Universiteit

4 Leiden
The Netherlands

Chaotic Dynamics in N-body systems
Boekholt, T.C.N.

Citation
Boekholt, T. C. N. (2015, November 10). Chaotic Dynamics in N-body systems. Retrieved from
https://hdl.handle.net/1887/36077

Version: Not Applicable (or Unknown)
Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/36077

License:

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/36077

Cover Page

The handle http://hdl.handle.net/1887/36077 holds various files of this Leiden University
dissertation

Author: Boekholt, Tjarda

Title: Chaotic dynamics in N-body systems
Issue Date: 2015-11-10


https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/36077

3

A Parallel Efficient
N-body Code: Sakura

Based on: A Keplerian-based Hamiltonian Splitting for Gravitational N -body
Simulations by G. Gongalves Ferrari, T. C. N. Boekholt and S. F. Portegies Zwart
in Monthly Notices of the Royal Astronomical Society, Volume 440, Issue 1,
p.719-730 (2014)

We develop a Keplerian-based Hamiltonian splitting for solving the
gravitational N-body problem. This splitting allows us to approxi-
mate the solution of a general N-body problem by a composition of
multiple, independently evolved 2-body problems. While the Hamil-
tonian splitting is exact, we show that the composition of independent
2-body problems results in a non-symplectic non-time-symmetric first-
order map. A time-symmetric second-order map is then constructed
by composing this basic first-order map with its self-adjoint. The re-
sulting method is precise for each individual 2-body solution and pro-
duces quick and accurate results for near-Keplerian N-body systems,
like planetary systems or a cluster of stars that orbit a supermassive
black hole. The method is also suitable for integration of N-body
systems with intrinsic hierarchies, like a star cluster with primordial
binaries. The superposition of Kepler solutions for each pair of par-
ticles makes the method excellently suited for parallel computing; we
achieve 2 64% efficiency for only eight particles per core, but close to
perfect scaling for 16384 particles on a 128 core distributed-memory
computer. We present several implementations in Sakura, one of which
is publicly available via the AMUSE framework.

3.1 INTRODUCTION

Since the pioneering work of von Hoerner (1960), Aarseth (1963) and
? N-body simulations have been an essential tool for the theoretical
understanding of self-gravitating astrophysical systems. Such systems
often show a large dynamic range of time scales. Thus, instead of a

29



30 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

fixed or adaptive global time step, most of the N-body codes adopt
individual or block time step algorithms in order to advance the par-
ticles in time (??Aarseth, 2003). In addition, different approaches to
calculate the acceleration of each particle, such as using grids (?) or
a hierarchical tree data structure (?), are commonly employed to de-
crease the computational cost of the simulations. These approaches
allow the use of a larger number of particles, despite only giving an
approximation to the true acceleration of each particle. Therefore,
these codes should not inadvertently be used in simulations of colli-
sional systems such as planetary systems, dense star clusters or the
inner parts of galactic nuclei.

In collisional systems the individual interactions between particles
play an important role in the dynamical evolution of the system as
a whole. For example, the formation of hard binaries in star cluster
core collapse (?) requires very precise integration methods to correctly
evolve close encounters between particles. This precision is only pos-
sible if we use more accurate, direct brute-force methods, to calculate
the accelerations due to each pair of particles in the system. The main
difficulty here is that with the formation of the first hard binary in the
system, the simulation as a whole experiences a slow-down in perfor-
mance due to the necessity to decrease the time-step size in order to
accurately integrate such compact sub-systems.

Currently, the most effective and common approach to overcome
such obstacles seems to be a combination of the block time step al-
gorithm (?), Ahmad-Cohen neighbour scheme (?) and some sort of
2-body regularization (????) in order to handle very compact sub-
systems efficiently. This is the approach used in modern Hermite in-
tegrators for collisional stellar systems (?Aarseth, 2003).

In this chapter, we develop a new Keplerian-based Hamiltonian
splitting for the gravitational N-body problem. This splitting allows
us to approximate the solution of a general N-body problem by a
composition of independently evolved two-body problems. While the
Hamiltonian splitting is exact, we show in section 3.2 that the compo-
sition of independent two-body problems results in a non-symplectic
non-time-symmetric first-order map. A time-symmetric second-order
map is then constructed by composing this basic first-order map with
its self-adjoint. The advantages of this Keplerian-based integrator are:
i) a guarantee that every pair of particles is always integrated pre-
cisely; ii) the method does not suffer from slow-down in performance
when tight binaries are present in the simulation, and iii) the method
allows for good parallel efficiency (7).



3.2. METHOD 31

3.2 METHOD

3.2.1 Hamiltonian Splitting

We begin the derivation of our scheme for the numerical integration
of a gravitational N-body system by considering its Hamiltonian,

H=Hr+Hy. (3.1)
Here,
1 2
HT = Z HTi s HTi = -myuv;, (3 2)
and
1 LY MM
_ — L)
Hy = 5 ;;HU” ) HUij = rij ) (33>

are the kinetic and potential energies of the system, respectively; m;
and v; = |v;| are the mass and velocity of the i-th particle and r;; =
Irij| = |r; — r;] is the relative distance between particles i and j.

The time evolution of a Hamiltonian system is formally given by the

lTH

operator” ", which can be approximated by a composition of individ-

ually solvable operators eTHA and ™75 in cases when the Hamiltonian
can be split as H=H A+ H Ip. The s1mplest example of Hamiltonian
splitting is the case when a A HT and H B = HU, for which we
can generate the time-symmetric second-order Drift-Kick-Drift (DKD)

variant of the Leapfrog integrator: e” TH g 3017 Hy o307 This Hamil-
tonian splitting is not the only possibility and many other ways of
subdividing the system have been tried (?7777).

In the present chapter we introduce a way to split the Hamiltonian
of an N-body system, which is based on two main arguments: i) the
validity of the superposition principle?, and ii) the existence of an
analytical solution for the 2-body problem. Therefore, a natural way
to approximate the time evolution of an N-body system is by using
a composition of 2-body problems to solve a more general N-body
problem. While this approach may seem computationally expensive,

'Hamiltonian associated operators are denoted by a ™ symbol.

2Recall that the gravitational potential and acceleration at the position of a given
particle consists of a superposition of 2-body contributions due to the interaction
with every other particle in the system.



32 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

our aim here is to present a theoretical formulation of the method.
Possible optimizations, such as applying the Kepler-solver only to a
few close pairs in the simulation, or to make use of Newton’s third law
during the force loop, are left for future implementations.

We first rewrite the potential energy term in Eq. 3.3 as follows:

TR
Hy = izzHUij
i=1 joti
1 NN mimj
- Iy
i=1 j#i J

N N
SR IRTE

r
i=1 ji K

N N
1 1 5 (mi+my) 1,
SO WAL R B

Tij

Here,

_ [ e (mitmy)
Hre;; = i [2%' Ty (3.5)
is the 2-body Keplerian Hamiltonian and

1
Hrp,. = §,ul-jvi2j, (3.6)
where 1;; = mym;/(m; + m;) is the reduced mass of the i — j pair.
The original N-body Hamiltonian in Eq. 3.1 can now be rewritten as
follows:

N N N
1
=1 =1 j#i
with
HWij = HK,L-]- — HTij = HUL-]- . (38)



3.2. METHOD 33

We note that Eq. 3.7, as is clear from the equivalence in Eq. 3.8, can
always be reduced by simplification into Eq. 3.1, which implies that, in
principle, our Keplerian-based Hamiltonian splitting does not change
the dynamics of the system.

3.2.2 Equations of Motion

According to the general theory of geometric integrators (?) we can
construct a time-symmetric second-order method by composing a (pos-
sible non-time-symmetric) first order method, ¢(7), with its self-adjoint,
¢'(7). Moreover, the composition ¥(r) = ¢(Z) o ¢'(Z) is symplectic if
both ¢(7) and ¢'(7) are symplectic methods.

In our Keplerian-based Hamiltonian splitting, time evolution oper-
ators can be constructed by taking into account that

N
eTHT = HeTHTi , (39)
i=1
3 N 17y N 1N 5
Mo = [T ematlve = [ 2 2% Mo (3.10)
=1 =1
and, by Eq. 3.4
7 N 17y N 15N g
et = Ter2fw =] 2y Hwij (3.11)
i=1 i=1

where the last term on the right hand side in egs. 3.10 and 3.1lisa
s1mple substitution of the definition of operators HU and HW, ie.,

H Z HU and similar for HW , and the presence of the factor
1/ 2 follows frorn the fact that we have to take into account each ¢ —

pair only once. In egs. 3.9, 3.10 and 3.11 the individual operators
e™Hr; e™Hu; and e™HWi act on the 6N dimensional array (r;, v;). Here
the “one-subscript” operators individually commutate since they can
only act on the corresponding coordinates with subscript i. Therefore,
the order in which the product of operators is executed in each of
egs. 3.9, 3.10 and 3.11 is unimportant. In order to proceed with the
derivation we present these operators in a more explicit form as follows:

e . <5§> “ (fjl) +r <‘(’;> , (3.12)



34 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

eTHu; . <r1> — <rl> +7 <0) ) (3.13)
Vi Vi a;

rhw, T\ o (Te) g (0 (3.14)

€ b V; V; (5VZ‘ ’ ’

where a; is the acceleration and (0r;, dv;) are the increments in abso-
lute coordinates and will be specified later on in Eq. 3.23.

In a similar way, individual “two-subscript” operators are explicitly
written as follows:

e <rij) — <rij> +7 ( 0> ; (3.15)
Vz'j Vij aij
ey <r”) - (r“> + (5”3') : (3.16)
Vij Vij 5V2’j
T(*j‘j’]’u.) . rij rij Vz‘j
e i) — -7 , (3.17)
Vz’j Vij 0

€THK”‘J' DT, Vi kepler_solver(r, Mij, Tij, Vz‘j) , (3.18)
where m;; = m;+mj, a;; = —my;ri;/ rf’j is the relative 2-body acceler-
ation. The increments in relative coordinates, (dr;;, dv;;), are obtained
independently for each ¢ — j pair from the application of one of the
first-order maps:

eT(ﬁKij_ﬁTij> ~ eT(_ﬁTij)eTﬁKij , (3.19&)

eT(HKij _HTz'j) ~ eTHKij eT(—HTij) ) (3.19b)

Egs. 3.12 to 3.17 are first-order approximations to the respective
operators in these equations. It will be clear below that this low-order
approximation is enough for our purposes since, ultimately, the order
of the full time evolution operator in Eq. 3.25 will be determined by
the composition of those operators. In this sense, if a high-order ap-
proximation of the method presented here is needed, we argue that this
should be obtained not by extending eqgs. 3.12 to 3.17 to higher order,
but rather, by making a high-order composition of these operators in
a similar way as in symplectic integrators (?7?), where a second-order



3.2. METHOD 35

map is constructed as a composition of first-order operators, and so
on.

We notice here that, contrary to the “one-subscript” operators, the
“two-subscript” operators act on the 6 N(N — 1)/2 dimensional ar-
ray (rij,vi;). Therefore, it remains to be shown how to relate “one-
subscript” and “two-subscript” operators in a consistent way. From
Eq. 3.10 and the definition of Hy,;, it is easy to see that the equiva-
lence,

N
_ N & _
H e iy = o7 2z vy — gTHu,

J#i

: (3.20)

is valid for every N because the operators e""Vi; commutate. On the

other hand, from Eq. 3.11, an equivalence similar to Eq. 3.20 relating
Hyy-type operators is only possible for N = 2. For N > 2 the operators

THyy. . . .. .
e Wi do not commutate. However, we can write a similar equation
approximately as

N
HeTHWij-I-O(T ) ~ eTZj;éi Hw,; _ 7Hw, , (3.21)
J#i

where the error O(72) is not guaranteed to be Hamiltonian due to the
fact that we treat each i — j pair independently. As a consequence the
symplecticity of the present method is lost.

Apart from the loss of symplecticity, as mentioned above, a time-
symmetric second-order method for our Keplerian-based Hamiltonian
splitting can still be constructed by using a composition of self-adjoint
first-order methods (see 7).

In order to construct ¢(7) and ¢f(7) we first need to specify the
increments or; and dv; in Eq. 3.14. Since in the present method we
take advantage of a Kepler-solver to evolve each pair of particles inde-
pendently, the relative increments (dr;;, dv;;) can be easily calculated
for each interaction after application of one of the maps in egs. 3.19a
or 3.19b. Here, what we seek is an approximate relation between the
increments in relative coordinates (dr;;,0v;;) and those in absolute co-
ordinates (0r;, dv;), in order to construct the full integrator. By noting

that increments associated with operators H, v;; and H v, are related by

! <£> = mi ZN:MW <a?.j> , (3.22)

T . .
J#i



36 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

a way to specify (dr;, dv;) consists of exploring the equivalence between
Hy and Hyy, as first presented in Eq. 3.4. In addition, if we take into
account the discussion above regarding to egs. 3.10, 3.11, 3.20 and 3.21,
a relation between relative and absolute increments can be defined in
analogy to Eq. 3.22 as follows:

or 1 & or

i) . i 2

() = T () o .
JF

which constitutes a first-order approximation as explained above (see
Eq. 3.21). While we were not able to provide a more formal derivation
to Eq. 3.23, we will show below (see explanation about Eq. 3.28) that
when we calculate the relative increments from an ordinary Leapfrog
map rather than the Kepler-solver in Eq. 3.18, then Eq. 3.23 reduces
to Eq. 3.22.

We can now define a time-symmetric second-order map for our
Keplerian-based Hamiltonian splitting as follows:

U(r) = 6(3)o0(5),
Aro5Hlw o 50w 5 Hr (3.24)

T
€2

where the increments (dr;;, dv;;) which appear in the ezHw operator
on the left side of o are independently obtained after application of
Eq. 3.19a for each i — j pair, while those which appear on the right
side of o are independently obtained after application of the (self-
adjoint) method in Eq. 3.19b for each ¢ — j pair. Eq. 3.24 can be
further simplified by merging operators on both sides of o, giving,

U(r) = 3 Hr oTHw o5 Hr , (3.25)

in which case the increments (dr;;,0v;;) appearing in the erHw op-
erator should be independently obtained after application of a time-
symmetric second-order map for each i — j pair,

6T<ﬁK1‘j 71?%‘) ~ e%(fﬁTiﬂ')eTﬁKij e%(iﬁhij> . (3.26)



3.2. METHOD 37

The equations of motion that result from the full map in Eq. 3.25
can be written in the following discrete form:

r3/2 = 4 %v?, (3.27a)
N
- 1
b
1 N
vZ-1 = V? + oo Z WigOvij (3.27¢)
b
1 ~ T 1
r, = r;+ §V¢ ) (3.27d)

where r} = r;(t + 7), r? = r;(t) and similar for v;, and the increments

(0ri;,0v;j) are calculated independently as explained above.

As it can be seen, egs. 3.27 are remarkably similar to the Leapfrog
method. It remains to be shown that these equations effectively reduce
to the Leapfrog equations when we substitute the 2-body Kepler-solver
to a simple DKD-type integrator. In this case, the map in Eq. 3.26
becomes:

T

rij < Ty — 5 Vii (3.28a)
ri; < T+ gvij , (3.28Db)
Vij 4 Vi +Tay, (3.28c¢)
rij < T+ gvij , (3.28d)
r; %—QWw (3.28¢)

which results in 0v;; = Ta;; and dr;; = 0 and, in view of egs. 3.22 and
3.23, completes the demonstration. It should be noted that in this
particular case, the error in Eq. 3.23 disappears because dr;; = 0 and
Eq. 3.21 reduces to Eq. 3.20, restoring the symplecticity of the method.
Note also that this is true only if we use a DKD-type integrator as a
2-body solver. For a KDK-type 2-body solver the symplecticity of the
method is not restored because the order in which (r;;, vi;) is evolved
in egs. 3.28 changes and dr;; # 0. In other words, using a simple
DKD-type integrator as a 2-body solver in the scheme above results
in a very expensive implementation of a traditional Leapfrog method.

On the other hand, with the Kepler-solver function as a 2-body
solver, a non-Hamiltonian error is made due to the non-commutativity



W g O Otk W N =

e e e T e e
© 00 N O Uk~ W N = O ©

38 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

of the e Wij operators and the fact that each 7 — j pair is treated inde-
pendently, leading to the loss of symplecticity of the resulting method.
Because our Keplerian-based integrator is constructed as a composi-
tion of self-adjoint first-order maps, it still preserves time-reversibility
and second-order convergence (error O(73)).

The advantage of using the Kepler-solver instead, comes from the
fact that it is guaranteed that all pairwise interactions are always in-
tegrated precisely, which, in practical N-body simulations, is a much
stronger requirement than the symplecticity of the Hamiltonian flow.

3.2.3 Implementation

The method described in the previous section has been implemented
in a new code called Sakura, which is available in Astrophysical M UIti-
purpose Software Environment (AMUSE?, ?). In order to clarify the
implementation, Listing 3.1 shows a Python* code for the main loop
calculation which evolves the particle’s coordinates according to the
map in Eq. 3.25 or, equivalently, eqs. 3.27. The Kepler-solver function
at line 47 implements a universal variable Kepler-solver closely follow-
ing 7. Note that the memory and CPU requirements of this code scales
as O(N) and O(N?), respectively.

Listing 3.1: Python code for the main loop in Sakura integrator

"""The functions below implement the main
steps of Sakura integrator.

The required parameters are the following:

:param tau: the time-step size.

:param n: the number of particles.

:param m: array with particles’ masses.

:param r: 3D array with particles’ positions.
v:

:param 3D array with particles’ velocities.
nnn

def do_step(tau, n, m, r, v):

r, v = evolve_HT(tau/2, n, m, r, v)
r, v = evolve_HW(tau, n, m, r, v)
r, v = evolve_HT(tau/2, n, m, r, v)

return r, v

def evolve_HT(tau, n, m, r, Vv):

3www.amusecode.org

“The actual implementation has been done in C/C++ for efficiency purposes.




3.2. METHOD

for i in range(mn):
for k in range(3):
r[il[k] += v[il[k]

return r, v

* tau

def evolve_HW(tau, n, m, r, Vv):
# Allocate/initialize 3D arrays to store
# increments in position/velocity due to
# 2-body interactions.

dmr numpy .zeros ((n, 3))
dmv = numpy.zeros((n, 3))
# For each i-j pair, this corresponds to
# the Eq. 26 in the main text.
for i in range(n):
for j in range(n):
if i 1= j:
mij = m[i] + m[j]
mu = m[i] * m([j] / mij
for k in range (3):
rr0[k] = r[il[k] - r[j][k]
vvO[k] = v[il[k] - v[j][k]
#H##
for k in range (3):
r0 [k] rr0[k] - vvO[k] * tau / 2
vO[k] = vvO0[k]
#
rl, vl = kepler_solver(tau, mij, rO,
#
for k in range (3):
rri[k] = r1[k] - vi[k] * tau / 2
vvli[k] = vi1[k]
#H##
for k in range (3):
dmr [i] [k] += mu * (rri1[k] - rrO[k])
dmv [i] [k] += mu * (vv1i[k] - vvO[k])

# This corresponds to egs.
# in the main text.
for i in range(mn):
for k in range (3):
r[il[k] += dmr[i]l[k] / m[i]
v[il[k] += dmv[il[k] / m[i]
return r, v

27b and 27c

v0)

39




40 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

3.3 VALIDATION AND PERFORMANCE

In order to verify that Sakura performs well on collisional N-body
systems, we present some tests for N ranging from a few to a thou-
sand. We compare the results of Sakura to those obtained using a
modified version of the Leapfrog integrator and a standard 4-th order
Hermite integrator, available in the AMUSE framework. The mod-
ification in the Leapfrog integrator consists of the introduction of a
routine to allow the use of adaptive time-steps. In this case the time-
symmetry of the Leapfrog method is still preserved because we adopted
the recipe for time-symmetrisation as suggested in 7. A comparison
of the computational costs and scalings with N is also presented. We
emphasize that the base time-step size in each of the tests of Sakura is
kept constant during the simulation, whilst in Leapfrog and Hermite
integrations a shared adaptive time-step scheme has been adopted.
The time-step criterion used within Leapfrog integrations is the time-
symmetrized version of 7 ~ min((r;;/a;;)'/?), whilst in Hermite code
the standard Aarseth-criterion is used. For other details about these
codes we refer the reader to the AMUSE documentation®. The value
of the constant time-step size in Sakura is chosen in such a way that
the same number of integration steps is taken as in the case of the
Hermite integrations. Similarly, the time-step parameter in Leapfrog
integrations is chosen to give approximately the same number of steps
as in Hermite integrations. Note that, by construction, Sakura does
not admit any softening parameter. Therefore, we also use zero soft-
ening in the other methods.

3.3.1 Small-N Systems

We start by presenting some numerical tests for well known simple
small-N systems including the figure-eight system (N = 3; 7), the
Pythagorean system (N = 3; ?7) and the sun with planets® (N = 10;
Ito & Tanikawa (2002)). We do not show results for a single binary
system (N = 2), since in this case Sakura reduces to an ordinary
Kepler-solver which gives a solution for the binary orbit accurate to
machine precision. The simulation time spans 100 N-body units (?)
in the case of the first two systems and 102 yr in the case of the solar
system.

In Fig. 3.1, we present the relative energy error as a function of
the average time-step size (left panels) and CPU time vs relative

SWe include Pluto in our simulations of the solar system since we use the initial
conditions as given in Ito & Tanikawa (2002).



3.3. VALIDATION AND PERFORMANCE 41

energy error (right panels) for the figure-eight system (top panels),
Pythagorean system (middle panels) and sun with planets (bottom
panels), for the Leapfrog, 4-th order Hermite and Sakura. We note
that for the figure-eight system the 4-th order Hermite usually per-
forms better than Leapfrog and Sakura for a level of energy conser-
vation < 1076, We attribute this to the fact that in this system the
intrinsic time-step size of the particles does not change considerably
during the orbital evolution and then, for smaller 7, the 4-th order
convergence rate of the Hermite integrator outperforms Leapfrog and
Sakura, which are of 2-nd order. We notice that in this case, where
all three particles democratically interact among themselves, Sakura
is not expected to be the most suitable method of integration due to
the non-commutativity of 2-body interactions. Nevertheless, as we see
in Fig. 3.1 (top panels), its performance is comparable to that of the
Leapfrog integrator. For the Pythagorean system, which contains sev-
eral close encounters between particles during its orbital evolution, all
three integration methods are somewhat comparable, despite Sakura
using constant time-steps and the other two methods using adaptive
time-steps. For the solar-system, in which the orbital evolution of
the planets is almost Keplerian, Sakura delivers about four orders of
magnitude better energy conservation than Leapfrog, being also more
precise than Hermite integration for time-steps > 1073, while consum-
ing the least amount of CPU time.

For those kind of systems, an integration step using Sakura is usu-
ally more expensive than an integration step using Hermite or Leapfrog
by a factor 2 — 4. Also, since all these codes scales as O(N?), these
figures are expected to remain unchanged when the number of par-
ticles increases. However, due to the fact that Sakura can handle
compact binaries and/or resolve close encounters even with constant
T, less time-steps are required for a given level of energy conservation
implying that in these cases Sakura might outperform Hermite and
Leapfrog integrations. In order to confirm this, we also include a test
with a specially constructed initial condition which consists of a hier-
archical binary system (N = 4) with two tight binaries orbiting around
each other in a circular orbit with semi-major axis aouter = 1 (N-body
units). The particles in each tight binary are themselves in a circular
orbit with semi-major axis ainner- We have selected a semi-major axis
ratio in the range douter/@inner = 10 — 1000, and performed a simula-
tion for these systems for a time span of one Pyyter, i.€., the largest
orbital period in the system (which is the same for all semi-major axis
ratios). In Fig. 3.2 we present the relative energy error as a function of



42 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

T T
AAa Leapfrog
-2H === Hermite Ap
®®e Sakura

10g10|dE/E|

14} -
o -3k, ‘ ‘ ‘
7 -6 -5 -4 -3 -2 -1 0 14 10 6 2
log;, <7> 0g,0|dE/E|
o ‘

log,o|dE/E]
IS
loglotcpu

[ - S g
log,, <7>
0,
...... A
_ -
>~ -4 7 i
m Q)
= =
= o
s 8f 2
< 3
A
Aun®
| &
At 0¥ -3k ‘ ‘ .
-5 -4 -3 2 -1 0 1 12 -8 4 0
log,q <7> log,|dE/E]

Figure 3.1: Relative energy error as a function of the average time-step size (left
panels) and CPU time (in seconds) vs relative energy error (right panels) for the
Leapfrog integrator (triangles), 4-th order Hermite (squares) and Sakura (bullets)
for three different systems: figure-eight system (top panels), Pythagorean system
(middle panels) and sun with planets (bottom panels). (1) is given in N-body units
and stands for the average value of the shared adaptive time-step size in Hermite
integrations.



3.3. VALIDATION AND PERFORMANCE 43

the time-step size (left panels) and CPU time vs relative energy error
(right panels) for the 4-th order Hermite, Leapfrog and Sakura.

For the aoyter/@inner = 10 case (top panels in Fig. 3.2), Sakura deliv-
ers the same level of energy conservation as Leapfrog, although being
more time consuming, whilst 4-th order Hermite has better energy
conservation due to its higher order convergence for time-step sizes
< 1072, However, for tighter interacting binaries (middle and bottom
panels in Fig. 3.2), Sakura shows increasingly better performance with
the compactness of the interacting binaries. In particular, for a level
of energy conservation of 1079, typically adopted in collisional N-body
simulations, Sakura is more than a order of magnitude faster than Her-
mite for the tightest binary configuration, aouter/@inner = 1000, while
having a similar speed as Leapfrog. Also for the tightest binary con-
figuration, Sakura is the most precise integration method for a range
in time-steps of 6 orders of magnitude. On the other hand, for this
latter system, the 4-th order Hermite results only start converging
to good energy conservation when using time-steps < 107°®, which
in some circumstances might be impractical in computational terms,
when systems of this kind are present in a large-scale simulation.

3.3.2 Large-N Systems

To test how Sakura behaves with a more general N-body problem,
we use as initial condition a 128-body Plummer sphere containing a
black-hole in its center. We assume equal mass for the stars and con-
struct the system in virial equilibrium but for different black-hole to
star mass ratios, ¢ = Myp/Mstar, ranging from ¢ = 1 (no black-hole)
to ¢ = 10'2. We performed simulations for each of these initial condi-
tions for 1 N-body time unit. Once again, the performance of Sakura
is compared with that of the Leapfrog and standard 4-th order Her-
mite integrators. The results are shown in Fig. 3.3 which presents the
relative energy error as a function of the mass ratio for time-step sizes
() = 1073,107*,107° (top, middle and bottom lines), and Fig. 3.4
which present the CPU time vs relative energy error for different mass
ratios: ¢ = 10 (top left), ¢ = 10° (top right), ¢ = 10 (bottom left)
and ¢ = 10'2 (bottom right).

In Fig. 3.3 we see that the relative energy error for all three methods
initially increases with the mass ratio till the point when g ~ 10%. For
larger mass ratios, the behaviour of Sakura clearly differs from the
other two methods. While in Leapfrog and Hermite integrators the
energy error stabilizes at a certain level, in Sakura we observe a very
interesting trend in which its energy error decreases with increasing



44

log,|dE/ E| log,|dE/E|

10g1o|dE/E|

Figure 3.2: The same as Fig. 3.1 but for the hierarchical binary system for the
following semi-major axis ratios: douter/@inner = 10 (top panels), aouter/@inner = 100
(middle panels), aouter/@inner = 1000 (bottom panels).

'
N

-10f

-14F

-10

-14f

-10

-14

CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

|| ®®e Sakura

aAa Leapfrog
mEm Hermite

27 6 =5 =4 -3 -2 -1
logy <7>

-7 —6 -5 -4 -3 -2 -1
log o <7>

27 26 <5 =2 =3 =2 -1
log o <7>

IOg IOtcpu

loglotcpu

1Ogl()tcpu

14 10 6 =2
10g10|dE/E|

14

14 10 6 =2
10g10|dE/E|




3.3. VALIDATION AND PERFORMANCE 45

Y [

[ R

- N
I | S

_ __  Of
X R -~
~_ ~= l-.*.*.—.*.*.—.*li
= =
s i~
= =
— —
1Y) o0
] Q
— _ — _
W n s n
logloMBH/Mstar logIOMBH/Mstar

Figure 3.3: For a Plummer sphere with a central black hole, the panels show
a comparison of the relative energy error as a function of the black-hole to stellar
mass ratio for time-step sizes (1) = 1072,10™%,107° (top, middle and bottom lines).
The left panel present the results for Leapfrog (triangles) and Sakura (bullets) and
the right panel present the results for 4-th order Hermite (squares) and Sakura
(bullets).

3F 1 3t 1
H My, / My, =107 H My/ My, =10°
\l | ]
2f - 2r
g g
> 1r > 1r Y
5 = b
o0 o} i o0  Of A
< a 2 a
—1H aaa Leapfrog —-1r
mmg Hermite
—2[{ e®e Sakura —-2r
-16 -12 -8 -4 0 4 -16 -12 -8 -4 0 4
10g10|dE/E| 10g10|dE/E|
3 = M, /M, =10°] 5 = s My,/M,,, =10"]
= a ol Mgar = = a, o/ Mgy =
2t A 2+ . b
S ‘A, 3 > A
! Sty ! AR
5 b 5 g
of a of p
2 B kS :
_17 _1,
-2t -2t
-16 -12 -8 -4 0 4 -16 -12 -8 -4 0 4
10g10|dE/E| log10|dE/E|

Figure 3.4: For the same system as in Fig. 3.3, the panels show the CPU time (in
seconds) vs relative energy error for the following mass ratios: ¢ = Mpn/Mstar = 103
(top left), ¢ = 10° (top right), ¢ = 10° (bottom left) and ¢ = 10'? (bottom right).



46 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

mass ratio. In other words, Sakura becomes more precise and therefore
more efficient when the mass ratio grows, as can be seen in Fig. 3.4
for mass ratios (top left), ¢ = 10° (top right), ¢ = 10° (bottom left)
and ¢ = 102 (bottom right). An explanation of why these methods
behave this way is as follows.

When no dominant massive particle is present in the system (g ~
1 —10), after only 1 N-body time unit the system has not evolved for
enough time to form a close binary (which is an outcome of strong few-
body interactions, see e.g. 7). Therefore, in these circumstances most
of the particles interact weakly among themselves and all the methods
are able to integrate the orbital evolution of stars with relatively good
energy conservation. Around a mass ratio ¢ ~ 10 — 10 the massive
particle quickly forms a binary system with a close neighbour, which
eventually experiences several interactions with close perturbers, thus
deteriorating the precision of the integration in all three methods. For
mass ratios ¢ > 10% the orbital motion of stars becomes predomi-
nantly Keplerian. In this regime, the orbits in the system become
mostly regular, and close encounters between stars become gradually
less important. Therefore, the energy error is expected to converge to
the truncation error associated to each of these methods. In Leapfrog
and Hermite integrators, by decreasing the time-step size the energy
conservation is thus improved but it remains approximately at the
same level of conservation regardless the mass ratio (for ¢ > 103). On
the other hand, Sakura departs from a constant level of energy conser-
vation observed in the other two integrators, and becomes increasingly
more precise with the mass ratio. This happens because in Sakura,
the truncation error comes from two different sources: i) the error due
to the Kepler-solver, which is essentially at machine precision, and
ii) the error associated to the non-commutativity of 2-body interac-
tions in close multiple-body encounters. With this knowledge, it is
easy to intuitively understand why Sakura becomes more precise with
the increase of the mass ratio: simply because the error associated to
the non-commutativity of 2-body interactions becomes less important
and, thus the overall error of the integrator converges to that of the
Kepler-solver.

For (1) ~ 107*, which corresponds to the middle lines (for each
integrator) in Fig. 3.3, Sakura is ~ 5 (~ 6) orders of magnitude more
precise than Hermite (Leapfrog), for a mass ratio ¢ = 10%. Also,
as is shown in Fig. 3.4, Sakura’s performance is similar to Leapfrog,
for a mass ratio ¢ = 103, and becomes gradually more efficient than
Hermite and Leapfrog, when the mass ratio increases. This happens
due to a change in slope of Sakura’s curves in panels showing the CPU



3.3. VALIDATION AND PERFORMANCE 47

time vs relative energy error when the mass ratio goes from ¢ = 103
to ¢ = 10'? in Fig. 3.4, which means that for mass ratios ¢ > 1012,
Sakura can give very accurate results (dE/E ~ 10710 — 107!2) even
when using relatively large time-steps, thus saving a big amount of
computational time compared to Leapfrog and Hermite integrators.

As an additional general N-body test we performed a simulation of
a 1024-body system through core collapse using Sakura with several
time-step sizes 7 = 10°,1071,1072,10~*, and the Leapfrog and stan-
dard 4-th order Hermite code using shared adaptive time-steps. For
the parameter of precision we choose = 27° ~ 0.03 in order to have
a level of energy conservation of about 10~* by the moment of core
collapse in Hermite integration. In this particular test, we have used
a parallel version of Sakura (see section 3.4) running on a 4-core Intel
Xeon CPU @2.40 GHz. For the Leapfrog and Hermite codes (which
are also parallelised) we setup the number of MPI processes to 4. In
Fig. 3.5 we present the time evolution of the core radius using these
codes. We see from this figure that for a sufficiently small time-step
size (7 ~ 1074, lowest black curve in Fig. 3.5) Sakura is able to evolve
the system through core collapse. As expected from the exponen-
tial orbital instability (7), the results from Sakura slightly differ from
Hermite and Leapfrog calculations. Apart from that, the core radius
evolution obtained using Sakura follows remarkably well the results
from the other two integrators.

In Sakura, the appearance of close binaries does not represent a
computational challenge. Therefore, in this simulation no slow down
in performance is observed, as is the case in most other N-body codes
that also try to correctly evolve such compact sub-systems. As a con-
sequence, the most expensive simulation using Sakura (bottom black
line in Fig. 3.5) was completed in about three days of CPU time. The
Leapfrog integration took about a week of processing time, whereas
the Hermite simulation, after more than a month of CPU time (on the
same machine), had not been completed, due to the dynamical for-
mation of very close binaries and consequent decrease of the adaptive
time-step size.

Although Sakura integrates all pairwise interactions exactly, the
presence of close perturbers for a particular ¢ — j pair represents the
main source of error during the integration. The reason for that orig-
inates from our assumption that each pair of particles can be treated
as an independent 2-body problem during a time-step 7. If 7 is larger
than the time scale of interaction between the ¢ — j pair and its per-
turber, the perturbation will be delayed by 7, leading to spurious in-
tegration of a tight multi-component sub-system in an N-body sim-



48 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

_0.5 btk
LA
: m‘,‘d@,‘, ,\5“:‘, I :'4 "
L é”‘“'ﬂ"&_
ey i
g
o —1.0t
O
o
S
g
— —1.5}
_2.()?
— Sakura
----- Leapfrog
- - Hermite
_25 L 1 |
0 100 200 300 400

Time

Figure 3.5: Core radius vs simulation time for a 1024-body Plummer sphere. We
compare Sakura using different time-step sizes (solid lines, 7 = 10°,107%,1072,10™*
from top to bottom) to Leapfrog (dotted line) and standard 4-th order Hermite
(dashed line), using shared adaptive time-steps with a parameter of precision n &
0.03. All the quantities are presented in N-body units.



3.4. PARALLELIZATION 49

ulation. This is a consequence of the non-commutativity of 2-body
interactions. In Fig. 3.5, the use of relatively large time-steps reveals
this issue: although the system as a whole stays bound, strong few-
body interactions in the cluster core are not correctly integrated and
as a consequence the core radius expands. However, by using smaller
7 the numerical issues due to strong perturbations on the ¢ — j pair is
diminished and as a consequence Sakura evolves the multi-component
sub-systems that may form dynamically during the simulation more
precisely. In those calculations, the level of energy conservation at the
moment of core collapse stayed within dE/E < 10~* for Hermite, and
dE/E < 1072 for Leapfrog and Sakura (for the bottom black line in
Fig. 3.5), even though Sakura used a constant time-step.

The possibility to include a variable time-step scheme in Sakura
might improve its results and is currently under investigation. The
fact that Sakura evolves each pair of particles exactly, implies that the
time-step criterion does not need to be so restrictive as in the case of
traditional integration schemes. For example, if we consider the case
of a hierarchical triple system in which the orbital period of the inner
binary is a certain factor shorter than the time-scale of interaction
between the binary and the outer perturber, we have observed in our
tests (not reported here) that choosing a time-step size comparable
to the longest time-scale still preserves the binary orbital evolution.
In traditional codes, this would not be possible and the inner binary
would end up being artificially disrupted if the time-step size has not
been decreased to a fraction of its orbital period. Therefore, for Sakura
we suspect that a time-step criterion based on the closest perturber
distance to a given pair being evolved seems to be a more appropriate
choice than an Aarseth-like time-step criterion. We will further discuss
this issue on section 3.5.

3.4 PARALLELIZATION

We have implemented three different versions of Sakura: i) a single
GPU implementation using OpenCL; ii) a distributed memory par-
allel implementation using MPI, and iii) a serial implementation in
C/C++ (used in all the tests presented above, with exception of the
one in Fig. 3.5, for which the MPI version was used). The parallelisa-
tion schemes adopted for distributed memory and GPU versions are
quite similar as those adopted for conventional N-body codes on those
platforms (see Portegies Zwart et al. 2008 and ?, respectively). At the
current stage of development our GPU implementation is not yet very
efficient due to many branch conditions present in the Kepler-solver.



50 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

4 —
* 1.0 g
3r o, 1 em
o 2L g * _ > 0.9 N
E ‘- T O N
[ ST S - ['S *— g *
Bio 0 \‘\1\\‘\ o . EOS |
o0 ~a 1 N=1k
9 -1 *~ -, W o7 ada N=4% 7
mmm N=16k
-2t J 0.6 xxa N=64F 1
0 1. 2 3 4 5 6 7 0 1 2 3 4 5 6 7
log,p logyp

Figure 3.6: For the MPI version of Sakura the plots show the strong scaling
(left panel) and the parallel efficiency (right panel) for four different problem sizes:
N = 1k (solid lines), N = 4k (dashed lines), N = 16k (dot-dashed lines) and
N = 64k (dotted lines). Here, k stands for 1024 and p is the number of processor
cores used for the run.

Here we mainly present some performance results using the MPI
version of Sakura for tests using up to 128 CPU cores. The test simu-
lations consist of a Plummer sphere with N equal mass particles being
integrated for 1 N-body time unit. We use four different number of
particles N = 1k, 4k, 16k, 64k (k stands for 1024) and in each case we
measure the total wall clock time needed to complete the simulation
with different number of cores. In Fig. 3.6 we present, for four differ-
ent problem sizes, the performance measurements in the form of the
strong scaling (Topy(p) vs p) and the parallel efficiency:

Tepu(p)

Efficiency = —————,
pTepu(1)

(3.29)

where Topy(p) is the CPU time measured when using p processor
cores.

As is evident from the Fig. 3.6, Sakura exhibits an almost perfect
strong scaling (top panel) and a remarkably good parallel efficiency
(bottom panel). For the worst case scenario presented here (N = 1k,
using 128 CPU cores), Sakura achieves a parallel efficiency as good as
64%, even though the workload in this case is as small as 8 particles
per core. In addition, the strong scaling plot shows that, even in this
worst case scenario, the CPU time could still be decreased by using a
higher number p of processor cores. For N > 4k, the parallel efficiency
of Sakura stays very close to 100%.



3.5. SUMMARY AND DISCUSSION 51

3.5 SUMMARY AND DISCUSSION

We have described a Keplerian-based Hamiltonian splitting for gravita-
tional N-body simulations and its implementation in a new code called
Sakura. In this method a general N-body problem can be solved as
a composition of multiple, independent, 2-body problems. The inte-
gration scheme is constructed on the assumption that, during a small
time interval 7, each pair of particles in the system can be treated
as an independent 2-body problem. With this splitting an analyti-
cal Kepler-solver can be used to accurately, and independently, evolve
each 2-body interaction in the system, thus making the code espe-
cially suitable for simulations in which compact primordial binaries or
close dynamically formed binaries are present. Hierarchies in which
one of the components is a compact binary and systems with a central
dominant mass are also examples of physical systems in which Sakura
performs well when compared to traditional codes.

Because Sakura can easily handle arbitrarily compact binaries in an
N-body simulation, the code is able to evolve a star-cluster through
core-collapse without much difficulty. In particular, since Sakura can
do this even with the use of constant time-steps, the simulation does
not suffer from any slow down in performance as is the case in other
non-regularized N-body codes. As an example, in the 1024-bodies
core-collapse simulation presented in section 3.3.2, Sakura was able to
complete the run in about 3 days of CPU time on a 4-core machine.
The same system being integrated with a 4-th order Hermite integrator
took more than one month of CPU time on the same machine, due to
a severe slow down in performance after the formation of the first hard
binary in the system.

There are, however, some circumstances in which Sakura may not
be the most suitable code to perform an N-body simulation. For
example, for systems in which multiple bodies democratically interact
among themselves, Sakura may perform almost as badly as a simple
Leapfrog integrator, as demonstrated in the integrations of a figure-
eight system in section 3.3.1. This happens because of our underlying
assumption that the N-body problem can be decomposed in multiple,
independent, 2-body problems. Such decomposition in fact constitutes
the main source of error when a given 7— j pair is being integrated with
a time-step 7 which is larger than the time-scale of the perturbation
due to a close neighbour. In many cases this issue may be surpassed by
decreasing the constant time-step size used in the simulation. However,
the cause of the problem lies on the non-commutativity of 2-body
interactions when multiple bodies are involved in a democratic close



52 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA

encounter. While it is not easy to solve this issue without breaking
our Keplerian splitting approach, the introduction of an adaptive time-
step scheme in Sakura might alleviate these numerical difficulties and
is currently under investigation.

According to some of our tests (not reported in the present paper),
a time-step criterion based on the strength of the perturbation on a
given ¢ — j pair seems to work relatively well compared to a constant
7. However, this improvement is only significant when close multiple-
body encounters take place. On the other hand, one could in principle
choose 7 ~ min(ry;/vij), T ~ min((ri;/a;;)'/?) or use a traditional
Aarseth-like time-step criterion, but we advocate that this may not be
the optimal choice because these criteria also include the contribution
of the i—j pair itself, which in principle contributes to a severe decrease
in time-steps if a close binary is present in the system. In Sakura,
these severely short time-steps are not necessary, because the use of a
Keplerian treatment for each pair of particles automatically regularizes
every 2-body interaction in the system. It is only when multiple-
body encounters happens that the time-step should adapt itself to
properly resolve the approximation of a perturber. Therefore, we stress
here our preference for a perturbation-based time-step criterion rather
than an Aarseth-like criterion for use in Sakura. Whether or not such
perturbation-based criterion is the best choice for Sakura is a matter
that will be addressed elsewhere.

Another point we want to emphasize here is the behaviour of Sakura
when integrating a system with a central massive black-hole. As shown
in Fig. 3.3, the level of energy conservation in Leapfrog and 4-th order
Hermite integrations remains approximately constant with the increase
of the black-hole to stellar mass ratio. For Sakura, we found that it
performs much better than previous approaches, becoming gradually
more precise with the increase of the mass ratio. In particular, for the
case of a mass ratio ¢ = 10% Sakura can give > 5 orders of magnitude
better energy conservation than Hermite integrator, being at the same
time up to 4 orders of magnitude faster when the mass ratio increases
to ¢ > 10°. The fact that Sakura can be, at the same time, fast
and accurate in this regime, makes this code highly suitable for nearly
Keplerian systems where a massive particle dominates the evolution of
surrounding particles, such as in planetary systems and galactic nuclei
with super-massive black-holes.

Lastly, Sakura has proven to be quite easy to parallelise for dis-
tributed memory systems using MPI. The GPU implementation, even
though theoretically easy, is still not totally efficient due to the pres-
ence of many branching conditions in the Kepler-solver. In algorithmic



3.5. SUMMARY AND DISCUSSION 53

terms, the bulk of computation in Sakura occurs inside a double loop,
similar to the one used to calculate the acceleration of particles in
conventional N-body codes. Therefore, we were able to immediately
employ existent parallelisation schemes in Sakura without much effort.
We argue that the fact that our GPU implementation is not yet very
efficient is not a problem due to the parallelisation scheme itself, but
rather due to the poor /inefficient support for branch conditions in cur-
rent GPUs. A restructure in our Kepler-solver in order to eliminate
(or minimize) these branch conditions may address this issue, and pos-
sibly speed up even more the MPI version on CPUs, which has already
shown a remarkable parallel efficiency, with close to 100 percent effi-
ciency for 16k particles on 128 cores, and 64 percent efficiency when
using only eight particles per core.



54 CHAPTER 3. EFFICIENT N-BODY CODE: SAKURA



