give applications to the internal structure of a Banach space that
is a sum of closed not necessarily proper cones, and to the structure of spaces of
continuous functions with values in such a Banach space. Thus we return to the to
the improvements of Andô’s Theorem and our original motivating question alluded
to in the introduction.

The following result applies, in particular, when X =
∑n
i=1 Ci is the sum of a

finite number of closed not necessarily proper cones. In that case, the Banach space
Y in the following Theorem is the direct sum of n copies of X.
Theorem 2.4.1. Let X be a real or complex Banach space. Let I be a non-empty
set, possibly uncountable, and let {Ci}i∈I be a collection of closed not necessarily
proper cones in X, such that every x ∈ X can be written as an absolutely convergent
series x =

∑
i∈I ci, where ci ∈ Ci, for all i ∈ I.

Let Y = `1(I,X) be the `1-direct sum of |I| copies of X, and let C be the
natural closed cone in the Banach space Y , consisting of those elements where the
i-th component is in Ci. Finally, let J be a finite set, possibly empty, and, for
all j ∈ J , let ρj : Y → R be a continuous seminorm or a continuous real-linear
functional.

Then:

(1) There exist a constant K > 0 and a continuous positively homogeneous map
γ : X → C with continuous positively homogeneous component maps γi : X →
Ci (i ∈ I), such that:

(a) x =
∑
i∈I γi(x), for all x ∈ X;

(b)
∑
i∈I ‖γi(x)‖ ≤ K‖x‖, for all x ∈ X.
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(2) If K > 0 and αj ∈ R (j ∈ J) are constants, then the following are equivalent:

(a) For every ε > 0, there exists a map γε : SX → C with component maps
γε,i : SX → Ci (i ∈ I), such that:

(i) x =
∑
i∈I γε,i(x), for all x ∈ SX ;

(ii)
∑
i∈I ‖γε,i(x)‖ ≤ (K + ε), for all x ∈ SX ;

(iii) ρj(γε(x)) ≤ (αj + ε), for all x ∈ SX and j ∈ J .

(b) For every ε > 0, there exists a continuous positively homogeneous map
γε : X → C with continuous positively homogeneous component maps
γε,i : X → Ci (i ∈ I), such that:

(i) x =
∑
i∈I γε,i(x), for all x ∈ X;

(ii)
∑
i∈I ‖γε,i(x)‖ ≤ (K + ε)‖x‖, for all x ∈ X;

(iii) ρj(γε(x)) ≤ (αj + ε)‖x‖, for all x ∈ X and j ∈ J .

Proof. Let T : C → X be the canonical summing map. Then Theorem 2.3.6 yields
part (1), and Theorem 2.3.7 yields part (2).

In order to illustrate Theorem 2.4.1 we consider the situation where X is a
Banach space, (pre)-ordered by a closed not necessarily proper cone X+. If X+

is generating in the sense of (pre)-ordered Banach spaces, i.e., if X = X+ − X+,
and if X+ is proper, then Andô’s Theorem (Theorem 2.1.1) applies. On the other
hand, Theorem 2.4.1, also yields this result (and an even stronger one) by writing
X = X+ + (−X+) as the sum of two closed cones, coincidentally related by a minus
sign. For convenience we formulate the result explicitly in the usual notation with
minus signs.
Corollary 2.4.2. Let X be a real (pre)-ordered Banach space, (pre)-ordered by a
closed generating not necessarily proper cone X+. Let J be a finite set, possibly
empty, and, for all j ∈ J , let ρj : X × X → R be a continuous seminorm or a
continuous linear functional. Then:

(1) There exist a constant K > 0 and continuous positively homogeneous maps
γ± : X → X+, such that:

(a) x = γ+(x)− γ−(x), for all x ∈ X;

(b) ‖γ+(x)‖+ ‖γ−(x)‖ ≤ K‖x‖, for all x ∈ X.

(2) If K > 0 and αj ∈ R (j ∈ J) are constants, then the following are equivalent:

(a) For every ε > 0, there exist maps γ±ε : SX → X+, such that:

(i) x = γ+
ε (x)− γ−ε (x), for all x ∈ SX ;

(ii) ‖γ+
ε (x)‖+ ‖γ−ε (x)‖ ≤ (K + ε), for all x ∈ SX ;

(iii) ρj((γ+
ε (x), γ−ε (x)) ≤ (αj + ε), for all x ∈ SX and j ∈ J .
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(b) For every ε > 0, there exist continuous positively homogeneous maps
γ±ε : X → X+, such that:

(i) x = γ+
ε (x)− γ−ε (x), for all x ∈ X;

(ii) ‖γ+
ε (x)‖+ ‖γ−ε (x)‖ ≤ (K + ε)‖x‖, for all x ∈ X;

(iii) ρj((γ+
ε (x), γ−ε (x)) ≤ (αj + ε)‖x‖, for all X and j ∈ J .

Proof. We apply Theorem 2.4.1 with I = {1, 2}, C1 = X+ and C2 := −X+, and
then let γ+ = γ1 and γ− = −γ2 in part (1), and γ+

ε = γε,1 and γ−ε = −γε,2 in part
(2)

We continue in the context of a real (pre)-ordered normed space X ordered by
a closed generating not necessarily proper cone X+. If α > 0, then we will say that
X is

(1) α-conormal if, for each x ∈ X, there exist x± ∈ X+, such that x = x+ − x−
and ‖x+‖ ≤ α‖x‖;

(2) approximately α-conormal if X is (α+ ε)-conormal, for all ε > 0.

Andô’s Theorem is equivalent to asserting that every real Banach space, ordered by a
closed generating proper cone, is α-conormal for some α > 0. Clearly, α-conormality
implies approximate α-conormality. What is less obvious is that approximate α-
conormality is equivalent with a continuous positively homogeneous version of the
same notion, as is the content of the following consequence of Corollary 2.4.2.
Corollary 2.4.3. Let X be a real (pre)-ordered Banach space, (pre)-ordered by a
closed generating not necessarily proper cone X+, and let α > 0. Then the following
are equivalent:

(1) X is approximately α-conormal;

(2) For every ε > 0, there exist continuous positively homogeneous maps γ±ε : X →
X+, such that:

(a) x = γ+
ε (x)− γ−ε (x), for all x ∈ X;

(b) ‖γ+
ε (x)‖ ≤ (α+ ε)‖x‖, for all x ∈ X.

Proof. Clearly part (2) implies part (1). For the converse we will apply Corollary
2.4.2 with J = {1}, as follows. Let ε > 0 be given and fixed. For each x ∈ SX , the
(α + ε/2)-conormality of X implies that, for each x ∈ SX , we can choose and fix
γ±ε/2(x) ∈ X+, such that

x = γ+
ε/2(x)− γ−ε/2(x) (x ∈ SX),

and ‖γ+
ε/2(x)‖ ≤ (α+ ε/2). Then ‖γ−ε/2(x)‖ ≤ (α+ ε/2 + 1), so that

‖γ+
ε/2(x)‖+ ‖γ−ε/2(x)‖ ≤ (2α+ 1 + ε) (x ∈ SX).
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Define ρ1 : X ×X → R by ρ1((x1, x2)) := ‖x1‖, for x1, x2 ∈ X, so that

ρ1((γ+
ε/2(x), γ−ε/2(x)) = ‖γ+

ε/2(x)‖ ≤ α+ ε/2 ≤ α+ ε (x ∈ SX).

Thus we have found constantsK = 2α+1 > 0, α1 = α and maps γ±ε/2 : SX → X+

satisfying (i), (ii) and (iii) in part (2)(a) of Corollary 2.4.2. Hence the continuous
positively homogeneous maps as in part (2)(b) of Corollary 2.4.2 also exist, and
these are as required.

Remark 2.4.4. The term “conormality” is due to Walsh [44] and several variations
of it have been studied. For example, a real normed space X is said to be α-max-
conormal if, for each x ∈ X, there exist x± ∈ X+, such that x = x+ − x− and
max(‖x+‖, ‖x−‖) ≤ α‖x‖; X is approximately α-max-conormal if it is (α+ ε)-max-
conormal, for every ε > 0. As another example, X is said to be α-sum-conormal if,
for each x ∈ X, there exist x± ∈ X+, such that x = x+ − x− and ‖x+‖ + ‖x−‖ ≤
α‖x‖; X is approximately α-sum-conormal if it is (α + ε)-sum-conormal, for every
ε > 0. Just as Corollary 2.4.3 shows that approximately α-conormality implies its
continuous positively homogenous version, the elements x± figuring in the definitions
of approximately α-max-conormality and approximately α-sum-conormality can be
chosen in a continuous and positively homogeneous fashion. The proof is analogous
to the proof of Corollary 2.4.3, but now taking ρ1(x1, x2) := max(‖x1‖, ‖x2‖) for
approximately α-sum-conormality, and ρ1(x1, x2) := ‖x1‖+ ‖x2‖ for approximately
α-sum-conormality.

The dual notion of conormality is normality (terminology due to Krein [28]).
Several equivalences between versions of normality of an ordered Banach space X
and conormality of its dual (and vice versa) are known, but are scattered through-
out the literature under various names. The most complete account of normality-
conormality duality relationships may be found in [6].

Finally, we return to our original motivating context in the introduction, but in a
more general setting. As a rule, no additional hypotheses on the topological space Ω
are necessary to pass from X to a space of X-valued functions, since the arguments
are pointwise in X, but for some converse implications it is required that the vector
valued function space in question is non-zero. If Cc(Ω) 6= {0}, for example if Ω is a
non-empty locally compact Hausdorff space, then this assumption is always satisfied.
Theorem 2.4.5. Let X be a real or complex Banach space. Let I be a non-empty
set, possibly uncountable, and let {Ci}i∈I be a collection of closed not necessarily
proper cones in X, such that every x ∈ X can be written as an absolutely convergent
series x =

∑
i∈I ci, where ci ∈ Ci, for all i ∈ I. Let Ω be a topological space. Then

there exists a constant K > 0 with the property that, for each X-valued continuous
function f ∈ C(Ω, X) on Ω, there exist fi ∈ C(Ω, Ci) (i ∈ I), such that

(1) For every ω ∈ Ω, f(x) =
∑
i∈I fi(ω), and

∑
i∈I ‖fi(ω)‖ ≤ K‖f(ω)‖;

(2) ‖fi‖∞ ≤ K‖f‖∞, for all i ∈ I, where the right hand side, or both the left hand
side and the right hand side, may be infinite;
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(3) The support of each fi is contained in that of f ;

(4) If f vanishes at infinity, then so does each fi;

(5) If ω1, ω2 ∈ Ω and λ1, λ2 ≥ 0 are such that λ1f(ω1) = λ2f(ω2), then λ1fi(ω1) =
λ2fi(ω2), for all i ∈ I.

In particular, if I is finite, so that X =
∑
i∈I Ci, then we can write the following

vector spaces as the sum of cones naturally associated with the Ci, where the cones
are closed in the last three normed spaces:

(1) C(Ω, X) =
∑
i∈I C(Ω, Ci) for the continuous X-valued functions on Ω;

(2) Cb(Ω, X) =
∑
i∈I Cb(Ω, Ci) for the bounded continuous X-valued functions on

Ω;

(3) C0(Ω, X) =
∑
i∈I C0(Ω, Ci) for the continuous X-valued functions on Ω van-

ishing at infinity;

(4) Cc(Ω, X) =
∑
i∈I Cc(Ω, Ci) for the compactly supported continuous X-valued

functions on Ω.

Proof. We apply part (1) of Theorem 2.4.1 and let fi := γi ◦f (i ∈ I). This supplies
the fi as required for the first part, and the statement on the finite number of
naturally associated cones is then clear.

Clearly then, the answer to our original question in the introduction is affirma-
tive: If X is a Banach space with a closed generating proper cone X+, and Ω is a
topological space, then C0(Ω, X+) is generating in C0(Ω, X). In fact, Theorem 2.4.5
shows that X+ need not even be proper.
Remark 2.4.6. As mentioned in the introduction, if Ω is a (locally) compact Haus-
dorff space and X is a (pre-)ordered Banach space with closed generating cone
X+, certain special cases of Theorem 2.4.5 also follow from [4, Theorem 2.3] and
[45, Theorem 4.4]. Both of these results proceed through an application of Lazar’s
affine selection theorem to show that cones of continuous affine X+-valued functions
on a Choquet simplex K are generating in spaces of continuous affine X+-valued
functions on K. If Ω is a compact Hausdorff space, the fact that C(Ω, X+) is gen-
erating in C(Ω, X) follows from [4, Theorem 2.3] by taking K to be the Choquet
simplex of all regular Borel probability measures on Ω, and considering the maps
µ 7→

´
Ω
fdµ (µ ∈ K, f ∈ C(Ω, X)) and ω 7→ a(δω) (ω ∈ Ω, a ∈ A(K,X)), where

A(K,X) denotes the space of continuous affine X-valued functions on K.
The converse of the four last statements in Theorem 2.4.5 also holds provided

the function spaces are non-zero, as is shown by our next (elementary) result. Note
that C(Ω, X) and Cb(Ω, X) are zero only when Ω 6= ∅ and X = {0}.
Lemma 2.4.7. Let X be a real or complex normed space. Let I be a finite non-
empty set, and let {Ci}i∈I be a collection of cones in X, not necessarily closed or
proper. Let Ω be a topological space.
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If C(Ω, X) 6= {0} and C(Ω, X) =
∑
i∈I C(Ω, Ci), then X =

∑
i∈I Ci; similar

statements hold for Cb(Ω, X), C0(Ω, X) and Cc(Ω, X).

Proof. If there exists 0 6= f ∈ C(Ω, X), then composing f with a suitable continuous
linear functional onX yields a non-zero ϕ ∈ C(Ω). Choose ω0 ∈ Ω such that ϕ(ω0) 6=
0; we may assume that ϕ(ω0) = 1. If x ∈ X, then (employing the usual notation)
ϕ⊗ x =

∑
i∈I fi, for some fi ∈ C(Ω, Ci) (i ∈ I) by assumption. Specializing this to

the point ω0 shows that x =
∑
i∈I ci, for some ci ∈ Ci (i ∈ I).

The proofs for Cb(Ω, X) , C0(Ω, X) and Cc(Ω, X) are similar.

Corollary 2.4.8. Let X be a real or complex Banach space. Let I be a non-empty
finite set, and let {Ci}i∈I be a collection of closed not necessarily proper cones in
X. Let Ω be a topological space. If Cc(Ω) 6= {0}, for example if Ω is a non-empty
locally compact Hausdorff space, then the following are equivalent:

(1) X =
∑
i∈I Ci;

(2) C(Ω, X) =
∑
i∈I C(Ω, Ci);

(3) Cb(Ω, X) =
∑
i∈I Cb(Ω, Ci);

(4) C0(Ω, X) =
∑
i∈I C0(Ω, Ci);

(5) Cc(Ω, X) =
∑
i∈I Cc(Ω, Ci).

Proof. If X = {0} there is nothing to prove. If X 6= {0}, then the fact that Cc(Ω) 6=
{0} implies that Cc(Ω, X) 6= {0}, hence that the other three spaces of X-valued
functions are non-zero as well. Combining Theorem 2.4.5 and Lemma 2.4.7 therefore
concludes the proof.

Theorem 2.4.5 and Corollary 2.4.8 are based on part (1) of Theorem 2.4.1. It is
also possible to take part (2) into account and, e.g., obtain results on various types
of conormality for spaces of continuous functions with values in a (pre)-ordered
Banach space. Here is an example, where part (2) of Theorem 2.4.1 is used via an
appeal to Corollary 2.4.3. Note that, analogous to Corollary 2.4.8, the approximate
α-conormality of X and of the three normed spaces of X-valued functions are all
equivalent if Cc(Ω) 6= {0}.
Corollary 2.4.9. Let X be a real (pre)-ordered Banach space, (pre)-ordered by a
closed generating not necessarily proper cone X+, and let Ω be a topological space.
Suppose that α > 0.

If X is approximately α-conormal, then so are Cb(Ω, X), C0(Ω, X), and Cc(Ω, X).
If Cb(Ω, X) 6= {0} and Cb(Ω, X) is approximately α-conormal, then X is approx-

imately α-conormal.
If C0(Ω, X) 6= {0} and C0(Ω, X) is approximately α-conormal, then X is approx-

imately α-conormal.
If Cc(Ω, X) 6= {0} and Cc(Ω, X) is approximately α-conormal, then X is approx-

imately α-conormal.
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Proof. Let X be approximately α-conormal, and let f ∈ Cb(Ω, X) and ε > 0 be
given. Corollary 2.4.3 supplies continuous positively homogeneous maps γ±ε : X →
X+ , such that x = γ+

ε (x)− γ−ε (x) and ‖γ+
ε (x)‖ ≤ (α+ ε)‖x‖, for all x ∈ X. Then

γ±ε ◦ f ∈ Cb(Ω, X+), f = γ+
ε ◦ f − γ−ε ◦ f , and ‖γ±ε ◦ f‖∞ ≤ (α + ε)‖f‖∞, so that

Cb(Ω, X) is approximately α-conormal. The proof for C0(Ω, X) and Cc(Ω, X) is
similar.

If Cb(Ω, X) 6= {0} and Cb(Ω, X) is approximately α-conormal, let x ∈ X and
ε > 0 be given. As in the proof of Corollary 2.4.7 we find a non-zero ϕ ∈ Cb(Ω), and
we may assume that ‖ϕ‖∞ = 1 and ϕ is real-valued. Passing to −ϕ if necessary we
obtain a sequence {ωn} ⊂ Ω such that 0 < ϕ(ωn) ↑ 1. Hence there exists ωn0

∈ Ω
such that 0 < ϕ(ωn0) and (α + ε/2)ϕ(ωn0)−1 < α + ε. By assumption, there exist
f± ∈ Cb(Ω, X+), such that ϕ⊗x = f+−f− and ‖f+‖∞ ≤ (α+ε/2)‖ϕ⊗x‖∞ = (α+
ε/2)‖x‖. In particular, ϕ(ωn0

)x = f+(ωn0
) − f−(ωn0

). Since ϕ(ωn0
)−1f±(ωn0

) ∈
X+, and ‖ϕ(ωn0

)−1f+(ωn0
)‖ ≤ ϕ(ωn0

)−1‖f+‖∞ ≤ ϕ(ωn0
)−1(α + ε/2)‖x‖ ≤ (α +

ε)‖x‖, we conclude that X is approximately α-conormal.
The proofs for C0(Ω, X) and Cc(Ω, X) are similar.

Remark 2.4.10. In the context of Corollary 2.4.9, the conclusion that the Banach
spaces Cb(Ω, X) and C0(Ω, X) are approximately α-conormal shows that part (1) of
Corollary 2.4.3 is satisfied for these (pre)-ordered Banach spaces. Hence (2) is valid
as well. Therefore, if X is approximately α-conormal, then Cb(Ω, X) and C0(Ω, X)
are continuously positively homogeneously approximately α-conormal in the sense of
part (2) of Corollary 2.4.3. The converse holds for Cb(Ω, X) if this space is non-zero,
and similarly for C0(Ω, X).
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