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C
HA

PT
ER5 Asymmetric Supernova in

Hierarchical Multiple Star
Systems and Application to
J1903+0327

We develop a method to analyze the effect of an asymmetric supernova on hierarchical
multiple star systems and we present analytical formulas to calculate orbital parameters
for surviving binaries or hierarchical triples and runaway velocities for their dissociating
equivalents.e effect of an asymmetric supernova on the orbital parameters of a binary
system has been studied to great extent (e.g. Hills 1983; Kalogera 1996; Tauris and
Takens 1998), but this effect on higher multiplicity hierarchical systems has not been
explored before. With our method, the supernova effect can be computed by reducing
the hierarchical multiple to an effective binary by means of recursively replacing the
inner binary by an effective star at the center of mass of that binary.

We apply our method to a hierarchical triple system similar to the progenitor of
PSR J1903+0327 suggested by Portegies Zwart et al. (2011). We confirm their earlier
finding that if PSR J1903+0327 could have evolved from a hierarchical triple that
became unstable and ejected the secondary star of the inner binary, it would be most
probable to have had a small supernova kick velocity, the inner binary would likely have
had a large semi-major axis, and the fraction of mass accreted onto the neutron star to
the mass lost by the secondary most likely be between 0.35 and 0.5.

In collaboration with:
Tjibaria Pijloo & Simon Portegies Zwart.

MNRAS 424, 2914 (2012)



5.1 Introduction

5.1 Introduction

Asymmetric supernovae in binary and hierarchical multiple star systems form
a crucial phase in the formation of stellar systems containing a compact stellar
remnant - neutron star or black hole. In previous studies of supernovae in bina-
ries two effects of the supernova are considered: 1) sudden mass loss of, and 2)
a random kick velocity imparted on the compact remnant of the star undergo-
ing the supernova. e combined effect which changes the orbital parameters
causes the binary to dissociate in the majority of the cases.

e study of binaries surviving a supernova (SN) explosion of one of its
components was first performed by Blaauw (1961) and Boersma (1961), as-
suming a symmetric SN (i.e. only mass loss). e necessity of asymmetry in
the SN, resulting in the kick velocity, was first suggested by Shklovskii (1970).
e statistical study on pulsar scale heights by Gunn and Ostriker (1970) firmly
supported the asymmetric SN model and to date the adding of the kick velocity
to the newly born neutron star (or black hole) is a commonly excepted mech-
anism (van den Heuvel and van Paradijs 1997). Both the type of explosion
mechanism and whether the exploding star is in a binary system are found to
influence the effect of the kick velocity (see e.g. Podsiadlowski et al. 2004), but
the exact physical process underlying the production of kicks remains unclear.
e analysis of the effect of asymmetric supernovae on binaries has been suffi-
cient to explain most of the observed post-SN stellar systems, and little to no
effort has gone into studying the effect on hierarchical multiple star systems.

Millisecond pulsar (MSP) J1903+0327 (spin period ≃ 2.15 ms), first ob-
served by Champion et al. (2008) and later, in more detail, by Freire et al.
(2011), is part of what may be the first observed MSP binary to have evolved
from a hierarchical triple progenitor. MSP J1903+0327 is orbited by a main
sequence star in a wide (orbital period ≃ 95.2 days) and eccentric (eccentricity
e≃ 0.44) orbit. Based on these observables it seems impossible that this binary
(hereafter J1903+0327) formed via the traditional mechanism in a binary pro-
genitor (Champion et al. 2008). Portegies Zwart et al. (2011) proposed that
the progenitor system was a binary accompanied by a third and least massive
main-sequence star in a wider orbit about this binary. During the low-mass
X-ray binary (LMXB) phase of the inner binary, the orbit of the LMXB ex-
panded due to mass transfer from the evolving inner companion (donor) star to
the neutron star, which was formed in the SN. is eventually caused the triple
to become dynamically unstable and to eject the inner companion resulting in
the observed system J1903+0327.

J1903+0327 is not a unique case, however: there is a significant number
of systems like the progenitor of J1903+0327 as suggested in Portegies Zwart
et al. (2011) and similar hierarchical stellar systems of higher multiplicity. e
Multiple Star Catalog lists 602 triples, 93 quadruples, 22 quintuples, 9 sextuples
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Supernova in Multiple-Star Systems

and 2 septuples (Tokovinin 1997) of which 90 systems contain at least one star
with a mass M ⩾ 10 M⊙. Each of these multiples will eventually experience
a core-collapse SN of the most massive star. After the SN these systems are
either fully dissociated, dissociate into lower multiplicity multiple star systems,
or survive the SN.

We begin the study of the effect of an asymmetric SN on hierarchical multi-
ple star systems by first readdressing the SN effect on a binary and subsequently
treating the effect in a hierarchical triple. We show that a hierarchical triple can
effectively be regarded as a binary system comprised of the center of mass of
the inner binary and the tertiary star. e effect of a SN on a hierarchical triple
system, now reduced to an effective binary, can be calculated using the prescrip-
tion for a SN in binary. We ultimately generalize this effective binary method
to hierarchical multiple star systems of arbitrary multiplicity. In the second part
of the paper we perform Monte Carlo simulations of a hierarchical triple star
system similar to the progenitor of J1903+0327 suggested in Portegies Zwart
et al. (2011) to determine the (stable) survival rates, and evaluate whether such
a formation route is plausible.

5.2 Calculation of post-SN parameters

5.2.1 Binary systems

Weconsider a binary system of stars withmass, position and velocity for the pri-
mary and secondary star, given by (m1,0,r1,v1,0) and (m2,r2,v2,0) respectively1,
in which the primary undergoes a SN. e binary system is uniquely described
by the semi-major axis, a0, eccentricity, e0, and true anomaly, θ0. e sep-
aration distance is r0. We assume that the SN is instantaneous, meaning an
instantaneous removal of mass of the primary, no SN-shell impact on the com-
panion (secondary) star, and the orbital motion during this mass loss phase is
neglected, i.e. r = r0 and v2 = v2,0.

After the SN the orbital parameters have changed to: semi-major axis, a,
eccentricity, e, and true anomaly, θ. For a general Kepler orbit of two objects
with masses m1 and m2 respectively, a relative velocity, v, semi-major axis, a,
and separation distance, r, the orbital energy conservation equation is

v2 = G(m1 +m2)
(2
r
− 1

a

)
, (5.1)

1e contingent suffix 1, 2, etc. indicates which star we are considering (e.g. 1 for the pri-
mary). e contingent suffix 0 denotes the pre-SN state and when it is absent, it either refers to
the post-SN state or the absence indicates that there is no difference in the pre- and post-SN
states of that parameter.
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5.2 Calculation of post-SN parameters

where G is Newton’s gravitational constant. e specific relative angular mo-
mentum h is related to the orbital parameters as follows

|h|2 = |r × v|2 (5.2)
= G(m1 +m2)a(1− e2), (5.3)

where the first equality holds for all Kepler orbits and the second only applies to
bound orbits. For thorough studies on SNe in a binary system see Hills (1983),
Kalogera (1996), and Tauris and Takens (1998); the latter authors also take into
account the shell impact on the companion star using a method proposed by
Wheeler, Lecar, and McKee (1975). Following the mentioned works as guides
for our calculations on the binary system we use a total pre-SN mass of M0 =
m1,0+m2. Without loss of generality, we choose a coordinate system in which
at t = 0 the orbit lies in the xy-plane, the center of mass of the binary (cm) is
at the origin, the y-axis is the line connecting the primary and the secondary
(the cm coordinate system; see Figure 5.1), and we choose a reference frame in
which at t = 0 the cm is at rest (the cm reference frame).

Before the SN the separation distance between the stars is

r = r1 − r2 =

(
0,− a0(1− e20)

1 + e0 cos θ0
, 0

)
. (5.4)

Using the following notation

x = a0

√
1− e20 cos γ0 cos θ0 + a0 sin γ0 sin θ0,

y = −a0

√
1− e20 cos γ0 sin θ0 + a0 sin γ0 cos θ0,

v0x = v0
x√

x2 + y2
,

v0y = v0
y√

x2 + y2
,

in which γ0 is the pre-SN eccentric anomaly defined by r = a0(1− e0 cos γ0),
the velocity of the primary relative to the secondary is

v0 = v1,0 − v2 = (v0x, v0y, 0). (5.5)

After the SN the primary has lost a part of its mass, ∆m, and has obtained a
velocity kick vk in a random direction, which makes an angle ϕwith the pre-SN
relative velocity v0. e velocity of the primary relative to the secondary, after
the SN, is

v = v0 + vk = (v0x + vkx, v0y + vky, vkz), (5.6)
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a. e cm coordinate system in the cm reference frame for a binary system
before the SN (at t = 0).

2
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y
z
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b. e cm coordinate system in the cm reference frame for a binary system
after the SN.

Figure 5.1: Schematic representation of a binary system in the pre- and post-SN phase.
The solid blue circles denote the primary and secondary star; the solid red cirle denotes
the cm. The solid arrows denote the velocities the stars or cm have at that phase; the
dashed arrows denote the velocity the SN imposes on the stars or cm which will change
its velocity in the next phase. a. In the pre-SN phase the coordinate system is centered on
the cm being at rest. b. In the post-SN phase the coordinate system is no longer centered
on the cm - the cm has been translated in the y-direction, towards the secondary, and
has gained a velocity vsys. In both cases the inner binary orbital plane lies in the xy-plane
and the y-axis is the line connecting the primary and the secondary.
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5.2 Calculation of post-SN parameters

the mass of the primary is m1 = m1,0 − ∆m and the total binary mass is
M = M0 − ∆m. Applying these relations and equations (5.1) and (5.2) to
the binary system, we obtain equations relating the post-SN semi-major axis,
a, and eccentricity, e, to both the pre- and post-SN orbital parameters and ve-
locities. Using vc,0 = v0|r=a0 = (GM0/a0)

1/2 as the pre-SN relative velocity
(Hills 1983), we obtain

a

a0
=

(
1− ∆m

M0

)(
1− 2a0

r

∆m

M0
− 2

v0
vc,0

vk
vc,0

cosϕ

−
v2k
v2c,0

)−1
(5.7)

e2 = 1− (1− e20)
M2

0

(M0 −∆m)2

(
1− 2a0

r

∆m

M0
−

v2k
v2c,0

−2
v0
vc,0

vk
vc,0

cosϕ
)

(5.8a)

= 1− a20(1− e20)
2

a(1 + e0 cos θ0)2
(v20x + v2kx + v2kz + 2v0xvkx)

G(M0 −∆m)
,

(5.8b)

which are consistent with Kalogera (1996). In §5.2.3 we present a few exam-
ples regarding the effect of mass loss and the supernova kick on the orbital
parameters of hierarchical triples. To compute the systemic velocity of the bi-
nary system due to the SN, we begin by writing the pre-SN velocities of the
primary and secondary in the cm reference frame; using the pre-SN mass ratio
µ0 = m2/M0, these velocities are given by

v1,0 = µ0

(
v0x, v0y, 0

)
, (5.9)

v2 = (µ0 − 1)
(
v0x, v0y, 0

)
. (5.10)

As a result of the assumption of an instantaneous SN and neglecting the shell
impact, the instantaneous velocity of the secondary remains unchanged after
the SN, but the instantaneous velocity of the primary changes to

v1 =
(
µ0v0x + vkx, µ0v0y + vky, vkz

)
. (5.11)

We now use the post-SN mass ratio µ = m2/M , and find the systemic velocity
of the binary system:

vsys = (1− µ)v1 + µv2

= (1− µ)
(µ0 − µ

1− µ
v0x + vkx,

µ0 − µ

1− µ
v0y + vky, vkz

)
.

(5.12)
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ese results are consistent with the previously mentioned studies on SN in
binaries. As a conseqence a binary in which the compact object does not receive
a kick in the supernova explosion moves through space like a frisbee.

Dissociating binary systems

e mass loss and the kick velocity have a potentially disrupting effect on the
binary system. However, in cases where the mass loss alone would have been
large enough to unbind the binary, the combination of the two can result in the
binary system surviving the SN (Hills 1983). If the binary system dissociates,
the two stars move away from each other on a hyperbolic or, in a limiting case,
a parabolic trajectory. is corresponds to the cases where a < 0 and e > 1
(hyperbola) or a → ∞ and e = 1 (parabola). From equation (5.7) we see
that for a dissociating binary the angle ϕ between the kick velocity vk and the
pre-SN relative velocity v0 satisfies (Hills 1983):

cosϕ ⩾
(
1− 2a0

r

∆m

M0
−

v2k
v2c,0

)(
2
vk
vc,0

√
2a0
r

− 1
)−1

. (5.13)

If the right-hand side of equation (5.13) is less than −1, the binary dissociates
for all ϕ; but if it is greater than 1 the binary survives for all ϕ. If the right-
hand side is within the range −1 to 1, the probability of dissociating the binary
is (Hills 1983):

Pdiss =
1

2

(
1−

(
1− 2a0

r

∆m

M0
−

v2k
v2c,0

)(
2
v0
vc,0

vk
vc,0

)−1)
.

(5.14)

Tauris and Takens (1998) presented analytical formulas to calculate the dis-
sociation velocities for a binary with a pre-SN circular orbit. We follow their
calculation for deriving the runaway velocities of the two stars in dissociating
binaries, but for a pre-SN orbit of arbitrary eccentricity and we ignore the SN
shell impact. We use the cm coordinate system, explained above. Using the
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following shorthand relations

m̃ =
M

M0
,

j =
v20x
v20

− 2m̃
a0

2a0 − r
+

v2k
v20

+
2v0xvkx

v20
,

k = 1 +
j

m̃

2a0 − r

a0
−

v2ky
m̃v20

2a0 − r

a0
,

l =
1

µ

( √
j

m̃v0
vky

2a0 − r

a0
− j

m̃

2a0 − r

a0
− 1

)
,

n =
1

µ

(
1 +

j

m̃

2a0 − r

a0
(k + 1)

)
,

we find the runaway velocities for the primary and secondary star:

v1,diss =
(
vkx

(1
l
+ 1

)
+

(1
l
+ µ0

)
v0x, µ0v0y

+vky

(
1− 1

n

)
+

k
√
j

n
v0, vkz

(1
l
+ 1

))
, (5.15)

v2,diss =
(
−m1vkx

m2l
−

( m1

m2l
+ 1− µ0

)
v0x, (µ0 − 1)v0y

+
m1vky
m2n

− m1k
√
j

m2n
v0,−

m1vkz
m2l

)
. (5.16)

5.2.2 Hierarchical triple systems

We now consider a hierarchical system of three stars with the primary, sec-
ondary and tertiary star havingmass, position and velocity given by (m1,0,r1,v1,0),
(m2,r2,v2) and (m3,r3,v3) respectively. e primary star undergoes a SN and
the inner binary configuration and parameters are the same as in section 5.2.1.
e inner binary center of mass (cm) has a mass ofmcm,0 = m1,0+m2 = M0,
is at position

rcm,0 = (1− µ0)r1 + µ0r2 (5.17)

and has a velocity

vcm,0 = (1− µ0)v1,0 + µ0v2. (5.18)

e cm and tertiary constitute an outer binary defined by the semi-major axis,
A0, eccentricity, E0, and true anomaly, Θ0. e separation distance between
the cm and the tertiary star we denote by R0. Before the SN the outer bi-
nary orbital plane has an inclination i0 with respect to the inner binary and
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the separation distance of the outer binary projected onto the xy-plane makes
an angle α0 with the separation distance of the inner binary. is inner-outer
binary configuration is to some extent acceptable, because the triple is hierar-
chical. is implies that the separation distance of the cm and the tertiary is
large compared to the separation distance of the primary and secondary, i.e.
R0 ≫ r0, so that the tertiary experiences gravitational influence of the inner
binary as if it was coming from one star at the cm. We assume an instantaneous
SN2. Due to the primary undergoing a SN, the inner binary experiences a mass
loss ∆m and an effective kick velocity is imparted to the cm: the systemic ve-
locity of the inner binary vsys given by equation 5.12. In addition, because of
the reduction in mass of the primary, the position of the cm has changed due
to an instantaneous translation along the y-axis

∆R = rcm − rcm,0

= (µ− µ0)
a0(1− e20)

1 + e0 cos θ0

(
0, 1, 0

)
. (5.19)

e orbital parameters change as a result of the SN: the inner binary parameters
change according to the description in section 5.2.1 and the outer binary orbital
parameters change to semi-major axis,A, eccentricity,E, and true anomaly,Θ.
e hierarchical triple before the SN has a total mass Mt,0 = M0 + m3. We
use the cm coordinate system to pin down the inner binary and add to this
coordinate system the tertiary at a position such that R0 ≫ r0 (see Figure 5.2).
We now select a reference frame in which the center of mass of the triple (CM)
is at rest (the CM reference frame).

Prior to the SN the separation distance between the cm and the tertiary is

R0 =
A0(1− E2

0)

1 + E0 cosΘ0

(
cos i0 sinα0,− cos i0 cosα0, sin i0

)
, (5.20)

2See section 5.2.1 and note that the statements about the inner companion (the secondary)
also hold for the outer companion (the tertiary).
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5.2 Calculation of post-SN parameters

a. e cm coordinate system in the CM reference frame for a hierarchical
triple system before the SN (at t = 0).

b. e cm coordinate system in the CM reference frame for a hierarchical
triple system after the SN.

Figure 5.2: Schematic representation of a hierarchical triple star system in the pre- and
post-SN phase. The solid blue circles denote the primary and secondary (inner binary);
the solid red cirles denote the cm and the tertiary (outer binary); the green cirle denotes
the CM. The solid arrows denote the velocities the stars or cm have at that phase; the
dashed arrows denote the velocity the SN imposes on the stars or cm which will change
its velocity in the next phase. a. In the pre-SN phase the coordinate system is centered
on the cm being at rest. a. In the pre-SN phase the coordinate system is centered on the
cm and the CM is at rest. b. In the post-SN phase the coordinate system is no longer
centered on the cm - the cm has been translated in the y-direction, towards the secondary
- and the CM is no longer at rest. In both cases the inner binary orbital plane lies in the
xy-plane and the y-axis is the line connecting the primary and the secondary.
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and, using the following shorthand notation

X = A0

√
1− E2

0 cosΓ0 cosΘ0 +A0 sinΓ0 sinΘ0

Y = −A0

√
1−E2

0 cosΓ0 sinΘ0 +A0 sinΓ0 cosΘ0

X ′ = X cosα0 − Y cos i0 sinα0

Y ′ = X sinα0 + Y cos i0 cosα0

Z ′ = Y sin i0

V0x = V0
X ′

√
X ′2 + Y ′2 + Z ′2

V0y = V0
Y ′

√
X ′2 + Y ′2 + Z ′2

V0z = V0
Z ′

√
X ′2 + Y ′2 + Z ′2

in which Γ0 is the pre-SN outer orbit eccentric anomaly defined by R0 =
A0(1− E0 cosΓ0), the velocity of the cm relative to the tertiary is

V0 = vcm,0 − v3 = (V0x, V0y, V0z). (5.21)

e effective kick velocity vsys makes an angle Φ with the pre-SN relative ve-
locity of the cm with respect to the tertiary star V0. After the SN the separation
distance between the cm and the tertiary star is

R = R0 +∆R,

=
A0(1− E2

0)

1 + E0 cosΘ0

(
cos i0 sinα0, (µ− µ0)

a0(1− e20)

1 + e0 cos θ0

×1 + E0 cosΘ0

A0(1− E2
0)

− cos i0 cosα0, sin i0
)
, (5.22)

the velocity of the cm relative to the tertiary star is

V = V0 + vsys

= (V0x + vsys,x, V0y + vsys,y, V0z + vsys,z), (5.23)

the cm mass ismcm = M0−∆m and the total triple mass isMt = Mt,0−∆m.
e inclination of the outer binary orbital plane with respect to the inner binary
orbital plane is given by:

sin i = |R0|
|R|

sin i0. (5.24)
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5.2 Calculation of post-SN parameters

e angle of the outer binary separation distance projected onto the xz-plane
relative to the inner binary separation distance is given by:

sinα =
|R0|
|R|

cos i0
cos i sinα0. (5.25)

Applying the relevant equations above and equations (5.1) and (5.2) to our
triple system, we obtain equations relating the post-SN semi-major axis,A, and
eccentricity, E, to both the pre- and post-SN orbital parameters and velocities.
Using Vc,0 = V0|R0=A0 = (GMt,0/A0)

1/2 as the pre-SN relative velocity
when R0 = A0, and using ρ = (R0 −R)/(R0R), we obtain

A

A0
=

(
1− ∆m

Mt,0

)(
1− 2A0

R

∆m

Mt,0
− 2

V0

Vc,0

vsys
Vc,0

cosΦ

−
v2sys
V 2
c,0

+ 2A0ρ
)−1

, (5.26)

E2 = 1− (1− E2
0)

Mt,0

(Mt,0 −∆m)

(2A0

R
+

Mt,0

Mt,0 −∆m

×
(
1− 2A0

R0
−

v2sys
V 2
c,0

− 2
V0

Vc,0

vsys
Vc,0

cosΦ
))

.

(5.27)

With the pre-SN mass ratio ν0 = m3/Mt,0, the pre-SN velocities of the cm
and the tertiary in the CM reference frame are

vcm,0 = ν0

(
V0x, V0y, V0z

)
(5.28)

v3 = (ν0 − 1)
(
V0x, V0y, V0z

)
. (5.29)

We calculate the instantaneous velocity of the cm after the SN (as before, be-
cause of the assumption of an instantaneous SN, the velocity of the tertiary
after the SN remains unchanged):

vcm = ν0

(
V0x +

vsys,x
ν0

, V0y +
vsys,y
ν0

, V0z +
vsys,z
ν0

)
. (5.30)

Using the post-SN mass ratio ν = m3/Mt, the systemic velocity of the outer
binary (and therefore of the triple) is

Vsys = (1− ν)vcm + νv3

= (1− ν)
(ν0 − ν

1− ν
V0x + (µ0 − µ)v0x + (1− µ)vkx,

ν0 − ν

1− ν
V0y + (µ0 − µ)v0y + (1− µ)vky,

ν0 − ν

1− ν
V0z + (1− µ)vkz

)
. (5.31)
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Summarizing, one can consider a hierarchical triple system as a effective bi-
nary system composed of an effective star (i.e. the inner binary center of mass
(cm)) and the tertiary. e effective star undergoes an effective asymmetric SN
resulting in three effects: 1) sudden mass loss ∆m, 2) an instantaneous trans-
lation ∆R, and 3) a random kick velocity vsys. e calculation of the post-SN
parameters and velocities of a hierarchical triple system is now reduced to the
prescription for a SN in a binary as presented in section 5.2.1. Note that the
mass loss does not occur from the position of the effective star, but from the
position of the primary star; a clear distinction from a physical binary system.
However, from what position the mass loss occurs is not important when an
instantaneous SN is considered. When the effect of the shell impact on the
companion star(s) is considered, this off-center mass loss must be taken into
account. In addition, if it was not the primary which underwent the SN, but
for example the tertiary, the computation would be done by reducing the inner
binary to an effective star, as shown in this section. One would again have a
binary configuration to calculate the effect of the SN; in such a system there
is no off-center mass loss. In section 5.2.4 we show how one can reduce any
hierarchical multiple star system to an effective binary in a recursive way using
the effective binary method and in § 5.2.4 we do the computation of the effect
of a SN on a binary-binary system.

Dissociating hierarchical triple systems

For the triple system, dissociation can occur in two ways: the inner binary can
dissociate (a < 0 and e > 1 or a → ∞ and e = 1) (see section 5.2.1) and the
outer binary can dissociate (A < 0 and E > 1 or A → ∞ and E = 1), i.e. the
inner binary and the tertiary become unbound. e inner binary dissociation
scenario generally results in complete dissociation of the system. However, hy-
pothetical scenarios exist in which one of the inner binary components is ejected
towards the tertiary star to either collapse with it or to form a binary by gravi-
tational or tidal capture. Nevertheless, these scenarios have a small probability
since the ejection conditions (e.g. the solid angle in which that particular inner
binary component has to be ejected in) and the capture conditions are extremely
specific. From equation 5.26 we see that for the inner binary to dissociate from
the tertiary, the angle Φ has to satisfy

cosΦ ⩾
(
1− 2A0

R

∆m

Mt,0
−

v2sys
V 2
c,0

+ 2A0ρ
)(

2
V0

Vc,0

vsys
Vc,0

)−1
.

(5.32)
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e probability of this type of dissociation is

P outer
diss =

1

2

(
1−

(
1− 2A0

R

∆m

Mt,0
−

v2sys
V 2
c,0

+ 2A0ρ
)

×
(
2
V0

Vc,0

vsys
Vc,0

)−1)
. (5.33)

In the case of the dissociation of the outer binary, using the following short
hand relations

M̃ =
Mt

Mt,0

J =
V 2
0x

V 2
0

− 2M̃
A0

2A0 −R0

R0

R
+

v2sys
V 2
0

+
2V0xvsys,x

V 2
0

K = 1 +
J

M̃

2A0 −R0

A0

R

R0
−

v2sys,y

M̃V 2
0

2A0 −R

A0

R

R0

L =
1

ν

( √
J

M̃V0

vsys,y
2A0 −R0

A0

R

R0

− J

M̃

2A0 −R0

A0

R

R0
− 1

)
N =

1

ν

(
1 +

J

M̃

2A0 −R0

A0

R

R0
(K + 1)

)
the runaway velocities of the inner binary system and the tertiary are (following
and generalizing Tauris and Takens (1998)):

vcm,diss =
(
vsys,x

( 1

L
+ 1

)
+

( 1

L
+ ν0

)
V0x, vsys,y

(
1− 1

N

)
+ν0V0y +

K
√
J

N
V0, vsys,z

( 1

L
+ 1

))
(5.34)

v3,diss =
(
−Mvsys,x

m3L
−

( M

m3L
+ 1− ν0

)
V0x, (ν0 − 1)V0y

+
Mvsys,y
m3N

− MK
√
J

m3N
V0,−

Mvsys,z
m3L

)
. (5.35)

Note that these equations are more general than the ones in section 5.2.1, be-
cause we cannot assume R = R0 in the triple case.

5.2.3 An example of the effect of a supernova in a hierar-
chical triple

For two simple sets of initial conditions we investigated the effect of mass loss,
∆m, and kick velocity, vk, on the survivability of a triple system.We distinguish
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between four different post-SN scenarios: (1) the triple survives as a whole
(e < 1 and E < 1) with new orbital parameters, (2) the inner binary survives
and the third star escapes (e < 1 and E > 1), (3) the inner binary dissociates
and the outer binary survives (e > 1 and E < 1) and (4) the triple completely
dissociates (e > 1 andE > 1).e third scenario is a rather special case and can
only be of temporary nature: in this scenario, even though the inner binary has
just dissociated, the third star remains bound to the inner binary center of mass.
is is a temporal solution which eventually will lead to the full dissociation of
the triple, except in the extreme case in which the tertiary star captures one of
the ejected inner stars to form a new binary system.

For each set of initial conditions we used a hierarchical triple system with
primary, secondary and tertiary stars of masses m1,0, m2, m3 = 3, 2, 1 M⊙
respectively and inner and outer binary semi-major axes a0, A0 = 10, 50 R⊙
respectively, and we varied the kick velocity direction v̂k. For the two different
sets of initial conditions we determine for what combinations of ∆m and vk
which post-SN scenario occurs and we show our results in Figure 5.3; the used
initial conditions are specified below the respective figures.

In Figure 5.3a. we used a circular inner and outer orbit, not inclined with
respect to each other, with all stars on one line and the kick velocity in the same
direction as the pre-SN inner binary relative velocity. We see that for zero kick
velocity, the inner binary dissociates for a mass loss ratio of ∆m/M0 = 0.5,
which is consistent with earlier work (e.g. Hills 1983). For zero mass loss, we
see that the inner binary dissociates for a kick velocity of vk ∼ 128 km/s -
this velocity is exactly the difference between the inner binary escape veloc-
ity (vesc =

√
2GM0/a0 ∼ 437 km/s) and pre-SN relative velocity (v0 =√

GM0/a0 ∼ 309 km/s) - but that the third star escapes for a slightly lower
value of the kick velocity. is is because the inner binary systemic velocity
(which is the effective outer orbit kick; see Section 5.2.2) plus the pre-SN outer
orbit relative velocity already exceed the outer orbit escape velocity. We further-
more see that the total triple survival scenario allows lower kick velocities for
higher mass losses. Above a kick velocity of vk ∼ 128 km/s the inner binary
always dissociates, irrespective of the mass loss, (eventually) leading to total
dissociation.

In Figure 5.3b. we keep the same configuration as described for Figure 5.3a.,
but with a kick velocity in the opposite direction with respect to the orbital
velocity of the exploding star before the supernova. e triple can now lose
more mass and receive a higher velocity kick while stil surviving. e ability to
sustain greater kick velocities is explained by the fact that, depending on the
mass loss, the kick velocity now has to exceed a fraction of the sum of v0 and
vk (for zero mass loss v0+vk∼ 746 km/s) due to the opposing directions of the
two velocities. We also see that total triple survival can occur beyond a mass
loss ratio of 0.5, because the kick velocity can oppose the dissociating effect
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of the mass loss (as mentioned in Hills 1983). Bare in mind that while the
∆m/M0 = 0 case is non-physical we include it for the completeness” sake.

In Figure 5.4 we show how the post-SN systemic velocity of the triple de-
pends on the mass loss ∆m for a hierarchical triple system with primary, sec-
ondary and tertiary stars with masses (m1,0, m2, m3) = (3, 2, 1) M⊙, inner and
outer binary semi-major axes (a0, A0) = (10, 50) R⊙ and the kick velocity in
the direction of the pre-SN inner orbit relative velocity. We plot our results for
the case that the SN went off at the inner orbit apastron (θ0 = 180 degrees) or
at the inner orbit periastron (θ0 = 0 degrees) for a symmetric SN (i.e. vk = 0
km/s) and a SN with a kick vk ∼ 31 km/s, in the cm reference frame (i.e. with
the cm at rest at t = 0). In Figure 5.4a. we see that for a symmetric supernova,
the systemic velocity of the inner binary increases with the amount of mass loss,
which is an intuitive result. We see that even with zero mass loss the triple has
a systemic velocity, namely the velocity it started with in this reference frame
(Vsys ∼ 17.5 km/s). We furthermore see that the increase of the triple sys-
temic velocity happens more steeply for these cases where the SN goes off at
periastron - with the steepest curve for the highest inner binary eccentricity -
than when the supernova goes off at apastron - with the steepest curve is for
lowest eccentricity. For an asymmetric supernova with kick vk ∼ 31 km/s, see
Figure 5.4b., we observe similar behaviour, but with the difference of the zero
mass loss case: in this case the triple system has a lower velocity than it started
with (Vsys ∼ 2.5 km/s), which is due to the kick. is result is dependent on
the direction of the kick.
e pre-SN triple systemic velocity is dependent on both the inner binary and
the outer binary. Its dependence on the inner binary is via the masses m1,0 and
m2 of the primary and secondary respectively and the inner binary orbital pa-
rameters which fully constrain the relative velocity of these stars (see equation
(5.5)). Its dependence on the outer binary is via the mass m3 of the tertiary
and the outer orbit orbital parameters which fully constrain the outer binary
relative velocity (see equation (5.21)). e post-SN triple systemic velocity is
merely the sum of the pre-SN systemic velocity and its change, which is only
due to the inner binary through the mass loss ∆m and kick velocity vk.

5.2.4 Hierarchical systems of multiplicity > 3

ere exist two kind of hierarchical multiple star systems with more than three
stars:

1. systems that have n stars and hierarchy n − 1, i.e. multiple star systems
with its stars hierarchically ordered in series (hereafter serial systems).
Examples of such systems include quadruples with hierarchy 3, but also
binaries and triples are serial systems.
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Figure 5.3: The plots above show the survivability of the hierarchical triple system for
varying mass loss ∆m and kick velocity vk. The systems have masses of m1,0, m2, m3 =
3, 2, 1 M⊙ respectively and inner and outer binary semi-major axes a0, A0 = 10, 50 R⊙
respectively. There are four possible post-SN scenarios: (1) the whole triple survives, (2)
the inner binary survives but the third star escapes, (3) the inner binary dissociates and
the outer binary survives, or (4) the triple completely dissociates. The areas in the plots
are labeled according to their respective post-SN scenario.
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Figure 5.4: The dependence of the post-SN systemic velocity of the triple as a function of
mass loss ∆m. We present the results for the case in which the SN occurs at the moment
that the exploding star is at the apastron of the inner binary (θ0 = 0, dashes) and apastron
(θ0 = 180 degrees, solid curves) for a range of pre-SN inner binary eccentricities. We show
this dependency for two cases: vk = 0 km/s in the left panel, and for a kick of vk ∼ 31
in the right panel km/s.
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2. systems that have n stars and hierarchy n − 2 or below, i.e. multiples
composed of serial systems which are hierarchically ordered in parallel
(hereafter parallel systems). An example of such system is a quadruple
with hierarchy 2 (i.e. a binary-binary system).

Serial systems

e effect of a SN on a serial system is calculated by applying the effective
binary method (see section 5.2.2) by recursively replacing the inner binary by
an effective star at the center of mass of that binary, until the total system is
reduced to a single effective binary. When considering a serial system of n stars
each with mass, position and velocity given by (m1,0,r1,v1,0), (m2,r2,v2), ... ,
(mn,rn,vn) respectively, in which the primary star undergoes a SN, one starts
by reducing the inner binary to an effective star, as was done in section 5.2.2.
e inner binary consists of the primary and secondary star at positions r1 and r2
respectively. is binary is reduced to an effective star of mass mcm,0 = m1,0+
m2 at position rcm,0 given by equation (5.17) and having velocity vcm,0 given by
equation (5.18). Due to the SN of the primary this effective star experiences a
mass loss∆m, an instantaneous translation∆R given by equation (5.19), and a
random kick velocity vsys given by equation (5.12). After applying these effects
on this effective binary, one can calculate the post-SN orbital parameters and
velocities and the systemic velocity v(2)sys = Vsys of this effective binary, given by
equation (5.31), using the prescription for a SN in a binary.3 e total system
is now reduced to a serial system of n− 1 objects (real and effective stars).

Subsequently, one reduces the current inner binary - consisting of the ef-
fective and tertiary star at positions rcm,0 and r3 respectively - to an effective
star of mass m(2)

cm,0 = mcm,0 +m3, at position

r(2)cm,0 =
mcm,0rcm,0 +m3r3

mcm,0 +m3
(5.36)

with a velocity

v(2)cm,0 =
mcm,0vcm,0 +m3v3

mcm,0 +m3
. (5.37)

Due to the SN of the primary star, this effective star also experiences a mass
loss ∆m, an instantaneous translation ∆R(2) - this time, the translation vector
has non-zero y- and z-components - and a random kick velocity v(2)sys . After
applying these effects on this effective binary, one can calculate the post-SN
orbital parameters and velocities and the systemic velocity v(3)sys of this effective

3e number between parentheses denotes the hierarchy up to which the system has been
reduced to a effective star.
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binary using the prescription for a SN in a binary. e total system is now
reduced to a serial system of n− 2 objects (real and effective stars).

is procedure is carried on until the entire multiple is reduced to a single
effective binary, consisting of the nth star at position rn and a effective star of
mass m(n−2)

cm,0 = m
(n−3)
cm,0 +mn−1 at position

r(n−2)
cm,0 =

m
(n−3)
cm,0 r(n−3)

cm,0 +mn−1rn−1

m
(n−3)
cm,0 +mn−1

(5.38)

with a velocity

v(n−2)
cm,0 =

m
(n−3)
cm,0 v(n−3)

cm,0 +mn−1vn−1

m
(n−3)
cm,0 +mn−1

. (5.39)

is effective star also experiences mass loss ∆m, an instantaneous translation
∆R(n−2) and a random kick velocity v(n−2)

sys . After applying these effects on
this (final) effective binary, one can calculate the post-SN orbital parameters
and velocities and the systemic velocity v(n−1)

sys for this effective binary (and
therefore of the total system) using the binary method.

When it is not the primary star which undergoes a SN, but the mth star
in the hierarchy, the procedure is carried out by first reducing the inner serial
system of m − 1 stars to an effective star at its center of mass. One can then
apply the above explained method, as there is no computational difference in
whether the primary or the secondary of a(n effective) binary undergoes the
SN.

Parallel systems

e effect of a SN on a parallel system is calculated by reducing each parallel
branch (which itself is a serial system) to an effective star until an effective
serial configuration is reached; after this, one can use the method explained in
the previous section. We consider a parallel system of i parallel branches, each
consisting of an arbitrary number ni of stars with mass, position and velocity
given by (m1,r1,v1), ... , (mni ,rni ,vni) respectively, in which themth star - which
is part of branch j - undergoes a SN. One starts by reducing all i− 1 branches
̸= j to effective stars. One then calculates the effect of the SN on branch j (i.e.
systemic velocity and mass loss) using the method described in section 5.2.4.
e total system is now reduced to an effective serial system of i effective stars in
which the jth effective star undergoes an effective SNwith the systemic velocity
of branch j as the kick velocity. e effect of this effective SN on the total
system, can be calculated by applying the method described in section 5.2.4 to
this effective serial system. As an example we will now demonstrate the effect
of a SN on a binary-binary system.
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An example of the effect of a supernova in binary-binary system

We consider a hierarchical binary-binary system of stars with mass, position
and velocity given by (m1,0,r1,v1,0), (m2,r2,v2), (m3,r3,v3) and (m4,r4,v4) re-
spectively, in which the primary star undergoes a SN. e binary consisting of
the primary and the secondary star (primary binary) has the configuration and
the parameters as in section 5.2.1 and has a center of mass (cm1, i.e. effective
star 1) of massmcm1,0 = m1,0+m2 = M0 at position given by equation (5.17)
with a velocity vcm1,0 given by equation (5.18). e secondary binary consists
of the tertiary and quaternary star and its center of mass (cm2, i.e. effective star
2) has a mass mcm2 = m3 +m4 = M2, is at position

rcm2 = (1− κ)r3 + κr4

and has velocity

vcm2 = (1− κ)v3 + κv4,

before the SN, where κ = m4
M2

. e cm1 and cm2 constitute an effective bi-
nary defined by semi-major axis, A0, eccentricity, E0, and true anomaly, Θ0.
e separation distance is denoted by R0. Before the SN the effective binary
orbital plane has inclination i0 with respect to the primary binary orbital plane
and the separation distance of the effective binary projected onto the xy-plane
makes an angle α0 with the separation distance of the primary binary. We as-
sume an instantaneous SN4. In the effective SN the cm1 experiences a mass
loss ∆m, an instantaneous translation ∆R along the x-axis given by equation
(5.19) and a random kick velocity vsys given by equation (5.12). e orbital pa-
rameters change as a result of the SN: the primary binary parameters change
according to the description in section 5.2.1 and the effective binary orbital pa-
rameters change to semi-major axis A, eccentricity E and true anomaly Θ; the
secondary binary orbital parameters do not change when SN-shell impact is not
taken into account. Before the SN the binary-binary system has a total mass
Mbb,0 = mcm1,0 +mcm2, we use the cm1 coordinate system to pin down the
primary binary and add to this coordinate system the tertiary and quaternary
at a position such that R0 ≫ r0, and we choose a reference frame in which the
center of mass of the total binary-binary system (CMbb) is at rest (the CMbb

reference frame) and in which the cm1 is at the origin at t = 0. e separation
distance between the cm1 and the cm2, R0, is given by equation (5.20) and the
velocity of the cm1 relative to the cm2 is

V0 = vcm1,0 − vcm2 = (V0x, V0y, V0z) (5.40)
4See section 5.2.1 and note that these statements about the inner companion (secondary)

star also hold for the outer companion (tertiary and quaternary) stars.
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prior to the SN. e effective kick velocity vsys makes an angle Φ with the pre-
SN relative velocity V0. After the SN the separation distance between the cm1

and the cm2 is R given by equation (5.22) and the velocity of the cm1 relative to
the cm2 is V given by equation (5.23), the cm1 mass mcm1 = mcm1,0−∆m =
M and total binary-binary mass Mbb = mcm1 +mcm2 = M +M2. Applying
the relations above and equations (5.1) and (5.2) to our binary-binary system,
we obtain relations for the post-SN semi-major axis A and eccentricity E in
terms of both the pre- and post-SN orbital parameters and velocities given
by equations (5.26) and (5.27) respectively with Mt,0 replaced by Mbb,0. To
compute the systemic velocity due to the SN, we express the pre-SN velocities
of the cm1 and the cm2 in the CMbb reference frame. Using the pre-SN mass
ratio λ0 =

mcm2
Mbb,0

, the pre-SN velocities are given by

vcm1,0 = λ0

(
V0x, V0y, V0z

)
(5.41)

vcm2 = (λ0 − 1)
(
V0x, V0y, V0z

)
. (5.42)

We calculate the instantaneous velocity of the cm1 after the SN (due to the as-
sumption of an instantaneous SN, the velocity of the cm2 after the SN remains
unchanged):

vcm1 = λ0

(
V0x +

vsys,x
λ0

, V0y +
vsys,y
λ0

, V0z +
vsys,z
λ0

)
(5.43)

With the post-SN mass ratio λ = mcm2
Mbb

, the systemic velocity of the effective
binary (and therefore of the binary-binary system) is

Vsys = (1− λ)vcm1 + λvcm2

= (1− λ)
(λ0 − λ

1− λ
V0x + (µ0 − µ)v0x + (1− µ)vkx,

λ0 − λ

1− λ
V0y + (µ0 − µ)v0y + (1− µ)vky,

λ0 − λ

1− λ
V0z + (1− µ)vkz

)
. (5.44)

Note that because the branch harboring the SN-progenitor (SN branch) is a bi-
nary, this calculation the SN-effect on the binary-binary system is almost iden-
tical to calculation of the SN-effect on a hierarchical triple. e computations
become more interesting for systems with a SN branch of higher multiplicity.

5.3 Application: Formation of J1903+0327
PSR J1903+0327 was observed by Champion et al. (2008) who determined it
to be a millisecond pulsar (MSP). is MSP is observed to have a 1 M⊙ main
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sequence companion with a highly eccentric and distant orbit (e≃ 0.44, orbital
period ≃ 95.2 days). ese properties are atypical for MSPs because MSPs are
expected to be spun-up via mass transfer (Bhattacharya and van den Heuvel
1991), which in turn widens and circularizes the orbit, while its companion
evolves through a giant phase. Phinney (1992), for example, suggest an eccen-
tricity e < 10−3 is typical for MSP binaries. e exception to this has been
MSPs in globular clusters which have interactions with other objects that may
perturb the orbit of the binary. However, Freire et al. (2011) find it to be un-
likely that this MSP system has its origin in an exchange interaction in such a
dense stellar environment.

It has been suggested that J1903+0327 maybe the result of a hierarchical
triple (Champion et al. 2008, Portegies Zwart et al. 2011 and Bejger et al. 2011)
where the inner companion has been lost after spinning-up the MSP, leaving
only the MSP and the former tertiary to be observed. Should J1903+0327 be
the result of such a system the methods in the previous sections provide a strong
beginning to investigate how such a system might evolve.

5.3.1 Initial conditions

We generate sets of 105 initial conditions, as described below, with each set
constituting a stable triple system, and then simulated the effect of an instan-
taneous SN occurring at the primary star. e model we follow (many of our
initial conditions are drawn from Portegies Zwart et al. (2011)) consist of a
primary, secondary and tertiary star with zero age masses of 10 M⊙, 1 M⊙ and
0.9 M⊙ respectively. e initial conditions are generated by selecting the semi-
major axis, A0, eccentricity, E0, and the orbital inclination, i, for the tertiary.
A0 takes values on the range [200, 10 000]R⊙ from a flat distribution, E0 is
chosen on the range [0, 1) from a distribution that is flat in log space, and i0
is chosen on the range [0, π] with a sinusoidal distribution. Combining these
values with the zero age masses of the stars as well as a pre-set value for the ini-
tial semi-major axis of the inner binary, a0 = 200R⊙ we then test for stability
of the system using:

A0(1− E0)

a0
> 3

(
1 +

m3

M0

)1/3(7
4
+

1

2
cos i0 − cos2 i0

)1/3

× (1− E0)
−1/6 (5.45)

(Zhuchkov et al. 2010). If the system is stable with this set of parameters, we
choose the remaining parameters, namely the angle α0 described in the previ-
ous sections, the direction and magnitude of the kick. Because we have assured
that the system is dynamically stable before starting our simulations our as-
sumption of a hierarchical system is guaranteed. We observe that due to the
SN kick, systems with very high inclination are preferentially removed or their
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Figure 5.5: The fraction of surviving and stable system (thin red and thick black (colors
online only) lines respectively) as a function of the kick velocity. The lines in each set
correspond to different semi-major axis, 50, 30, 20, and 10 R⊙ (circle, cross, diamond, and
square respectively). All curves are normalized to the total number of surviving systems
with a semi-major axis of 50 R⊙.

inclination is reduced thus as a result we do not include the effects of Kozai
iterations.

5.3.2 Simulations

e inner binary undergoes a common envelope (CE) phase, circularizing the
orbit, reducing the inner semi-major axis to a value between 5 R⊙ and 60 R⊙,
and reducing the mass of the primary to 2.7M⊙. e effect of these changes on
the stability of the system can immediately be seen in equation (5.45). en,
due to the SN, the primary undergoes a mass loss of 1.3 M⊙ and receives a
corresponding kick. e velocity of the kick is fixed between 5 and 160 km/s
for each set of simulations and the kick direction is randomly chosen such that
for all simulations the direction is isotropic. We then analyze the survivability
and stability of each system. A system survives the SN and resulting kick if it
remains bound, and it is determined to be stable if, while remaining bound, the
system also satisfies the stability criterion in equation (5.45).

We ran Monte Carlo simulations for four different inner binary semi-major
axes (10, 20, 30, and 50R⊙). For each semi-major axis value we run 25 simula-
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Figure 5.6: The fraction of surviving and stable systems (upper and lower lines respec-
tively) with respect to the inner semi-major axis. A constant kick velocity of 20 km/s is
used.

tions (each of the 25 simulations consists of 105 sets of initial conditions) each
with a constraint kick velocity (between 0 and 130 km/s). In Figure 5.5 we plot
the kick velocity versus the fraction of surviving and stable systems. For each
pair of curves the thin red upper curve corresponds to the survivability fraction
and the thick black lower curve to the fraction that survives and remains sta-
ble. Curves with same kick velocity have the same point-symbols. Each point
represents the fraction of surviving or stable systems normalized to the total
number of surviving systems with a semi-major axis of 50R⊙. Increasing the
semi-major axis from 10 to 30 R⊙ strongly increases the overall probability of
a system to survive and remain stable. However, with a kick velocity of 45 km/s
and higher the probability of a system remaining stable is nearly the same when
the semi-major axis is ⩾ 20R⊙. Figure 5.5 shows the effect of the Blaauw &
Boersma recoil (Blaauw 1961 & Boersma (1961)) on the system when the SN
kick is small; as the SN kick velocity approaches the Blaauw & Boersma recoil
velocity the stability increases due to the kick and recoil off-setting one another,
in part or in full. As the SN kick velocity increases it begins to overwhelm the
Blaauw & Boersma effect.

In Figure 5.6 we show the effect the inner semi-major axis has on surviv-
ability and stability (the upper and lower lines respectively) using a constant
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Figure 5.7: The number of occurrences for which the system becomes unstable due to
mass transfer at a given mass of the primary. The curves corresponds to Facc values of
0.3, 0.4, 0.5, 0.6, and 0.9 as shown in the key. The peak value and FWHM for each curve
in this figure, as well as similar curves for other values of Facc, are plotted in Figure 5.8.

kick velocity of 20 km/s. Again each data point represents the fraction of sys-
tems that survive or survive and in addition remains stable out of a set of 105
initial conditions. Here we see the significant role of the inner semi-major axis
on the survivability of the system. If we note for a particular kick velocity which
value of a0 the stability fraction begins to level, we can see a corresponds to the
merging of the stability curves in Figure 5.5. For the case of a 20 km/s SN kick
velocity, as in Figure 5.6, we see that any value of a0 greater than about 30 R⊙
will have similar stability fractions while systems with lower values of a0 should
have a lower stability fraction as we see in Figure 5.5.

Next, we chose all of the systems that remain stable after the SN and subject
them to a mass transfer phase. Here we iteratively remove one one-hundredth
of the mass of the secondary and transfer a fraction of it to the primary, which
after the SN would have formed a neutron star (NS). Following the work of
Pols and Marinus (1994) we find:

af = ai

[(m1,f

m1i

)(1/(1−χ))m2,f

m2i

]−2
×

(Mi

Mf

)
(5.46)

where af is the new semi-major axis, ai is the semi-major axis before the mass
transfer, m1,i and m2,i are the masses of the primary and secondary before the
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Figure 5.8: The final mass of primaries with respect to the fraction of accreted mass.
The dashed horizontal line is placed at the observed mass of J1903+0327. The points
represent the peak value of curves which plot the number of times a system becomes
unstable while at a given mass of the primary (like those in Figure 5.7); the upper and
lower bars represent the FWHM of the curves. The values that are colored (online) and
that have different line types correspond to the curves in Figure 5.7 (e.g. the blue, dot-
dash line at Facc=0.9 is obtained from the right most peaked curve in Figure 5.7, which
is also a blue, dot-dash line).

mass transfer and m1,f and m2,f are the masses of the primary and secondary
after the mass transfer,Mi andMf are the total masses of the binary before and
after the mass transfer, and finally χ is the ratio of the change in mass of the
system to the change in mass of the donor (i.e. the secondary). If we define the
fraction of mass accreted, Facc, as the fraction of mass lost from the secondary
which is accreted onto the primary we find that the 1/(1 − χ) term simply
becomes 1/Facc. After each iterative mass transfer, and the resulting change
in the semi-major axis, we test the triple for stability using equation (5.45).
When the system becomes dynamically unstable we stop simulating as the as-
sumption of a hierarchical system has broken down. We record the mass of the
primary when the system becomes dynamically unstable and plot the mass in
Figure 5.7 versus the number of times systems becomes unstable at that mass.
For this plot we used Facc values of 0.3, 0.4, 0.5, 0.6 and 0.9, which correspond
to the lines which peak from the left to right respectively, and a constant kick
velocity. We see that the peak value for each Facc shifts to a larger primary
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mass as Facc increases. is relation is expected since as Facc becomes larger
more of the mass lost from the secondary is accreted onto the primary. So for
the case of Facc = 0.3 only 30% of the mass lost from the secondary could
ever accrete onto the primary thereby reducing the maximum possible mass of
the primary. If we assumed that all of the mass of the secondary is lost (an un-
physical case since the mass transfer would end before this could happen, but
this provides an extreme upper limit) then while the secondary would have lost
1M⊙ the primary would have only accreted 0.3M⊙ resulting in a maximum
primary mass of 1.7 M⊙. If we were to assume that mass transfer would stop
when the secondary decreased to a mass of 0.3M⊙ then the secondary would
have lost 0.7M⊙ and only 0.21M⊙ (or 30% of 0.7M⊙) would have been ac-
creted by the primary resulting in a mass of 1.61M⊙. We have examined 21
curves like those in Figure 5.7, we measured and plotted their peak value and
the full-width-half-maximum (FWHM) in Figure 5.8. e error bars denote
the FWHM of the curves, the plotted point is the peak value for each curve,
and the mass of J1903+0327 is shown as a dashed line. Examination of Fig-
ure 5.8 shows that given the observed mass and the assumptions we used in
preparing the simulated systems, J1903+0327’s progenitor system would have
most likely had an Facc value between between 0.35 and 0.5, with the peak
value of 0.4 most closly maching the observed mass.

It should be noted however, not all of the barionic mass transfered results
in an equivalent increase in gravitational mass of the primary since Maccrete =
∆Mgrav +∆Ebinding/c

2 (Bagchi 2011), where Maccrete is the mass accreted
from the secondary,∆Mgrav is the change in gravitational mass of the primary,
and∆Ebinding is the binding energy of the system. We find that for the masses
being transfered in our simulations the effect is of using Maccrete = ∆Mgrav

is less than the our uncertanty in the final results.
Finally, we preform the same analysis that produced Figure 5.7 but use an

initial primary mass of 1.2, 1.3, 1.4 (as used in all of the previous simulations),
1.5, and 1.6M⊙. ese simulations were preformed for eight inner semi-major
axes (10, 20, 30, 40, 50, 60, 70, and 100 R⊙) at the start of mass transfer. e
Facc value with the peak number of occurrences closest to the observed mass
of J1903+0327 (1.667 M⊙) was recorded, as was the number of occurrences at
that peak; these values were plotted in Figure 5.9. Upon examining Figure 5.9
we find that as the initial mass of the primary increases the most likely Facc

value and its domain decrease. To understand these results we recall that as the
initial mass of the primary increases the amount of mass needed to reach the
observed mass of J1903+0327 is decreased. So, for example, if the initial mass
of the progenitor of J1903+0327’s primary (before it began to accrete material
from the secondary) was 1.6M⊙ it would only need to accrete 0.067M⊙ before
the system reached the observed mass. A very small Facc value can result in
the transfer of such a small amount of material allowing the Facc to stay low;
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Figure 5.9: The number of systems per millon simulations with a final primary mass of
1.667 M⊙ (the observed mass of J1903+0327) as a function of the fraction of accreted
mass, for different initial primary masses (shown in the key).

with a lager Facc value the system will often reach a final primary mass greater
than 1.667 M⊙ thus limiting the domain. Whereas if the initial primary mass
was 1.2 M⊙, an Facc value of 0.1 would never allow for enough mass to be
transfered, but there are a large range of Facc values that can allow for that
amount of mass transfer that would not quickly overshoot the observed mass.
is assumes, as we have, that the mass transfer is stable as long as the triple is
dynamically stable. We find that for an initial mass of the primary of 1.4 M⊙,
the value used for all the other simulations, the peak Facc value is not sensitive
to the semi-major axis at the beginning of the mass transfer; the Facc value
ranges between 0.35 and 0.45 which lies within our expected range of 0.35 to
0.5 found above from Figure 5.8.

5.4 Conclusion

We have examined the effect of an asymmetric supernova (SN) on a hierarchi-
cal multiple star system and considered how it can be modeled by applying the
effective binary method. is is done by recursively replacing the inner binary
by an effective star at the center of mass of that binary. e effective star expe-
riences an effective SN with the effects of sudden mass loss, an instantaneous
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translation and an effective kick velocity, i.e. the systemic velocity of the inner
binary. We have coded the equations in this paper in a small python script.

We point out that the effective SN is different from a physical SN which
has the mass loss occur from the position of the star undergoing the physical
SN. e off-center mass loss in an effective SN becomes important only if the
shell impact on the companion(s) is considered, and otherwise causes no differ-
ence between a real and effective SN calculation. Furthermore, we calculated
the runaway velocities for dissociating binaries and effective binaries. We sub-
sequently demonstrated how calculating the effect of a SN on a multiple can be
generalized to multiples in which a star other than the primary is undergoing
the SN.

We used this method to examine the case for J1903+0327 forming from
a hierarchical triple. We assume initial masses of 10, 1.0, and 0.9 M⊙ for the
primary, secondary, and tertiary respectively, as well as an inner semi-major axis
of 200R⊙. We find that if J1903+0367 was to form through such a mechanism
it would be most likely to have a very low SN kick velocity so that it would
remain stable after the SN, and a large inner semi-major axis after the CE
phase to increase the likelihood that the triple would become unstable once the
NS/MSP reached a mass of 1.667 M⊙ (Freire et al. 2011). We also find that,
given our assumptions, the transfer efficiency, Facc, for J1903+0327 would have
likely been between 0.35 and 0.5.
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