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The Quasi-ergodic Property
of Gravity also known as

”Nagh-Hoch”

Based on: On the Minimal Accuracy Required for Simulating Self-gravitating

Systems by Means of Direct N-body Methods by S. F. Portegies Zwart and

T. C. N. Boekholt in The Astrophysical Journal Letters, Volume 785, Issue 1,

article id. L3, 4 pp. (2014)

The conservation of energy, linear momentum, and angular momen-
tum are important drivers of our physical understanding of the evolu-
tion of the universe. These quantities are also conserved in Newton’s
laws of motion under gravity. Numerical integration of the associ-
ated equations of motion is extremely challenging, in particular due to
the steady growth of numerical errors (by round-off and discrete time-
stepping and the exponential divergence between two nearby solutions.
As a result, numerical solutions to the general N-body problem are in-
trinsically questionable. Using brute force integrations to arbitrary
numerical precision we demonstrate empirically that ensembles of dif-
ferent realizations of resonant three-body interactions produce statis-
tically indistinguishable results. Although individual solutions using
common integration methods are notoriously unreliable, we conjecture
that an ensemble of approximate three-body solutions accurately rep-
resents an ensemble of true solutions, so long as the energy during
integration is conserved to better than 1/10. We therefore provide an
independent confirmation that previous work on self-gravitating sys-
tems can actually be trusted, irrespective of the intrinsically chaotic
nature of the N-body problem.

5.1 INTRODUCTION

Newton’s law of gravitation is one of the fundamental laws in the
universe that holds everything together. Although formulated in the
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17th century, scientists today still study the consequences, in partic-
ular those of many-body systems, like the solar system, star clusters,
and the Milky Way. General analytic solutions to the N-body problem
only exist for configurations with one mass, commonly referred to as
N = 1 solutions, and for two masses (equivalently named N = 2; Ke-
pler (1609); Newton (1687)). Problems for N →∞ can be reduced via
Liouville’s theorem for Hamiltonian systems to the collisionless Boltz-
mann equation (??, but see also ?), and therefore analytic solutions
for the global distribution function exist.

Solutions for N in between these two limits are generally realized by
computer simulations. These so-called N-body simulations have a ma-
jor shortcoming in that the solution to any initial realization can only
be approximated. The main limiting factors in numerically obtain-
ing a true solution include errors due to round-off and approximations
both in the integration and in the time-step strategy (????). These
generally small errors are magnified by the exponentially sensitive de-
pendence on the 6N-dimensional phase-space coordinates, position and
velocity (??). As a consequence, the solution for a numerically in-
tegrated self-gravitating system of N masses diverges from the true
solution (??). This error can be controlled to some degree by se-
lecting a phase-space volume-preserving or a symplectic algorithm (?)
and by reducing the integration time step (??). The latter however,
cannot be reduced indefinitely due to the accumulation of numerical
round-off in the mantissa, which is generally limited to 53 bits (64 bits
in total, but 11 bits are reserved for the exponent, resulting in only
about 15 significant digits). The exponential divergence subsequently
causes this small error to propagate to the entire system on a dynam-
ical time-scale (?), which is the time-scale for a particle to cross the
system once. The result of these errors, together with the exponential
divergence, is the loss of predicting power for a numerical solution to
a self-gravitating system with N > 2 after a dynamical time-scale.
One can subsequently question the predicting qualities of N-body sim-
ulations for self-gravitating systems, and thereby their usefulness as a
scientific instrument.

We address this question for N = 3 using brute-force numerical in-
tegration to arbitrary precision. The choice of N = 3 is motivated by
the realization that this represents the first fundamental irregular con-
figuration with the smallest possible number of objects that cannot be
solved analytically and cannot be addressed with collisionless theory.
In addition, three-body encounters form a fundamental and frequently
occurring topology in any large N-body simulation, and therefore also
drive the global dynamics of these larger systems.
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5.2 VALIDATION OF THE UNRESTRICTED
PRECISION INTEGRATION

The divergence between two different, approximate solutions to the
N-body problem can be quantified by the phase-space distance in the
positions r and velocities v of the N particles (in dimensionless N-body
units):

δ2 =
1

6N

N∑
i=1

[
(rA − rB)2 + (vA − vB)2

]
. (5.1)

Values of δ are obtained by comparing the configurations from solution
A and solution B at any moment in time. Each star has a position and
velocity in solution A and (generally) a different position and velocity
in solution B. For each star we calculate its phase-space distance be-
tween the two solutions. By dividing by 6N , δ can be thought of as
the average difference per coordinate. The two different runs can be
performed either with the same code at a different precision, or with
two different codes, all having exactly the same initial realization. A
value of δ & 0.1 indicates that the results of the two simulations have
diverged beyond recognition. We consider a solution to be converged
to p decimal places when, for any time t > 0, δ < 10−p. (In stable hier-
archical few-body systems the value of δ can vary substantially across
the orbital phase (?), and one has to be assured that temporarily large
deviations can diminish again at a later instant.)

To investigate the build-up of numerical errors and the correspond-
ing exponential divergence, we developed an N-body solver for self-
gravitating systems which solves the N-body problem to arbitrary pre-
cision. This code, named Brutus (?), is composed of a Bulirsch–Stoer
integrator (?), which conserves energy to the level of the Bulirsch–Stoer
tolerance. This tolerance is a parameter that can be interpreted as
the discretisation error per integration step. The round-off error is
controlled by choosing the word length with which all floating point
numbers in the computer code are represented. By decreasing the Bu-
lirsch–Stoer tolerance and increasing the word length, we can obtain
solutions to the N-body problem to arbitrary precision.

We tested Brutus by adopting a three-body system of identical par-
ticles, which are located on the vertices of an equilateral triangle, with
initial velocities such that the orbits are on a circle around the center
of mass (Lagrange, 1772). Because this system is intrinsically unsta-
ble, small perturbations in the position and velocity vectors cause the
triangular configuration to dissolve quickly. The time at which this
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happens depends on precision. Using Brutus we can reach arbitrary
precision, but in this validation experiment we stopped reducing the
time step and increasing the word length once the energy was con-
served up to 75 decimal places, which is sufficient to demonstrate our
point. For any pre-determined time of stability there is a combination
of word length and Bulirsch–Stoer tolerance for which Brutus con-
verges. We define a solution to be converged when the first p decimal
places become independent of the size of the time step and the word
length. This is equivalent to saying that δ is always below 10−p; for
p = 3 (at least the first three digits have converged), then δ < 10−3 at
all times.

5.3 RESULTS

Having established the possibility of integrating a self-gravitating N-
body system to arbitrary precision we can study the reliability of N-
body simulations in general. We limit ourselves to the problem of
three bodies, generating a database of different three-body problems
and solving them until a converged solution is achieved. The positions
of the particles are taken randomly from a Plummer distribution (?)
and are either cold (zero kinetic energy) or virialised. In the cold case
we ensured that the mutual distances between the particles are ini-
tially comparable (within an order of magnitude). We performed runs
with identical masses and with the masses in a ratio of 1:2:4. For each
of the four selected ensembles of initial conditions we generated 104

random realizations. The masses and coordinates for these systems
are specified in standard double-precision to ensure that the double-
precision calculations use exactly the same initial realizations as the
arbitrary-precision calculations. Every initial condition is integrated
using the Leapfrog–Verlet (?, we adopted the implementation avail-
able from http://nbabel.org) and the fourth-order Hermite predictor-
corrector scheme in a code called ph4 (?). (Both codes, Brutus and
ph4, are assimilated in the public AMUSE framework which is avail-
able at http://amusecode.org; ?). The integration continues until the
system has been dissolved into a permanent binary and a single esca-
per (Heggie, 1975; Hut & Bahcall, 1983). Dissolution is declared upon
the first integral dynamical time upon which one particle is unbound,
outside a sphere of two initial virial radii around the barycentre, and
receding from the center of mass (Hut & Bahcall, 1983). A particle
is considered unbound if its kinetic energy in the center of mass refer-
ence frame exceeds the absolute value of its potential energy, which is
stricter than adopted in Hut & Bahcall (1983). For a fraction of the
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Figure 5.1: Individual comparison of the dissolution time of three-body systems.
Each point represents one unique initial realization of three equal-mass bodies taken
randomly from a Plummer distribution in virial equilibrium. The time to dissolu-
tion given by Hermite (using η = 2−5) is on the ordinate and the converged value
given by Brutus on the abscissa. About 50 percent of the data points lie on the di-
agonal which represents the cases for which Hermite and Brutus gave very similar
results. The scatter around the diagonal is symmetric. For very short dissolu-
tion times (< 10 dynamical times), there is insufficient time to grow errors and the
results are in agreement. Once the divergence becomes important the Hermite inte-
grator can return any value allowed in the experiment irrespective of the converged
dissolution time.
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Figure 5.2: Cumulative distribution for the difference in time until dissolution
for Hermite compared to converged Brutus solutions for three different values of
η = 2−2 (solid), η = 2−3 (dashes) and η = 2−9 (dotted curves). For each value of η,
there are two curves, one for the case when Hermite lasted longer and the other for
when Brutus lasted longer. Each of these pair of curves for η ≤ 2−3 is statistically
indistinguishable, and the mean difference is centred around the origin.

simulations (see Figure 5.3), the dissolution time turns out to be very
long as the evolution consists of a sequence of ejections where a particle
almost escapes, but then still returns to once again enter a three-body
resonance. We therefore put a constraint on the integration time and
use the fraction of long-lived systems as a measurable statistic. We ob-
tain ensembles of solutions using the Hermite and Leapfrog integrators
with a time-step parameter η = 2−1, 2−2, ..., 2−11. Here we adopted
the definition for η given by ?.

We subsequently recalculate each of these initial realizations with
Brutus using the same tolerance. In subsequent calculations we sys-
tematically reduce the time-step size and increase the word length
until we obtain a converged solution (as we discussed in Section 5.2
for p = 3) for every realization of the initial conditions. This con-
verged solution is then compared to the earlier simulations performed
with the Hermite and Leapfrog integrators.
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We now have three solutions for each initial realization of the three-
body problem, one of which is the converged solution. We compare
the three solutions for the time of dissolution, the semimajor axis
(or equivalently the reciprocal of the orbital energy) of the surviving
binary, its eccentricity (equivalent to the angular momentum), and the
escaper’s velocity and direction.

In Figure 5.1 we individually compare the time to dissolution for a
certain initial realization as given by the Hermite integrator and the
converged solution as given by Brutus. About half of the individual
Hermite solutions lie along the diagonal representing the accurate solu-
tions. The other half is scattered around the diagonal. These solutions
have diverged away from the converged solution, producing a binary
and an escaper with completely different properties. For dissolutions
within ∼ 10 dynamical times, there is insufficient time for the solution
to diverge and the results of the various numerical methods are consis-
tent. But once the Hermite or Leapfrog solutions have diverged away
from the converged solution the entire parameter space of the numer-
ical experiment is sampled. A similar statement holds when instead
of comparing the dissolution time, we compare the properties of the
binaries or the escapers.

In Figure 5.2 we present the cumulative distribution function of the
difference between the time to dissolution of the Hermite and Brutus
calculations: dtdissolve = tHermite − tBrutus for three different values
of η = 2−2, η = 2−3 and η = 2−9. The differences for η ≤ 2−3 are
symmetric around the origin with a dispersion of ∼ 70 N-body time
units, but for η ≥ 2−2 it is not symmetric. The distributions in the
differences in semi-major axis, eccentricity, and the direction of the
escaper (polar and azimuthal angles with respect to the binary plane)
at the time we stop the experiment for η = 2−3 down to η = 2−11

are symmetric with respect to the origin. The global distributions
are statistically indistinguishable using a Kolmogorov–Smirnov test.
We empirically determine that for a value of the time-step parameter
η = 2−3 the majority of the ensemble conserves energy to better than
1/10.

In Figure 5.3 we present the fraction of undissolved systems in time.
The coloured symbols give the converged solutions, whereas the curves
give the results obtained using the Hermite integrator. The two solu-
tions for each ensemble of initial realizations for η ≤ 2−3 (as well as
those obtained with the Leapfrog integrator, not shown) are statisti-
cally indistinguishable after comparing 104 realizations of the initial
conditions. The distributions obtained using η ≥ 2−2 are not symmet-
ric.
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Figure 5.3: Fraction of surviving systems as a function of time for the four sets
of initial conditions. The symbols give the results calculated with Brutus, the
curves give the linear interpolation between the points calculated with the Hermite
integrator using η = 2−5. The virialised Plummer sphere with identical masses is
represented by the bullets, and with the range in masses as triangles. The squares
and stars give the results for the cold Plummer distribution without and with
different masses, respectively. The results of the runs with Hermite are statistically
indistinguishable from those with Brutus.

The duration of stability was studied as a function of accuracy by ?
using the Sitnikov problem (?). They found that the remaining time
for the system to stay bound depends on the integration accuracy. Our
simulations did not reveal this effect, because we study systems that
dissolve on a much shorter time-scale.

5.4 CONCLUSION

The properties of the binary and the escaper of a three-body sys-
tem can be described in a statistical way. This is consistent with the
findings in previous analytic (?) and numerical (?) studies. This
behaviour was named quasi-ergodicity by ?. We confirm that this
behaviour remains valid also for converged three-body solutions.
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Based on the symmetry of the distribution in dissolution times (see
Figure 5.2), the final parameters of the binary and escaper, as well
as the consistency of the mean and median values of the inaccurate
simulations when compared to the converged solution (see Figures 5.2
and 5.3) we argue that global statistical distributions are preserved
irrespective of the precision of the calculation as long as energy is
preserved to better than 1/10th of the initial energy of the system.
Although we have tested only three algorithms for solving the equa-
tions of motion we conjecture that the statistical consistency may be
also preserved for some other direct N2 methods, and these may also
require that energy and angular momentum are preserved to ≤ 1/10th.
If such direct N-body methods have the same statistical behaviour as
collisionless (N � 3) systems, it will be interesting to investigate how
other—non-N2—algorithms, like the hierarchical-tree method (?) or
particle-mesh methods (?) also behave in this respect.

In studies of self-gravitating systems which adopt the fourth-order
Hermite integrator, energy and angular momentum are generally con-
served up to ≤ 10−6 per dynamical time. Only those simulations in
which this requirement is met are often considered reliable and suit-
able for scientific interpretation. Proof for this seemingly conservative
choice has never been provided, and it is unknown whether or not
the numerical error and the exponential divergence are not preventing
certain parts of the parameter space to be accessed, or new physically
inaccessible parts in the parameter space to be explored. We argued
that for the resonant three-body problem the error made during the
integration of the equations of motion poses no problem for obtain-
ing scientifically meaningful results so long as energy is conserved to
better than about one-tenth of the initial total energy of the system.
In that case resonant three-body interactions should be treated as an
ensemble average, and individual results only contribute statistically.

By means of numerical integration, until a converged solution is ob-
tained, we find that the statistical properties of the binary and the
escaper resulting from a three-body resonant encounter are determin-
istic. This behaviour is not guaranteed to propagate to larger N (see
also ?; N > 3 requires independent testing, because these introduce
more complex solutions in the form of, for example, binary-binary out-
comes and hierarchical triples. The more extended parameter space
for increasing N from 3 to N = 4 is quite dramatic, in particular for
solving the system until a converged solution is reached.
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