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Rapid Mass Segregation in
Collapsing Clusters

CHAPTER

We introduce a new method to measure and quantify mass segregation which we then
use to explore the mechanism driving rapid mass segregation. The method is based
on measuring how statistically likely n number of high mass particles are expected
to be closer to one another than a random set of n particles drawn from the same
system. This method, which we call the nearest neighbor method, is shown to provide
similar results for simple star systems, a better measure of mass segregation in complex
systems, while providing a significant speedup over the previous, minimum spanning
tree, method.

We apply our new method to measure the mass segregation in simulations of cold,
collapsing star clusters. Two, dynamical, hypotheses have been put forward to explain
the mechanism causing the rapid mass segregation in collapsing clusters; we have de-
signed and implemented an experiment to distinguish between. We find that the rapid
mass segregation of star clusters is primarily driven by the very high density of the clus-
ter toward the end of the collapse and is not the result of multiple sub-clusters forming

and mass segregating during the collapse.

In collaboration with:
Nathan de Vries & Simon Portegies Zwart.
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3.1 Introduction

3.1 Introduction

Mass segregation describes the phenomenon wherein a given system massive
astronomical objects are statistically more likely to be found near other massive
objects than objects of arbitrary mass. This will be the working definition of
mass segregation throughout this paper.

Several mechanisms, e.g. dynamical friction (Chandrasekhar 1943), can
account for mass segregation in general, understanding the mass segregation
observed specifically in young star clusters, i.e. in the Trapezium of Orion,
places a time constraint on the mechanism. Because these clusters are young
the mass segregation must happen much faster than expected or the system
must have formed in such a way that the most massive stars were born close
together, so called premodial mass segregation. Determining the mechanism
for such rapid mass segregation could have significant implications for where
in a cluster stars form, which additionally could provide an indication on the
formation mechanism of massive stars.

Bonnell and Davies (1998) suggested that a dynamical mechanism could
not satisfy the time constraint of rapid mass segregation. However, Allison
et al. (2009a) found that for clusters which were initially subvirial and initially
had substructure dynamical mass segregation can satisfy the time constraint
from young clusters. Olczak et al. (2011) and Caputo et al. (2014) showed
that even subvirial cluster without initial substructure (distributed in a homo-
geneous sphere in the latter case) could produce mass segregation on a very
short time scale as well, suggesting that the initial virial temperature may be
the more relevant metric for rapid mass segregation driven by dynamics.

Allison et al. (2009a) suggested that subvirial collapsing clusters mass seg-
regate more quickly than might be expected due to the dense core formed as a
result of the collapse (see Caputo et al. 2014, for a detailed study of the effect of
the virial temperature on collapsing clusters). McMillan et al. (2012) claimed
that this rapid mass segregation happens not around the time of the “high den-
sity bounce”, but rather during the entire collapse. Using the simulation data
from Caputo et al. (2014) with nearly 500 simulations of collapsing systems we
investigate the phenomenon of rapid mass segregation.

3.2 Method

In order to examine the effect of mass segregation on collapsing star cluster we
must consider how to measure the degree of mass segregation. Allison et al.
(2009b) presented a method for measuring mass segregation by using a mini-
mum spanning tree. The minimum spanning tree (MST) is a method to con-
nect a number of points, or vertices, in a space by the shortest path without any
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Mass Segregation

loops. The MST determines the length of this path. (We used Kruskal’s method
(Kruskal 1956) when reimplementing their method.) Earlier methods tended
to be dependent on models of the density profile or mass function and on the
number of mass bins among other parameters (see Gouliermis et al. 2004). Ad-
ditionally, these methods assumed the mass segregation would be found in and
around the cluster’s center, the definition of which was not always clear.

3.2.1 Minimum Spanning Tree Method

To determine the mass segregation the n number of most massive particles
are selected and the MST length of those particles is found, £p,qssive- Next, 1
number of particles are selected at random from the cluster and the MST length
for these particles is found, £;qndom- This step of finding the MST length for
random sets is repeated some number of times, Allison et al. (2009b) suggest
that 50 times is adequate but that hundreds produce smoother trends. They then
find the average of the MST length for all of the random sets and determine
the ratio of these two lengths:

'g'l’[l?’l, om ranaom
{random) | Orandom (3.1)

AysT =

Crnassive Crnassive

Where 0random is the standard deviation of the measurements of the randomly
selected sets. If Apsgr is around 1 it suggests that the separation between the
n most massive particles is similar to the separation between the particles in
the system in general, i.e. there is no mass segregation. If Aj7g7 is significantly
> 1 it suggest that separation between the n most massive particles is much
smaller than the separation between the particles in the system in general, i.e.
the system is mass segregated. Finally, if Aysg7 is significantly < 1 it suggest
that separation between the n most massive particles is much larger than the
separation between the particles in the system in general, i.e. inverse mass seg-
regation.

3.2.2 Nearest Neighbor Method

We have developed a new method which we have dubbed the Nearest Neighbor
(NN) method. The method is similar to the MST method in that it calculates
a length for the n most massive particles and then the length is measured again
for some number of randomly selected groups each with n particles as well.
'The difference is that in place of calculating the minimum spanning tree we
calculate the average distance to the nearest neighbor for each set. Other than
the distance measurement the remainder of the algorithm is the same, Ay is
calculated just as it was for Aprgp:

ETG,TL om random
ANN:< d >ia dom. (3.2)

Emassive fmatssz've
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3.3 Comparing Results

and the interpretation of the results is the same as well.

As we will show, the advantages of the NN method over the MST method
include better detection of mass segregation in clusters with complex structure
as well as a dramatic reduction in computation time.

3.3 Comparing Results

3.3.1 Measurements of the Mass Segregation
Simple Mass Distribution

In order to compare the MST method to the NN method we have constructed
an artificial data set of a star cluster; the cluster is constructed such that there
are 16K (i.e. 214) particles arranged in a plummer sphere with a Salpeter mass
function (Salpeter 1955), with masses from 1 to 50 M, which are assigned
randomly to the particles in the cluster. The inner 160 particles (= 1 per cent
of the cluster) are then reassigned masses based on a Salpeter mass function
with masses from 50 to 100 M. This produces a cluster in which the 160
most massive particles are mass segregated, in a core, from the remainder of
the cluster, however there should be no significant mass segregation outside of
the core.

In Figure 3.1 we plot the mass segregation ratio for the artificial cluster
described above out to the 200 most massive particles. The red line is produced
by the NN method (this paper), whereas the blue line is produced by the MST
method, in both cases 50 random sets were used in order to calculate (¢,4pndom )-
'The two methods give nearly identical results. The region shaded in red is the
410 level of error from the NN method, we chose not to show the error from
the MST method because the two of them were so similar that showing both
resulted in confusion in the plot. The horizontal, solid green line indicated a
mass segregation ratio of 1, i.e. no mass segregation, and the vertical, dotted
green line is placed at 160 particles, the number of mass segregated particles
(by construction).

Both methods indicate the presence of mass segregation of the 160 most
massive particles.

Using the NN method we plot, in Figure 3.2, the mass segregation ratio for
the artificial data set described above; each line represents the data from using
a different number of random sets, from 1 to 100, to calculate (¢,4ndom ). We
plot the data for sets from 1 to 100, though we only show every other value in
the legend so as to make it (nearly) readable. Using the NN method we are able
to do this out to 512 particles due to its increased speed, however after several
months the MST version of the same plot is not finished running.

Figure 3.2 demonstrates how using more random sets reduces the noise in
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Figure 3.1: Results from the NN (red line) and MST (blue line) methods on an artificial
data set in which the 160 most massive particles are mass segregated in the center of
the system, see text for more details. The red shaded area represents the +1 o error level
of the NN method. The horizontal, solid green line indicates a mass segregation ratio
of 1, i.e. no mass segregation; the vertical, dotted green line indicates 160 particles, the
number of particles which are mass segregated in the data set.

the measurement, of course this comes at the expense of more computing time
needed. Also note how the values for the mass segregation drop off after the
160™ particle, after which there is no mass segregation. The value decays to
around 2 for 512. This decay, instead of a fast drop, is the result of the first 160
most massive particles having an effect on the mass segregation ratio of the
remainder of the particles; for example, when calculating the mass segregation
ratio for the first 161°" particles the result is dominated by the first 160, mass
segregated, particles, and at the 320™ particle the first half of the particles are
mass segregated so the mass segregation ratio will show values greater than
1 even though there is no mass segregation at that value. For this reason it
is important that these methods be used with a regular interval of particles,
calculating the mass segregation ratio out to only one particle value, i.e. only
calculating the mass segregation ratio for the first X -number of particles while
not doing so for the particles before it may result in results which cannot be
interperted correctly.
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— #of Sets: 2.0 — # of Sets: 22.0 # of Sets: 42.0 # of Sets: 62.0 — # of Sets: 82.0
— # of Sets: 4.0 — # of Sets: 24.0 # of Sets: 44.0 # of Sets: 64.0 — # of Sets: 84.0
— # of Sets: 6.0 — # of Sets: 26.0 # of Sets: 46.0 # of Sets: 66.0 — # of Sets: 86.0
— #of Sets: 8.0 — # of Sets: 28.0 # of Sets: 48.0 # of Sets: 68.0 ~ — # of Sets: 88.0
— # of Sets: 10.0 — # of Sets: 30.0 # of Sets: 50.0 # of Sets: 70.0 — # of Sets: 90.0
— #of Sets: 12.0 — # of Sets: 32.0 # of Sets: 52.0 # of Sets: 72.0 — # of Sets: 92.0
102 — # of Sets: 14.0 # of Sets: 34.0 # of Sets: 54.0 # of Sets: 74.0 — # of Sets: 94.0
— # of Sets: 16.0 # of Sets: 36.0 # of Sets: 56.0 # of Sets: 76.0 ~ — # of Sets: 96.0
— # of Sets: 18.0 # of Sets: 38.0 # of Sets: 58.0 # of Sets: 78.0 — # of Sets: 98.0
— # of Sets: 20.0 # of Sets: 40.0 # of Sets: 60.0 — # of Sets: 80.0 — # of Sets: 100.0

Measured Mass Segregation

10 I

0 100 200 300 400 500
Number Of Particles

Figure 3.2: The mass segregation ratio, using the NN method, out to 512 particles for
the same data as in Figure 3.1. Calculated with different number of random sets, up to
100, as indicated in the legend. For the sake of readability only the even number of sets
are labeled in the legend, however all number of sets, from 1 to 100 are plotted.

What is the benefit then of this new method if the results are essentially
the same?

Complex Mass Distribution

We produced another artificial system to test the difference between the NN
and MST methods. For this test case we created a system just as we did above
with all of the most massive particles located in the center, but this time with
the nine separate cluster each with ! /g t* the number of particles (both massive
and non-massive). We then place all nine identical, mass segregated systems
into a single volume. Of the nine systems one is placed in the center and the
remaining eight are placed equally around a sphere such that the radius of each
system does not overlap with the radius of any other systems.

Each subsystem has 1,820 particles with 18 massive particles in their center,
resulting in a total of 16,380 particles and 162 massive particles. Figure 3.3
is a plot of the mass segregation measure of this system out to the 200 most
massive particles using 50 random sets to calculate £,4pndom. The solid red line
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Figure 3.3: Results from the NN (red line) and MST (blue line) methods on an artificial
data set in which the 162 most massive particles are mass segregated in the center of
nine sub-clusters arranged in a non-overlapping way, see text for more details. The red
and blue shaded area represents the +1 o error level of the NN and MST methods
respectively. The horizontal, solid green line indicates a mass segregation ratio of 1, i.e.
no mass segregation; the vertical, dotted green line indicates 162 particles, the number
of particles which are mass segregated in the data set.

is the measurement from the NN method, with a =10 error shown by the red
shaded area; the blue line is the measurement from the MST method, a £10
error is shown by the blue shaded area. The solid, horizontal green line is plotted
at 1.0, i.e. no measured mass segregation, and the vertical dashed line marks
the 162 most massive particle, i.e. the end of the designed mass segregation.

The system is mass segregated, but in small sub-clusters. For the first nine
most massive particles (the single most massive particle from each of the sub-
clusters) both the NN and MST method show inverted mass segregation, the
most massive particles are more separated from each other than randomly se-
lected particles are seperated. This is because the length of the NN and length
of the MST for the nine most massive particles is measuring the separation be-
tween the sub-clusters, but when measuring the respective length for the ran-
dom sets of particles if any two particles are selected from the same sub-clump
then the length for the random set will be significantly shorter than the length
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for the most massive particles. However, after the ninth most massive particles
the two methods diverge in their respective measurement of the mass segre-
gation. The MST method remains, and always will remain, dominated by the
separation between the sub-clusters, whereas with the NN method the mea-
sured length for the most massive particles is a measure of the distance between
those particles and not the sub-clusters.

The MST method is unable to identify mass segregated sub-clusters that
are spread over the total system volume, but the NN method can make good
measurements of simple systems while also adjusting to more complex systems.
While not fool-proof, there are cases that both the NN and MST methods
would be poor at accurately measuring mass segregation, we have shown that
the NN method is more graceful at adapting to different mass distributions.

More importantly, we have shown that the NN method is able to measure
mass segregation of sub-clusters, a required step if we are to distinguish between
the two proposed mechanisms of dynamical rapid mass segregation.

But wait there is more, the NN method is also much faster.

3.3.2 Speed

'The MST method was a considerable improvement over previous methods
which either did not quantify the degree of mass segregation and/or were model
dependent. However, to quantify mass segregation using this method when
provided with an unknown system one must preform the method on a regular
interval for every number of most massive particles up to the final degree of
mass segregation one desires to test. That is, if one wished to know if a given
a system of 10% particles was 10 per cent mass segregated the method would
have to preformed 1000 times; constructing the MST for the 2 most massive
particles, then 3, 4, . .., 1000 particles, each time constructing 50 other MSTs
for the random sets.

The MST method has a runtime complexity of O(ElogE) where E is the
number of edges, i.e. the number of connections between points. Since we as-
sume all points can connect to all other points we have a complete graph which
has n(n — 1)/2 edges. So to highest order the complexity is O(n2log(n?)).
However, before we calculate the MST length we must also calculate the length
of all the edges which has a complexity of O(n?); so in total our expected run-
time complexity is O(n? + n?log(n?)).

'The Nearest Neighbor Method requires the calculation of all of the dis-
tances between all particles, the exact same calculation as determining the length
of all the edges, which has a runtime complexity of O(n?)!. This means the

"This is for the naive implementation, using a more sophisticated approach, such as a k-d
tree has a complexity of O(log(n)[n + 1]).
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Nearest Neighbor method should be roughly 2log(n) + 1 times faster than the
MST method for each iteration.
In the case we want to know the the mass segregation out to 10 per cent

of a cluster with 10* particles the NN method would be faster by a factor of

1000

>~ 2log(n)+1, which is a whopping 6,100 times faster than the MST method.
2

In Figure 3.4 we plot the number of particles, n, used for the NN and MST
method versus the time it takes for each iteration, the solid lines, and the cumu-
lative time, the dashed lines. The red lines are for the NN method and the blue
lines for the MST method. We show that for n > 11 particles the total cumu-
lative time for the NN method is shorter than the time needed for a single step
with the MST method. Moreover, the cumulative time using the MST method
for n = 200 particles is a factor 1000 times longer than the NN method. The
savings in runtime we obtain from the NN method over the MST method is
so large it allows us to explore portions of the parameter space that were not
avalible before; e.g. in trying to run the simulations to produce Figure 3.2 the
NN method took ~ 8 hours (iterating from 2 to 512 particles and from 1 to
100 random sets), at the time of writing the MST method had been running
tor 3 months and at that point was only to particle 344.

However, Figure 3.2 is a very artificial examination of the method rather
than a useful science tool. Where this speedup becomes needed is to do science
when the number of particles in a system is very large. Allison et al. (2009b)
tested their method on systems on 1000-body clusters, measuring the mass seg-
regation ratio of up to 10 per cent of the cluster size (i.e. up to 100 particles).
'The MST method works well enough at those numbers, but simulations are
becoming ever larger (even simulations with N = 10'° are becoming possible
see e.g. Bédorf et al. (2014), though Portegies Zwart and Boekholt (2014) pro-
vides an interesting counter-example). Testing mass segregation for up to 10
per cent of systems with N = 10* become very tedious with the MST method
and simply unobtainable for N = 10°.

We find that for the NN method using 50 random sets the cumulative time,
in seconds, grows as power law with the form & 0.03n12?3 (see the red dotted
line in Figure 3.4); whereas, the cumulative time for the MST method, again
using 50 random sets, grows as ~ 0.001n3! (see the blue dotted line in Fig-
ure 3.4). Assuming these holds for very large values it implies that calculating
the mass segregation for 10 per cent of a 105-body system, that is calculating
the mass segregation out to 10° particles, would take about 12 hours with our
NN method, and much longer than a career time for the MST method. The
NN method makes exploring mass segregation much more practical for nearly
any size system, and obtainable even for large systems.

'The NN method will always have a speedup over the MST method which is
not something that can be compensated for by improving the MST algrithum

41 -



3.4 Results and Discussion

10 T
— NN method per itteration
— - NN method cumulative
104l 7 frro P
— MST method per itteration e
— - MST method cumulative Pid
- fit to MST 7
103 .
[E
o 10
0]
]
£ 101
[
10°
10™
107 !

10 10
Number of Particles

Figure 3.4: The solid lines show the per iteration time in seconds, the dashed lines show
the cumulative time, and the dotted lines show the fit to the cumulative time. The red
lines are for the NN method (this paper) and the blue lines are for the MST method. The
fit to the NN method (red, dotted line) is of the form 0.03 n'-23 and is in good agreement
with the cumulative time for the NN method. The fit to the MST method (blue, dotted
line) is of the form 0.001 n* and is in good agreement with the cumulative time for the
MST method after n &~ 30. We used 50 sets of data to calculate (¢;andom)-

or moving the two methods to other archatectures, e.g. graphics processing
units, because the NN method is a required part of the MST method. While
preforming the MST method one must find all of the

3.4 Results and Discussion

3.4.1 Simulation Methods

We have simulated systems with 15,210 particles initially spatially distributed
in a homogeneous sphere. The masses of the particles are drawn from a Salpeter
mass function in N-body units with a physical equivalent of 0.3 to 100 M. The
systems examined below, unless otherwise noted, are produced cold, i.e. with
a virial fraction of 0.0. They are then simulated for 10 N-body times in the
AMUSE environment (Pelupessy et al. 2013) using the fourth-order Hermite
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code ph4 (McMillan in prep.). For more details about the simulation setup see
Section 2 in Caputo et al. (2014).

In analyzing the mass segregation of the simulations we primarily make use
of the NN method outlined above. To calculate the density of the cluster core
we use the code hop (Eisenstein and Hut 1998) with 50 nearest neighbors.

3.4.2 Mass Segregation
McMillan et al. (2012) suggested that rapid mass segregation happens as a

result of a collapsing system forming sub-cluster which due to their small size
mass segregate on their, fast, dynamical timescale; whereas, Allison et al. (2009a)
had proposed rapid mass segregations is due to the short-lived, but very dense
state that happens as the cluster’s collapse reaches a maximum. In order to dis-
tinguish between these two scenarios, or uncover a different mechanism, we
have designed an experiment to disentangle these cases.

The experiment works in the following way: first, we run a simulation of
a collapsing cluster and plot the mass segregation ratio as a function of time.
Second, we take a snapshots from that simulation at 0.9, 1.25, 1.5, 1.75, and
2.1 N-body time units (or Henon time units Heggie and Mathieu 1986) and
randomly swap the masses (it is important to note that we do not produce
new or different masses, we simply rearrange the masses). Finally, we continue
running the simulations from that point with the swapped masses, and when
each one finishes we again measure the mass segregation ratio as a function of
time for the new simulation.

By swapping the masses we are able to remove all of the effect of dynamical
mass segregation up to that point and determine what amount of dynamical
mass segregation is effecting the cluster after that point. We have plotted the
results of this experiment in Figure 3.5.

In Figure 3.5a we plot the “natural” evolution of the cluster, with no mass
swapping going on. The horizontal green line, which is common to all six sub-
figures, is plot at a mass segregation ratio of 1, which is exactly non-segregated.
The other lines mark the mass segregation ratio for different number of parti-
cles, n, from 3 to 193 particles in steps of 10, as shown in the legend.

We note that the mass segregation is highest for the fewest number of par-
ticles; this is expected since when we measure the mass segregation for 3 par-
ticles it is the the 3 most massive particles and for 13 it is the 13 most massive,
so it follows that the most massive particles would be the most mass segre-
gated. Caputo et al. (2014) examined these type of collapsing clusters in detail
and found that at for an initially cold system, such as in this case, the deep-
est moment of collapse, the moment with the highest density, happens at 1.46
N-body times, which is visible with a local peak in the mass segregation at
the same time in Figure 3.5. Also note the gradual rise in the mass segregation
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Figure 3.5: Mass segregation as a function of time for different number of particles as show in the
legend. (a) shows the evolution of the mass segregation as it would normally occur, i.e. without
switching mass. (b)—(f) show the evolution of the mass segregation with the masses being randomly
switch at 0.9, 1.25, 1.5, 1.75, and 2.1 N-body times, respectively.
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starting around 0.6 N -body times for most particle sets. This rise maybe the re-
sult of sub-clusters forming and then mass segregating or it maybe the result of
an increase in density as the density of the whole cluster increases. Finally, we
note that with the exception of the set of three particles the none of the other
sets even rise to a mass segregation ratio of two before or during the collapse.

Figures 3.5b—3.5f show the simulations where we have randomly swapped
the masses at different times: 0.9, 1.25, 1.5, 1.75, and 2.10 N-body times re-
spectively. In Figure 3.5d we swap the masses just as the cluster is at the deepest
part of its collapse; and the other plots are spaced at 0.25 and 0.6 N-body times
before and after that time. The swap can be seen in each plot by the sudden drop
in the mass segregation ratio at the designated time.

Peculiarly the mass swap shown in Figure 3.5b actually produces an increase
in the mass segregation of the three most massive particles. While this is not
the intended effect of the swapping the masses, it is a natural outcome when
randomly reassigning the masses to sometime put the more massive particles
close together; this can be seen as similar to primordial mass segregation (the
effects of which we do not explore here).

We observe the general trend that the when the mass is swapped before
the deepest moment of the collapse, 1.46 N-body times, after the collapse the
mass is always highly segregated compared to when the mass is swapped at
or after the collapse which leads to no or at a minimum much reduced mass
segregation. This leads us to conclude that the whatever the mechanism is that
is driving the future mass segregation it is happening before or at the moment
of deepest collapse, i.e. 1.46 N-body time.

In order to distinguish between the two mechanisms suggested above we
must carefully examine Figures 3.5b and 3.5¢. In Figure 3.5b we are just able to
see the steady rising of the mass segregation that we mentioned above started
around 0.6 N-body times, then we swap the masses and the segregation ratio
gets reset to unity. It then starts to slowly rise again with most of the particle
sets reaching the same degree of mass segregation at the local maxima around
1.5 N-body times, though decidedly without the strong drop off following that
peak as seen in Figure 3.5a.

Figure 3.5¢ again shows the rise from around 0.6 N-body times, and since
the simulation runs longer without the mass being swapped it reaches a higher
level of segregation before it is rushed back to unity with the masses being
swapped at 1.25 N-body times. Just a before the segregation ratio rises again,
but the particle sets do not tend to reach the same degree of mass segregation
as before.

While there are minor differences between the mass segregation in these
simulations up to the collapse, they are more similar than not after another V-
body time, particularly when compared to the other cases (3.5d-3.5f). The fact
that the systems show such similarities after we had removed the effect of early
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Figure 3.6: The mass segregation ratio as a function of time for several FoVs as indicated
in the legend.

segregation (possibly from sub-clusters segregating) suggest that the dominate
mechanism leading to this rapid mass segregation is due to the short duration
of very high density at the moment of deepest collapse.

3.4.3 Effect of the Initial FoV on Mass Segregation

Caputo et al. (2014) defined FoV to be 2() where @) is the more traditionally
defined virial ratio, @ = |T'/V| where T and V are the kinetic and potential
energies, respectively. For example, since a system in virial equilibrium has a
@ value of 0.5, its FoV' would be 1.0. Caputo et al. (2014) showed that many
cluster parameters are directly impacted, and in some cases even dominantly
controlled, by the initial FoV. In Figure 3.6 we show the significance on the
initial FoV on the evolution of the mass segregation of a cluster.

Figure 3.6 is a plot of time versus the mass segregation ratio for initial FoV's
ranging from 0.0 to 1.0. Lower initial FoVs, initially colder systems, are toward
the left of the plot because they seem to segregate more quickly than initially
warmer systems. Caputo et al. (2014) found that the most likely initial FoV/
for a cluster was between 0.36 and 0.49, which corresponds to the purple and
blue curves in the plot, and that R136 most likely formed with an initial FoV
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of 0.25 which corresponds to the pink curve.

The effect of increasing initial FoV seems to be two fold: first, the time
at which the mass begins to segregate is delayed with an increase in FoV, and
second, the degree of mass segregation tends to decrease as FoV' increases. The
second of these effects are explained by observations in Caputo et al. (2014).
We note that the depth of the collapse is a function of FoV, namely R,,;, ~
Q+ N~/ where Rynin is the minimum radius reached during the collapse, Q
is as defined above FoV/2, and NN is the number of particles, which for these
simulations is constant. That we find a correlation between a deeper collapse, i.e.
smaller FoV, and the more mass segregated the system becomes seems natural.

3.5 Conclusion

We have introduced a new method to measure and quantify mass segregation.
'This method is based on determining the ratio of the average nearest neighbor
distance of the most massive particles with respect to the average the nearest
neighbor distance of several sets of randomly chosen particles. This method is
very similar in principle and results to the MST method developed by Allison
et al. (2009b), however we show that this new method is dramatically faster,
providing an ~1000 times speedup over the MST method for 200 particles.
With such a speedup we are able to do science that was unaccessible using the
previous method, such as measuring the mass segregation ratio of 10 per cent of
simulations with 10* — 10° particles. We estimate that our new method would
require nearly 12 hours to measure the mass segregation, out to 10 per cent, of
a 100 particle system, the old method would require more than a career’s worth
of time (using current hardware, not hardware from 20 years from now).

We then applied this method to simulations of a collapsing cluster to better
understand the mechanism which drives rapid mass segregation. We perform
an experiment to disentangle whether the rapid mass segregation is a result of
sub-clusters mass segregating or the result of the very high density near the
deepest part of the collapse. The experimental technique was to randomly swap
the masses of particles at and near the critical moment of deepest collapse, thus
allowing us to nullify any earlier mass segregation and so to isolate the degree
of mass segregation that could be produced from that point forward.

The results are definitively that something prior to or at the collapse is re-
quired to drive the rapid mass segregation. By changing the time before the
deepest part of the collapse we are able to show that while the sub-cluster mass
segregation mechanism may play a role, the dominate drive of the rapid mass
segregation is environment when the cluster is nearly at the deepest part of the

collapse, likely the very high density.
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