
Chaotic Dynamics in N-body systems
Boekholt, T.C.N.

Citation
Boekholt, T. C. N. (2015, November 10). Chaotic Dynamics in N-body systems. Retrieved from
https://hdl.handle.net/1887/36077
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/36077
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/36077


 
Cover Page 

 
 

 
 
 

 
 
 

The handle  http://hdl.handle.net/1887/36077 holds various files of this Leiden University 
dissertation 
 
Author: Boekholt, Tjarda  

Title: Chaotic dynamics in N-body systems 
Issue Date: 2015-11-10 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/36077


6

Event-driven Chaos
in Dynamical Systems

Based on: Event-driven Chaos in Dynamical Systems by T. C. N. Boekholt,

F. I. Pelupessy, D. C. Heggie and S. F. Portegies Zwart in preparation

In 1207BC, a year after Odysseus returned to Ithaca, the comet
P1/Halley should have been visible from the Ionian islands, but appar-
ently was not sighted (?). Since then the short-period comet P1/Halley
has intrigued astronomers, policy makers (?), religious leaders (??),
artists and the general public for its splendour.

More recently, Halley gained considerable interest because of its
importance for understanding the stability of the solar system. The
comet probably migrated towards its current orbit in the last 200,000
years (?). Small variations in its time of sighting over the last millen-
nium have prompted astronomers to the possible chaotic nature of the
comet’s orbit (?). In particular the recent discussion of the chaotic
nature of its orbit, as derived by ? requires us to revisit the chaotic
nature of Halley’s orbit, the origin of its chaos and its short Liapounov
time.

We construct a general model for the growth of perturbations in a
few-body dynamical system. Using a map to describe the time evolu-
tion of the orbital frequency of Halley’s orbit, we find that a sequence
of close encounters with Jupiter causes exponential growth with a Lia-
pounov time of order 300 years. This short Liapounov time is a natural
consequence of the density of close encounters and the strength of each
encounter. Numerical integrations however, show that Venus is cur-
rently the dominant source of chaos in Halley’s orbit.

6.1 INTRODUCTION

Whether a dynamical system, such as a planetary system, a star clus-
ter or a galaxy, is stable or unstable is an important property of the
system. For example, from an observational point of view, it tells us
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92 CHAPTER 6. EVENT-DRIVEN CHAOS

about the likelihood to observe a system in a certain state. If the
configuration is unstable, it will evolve to a different configuration on
a relatively short time scale, so that statistically, it is unlikely to be
observed. From a numerical perspective, the stability tells us about
the time scale on which we can accurately predict the orbits of the
constituent bodies. For a chaotic system, initially nearby solutions
will quickly diverge away from each other, resulting in very different
outcomes (????).

The stability of a configuration is determined by perturbing the
configuration and calculating how the perturbation grows in time. If
this growth follows a power law, the system is considered regular.
Examples of regular dynamical systems are two-body (point-particle)
binary stars, strictly hierarchical triples (e.g. ?) and the three-body
figure-8 orbit (??). If the growth instead is exponential, then the
system is considered to be chaotic. Examples of chaotic three-body
problems are the Pythagorean problem (???), the equilateral triangle
(e.g. ?) and the Sitnikov problem (e.g. ?).

Chaos in larger systems was investigated by ?. For time scales
shorter than a million years, the divergence of the planets in our solar
system closely resembles a power law. At later times however, it turns
out that the divergence is really an exponential with an e-folding time
of about 5 Myr (?). The time over which the stability has to be
determined is thus an important factor.

It is also possible for a system to evolve from order to chaos and
vice versa. In a different study of the solar system ? reproduced
the exponential divergence found by ?. After ∼ 50 Myr however,
they observed a transition to a faster exponential growth (?, Fig. 1).
The origin of this transition is not known. It might be physical and
related to a different chaoticity for the terrestrial and Jovian planets.
A numerical artefact is however not excluded.

A more intuitive example of a transition can be constructed for a
three-body system consisting of a binary star and a single star that is
relatively far but still bound, moving towards the binary star. Since at
the start of the experiment the single and the binary star are well sepa-
rated, the system will behave regularly. At small separations, however,
the interplay of the three particles becomes much more irregular, re-
sulting in a prolonged chaotic phase during the resonant encounter (?).
In the resonant phase perturbations can grow by orders of magnitude
(?).

Dynamical chaos is also present in star clusters, i.e. open clusters
and globular clusters. ? measured an exponential growth of pertur-
bations for a small stellar system. ? estimate the e-folding time for
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this growth to be on the order of a crossing time, which is the typ-
ical time for a star to cross the cluster once. Due to this relatively
short time scale, accurate long term integrations of star clusters are
virtually impossible. The exponential divergence can be fought us-
ing high-precision integrations, but they are prohibitively expensive
(?). Transitions in the rate of divergence also occur for star clusters.
Starting with a cluster consisting of single stars, close encounters and
interactions with a binary star during the moment of core collapse
significantly increases the rate of divergence (?, Fig. 3).

Much work has been done to measure the stability of dynamical
systems. Less work has been done on the origin of chaos in dynamical
systems and transitions in the rate of divergence. ? construct a model
for the growth of perturbations in a star cluster. In a somewhat analo-
gous way as in the derivation of the relaxation time of a stellar system
(Chandrasekhar, 1942), they relate a linear growth of error to the lin-
ear growth in separation after a deflection due to a 2-body encounter
(?, Fig 1). A sequence of 2-body encounters can result in the accu-
mulation of power laws, which approximates exponential divergence.
This is analogous to a feature already present in a hard-sphere gas (?).

We present a new model for the rate of divergence in few-body
dynamical systems, which is based on 2-body Keplerian orbits being
perturbed by a third body. Using the fact that a 2-body Keplerian
system shows linear divergence and that the accumulation of power
laws can produce exponential growth, we are able to model both regu-
lar, chaotic and transitional behaviour. We explain the model in more
detail in Sec. 6.2.

Next we turn to the case of Halley’s Comet (hereafter just Halley),
which is perturbed by the planets. Its chaoticity has been verified
in several studies (e.g. ????). The e-folding time for the exponential
divergence has been determined to be on the order of the orbital period
of Halley or less (< 76 years). One of the aims of this study is to
understand the origin of this short time scale. To this end, in Sec. 6.3
we define a map similar to those in ? and ?, which uses kick-functions
to model the perturbations due to the planets on Halley. Using this
map we investigate the onset of exponential growth of perturbations.
In Sec. 6.4 we measure the rate of divergence between neighbouring
solutions using precise N-body integrations of the orbit of Halley in
the solar system. We compare the data to our semi-analytical model
to gain a better understanding of the origin of chaos, the cause of its
short e-folding time scale, i.e. the Liapounov time, and the physical
mechanism responsible for transitions in the rate of divergence.
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Figure 6.1: Growth of displacement between neighbouring solutions during two
scattering events. The diagram, which is intended to be schematic, was plotted
using eqs.(6.1), (6.3) and (6.4) for δ0 = 10−6, a constant period P = 76 years,
f = 1/P and encounter times t1 = 5000 and t2 = 7500 years.

6.2 EVENT-DRIVEN CHAOS

Consider Kepler motion with initial semi-major axis a0, total mass m
and initial frequency f0 =

√
m/a3

0 (gravitational constant G = 1).
Let a neighbouring solution be separated by a small displacement δ0

initially. (For simplicity we also suppose that the difference in velocity
is small.) This displacement has components along and transverse to
the orbit, and we assume that they are both of equal magnitude. The
cross-orbit component gives rise to a difference in semi-major axis of
the same order, i.e. ∆a0 ∼ δ0. The resulting difference in frequency is
∆f0 ∼ δ0

√
m/a5

0. By time t > 0 the displacement along the orbit will
have grown to an amount of order

δ (t) ∼ δ0 + a0∆f0t ∼ δ0 (1 + f0t) . (6.1)

This growth is linear in t, but the growth in δ from t0 to t leads to
no growth in ∆a, because the growth is along the direction of orbital
motion.
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Now suppose a short-lived significant perturbation acts on the mo-
tion at time t1, and that the velocity of the Kepler motion changes
direction significantly. The displacement δ1 at that time now does
have a significant component which is not along the new direction of
orbital motion. Thus the variation in semi-major axis is now

∆a1 ∼ δ1, (6.2)

and this leads to a difference in orbital frequency ∆f1 ∼ ∆a1f1/a1 at
time t1. Thus for t > t1, the displacement varies as

δ (t) ∼ δ1 + ∆a1f1 (t− t1) ∼ δ1 (1 + f1 (t− t1)) . (6.3)

This is again a linear growth, but with a different frequency and initial
perturbation. If a second strong perturbation occurs at time t2 > t1,
we can see from eqs.(6.1) and (6.3) that the displacement is

δ2 ∼ δ0 (1 + f0t1) (1 + f1 (t2 − t1)) , (6.4)

with a subsequent growth of similar form as Eq. 6.3. A schematic plot
of eqs.(6.1), (6.3) and (6.4) is given in Fig.6.1. The result qualitatively
resembles the numerical result of ?, Fig. 3. The main difference is that
their numerical result has a regular oscillation superposed on the trend
illustrated, because the motion in the numerical example is eccentric.

If the perturbations recur at roughly comparable intervals ∆t, and
if f does not change by a large factor, it can be seen that the displace-
ment at some large time t will be

δ (t) ∼ δ0 (1 + f∆t)t/∆t . (6.5)

In this way we see that the linear growth of Eq.(6.1) transforms into
exponential growth, and can easily estimate that the corresponding
Liapounov exponent is of order f if f∆t . 1. This means it is of
order the reciprocal of the crossing time. The case f∆t & 1 is also of
interest, and leads to a smaller estimate of order ln(f∆t) /∆t.

Up to a point we can think of a resonant three-body scattering event
as a prolonged sequence of perturbations of Kepler motion. As long as
the three bodies remain at comparable distances and are of comparable
mass the perturbations in any of the three two-body motions will be
of order 1 and will take place at intervals of order the crossing time.
Therefore, in accordance with the above discussion, the Liapounov
exponent will be of order 1/tcr, with tcr the crossing time.

Indeed the numerical examples of ? show that the separation of
neighbouring solutions grows roughly exponentially until dissolution of
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the resonance. The lifetime of the Pythagorean problem, for example,
is about 16 crossing times (Aarseth, 2003, p. 238), and the growth of
the separation of neighbouring solutions in this time is about 8.5 dex
(?). Thus the finite-time Liapounov exponent is of order 1/tcr.

If the evolution of the triple system is dominated by protracted
excursions of the third body, of order T � tcr, then the estimate will
decrease to one of order 1/T (in accordance with the result for the
case f∆t & 1, and neglecting a logarithm). Usually, the evolution is
a mix of prolonged excursions interspersed with periods of frequent
interplay (Szebehely, 1972), and the Liapounov exponent, λ, will be
intermediate between limits 1/T . λ . 1/tcr, where T is the duration
of the longest excursion.

The model we have used neglects the fact that there are, even in the
two-dimensional problem we have discussed, four components of the
deviation to take into consideration, i.e. two in configuration space
and two in velocity space. But the only one of these which can grow
secularly (between perturbations) is the component of δ along the or-
bit, and its growth is accounted for approximately in our model.

The result of the model (that the Liapounov exponent λ is of order
1/tcr for comparable masses) is consistent with the results in ?, who
considered the general N-body problem. This is rather independent
confirmation, as their model was based on assuming that the devi-
ation between neighbouring solutions grows as a result of two-body
encounters.

6.2.1 Generalization

The secular growth of a perturbation in a two-body system is pro-
portional to the difference in orbital frequency, ∆f , between the two
neighbouring solutions. Due to events such as close encounters (or
other events such as moments of significant mass loss (?)), the differ-
ence in orbital frequency will generally be a function of time, ∆f (t).
Every time ∆f changes, the subsequent growth of the perturbation is
linear, proportional to the new value of ∆f . In general we can write

δ (t) ∼ δ0 +

∫ t

0
∆f (T ) dT. (6.6)

If ∆f (t) is a constant, ∆f , we obtain Eq. (6.1) for linear growth of
the perturbation. Other types of behaviour are also possible. For ex-
ample, if ∆f keeps flipping sign, e.g. ∆f (t) ∼ sin (t), the integral will
be zero on average and we obtain no secular growth of perturbations.
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Exponential growth of perturbations is obtained if ∆f (t) grows expo-
nentially. As described in Sec. 6.2, this can be obtained if there is
a regular sequence of close encounters, e.g. changes in ∆f . We can
estimate a finite-time Liapounov exponent by equating Eq. (6.6) to
an exponential with Liapounov exponent λ, resulting in

λ (t) =
1

t
ln

(
1 +

C

δ0

∫ t

0
∆f (T ) dT

)
. (6.7)

Here C is a constant depending on the configuration and this approx-
imate expression will approach the Liapounov exponent at large t.

6.3 THE ONSET OF EXPONENTIAL DIVERGENCE

In the previous section we have shown that an event, such as a close
encounter with a third body, can cause the rate of divergence between
two neighbouring solutions to increase. The growth of an initially small
perturbation is thus related to the encounter history of the binary with
a third body. In this section we measure the growth of perturbations
using a map similar to those of ? and ?, with a kick function to model
the effect of encounters. The model is particularly adapted to a case
like that of Comet Halley, in which the masses of the perturbers are
small, unlike the case of comparable masses considered in Sec.2.

6.3.1 Map for Changes in Orbital Frequency

We are interested in the time evolution of the difference in orbital fre-
quency, ∆f , since this quantity drives the growth of perturbations.
We consider a system similar to the three-body system consisting of
the sun, Jupiter and Comet Halley. Each orbital period Halley will
encounter Jupiter at a certain distance, R, depending on the orbital
phase of Jupiter, φ. We define the kick function K(φ) to be the 2π-
periodic function that gives the change in orbital frequency δf as a
function of φ. Depending on the geometry of the configuration, differ-
ent kick functions are possible. A sawtooth-like function is appropriate
for the configuration under discussion (??).

The map is given by

φn+1 = φn + 2π

(
fJ
fn

)
(6.8)

fn+1 = fn +K(φn+1), (6.9)
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Figure 6.2: Illustration of the three types of behaviour for the growth of per-
turbations. The time evolution of the difference in orbital frequency ∆f between
two neighbouring solutions (left column) and the consequent growth or perturba-
tion (right column), are presented for three different encounter strengths µ = 10−8,
10−5 and 10−2. In the left column, the data is represented by a thin line if ∆f > 0
and fat otherwise.
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where φn is the phase (i.e. longitude) of Jupiter at the nth perihelion
passage, fn is the frequency of Halley after the nth perihelion pas-
sage, and fJ is the (constant) frequency of Jupiter. The times can be
obtained recursively from

tn+1 = tn +
1

fn
. (6.10)

Time is measured in years, f in yr−1 and semi-major axis, when we
need it, in AU. The orbital periods of Halley and Jupiter are given by
Ph ' 75.3 yr and PJ ' 11.9 yr respectively, and we use these values
to compute the exact starting value f0 = 1/Ph, and the value of fJ .
Note that they are approximately in a 3:19 resonance.

To study the separation of neighbouring solutions we construct the
tangent map, i.e. the linearisation of the above map, given by

∆φn+1 = ∆φn − 2π
fJ
f2
n

∆fn (6.11)

∆fn+1 = ∆fn + ∆φn+1K
′(φn+1). (6.12)

We see from eqs.(6.11), (6.12) that the change in ∆φ is a negative
multiple of ∆f , whereas if K ′ > 0 the change in ∆f is a positive
multiple of ∆φ. This interplay causes interesting behaviour as we will
illustrate in Sec.6.3.2 below.

When the right side of Eq.(6.12) is expressed in terms of ∆φn and
∆fn, it takes the form

∆fn+1 = ∆fn +

(
∆φn − 2π

fJ
f2
n

∆fn

)
K ′(φn+1). (6.13)

Combining with Eq.(6.11), we see that the matrix of the linearised
map is given by

A =

 1 −2π
fJ
f2
n

K ′(φn+1) 1− 2π
fJ
f2
n

K ′(φn+1)

 . (6.14)

This matrix has determinant one, showing that our map is symplectic
(i.e. area-preserving). Thus although the variables f, φ are not canon-
ical in the usual sense (energy and phase would be better), the map
preserves the main geometrical constraint of a canonical mapping. The
eigenvalues of A, which will be useful below, are

λ = 1− πfJ
f2
n

K ′ ±

√
π
fJ
f2
n

K ′
(
π
fJ
f2
n

K ′ − 2

)
, (6.15)
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Figure 6.3: The time until the first change of sign, τflip, as a function of the
strength of the perturbation, µ. The top dotted line marks the 10 kyr time of inter-
est, whereas the bottom dotted line marks the orbital period of Halley. Exponential
divergence occurs when τflip is smaller than the orbital period.

where K ′ = K ′(φn+1).
For numerical purposes we sometimes measure the difference be-

tween two solutions by a formula adapted from Eq.(6.6), whose right
side can be computed from

δn+1 = δn + C∆fn
1

fn
. (6.16)

Another technicality of these numerical calculations is that φn and
∆φn are stored mod 2π.

6.3.2 Linear Kick Function

We first consider the idealised case in which the kick function is the
2π-periodic function defined by the relation

K (φ) =
µ

2π
φ on [0, 2π) (6.17)
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with µ a free parameter. Note that the derivative of the kick function is
a constant (except at the discontinuity when φ is an integral multiple
of 2π). In this model every kick has the same contribution to the
growth of perturbation in the orbital frequency. This is approximately
the case when there is a regular sequence of similar encounters, i.e. φn
is almost independent of n, mod 2π.

We start with the initial values t = 0, φ = 0, ∆φ = 0 and ∆f =
10−9 (which corresponds to a ∆a ' 10−6). We vary the value of
µ = 10−8, 10−5 and 10−2 to model encounters of different strengths. In
Fig. 6.2 we plot the time evolution of ∆f (top row) and the consequent
growth of perturbation (bottom row) through Eqs. (6.8)–(6.16).

For the weakest perturbations no variation in ∆f is detectable on
the scale of the plot, thus we get a linear growth of the perturbation.
The data points which are also plotted in this panel (bottom left) are
data from a numerical simulation where we integrated the orbit of
Halley around the sun without perturbers. A good fit is obtained for
a proportionality constant C = 20 (see Eq. 6.7). Although this value
has no particular significance, it gives an impression of how the simple
model we are considering may apply to Halley, and we use it in the
remainder of this study.

If we make the perturbations somewhat stronger (Fig. 6.2 central
panels) we observe an oscillatory behaviour such that the perturbation
in ∆f never exceeds its initial value but alternates in sign. To under-
stand this oscillatory behaviour better, we compute the eigenvalues of
the matrix A. From eqs.(6.15) and (6.17) we readily find that

λ = 1− µfJ
2f2
n

±

√
µfJ
2f2
n

(
µfJ
2f2
n

− 2

)
(6.18)

' 1± i

√
µfJ
f2
n

(6.19)

when |µ| � 1. This shows that the evolution is expected to be os-
cillatory (if µ > 0), and the period (in years) is given approximately
by

P =
2π√
µfJ

, (6.20)

which gives a value of 6854 yr for µ = 1 × 10−5, i.e. very consistent
with what would be inferred from Fig.6.2 (middle column).

For the strongest perturbation (Fig. 6.2 right panels) we observe ex-
ponential growth of perturbations. This growth saturates at log10 δ ∼
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0 since the growth is limited by ∆φ < 2π. In other words, the pertur-
bation has grown to the size of the system. We observe again the sign
flipping of ∆f , however this time it occurs after every orbital period.
The exponential growth is explained again by Eq.(6.18), which shows
that the eigenvalues λ are real if

µ >
4f2
n

fJ
=

4PJ
P 2
h

' 0.0084. (6.21)

Also, their product is unity, and so one eigenvalue has magnitude
|λ| > 1, resulting in exponential growth.

To understand the relation between the period of the oscillatory
behaviour and the secular growth of perturbations in more detail, we
plot in Fig. 6.3 the time to the first change of sign. (Note that this will
be 0.25P , in the notation of Eq.(6.21), as it is evident from Fig.6.2,
central column, that the oscillation starts at maximum.) First, we ob-
serve that towards increasing values of µ, the flip time scale decreases
as τflip ∼ µ−1/2, as predicted in Eq.(6.20). To the left of the verti-
cal, dashed line at log10 µ ∼ −6.5, the period is longer than 10 kyr,
so that on such a time scale we observe a constant ∆f and a linear
growth of perturbation. In between the two vertical dashed lines we
observe oscillatory behaviour with decreasing period. A transition in
the behaviour occurs once the period is of the order the orbital period
of Halley (marked by vertical dashed line at log10 µ ' −2.4). The
critical value of µ ' 0.004 and for larger values we obtain exponential
growth of perturbations. The theoretical prediction that exponential
growth occurs for µ >∼ 0.0084, i.e. log10 µ >∼ −2.08, is consistent with
the numerical data plotted in Figs. 6.2 and 6.3.

6.3.3 Saw-tooth Kick Function

In a more realistic kick function there will be both weak and strong
encounters present. We use the following derivative of the kick function

dK (φ)

dφ
=
µmax
2π

, φ < φc, (6.22)

dK (φ)

dφ
=
µmin
2π

, φ ≥ φc. (6.23)

To investigate transitions in the rate of divergence we take our map
from Sec. 6.3.1, and vary the free parameters in the kick function
(µmax, µmin) as follows: (10−2. 10−5), (10−2. 10−8) and (10−5. 10−8).
These pairs of values correspond to the different regimes of behaviour



6.3. EXPONENTIAL DIVERGENCE 103

Figure 6.4: Transitions in the rate of divergence as a consequence of the close en-
counter history between Halley and Jupiter. The close encounter times are marked
by the vertical dotted lines. The panels illustrate different types of transitions:
oscillatory to exponential (top), linear to exponential (middle) and linear to oscil-
latory (bottom).
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(see Fig. 6.3). We create a small window for the strong perturbations
to occur by setting φc ∼ 0.3, which corresponds to a periodic sequence
of roughly two or three strong encounters1. We illustrate the results
belonging to the encounter history given by φ0 = 0 in Fig. 6.4. The
close encounter events are marked by the vertical, dotted lines.

In the left panel, the growth of the perturbation starts out oscilla-
tory (µ = 10−5). After about 4 kyr there is a sequence of three close
encounters causing the characteristic accumulation of power laws or
“hops” in the divergence as explained in Sec. 6.2. Once these encoun-
ters are over however, the growth becomes oscillatory again.

In the central panel of Fig. 6.4 we observe a similar behaviour,
but instead of the oscillatory behaviour we have a linear growth since
µ = 10−8 in those intervals. It is clear from these examples that these
transitions are caused by a sequence of close encounters. Finally, in
the right panel we observe a transition from power law to oscillatory
divergence which effectively produces no secular growth.

6.3.4 Liapounov Time

A characteristic time scale for divergence is somewhat difficult to de-
termine for a solution showing transitional behaviour. Once a solution
does diverge exponentially it does so with a rate that depends on the
strength of the perturbation and the density of close encounters.

To estimate a lower limit for the Liapounov time, we set the orbital
period of Halley to Ph = 76 yr and that of Jupiter to PJ = 12 yr,
so that they are exactly in a 3:19 resonance. Therefore, if Halley
once experiences a close encounter with Jupiter, it does so every three
orbital periods. We use the saw-tooth kick function with µmin = 10−8

(linear growth) and we vary µmax in the exponential regime to measure
the Liapounov time as a function of the strength of the perturbation.
We measure ∆f (t) using the map from Sec. 6.3.1 and calculate the
approximate Liapounov time using Eq. 6.7, evaluated at the moment
when the perturbation δ = 1. We show the result in Fig. 6.5.

The variation in the Liapounov time decreases as µ increases through
the critical value corresponding to log10 µ ' −2.08, i.e. the transition
from periodic behaviour to exponential growth (dashed, green line).
From values exceeding a thousand years it quickly drops to a value
of the order the orbital period of Halley (blue, horizontal line). Very

1There is a small drift in the orbital phase because Halley and Jupiter are
not exactly in a 3:19 resonance. In fact 3Ph − 19Pj = 0.2yr if Ph = 75.3yr and
Pj = 11.9yr. It is then easy to see that these sequences of close encounters recur
at intervals of about 4.5kyr.
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Figure 6.5: Estimated Liapounov time as a function of encounter strength, for a
configuration where Jupiter and Halley are in a 3:19 mean motion resonance. The
horizontal dotted line gives the orbital period of Halley, and the vertical dashed
line marks the critical value of µ as derived in Eq. 6.21.
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strong perturbations decrease the Liapounov time to values as low as
30−40 yr. What intuitively seemed like a very short time scale for the
exponential growth, actually follows naturally from the recurrence of
close encounters in time and the strength of each perturbation. The
saturation at low values of µ is due to the finite integration time,
whereas the small scatter along the curve is due to errors in calculat-
ing the Liapounov time from Eq. 6.7 and the slight variation in the
final value of δ < 1.

It must be stressed that these estimates of the Liapounov time are
based on the artificial imposition of a resonance ensuring that close
encounters recur at every third perihelion passage, i.e. every 228yr.
Their frequent recurrence will also ensure that f changes, throwing the
system out of resonance and increasing the Liapounov time. For exam-
ple, in the situation shown in Fig.6.4, corresponding to the present-day
periods, close encounters recur on average once every 1.5kyr. Further-
more we have focused on the case in which µ > 0. In case µ < 0 we
can see from Eq.(6.18) that the eigenvalues of A are always real, giving
exponential growth. When −1 � µ < 0, the Liapounov time can be
estimated from

TLiapounov '
1√
−µfj

. (6.24)

In reality, the kick function K(φ) is approximately a saw-tooth func-
tion, as we have been assuming, but there is a significant difference.
Since it is a periodic function, its derivative cannot always be pos-
itive. Indeed, as shown by ?2 K(φ) (the kick due to Jupiter) is an
increasing function of φ, except for a small range of φ in which K ′ < 0.
Thus K resembles the function considered in this section, except that
µmax < 0. (The “max” may be taken to refer to the magnitude of
µ.) It therefore seems likely that most encounters are of what we
have called the oscillatory type, while there is a minority in which the
behaviour is of exponential type.

6.4 N-BODY SIMULATIONS OF HALLEY’S ORBIT

In this section we describe several experiments in which we perform a
series of N-body simulations to measure the growth of an initial per-
turbation in Halley’s orbit. We model the dynamical evolution of the
solar system according to Newtonian dynamics, in which the bodies

2Their kick function F is defined as the change in twice the binding energy of
Halley, and the binding energy is an increasing function of f . Therefore F and K
have the same sign for a given phase.
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are mathematical point-particles. Non-gravitational effects, such as
radiation pressure from the sun, Halley’s mass loss due to the inter-
action with the stellar wind or internal processes, are neglected. This
makes our results less realistic, but for our study on the origin of chaos
in Halley’s orbit, the gravitational interaction with the sun and plan-
ets is sufficient. Relativistic effects, especially the orbital precession of
Mercury, will also be neglected. Its influence might become important
were it to be shown that Mercury affects the chaoticity of Halley in
the Newtonian limit.

We use the N-body code Brutus (?), that solves the N-body problem
to a pre-defined precision. To make sure that numerical errors do not
bias our results, we vary the precision until convergence as described
in ?.

The dominant force in Halley’s motion is the sun. Small perturba-
tions are superposed due to the interactions with the planets. solar
system bodies smaller than the planets are unlikely to be the cause of
chaos in Halley’s orbit. We therefore only consider the sun, the eight
planets and Halley in our N-body simulations. We obtain the initial
conditions from the JPL Horizons database 3.

The orbital elements of Halley are known to about six decimal places
(?). Two initial realizations which differ within the observational un-
certainty are both equally valid representations of the system. When
we measure the growth of perturbations, we will use the fiducial initial
realization and compare it to a perturbed initial realization in which
a single coordinate (usually the x-coordinate of Halley) is perturbed
by 10−6 AU (similar as in ?).

6.4.1 Phase Space Distance

A wide variety of methods are available to measure the rate of diver-
gence for a particular orbit (e.g. variational equations (?) or finite-
time Liapounov exponent (e.g. ?). We adopt a simple, direct approach.
We take a fiducial initial condition for a certain system of bodies. This
initial condition is integrated with a pre-determined precision until the
end time. We also take the perturbed initial condition, where we trans-
late the position of Halley along the x-direction by the observational
uncertainty 10−6 AU. This new initial realization is also integrated
with the same precision, until the end time. The phase space distance
as a function of time between these two solutions is calculated similar
as in ?

3http://ssd.jpl.nasa.gov/, JDCT = 2456934.5 = A.D. 2014-Oct-04 00:00:00.0000
(CT)
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Figure 6.6: Divergence between neighbouring solutions in the N = 3 sun, planet
and Halley system. We show a subset of solutions to illustrate the different be-
haviour when we vary the initial orbital phase of the planet around the sun. As
a consequence, every solution has a different encounter history with that planet.
Mercury, Uranus and Neptune do not influence Halley’s chaoticity significantly.
The other planets are able to cause exponential growth, most notably Jupiter and
Venus.
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δ2
A,B =

N∑
i=1

6∑
j=1

(qA,i,j − qB,i,j)2 . (6.25)

Here q denotes the phase space coordinate for solutions A and B. The
sums are over all particles and their phase space coordinates.

If two solutions with the same initial realization are compared, but
they were obtained with different precisions, numerical divergence
might distort the physical rate of divergence. Therefore, we always
compare solutions integrated with the same precision, but with a small,
physical perturbation in the initial conditions.

6.4.2 Three-body Divergence: sun, planet and Halley

We already showed some results of our simulations in Fig. 6.2 (bottom
left panel), where we integrated a two-body system consisting of the
sun and Halley. This result confirms the linear growth of perturbations
in two-body systems.

We now introduce a perturbing planet to the system. For each
planet we generate an ensemble of a thousand initial conditions, where
we vary the initial orbital phase of that planet. In every subsequent
integration, Halley will experience a different encounter history with
the planet, which should produce different rates of divergence as was
already illustrated in Sec. 6.3. We show a subset of illustrative cases
in Fig. 6.6.

We first observe the results by Jupiter. The rates of divergence vary
widely. There are solutions which stay almost constant within a time
span of 104 years (yellow curve). In the other extreme are solutions
that grow exponentially and have completely diverged within a few
thousand years (blue, green and red curves). In between, there are
solutions with different kind of transitions in the divergence. After an
initial flat phase of a certain duration, a transition to an exponential
growth is possible (red and purple curves), but it is also possible for
this exponential growth to convert into a power law divergence (cyan
curve).

The influence of Saturn on Halley’s stability is less strong, but some
solutions still grow exponentially for a few thousand years, after which
they make a transition to a power law divergence. The magnitude of
the perturbation never really becomes the size of the system. The
slope in the exponential part of the blue curve is also shallower than
the slope in Jupiter’s results. The remaining outer planets show a
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power law growth and thus have a negligible contribution to Halley’s
chaoticity.

The influence of the terrestrial planets varies. Mercury shows reg-
ular behaviour irrespective of its encounter history with Halley. It is
therefore likely that relativistic effects are unimportant for the chaotic-
ity of Halley’s orbit. Venus on the other hand shows a variety of solu-
tions similar to Jupiter. The most rapid growing solution looks similar
to the one of Jupiter. The majority of Earth and Mars solutions show a
power law divergence superposed with periodic variations. Note how-
ever, that they are able to generate a rapid rate of divergence in some
situations.

6.4.3 Hopping Between Planets

In this experiment we do not randomize the initial orbital phase, but
we take the fiducial initial conditions so that we can measure the actual
encounter histories of the planets with Halley. We consider the 3-
body systems including the sun, a planet and Halley, to measure the
independent rates of divergence. Based on the results of Sec. 6.4.2,
we neglect Mercury, Uranus and Neptune. We compare these results
with a simulation including all the relevant planets collectively. The
results are given in Fig. 6.7. We averaged the data over bins of two
orbital periods to reduce the short term oscillatory behaviour.

We observe that only Venus (green curve) and Jupiter (yellow curve)
produce an exponential divergence. Initially the perturbation due to
Venus dominates, but it is overtaken by Jupiter after about 3000 years.
The solution including multiple planets (black curve), follows this tran-
sition, first following the perturbations due to Venus and then hopping
onto the perturbations by Jupiter. Other effects are present since the
black curve does not lie perfectly on top of the green and yellow curves.
The superposition of independent growth rates is however a reasonable
approximation in this example.

From the time evolution of the perturbation in the complete system
(black curve) we calculate the average Liapounov time up to the point
where δ = 1 resulting in 299 yr ± 62 yr, where the uncertainty is the
standard deviation in the variation of the Liapounov time from t = 0
onwards.

To investigate the dependency on the direction of the perturbation,
we varied the initial perturbation in Halley’s orbit to lie along the x, y
or z-direction. We find that in each case Venus is dominant for at least
3000 yr. For the y-direction, Venus remains dominant up to 4000 yr.
The rate of divergence due to Venus depends sensitively on Halley’s
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Figure 6.7: Growth of perturbations in time for the different planets indepen-
dently and with the planets collectively (fat curve). Up to 3000 years, Venus is
the dominant perturber of Halley’s orbit. Then a transition occurs and Jupiter
becomes the main perturber. The transition in the rate of divergence for the solu-
tion including all planets is explained by the superposition of independent rates of
divergence of the planets.

orbit. We also performed a similar experiment where we integrated
backwards in time. We find that both Venus and Jupiter show an
exponential divergence, reaching log10 δ = 1 after 3− 4000 yr.

6.4.4 Ensemble Simulations

In the previous section we varied the perturbation in Halley’s orbit
along three different directions in space. In this experiment we want
to vary the perturbation in all directions in space. Instead of com-
paring a fiducial and a perturbed solution, we take an ensemble of
a hundred Halley-like objects, which are distributed around the fidu-
cial initial position, in a three-dimensional Gaussian distribution with
a dispersion of 10−6 AU. This eliminates any chance effects of pre-
ferred spatial directions. We only consider the perturbations due to
the sun and Jupiter. Starting points are the current positions of the
sun, Jupiter and Halley. The simulations are done with the Huayno
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integrator (?). To study the influence of the strength of the pertur-
bations, we vary the mass of Jupiter by multiplying it by a factor
ranging from zero to five. We measure the spread in the positions of
the Halley-like objects, i.e. the standard deviation in the position of
the ensemble, as a function of time.

We observe in Fig. 6.8 that if the planet has zero mass, we get
a linear growth in the dispersion of the positions of the swarm, as
expected from the imposed distribution in orbital periods. For small
Jupiter masses, i.e. a mass smaller than the actual Jupiter mass, we get
a sub-linear growth with an oscillatory behaviour, which we now can
understand from our previous analysis to be due to the weak encounter
nature of the interactions. Comparing the cases of 0.2 × Mjup and
0.5 ×Mjup we see that the mass of Jupiter is of little influence, until
there is a strong perturbation, which happens after 9000 yr for half
of Jupiter’s mass (red curve). The increase in mass versus 0.2×Mjup

remarkably does not increase the growth at all by weak perturbations
before that time, it is just increasing the probability of eventually
encountering a strong interaction. For heavier Jupiters (i.e. 1×Mjup

and heavier), we obtain a rather fast exponential divergence due to
prompt strong interactions.

Note that the experiment conducted here considers the evolution
of an ensemble of Halley-like objects, but the results equally apply
to a swarm of objects (e.g. the result of an asteroid collision or dust
emitted from a cometary nucleus). This means that in configurations
where the orbit does not encounter strong interactions, but is affected
by weak perturbations such a swarm will survive as a coherent group
longer than might be expected from the linear spreading with time.

6.5 DISCUSSION AND CONCLUSIONS

6.5.1 The Liapounov Time

Previous studies have considered the value of the Liapounov time for
the growth of perturbations in Halley’s orbit. ? gave an estimate of
a lower bound of 34 yr for the Liapounov time, and our estimate is
consistent with this. Our estimate is, however, inconsistent with the
results of ?, who found a value around 70 yr. This was based on an
initial perturbation in the y-coordinate of Halley, but they also gave re-
sults for an initial perturbation in the x-coordinate (their Fig.7) which
would give a Liapounov time only slightly longer. We note, however,
that their plot of the growth of the deviation between two orbits (their
Fig.6) indicates growth in δ (their measure of the separation of two
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Figure 6.8: Growth of the spread in position of an ensemble of Halley-like objects.
We vary the mass of Jupiter by multiplying it by a fraction given in the legend. We
reproduce the linear, sub-linear and exponential growth, depending on the strength
of the perturbation.
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orbits) by about 5 dex in 3.5 kyr, implying a Liapounov time of order
300 years, very similar to ours. Our value for the growth in the sepa-
ration of two orbits in 3.5 kyr is similar to theirs (see Fig.6.7), and so
we suspect an error in their computation of the Liapounov time from
correct data.

The Liapounov time of Halley’s Comet is determined principally by
perturbations due to Venus and Jupiter (Fig.6.6). The influence of
Earth, Mars and Saturn is smaller during the next few millennia, and
that of Mercury, Uranus and Neptune is negligible. The comparable
importance of Jupiter and Venus could not have been guessed from
their relative masses. The surprising fact that the mass of a planet
does not directly measure its influence on the Liapounov time is il-
lustrated in the very interesting calculations of the kick function (as
a function of phase φ) by ?, their Fig.2. That due to Venus has a
maximum value about one hundredth of the maximum kick due to
Jupiter, which is roughly in proportion to their mass, even though
these two planets contribute roughly equally to the Liapounov expo-
nent for Halley. The reason for this is the contribution also depends
on the distance of closest approach. This is made apparent by the fact
that the divergence caused by these two planets depends strongly on
the initial phase (Fig.6.6 again). Indeed ? draw attention to a forth-
coming relatively close encounter with Jupiter after about 3.4 kyr,
and its influence is visible in Fig.6.7. We drew attention to the impor-
tance of a near-resonance in the motions of Halley and Jupiter, and its
importance for the growth of divergence between neighbouring orbits
(Fig.6.4), and for different planets such configurations will occur at
different periods, as the orbits of the system evolve. The importance
of Venus to Halley’s chaoticity can be explained by noting that Halley
crosses the orbital plane of the solar system close to the orbit of Venus.

Much of our focus in Sec.6.3 was on the parameter µ, which measures
the derivative of our kick function K(φ). This also can be estimated
from the results of ?, bearing in mind that their kick function F (x)
is the change (per perihelion passage) in twice the binding energy of
Halley, as a function of x = φ/(2π). For Venus the largest value of
|F ′| occurs over a range of x of order 0.1 in which F decreases between
values of about ±0.5× 10−4. Thus we estimate F ′ ' −10−3, and infer
that K ′ ' −10−5, though care has to be taken with the different units
used in the two studies. This results in µ ' −6 × 10−5 and so, using
Eq.(6.24), we estimate that the corresponding Liapounov time is of
order 400 yr. This is of the correct order to account for the most rapid
growth in Fig.6.6 (second panel), but it would only occur for phase
values within a fairly narrow range. For Jupiter, similar estimates give
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a Liapounov time an order of magnitude smaller, again over a similar,
limited range of phases. For Venus there is actually another larger
range of phase with K ′ < 0, but |K ′| is smaller than the estimate we
have given, and the Liapounov time correspondingly longer. For both
planets the magnitude of K ′ is smaller than these upper limits, and
so when K ′ > 0 Halley remains in the regime of oscillatory “growth”
(Sec.6.3). When the phases are such that this occurs, it is interesting
to note that these perturbations make Halley more stable compared
to having no perturbations at all.

Even neglecting the other planets, Venus and Jupiter clearly both
contribute strongly to the growth of the divergence between neighbour-
ing orbits. Fig.6.7 illustrates that a sort of superposition principle is
approximately valid. It can be seen that the yellow curve for Jupiter
alone does not rise quickly immediately, but only after about 2 kyr.
The green curve due to Venus gives the opposite behaviour, from a
transition from rapid growth to one of slower growth. Meanwhile the
black curve (for the entire planetary system) exhibits a transition from
the green onto the yellow curve, much as if the two latter effects were
superposed. The rate of divergence of the collective system will closely
follow that of the most rapidly diverging individual perturbation.

Many factors have been ignored in our work. As shown by ?, Fig.
5, the kick functions are not constant in time. Small variations in
the orbital elements alter the maximum value of the derivative of the
kick function. The Liapounov time changes in time. In this work the
changes in ∆f were assumed to be mainly caused by close encounters
with a planet. Our model is however more general and other events
could cause a change in the orbital frequency as well. For example,
Halley lost a significant amount of mass during an event in 1991 (?),
the origin of which is unknown. Even though the mass loss will be the
same in both neighbouring solutions, the difference in orbital elements
will cause the effect of the mass loss event to be slightly different.

6.5.2 Conclusions

The orbit of Comet Halley is chaotic (????) with a Liapounov time
which we find to be 299±62 yr (measured over approximately the next
4 kyr). The aim of this study is to understand the origin of chaos in
Halley’s orbit and its relatively short Liapounov time.

We present a model to explain the origin of chaos in few-body sys-
tems with comparable masses. We start by considering a two-body
system. As is well known, in this system the difference between two
solutions grows linearly, proportional to the difference in orbital fre-
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quency, ∆f , between the two solutions. When more than two bodies
are present, a sequence of events (e.g. close encounters with a third
body) changes ∆f . A sequence of strong encounters produces an ac-
cumulation of power laws which resembles exponential growth.

Next we develop a model better adapted to the case of Comet Halley,
where the perturbations are almost always weak, because the masses of
the planets are small and very close encounters are rare. This model
uses a map to describe the evolution of ∆f in Halley’s orbit. For
very weak perturbations, ∆f remains roughly constant, which results
in a linear growth of perturbation or weak exponential divergence,
depending on the sign of the perturbation. For somewhat stronger en-
counters the perturbation shows either oscillatory behaviour without
secular growth (thus making Halley’s orbit more stable in a sense),
or exponential growth, again depending on the sign of the perturba-
tion. Above a certain threshold in the size of the perturbation, we
demonstrate that a sequence of close encounters is able to produce
exponential growth, irrespective of the sign of the perturbation, with
a Liapounov time of order the orbital period of Halley.

To calculate the growth of perturbations in Halley’s orbit more ac-
curately, we perform numerical N-body integrations. We find the sur-
prising result that Venus is the dominant cause of chaos in Halley’s
orbit (see Fig. 6.7).


