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On the Reliability
of N-body Simulations

Based on: On the Reliability of N-body Simulations by T. C. N. Boekholt and

S. F. Portegies Zwart in Computational Astrophysics and Cosmology, Volume 2,

article id. #2, 21 pp. (2015), Ch.4-7

As mentioned in Chapter 2, the general consensus in the N-body
community is that statistical results of an ensemble of collisional N-body
simulations are accurate, even though individual simulations are not.
In order to test this assumption, we developed the new N-body code
Brutus that solves the N-body problem to a pre-defined precision.

Using this new, brute force N-body code, we test the reliability of
N-body simulations by a controlled numerical experiment. In this ex-
periment we perform a series of resonant 3-body simulations, where
the term resonant implies a phase or multiple phases during the in-
teraction where the stars are more or less equidistant (Hut & Bahcall,
1983). These phases are intermingled by ejections, where a binary and
single star are clearly separated. We perform the simulations with
conventional double-precision, and with arbitrary-precision to reach
the converged solution. In Sec. 4.1 we explain the experiment in more
detail, and in Sec. 4.2 we compare the solutions individually to in-
vestigate the distribution of the errors. We also compare the global
statistical distributions using two-sample Kolmogorov–Smirnov tests
(??).

In summary, we find that on average at least half of the conventional
simulations diverge from the converged solution, such that the two
solutions are microscopically incomparable. For the solutions which
have not diverged significantly, we observe that if the integrator has
a bias in energy and angular momentum, this propagates to a bias
in the statistical properties of the binaries. In the case when the
conventional solution has diverged onto an entirely different trajectory
in phase-space, we find that the errors are centred around zero and
symmetric; the error due to divergence is unbiased, as long as the time-
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56 CHAPTER 4. RELIABILITY OF N-BODY

step parameter, η ≤ 2−5 and when simulations which violate energy
conservation by more than 10% are excluded. For resonant 3-body
interactions, we conclude that the statistical results of an ensemble of
conventional solutions are indeed accurate.

4.1 PRECISION OF STATISTICAL RESULTS:
EXPERIMENTAL SETUP

In the previous section we demonstrated that it is possible to obtain
a converged solution for a particular initial condition. We have also
shown that a solution obtained by Hermite diverges from the converged
solution, even up to the point that the microscopic solution given by
Hermite is beyond recognition. We now perform a statistical study, to
examine the hypothesis that double-precision N-body simulations pro-
duce statistically indistinguishable results, from those obtained from
an ensemble of converged solutions with the same set of initial condi-
tions. Because it is computationally expensive to reach convergence,
we start investigating the hypothesis above by exploring the accuracy
of 3-body statistics.

The N = 3 experiment is inspired by the Pythagorean problem,
where after a complex 3-body interaction, a binary and an escaper are
formed. As a variation to this, we define four different sets of initial
conditions as follows:

1. Plummer distribution equal mass

2. Plummer distribution with masses 1:2:4

3. Plummer distribution equal mass with zero velocities

4. Plummer distribution with masses 1:2:4 and zero velocities.

The positions and velocities of the three stars are selected randomly
from a virialised Plummer distribution (??). For the cold collapse
systems, we set the velocities to zero. Then we rescale the positions
and velocities to virialise the systems if the initial velocities are non-
zero, or we set the total energy equal to E = −0.25 if the system starts
out cold. We adopt standard Hénon units (??) throughout.

In the case of the cold initial conditions, the systems start demo-
cratically, i.e. the minimal distance between each pair of particles is
greater than N−1. We reject initial conditions in which this crite-
rion is not satisfied. This is to prevent initial realisations where two
stars which are very near, fall to each other radially causing very long
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wall-clock times for the integration. When starting with a democratic
configuration, there will also be an initial close triple encounter (?),
which is hard to integrate accurately and is therefore a good test. A
total of 10000 random realisations are generated for each set of initial
conditions and can be found in the accompanying data files.

We stop the simulations when the system is dissolved into a perma-
nent binary and an escaper. The criteria used to detect an escaper are
the following:

1. escaper has a positive energy, E > 0,

2. is a certain distance away from the center of mass, r > 2 rvirial,

3. is moving away from the center of mass, r · v > 0,

The energy of the escaper is calculated in the barycentric frame of the
three particles and rvirial is the virial radius of the system, which is of
the order unity in Hénon units.

There may be situations in which a star is ejected without actually
escaping from the binary. After a long excursion the star turns around
and once again engages the binary in a 3-body resonance (Hut & Bah-
call, 1983). Because these systems need to be integrated for a longer
time, they also require higher precision to reach convergence, which
takes a long time to integrate (see also ?). To deal with this issue, we
perform the simulations iteratively by increasing the final integration
time tend. Starting with tend = 50 Hénon time units, we evolve ev-
ery system and detect those that are dissolved. Then we increase tend

to 100, 150, 200 etc., but only for those systems which have not yet
dissolved. A complete ensemble of solutions is obtained up to tend ∼
500, or equivalently ∼ 180 crossing times where the crossing time has
a value of 2

√
2 in Hénon units (??). Systems which take a longer time

to integrate are not taken into account in this research. The fraction
of long-lived systems is however a statistic we measure. We gathered
the final, converged configurations in the accompanying data files.

Each initial realisation is run with the Hermite code, using standard
double-precision, and with Brutus, using arbitrary-precision until a
converged solution is obtained. At the end of each simulation, we
investigate the nature of the binary and the escaper. In addition to the
BS tolerance, word-length, CPU time and dissolution time, we record
the mass, speed and escape direction of the escaping single star, and
the semimajor axis, binding energy and eccentricity of the binary. In
this way, we obtain statistics for N = 3 generated by a conventional
N-body solver and by Brutus.



58 CHAPTER 4. RELIABILITY OF N-BODY

4.2 RESULTS

Before we perform a detailed comparison between results obtained by
Hermite and Brutus, we first compare the Brutus results with ana-
lytical distributions from the literature in order to relate to previous
studies. We compare Hermite and Brutus on a global level by perform-
ing two-sample Kolmogorov–Smirnov tests (??) to see whether global
distributions are statistically indistinguishable. We also compare the
distribution of lifetimes of triples to see whether precision influences
the stability and we measure the typical CPU time and BS tolerance
needed to obtain a converged solution. After this, we compare Her-
mite and Brutus per individual system, with the aim of investigating
the nature of the differences of every individual outcome. Finally, we
define categories which classify a conventional simulation as a preser-
vation or exchange, depending on whether the identity of the escaping
star is consistent between Hermite and Brutus.

4.2.1 Brutus versus Analytical Distributions

In Fig. 4.1, the distributions obtained by converged solutions are given
for the following quantities: velocity and kinetic energy of the escaper
in the barycentric reference frame, and semimajor axis, binding energy
and eccentricity of the binary. We start by looking at the eccentricity
distributions (bottom panel in Fig. 4.1). These distributions can be
estimated analytically by assuming that the probability of a certain
configuration is proportional to the associated volume in phase space
(??) or by considering an equilibrium distribution of binary stars in
a cluster (Heggie, 1975). The resulting thermal distribution in the
three-dimensional case is given by

f(e) = 2e, (4.1)

and in the two-dimensional case by

f(e) =
e√

1− e2
, (4.2)

The 3-body cold collapse problem is essentially a two-dimensional
problem. We compare the empirical and theoretical distributions by
means of the K–S test (see also next section). It turns out that the
distributions in eccentricity are statistically distinguishable. By in-
spection by eye we observe that in the virialised case, there are slight
deviations at high eccentricities. In the case of the equal-mass, cold



4.2. RESULTS 59

-1.0 -0.5 0.0 0.5 1.0

log10vesc

-3.0

-2.0

-1.0

0.0

lo
g 1

0f

-2 -1 0 1

log10EKesc

-2

-1

0

1

lo
g 1

0f

0 0.1 0.2 0.3
abin

0

5

10

15

f

0.5 0.0 0.5 1.0

log10EBbin

3

2

1

0

1

lo
g 1

0f

0.0 0.2 0.4 0.6 0.8 1.0
ebin

0

1

2

3

4

5

6

7

f

Figure 4.1: Comparison of Brutus results and analytical distributions. Distribu-
tions are given for the escaper speed (top left) and kinetic energy (top right), binary
semimajor axis (middle left), binding energy (middle right) and binary eccentricity
(bottom). The results from the Brutus simulations are represented by the data
points, for each of the four sets of initial conditions: Plummer equal mass (bullets),
Plummer with different masses (triangles), cold Plummer equal mass (squares) and
cold Plummer with different masses (stars).. Note that we use standard Hénon
units (??). Analytical models from the literature are fitted to the empirical dis-
tributions represented by the curves. For the eccentricities we plot the thermal
distributions.



60 CHAPTER 4. RELIABILITY OF N-BODY

Velocity α β
Plummer equal mass 2.5 ± 0.09 6.7 ± 1.02
Plummer mass ratio 3.8 0.16 4.4 0.43
Cold Plummer equal
mass

2.6 0.19 3.8 0.28

Cold Plummer mass
ratio

3.4 0.45 3.4 0.19

Kinetic energy
Plummer equal mass 0.9 0.02 1.8 0.04
Plummer mass ratio 0.8 0.02 1.6 0.04
Cold Plummer equal
mass

0.99 0.02 1.3 0.03

Cold Plummer mass
ratio

0.98 0.03 1.2 0.02

Binding energy
Plummer equal mass 4.31 0.13
Plummer mass ratio 5.12 0.32
Cold Plummer equal
mass

2.37 0.11

Cold Plummer mass
ratio

2.38 0.12

Table 4.1: Fitted power law indices for the velocity and kinetic energy distribu-
tions of the escaping stars and for the binding energy distribution of the binary
stars. Note that we use equal intervals in logarithmic space.
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systems, there are more low eccentricity binaries compared to the the-
oretical prediction. They coincide at an eccentricity of about 0.7, after
which they deviate again. For the cold systems with unequal masses,
this behaviour is the other way around. The analytical predictions
are able to capture the empirical distributions only in a qualitative
manner.

The velocity distribution of the single escaping star can be estimated
analytically in a similar way as was done for the eccentricities. The
resulting distribution is predicted to be a double power law given by
(??):

f(v) ∝ vα

(1 + γv2)β
. (4.3)

We fit this model to the data (see Fig. 4.1, first panel) and obtain
values for α and β which are given in Table 4.1. The power law indices
vary with mass ratio and total angular momentum. To remove the
dependence on mass ratio, we plot the kinetic energy of the escaper
(see Fig. 4.1, top right panel). Again, we fit a double power law of
a similar form as Eq. 4.3, and the power law indices are given in
Table 4.1. Both the escaper velocity and kinetic energy are consistent
with a double power law distribution.

The binary semimajor axis and binding energy are related quanti-
ties. We fit the binding energy distribution (see Fig. 4.1, middle right
panel) to a power law (Heggie, 1975; ?; ?):

f(EB) ∝ E−αB . (4.4)

The fitted power law indices are given in Table 4.1. The empirical dis-
tributions are consistent with a power law, although somewhat steeper
than predicted (Heggie, 1975; ?; ?). The slopes do tend to vary some-
what as a function of angular momentum (??).

The empirical distributions obtained by Brutus are in qualitative
agreement with the analytical estimates present in the literature (Heg-
gie, 1975; ?; ?). Slight variations are present due to the dependence on
total angular momentum, a limited statistical sampling and assump-
tions made in the derivation of the analytical distributions. Neverthe-
less, a similar qualitative agreement has been obtained between the an-
alytical distributions discussed above and empirical distributions from
an ensemble of conventional numerical solutions, e.g. not converged
(?, chapters 7–8 and references therein). The question remains to what
extend conventional and converged solutions agree quantitatively.
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Figure 4.2: Two-sample K–S tests on distributions obtained by Hermite and
Brutus. We compare distributions of dissolution time (top left), escaper speed (top
right), binary semimajor axis (bottom left) and binary eccentricity (bottom right).
Two-sample K–S tests are performed and the p–value is plotted versus Hermite
time-step parameter η. The dashed line represents the 5% significance level. For
η < 2−5, the distributions are not significantly different. (The different curves
represent the different data sets similar as in Fig. 4.1)

4.2.2 Brutus versus Hermite: Global Comparison

A quantitative way to compare global distributions is by performing
two-sample Kolmogorov–Smirnov tests (K–S tests) (??). The K–S
test gives the likelihood that two samples are drawn from the same
distribution, quantified by the value called p. When the p-value is
below five percent, the distributions are considered to be significantly
different.

In Fig. 4.2 we plot the p-value obtained by comparing the Brutus
distribution with the Hermite distribution versus time-step parameter
η used for Hermite. In the panel showing the data for the binary semi-
major axis, the distributions of the cold systems become significantly
different for η > 2−6. The distributions from the initially virialised sys-
tems start to differ for η > 2−4. The cold systems are harder to model
accurately, because of the close encounters that occur shortly after
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Figure 4.3: Lifetime of triple systems. We plot the fraction of triple systems
that have not dissolved yet into a permanent binary and escaping single star con-
figuration, as a function of simulation time (in units of crossing time). The curves
through the data points represent the interpolated Hermite results with a time-step
parameter η = 2−5. (The different curves represent the different data sets similar
as in Fig. 4.1)

the start. The reason the distributions start to become significantly
different at large time-steps is because at these large time-steps most
simulations violate energy conservation by |∆E/E| > 0.1. When this
occurs, solutions might reach regions in 6N -dimensional phase-space,
which theoretically are forbidden. The distribution then becomes bi-
ased by these outlier solutions.

4.2.3 Lifetime of Triple Systems

In Fig. 4.3, we present the fraction of triple systems which are undis-
solved, i.e. still interacting, as a function of time. The results by Bru-
tus are represented by the data points: equal-mass Plummer (black
bullets), Plummer with different masses (red triangles), equal-mass
cold Plummer (blue squares) and cold Plummer with different masses
(green stars). The results by Hermite for a time-step parameter η =
2−5 are represented by the curves appearing to go through the data
points.
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Figure 4.4: CPU time and precision as a function of time for Brutus. On the
left, we plot the CPU time of the simulation which took the longest, as a function
of dissolution time. On the right, we plot the Bulirsch–Stoer tolerance of the
simulation which needed the highest precision, as a function of dissolution time.
The different curves represent the four sets of initial conditions as in the previous
plots.

The initially cold systems dissolve faster than the initially virialised
systems. This is somewhat expected due to the close triple encounter
resulting from the initial cold collapse: the rate of energy exchange
can be very high for these encounters (?). After ∼ 180 crossing times,
about 40% of the systems which started with an equal-mass Plummer
initial configuration, are undissolved, compared to about 10% for the
cold Plummer with different masses. Systems which include stars with
different masses dissolve faster than their equal mass counterparts.
Energy equipartition tends to cause the lightest particle to quickly
reach the escape velocity.

In Fig. 4.3, the grey curves through the data points represent the
interpolated Hermite results. Even though Hermite and Brutus use
different algorithms and precisions to solve the equations of motion,
we find that the lifetime of an unstable triple is statistically indis-
tinguishable between converged Brutus and non-converged Hermite
solutions (but see also Sec. 4.3.3).

In Fig. 4.4, we plot the maximum CPU time and minimum BS
tolerance, both as a function of dissolution time. This is shown for
the Brutus simulations, for the four different initial conditions. The
longer it takes for a system to dissolve, the longer the CPU time and
the higher the precision needed to reach a converged solution. To reach
∼180 crossing times, there are systems which require a BS tolerance of
the order 10−100, with the final converged run taking of the order a few
days. The average CPU time as a function of time is about an order
of magnitude smaller than the maximum CPU time. The average BS
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tolerance ranges from ∼ 10−20 to 10−30. For systems which dissolve
within 100 crossing times, Brutus is on average about a factor 120
slower than Hermite.

We were able to obtain a complete ensemble of systems dissolving
within ∼ 180 crossing times. Simulations which take longer than this
are not taken into account in this experiment. The fraction of long-
lived systems as obtained by Hermite and Brutus are consistent. For
our purpose of comparing results from conventional integrators with
the converged solution, integrating up to ∼ 180 crossing times is suffi-
cient, in the sense that there is enough time for conventional solutions
to diverge from the true solution (see Sec. 4.2.4). Including the long-
lived triple systems may however influence the statistical distributions
and biases on the long term.

4.2.4 Brutus versus Hermite: Individual Comparison

For the individual comparison, we take a certain initial realisation
and compare the solutions of Hermite and Brutus. In Fig. 4.5 we
show scatter plots of the Hermite solution (with time-step parameter
η = 2−5) versus the converged Brutus solution for the equal-mass
Plummer data set.

Data points on the diagonal represent accurate solutions, whereas
the scatter around it represents inaccurate Hermite solutions. The di-
agonal is present in each panel and extends throughout the range of
possible outcomes. The width of the diagonal is very narrow. When
the normalized phase-space distance between the Hermite and Bru-
tus solution δ < 10−1, then the coordinates are accurate enough to
produce derived quantities accurate to at least one decimal place and
Hermite and Brutus will give similar results. Once δ > 10−1, the so-
lution has diverged to a different trajectory in phase-space leading to
a different outcome. This outcome could in principle be any of the
possible outcomes as can be derived from the amount of scatter in the
Hermite solutions at a fixed Brutus solution.

In the scatter plot of the dissolution time, we observe that for small
times (t < 10), Hermite and Brutus agree on the solution in the sense
that the data points lie on the diagonal. Systems which dissolve after
a short time don’t have sufficient time to accumulate enough error to
diverge to another trajectory in phase-space. Once however this level
of divergence is reached, the scatter immediately covers the entire,
available outcome space. This randomisation is also observed in the
other panels.
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Figure 4.5: Direct comparison of Brutus and Hermite results per individual sim-
ulation. The results are shown only for the N = 3 equal mass Plummer data set
and for a Hermite time-step parameter η = 2−5. Each dot in a panel represents a
different initial realisation. The value on the ordinate is the value obtained using
Hermite and the value on the abscissa the value obtained by Brutus. We compare
the direction of the escaper: polar angle (top left) and azimuthal angle (top right),
(with respect to the plane of the binary and pericentre direction), dissolution time
(middle left), escaper velocity (middle right), binary semimajor axis (bottom left)
and binary eccentricity (bottom right). The diagonal represents accurate Hermite
solutions. The scatter around it represents solutions where Hermite and Brutus
have diverged.
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Figure 4.6: The fraction of accurate Hermite simulations as a function of Hermite
time-step parameter η. The different curves represent the different data sets: equal
mass Plummer (bullets), Plummer with different masses (triangles), equal mass
cold Plummer (squares) and cold Plummer with different masses (stars). As η
decreases, the accurate fraction increases. However, for η < 2−7, the fraction starts
to saturate, more so for the cold data sets. At this point the effect of round-off
error becomes important.

The Fraction of Accurate Solutions

In Fig. 4.6 we estimate the fraction of data points on the diagonal as a
function of the Hermite time-step parameter, η. We only include the
data points for which the normalized phase-space distance δ < 10−1.
For the largest time-step parameters used (η > 10−1) the fraction on
the diagonal, or the accurate fraction, varies from zero to about 0.2.
By reducing the time-step parameter, the accurate fraction increases
until it saturates at about 0.4 to 0.7 depending on the initial condi-
tions. Even though by reducing η, the discretisation error decreases,
the number of integration steps increases, which then increases the
round-off error. For the data sets with zero angular momentum, the
maximum accurate fraction is obtained for η ∼ 2−9. For the initially
virialised systems this seems to occur between η ∼ 10−3 − 10−4, al-
though the actual saturation point is not visible yet. This dependence
on angular momentum is due to the initial cold collapse and subse-
quent close encounters, which increases the round-off error.
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Figure 4.7: Statistics on the error distribution of Hermite results. We present the
average error (top row), the standard deviation of the error distribution (middle
row) and the fraction of errors which are positive (bottom row). The errors are
given for the dissolution time (left column), binary semimajor axis (middle column)
and eccentricity (right column). The different curves represent the different data
sets similar as in Fig. 4.6.

The Error Distribution

In Fig. 4.7 we present statistics on the distribution of the errors, i.e.
SHermite − SBrutus, with S a statistic. For the dissolution time and
the eccentricity, the average error converges to zero for η < 10−1. For
larger time-steps, simulations which grossly violate energy conserva-
tion (|∆E/E| > 0.1) cause biases in the average error. For the binary
semimajor axis however, the data representing the cold collapse sim-
ulations also seem to be systematically biased for small time-steps, in
the sense that Hermite makes fewer tight binaries.

The width of the error distributions converge to a non-zero value.
This can be understood because with decreasing time-step, round-off
errors will become more important so that the standard deviation of
the errors will never reach zero. For the dissolution time, the width
of the error distribution for the smallest time-step parameter adopted,
varies from 60 to 100 crossing times. For the eccentricities the width
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is on average ∼ 0.2. For the semimajor axis the width approaches
∼ 0.05 (in Hénon units). In the case of the semimajor axis, the data
representing the cold collapse simulations behave differently, because
the width is much larger than the width for the data representing the
initially virialised systems.

If we regard the results given by Brutus and Hermite as random
variables drawn from the same distribution, then we can write the
variance in a certain statistic, in this example the eccentricity, as:

〈(eH − eB)2〉 = 〈e2
H〉+ 〈e2

B〉 − 2〈eH〉〈eB〉. (4.5)

Here e stands for eccentricity and the subscripts for Brutus and Her-
mite. For a thermal eccentricity distribution (Eq. 4.1), we obtain a
standard deviation of 1/3. However, this only applies to inaccurate
Hermite results, which had enough time to diverge through outcome
space. If we multiply the theoretical standard deviation calculated
above by the inaccurate fraction, we obtain a range in the standard
deviation from 0.17 to 0.27, as η ranges from the most precise value
to η = 10−1.

Symmetry of the Error Distribution

To measure the symmetry of the error distribution, we count the frac-
tion of positive errors (Fig. 4.7, bottom panels). Again for an η < 10−1,
this fraction converges to 0.5. A more detailed comparison is given in
Fig. 4.8, where we compare distribution functions of positive and neg-
ative errors. In Sec. 2.2.3, we mentioned that in our experiment we
define the Brutus solution to be converged when at least 3 decimal
places of every coordinate have converged. To investigate the symme-
try up to higher precision, we repeated a subset of 1000 simulations.
We did this only for the initial conditions with equal-mass stars picked
randomly from a virialised Plummer distribution and this time we ob-
tain solutions converged up to the first 15 decimal places.

We observe that the majority of errors are larger than ∼ 10−3 and
within the statistical error, the positive and negative errors have a
similar distribution. For the smallest errors however, we observe an
asymmetry in the sense that there are more negative, small errors.
The magnitude of the error where this excess occurs is determined by
the precision of the integration. For the smallest η, the excess is below
double-precision and thus not observable anymore (see Sec. 4.3.2 for
more explanation).
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Figure 4.8: Symmetry of the error distributions. We show distributions of the
errors in semimajor axis (left column) and eccentricity (right column) of the binaries
formed in the equal-mass Plummer data set. This is shown separately for the
positive errors (solid line) and negative errors (dashed line), to investigate the
symmetry of the error distribution. From the panels at the top to the bottom, the
time-step parameter for Hermite varies as 2−5, 2−7, 2−9 and 2−11. An asymmetry
can be observed at the smallest errors.

4.2.5 Escaper Identity

In this section we compare the solutions obtained with Hermite and
Brutus individually, by looking at which star eventually becomes the
escaper and which form the binary. We define preservation if the Her-
mite and the Brutus solution both have the same star as the escaper.
We define it as exchange if the escaping star is different. A further
distinction can be made in the preservation category, if the Hermite
simulation is also accurate. We can typify each Hermite simulation as
follows:

• Accurate: The coordinates are accurate, up to at least two
digits.

• Preservation: The coordinates are inaccurate, but same star
escapes.

• Exchange: Different star escapes.

In Fig. 4.9 we present the fraction of each category as a function of
time. As expected, systems which dissolve quickly, hardly have time
to develop errors and are categorized as accurate simulations. In time
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Figure 4.9: The evolution of the relative fraction of categories. The differ-
ent curves represent the different categories: accurate (solid curves), preservation
(dashed curves) and exchange (dotted curves). These three categories are defined
in the text. From left to right, the data are from the Plummer, Plummer with
different masses, cold Plummer and cold Plummer with different masses data sets.
In the top panels we show the results for a Hermite time-step parameter η = 2−11

and in the bottom for η = 2−3.

however, because errors grow exponentially, the solutions become in-
accurate. The fractions of preservation and exchange start to grow.
For a small time-step parameter (η = 2−11, top row in Fig. 4.9), this
growth starts after ∼ 20 crossing times for the initially virialised sys-
tems. For the initially cold systems, the inaccurate fractions already
start to grow after a single crossing time.

The cold collapse with equal-mass stars is the hardest problem to
integrate as the accurate fraction is of comparable magnitude as the
preservation and exchange fractions. The accurate fraction generally
remains dominant, with a final fraction varying from about 0.4 for the
equal-mass cold Plummer to about 0.7 for the Plummer with different
masses. For the lesser precision (η = 2−3, bottom row in the figure),
the accurate fractions decrease to below 0.2.

In the panels in Fig. 4.9, which include the data for the systems with
different masses, preservation is more common than exchange. This
can be understood, because due to energy equipartition, the lightest
particle will be more likely to escape and therefore the identity is more
often correct than in the equal mass case. For the equal mass case,
the fraction of preservation and exchange is comparable, except in the
case of the equal-mass cold Plummer with the low precision (η = 2−3,
the bottom row). If we regard the identity of the escaping star to be



72 CHAPTER 4. RELIABILITY OF N-BODY

-4 -3 -2 -1 0

log10η

0.06

0.04

0.02

0.00

0.02

0.04

0.06
〈 d

v e
sc

〉

-4 -3 -2 -1 0

log10η

0.06

0.04

0.02

0.00

0.02

0.04

0.06

〈 d
v e

sc

〉

-4 -3 -2 -1 0

log10η

0.06

0.04

0.02

0.00

0.02

0.04

0.06

〈 d
v e

sc

〉

-4 -3 -2 -1 0

log10η

0.010

0.005

0.000

0.005

0.010

〈 d
a

b
in

〉

-4 -3 -2 -1 0

log10η

0.010

0.005

0.000

0.005

0.010

〈 d
a

b
in

〉

-4 -3 -2 -1 0

log10η

0.010

0.005

0.000

0.005

0.010

〈 d
a

b
in

〉

Figure 4.10: The effect of cuts in final relative energy conservation. We plot the
average error in the velocity of the escaping star (top row) and the error in the
binary semimajor axis (bottom row) as a function of Hermite time-step parameter
η (with the same relation between the curves and the data sets as in Fig. 4.6). The
three columns differ in the maximum allowed level of relative energy conservation.
In the left column we show the results for the total ensemble of solutions, in the
middle column for a maximum level of unity and in the right column for 10−1.
The bias in the left column for the binary semimajor axis is caused by solutions
which grossly violate energy conservation. Note that this only happens for the cold
collapse simulations. When these outliers are taken out of the ensemble, the bias
vanishes.

completely random once the solution has become inaccurate, we would
expect the fraction of exchange to be twice the fraction of preservation.
This is roughly what we observe in the equal mass cold collapse case
with low precision. Because of the low precision and the initial close
encounter, solutions will diverge very quickly. In the panel with the
higher precision this trend is not observed because the solutions are
less randomised. The preservation category includes solutions which
slightly differ from the converged solution only in the escape angle of
the escaper. Also the long-lived triples are not taken into account here,
which will alter these fractions.

4.3 DISCUSSION

4.3.1 Energy Conservation

In every ensemble of Hermite solutions there are some that grossly
violate conservation of energy |∆E/E| > 0.1. This deformation of
the energy hyper-surface in phase-space can allow solutions to reach
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parts of phase-space which are theoretically forbidden. This affects the
global statistical distributions. In Fig. 4.10, we replot the average error
in the binary semimajor axis as a function of the time-step parameter.
We produce similar diagrams as presented in Fig. 4.7, but this time
we introduce a maximum allowed error in the energy. If we filter
out simulations with a relative energy conservation |∆E/E| > 1, or
|∆E/E| > 0.1, we observe that the bias in the average error of the
semimajor axis of the binaries vanishes. We conclude that this bias is
caused by a few simulations which grossly violate energy conservation.
A similar bias in the velocity of the escaping star is less pronounced.

Time-reversible, symplectic integrators should in principle conserve
energy to a better level than non-symplectic integrators, since there
is no drift present in the energy error. Therefore, by using a sym-
plectic integrator, the number of simulations with large energy error
could be reduced. Using a Leapfrog integrator with constant time-
steps, we tested this assumption and we find that for resonant 3-body
interactions, it is challenging to obtain accurate solutions. The main
reason is that, contrary to regular systems like, for example, the solar
system, resonant 3-body interactions often include very close encoun-
ters, which need a very small time-step size to be resolved accurately.
This is especially the case for the initially cold systems. Adopting
such a small time-step size for the whole simulation, will increase the
wall-clock time to that of Brutus or beyond.

4.3.2 Asymmetry at Small Errors

In Sec. 4.2.4, we discussed an asymmetry at small errors. In Fig. 4.11,
we present similar diagrams as in Fig. 4.8 for the positive and negative
errors. This time we add the errors in the total energy and angular
momentum of the system and the error in the velocity of the escaper.

We also vary the integration method because different methods pro-
duce different (biased) error distributions in energy and angular mo-
mentum. We use a standard Leapfrog integrator, a standard Hermite
integrator and a Hermite integrator which uses the P(EC)n method
(we adopted n=3) (?). This last method adds an iterative procedure
to the algorithm to improve the predictions and corrections, which im-
proves the time-symmetry. For each method we implement a shared,
adaptive time-step criterion as in Eq. 2.1, with a time-step parame-
ter η = 2−7. As a consequence they will not be time-symmetric nor
symplectic.

We first look at the error distributions in the total energy and angu-
lar momentum. We observe that none of them are symmetric, in the
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Figure 4.11: Explanation of the asymmetry at small errors. We show distribu-
tions of the positive (solid curves) and negative (dashed curves) errors in the total
energy (top row), total angular momentum (second row), escaper velocity (third
row), binary semimajor axis (fourth row) and eccentricity (bottom row). This is
shown for different algorithms: Leapfrog (left column), standard Hermite (middle
column) and Hermite with P (EC)n method (right column, n = 3). Each method
implements a shared, adaptive time-step criterion according to Eq. 2.1, with a time-
step parameter η = 2−7. Each of these three integrators has a different asymmetry
in the conservation of energy and angular momentum. By propagating these asym-
metric errors as a small perturbation to the converged solution, we can estimate
the resulting asymmetry in the derived quantities. These estimated error distribu-
tions are also given separately for the positive (dot-dash, light curves) and negative
(dotted, light curves) errors. We observe that the estimated error distributions are
located at the asymmetry in the empirical error distributions. The asymmetry at
small errors is caused by a bias in the integrator.
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sense that the positive and negative errors have identical distributions,
except for the angular momentum in the Leapfrog simulations. The
Leapfrog solutions tend to gain energy, whereas the standard Hermite
loses energy. The Hermite with the P(EC)n method produces both
positive and negative errors in the energy, but not in a symmetric
manner.

To investigate whether the bias in energy and angular momentum
conservation propagates to a bias in the binary and escaper properties,
we estimate what the errors should be if we regard the error in the
energy and angular momentum as a small perturbation to the con-
verged solution. For the error in the velocity of the escaper, using the
derivative of the kinetic energy with respect to velocity, we obtain the
following expression:

δv =
1

mv
δE. (4.6)

Here m is the mass of a star, v the velocity as obtained by Brutus,
δE the energy error and δv the error in the velocity due to this energy
error. For the binary semimajor axis we obtain:

δa =
2

m2
a2δE. (4.7)

Here a is the semimajor axis from the Brutus solution. For the eccen-
tricity we obtain:

δe =
1√

1 + 2εl2

µ2

(
l2

µ2
δε+

2εl

µ2
δl). (4.8)

Here µ is the total mass of the binary, ε and l the specific energy and
specific angular momentum of the binary as obtained by Brutus. The
error in the eccentricity δe has contributions from errors in the energy
δε and angular momentum δl.

If we compare the resulting error distributions to the actual er-
ror distributions, we find that the approximated error distribution
is positioned at the asymmetry in the empirical error distribution.
This is most clearly seen for the semimajor axis and eccentricity (see
Fig. 4.11).

The reason why the approximated error distribution overestimates
the excess, is because not all errors are solely due to an error in the en-
ergy and angular momentum. In time, the numerical solution diverges
from the true solution and this error due to divergence will become
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more dominant. With this in mind, we can approximate the error in
a statistic as follows:

δS = δSconservation + δSdivergence. (4.9)

Here S is a statistic that is related to energy and/or angular momen-
tum, δSconservation is the error due to a small perturbation in the energy
and/or angular momentum and δSdivergence is the error due to diver-
gence of the solution. When the solution has not diverged appreciably
yet, the first type of error will dominate and possible biases can be
observed. When the second type of error dominates, we observe that
the symmetry is restored to within the statistical error.

Upon inspection of the velocity data, we observe no asymmetry in
the Hermite results. When we measure which fraction of the energy
error is reserved for the binary and which fraction for the escaper, we
find that in most cases the error propagates to the binary. For the
Leapfrog however, the asymmetry is still present.

4.3.3 Preservation of the Macroscopic Properties

Valtonen et al. (?) state that the final statistical distributions forget
the specific initial conditions and only depend on globally conserved
quantities. This assumption makes predictions which are verified by
our experiment. The results show that for a time-step parameter η <
2−5, the distributions are statistically indistinguishable, even though
at least half of the solutions diverged from the converged solution. If
however, energy conservation is grossly violated, biases are introduced
in the statistics. In our experiment, a maximum level of relative energy
conservation of |∆E/E| = 0.1 was sufficient to remove the biases. This
is a much milder constraint than the |∆E/E| ∼ 10−6 usually adopted
in collisional simulations. Whether 0.1 is also sufficient for systems
with more stars, should be verified experimentally. Heggie (?) for
example, finds that the energy of escaping stars in higher-N systems,
depends sensitively on integration accuracy. The maximum required
level of energy conservation should be such that it is below the energy
taken away from the cluster by the escaping stars.

The chaoticity of the 3-body problem is illustrated by the scatter
diagrams in Fig. 4.5. For a certain value of a statistic obtained by
Brutus, any other value in the allowed outcome space is reachable for
the Hermite integrator. For example, if the converged solution gives an
eccentricity for the binary of 0.6, a diverged solution can produce any
eccentricity between 0 and 1. Once the solution has diverged from the
true solution, it will start a random walk through or near the allowed
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phase-space until the 3-body system has dissolved. We observed that
this randomisation happens in such a way that the available outcome
space is still completely sampled and that it preserves global statistical
distributions.

In Sec. 4.2.3, we discussed that the lifetime of an unstable triple does
not depend on the integrator used nor on the accuracy of that integra-
tor. This last point should be interpreted in the sense that when more
effort is put into performing simulations with higher precision, that
this does not change the global statistics, even though individual so-
lutions will change with precision (see for example the Hermite results
in Fig. 2.1). If instead we continue to decrease the precision, there will
be a point where biases start to appear. Urminsky (?) analysed the
3-body Sitnikov problem and showed that the precision of the integra-
tion influences the average lifetime of triple systems, contrary to our
results. The integration times in our experiment however, are much
shorter. Obtaining a converged solution for a resonant 3-body system
for longer than 200 crossing times, is still computationally challenging.
Therefore any statistical difference on the long term will not be visible
in our experiment.

4.4 CONCLUSION

Brutus is an N-body code that uses the Bulirsch–Stoer method to con-
trol discretisation errors, and arbitrary-precision arithmetic to control
round-off errors. By using the method of convergence, where we sys-
tematically vary the Bulirsch–Stoer tolerance parameter and the word-
length, we can obtain a solution for a particular N-body problem, for
which the first p digits in the mantissa are independent of the time-
step size and word-length. We call this solution converged to p decimal
places.

Obtaining the converged solution is computationally very expensive,
mainly because of the exponential divergence of the solution. In some
cases, Bulirsch–Stoer tolerances of 10−100 are needed to reach con-
vergence. We estimate that the time for simulating a star cluster up
to core collapse, until convergence, scales approximately exponentially
with the number of stars. Simulations with 256 stars however, may be
performed within a year of computing time.

The motivation to obtain expensive, converged solutions is to test
the assumption that the statistics of an ensemble of approximate solu-
tions, are indistinguishable from the statistics of an ensemble of true
solutions. To put this assumption to the test, we have investigated
the statistics on the breakup of 3-body systems. In our experiment, a
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bound triple system will eventually dissolve into a binary and an es-
caping star. Solutions to every initial realisation were obtained using
the standard Hermite integrator and using Brutus.

For systems with a long lifetime it is challenging to obtain the con-
verged solution. Due to repeated ejections and resonances, many ac-
curate digits will be lost and so a very small Bulirsch–Stoer tolerance
is required. Therefore, we have set an integration limit at ∼ 180 cross-
ing times. For equal-mass, virialised systems, ∼ 40% of the random
initial realisations were not dissolved by this time. For the initially
cold systems with different masses this was ∼ 10%. Hermite and Bru-
tus are consistent on the average lifetime of an unstable triple system.
However, possible differences on the long term are not visible in this
experiment.

When we compare the results on an individual basis, we find that on
average about half of the Hermite solutions give accurate results, i.e. at
most a 1% relative difference compared to Brutus. For the inaccurate
results, the error distribution becomes unbiased and symmetric for a
time-step parameter η ≤ 2−5 and implementing a maximum level of
relative energy conservation of |∆E/E| < 0.1.

Once the conventional solution has diverged from the converged so-
lution, it will start a random walk through or near the allowed region
in phase space. such that any allowed outcome of a statistic is reach-
able. This randomisation process completely samples the available
outcome space of a statistic and it also preserves the global statistical
distributions.

Kolmogorov–Smirnov tests were performed to compare the global
distributions produced by Hermite and Brutus. No significant differ-
ences were detected when using the criteria mentioned above for the
time-step parameter η and relative energy conservation. This research
for the 3-body problem supports the assumption that results from
conventional N-body simulations are valid in a statistical sense. We
observed however that a bias is introduced for the smallest errors, if
the algorithm used to solve the equations of motion, is biased in the
conservation of energy and angular momentum. In this research how-
ever, this bias did not have an appreciable effect. It is important to
see whether this remains true for statistics of higher-N systems or sys-
tems with a dominant mass. An example of a higher-N system where
precision might play a role is a young star cluster (without gas) going
through the process of cold collapse (?). At the moment of deepest
collapse, a fraction of stars will obtain large accelerations, so that a
small error in the acceleration can cause large errors in the position
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and velocity. The rate of divergence can increase up to about 5 digits
per Hénon time unit for 128 particles and it increases with N.
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