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Chapter 1

Introduction

Many dynamical systems from nature must comply with certain ‘positivity con-
straints’ to make sense. For instance, in population dynamics negative populations
do not make sense. Neither do negative values of concentration profiles of some
material diffusing in a fluid within a sealed container. Furthermore, often some con-
servation principle governs the system, e.g., the total amount of material diffusing
in a fluid within a sealed container remains constant in time.

Translating systems with such ‘positivity constraints’ into mathematical language
usually yield pre-ordered or partially ordered vector spaces. By a pre-ordered vector
space, we mean a vector space V over R with a pre-order < that is compatible
with the vector space structure in the sense that the pre-order is invariant under
translations and multiplication by positive scalars. Such a relation defines a special
subset C' := {x € V : z > 0} of V, which satisfies C + C C C and AC C C for all
A > 0. Such a set C is called a cone, (a proper cone if C N (—C) = {0}), and the
elements of C' are called the positive elements of V. Conversely, every cone C in a
vector space V defines a such a pre-order (partial order, if C is proper) on V' when,
for z,y € V, defining x <y to mean y —x € C.

We may then study dynamical systems with such ‘positivity constraints’ through
group representations (or semigroups) acting on the space V' (which may have a
norm), leaving the cone (and perhaps the norm) invariant. Such actions are called
positive, since they preserve the positive elements of V. A natural setting for study-
ing such systems is that of pre-ordered Banach spaces. A simple example is the
semigroup (S¢);>0 acting on R3 with norm || - || and cone C := {(z,y,2) € R3:

z > \/x? +y?}, defined by

e tcost —etsint 0
S:t— | etsint e ftcost O
0 0 1

In natural systems there is quite often a symmetry group of the underlying space
that acts canonically on the associated vector spaces, and in such a way that it leaves
the cone of positive elements invariant. For example, the rotation group SO(3,R)
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8 Chapter 1: Introduction

acts on the unit sphere (or the Earth’s surface), and the canonically associated ac-
tion on functions (think of temperature profiles) on the unit sphere, which rotates
the function as a whole, obviously leaves positive functions positive. In this way,
one obtains group homomorphisms from symmetry groups into pre-ordered vector
spaces, such that the groups act as positive operators. These positive group repre-
sentations, as they are called, are therefore quite common, but they have not been
studied systematically, contrary to the case of unitary representations which have
enjoyed attention for nearly a century. In studying positive group representations
on pre-ordered Banach spaces, we draw much inspiration from the success of the
theory of unitary representations on Hilbert spaces.

Since the early 1900’s, motivated by quantum theory, much work has gone into
the study of unitary representations of groups on Hilbert spaces. The decompos-
ability of unitary representations into irreducible representations is a particularly
interesting feature, in that the study of unitary representations can to some extent
be reduced to studying the simplest ‘building blocks’.

An example of this is the description of a particle trapped in an infinite well. The
particle’s dynamics (in time) is then determined by a unitary representation of the
group R on the complex Hilbert space L?([0, 1]), in which the particle’s wave function
lives. The space L?([0, 1]) can be written as direct sum of one-dimensional subspaces
(spanned by the countable orthonormal basis of normalized solutions to the time-
independent Schrodinger equation), with each subspace being invariant under the
group representation. Decomposing an arbitrary wave function with respect to this
basis allows one to describe the particle’s motion by merely knowing how the group
acts on these one-dimensional subspaces.

This decomposition is an example of a more general phenomenon for unitary
representations of locally compact groups on Hilbert spaces. In 1927 Peter and
Weyl proved:

Theorem 1. ([17, Theorem 7.2.4]) Let G be a compact group and U : G — B(H)
a unitary representation of G on a Hilbert space H. Then there exists a family
of mutually orthogonal finite dimensional subspaces {H(i)}iel of H, each invariant
under U, such that the restriction of U to each H®, denoted U : G — B(H(i)),
is irreducible (has no non-trivial invariant subspaces), H = @;c; H" and U =
Dics ue.

Following on the work of von Neumann it was shown that this result can be
extended to locally compact groups through a generalization of the concept of a
direct sum to what is called a direct integral, in the same vein as a summation is
a specific example of an integral over a measure space with respect to the counting
measure:

Theorem 2. (/20, Theorem 8.5.2, Remark 18.7.6]) Let G be separable locally com-
pact group, H a separable Hilbert space and U : G — B(H) a strongly continu-
ous unitary representation of G on H. Then there exists a standard Borel space
Q, a bounded measure 1 on Q, a measurable family of Hilbert spaces {H )} cq,
a measurable family unitary representations {U) : G — B(H"))},eq such that
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U s irreducible for almost every w € Q. Furthermore, the representation U :
G — B(H) is unitarily equivalent to the strongly continuous unitary representa-
tion fga Udu(w) of G on the Hilbert space fga H®dpu(w) through an isometric
isomorphism between H and fga H@dp(w).

An important question that still remains open, is whether similar results holds
for positive group representations and pre-ordered Banach algebras on pre-ordered
Banach spaces. Orthogonality plays a crucial part in the the theory developed for
unitary representations. Some natural partially ordered vector spaces, like the (real)
vector spaces LP([0,1]) for 1 < p < oo, have similarities with Hilbert spaces through
notions defined by their partial order that imply orthogonality in the Hilbert space
case p = 2. Some work in this direction has been done by de Jeu and Wortel in
the case of positive representations of finite groups on Riesz spaces [16] and positive
representations of compact groups on Banach sequence spaces [15], but much still
remains to be investigated in more general cases.

This thesis is a contribution to the study of positive representations of groups
and pre-ordered Banach algebras on pre-ordered Banach spaces. It is mainly con-
cerned with the investigation of positive representations on pre-ordered Banach
spaces through the study of structures called crossed products of Banach algebras,
which are themselves Banach algebras and encode information on covariant repre-
sentations of Banach algebra dynamical systems on Banach spaces into information
on their algebra representations on Banach spaces. Their construction is inspired by
group C*-algebras and crossed products of C*-algebras. Group C*-algebras play a
crucial role in the proof of Theorem 2 and crossed products of C*-algebras provide
a satisfying conceptual framework for studying induction of unitary representations
on Hilbert spaces. It is hoped that crossed products of Banach algebras will enable
the establishment of generalizations or analogies of such results outside the C*— and
Hilbert space framework.

1.1 Pre-ordered Banach spaces

During the investigation into crossed products of Banach algebras in the ordered
context, fundamental questions concerning general pre-ordered Banach spaces, in-
teresting in their own right, reared their head and also warranted investigation to
provide better insight into the main line of investigation. The following two sections
of this introduction will explain these general questions.

1.1.1 Continuous generation

Let X be a Banach space and C' C X a closed cone in X. One says that C is
generating in X, if X = C — C, i.e., every element from X can be written as
a difference from elements of the cone C'. With Q a compact Hausdorff space, let
C (9, X) denote the Banach space of continuous X-valued functions with the uniform
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norm. This space also becomes a pre-ordered Banach space when endowed with the
closed cone C(€2,C). An immediate question that can be raised is the following:

Question 3. If C is a closed generating cone in a Banach space X, does that
necessarily imply that the closed C(2, C) cone is generating in the space C(Q, X)
of continuous X-valued functions?

The resolution of this question provides insight into one aspect of the order
structure of crossed products of pre-ordered Banach algebras studied in Chapter 5.

In the case that X is a Banach lattice, Question 3 has an easy solution. The
maps z — V0 and z — (—z)V0 (z € X) are uniformly continuous on X. Therefore
the maps f* : w + (£f(w)) V0 are indeed continuous, are elements of C(€2,C), and
satisfy f = fT — f~. Hence C(£,C) is generating in C(Q, X).

In the general case where X is a Banach space with closed generating cone C' C X,
with the lack of lattice operations, this line of reasoning is not available. Still, by the
axiom of choice, we can define functions (-)* : X — C, such that z = 27 — 2~ for
all x € X. Hence, for any f € C(Q, X) and w € §, we have f(w) = f(w)" — f(w)".
However, the functions w +— f(w)* (w € Q), of course, need to be continuous, and
hence are not generally elements of the cone C(2,C). Therefore, this reasoning
brings one no closer to answering Question 3 in its most general form. What is
needed here is a continuous version of the axiom of choice...

We translate this problem into a more geometric version. For x € X, consider the
set valued map, called a correspondence, ¢ : X — 2% defined by ¢ :  — CN(z+C).
For example, consider R? with the cone C := {(z,y,2) € R3 : 2z > /a2 + y2} (see
Figure 1.1). Intuitively, considering the map ¢ :  — C N (z + C) in this example,
one can see that there is a certain sense of continuity to this set-valued map when
varying x € R3.

This raises the question of whether this sense of continuity of set-valued maps
can be defined precisely. Furthermore, if this can be done, can one exploit this
to construct a continuous function f : X — C, such that f(x) € ¢(z) for every
x € X7 Remarkably, the answer to this question is affirmative! In the 1950’s
Michael published a landmark series of papers [31, 32, 33] outlining the theory of
continuous selections, which included the following;:

Theorem 4. (Michael Selection Theorem [1, Theorem 17.66]) If ¢ : Q — 2F is
a lower hemicontinous correspondence from a paracompact space €} into a Fréchet

space F', with non-empty closed convex values, then there exists a continuous function
f:Q = F, such that f(w) € p(w) for all w € .

Therefore, to resolve Question 3 affirmatively, it is sufficient to prove that the
correspondence ¢ : X — 2% defined by ¢ : # +— C'N(x+ C) is lower hemicontinuous
(which we will not define here). This is indeed the case, as can be shown through
invoking a theorem due to Andé [3, Lemma 1]. However, more can be said. In
Chapter 2 we show that Andd’s Theorem is a special case of the following version
of the Open Mapping Theorem:
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Figure 1.1

Theorem 5. (Open Mapping Theorem) Let C' be a closed cone in a real or complex
Banach space, not necessarily proper. Let X be a real or complex Banach space, not
necessarily over the same field as the surrounding space of C, and T : C — X a
continuous additive positively homogeneous map. Then the following are equivalent:

(1) T is surjective;

(2) There exists some constant K > 0 such that, for every x € X, there exists
some ¢ € C with x = Tc and ||c|| < K||z||;

(8) T is an open map;
(4) 0 is an interior point of T(C).

This theorem together with the Michael Selection Theorem allows us to resolve
a more general problem than what is stated in Question 3 through the following
theorem of Chapter 2:

Theorem 6. Let X be a real or complexr Banach space. Let I be a mon-empty set,
possibly uncountable, and let {C;}icr be a collection of closed cones in X, such that
every v € X can be written as an absolutely convergent series x = 3, ; ¢;, where
c; € Cy, for all i € 1. Then, there exist a constant o > 0 and continuous positively
homogeneous maps v; : X — C; (i € I), such that:

(1) =73 crvilx), forallz € X;
(2) Yier i(@)|| < allzl, for allz € X.
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With © a compact Hausdorff space, X a Banach space and C' C X a closed
generating cone in X, Question 3 is therefore resolved through this theorem by
taking C7 := C and Cs := —C'. Then, invoking the above theorem, every function
f € C(Q,X) can be written as f = ;0 f — (—7y2 0 f), where both v; o f and —y30 f
are elements of C(Q2,C).

As is clear from the above theorem, we need not restrict ourselves to a single
closed generating cone in X, but similar results hold when X is generated by a
number of unrelated closed cones. To the author’s knowledge, such spaces have
never been investigated, and this provides an avenue along which more research can
be done.

1.1.2 Normality of spaces of operators

Let X and Y be Banach lattices (with cones denoted by X and Y}). The space
B(X,Y) of all bounded linear operators from X to Y becomes a pre-ordered Banach
space when endowed with the cone

B(X,Y)s ={T:€ B(X,Y): TX, CY,}.

Elementary properties of Banach lattices then imply that the operator norm on
B(X,Y) and the cone B(X,Y). interact in the following way: If T,S € B(X,Y)
satisfy +7 < S, then ||T| < ||S].

In Chapter 5, with X and Y pre-ordered Banach spaces, we will see that similar
interactions of the cone B(X,Y') and the operator norm determines certain aspects
of the order structure of crossed products of pre-ordered Banach algebras. This
motivates the following question investigated in Chapter 3:

Question 7. For general pre-ordered Banach spaces X and Y (with cones denoted
by X and Y} ), what properties should X and Y have so that the operator norm
on B(X,Y) and the cone B(X,Y'), interact in a similar fashion as described above?
Do there exist examples of spaces X and Y that are not Banach lattices which have
these properties?

These properties turn out to be the so-called normality and conormality proper-
ties which describe possible interactions of the cone of a pre-ordered Banach space
with its norm. There are numerous variations of such properties that occur scat-
tered throughout the literature. They usually appear in dual pairs, in the sense
that a space has a normality property if and only if its dual space has the paired
conormality property, and vice versa. An example of such a normality-conormality
dual pair is the following:

Definition 8. Let X be a pre-ordered Banach space with a closed cone X, and
a > 0.

e The space X is said to be a-absolutely normal if, for every z,y € X, tx <y
implies ||z]| < ally]|.

e The space X is said to be a-absolutely conormal if, for every x € X, there
exists some y € X such that +o <y and |y|| < o||z].
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Roughly speaking, a normality property encodes, through the magnitude of «,
how obtuse/blunt the cone X is. On the other hand, a conormality property
encodes, through the magnitude of «, how acute/sharp the cone X, is. This is
illustrated in Figure 1.2 with R? endowed with the || - [|2-norm and two different
cones. The space on the left will be a-absolutely normal for a larger value of o than
the space on the right. The space on the right will be a-absolutely conormal for a
larger value of o than the space on the left.

>

Figure 1.2

How normality and conormality of pre-ordered Banach spaces X and Y influence
interaction of the operator norm on B(X,Y") and the cone B(X,Y ) is described in
Chapter 3 and follows the work of Yamamuro [48], Wickstead [45] and Batty and
Robinson [6].

Knowledge of these interactions in spaces of bounded linear operators is required
to describe the order structure of pre-ordered crossed product algebras, and will be
discussed in the final section of this introduction.

The the second part of Question 7 remains: whether there exist examples of
spaces that are not-Banach lattices and also have the properties described. This will
be discussed in the next section.

1.1.3 Quasi-lattices

Finite dimensional Banach lattices can be shown to always be isomorphic to R”, for
some n € N, with the cone C := {z €e R" : z; > 0, j € {1,...,n}}, ie., for any
n, there is essentially only one cone which makes R™ into a Banach lattice. Even in
the case n = 3, this excludes a great multitude of possible cones that define partial
orders on R3. For example, for every m > 4, every cone C C R? such that the
intersection with the plane {(z,y,2) € R® : z = 1} is a regular m-sided polygon.
Figure 1.3 shows examples for m € {4,5,6,7}.

Let X be a pre-ordered Banach space with a closed generating cone C'. For every
pair of elements z,y € X, the set of their upper bounds (z + C) N (y + C) is non-
empty, but in general there need not exist a supremum of z and y in (z4+C)N(y+C)
(with respect to the ordering defined by C on X). Equivalently: there need not exist
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Figure 1.3

a point in the set of upper bounds (z + C) N (y + C) which is smaller than all other
elements from (z+ C)N(y+ C), in contrast to when X is a Riesz space or a Banach
lattice. For example, consider R? with the cone C := {(z,y,2) € R®: 2 > /22 + 32}
(see Figure 1.1).

Still, taking the norm on the Banach space into account, there often exists a
unique element in (x4 C) N (y+ C) which is “the closest” to the points # and y. This
enables one to define what we will call a quasi-lattice structure on X, as follows:

Definition 9. Let X be an ordered Banach space with a closed generating proper
cone C. If, for every pair of elements z,y € X, there exists a unique point zg € (z +
C) N (y + C) such that zp minimizes the function

00y(2) = llz = 2] + [ly — 2|

on (x+ C)N(y+ C), then X is called a quasi-lattice, and 2y is called the quasi-
supremum of x and y, denoted by zVy. We define the following notation zAy :=
—((=z)V(—~y)), [2] = 2V (—x) and 2* = OV (£x).

Many spaces are in fact quasi-lattices. In Chapter 3 we will prove:

Theorem 10. FEvery reflexive Banach space with a strictly convex norm ordered by
a closed generating proper cone is a quasi-lattice.

This, of course, includes all spaces R with a ||-||,-norm for 1 < p < oo ordered by
a closed generating proper cone. Furthermore, through a slightly altered definition
of quasi-lattice which we will not discuss here, every Banach lattice can be shown
to be a quasi-lattice, and the true lattice structure coincides with the quasi-lattice
structure.

Quite surprisingly, many elementary vector lattice identities carry over verbatim
from Riesz spaces to quasi-lattices. The following list of identities illustrates the
similarity between quasi-lattices and Riesz spaces. Every symbol V, A, and [-] may
be replaced by V, A, and | - | respectively, and each identity again holds true if X is
replaced by a Riesz space.



Section 1.2 15

Theorem 11. Let X be a quasi-lattice and z,y,z € X, « > 0, 8 <0, and v € R.
Then,

(1) 2z = 2Az = .
(2) (az)V(ay) = a(zVy) and (az)A(ay) = a(zAy).
(3) (B)V(By) = a(zAy) and (Bx)A(By) = B(xVy).
(4) (xVy) + 2 = (z + 2)V(y + 2) and (zAy) + 2 = (z + 2)A(y + 2).
(5) 2t >0, 27 = (—x)*.
(6) [x] =0 and [yz] = [y [z].
(1) z =2t —a~; [z] =2t + 2~ and 2+ V2~ = 0.
(8) If >0, then x = 2™ = [z].
(9) [Tz]] = [=].
(10) xVy +xzAy = x +y and 2Vy — zAy = [z + y].
(11) zVy = 3z +y)+ 3 [z —y] and 2Ay = 2 (z +y) — L [z —y].

Returning to the second part of Question 7 posed in the previous section (as
to whether there exist pre-ordered Banach spaces X and Y that are not Banach
lattices, such that, for T, S € B(X,Y), the inequalities £7° < S imply ||T|| < [|S]])
we prove in Chapter 3, using the theory of quasi-lattices, that the following family
furnishes us with examples of such spaces:

Example 12. Let H be a real Hilbert space, v € H any element with norm one,
and P the orthogonal projection onto the hyperplane {v}*. Then H, ordered by the
Lorentz cone L, := {x € H : (z|v) > ||Px|}, is a quasi-lattice, but not a Banach
lattice when dim H > 3. If H; and Hs are such spaces, then B(H1, Hs) is such that,
for T, S € B(H1,Hz), £T < S implies ||T]| < ||S]|-

1.2 Crossed products

1.2.1 Crossed products of Banach algebras

When studying representations of a group on vector spaces, it is often useful to
study algebras related to the group which encode information of the group’s repre-
sentations. For example, if G is a group and k is a field, there is a bijection between
the representations of G on vector spaces over k and representations of the group
algebra k[G] on such spaces. In this way questions pertaining to representations of
a group can be translated into questions pertaining to representations of a related
algebra and vice versa.

One example of how this paradigm is used with success is in the proof of The-
orem 2 above. If G is a locally compact group, there exists a related C*-algebra
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C*(@G), called the group C*-algebra. The algebra C*(G) is such that there exists a
bijection between the strongly continuous unitary representations of G' on Hilbert
spaces and the non-degenerate *-representations of C*(G) on Hilbert spaces. The-
orem 2 is then proven through proving that direct integral decompositions of non-
degenerate *-representations of C*(G) on Hilbert spaces exist. Subsequently, one
transforms a unitary representation of G into a *-representation of C*(G), decom-
poses, and transforms the decomposed *-representation of C*(G) back into a (now
decomposed) unitary representation of G.

Group C*-algebras are specific examples of more general objects called crossed
products of C*-algebras. Let the triple (A, G, a) be such that A is a C*-algebra, G a
locally compact group and « : G — Aut(A) a strongly continuous *-representation
of G on A (where Aut(A) denotes the *-automorphism group of A). Such a triple is
called a C*-algebra dynamical system. A pair (7w, U), where 7 is a *-representation
of A on a Hilbert space H, and U a strongly continuous unitary representation of G
on H, such that

m(ag(a)) = Un(a)U;' (a€ A, s€ @), (1.2.1)

is called a covariant representation of (A,G,«) on H. The crossed product A X, G
associated with (A, G, ), is a C*-algebra such that there exists a bijection between
the non-degenerate covariant representations of (A4, G, «) on Hilbert spaces, and the
non-degenerate *-representations of A x, G on Hilbert spaces. In the case where
A = C, the crossed product A x,, G reduces to the group C*-algebra C*(G).

Although notationally intimidating, C*-algebra dynamical systems and covari-
ant representations occur quite naturally, in that every group acting in a measure
preserving way on a standard probability space easily generates such structures.
For example, let the circle group T C C act on the closed unit disc D C C,
with the normalized Lebesgue measure, through rotation (complex multiplication).
Then, with a;(f)(s) := f(t7's) (f € C(T), t € T, s € D), the triple (C(D), T, a)
is a C*-algebra dynamical system. Furthermore, with = : C(D) — B(L?*(D))
and U : T — B(L?(D)) defined by n(f)g := fg (f € C(D), g € L?*(D)) and
(Ug)(s) :=g(t~'s) (g € L?*(D), t € T, s € D), the pair (m,U) is a non-degenerate
covariant representation of (C'(D), T, ) on L?*(D). One immediately observes that
the same construction is also valid when the Hilbert space L?(D) is replaced with the
Banach spaces LP(D) where 1 < p < 0o, and justifies the investigation of such kinds
of objects in the more general Banach algebra and Banach space setting. Moreover,
restricting oneself in this example to spaces over the real numbers and subsequently
endowing them with the standard (pointwise) partial order, we see that all actions of
the group T are in fact positive, and hence justifies the investigation of such objects
in the ordered context as well.

A Banach algebra dynamical system is a triple (A, G, a) where A is a Banach
algebra, G a locally compact group and a : G — Aut(A) a strongly continuous
representation of G on A (where Aut(A) denotes the automorphism group of A).
A covariant representation (m,U) in this case is a pair such that both 7 and U are
continuous representations respectively of A and G on a Banach space instead of a
Hilbert space, and satisfy (1.2.1).
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Our aim in Chapters 4 and 5 is, building on work by Dirksen, de Jeu and Wortel
on crossed products associated with Banach algebra dynamical systems [19], to con-
struct a pre-ordered Banach algebra, in analogy with the crossed product A x, G
associated with a C*-dynamical system. For this construction to be a meaningful
analogy, this pre-ordered Banach algebra should then encode (in its positive repre-
sentation theory) information on the positive continuous covariant representations
of the ‘pre-ordered Banach algebra dynamical system’ it is associated with.

One immediate difference between the C*— and Banach algebra cases is that
representations of Banach algebras on Banach spaces need not be contractive, as in
the *-representation case of C*-algebras on Hilbert spaces. Also, unitary represen-
tations of a group on a Hilbert space are automatically uniformly bounded, which
is not necessarily the case for general strongly continuous group representations on
Banach spaces. In the construction of the crossed product algebra associated with a
Banach algebra dynamical system, as opposed to the C*-case, this necessitates the
making of a choice, depending on the situation, of what one considers “good” contin-
uous covariant representations and collecting them in a so-called uniformly bounded
class R of covariant representations. The condition is that all elements (7, U) € R
should satisfy the uniform bounds ||7|| < C and ||Us|| < v(s) for all s € G, were
C >0and v: G = Rxp is a function that is bounded on compact subsets of G.
One example of choosing “good” continuous covariant representations, would be to
choose all continuous covariant representations (7, U) of (A, G, «) on Banach spaces
with ||7|| <1 and ||Us|| =1 for all s € G.

With (A,G,a) a Banach algebra dynamical system and a uniformly bounded
class R of continuous covariant representations, one can then construct a Banach
algebra (Ax,G)®, called the crossed product associated with (A, G, a) and R. In the
presence of a bounded approximate left identity of A, there then exists a bijection
between so called R-continuous non-degenerate continuous covariant representations
of (A,G,a) on Banach spaces and non-degenerate bounded representations of the
Banach algebra (A x, G)® on Banach spaces.

In Chapter 4 we develop the theory of crossed products of Banach algebras fur-
ther. Amongst others, we prove that (under mild assumptions) (A x, G)® is the
unique Banach algebra, up to topological isomorphism, such that there exists a bi-
jection between its non-degenerate bounded representations on Banach spaces and
the non-degenerate R-continuous covariant representations of (A, G, «) on Banach
spaces. Furthermore, we show, through a particular choice of R, that the crossed
product algebra (A x, G)® is topologically (and in some cases isometrically) isomor-
phic to a generalized Beurling algebra, which is introduced in this chapter. Through
this, classical results, like the relation between uniformly bounded representations
of a locally compact group G on Banach spaces and non-degenerate bounded repre-
sentations of L!(G) on Banach spaces, are shown to follow as special cases from the
theory of crossed products of Banach algebras.
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1.2.2 Crossed products of pre-ordered Banach algebras

First attempts at specializing the theory of crossed products of Banach algebras to
the ordered case aimed at leveraging the well-developed theory of Banach lattices.
For example, let (A, G, ) be a Banach algebra dynamical system, where A is a Ba-
nach lattice algebra, by which we mean A is a Banach algebra, a Banach lattice with
cone A, and satisfies A} - Ay C A, . Furthermore « is assumed to be positive (for
each s € G, as maps the cone A, into Ay), and R consists of positive continuous
covariant representations (7, U) of (A, G, @) on Banach lattices, i.e., 7 maps positive
elements of A to positive operators, and U maps G to positive invertible operators.
Taking this route, however, one runs into technical difficulties in the construction of
the crossed product. Intermediate objects in the construction of the crossed product
are not always structured in such a way that one can conclude from known Banach
lattice theory that (A x, G)® is a Banach lattice algebra in general (cf. Example
5.3.10). Attempts at forcing further structure on these intermediate objects, so that
the crossed product is indeed a Banach lattice algebra, had the undesirable effect
of leaving the crossed product synthetically enlarged, and thereby with a possibly
altered representation theory. The construction of the sought bijection between
positive continuous covariant representations of (A, G, «) and positive bounded rep-
resentations of thus constructed Banach lattice algebras met with serious obstacles
which the author and his collaborators were unable to surmount.

The Banach lattice setting, it would seem, is a too restrictive setting for studying
ordered versions of crossed products of Banach algebras. A more suited setting in
which to study ordered versions of crossed products of Banach algebras, turned out
to be that of pre-ordered Banach algebras and pre-ordered Banach spaces. This
allows for a wider range of structures for objects to roam in, which includes, but is
not restricted to, Banach lattice algebras and Banach lattices.

In Chapter 5 we develop the theory along this line. A pre-ordered Banach algebra
dynamical system is a triple (A, G, ) where A is a pre-ordered Banach algebra with
a closed cone A, (by which we mean A is a Banach algebra pre-ordered by a cone
Ay which satisfies A1 - A4 C AL), G alocally compact group and o : G — Aut(A4) a
positive strongly continuous representation of G on A. With R a uniformly bounded
class of (not necessarily positive) continuous covariant representations, through an
identical construction as in the unordered case, the crossed product (A4 x, G)®
can be shown to inherit a natural cone, denoted (A x, G)%, from the cone of A.
Furthermore, in the presence of a positive bounded approximate left identity of
A, this pre-ordered Banach algebra (A x, G)® then has the desired property that
there exists a bijection between the positive non-degenerate R-continuous covariant
representations (m, U) of (A, G, «) on pre-ordered Banach spaces with closed cones,
and the positive non-degenerate bounded representations of (A x4 G)® on such
spaces. Using a similar argument as for the unordered case in Chapter 4, (A x,G)%,
thus constructed, is shown (under mild conditions) to be the unique pre-ordered
Banach algebra with this property, up to order preserving topological isomorphism.

In studying the order structure of the pre-ordered crossed product (A x, G)®
deriving from the cone (A ><1aG)7_E, the work done in Chapters 2 and 3 can be applied.
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To establish whether or not the cone (A x, G)¥ is (topologically) generating
in (A x, G)®, one is required to know whether the cone C.(G, A4) of continuous
compactly supported A;-valued functions is generating in the space C.(G, A) of all
continuous compactly supported A-valued functions (see Question 3 in Section 1.1.1
above) and motivated the investigation in Chapter 2.

If R consists of positive continuous covariant representations of (A, G, «) on pre-
ordered Banach spaces with closed cones, the normality (see Definition 8) of the
crossed product (4 x, G)® is determined by the normality of all the pre-ordered
operator algebras B(X), where X is ranges over the pre-ordered Banach spaces acted
on by the covariant representations in R (see Question 7 in Section 1.1.2 above).
This motivated our investigation, done in Chapter 3, into the normality of spaces of
operators and into quasi-lattices which give examples of pre-ordered Banach spaces
X (that are not necessarily Banach lattices) where B(X) is normal.

It is hoped that the theory of crossed products of pre-ordered Banach algebras
as established in this thesis can sensibly be used in further study of positive group
representations on Riesz spaces, Banach lattices and pre-ordered Banach spaces. In
particular it is hoped that it can provide insights into possible future decomposition
theories and induction of positive group representations as the group C*-algebra and
crossed products of C*-algebras did for unitary representations.

However, as is usually the case, more questions have been raised than have been
answered during the time spent investigating the structures contained in the chapters
that will soon follow. We pose a few of these questions, all in the context of ordered
Banach spaces (which as of printing of this manuscript still remain open), in the
hope that they may pique the reader’s interest:

Question 13. Are quasi-lattice operations ever/always (uniformly) continuous?

Question 14. Can the functions v; : X — C; (i € I) figuring in Theorem 6 be
chosen so as to be uniformly continuous (as is the case for the functions z + 2% :=

(£) V 0 on Banach lattices)?

Question 15. Currently, Banach spaces generated by a arbitrary collection of closed
cones (and their continuous decomposition) is a curiosity which just so happens
to be a generalization of pre-ordered Banach spaces with closed generating cones
(cf. Theorem 6). Do there exist applications from economics (or any other field) of
this theory? In other words, do there exist problems that translate to the study of
a collection of different interacting pre-orders defined on a Banach space?

Question 16. (de Pagter) Can the definitions of normality and conormality be
extended to Banach spaces X with arbitrary collections of closed cones {C;}icr in
X, so that they reduce to the classical definitions in the case when X is a pre-
ordered Banach space with closed cone C, and taking I = {1,2} with C; := C and
C5 := —C?7 And, can a duality relationship for these definitions be established, as
exists for normality and conormality of usual pre-ordered Banach space with closed
cones? (cf. Theorem 6 and Section 1.1.2).
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