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C
HA

PT
ER2 On the Effects of Subvirial Ini-

tial Conditions and the Birth
Temperature of R136

We investigate the effect of different initial virial temperatures, Q, on the dynamics
of star clusters. We find that the virial temperature has a strong effect on many as-
pects of the resulting system, including among others: the fraction of bodies escaping
from the system, the depth of the collapse of the system, and the strength of the mass
segregation. ese differences deem the practice of using “cold” initial conditions no
longer a simple choice of convenience. e choice of initial virial temperature must be
carefully considered as its impact on the remainder of the simulation can be profound.
We discuss the pitfalls and aim to describe the general behavior of the collapse and the
resultant system as a function of the virial temperature so that a well reasoned choice
of initial virial temperature can be made. We make a correction to the previous theo-
retical estimate for the minimum radius, Rmin, of the cluster at the deepest moment
of collapse to include a Q dependency, Rmin ≈ Q+N (−1/3), where N is the number
of particles.

We use our numerical results to infer more about the initial conditions of the
young cluster R136. Based on our analysis, we find that R136 was likely formed with
a rather cool, but not cold, initial virial temperature (Q ≈ 0.13). Using the same anal-
ysis method, we examined 15 other young clusters and found the most common initial
virial temperature to be between 0.18 and 0.25.

In collaboration with:
Nathan de Vries & Simon Portegies Zwart.

MNRAS 445, 674 (2014)



2.1 Introduction

2.1 Introduction

Subvirial systems are often used as initial conditions in numerical simulations
for both physical and practical reasons. Before the phase of gas expulsion, young
stellar clusters must be formed subvirial, since the parent molecular cloud was
roughly in virial equilibrium and supported by both gas pressure and (turbulent
and systematic) velocities. e resultant stellar cluster is no longer supported
by gas pressure, but only by the velocities of the stars, and therefore the energy
balance must shift to subvirial.

In practice, subvirial conditions are also used to reduce the computational
cost of reaching a mass segregated or otherwise relaxed system. is is because
with cold initial conditions mass segregation is established on a free-fall time-
scale, but virial systems relax and reachmass segregation on amuch longer time-
scale. Until now the consequence of changing the initial virial temperature has
often been considered insignificant and so physical justification is not given.

If for example, an experiment is designed to investigate mergers (Porte-
gies Zwart et al. 1999; Bédorf and Portegies Zwart 2013) (or another physical
phenomenon preferentially occurring in mass segregated systems) the evolu-
tion of the system between mergers (or until the system is relaxed) is a time-
consuming phase with little scientific value. Since the time until the system
segregates and violent relaxation is quenched is much shorter for a cold system
than for a virial system, using cold initial conditions could, in the past, be a
shortcut to the interesting part of the simulation. While these methods may be
justified in some cases we are left to wonder if it is in general a valid approxi-
mation to the desired physical system. Or for the case of mergers, what effect
a free falling interaction, i.e. when using cold initial conditions, may have on
impact parameters that a more gentle spiralling interaction, as in the case of
warmer initial conditions, may not have.

2.1.1 Violent Relaxation

Lynden-Bell (1967) attempted to explain the “observed light distributions of
elliptical galaxies” and in doing so produced the first theory to describe the
steady state resulting from a collisionless gravitational collapse. In that pio-
neering work we find the first use of the term violent relaxation to describe the
“violently changing gravitational field of a newly formed galaxy”. e funda-
mental premise of the theory is that the stars in a galactic model may be treated
as a large set of independent, non-interacting harmonic oscillators. ese os-
cillators are treated statistically and are expected to find a state of maximum
entropy. e weakness of the theory lies in the last statement. During the col-
lapse the system does not have enough time to explore the phase space and so
will not generally come to equilibrium in the predicted state.
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Since the work of Lynden-Bell (1967) several other attempts have been
made to extend, modify, and completely rework the theory of violent relaxation
(e.g. Spergel and Hernquist 1992; Nakamura 2000; Treumann and Baumjo-
hann 2013). In spite of these efforts, difficulties remain in constructing a the-
ory which adequately describes the behavior of what may seem at first glance,
a simple system (Arad and Lynden-Bell 2005; Arad and Johansson 2005).

2.1.2 Notation

We recall that the virial temperature is Q ≡ |T/V |, where T and V are the
kinetic and potential energies, respectively, and that a system in virial equilib-
rium has a Q value of 0.5. Note that just because the energetics of the system
is in equilibrium does not imply that the system as a whole is in equilibrium.
For example, a system with a Q value of 0.5 can still be out of equilibrium if
the system has a uniform density distribution (homogeneous sphere), as used
in this paper, this is because the homogeneous sphere is not a solution to the
Fokker–Planck equation.

We define the term fraction of virial (FoV) to be the current system’s Q
value over the Q value of a virialized system, or simply 2Q. is definition
conveniently results in a virialized system having a FoV= 1. We also define the
term velocity multiplier, k, as the value the velocity is initially multiplied by to
change the system from virial, that is: k = v/vvir, vvir is the virial velocity of
a particle. So we find that initially

FoV =2Q = 2

∑
i
1
2mi(kvi)2∑

i Vi

= k2 × 2Qvir = k2.

2.2 Simulations

2.2.1 AMUSE

Our simulations were run in theAMUSE software environment (Portegies Zwart
et al. 2012). AMUSE is a modular simulation platform which provides a set of
simulation codes linked together through a  interface. Different codes
can be used on the same initial conditions, allowing for a fast, simple, and clear
test of consistency between codes; AMUSE’s modular nature makes this easy
to do, usually requiring a change to only two lines of code. For example, we
tested our simulations with three different N-body integrators, namely: H-
 (Hut et al. 1995), PGRAPE (Harfst et al. 2007), and  (McMillan
in preparation). Again the AMUSE framework ensured the changes to the
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code were trivial, and by testing with different integrators we obtain an assur-
ance that our results are not code-dependent, since all three codes gave similar
results. When using the same set of initial conditions for example, plots of the
half-mass radius versus time are nearly indistinguishable, and the number of
bound particles at the end of the simulation never differ by more than 55 parti-
cles and on average differ by fewer than nine particles (less than 0.37 and 0.06
per cent of the total number of particles respectively). We are now comfortable
to assert that the results we present within this work are not the effect of a bug
or a strange implementation found in one code, but represent the outcome of
physical processes acting on our initial conditions.

All the data presented in this work were produced using . A parallel
fourth-order H integrator  can, and for us does, use GPUs to ac-
celerate the computational work (this is accomplished through the use of the
Sapporo library (Gaburov et al. 2009, 2012, Bédorf in preparation)). We find
it important to use a direct integrator for these simulations, as opposed to a
tree code, because strong interactions play a role in the systems we aim to in-
vestigate. In the analysis, we made extensive use of the group finding code hop
(Eisenstein and Hut 1998). e runs were performed on the Little Green Ma-
chine, a local GPU cluster using NVIDIA GPUs.

2.2.2 Initial Conditions

As this paper is focused on the effect initial conditions have on the resultant
physical system we thought it only appropriate to explain exactly how the ini-
tial conditions presented within these pages were created. We chose the initial
conditions in the following way: a number of particles are distributed in a ho-
mogeneous sphere. A homogeneous sphere is used in order to isolate the effects
of violent relaxation which can becomemuddled when usingmore complex dis-
tributions. e mass of the whole system is set to 1.0 N-body mass (Heggie and
Mathieu 1986) and either the mass is divided equally amongst all star particles
or, in order to study the effects of a more realistic mass function, a Salpeter
mass function, having a slope of 2.35 (Salpeter 1955), with a mass range N-
body mass equivalence between 0.3 and 100 M⊙ is applied or the mass is di-
vided equally amongst all star particles. Each particle is given a velocity drawn
randomly from a Gaussian distribution centered at zero, producing an isotropic
velocity distribution. If a black hole has been included, it is given a velocity of
zero and placed at the center of the cluster. en the whole system is scaled
to be in virial equilibrium. Finally, all unbound particles (particles with an en-
ergy > 0) are removed; this is the only time that particles are removed from the
system. ese particles, along with their position and velocity, are saved to a
file. We repeat this procedure with different random initializations always re-
quiring that the final number of objects bound to each system be the number
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Table 2.1: Outline of Simulations

No. of runs No. bound Density Mbh Mass function
particles [N-body mass]

4× 21 15210 Uniform 0 Equal mass
4× 21 15210 Uniform 0 Salpeter
4× 21 15210 Uniform 0.02 Equal mass
4× 21 15210 Uniform 0.02 Salpeter
21 15210 Uniform 0.05 Salpeter
21 15210 Uniform 0.10 Salpeter
21 15210 Plummer 0.02 Salpeter
21 15210 King (ω = 6) 0.02 Salpeter
21 2048 Uniform 0.02 Salpeter
21 4096 Uniform 0.02 Salpeter
21 8192 Uniform 0.02 Salpeter
7 131072 Uniform 0.05 Salpeter

of objects desired ±5 (never differing by more than 5). Each set of initial con-
ditions is produced four times, each with a different random realization of the
particle positions to quantify the effects from initial position on the evolution
of the system and to measure the statistical noise.

Before the start of the simulation, the velocities are scaled to whatever Fo
Vis being investigated in that run, that is we multiply the velocity by k, the
velocity multiplier. Using the same set of initial conditions for an entire set of
runs ensures that the differences in each simulation are only due to the differ-
ence in velocity. We use 21 values of k (from 0.0 to 2.0 in 0.1 increments) to
explore the effect of the FoV on the system. Note that for the supervirial runs
particles may be initially unbound, and in many of the subvirial cases particles
become unbound after some time, but these particles are never removed from
the simulation.

2.3 Results and Discussion

e simulations we ran are described in Table 2.1. Column 1 gives the number
of runs performed with each set of initial conditions. Each set of initial condi-
tions (save the last set) are run with 21 different FoV, ranging from 0.0 to 4.0
(Q = 0.0 − 2.0); the first four sets are simulated with four different random
realizations of the particle distribution in order to reduce statistical error. e
FoV is chosen such that the velocity multiplier, k, is equally spaced in 0.1 in-
tervals, i.e. 0.0, 0.1, 0.2,…, 1.9, 2.0. Column 2 of Table 2.1 gives the number
of bound particles at the start of each simulation (see Section 2.2.2 for more
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information about our initial conditions). e Salpeter mass function was gen-
erated with an N-body mass unit equivalent to 0.3-100M⊙. All simulations are
run for a minimum of 10 N-body time units (Heggie and Mathieu 1986) with a
data output rate of 50 snapshots per N-body time. We use a softening length, ϵ,
such that ϵ2 = 10−8 for all simulations except for the simulations with 131,072
bound particles where we use an ϵ2 = 10−16 to be sure we capture the detail of
the interactions. In total we ran 490 simulations.

2.3.1 Escape Fraction

Figure 2.1 is a plot of FoV versus the fraction of objects that remain bound to
the system after 10 N-body times. Each data point is an average of at least four
runs, and the bars indicate one standard deviation, i.e. a measure of the spread,
not the error. Figure 2.1a shows the results of simulations, with equal mass par-
ticles (save the black hole) both with and without a black hole. e black hole,
when present, contains 2 per cent of the total mass of the system. Figure 2.1b
is a plot of the same simulations with the exception that the objects’ masses are
chosen from a Salpeter mass function; again the cases with and without a black
hole are shown and the error bars represent one standard deviation. ough not
shown we also ran simulations using a black hole with 5 and 10 per cent of the
cluster mass. ese simulations showed a similar shape to the curves shown in
Figure 2.1 but generally with fewer particles remaining bound as the mass of
the black hole was increased.

We note an uptick in retained number of particles with a FoV of 0.0 versus
0.01 for the equal mass systems without a black hole, and a FoV of 0.0 versus
0.04 for systems with a Salpeter mass function without a black hole. To verify
that the uptick was not simply an artifact of our four standard realizations, 21
more runs with different random realizations were performed (for a total of 25
realizations) with a FoV = 0.0, no black hole, and Salpeter mass function. e
results of all 25 realizations are plotted for that point in Figure 2.1.

A possible interpretation for such an uptick is that when the system begins
cold (FoV = 0.0) there is no radial motion so the particles follow a nearly
free-fall trajectory towards the center of mass and so spend the least amount
of time in the very high density of the collapse. (e reduced time spent in the
highest density of the collapse for cold systems can be seen by comparing the
Lagrangian radii in both panels of Figure 2.3.) However, as the FoV increases
there is increasing radial velocity leading to an in fall trajectory which is more
spiral-like than free-fall-like. With a low but non-zero FoV still leading to a
very dense collapse and the particles spendingmore time near the center ofmass
at the time of deepest collapse the probability of interactions increases resulting
in a higher likelihood for scattering events. When a black hole is added a free-
fall path aimed directly at the center is almost a guarantee for a strong scatting
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Figure 2.1: The fraction of objects remaining bound to the system versus the Fo
V. The solid, red line is for simulations run without a black hole, and the dashed,
blue line is for simulations with a black hole of 2 per cent of the total mass of the
system. The error bars represent one standard deviation.
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event, as can be seen in the cases with a black hole (dashed, blue line) and a
FoV = 0.0.

In the cases with a mass function the fraction of mass retained by the system
is always greater than or equal to the fraction of particles retained indicating
that we keep the more massive particles preferentially and thus tend to lose
low-mass particles as expected.

We find in both panels of Figure 2.1 the effect of including a black hole
is to, in general, reduce the number of bodies remaining bound to the system,
as well as to produce more noise in the measurement. We can understand this
by noting that interactions leading to ejections between particles with similar
masses only, as is the case when a system does not possess a black hole, produce
the loss of bodies as seen in the red lines in Figure 2.1. Introducing a black
hole to a system does not change the number of interactions between particles
with similar masses and so ejection rates between such particles remain similar
to the case without a black hole. However, as the black hole interacts with
particles there is the additional case of large mass ratio interactions leading to
ejections from the system over the similar mass ejection rate baseline. us,
the reason the systems without a black hole tend to provide an upper limit on
the number of particles remaining bound to the system is due to the addition
of a strong scatter in the systems with a black hole while not changing, very
much, the probability of smaller mass ratio scattering events. e additional
noise found in these measurements of systems with a black hole is the result
of the scattering by the black hole being sensitive to the exact nature of the
interaction and thus to the random realization of the particles initial positions
and their relative velocity.

Proszkow and Adams (2009) and Adams et al. (2006) measured the num-
ber of objects that remain bound after 10 Myr for different FoV but include
additional effects such as primordial mass segregation, a static gas potential,
and gas removal. e difference in the shape of the fraction remaining bound
in Proszkow and Adams (2009) is likely due to their static gas potential and
analytic gas removal, resulting in a change of the potential energy of the sys-
tem. It seems this would be similar to a change in the initial FoV, though it is
not clear that such a simple substitution would be correct. For instance, if the
gas is removed from the system before or even shortly after the collapse (see
Figure 2.3 and Section 2.3.2 for a description of what is meant by collapse)
the system’s evolution will be different than if the gas is removed after the sys-
tem has relaxed and has reached, or very nearly reached, virial equilibrium.
Gritschneder and Lin (2013) show that the amount, time, and even region of
mass loss from a collapsing system all have a strong impact on the future evolu-
tion of the system, so using the FoV as a proxy for gas removal is very unlikely
to by physically correct. Moreover, the nature of gas removal from clusters (e.g.
the amount removed, the age of the cluster when it is removed, the dependence
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of gas removal on cluster mass, et cetera) is still being investigated (see e.g. Dale
et al. 2014; Pelupessy and Portegies Zwart 2012).

2.3.2 Mass Segregation

Bound versus Unbound: A Cautionary Note

In Figure 2.2, we plot the 50 per cent Lagrangian radii, i.e. the half-mass ra-
dius, using data from a simulation with an initial FoV=0.0 and a black hole
containing 2 per cent of the total mass. First, the system collapses in approxi-
mately a free-fall time to a depth which is often given as ≈ N−1/3 for N-body
simulations. In Sections 2.3.3 and 2.3.4 we discuss the time and depth of the
first collapse in more detail. Next, the system rebounds and undergoes a second
collapse which is not as deep as the first, similar to a damped oscillator.

Before plotting Figure 2.2 we divide the objects, excluding the black hole,
into bins of 10 per cent of the total mass, thus the more massive bins have fewer
particles. After the collapse the bins with themost massive objects tend towards
smaller radii (bottom of the plot), and conversely bins with the least massive
objects can be found with larger half-mass radii. For example, in both panels
the bottom line contains the most massive objects which collectively comprise
a total of 10 per cent of the system mass, and while the mass represented in
each bin is the same it will represent different numbers of objects.

e top panel, Figure 2.2a, shows the half-mass radii of the system when
including both bound and unbound particles; whereas the bottom panel, 2.2b,
shows the half-mass radius of the system including only the particles bound to
the system at each snapshot. e distinction is important particularly for the
simulations with low values of the FoV which lose a large fraction of the initial
objects. e top panel of Figure 2.2 is in good agreement with the results from
McMillan et al. (2012).

When plotting all particles, as compared to only the bound particles, the
system appears to have a larger half-mass radius due to the unbound particles
tending to be further away from the system and thus increasing the apparent
half-mass radius. is is particularly noticeable in the lower mass bins since
they are preferentially lost.

However, by taking both bound and unbound particles into account for the
analysis the expansion of the cluster appears to be much faster than when only
the bound particles are plotted.is would likely lead to a wrong estimate of the
evaporation time-scale for the system (presumably other measures of system-
wide parameters would be similarly affected). Furthermore, the cluster appears
mass segregated even in the lower mass bins, but in fact the selective expulsion
of low-mass stars is mimicking mass segregation for these stars. e bottom
panel makes clear that the (bound) cluster expands much more slowly and the

- 15 -



2.3 Results and Discussion

0 2 4 6 8 10
Time [nbody units]

0.0

0.2

0.4

0.6

0.8

1.0

5
0

%
 L

a
g
ra

n
g
ia

n
 R

a
d
iu

s 
[n

b
o
d
y
 l
e
n
g
th

]

0%-10%

10%-20%

20%-30%

30%-40%

40%-50%

50%-60%

60%-70%

70%-80%

80%-90%

90%-100%

(a) Includes all particles (bound and unbound)

0 2 4 6 8 10
Time [nbody units]

0.0

0.2

0.4

0.6

0.8

1.0

5
0

%
 L

a
g
ra

n
g
ia

n
 R

a
d
iu

s 
[n

b
o
d
y
 l
e
n
g
th

]

0%-10%

10%-20%

20%-30%

30%-40%

40%-50%

50%-60%

60%-70%

70%-80%

80%-90%

90%-100%

(b) Includes only the bound particles

Figure 2.2: The 50 per cent Lagrangian radius (or half-mass radius) for 10 per
cent mass bins of a system with a FoV=0.0. Each bin contains 10 per cent of the
mass and in general the upper lines represent lower mass objects while the lower
lines represent higher mass objects. The top panel has all the particles which were
originally in the system plotted regardless of whether they remain bound to the
system. The bottom panel has only the particles which are bound to the system
at that given time. Each different decade of mass is clearly identifiable and more
spread out in the top plot, whereas the data are more compressed and mixed in
the bottom plot. - 16 -
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mass segregation is only significant for the highest mass bins.
ere appears to be more mass segregation when all particles are plotted.

For example, in Figure 2.2a the 40 per cent of the mass contained in the least
massive particles (i.e. the top four lines in the plot) is not segregated but seg-
regation is noticeable between the most massive 40 per cent and the 50–60 per
cent range, and each decade of mass after that. Whereas for Figure 2.2b there
is no appreciable segregation in the 0 to 70 per cent range of the mass. e
degree of segregation between the various decades of mass is more pronounced
when plotting all particles, i.e. the differences between the half-mass radius for
the top 10 per cent of the mass (the very dark green line in the plots) and the
decade below that (the green line) are larger when plotting all particles (the top
panel). ese differences would lead to a much different conclusion about the
nature of an observed or modeled cluster. Since most objects which become
unbound from a system are likely to be long gone at the time of observation,
the plots with only bound stars demonstrate a more correct system.

Moreover, without making this distinction the apparent results from the
simulation do not reflect the dynamics occurring in the system, since unbound
particles which, in time, have almost no impact on the dynamics are still being
analyzed as if they were dynamically important. Unless noted otherwise, we
shall only use the bound objects at each snapshot for further analysis.

Effect of the Initial FoV on Mass Segregation

In Figure 2.3, we plot the half-mass radii, just as we did in Figure 2.2b. e
upper panel, Figure 2.3a, shows the half-mass radii for a system with an initial
FoV of 1.0 (virial), while the system in the lower panel, 2.3b, had an initial
FoV of 0.0 (cold). Just as before, the very dark green line represents the most
massive particles which comprise 10 per cent of the mass, and the green line
above that represents the second set of most massive particles which comprise
the next 10 per cent of the mass.

e depth of collapse (i.e. the minimum radius of the system during col-
lapse) is often given as Rmin ≈ N−1/3. We find this relationship to only hold
for the case where the initial FoV=0.0, see Figure 2.5 and Section 2.3.4 for
the better fit we find for different initial FoV. e depth of collapse becomes
deeper when the initial FoV is lower (also see Figure 2.5).

Segregation begins during the collapse for both systems and is realized at
the deepest collapse. is fast mass segregation has been examined by Allison
et al. (2009a) and Allison et al. (2010), and observed in other simulations (e.g.
Geller et al. (2013)). In the case of the cold system the bounce occurs at ≈ 1.8
N-body times, whereas for the virial case it requires ≈ 5 N-body times. e
virial case takes longer to segregate due to its longer time until collapse, as
seen in the insert of Figure 2.4. e increase in density found at the depth of
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Figure 2.3: The 50 per cent Lagrangian radius plotted for 10 per cent mass bins.
The upper plot shows the half-mass radii for a system with FoV=1.0 (virial) and
the lower plot for a system with FoV=0.0 (completely cold).
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collapse is what allows the segregation to occur so quickly, and since the deeper
the collapse the higher the density so the faster segregation can occur.

We observe, as mentioned above, the collapse is much deeper and shorter
in the cold case, Figure 2.3b, than in the virial case, Figure 2.3a, but we find
it to have a very different segregation signature. at is, the difference in how
the mass is segregated, not so much in the degree of segregation but rather in
the degree of segregation between the different mass ranges. is is an example
where the attempt to shortcut the cost of evolution using a cold system is clearly
seen.

Many of the system properties change as a function of the FoV. Cold ini-
tial conditions are sometimes used to more quickly reach a relaxed system (see
Figure 2.4 for evidence of faster relaxation for cold systems). In doing so, the
implicit assumption is that a relaxed cluster has no memory of the initial FoV
but clearly this is not the case; clusters with different initial FoV result in clus-
ters with different relaxed radii and number of bound particles, for example.
Some, but not all, of these differences might be resolved by scaling of the ini-
tial and final systems, though this would likely come at the expense of faster
relaxation.

Moreover, we cannot suggest a way to scale the segregation signature and
without scaling it the system will always remain physically distinct. is might
however provide an interesting way to diagnose the initial FoV of observed
young clusters, though more work would be required in understanding the im-
pact the initial FoV has on the segregation signature (see Section 2.4).

It should be noted that the collapse seen in the system with FoV = 1 (Fig-
ure 2.3a) is not due to non-equilibrium in the global energetics of the system,
but rather due to the spatial and velocity distributions of the particles not being
in a relaxed state (i.e. not a solution to the Fokker–Planck equation).

2.3.3 Time-scales

e inset of Figure 2.4 is a plot of the time until the deepest collapse of the
system, and the blue circles plot the time between the moment of deepest col-
lapse of the half-mass radius until the end of the bounce for each FoV. e red
diamonds mark the time from the beginning of the simulation until the end of
the bounce.

We assume that after the bounce the effect of violent relaxation is minimal
and the system enters a new regime where two-body relaxation begins to dom-
inate. e time required to reach a virially relaxed state increases as the FoV
increases, this should be expected since this time is simply the sum of the time
until collapse (inset in Figure 2.4) and the time from collapse until rebound
(the blue circles in Figure 2.4) both of which increase with FoV.

e red diamonds in Figure 2.4, provide evidence that warm initial condi-
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Figure 2.4: The green squares, of the inset plot, mark the time from the beginning
of the simulation until collapse. The blue circles indicate the time from the collapse
until the end of the bounce. The red diamonds mark the length of time from the
beginning of the simulation until the end of the bounce for each FoV; in other
words, the minimum time required to simulate in order to reach a mass segregated
and relaxed system.

tions in fact do require simulating for more crossing times than cold ones. Note
that it takes more than five times longer for the initially virialized case than for
the initially cold case to reach the end of the bounce (>10 N-body times com-
pared to 2 N-body times). e end of the bounce for the virial case (FoV = 1)
is not seen before the 10 N-body times for which we ran these simulations.

e inset in Figure 2.4 shows the time until the system reaches the deepest
point of collapse, or Rmin. We know that the free-fall time-scale, which is the
time for collapse of a homologous contraction, is

τFF =

√
3π

32Gρ
. (2.1)

Keeping with our use of N-body units, G = M = 1, thus ρ = 3
4πR3 and our

equation reduces to

τFF =
π

2

√
R3

2
. (2.2)

At the beginning of the simulations, we measure the most distant particle to be
≈ 1.2 N-body lengths from the center of mass of the system, using that value
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for the radius we find a constant value for the time of collapse in our simulations
to be

τcollapse ≈ 1.46. (2.3)
is value is close to what is plotted in the inset of Figure 2.4 for a FoV between
0.0 and 0.36. However, we show it is not valid to assume a free-fall time-scale
as the relevant time-scale for collapse in a system with an initial FoV >0.36
(Q > 0.18).

2.3.4 Minimum Cluster Radius

In Figure 2.5, we show the half-mass radius at the point of deepest collapse,
i.e. the minimum radius during the collapse, versus the FoV. In this figure, we
demonstrate the dependence of the depth of the collapse as a function of FoV.
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Figure 2.5: The half-mass radius at the point of deepest collapse versus the FoV.
The red dashed line is the fit we propose with a Q dependency, the green solid
line is the theoretically predicted value, and the black dotted line is the softening
length.

e depth of the collapse, Rmin of collapse, is often given as ≈ N−1/3

(Aarseth et al. 1988), where N is the number of particles. We recover a value
very close to this for the case of a cold collapse finding a difference of only 0.01
N-body lengths. However, as we show in Figure 2.5, and can also be seen in
Figure 2.3, the depth of collapse is also dependent on the FoV. In our experi-
ments, we holdN constant and change FoV and we find that as the system be-
comes more virial the collapse becomes less deep, that is Rmin becomes larger.
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We find that
Rmin ≈ 1

2
× FoV +N (−1/3) (2.4)

provides a good fit to our data, and is a substantially better approximation for
Rmin in non-cold systems.

Recall from our definition of FoV that FoV
2 is equal to Q. So finally we

propose that the minimum radius of collapse is dependent not only on N but
also on the virial temperature in the following way:

Rmin ≈ Q+N (−1/3), (2.5)

where Q ≡ |T/V | and N is the number of particles being simulated.

2.3.5 Observables

In Figure 2.6 we provide plots of three observable parameters: the core radius,
the slope of the density distribution, and the mass segregation ratio. We cal-
culate the core radius by following Casertano and Hut (1985) with a density
weighting factor of 2. To measure the slope of the density distribution, we per-
form a linear least-squares fit of the density and radial distance from the center
of the cluster in log–log space. In measuring both the core radius and den-
sity distribution we determine the local density using hop (Eisenstein and Hut
1998) with a 7 neighbor particle radius. e mass segregation ratio is calculated
using the minimum spanning tree method described in Allison et al. (2009b).
We use the 20 most massive particles to construct the “massive” tree and 50
different sets of random particles to construct the “random” trees. e left col-
umn of Figure 2.6 shows data from simulations with a Salpeter mass function,
with particles initially distributed in a homogeneous sphere, and no black hole,
while the right column of Figure 2.6 has a similar set of initial conditions with
the addition of a black hole containing 2 per cent of the cluster mass.

We note several regimes in the plots: the first is at early times regardless
of the FoV (the far left of the plots) there is a relatively large core radius, flat
density distribution, and a small degree of mass segregation. is of course is
due to the initial conditions.

e second regime we note is the lower-right quadrant (small FoV and late
times) where the systems have had time to relax. Here we find the smallest core
radii, the most extreme density distribution, and the highest degree of mass
segregation. By mapping these quantities from an observed young cluster to
Figure 2.6 along with other derived properties of a cluster (e.g. minimum age),
constraints can be placed on the initial conditions of the system. Additionally,
the plots can be used to determine what range of FoV would be ideal to use
in the initial conditions for a simulation which aims to reproduce a physical
system or investigating a phenomenon in clusters with a particular observable
parameter.
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Figure 2.6: Observable quantities plotted against initial FoV and time. Left (2.6a,2.6c, and
2.6e: system with no a black hole. Right: system with black hole containing 2 per cent of
the cluster mass. Top: colors denote the core radius in N-body units. Middle: colors denote
density distribution slope. Bottom: colors denote mass segregation ratio.
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2.4 Application to an observed cluster: R136

R136 is in the center of NGC 2070 (30 Doradus), which is in the Tarantula
Nebula, a young star cluster in the LargeMagellanic Cloud (LMC).is region
is the subject of many observations including two surveys: e VLT-FLAMES
Tarantula Survey (Evans et al. 2011) and theHubble Tarantula Treasury Project
(Sabbi et al. 2013). In the following, we simulate R136 as an isolated cluster
in order to constrain the initial FoV and other properties. For this purpose, we
performed an additional set of simulations with initial conditions like the sec-
ond row in Table 2.1: 15,210 bound particles, no black hole, a Salpeter mass
function, with particles distributed in a homogeneous sphere. However, we
run these simulations for 20 N-body times, producing 1000 snapshots for each
simulation.

2.4.1 Observed Parameters

Hunter et al. (1995) found a core radius for R136 of 0.02 pc, a value that was re-
fined to 0.025±0.004 pc by Andersen et al. (2009). e methods used to deter-
mine the core radius in Hunter et al. (1995) are disputed for example by Brandl
et al. (1996), who found core radii as a function of stellar mass cutoff ranging
from≈ 0.038 to 0.3 pc for high- to low-mass cutoffs, respectively. Other values
for the core radius that have been proposed include 0.063 pc (Campbell et al.
1992), 0.1 and 0.15 pc (using different filters, de Marchi et al. 1993), 0.2 pc
(Moffat et al. 1985), 0.24 pc (Malumuth and Heap 1994), and 0.33 pc by both
Meylan (1993) and Mackey and Gilmore (2003), though Mackey and Gilmore
state that due to crowding in their images their value represents an upper limit.

Selman et al. (1999) provide us with a fit to the density profile with a single
power law with an exponent of −2.85. ere seems to be a much stronger
consensus about the value of this observable in the literature and so we will use
-2.85 with a spread similar to the range found in other works (section 3.3 in
Selman et al. (1999) provides a good overview).

Sabbi et al. (2012) found that R136 likely started forming stars ≈ 2 Myr
ago and was still active up to ≈ 1 Myr ago. ere are other, older age estimates
for the cluster (e.g. Brandl et al. (1996) favor an age of ≈ 3.5 Myr), but since
Sabbi et al. (2012) differentiate between R136 and a separate clump to the
northeast of R136, which is older and seems to be included in previous age
estimates, we choose to use their value. e young age of this cluster is ideal
for comparing to our simulations since two-body relaxation has not yet had a
strong effect on the system.

Finally, Hénault-Brunet et al. (2012) offer an in-depth analysis of the cur-
rent virial state of R136. After accounting for the rotation velocity and angle,
variable stars, and binaries (see Gieles et al. (2010) for more about the impact
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of binaries on the virial state of young clusters) Hénault-Brunet et al. (2012)
find that R136 is in virial equilibrium.

2.4.2 From N-body to Physical Units

So far we have shown our results in N-body units (Heggie and Mathieu 1986)
however if we are to compare the results to R136 we will need to convert to
physical units. When the initial conditions (i.e. the physical scales) are known,
this conversion is straightforward. For example, by taking the ratio of the ob-
served virial radius to the measured simulated virial radius, and the ratio of the
observed mass of the cluster to the measured mass of the simulated cluster, and
setting the gravitational constant to unity a complete converter from N-body to
physical units is formed. is converter can then be applied to each snapshot.

However, because we are attempting to constrain the initial conditions we
cannot make an assumption about the initial physical scales (i.e. the mass and
radius) of the system. Moreover, as we are comparing our results to a known
physical system for which we are not certain of the age in crossing times, i.e. N-
body time units, we cannot assume that any particular snapshot is the one which
represents the observed state. us, we are forced to evaluate each snapshot as if
it were the one which corresponds to the observed state and thus each snapshot
must have its own conversion to physical units.

Our conversion from N-body units to physical units is accomplished in
the following way: for every snapshot, we measure the half-mass radius of the
bound particles, then, to simulate an observation which is seen in projection, we
select all (bound and unbound) particles within a cylinder with a radius equal to
the measured half-mass radius. Next, we measure the mass of all of the particles
within that cylinder. e final measurement we make is of the virial radius of
the system. is measurement must be done carefully since often these systems
are out of virial equilibrium, so we use a definition based on the potential energy

Rvir = −GM2/(2V ),

where V is the potential energy.
Still all of these measurements are in N-body units, to convert we use a

virial radius of 2.89 pc (Portegies Zwart et al. 2010) and a total cluster mass of
105M⊙ (Andersen et al. 2009). We simply take the ratio of the observed virial
radius to the simulated virial radius, and the total observed cluster mass to twice
the simulated measure of the half-mass. ese values along with setting G = 1
make a complete unit conversion possible. is procedure is repeated for every
snapshot, in this case 1000 snapshots for each value of the initial FoV.

Since each snapshot has a different conversion factor there is counterintu-
itive behavior in some of the measurements. As said, in many applications a
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simple (constant) conversion from N-body time units to physical age is pos-
sible, but since our snapshots are produced at fixed intervals of N-body time,
and each one has a different conversion factor, the apparent age does not in-
crease linearly, and sometimes may even decrease. For example, if the radius of
the cluster expands fast enough the time conversion factor may decrease more
quickly than the time in N-body units has increased.

0 5 10 15 20
Time [nbody]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
st
a
n
ta
n
e
o
u
s 
A
g
e

0.16

0.09

0.01

0.00

0 5 10 15 20
0

1

2

3

4

5

6

In
st
a
n
ta
n
e
o
u
s 
A
g
e

1.00

0.64

0.36

0.16

Figure 2.7: The physical age at each snapshot using our converter from N-body
units. Each line corresponds to a different initial FoV with 0.16 plot in both panels.

In Figure 2.7, we plot the calculated instantaneous age of each snapshot
versus theN-body time using the conversion described above.e bottompanel
of Figure 2.7 are plots of the age for initial FoV of 0.0 to 0.16 while in the top
panel the plots for 0.16 to 1.21.

e prominent spike inmany of the simulations around 1.5-2N-body times
is due to the collapse of the system. During the collapse the simulated half-
mass radius is decreasing very rapidly while the simulated mass interior to the
projected half-mass radius is remaining constant so the physical time evolved
per snapshot becomes very large. Another way to word it is that as the system
collapses the number of crossing times per snapshot is increasing.

Again we would like to point out, as we did in Section 2.3.2, the impor-
tance of discerning when it is appropriate to use only the bound particles or all
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(bound and unbound) particles. To demonstrate this point, we performed the
conversion as described above but using the bound and unbound particles to
make the measure of the radius (instead of using the particles in the selection
cylinder as we did for this analysis). When making this measurement on all the
simulated particles we obtained different results, but most strikingly we found
that the instantaneous age of each snapshot began to monotonically decline af-
ter a few N-body times. is is due to the virial radius growing too large too
quickly, because of the escaping unbound particles. Clearly such behavior is
unphysical, since it would imply that even with an infinitely long simulation
the physical age would not increase beyond a certain point, but without such a
plot it might not be obvious that something was amiss.

2.4.3 Initial Virial Temperature of R136

We define the central region of R136 for our purposes as the volume interior to
its virial radius, or ≈ 2.9 pc (Figure 4 of Hénault-Brunet et al. (2012) presents
a nice image of the region with markings for several radii).

We ran simulations (without a black hole, with a Salpeter mass function,
and particles initially distributed in a homogeneous sphere) for 20 N-body
times. We show the relevant data in Figure 2.8. e observables shown in Fig-
ure 2.8 are not for all bound particles but rather for all particles within a cylinder
of radius 2.9 pc from the center of the system; this is done to mimic a projection
on to the sky as would be found in the observations. To reduce noise, we plot
the average of every two snapshots thereby reducing the number of data points
for each initial FoV from 1000 to 500.

In the top-left panel of the figure, we plot the core radius from our simula-
tions with the color coding, in parsecs, representing the ranges outlined above
and values not falling between these ranges are plotted in gray. In the top-right
panel, we plot the slope of the density distribution. We expect anything within
the range of −2.6 to −3.1 to be consistent with the observed value of −2.85
(Harfst et al. 2010). e middle left panel is a plot of the instantaneous dynam-
ical age of the system with values outside of the measured 1 to 2 Myr plotted in
gray. While we start each simulation with a set FoV it quickly evolves, we have
plotted, in the middle right panel, the FoV as it evolves in time. Since R136
is currently expected to be in virial equilibrium we plot in color the snapshots
which have a FoV of 1 ± 0.1. And finally, in the lowest panel, we show the
core radius for only the systems which have a valid measurement for all of the
above observables (i.e. core radius, slope of the density distribution, dynamical
age, and virial temperature).

We find that within the observational constraints listed above our simu-
lations limit the initial FoV to a likely value between 0.16 and 0.25, with a
most likely value of 0.25. ere is also a valid solution at 0.36 but it ranges over
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Figure 2.8: Several measures of simulated systems with only the values matching
the observational limits of R136 plotted in color. (a) The core radii within obser-
vational limits, (b) the slope of the density distribution within observational limits,
(c) the age for each snapshot within observational limits, (d) the FoV at each
snapshot, and (e) the core radii for snapshots which satisfy all the observational
limits. The regions in gray do not produce an accepted value. See the text for more
information on the limits. These systems all began as a homogeneous sphere, with
a Salpeter mass function, and without a black hole.
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a much shorter time and it is not continuous, for this reason we do not find
this solution to be as probable. e continuous solution at 0.16 lasts for nearly
0.2 Myr whereas the solution at 0.25 lasts for ≈ 1 Myr so we consider the 0.25
case to be the most likely.

Using the initial FoV of 0.25, we note that in our simulations the core
radius is most likely found around 0.2 pc, ranging from about 0.1 to 0.33. We
find very few solutions that allow for the small core radius of the order found
in Hunter et al. (1995) or Andersen et al. (2009). e range of the simulated
FoV is close to 1.0, with the deviations from unity unlikely to be detectable in
observations.

We note that these results are based on isolated systems with some simplifi-
cations, such as instantaneous star formation and ignoring primordial binaries.
And while R136 is likely to have formed with more complicated initial condi-
tions and is not in isolation, these results provide only a first-order estimate for
the initial FoV of R136. Moreover, this method may be useful when applied
to other young clusters which could aid in determining their initial virial tem-
peratures. We hope this example case has also demonstrated the significance
the initial virial temperature has on the evolution of a system.

2.4.4 Other Young Clusters

Using the same analysis techniques we used for R136 we analyzed 15 other
extragalactic young clusters. A list of young clusters within and outside the
Local Group can be found in Tables 3 and 4, respectively, of Portegies Zwart
et al. (2010). We required each cluster to have a reported core radius as well as
an “Age/tdyn” (the last column in the tables) of less than 20. Age/tdyn is the
inferred age of the cluster divided by dynamical time-scale, or in other words
the number of times the typical star has crossed the system (see Gieles and
Portegies Zwart (2011) on the usefulness of this measurement). e clusters
which we analyzed are: 3cl-a and a1 in M51; B015D, B040, B257D, B448,
and Vdb0 in M31; NGC 1711, NGC 1847, NGC 2004, NGC 2100, NGC
2157, NGC 2164, and NGC 2214 in the LMC; and NGC 330 in the Small
Magellanic Cloud.

As these systems are not as well studied as R136 we only used the age and
core radius as constraining parameters, but otherwise the analysis remained the
same as was performed above for R136. In 11 of the 15 cases the initial FoV
can be fitted well by a value of 0.36 or 0.49 (Q ≈ 0.18 or 0.25). In one case,
3cl-a, the initial FoV is large with a value between 0.64 and 0.81 (Q ≈ 0.32 or
0.40), this was the only case with a likely initial FoV greater than 0.49. In the
remaining three cases — B015D ,B040, and B448 — the initial FoV was lower
than the typical value. B015D and B448 were best fitted by an initial FoV by
0.04 and 0.09, whereas B040 was best fitted by 0.16 or 0.25.
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We find the most typical value (i.e. the mode) for the best-fitting initial
FoV in all of the clusters we tested (including R136) to be 0.36 and 0.49 (Q ≈
0.18 and 0.25), collectively these two values fit nearly 70 per cent of the clusters
tested. A probability-weighted average of the distribution of the initial FoV for
these clusters yields a value of 0.30 (Q = 0.15).

ere may be observational evidence for clusters forming with a rather low
initial FoV as we have found here; for example, André (2002) studied ρ Ophi-
uchi and found evidence of collapse. Additionally, Walsh et al. (2004) found
subsonic motion of star-forming cores in NGC 1333 implying subvirial veloc-
ities, and Peretto et al. (2006) found signs of global collapse in two massive
cluster-forming clumps, namely NGC 2264-C and NGC 2264-D. Moreover,
Proszkow et al. (2009) found that subvirial initial conditions were required in
their model in order to explain the kinematic observations of the Orion Nebula
Cluster.

2.5 Conclusion

While we suspect that the use of “cold” initial conditions is done too often for
computational convenience, and with little consideration to physical reasoning,
we do not, and cannot, claim that using any particular subvirial temperature is
incorrect or less physically consistent since the distribution of the initial virial
temperature is unknown. We simply aim to demonstrate that the choice of
virial temperature is important to consider when formulating initial conditions
as this choice has a profound impact on evolution of the resulting cluster.

We also stress the importance of performing analysis only on relevant par-
ticles in a simulation, in our case usually the bound particles. We show an ex-
ample of the error that can result by analyzing all particles and not only the
bound particles in Figure 2.2. Furthermore, we found that the improper use
of unbound particles in the conversion from N-body to physical units lead to
unphysical results.

We examined the effect the initial FoV has on the number of particles lost
in cases with equal mass particles as well as with a mass function in Figure 2.1.
In the same figure, we find that the addition of a black hole to a cluster has
the effect of reducing the number of bound particles after 10 N-body times,
as compared to the same system without a black hole, since the black hole
acts like a strong scatter. Additionally, we note an uptick in the number of
bound particles for cold systems. We speculate that this effect is due to the
particles initially having no radial motion and so passing through the core on
a nearly free-fall trajectory causing them to spend the least amount of time
in the very high density core during the collapse. We then discussed how the
mass segregation is dependent on the FoV, not only in degree but also in what
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we called the mass segregation signature (essentially the difference in degree of
mass segregation between different mass ranges).

Next we considered the strong influence the choice of initial FoV has on
the time-scales (Figure 2.4) and the radius of a system (Figure 2.5). In doing
so, we find that the minimum radius, Rmin, of a system in violent collapse has
a strong dependency on the virial temperature, Q, as well as the number of
particles, N . We find that Rmin ≈ Q + N (−1/3). Figure 2.4 also provides an
estimate to the extra computational expense to reach a mass segregated cluster
in a steady state for different initial FoV.

After plotting observable quantities, i.e. the core radius, the slope of the
density function, and the mass segregation ratio as a function of time and ini-
tial FoV in Figure 2.6 we discuss the impact of the inclusion of a black hole
as the system evolves. We finally compare our simulated system (particles ini-
tially distributed in a homogeneous sphere, with a Salpeter mass function, and
without a black hole) to the young cluster R136. In doing so, we find that given
R136’s age estimate, the observed current FoV, as well as the observed slope of
the density distribution, and the many observational constraints on the core ra-
dius, R136 would most likely have had an initial FoV of 0.25 (Q ≈ 0.13). We
repeated the same analysis on 15 other young clusters for which we found 0.36
and 0.49 (Q = 0.18 and ≈ 0.25, respectively) to be the most likely initial FoV
in nearly 70 per cent of all 16 young clusters (including R136) and a probability-
weighted mean of the distribution of initial FoV to be 0.30 (Q = 0.15). While
these results are robust, we do note that these values are based on an idealized
system.

Finally, we hope that this work has convinced the reader of the importance
of the initial virial temperature used in simulations. Whether used as the initial
velocities of particles or of merging galaxies, the effect of the virial temperature
can be profound and as such should be carefully chosen.
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