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Chapter 2
Optimized Principal Component
Analysis on Coronagraphic
Images of the Fomalhaut System

We present the results of a study to optimize the Principal Component Analysis
(PCA) algorithm for planet detection, a new algorithm complementing angular
differential imaging and locally optimized combination of images (LOCI) for in-
creasing the contrast achievable next to a bright star. The stellar PSF is construc-
ted by removing linear combinations of principal components, allowing the flux
from an extrasolar planet to shine through. The number of principal components
used determines how well the stellar PSF is globally modeled. Using more prin-
cipal components may decrease the number of speckles in the final image, but also
increases the background noise. We apply PCA to Fomalhaut Very Large Tele-
scope NaCo images acquired at 4.05 µm with an apodizing phase plate. We do not
detect any companions, with a model dependent upper mass limit of 13–18 MJup

from 4–10 AU. PCA achieves greater sensitivity than the LOCI algorithm for the
Fomalhaut coronagraphic data by up to 1 mag. We make several adaptations to
the PCA code and determine which of these prove the most effective at maximiz-
ing the signal-to-noise from a planet very close to its parent star. We demonstrate
that optimizing the number of principal components used in PCA proves most
effective for pulling out a planet signal.

T. Meshkat, M. A. Kenworthy, S. P. Quanz, A. Amara
The Astrophysical Journal

Volume 780, Issue 1, pp. 17-24 (2014)



Optimized Principal Component Analysis

2.1 Introduction

The detection and characterization of extrasolar planets has grown dramatically
as a field since the first detection in 1992 (Wolszczan & Frail 1992). The most
successful detection techniques thus far are radial velocity (RV) and transit de-
tection. Using ground and space based surveys (HARPS, Kepler, COROT, etc.),
these indirect techniques have discovered over 800 planets (exoplanet.eu) as well
as thousands more planet candidates.

The direct detection of planets provides a unique opportunity to study exoplan-
ets in the context of their formation and evolution. It complements the underlying
semi-major axis exoplanet distribution from RV surveys (from 100 AU down to
a few AUs) and enables the characterization of the planet itself with an exam-
ination of its emergent flux as a function of wavelength. The detection of the
planets HR8799 bcde (Marois et al. 2008), Fomalhaut b (Kalas et al. 2008), β Pic
b (Lagrange et al. 2009), 2MASS1207 (Chauvin et al. 2004), 1RXS J1609–2105 b
(Lafrenière et al. 2008), HD 95086 b (Rameau et al. 2013b), KOI-94 (Takahashi
et al. 2013) as well as discoveries of protoplanetary candidates LkCa 15 b (Kraus
& Ireland 2012) and HD100546 b (Quanz et al. 2013), demonstrate the potential
breakthroughs of the technique. However, thus far, most dedicated high contrast
imaging surveys have yielded null results (e.g., Rameau et al. 2013a; Vigan et al.
2012; Chauvin et al. 2010; Biller et al. 2007; Heinze et al. 2008). These null results
are due to the lack of contrast at small orbital separations, where most planets
are expected to be found. Since planets are concluded to be rare at large orbital
separations (Chauvin et al. 2010; Lafrenière et al. 2007), high contrast imaging
must probe close to the parent star to detect a planet.

High contrast imaging is limited by the diffraction limit, set by the telescope
optics, which determines the minimum angular separation achievable under ideal
conditions. Since planets are low mass, cold, and red compared to their parent
star (Spiegel & Burrows 2012; Baraffe et al. 2003), the contrast ratio of their
magnitudes is an additional constraint on their detectability. New instruments
and techniques have been developed to combat these constraints at the acquisition
and image processing stage.

Coronagraphs have been developed to reduce the light scattered in the telescope
optics from diffraction during acquisition, but at a cost of throughput and angular
resolution (Guyon et al. 2005). Coronagraphic optics allow us to probe smaller
inner working angles, but are limited by the stellar “speckles” which can dominate
the flux from a planet (Hinkley et al. 2009).

By turning off the telescope derotator on an alt-az telescope, the planet is able
to “rotate” around the star, while the stellar PSF stays relatively stable and the
speckles vary randomly in time. This technique is used in angular differential ima-
ging (ADI; Marois et al. 2008). It takes advantage of this rotation to identify and
subtract (in post-processing) the contribution from the stellar PSF and speckles.
There are a number of image processing techniques aimed at modeling and sub-
tracting the stellar PSF from every image, allowing the sky fixed planet signal to
shine through. Locally optimized combination of images (LOCI; Lafrenière et al.
2007) is an extension of ADI, which models the local stellar PSF structure in every
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0.5"

Figure 2.1 Image demonstrating the APP airy diffraction pattern with the diffrac-
tion suppressed region outlined in blue. This is the only region that is used in the
data reduction.

image. Principal component analysis (PCA; Amara & Quanz 2012; Soummer et al.
2012; Brandt et al. 2013) models how the PSF varies in time by identifying the
main linear components of the variation. Application of these image processing
techniques has been demonstrated to increase the limiting magnitude achievable
by up to a factor of five (Lafrenière et al. 2007; Amara & Quanz 2012).

In this work, we present a detailed study of LOCI and PCA image processing
techniques in order to optimize the signal-to-noise ratio (S/N) of a planet at small
angular separations with the apodizing phase plate (APP) coronagraph (Ken-
worthy et al. 2010, 2007). We compare our results to the previous result of Ken-
worthy et al. (2013).

The Fomalhaut dataset that is used in the following analyses are a deep but
typical observing sequence and will act as an example for the rest of our surveys.

2.2 Data

Data were obtained of the star Fomalhaut at the Very Large Telescope (VLT)/UT4
with NaCo (Lenzen et al. 2003; Rousset et al. 2003) in 2011 July and August
(087.C–0701(B)) and were analyzed and published in Kenworthy et al. (2013).
Fomalhaut was used as the natural guide star with the visible band wavefront
sensor. The L27 camera on NaCo was used with the NB4.05 filter (λ = 4.051µm
and ∆λ = 0.02µm) and the APP coronaraph (Kenworthy et al. 2010; Quanz et al.
2010) to provide additional diffraction suppression. We used pupil tracking mode
to perform ADI (Marois et al. 2006). The PSF core is intentionally saturated to
increase the signal from any potential companions.

The APP provides diffraction suppression over a 180◦ wedge on one side of the
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target (Figure 2.1). Additional observations are required with a different position
angle (P.A.) to cover the full 360◦ around the star. For these observations, we have
three different datasets with different P.A.s ensuring full P.A. coverage around the
target star. Each dataset has a large amount of field rotation: 119◦, 117◦, 120◦.

Data were acquired in cube mode. Each data cube contains 200 frames, each
with an integration time of 0.23 s. Approximately 70 cubes were obtained for each
hemisphere dataset, totaling in an integration time of 160 minutes. A three point
dither pattern was used to allow subtraction of the sky background and detector
systematics as detailed in Kenworthy et al. (2013). Unsaturated short exposure
data with the neutral density filter were also taken for photometry.

2.3 Creating the Simulated Data–Sets

Data cubes at each dither position were pairwise subtracted to remove the sky
background and detector systematics. The cubes were shifted to move the core
PSF into the middle of a square image and bad frames (open loop and poor AO)
were discarded (5% of hemisphere 1, 16% of hemisphere 2, and 7% of hemisphere 3).
The three different APP P.A. datasets were processed separately. Each hemisphere
dataset has its own corresponding unsaturated data for photometry.

Fake planets are subsequently used to determine the limiting contrast after
image processing. The unsaturated Fomalhaut data is used to add a fake planet
in each saturated frame. One fake planet is added at a time, between 0.′′2 and
1.′′0 in steps of 0.′′1 and δ magnitudes in steps of 1 mag from dM= 7–13. Due to
the asymmetric nature of the APP PSF, it is also necessary to determine the S/N
of a planet at different P.A.s. For our analysis we placed a planet on opposite
sides of the star (P.A.=45◦ and 225◦ relative to the sky) to take into account the
asymmetric PSF of the APP. These two P.A. orientations ensure that the planet
is on the dark side of the APP in at least two of the hemispheres at once. The
mean of the limiting contrast at each P.A. is stored.

The final science frames are processed with several different algorithms to re-
cover the fake planet signal. All of the algorithms take advantage of the fake
planet’s rotation in the sky around the star to model and subtract the stellar PSF
from each image (ADI; Marois et al. 2006). Before each algorithm is applied, the
innermost region is masked out (r < 0.′′15) where the star has saturated the image
and no planet could be detected. The method of modeling the stellar PSF differs
between the algorithms, detailed in the following subsections.

One metric for detectability of planets is S/N. It is a measure of the detectab-
ility of a point source, assuming the noise is Gaussian and decorrelated between
diffraction limited elements at that radius. The equation below is similar to those
in the literature, describing local S/N:(

S

N

)
planet

=
Fplanet

σ(r)
√
πr2

ap

,

where Fplanet is the sum of the planet flux in an aperture with radius rap = 3
pixels and σ is the root mean square of the pixels in a 180◦, 6 pixel wide arc at
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the same radius, surrounding the star.
The equation above assumes statistically independent pixels, which in the case

of speckle noise limited regimes is typically not the case. For the sake of consistency
with other papers in the literature, we use one of the most common definitions
of S/N calculation to facilitate comparison with other methods. This is a widely
acknowledged issue in this research field, so while the S/N quoted may be off by a
scaling factor, the conclusions in this paper do not rely on the absolute scaling as
we are comparing analysis techniques.

2.4 Data Analysis
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Figure 2.2 Signal-to-noise ratio curves for a fake planet at four angular separations,
with different amounts of frames coadded. At each angular separation, planets
were added at four position angles and averaged. The error bars are 1 σ. The
number of PCs is fixed at 20. Each contrast curve is offset from a S/N of 10 for
clarity.
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Coadding the frames in a data cube is a common practice but the best number
of frames to coadd has not yet been thoroughly studied. We experimented with
different numbers of coadded frames using fake planets. We ran the data through
our PCA pipeline (detailed in Section 2.4.2) with different numbers of frames
coadded (Figure 2.2). For example, 100 frames coadded means that twice as many
images are passed to our pipeline as in the 200 coadded frames case. Figure 2.2
shows four S/N curves for planets injected a different angular separations, each
with a S/N of approximately 10. The curves are offset from 10 for clarity. Coadding
200 or less frames yields a higher S/N. However, the S/N varies by less than a factor
of two over all coadds, making this a relatively small effect. For the following
analysis, we keep the coadds fixed at 200 frames, which yields S/N as good as
less coadds, but is computationally much faster. This corresponds to ∼70 coadded
images in each hemisphere which are passed to our pipeline. Since there is little
field rotation between individual frames in a data cube, the smearing effect within
a cube is negligible.

2.4.1 LOCI

Locally optimized combination of images (Lafrenière et al. 2007) is a widely used
planet detection algorithm which spatially models the stellar PSF to remove speckles.
An image is divided into rings, which are subdivided into wedges. An optimal, lin-
ear combination of images subtracts speckles within that region. The least squares
fit succeeds at minimizing speckles, but also reduces the planet flux through the
subtraction for small angular separations.

Each hemisphere dataset is processed with LOCI independently and the final
three hemisphere sky aligned cubes are collapsed. Since we are using the APP, we
only perform LOCI on the “dark side” of the image frames. This 180◦ D shaped
region (inner=2λ/D, outer=7λ/D) is the only part of each frame that is coadded
in the final image.

Kenworthy et al. (2013) analysis of these data used the LOCI algorithm. Monte
Carlo simulations exploring LOCI parameters ensured that this is the best sensit-
ivity LOCI could produce.

2.4.2 Principal Component Analysis

Principal component analysis is a mathematical technique that relies on the as-
sumption that every image in a stack can be represented as a linear combination of
its principal orthogonal components, selecting structures that are present in most
of the images. Its recent application to high contrast exoplanet imaging (Amara
& Quanz 2012; Soummer et al. 2012) has been shown to be very effective. Unlike
LOCI (Lafrenière et al. 2007) which models the local stellar PSF structure, PCA
models the global PSF structure.

The full stack of images with sky rotation is used for PCA. However, since we
are using the APP, only the “dark side” of each image is used in the fit. The S/N
from a fake planet is lower if we include the“bright side”. We follow the description
of PCA outlined in Amara & Quanz (2012) for the following analysis.
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Figure 2.3 Comparison of the flux ratio and S/N based on number of PCs at
different radii. The top panel is for a fake planet at 1.′′0, the middle panel is for
0.′′5 and the bottom panel is for 0.′′3. These panels demonstrate that, while the
flux ratio does decrease with PCs, the S/N follows a different curve.

The number of PCs used determines how well the stellar PSF is fit. The first
few components are the most stable, have less noise, and contain the most common
structure in all the images. For our default analysis, we used 20 PCs to model the
stellar PSF. PCA is run on each hemisphere dataset independently, as the PCs
are correlated with time. The final de-rotated frames are coadded into one final
image covering the full 360◦ around the star.

The following subsections discuss self-subtraction due to the PCA algorithm as
well as a series of modifications we performed on PCA to optimize the detection
of a planet at small λ/D.

Self-subtraction

Self-subtraction from the LOCI algorithm has been well documented by previous
authors (Lafrenière et al. 2007; Marois et al. 2010), but its impact on PCA is not
yet well studied. The LOCI algorithm requires that the frames nearest in time
to the current frame are not considered in the least squares fit, thus limiting the
self-subtraction of a potential planet. However, this frame rejection technique does
not completely account for flux loss from a planet.

For our PCA analysis, we draw a distinction between two types of modes:
detection and characterization. Characterization mode requires fully accounting
for flux loss of the planet as a function of number of PCs as we map between the
measured flux and the calibrated estimate of “true” flux. However, in detection
mode, since we only care about our ability to separate the planet signal from the
background noise, the main issue is the flux loss relative to the separation of the
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0.5"

Figure 2.4 Image demonstrating the APP airy diffraction pattern with the radius
limited region outlined in blue. This is the only region that is used in the data
reduction.

background noise. In this paper, we address simply the detection mode.

Figure 2.3 shows three plots with the flux ratio and S/N versus the number
of PCs it was processed with. The top figure is for a planet injected at 1.′′0,
middle is at 0.′′5 and bottom is at 0.′′3. The “flux ratio” is the ratio of the injected
planet flux to the PCA processed flux in a 4 pixel aperture. For each angular
separation, the L′ contrast which yields a S/N of approximately 10 is plotted.
This figure demonstrates that the PCA method is more efficient at capturing the
patterns associated with the background fluctuations of the field than capturing
information associated with the planet translation. This differential effect means
that in detection mode, it is acceptable for the flux ratio to decrease as long as
the noise is decreasing as or more rapidly.

PCA Modifications

1. Frame Rejection

For our PCA code detailed above, all the frames are used in the fit and none are
rejected. This was done under the assumption that self-subtraction of the planet
happens less rapidly than the noise subtraction when using PCA. As discussed in
Section 2.4.2, while we are in “detection mode”, the important factor to consider
is the S/N rather than planet flux. To test this, we used only a subset of the
frames to determine the PCs. The frames nearest in time to the frame being fitted
were rejected. These are frames where a potential planet would overlap by 0.5
FWHM or more. The number of frames to reject depends on the separation of the
planet from the star. The total rotation of the planet is limited by the amount of
sky rotation achieved during each dataset. A planet very far from its parent star
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Figure 2.5 Plot of the PCA coefficient values. The highest PCA coefficient value
corresponds to the most significant PC.

would appear to rotate faster between frames, thus less frames need to be rejected.
This test allows us to compare the S/N of a fake planet processed with standard
PCA and “0.5 FWHM rejection”, where we mimic the routine in LOCI to reject
the frames closest in time.

2. Radius Limited

Next, we modified the PCA basis set by only using the image out to a certain
radius. The outer radius (Rout) passed to the PCA code determines the amount
of information provided to the SVD algorithm. Extra information does not ne-
cessarily provide a better fit. Our previous applications of PCA kept Rout fixed.
The information passed to the SVD algorithm should be directly related to the
stellar PSF. We modified our PCA code to vary Rout based on the location of the
fake planet. The new Rout is 1 λ/D greater than the radius of the fake planet
(see Figure 2.4), thus performing PCA on a smaller region. This experiment was
performed to test how significant the stellar PSF fit was affected by radii greater
than the planet location.

3. Number of PCs

The main parameter which can be manipulated in PCA is the number of PCs used
in the SVD fit. The first principal value (the highest singular value in the diagonal
matrix) is the “variance” of the image stack from the mean, in the direction of the
first PC. The same is true about the second principal value and so on.

Figure 2.5 shows the PCA coefficient values in descending order for one of our
datasets. The first few PCA coefficient values are significantly greater than the
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Figure 2.6 Contrast curves for a 7σ detection of a point source in our Fomalhaut
APP data processed with LOCI, ADI, and variations of ADI. The LOCI curve
is adapted from Kenworthy et al. (2013) to a 7σ detection. The numbers on the
yellow curve signify the number of PCs which yield the highest S/N at that radius.
The dashed line is the background limit. The PCA contrast curves are the mean
value for fake planets inserted at two P.A.s on opposite sides of the star (P.A.=45◦

and 225◦).

later values, implying that those PCs contain the most dominant features. Increas-
ing the number of PCs in the stellar PSF fit can help bring out the planet signal
by removing structure, however it also can add noise. Determining the optimal
number of PCs for a certain stellar PSF fit is an essential but expensive task. The
optimal number of PCs depends on the time variability of complex speckles.

For each dataset and fake planet angular separation, PCA was run with different
numbers of PCs ranging from 5 to 60, in increments of 5.

2.5 Results and Discussion

Figure 2.6 shows the results of each image processing method detailed in Section
2.4.2. Each technique was run with varying planet contrasts at a given radius. We
extrapolated between planet contrasts to determine contrast that yields a S/N of
7. For the method with varying PCs detailed in Section 2.4.2, we noted which
number of PCs yielded the highest S/N at which radius. These are the numbers
listed on the yellow curve in Figure 2.6.

Our standard PCA technique yields a better contrast curve than LOCI for
our coronagraphic data. Our modifications to PCA, in some cases, yield better
sensitivity.
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Figure 2.7 Three-dimensional surface of the contrast achieved in a 7σ detection
with varied numbers of PCs. Varying the number of PCs at small angular separ-
ations affects the 7σ detection limit by up to 8 mag. Beyond 0.′′6, the number of
PCs used is less significant.

Unlike the LOCI algorithm, rejecting the frames nearest in time (detailed in
Section 2.4.2) yields a worse contrast curve than our standard PCA. This is likely
due to the noise being more correlated in frames closer in time, thus providing
important information to the SVD algorithm and increasing the S/N of the planet.
We did not reject any frames in our final data analysis approach.

Limiting the outer radius passed to the SVD algorithm yielded a slightly better
contrast ratio than standard PCA from 0.′′5 to 0.′′8. However, this contrast increase
is not significant and is only beneficial because it is less computationally expensive.

Our standard PCA contrast curve was generated with 20 PCs. By varying the
number of PCs we can increase the S/N from a companion. Our PC-varying result
yields a consistently more sensitive contrast curve then all the other methods. We
gain between 0.5 and 1 mag contrast over our LOCI analysis from 0.′′2 to 1.′′0.
From Figure 2.6 we see that the number of PCs which yield the highest S/N for a
planet varies based on its angular separation.

Figure 2.7 is a three-dimensional (3D) surface plot showing how the number
of PCs at each radius affects the contrast at 7σ for a planet at a fixed P.A. Fake
planets were added between 2 and 20 PCs in smaller steps to emphasize the struc-
ture. This figure demonstrates that at small angular separations (< 0.′′6), the S/N
is sensitive to the number of PCs chosen. This is the region where the diffraction
and speckles due to the star are more significant than the unstructured noise from
thermal emission and the sky background. For example, at 0.′′2 choosing a small
number of PCs yields an 8 mag gain in sensitivity than a large number of PCs.
Increasing the number of PCs quickly leads to nearly complete self-subtraction.
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Figure 2.8 Detection limit for fake companions around Fomalhaut generated with
PCA (black lines) and LOCI (blue lines, converted to 7σ detection from Kenworthy
et al. 2013) using (Baraffe et al. 2003, solid lines) and (Spiegel & Burrows 2012,
dashed lines).

This can be seen in Figure 2.7 as a contrast of nearly zero. As we move to larger
radii the optimal number of PCs remains in the 5–20 PC range. Beyond 0.′′6 where
the number of PCs shows no significant preference below 45 PCs.

2.5.1 Comparison with Kenworthy et al. (2013)

Our PCA re-analysis of these data improves sensitivity at small inner working
angles, from 0.′′2 to 1”, in some cases by 1 mag (see blue and yellow curves, Fig-
ure 2.6). We convert the best 7σ detection contrast curve to an upper mass limit
for planets using the Baraffe et al. (2003) and Spiegel & Burrows (2012) atmo-
spheric models (Figure 2.8) assuming an age of 440 Myr (Mamajek et al. 2012).
We confirm the non-detection of companions with a model-dependent upper mass
limit of 13–18 MJup from 4–10 AU. Our new upper mass limit is based on our
more robust 7σ detection limit. The 1 mag increase in the contrast ratio at 0.′′5
translates to an increased sensitivity of ∆ 7 MJup. The increase in sensitivity allows
us to probe planetary masses (<15 MJup) at small angular separations.

2.5.2 Fainter Fomalhaut

We have shown that the number of PCs which yield the highest S/N depends
on the planet’s distance from the parent star (yellow line, Figure 2.6). At small
angular separations (< 0.′′6), the S/N is sensitive to the number of PCs chosen
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Figure 2.9 Similar to the 3D surface in Figure 2.7, but with Gaussian white noise
added to the data. The resulting star is 1.5 mag fainter than Fomalhaut.

(Figure 2.7). This is the limit where the diffraction from the central star is equal
to or less significant than the background noise.

We add Gaussian white noise to our data to test if this turnover point changes
for a fainter target (Figure 2.9). Increasing the sky background noise makes Fomal-
haut 1.5 mag fainter, while keeping the telescope conditions and Strehl identical.
This is the ideal way to test how fainter targets will behave. Fake planets are once
again injected and the best number of PCs at each angular separation is noted.

Changing the number of PCs used at each angular separation is still the best
method for detecting companions. As expected, the regime of large numbers of PCs
at small separations results in low contrast, which then improves down to a plateau
at smaller PCs and larger radii. The turnover point remains near 0.′′6, beyond
which the diffraction from the star is no longer significant and the optimal number
of PCs is less clear. Beyond this separation, the background noise dominates the
SVD fit and thus does not help subtract the stellar PSF.

2.6 Conclusion

We re-analyze our Fomalhaut APP/NaCo/NB4.05 data using PCA and compare
it with the LOCI algorithm. PCA yields a more sensitive contrast curve than the
LOCI algorithm at small inner working angles. We tested several modifications
to PCA and gain up to 1 mag of contrast over our LOCI analysis from 0.′′2 to
1.′′0. The most effective parameter which optimized PCA was varying the number
of principal components. The number of principal components chosen is sensitive
for planets at small inner working angles. The detection limit of a planet at
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small radii can vary by several magnitudes. Careful attention should be paid to
determining the number of principal components used at radii where the speckles
are more significant than the unstructured noise of thermal emission and the sky
background. Running PCA for a range of principal components at each angular
separation and generating a 3-D surface is a useful way to visualize the optimal
number of principal components needed to pull out a faint planet signal.

Further analysis is needed in other wavelengths, as differing Strehl ratios may
affect the turnover point where the stellar diffraction is less significant than the
background noise. These results have direct application for current and future
planet imaging campaigns, which will likely use a combination of PCA, LOCI,
and other image processing techniques.
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