

Cover Page

Universiteit Leiden

The handle <http://hdl.handle.net/1887/20942> holds various files of this Leiden University dissertation.

Author: Wammes, Linda Judith

Title: Immune regulation during parasitic infections : from bench to field

Issue Date: 2013-06-11

CHAPTER 1

General Introduction Scope & aims of this thesis

Background

Helminth (a Greek word for 'worm') infections are a major – and neglected – public health problem. Chronic helminth infections are thought to induce a regulatory network in the host that prevents their elimination, on the one hand, while protecting the host against the pathological consequences of excessive inflammation, on the other¹. Importantly, this downregulation is not only directed against helminth antigens, but can also extend to other antigens: so-called bystander suppression. This may have significant consequences for immunity to incoming infections, such as malaria², and for responses to vaccines administered to helminth-infected subjects³. At the same time, several studies have suggested a protective effect of chronic helminth infections on atopy and allergic diseases⁴. Moreover, there are indications that anti-inflammatory properties of helminths might be beneficial in dampening the excessive inflammation observed in chronic autoimmune and other inflammatory diseases⁵. To be able to translate these epidemiological findings into therapeutic strategies, it is essential to unravel the mechanisms underlying detrimental and beneficial effects of helminths. Since it is thought that immunological features of host parasite interaction during helminth infections could be responsible for these epidemiological findings, we set out to characterize the immune regulatory network associated with helminth infections.

Coevolution of humans and helminths

Currently, helminths affect millions of people worldwide, mostly inhabitants of rural areas in low- and middle-income countries⁶. The different species of helminths are classified into two major groups, nematodes and platyhelminths, or roundworms and flatworms. The nematodes include soil-transmitted helminths (STH), causing intestinal worm infections, and filarial worms, which lead to lymphatic (lymphatic filariasis, LF) or subcutaneous manifestations (onchocerciasis and loiasis). Platyhelminths are further divided into trematodes, such as schistosomes, and cestodes or tapeworms. Helminth-induced mortality is low, compared to other tropical diseases such as malaria, however the chronic presence of worms can have a major impact on health by affecting host nutrition, growth and cognitive development, which can be substantially impaired by chronic helminth infections⁷. In addition, although majority of infections with these parasites do not lead to noticeable immunopathologies, in a subset tissue pathology can cause significant disabilities, for example elephantiasis resulting from LF or liver granulomas formed around schistosome eggs.

Parasitic worm infections are likely to have been with us throughout evolution. In recent history, schistosome eggs were identified in Egyptian mummies that are approximately 3000 years old⁸. In many communities in endemic areas, people of all ages can be infected with helminths without much outward clinical signs of

infection. This has often been interpreted as a peaceful coexistence of worms with their human host. The coevolution of worms and humans has taught us not only that these parasites are endowed with immune evasion mechanisms, but also that helminths, more profoundly than other pathogens, have directly altered the host's genetic composition, as shown by research into the evolution of human interleukin (IL) genes⁹. Parasite richness in an environment has been shown to be correlated with various single nucleotide polymorphisms (SNP) in IL genes, indicating that helminths can act as a selective pressure to shape the immune system. These genetic alterations, while beneficial when humans are parasitized by helminths, might be detrimental when these parasites are eliminated.

Nowadays, parasitic infections have been largely eradicated in affluent countries due to improved sanitation, control of water bodies and housing. Although this can be regarded as a great accomplishment of the 20th century, the question has arisen as to whether the presence of helminth infections might have some beneficial aspects. The hygiene hypothesis was based on Strachan's publication on the negative association between hay fever incidence and the number of – especially older – siblings in a household, which was thought to reflect the burden of infection in childhood¹⁰. The hypothesis stated that the increase in atopic diseases in high-resource settings might be due to the improved hygiene and the reduction in childhood infections. The hygiene hypothesis has been extended to other diseases that stem from immune dysregulation such as inflammatory bowel disease, rheumatoid arthritis, multiple sclerosis, diabetes mellitus and cardiovascular diseases¹¹. Whereas Strachan proposed that respiratory viral infections contribute to the observed protection against hay fever, it has become clear that other infectious agents, such as helminths, which are able to modulate the immune system and establish chronic infections in their human host, may also be associated with less allergies and other inflammatory diseases.

The immune regulatory network

It has been hypothesized that helminths are able to induce an immune regulatory network, which can suppress the host immune system in such a way that the parasite is not expelled and the host tissues are not damaged too extensively¹². Unresponsiveness in lymphocyte proliferation to helminth antigens was already described in the 1970s for individuals with *Schistosoma mansoni* infection as well as for those with bancroftian filariasis^{13,14}. Studies in lymphatic filariasis indicated that an adherent cell population within peripheral blood mononuclear cells (PBMC) could suppress anti-filarial immune responses¹⁵. Moreover, the T cell compartment was dominated by suppressor T cells, removal of which augmented lymphocyte proliferative responses¹⁶.

At the same time, in the field of autoimmune diseases, it was recognized that diseased individuals were often affected by more than one autoimmune condition^{17,18}, leading to the idea that suppression of auto-reactive T cells could be mediated by a common mechanism. A landmark publication from Sakaguchi and colleagues showed that depletion of T cells expressing CD25, the α -chain of the IL-2 receptor, led to a range of autoimmune disorders in mice¹⁹, whereupon several studies in humans indicated that CD4 $^{+}$ CD25 $^{+}$ cells can also exert suppressive activities²⁰. Another breakthrough reported by the same group was the discovery that transduction of T cells with the transcription factor Forkhead box protein 3 (Foxp3 for rodents, FOXP3 for humans) could prevent autoimmune gastritis and inflammatory bowel disease in a mouse model²¹. Mutations in the *Foxp3* gene had earlier been identified as the cause for scurfy mice and the human equivalent, immune dysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX), both characterized by multiple autoimmune and inflammatory processes^{22,23}. TGF- β has been identified as the main cytokine capable of inducing Foxp3 expression in naïve T cells²⁴. The subsequent generation of Foxp3-GFP reporter²⁵ and “depletion of regulatory T cell” (DEREG)²⁶ mice has enabled an exponential number of studies on the function of these regulatory T cells (Tregs) in autoimmune, allergic, infectious and malignant diseases as well as in transplantation tolerance.

Thus, cells coexpressing FOXP3 and high levels of CD25 were regarded as a novel T cell subset, termed Tregs. Soon thereafter these were called ‘natural’ Tregs, since these cells are thought to originate from the thymus and are naturally present in the periphery to maintain self-tolerance²⁷. In addition, several other T cell subsets with regulatory activity have been described, which may or may not express CD25 or FOXP3. These subsets are jointly named adaptive or inducible Tregs, since these cells can be induced through specific antigenic stimulation²⁸. For example, T cells in the periphery can be induced to express FOXP3 capable of suppression, T-regulatory-1 (Tr-1) cells secreting IL-10 and transforming growth factor (TGF)- β were demonstrated to have a regulatory role²⁹ as well as Th3 cells, which were originally identified as TGF- β secreting cells that could mediate oral tolerance to myelin peptides in MS patients³⁰. Furthermore, some studies have described CD8-positive Tregs³¹ and even CD4-CD8- Tregs³², however these subsets have not been characterized in much detail.

The mechanisms for Treg-mediated suppression are not fully understood in humans, but research in animals and *in vitro* models has made great progress in the last decade^{33,34}. Since CD25 was the first surface molecule implicated in cells involved in self-tolerance¹⁹, high consumption of IL-2 by Tregs (“cytokine sink”) was suggested as a way of depriving other T cells from this critical factor and thereby leading to apoptosis³⁵. A well-characterized cell contact-dependent mechanism of suppression by Tregs is through the expression of inhibitory

molecules. CTLA-4 is the suppressory equivalent of CD28 expressed on T cells and is involved in costimulatory interactions with CD86 and CD80³⁶. Importantly, agonistic CTLA-4 antibodies are now one of the options that can be used for therapeutic intervention to inhibit excessive T cell activation in rheumatoid arthritis³⁷. Next to cell-contact mediated suppression, Tregs can also exert their regulatory functions by secreting immune modulatory molecules. IL-10 and TGF- β are the best-known examples of suppressory cytokines. Another cytokine lately added to this spectrum is IL-35, which was shown to contribute to the human regulatory network and possibly infectious tolerance³⁸. Moreover, the expression of tumor necrosis factor (TNF) receptor II (TNFRII) has been observed in rheumatoid arthritis and malaria infections, with possible mode of actions being enhancement of Treg activity in TNF-rich environments and neutralization of TNF^{39,40}. Recent work has further identified CD39 and CD73 co-expression on Tregs as part of their suppressory activity⁴¹. These ectoenzymes generate adenosine, which inhibits T cell proliferation and activation via the A2 adenosine receptor (A2AR) pathway.


Characterization of Tregs during helminth infections

Experiments in murine models have paved the way for studies that investigate the contribution of Tregs in human helminth infections. Although murine models, which provide homogenous genetic and environmental background, are expected to provide robust studies of infections, the results obtained have not always been clear-cut. For example regarding the role of IL-10 in murine schistosomiasis (*S. mansoni*), CD4 $^{+}$ CD25 $^{+}$ cells expressing Foxp3 were able to inhibit Th1 cell proliferation through IL-10⁴². In another study IL-10 from Tregs was shown to be more important for host survival than IL-10 produced by other cell subsets⁴³. However, other studies using the same models have shown that IL-10 is not essential for Treg-modulated suppression of Th1 or Th2 responses^{44,45}. These discrepancies illustrate the degree of the complexity of the so-called “regulatory network” and the possible relation to parasites.

The group of Rick Maizels has contributed much to unraveling the cellular mechanisms of the immune regulatory network in murine models of filariasis (*Brugia malayi* or *Litomosoides sigmodontis*) and intestinal helminth infections (*Heligmosomoides polygyrus*). Although these models are very different, in all three an expansion of Foxp3 $^{+}$ Tregs during early stages of infection was seen⁴⁶⁻⁴⁸. In successive studies, it has been shown that Tregs during *L. sigmodontis* infection suppress anti-parasite immunity through surface expression of CD25 and glucocorticoid-induced TNF receptor family related gene (GITR)⁴⁸, that Tregs in *H. polygyrus*-infected animals are more suppressive *in vitro* than those from uninfected mice⁴⁶, that adult parasite stages also induce Foxp3 expressing T cells

which have *in vitro* suppressive capacity which extends to bystander antigens⁴⁷ and finally, that *in vivo* CD25 depletion 7 days prior to infection could prevent the appearance of microfilaremia and reduce worm burden, indicating that Tregs suppress parasite killing *in vivo*⁴⁹. *In vivo* and *in vitro* anti-CD25 treatment has been used in several other studies to deplete Tregs, leading to increased anti-parasite responses in murine infections with *Brugia pahangi*⁵⁰ and *Schistosoma mansoni*⁴³⁻⁴⁵, but this same treatment did not enhance immune responses in other studies of *S. mansoni*⁵¹ and *Trichinella spiralis*⁵². Another approach is depletion of Foxp3⁺ Tregs by using DEREG mice. Expression of diphtheria toxin (DT) receptor fused with GFP under control of the *Foxp3* locus enables complete depletion of Foxp3⁺ Tregs by administration of DT²⁶. Interestingly, it was noted that only depletion of Tregs in the first days of infection is effective in improving resistance to worms. In a *Strongyloides ratti* mouse model, this method was applied and early depletion of Tregs increased type 2 responses and reduced worm burden significantly but did not change intestinal pathology, whereas depletion at a later time point (4 days after infection) had no effect on worm burden or pathology⁵³. In a model of *H. polygyrus* infection however, the same Treg depletion applied at 4 days post-infection, while enhancing Th2 responses, did not affect the numbers of worms and exacerbated intestinal pathology⁵⁴. Taken together, these data suggest that anti-CD25 treatment and Foxp3⁺ Treg depletion show similar results; Tregs are rapidly increased upon helminth infection and are in particular important in inhibiting protective immunity at early stages of infection, whereas their effect on intestinal pathology is not consistent (summarized by Taylor et al.⁵⁵).

In human infections, the characterization of Tregs has been more complicated (Figure 1). Up until recently, the presence of Tregs was shown indirectly by mRNA analysis of total peripheral blood mononuclear cells (PBMC)^{56,57}, but flow cytometry has now been established as the principal method for Treg identification during helminthic infections^{58,59}, however staining for FOXP3 was not available until recently. Since FOXP3 is an intracellular protein, expression can only be analyzed in fixed cells with a certain staining protocol⁶⁰. Therefore, if isolated Tregs are needed, only surface molecules, which are less specific for Tregs, can be used for their identification and sorting⁶¹. Furthermore, large volumes of blood are needed for the purpose of isolating Tregs from peripheral blood, which may not always be feasible. Finally, the most state of the art methods for Treg characterization demand well-equipped laboratories with specialized operators that are more than often limited in low-resource settings. In the field of helminth research, we are therefore restricted to indirect methods of assessing Treg properties, such as phenotypic analysis of markers and depletion of Tregs in *in vitro* cell cultures (Figure 1).

Figure 1. Different methods of characterizing human Tregs. Schematic representation of the different ways Tregs have been analyzed. In A and B, the methods of phenotypic characterization are summarized. (A) Whole blood as well as PBMC can be assessed for mRNA expression of regulatory molecules, such as IL-10 or FOXP3, directly *ex vivo* or after *in vitro* stimulation. (B) Flow cytometry can be used to assess expression of up to 17 different cell markers simultaneously. Cells from whole blood and PBMC can be stained and analyzed. The most common definition of Tregs is the population expressing CD4, FOXP3 and high levels of CD25; a representative example of Treg gating within CD4⁺ T cells is shown (B-i). Furthermore, when selecting these cells, the expression of several other molecules can be analyzed as depicted in B-ii, where examples are shown of Helios and CD127 expression, two markers used for further characterization of Tregs. In C and D, options for functional characterization of Tregs are depicted. (C) Isolation of Tregs can be performed using magnetic beads (C-i) or fluorescent activated cell sorting (C-ii). The acquired cells can be directly co-cultured with other cell populations (C-iii) to determine the inhibitory capacity of Tregs, alternatively the cells can be expanded *in vitro* (C-iv) to obtain sufficient cell numbers for further applications, such as immunotherapy. (D) A more indirect, but more feasible approach for the functional analysis of Tregs is the depletion method. By using magnetic bead isolation of CD25-positive or -highly positive cells (D-i), the flow-through can be regarded as Treg-depleted cells (D-ii), whereas the isolated Tregs can be added back to the flow-through to create a "mock"-depleted cell fraction (D-iii). Both cell populations can furthermore be cultured *in vitro* and the difference in immune responses can be analyzed.

– Representation adapted from Miltenyi Biotec –

Challenges in immunoepidemiological field studies

The immune regulatory network is thought to be essential for helminth-induced modulation of parasite-specific as well as bystander responses. Many research groups in affluent countries have addressed the question if and how helminths affect the immune system and whether, through modulation of bystander responses, helminths could influence the outcome of vaccinations or inflammatory diseases. Whereas the work has mainly been conducted in animal models, travellers or experimentally infected humans, only few groups have taken these questions to areas where helminth infections are highly endemic. Field studies in remote areas are complicated by the logistic challenges, lack of advanced technologies and, possibly, cultural obstacles. However, these studies analyzing human samples are of utmost importance for understanding the real-life situation, and moreover, for the opportunities of health education and bilateral knowledge transfer. Despite the difficulties, in the last decades several investigators have established collaborations with scientists in low-resource settings and these have generated important insight into the interaction of helminths with the immune system, vaccines, other infections and allergies.

It was established in various study sites that cellular immune responses to tetanus⁶²⁻⁶⁴, cholera⁶⁵, BCG^{66,67} and influenza⁶⁸ vaccines are impaired in helminth-infected individuals and some studies have shown increased responses to vaccines after anthelmintic treatment^{62,67,69}, although many were not placebo-controlled. The effect of helminths on coinfections has been addressed in a number of studies, but mostly in a cross-sectional manner. Helminth and malarial infections have overlapping distributions in tropical regions, raising the question what impact helminth infections may have on the plasmodial parasites that cause malaria. There is much controversy surrounding the effect of helminth infections on malarial parasitemia and clinical malaria episodes. Most studies have used cross-sectional designs and have variously reported detrimental^{70,71} or beneficial^{72,73} or no^{74,75} effect of helminths on either burden of infection or clinical outcomes. Studies of anthelmintic treatment are expected to be more informative, but the trials that have been conducted so far have also shown detrimental⁷⁶ or beneficial⁷⁷ effects in small groups of children. The relationship between helminth infections and allergy has received much attention, also in terms of clinical trials conducted in areas endemic for helminth infections. Although the majority of cross-sectional studies have reported inverse associations between helminth infections and skin prick test (SPT) reactivity⁷⁸, a number show that certain helminths may increase the risk of atopy^{79,80}. Two randomized trials with albendazole treatment have been carried out in cohorts of school children. A study in Ecuador showed no change in either SPT reactivity to allergens or allergic symptoms, but this study did not include a placebo group⁸¹, while in a trial in

Vietnam, one year of albendazole treatment increased SPT reactivity but also did not change clinical allergy to any significant degree⁸². It has been suggested that longer anthelmintic treatment might be needed to reveal the modulatory effect of helminths⁸³.

So far, most field studies have not assessed immune alterations in parallel to clinical consequences of helminth elimination. The two albendazole trials assessing the effect on allergy in school children demonstrated lower IL-10 production in response to helminth antigens after anthelmintic treatment^{82,84}, suggesting a role for parasite-specific IL-10. The Ecuador study also showed an increase in helminth-specific Th2 responses⁸⁴ and enhanced Th2 responses were furthermore seen in a mebendazole trial in infants from Pemba⁸⁵ and after praziquantel treatment of pregnant women in Uganda⁸⁶, but two of these studies were not placebo-controlled and none of them involved a whole community but focused on specific age groups. There is therefore a need for randomized controlled interventional studies assessing the effect of deworming on the prevalence of coinfections and allergy, together with detailed assessment of immunological parameters, which might help us understand the causal pathways.

Scope and aims of this thesis

Since parasitic infections are still highly prevalent in tropical areas, there are opportunities to study the underlying immunological processes that might explain the possible beneficial effects of helminth infections. In particular, areas with few or no history of mass drug administration would be suited to analyze the 'natural' situation in which humans live with worms. By looking into our past, we may be able to find solutions for the current struggle worldwide with immune-associated diseases, not only in affluent countries but also in urban centers of the less affluent regions of the world. It is important to note that such studies are expected to help anticipate the consequences of the future epidemiological transition for low-to middle-income countries and thus prepare the health care systems for the challenge facing them. The dilemma between deworming and helminth immunotherapy is pressing and of major global public health impact.

The regulatory network, where Tregs play an important role, is thought to be central to the relationship of parasites with coinfections and inflammatory diseases. The characterization of this regulatory network, and helminth-induced Tregs in particular, forms the focus of this thesis. The specific aims are as follows:

- i. To characterize T cell responses during parasitic infections
- ii. To explore the mechanisms of immune modulation employed by parasites
 - a. Proportions and phenotype of Tregs during parasitic infection
 - b. Treg suppressive capacity measured by establishing a field-applicable assay
- iii. To assess the immunological consequences of deworming
- iv. To assess the clinical outcomes of deworming, in terms of malaria and allergy

References

1. Maizels, R.M. & Yazdanbakhsh, M. Immune regulation by helminth parasites: cellular and molecular mechanisms. *Nature reviews. Immunology* 3, 733-744 (2003).
2. Druilhe, P., Tall, A. & Sokhna, C. Worms can worsen malaria: towards a new means to roll back malaria? *Trends in parasitology* 21, 359-362 (2005).
3. Borkow, G. & Bentwich, Z. Chronic parasite infections cause immune changes that could affect successful vaccination. *Trends in parasitology* 24, 243-245 (2008).
4. Flohr, C., Quinnett, R.J. & Britton, J. Do helminth parasites protect against atopy and allergic disease? *Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology* 39, 20-32 (2009).
5. Weinstock, J.V., et al. The possible link between de-worming and the emergence of immunological disease. *The Journal of laboratory and clinical medicine* 139, 334-338 (2002).
6. Hotez, P.J., et al. Helminth infections: the great neglected tropical diseases. *The Journal of clinical investigation* 118, 1311-1321 (2008).
7. Bethony, J., et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. *Lancet* 367, 1521-1532 (2006).
8. Ruffer, M.A. Note on the Presence of "Bilharzia Haematobia" in Egyptian Mummies of the Twentieth Dynasty [1250-1000 B.C.]. *British medical journal* 1, 16 (1910).
9. Fumagalli, M., et al. Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. *The Journal of experimental medicine* 206, 1395-1408 (2009).
10. Strachan, D.P. Hay fever, hygiene, and household size. *BMJ* 299, 1259-1260 (1989).
11. Rook, G.A. Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. *Immunology* 126, 3-11 (2009).
12. Allen, J.E. & Maizels, R.M. Diversity and dialogue in immunity to helminths. *Nature reviews. Immunology* 11, 375-388 (2011).
13. Ottesen, E.A., Hiatt, R.A., Cheever, A.W., Sotomayor, Z.R. & Neva, F.A. The acquisition and loss of antigen-specific cellular immune responsiveness in acute and chronic schistosomiasis in man. *Clinical and experimental immunology* 33, 37-47 (1978).
14. Ottesen, E.A., Weller, P.F. & Heck, L. Specific cellular immune unresponsiveness in human filariasis. *Immunology* 33, 413-421 (1977).
15. Piessens, W.F., et al. Antigen-specific suppressor cells and suppressor factors in human filariasis with *Brugia malayi*. *The New England journal of medicine* 302, 833-837 (1980).
16. Piessens, W.F., et al. Antigen-specific suppressor T lymphocytes in human lymphatic filariasis. *The New England journal of medicine* 307, 144-148 (1982).
17. Irvine, W.J., Clarke, B.F., Scarth, L., Cullen, D.R. & Duncan, L.J. Thyroid and gastric autoimmunity in patients with diabetes mellitus. *Lancet* 2, 163-168 (1970).
18. Thomas, D.J., Young, A., Gorsuch, A.N., Bottazzo, G.F. & Cudworth, A.G. Evidence for an association between rheumatoid arthritis and autoimmune endocrine disease. *Annals of the rheumatic diseases* 42, 297-300 (1983).
19. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. *J Immunol* 155, 1151-1164 (1995).
20. Shevach, E.M. Certified professionals: CD4(+)CD25(+) suppressor T cells. *The Journal of experimental medicine* 193, F41-46 (2001).

21. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. *Science* 299, 1057-1061 (2003).
22. Bennett, C.L., et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. *Nature genetics* 27, 20-21 (2001).
23. Brunkow, M.E., et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. *Nature genetics* 27, 68-73 (2001).
24. Chen, W., et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. *The Journal of experimental medicine* 198, 1875-1886 (2003).
25. Fontenot, J.D., et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. *Immunity* 22, 329-341 (2005).
26. Lahli, K., et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. *The Journal of experimental medicine* 204, 57-63 (2007).
27. Gavin, M. & Rudensky, A. Control of immune homeostasis by naturally arising regulatory CD4+ T cells. *Current opinion in immunology* 15, 690-696 (2003).
28. Mills, K.H. & McGuirk, P. Antigen-specific regulatory T cells--their induction and role in infection. *Seminars in immunology* 16, 107-117 (2004).
29. Levings, M.K. & Roncarolo, M.G. T-regulatory 1 cells: a novel subset of CD4 T cells with immunoregulatory properties. *The Journal of allergy and clinical immunology* 106, S109-112 (2000).
30. Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A. & Weiner, H.L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. *Science* 265, 1237-1240 (1994).
31. Cosmi, L., et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. *Blood* 102, 4107-4114 (2003).
32. Fischer, K., et al. Isolation and characterization of human antigen-specific TCR alpha beta+ CD4(-)CD8- double-negative regulatory T cells. *Blood* 105, 2828-2835 (2005).
33. Shevach, E.M. Mechanisms of foxp3+ T regulatory cell-mediated suppression. *Immunity* 30, 636-645 (2009).
34. Tang, Q. & Bluestone, J.A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. *Nature immunology* 9, 239-244 (2008).
35. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M.J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. *Nature immunology* 8, 1353-1362 (2007).
36. Krummel, M.F. & Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. *The Journal of experimental medicine* 182, 459-465 (1995).
37. Kremer, J.M., et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. *The New England journal of medicine* 349, 1907-1915 (2003).
38. Chaturvedi, V., Collison, L.W., Guy, C.S., Workman, C.J. & Vignali, D.A. Cutting edge: Human regulatory T cells require IL-35 to mediate suppression and infectious tolerance. *J Immunol* 186, 6661-6666 (2011).
39. Randall, L.M. & Engwerda, C.R. TNF family members and malaria: old observations, new insights and future directions. *Experimental parasitology* 126, 326-331 (2010).
40. van Mierlo, G.J., et al. Cutting edge: TNFR-shedding by CD4+CD25+ regulatory T cells inhibits the induction of inflammatory mediators. *J Immunol* 180, 2747-2751 (2008).

41. Deaglio, S., *et al.* Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. *The Journal of experimental medicine* 204, 1257-1265 (2007).
42. McKee, A.S. & Pearce, E.J. CD25+CD4+ cells contribute to Th2 polarization during helminth infection by suppressing Th1 response development. *J Immunol* 173, 1224-1231 (2004).
43. Hesse, M., *et al.* The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. *J Immunol* 172, 3157-3166 (2004).
44. Baumgart, M., Tompkins, F., Leng, J. & Hesse, M. Naturally occurring CD4+Foxp3+ regulatory T cells are an essential, IL-10-independent part of the immunoregulatory network in *Schistosoma mansoni* egg-induced inflammation. *J Immunol* 176, 5374-5387 (2006).
45. Taylor, J.J., Mohrs, M. & Pearce, E.J. Regulatory T cell responses develop in parallel to Th responses and control the magnitude and phenotype of the Th effector population. *J Immunol* 176, 5839-5847 (2006).
46. Finney, C.A., Taylor, M.D., Wilson, M.S. & Maizels, R.M. Expansion and activation of CD4(+)CD25(+) regulatory T cells in *Heligmosomoides polygyrus* infection. *European journal of immunology* 37, 1874-1886 (2007).
47. McSorley, H.J., Harcus, Y.M., Murray, J., Taylor, M.D. & Maizels, R.M. Expansion of Foxp3+ regulatory T cells in mice infected with the filarial parasite *Brugia malayi*. *J Immunol* 181, 6456-6466 (2008).
48. Taylor, M.D., *et al.* Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. *J Immunol* 174, 4924-4933 (2005).
49. Taylor, M.D., *et al.* Early recruitment of natural CD4+ Foxp3+ Treg cells by infective larvae determines the outcome of filarial infection. *European journal of immunology* 39, 192-206 (2009).
50. Gillan, V. & Devaney, E. Regulatory T cells modulate Th2 responses induced by *Brugia pahangi* third-stage larvae. *Infection and immunity* 73, 4034-4042 (2005).
51. Walsh, C.M., Smith, P. & Fallon, P.G. Role for CTLA-4 but not CD25+ T cells during *Schistosoma mansoni* infection of mice. *Parasite immunology* 29, 293-308 (2007).
52. Beiting, D.P., *et al.* Coordinated control of immunity to muscle stage *Trichinella spiralis* by IL-10, regulatory T cells, and TGF-beta. *J Immunol* 178, 1039-1047 (2007).
53. Blankenhaus, B., *et al.* *Strongyloides ratti* infection induces expansion of Foxp3+ regulatory T cells that interfere with immune response and parasite clearance in BALB/c mice. *J Immunol* 186, 4295-4305 (2011).
54. Rausch, S., *et al.* Establishment of nematode infection despite increased Th2 responses and immunopathology after selective depletion of Foxp3+ cells. *European journal of immunology* 39, 3066-3077 (2009).
55. Taylor, M.D., van der Werf, N. & Maizels, R.M. T cells in helminth infection: the regulators and the regulated. *Trends in immunology* 33, 181-189 (2012).
56. Babu, S., Blauvelt, C.P., Kumaraswami, V. & Nutman, T.B. Regulatory networks induced by live parasites impair both Th1 and Th2 pathways in patent lymphatic filariasis: implications for parasite persistence. *J Immunol* 176, 3248-3256 (2006).
57. King, C.L., *et al.* Cytokine control of parasite-specific anergy in human lymphatic filariasis. Preferential induction of a regulatory T helper type 2 lymphocyte subset. *The Journal of clinical investigation* 92, 1667-1673 (1993).
58. Garcia-Hernandez, M.H., *et al.* Regulatory T Cells in children with intestinal parasite infection. *Parasite immunology* 31, 597-603 (2009).

59. Watanabe, K., *et al.* T regulatory cell levels decrease in people infected with *Schistosoma mansoni* on effective treatment. *The American journal of tropical medicine and hygiene* 77, 676-682 (2007).

60. Law, J.P., *et al.* The importance of Foxp3 antibody and fixation/permeabilization buffer combinations in identifying CD4+CD25+Foxp3+ regulatory T cells. *Cytometry. Part A : the journal of the International Society for Analytical Cytology* 75, 1040-1050 (2009).

61. Gregori, S., Bacchetta, R., Passerini, L., Levings, M.K. & Roncarolo, M.G. Isolation, expansion, and characterization of human natural and adaptive regulatory T cells. *Methods Mol Biol* 380, 83-105 (2007).

62. Cooper, P.J., Espinel, I., Paredes, W., Guderian, R.H. & Nutman, T.B. Impaired tetanus-specific cellular and humoral responses following tetanus vaccination in human onchocerciasis: a possible role for interleukin-10. *The Journal of infectious diseases* 178, 1133-1138 (1998).

63. Nookala, S., Srinivasan, S., Kaliraj, P., Narayanan, R.B. & Nutman, T.B. Impairment of tetanus-specific cellular and humoral responses following tetanus vaccination in human lymphatic filariasis. *Infection and immunity* 72, 2598-2604 (2004).

64. Sabin, E.A., Araujo, M.I., Carvalho, E.M. & Pearce, E.J. Impairment of tetanus toxoid-specific Th1-like immune responses in humans infected with *Schistosoma mansoni*. *The Journal of infectious diseases* 173, 269-272 (1996).

65. Cooper, P.J., *et al.* Human infection with *Ascaris lumbricoides* is associated with suppression of the interleukin-2 response to recombinant cholera toxin B subunit following vaccination with the live oral cholera vaccine CVD 103-HgR. *Infection and immunity* 69, 1574-1580 (2001).

66. Elias, D., *et al.* *Schistosoma mansoni* infection reduces the protective efficacy of BCG vaccination against virulent *Mycobacterium tuberculosis*. *Vaccine* 23, 1326-1334 (2005).

67. Elias, D., *et al.* Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guerin (BCG) vaccination. *Clinical and experimental immunology* 123, 219-225 (2001).

68. van Riet, E., *et al.* Cellular and humoral responses to influenza in gabonese children living in rural and semi-urban areas. *The Journal of infectious diseases* 196, 1671-1678 (2007).

69. Elias, D., Britton, S., Aseffa, A., Engers, H. & Akuffo, H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. *Vaccine* 26, 3897-3902 (2008).

70. Nacher, M., *et al.* Intestinal helminth infections are associated with increased incidence of *Plasmodium falciparum* malaria in Thailand. *The Journal of parasitology* 88, 55-58 (2002).

71. Sokhna, C., *et al.* Increase of malaria attacks among children presenting concomitant infection by *Schistosoma mansoni* in Senegal. *Malaria journal* 3, 43 (2004).

72. Kung'u, J.K., *et al.* Early helminth infections are inversely related to anemia, malnutrition, and malaria and are not associated with inflammation in 6- to 23-month-old Zanzibari children. *The American journal of tropical medicine and hygiene* 81, 1062-1070 (2009).

73. Nacher, M., *et al.* *Ascaris lumbricoides* infection is associated with protection from cerebral malaria. *Parasite immunology* 22, 107-113 (2000).

74. Shapiro, A.E., *et al.* Epidemiology of helminth infections and their relationship to clinical malaria in southwest Uganda. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 99, 18-24 (2005).

75. Bejon, P., et al. Helminth infection and eosinophilia and the risk of *Plasmodium falciparum* malaria in 1- to 6-year-old children in a malaria endemic area. *PLoS neglected tropical diseases* 2, e164 (2008).
76. Brutus, L., Watier, L., Hanitrasoamampionona, V., Razanatsoarilala, H. & Cot, M. Confirmation of the protective effect of *Ascaris lumbricoides* on *Plasmodium falciparum* infection: results of a randomized trial in Madagascar. *The American journal of tropical medicine and hygiene* 77, 1091-1095 (2007).
77. Kirwan, P., et al. Impact of repeated four-monthly anthelmintic treatment on *Plasmodium* infection in preschool children: a double-blind placebo-controlled randomized trial. *BMC infectious diseases* 10, 277 (2010).
78. Feary, J., Britton, J. & Leonardi-Bee, J. Atopy and current intestinal parasite infection: a systematic review and meta-analysis. *Allergy* 66, 569-578 (2011).
79. Dagoye, D., et al. Wheezing, allergy, and parasite infection in children in urban and rural Ethiopia. *American journal of respiratory and critical care medicine* 167, 1369-1373 (2003).
80. Palmer, L.J., et al. *Ascaris lumbricoides* infection is associated with increased risk of childhood asthma and atopy in rural China. *American journal of respiratory and critical care medicine* 165, 1489-1493 (2002).
81. Cooper, P.J., et al. Effect of albendazole treatments on the prevalence of atopy in children living in communities endemic for geohelminth parasites: a cluster-randomised trial. *Lancet* 367, 1598-1603 (2006).
82. Flohr, C., et al. Reduced helminth burden increases allergen skin sensitization but not clinical allergy: a randomized, double-blind, placebo-controlled trial in Vietnam. *Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology* 40, 131-142 (2010).
83. Lau, S. & Matricardi, P.M. Worms, asthma, and the hygiene hypothesis. *Lancet* 367, 1556-1558 (2006).
84. Cooper, P.J., et al. Repeated treatments with albendazole enhance Th2 responses to *Ascaris Lumbricoides*, but not to aeroallergens, in children from rural communities in the Tropics. *The Journal of infectious diseases* 198, 1237-1242 (2008).
85. Wright, V.J., et al. Early exposure of infants to GI nematodes induces Th2 dominant immune responses which are unaffected by periodic anthelmintic treatment. *PLoS neglected tropical diseases* 3, e433 (2009).
86. Tweyongyere, R., et al. Effect of praziquantel treatment during pregnancy on cytokine responses to schistosome antigens: results of a randomized, placebo-controlled trial. *The Journal of infectious diseases* 198, 1870-1879 (2008).