
Chaotic Dynamics in N-body systems
Boekholt, T.C.N.

Citation
Boekholt, T. C. N. (2015, November 10). Chaotic Dynamics in N-body systems. Retrieved from
https://hdl.handle.net/1887/36077

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/36077

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/36077

Cover Page

The handle http://hdl.handle.net/1887/36077 holds various files of this Leiden University
dissertation

Author: Boekholt, Tjarda

Title: Chaotic dynamics in N-body systems
Issue Date: 2015-11-10

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/36077

2

A Precise N-body Code:
Brutus

Based on: On the Reliability of N-body Simulations by T. C. N. Boekholt and

S. F. Portegies Zwart in Computational Astrophysics and Cosmology, Volume 2,

article id. #2, 21 pp. (2015), Ch.1-3

The general consensus in the N-body community is that statistical
results of an ensemble of collisional N-body simulations are accurate,
even though individual simulations are not. A way to test this hy-
pothesis is to make a direct comparison of an ensemble of solutions
obtained by conventional methods with an ensemble of true solutions.
In order to make this possible, we wrote an N-body code called Bru-
tus, that uses arbitrary-precision arithmetic. In combination with the
Bulirsch–Stoer method, Brutus is able to obtain converged solutions,
which are true up to a specified number of digits.

In this chapter we present the structure of Brutus and illustrate
the method of convergence by applying it to several small-N systems.
For the first time, we can exactly determine how accurate our N-body
results are, and obtain true solutions to general N-body configurations.
Finally, we construct a model for the scaling of Brutus with N , for
converged solutions to reach core collapse. We conclude that it scales
roughly exponentially, which is effectively caused by the exponential
divergence between neighbouring solutions.

2.1 INTRODUCTION

Analytical solutions to the N-body problem are known for N = 2,
which are the familiar conic sections. Also, for several systems pos-
sessing symmetries, analytical solutions have been found, for example
the equilateral triangle (Lagrange, 1772). For a more general initial
configuration, solutions have to be obtained by means of numerical
integration. Given an initial N-body realisation, one can calculate all
mutual forces and subsequently the net acceleration of each particle.

13

14 CHAPTER 2. PRECISE N-BODY CODE: BRUTUS

Different integration methods exist which take the accelerations, and
update the positions and velocities to a time t + ∆t, with ∆t the
time-step size. This process is repeated until the end time is reached.

? recognised that obtaining the solution to an N-body problem
by numerical integration is difficult. This is caused by exponential
divergence. Consider a certain N-body problem, i.e. N point-particles,
each with a given mass, position and velocity. This system evolves
with time in a definite and unique way. If one goes back to the initial
state and slightly perturbs only one coordinate of a single particle,
the perturbed N-body problem will also have a definite and unique
but different solution than the original one. When the two solutions
are compared as a function of time, it is observed that differences
can grow exponentially (????). If the initial perturbation is due to
a numerical error, the calculated solution will also diverge away from
the true solution.

Several authors have estimated the time-scale of this divergence
(??), and arrived at an e-folding time-scale of the order a dynamical,
crossing time. Simulation times of interest are typically much longer
than a crossing time and therefore staying close to the true solution is
numerically challenging.

If the result of a direct N-body simulation of for example a star
cluster, has diverged away from the true solution, the result may well
be meaningless (?). The general consensus however, is that statisti-
cally the results are representative for the true solution to the N-body
problem (???). The underlying idea is that the statistics of an en-
semble of N-body simulations are representative for the true statistics,
obtained by an ensemble of true solutions, with the same set of initial
conditions. We regard this the hypothesis we want to test.

One way to test this hypothesis is to directly compare statistics
obtained by conventional methods, with the statistics obtained from
an ensemble of true solutions (see Chapter 4). To obtain true solutions,
we wrote an N-body code which can solve the N-body problem to
arbitrary precision.

Such a code can be realised if the different sources of error are con-
trolled. The error has contributions from the time discretisation of the
integrator and the round-off due to the limited precision of the com-
puter (?). Another possible source of error is in the initial conditions,
for example the configuration of the solar system is only approximately
known (Ito & Tanikawa, 2002). However, if the initial condition is a
random realisation of a distribution function, this is less often a prob-
lem. Using the Bulirsch–Stoer method (??), the discretisation error
can be controlled to stay within a specified tolerance. Using arbitrary-

2.2. METHODS 15

precision arithmetic instead of conventional double-precision or single-
precision, the round-off error can be reduced by increasing the number
of digits.

We obtain converged solutions to the N-body problem by decreas-
ing the Bulirsch–Stoer tolerance and increasing the number of digits
systematically. We define a converged solution in our experiments as a
solution for which the first specified number of decimal places of every
phase-space coordinate in our final configuration in the N-body ex-
periment becomes independent of the length of the mantissa and the
Bulirsch–Stoer tolerance. We explain the method of convergence in
Sec. 2.2, we give examples of the procedure in Sec. 2.3 and we measure
the scaling of Brutus in Sec. 2.4.

2.2 METHODS

2.2.1 The Benchmark Integrator

The gravitational N-body problem aims to solve Newton’s equations of
motion under gravity for N stars (Newton, 1687). A popular integra-
tor to perform this task is the fourth-order Hermite predictor-corrector
scheme (?), using double-precision arithmetic. The experiments we
discuss in Sec. 4.1 will use this integrator as a benchmark test. We
adopt a shared, adaptive time-stepping scheme with the following cri-
terion:

∆t = ηmin
√

∆rij/∆aij . (2.1)

Here η is the time-step parameter and ∆rij and ∆aij are the rela-
tive distance and acceleration for the pair of particles i and j. We
implement no further constraints on the time-step size.

To test how inaccurate we are allowed to integrate while still ob-
taining accurate statistics (??) we vary the time-step parameter η, to
obtain statistics from conventional simulations with different precision.

2.2.2 The Brutus N-body Code

The results obtained with the benchmark integrator will be compared
to those obtained with Brutus (see Chapter 4), which uses an arbitrary-
precision library 1. With this library we can specify the number of bits,
Lw, used to store the mantissa, while the exponent has a fixed word-
length. The length of the mantissa can be specified and increased,
with the aim of controlling the round-off error.

1We use the open-source library GMP: http://gmplib.org/

16 CHAPTER 2. PRECISE N-BODY CODE: BRUTUS

The integration of the equations of motion is realised using the
Verlet-Leapfrog scheme (?). The time-step is shared among all parti-
cles, but varies for every step according to Eq. 2.1.

To control the discretisation error, we implemented the Bulirsch–
Stoer (BS) method, which uses iterative integration and polynomial
extrapolation to infinitesimal time-step size (??). An integration step
is accepted, when two subsequent BS iterations have converged to
below the BS tolerance level, ε.

The time-step parameter η and the BS tolerance ε, both influence
the performance. If η is too big, convergence may not be achieved for
any tolerance. If η is too small, the many integration steps will render
the integration too expensive. There is an optimal value for η as a
function of ε. We measured this relation empirically, which results in:

log10 η = A log10 ε+B. (2.2)

For ε < 10−50 the power law converges to A = 0.029 and B = 0.45.
Extrapolating this relation to ε > 10−50 will cause the time-step size
to become larger than the time scale for the closest encounter in the
system. Therefore this relation saturates to a flatter power law for
ε > 10−50 with A = 0.012 and B = −0.40. Compared to a fixed value
for η, this relation speeds up the iterative procedure by about a factor
three or more. The code is implemented as a community code in the
AMUSE framework (?) under the name Brutus.

2.2.3 Method of Convergence

For every simulation we have to define the BS tolerance parameter
ε and the word-length Lw. In an iterative procedure we vary both
parameters systematically, each time carrying out a simulation until
t = tend. We subsequently calculate the phase space distance, δ2

A,B,
between two solutions A and B:

δ2
A,B =

1

6N

N∑
i=1

6∑
j=1

(qA,i,j − qB,i,j)2 . (2.3)

The first summation is over all particles and the second summation is
over the six phase-space coordinates denoted by q (?). We normalise
by 6N , so that δ represents the average difference per phase-space
coordinate between two solutions A and B. In our experiments we
adopt Hénon units 2 (??), in which the typical values for the distance

2Formerly known as N-body units. Introduced by D. Heggie at MODEST14.

2.2. METHODS 17

and velocity are of the same order. We will also use the distance in
just position or just velocity space as they might behave differently.

We consider the solutions A and B to be converged when δA,B <
10−p at all times during the simulation. Note that converged in this
case means convergence of the total solution, contrary to convergence
per integration step as in the previous section. This criterion for con-
vergence is roughly equivalent to comparing the first p decimal places
of the positions and velocities for all N stars, in two subsequent cal-
culations A, B. In most of our experiments we adopt p = 3, i.e. all
coordinates have to converge to about three decimal places or more.
We perform a subset of simulations with p = 15 to investigate the
effect of small errors (see Sec. 4.2.4).

Each simulation starts by specifying the initial positions and ve-
locities of N stars in double-precision (see Sec. 4.1). The simulation
is carried out with the parameter set (ε, Lw). We start each simu-
lation with ε = 10−6 and Lw = 56 bits. This corresponds to a level
of accuracy similar to what we reach with the conventional Hermite
integrator. After this simulation, we increase Lw, for example to 72
bits (∼ 22 decimal places), redo the simulation and calculate δ2. We
repeat this procedure until δ < 10−p. When this is achieved, we have
obtained a solution in which the round-off error is below a specified
number of decimal places for this particular value of ε.

We now reduce the tolerance parameter ε, for example by a factor
of 100, and repeat the procedure of increasing Lw. This series will
again lead to a converged solution, but this time it is obtained using
a smaller ε, and is likely to be different than the previous converged
solution. We continue decreasing the value of ε by factors of 100 and
repeat the procedure, until two subsequent iterations in ε lead to a
converged solution with a value of δ < 10−p. By this time we are
assured of having a solution to the gravitational N-body problem, that
is accurate up to at least p decimal places.

In practice, we speed up the procedure by writing the word-length
as a function of BS tolerance. Consider for example a BS tolerance
of 10−20. To reach convergence up to this level, we need at least 20
decimal places. Adding an extra buffer of 10 digits gives a total of
30 digits, or equivalently a word-length of about 112 bits. For this
example, 112 bits turns out to be a good minimum word-length. For
a first estimate of the word-length, we use:

Lw = 4 |log10 ε|+ 32 bits. (2.4)

With this relation, we will only have to specify a single parameter ε,
which directly controls the discretisation error and indirectly controls

18 CHAPTER 2. PRECISE N-BODY CODE: BRUTUS

the round-off error. For most of the systems in our experiment the
discretisation error turns out to be the dominant source of error and
as a consequence ε has to decrease quite drastically. When ε decreases,
Lw increases, even up to the point that there are many more digits
available than really needed to control the round-off error. In the case
when the discretisation error dominates, the above defined minimum
word-length for a given BS tolerance will result in the converged solu-
tion. When the round-off error dominates the word-length should be
varied independently.

2.3 VALIDATION AND PERFORMANCE

2.3.1 The Pythagorean Problem

To show that our method works, we adopt the Pythagorean 3-body
system (?). Previous numerical studies have shown that this system
dissolves into a binary and an escaper (??). After many complex, close
encounters the dissolution happens at about t = 60 time units (?), or
about 16 crossing times.

We adopt the initial conditions for the Pythagorean problem and
integrate up to t = 100. To illustrate how the method works we start
with a high tolerance and short word-length, (ε = 10−2, Lw = 40 bits),
which is less precise than double-precision. In Fig. 2.1, this calculation
is compared to a simulation with (ε = 10−4, Lw = 48 bits), through
the yellow (upper) curves in the first three panels. After the first BS
integration step, δ obtains a value of the order of the BS tolerance,
and continues to increase due to exponential divergence, to eventually
exceed δ ∼ 10−1, after which the errors become on the order of the
typical distance and speed in the system.

In the following step, we repeat the calculation with a precision of
(ε = 10−6, Lw = 56 bits), and compare the result with the calculation
using (ε = 10−4, Lw = 48 bits). The comparison is represented by the
orange curves (second from above) in Fig. 2.1. The overall behaviour
of δ is similar, but the system diverges at a later time due to a higher
initial precision.

We continue the iterative procedure until a converged solution has
been obtained. In the first three panels of Fig. 2.1, it can be seen that
subsequent simulations with higher precision shift the curve to lower
values of δ. Superposed on the steady growth of the error are sharp
spikes, where the error grows by several orders of magnitude, after
which the error restores again (?). These spikes are dominated by
errors in the velocity, as can be deduced by comparing the magnitude

2.3. VALIDATION AND PERFORMANCE 19

0 20 40 60 80 100

t

-16

-12

-8

-4

0

lo
g 1

0d
r

0 20 40 60 80 100

t

-16

-12

-8

-4

0

lo
g 1

0d
v

0 20 40 60 80 100

t

-16

-12

-8

-4

0

lo
g 1

0δ

0 20 40 60 80 100

t

-16

-12

-8

-4

0

lo
g 1

0δ

Figure 2.1: Exponential divergence in the Pythagorean problem. In the top two
panels and the lower left panel, Brutus is compared with Brutus with increasing
precision. The curves at the top of each panel compare a tolerance of 10−2 with
10−4, the curve below compares 10−4 with 10−6 and so on. The word-length is a
function of the tolerance as in Eq. 2.4. In the top left panel we show the distance in
position-space, in the top right panel in velocity-space and in the bottom left panel
in the full phase-space (all normalized by the number of stars and coordinates).
The lower right panel compares the converged solution (the lowest curve in the
other plots), with Hermite solutions with time-step parameters η = 2−3, 2−5, 2−7

up to 2−13.

20 CHAPTER 2. PRECISE N-BODY CODE: BRUTUS

of the spikes in position and velocity-space. Eccentric binaries which
are out of phase when comparing two solutions cause large, periodic
errors in the velocity. We finish the procedure when a solution is
obtained for which the criterion for convergence is fulfilled, considering
the magnitude of the error between the sharp spikes (bottom, black
curves).

In the bottom right panel of Fig. 2.1, we compare solutions obtained
by the Hermite integrator to the converged solution. The different
curves belong to different time-step parameters; η = 2−3, 2−5, 2−7 up
to 2−13. Note that for a time-step parameter η < 2−9, the curve is not
shifted to lower values of δ, but even increases again. At this point
round-off error becomes important, making the solution less accurate.
The final close encounter in the Pythagorean problem occurs around 60
time units, after which a permanent binary and an escaper are formed.
The Hermite integrator is able to accurately reproduce the evolution
up to this point, but not subsequently, because δ has increased to
values of order unity or higher. This can be explained by a small
error in the final close encounter between all three stars, such that the
direction of the escaper is slightly different.

To obtain the converged solution up to the first three decimal places,
a tolerance of 10−14 and a word-length of 88 bits were needed. The
simulation was about twice as slow compared to the Hermite simula-
tion with η = 2−9. The Hermite simulation, however, had a slightly
different solution and a final, relative energy conservation of 10−8, De-
creasing the value of η will improve the level of energy conservation,
but due to round-off error δ will not decrease.

2.3.2 The Equilateral Triangle

As a second test case, we adopt the 3-body equilateral triangle as an
initial condition (Lagrange, 1772). In the exact solution this config-
uration remains intact, but small perturbations, such as produced by
numerical errors, quickly cause the triangle to fall apart. For this prob-
lem, we also have a source of error in the initial conditions. Whereas
the Pythagorean problem can be set up using integers, the initial condi-
tion for the equilateral triangle contains irrational numbers. To control
the error in the initial condition, we calculate the initial coordinates
with the same word-length as used for the simulation.

In the left panel of Fig. 2.2, a similar diagram is shown as for the
Pythagorean problem in the lower left panel of Fig. 2.1. The start-
ing precision is ε = 10−10 and the word-length is a function of ε as
in Eq. 2.4. Subsequent simulations are performed with a 10 orders of

2.3. VALIDATION AND PERFORMANCE 21

0 15 30 45 60

t

-50

-40

-30

-20

-10

0

lo
g 1

0δ

-100 -80 -60 -40 -20 0

log10ε

0

15

30

45

60

t s
ta

bl
e

Figure 2.2: Divergence in the equilateral triangle configuration. In the top panel
we show the divergence as a function of time. The solid curves compare Brutus
solutions with increasing precision, where subsequent precisions are increased by
10 orders of magnitude and where the word-length is a function of tolerance as in
Eq. 2.4. The dotted curves show results for similar simulations, but with a much
longer, fixed word-length of 512 bits. The initial power law phase of divergence
lasts longer in this case. The exponential divergence becomes dominant when the
round-off error has had time to accumulate to become of the order the discretisa-
tion error. The dashed curves compare the highest precision Brutus solution with
Hermite solutions with time-step parameters 10−1, 10−2, 10−3 and 10−4. In the
bottom panel we show for Brutus, the duration for which the triangular configu-
ration remains intact as a function of Bulirsch–Stoer tolerance ε. Note that the
time is in units of the period of one complete rotation of the system. The small
scatter in the data is due to the discrete times at which we check the triangular
configuration.

22 CHAPTER 2. PRECISE N-BODY CODE: BRUTUS

magnitude higher precision. For a short initial phase of 5 time units,
the rate of divergence follows a power law. At later time, the solutions
start to diverge exponentially with a characteristic rate independent
of the tolerance and word-length. To investigate this transition, we
redo the simulations with a large, fixed word-length of 512 bits (green
dotted curves). This way, we reduce the amount of round-off error. As
a consequence the rate of divergence is first dominated by the accu-
mulation of discretisation errors and this phase lasts for a longer time,
until the transition in the behaviour of the divergence, is reached, but
now at ∼ 45 time units. The time of the transition depends on word-
length. Why the exponential divergence starts once the round-off error
has kicked in, is a question that is still under investigation.

The red dashed curves in the same diagram in Fig. 2.2 give the re-
sults of the fourth-order Hermite, which are compared with the most
precise Brutus simulation (with ε = 10−80, Lw = 352 bits). The time-
step parameter η = 10−1, 10−2, 10−3 and 10−4 for subsequent curves.
The Hermite integrations show a similar behaviour as the Brutus re-
sults, which could imply that the rate of divergence is a physical prop-
erty of the configuration, rather than a property of the integrator.

In the right panel of Fig. 2.2 we show the duration for which the
triangular configuration remains intact as a function of BS tolerance.
For this experiment we halt the simulation when the distance between
any two particles has increased or decreased by 10%, after which the
triangle falls apart quickly. This diagram also illustrates the linear
relation between accuracy and time in this system, which is caused
by the constant number of digits being lost during every unit of time.
The small scatter is due to the discrete times at which we check the
triangular configuration. The solid, blue line is a fit to the data and
its slope is −0.52(3), which is equivalent to a loss of 1.9(1) digits per
cycle.

2.3.3 A Plummer Distribution with N=16

As a third test we simulate the dynamical formation of the first hard
binary in a small star cluster. We select a moderate number of sixteen
equal mass stars and draw them randomly from a Plummer distribu-
tion (?). We integrate this system for about ten crossing times and
apply the method of convergence. In Fig. 2.3 we present how two solu-
tions with the same initial conditions, but different precisions, diverge
as a function of time. The rate of exponential divergence, on average,
starts rather constant, with a loss of ∼ 2/3 digits per time unit. This
is equivalent to an e-folding time of te = 0.65, which is consistent with

2.3. VALIDATION AND PERFORMANCE 23

0 5 10 15 20 25 30

t

-60

-50

-40

-30

-20

-10

0

lo
g 1

0δ

-60 -50 -40 -30 -20 -10 0

log10ε

-60

-50

-40

-30

-20

-10

0

lo
g 1

0|∆
E
/E
|a

nd
lo

g 1
0δ

Figure 2.3: Exponential divergence in a 16-body cluster. In the top panel we il-
lustrate the exponential divergence between Brutus simulations with increasing pre-
cision. In the bottom panel we show the final relative energy conservation (bullets,
solid line) and the final normalized phase space distance between two subsequent
simulations (triangles, dashed line) versus the Bulirsch–Stoer tolerance parameter
ε. The solution starts to converge at a level of final relative energy conservation of
∼ 10−34.

24 CHAPTER 2. PRECISE N-BODY CODE: BRUTUS

the results of Goodman, Heggie and Hut (1993) (see their Fig. 8).
From t = 20 onwards, the rate of divergence experiences systematic
changes, in particular a steep rise of the error of about 10 orders of
magnitude between t = 26 and t = 29. Such rises are a signature for
the presence of a hard binary interacting with surrounding stars.

The right panel in Fig. 2.3 shows the energy conservation (black
bullets, solid line) and the normalized phase space distance (red tri-
angles, dashed line) versus ε. Energy conservation is proportional to
ε, but the solutions only start to converge for ε < 10−34. More gen-
erally, even if conserved quantities like total energy are conserved to
machine-precision or better, it is not guaranteed that the solution itself
has converged.

The highest precision Brutus simulation in this example, (ε = 10−50,
Lw = 232 bits), took about a day of wall-clock time, which is about
7000 times slower than a simulation with Hermite using η = 2−9.

2.4 SCALING OF THE WALL-CLOCK TIME

The use of arbitrary-precision arithmetic dramatically increases the
CPU time of N-body simulations. Also the BS method, which per-
forms integration steps iteratively, makes an integration scheme more
expensive by at least a factor two or more. To investigate for example
how feasible it would be to run a converged N-body simulation for 103

stars through core collapse, we perform a scaling test in which we vary
the number of particles and the precision, ε and Lw.

We randomly select positions and velocities for N equal mass stars
from the virialised Plummer distribution (?), for N = 2, 4, 8, ..., up
to 1024. The BS tolerance is fixed at a level of 10−6 and the word-
length at 64 bits. We integrate the systems for one Hénon time unit
and measure the wall-clock time. In the top left panel in Fig. 2.4 we
show the wall-clock time as a function of N , which fit the relation
tCPU ∝ N2.6.

For N > 32, it becomes efficient to parallellise the code. Our ver-
sion implements i-parallellisation (Portegies Zwart et al., 2008) in the
calculation of the accelerations. In the top right panel of Fig. 2.4, we
plot the speed-up, S, against the number of cores. For N = 1024, we
obtain a speed up of a factor 30 using 64 cores.

In the lower panels of Fig. 2.4 we present the scaling of the wall-clock
time with BS tolerance and word-length. To measure the dependence
on BS tolerance, we simulated a 16-body cluster for 1 Hénon time
unit. We varied the BS tolerance while keeping the word-length fixed
at Lw = 1024 bits. The relation obtained converges to tCPU ∝ ε−0.032.

2.4. SCALING WITH TIME 25

3 4 5 6 7 8 9 10

log2N

-1

0

1

2

3

4

5

lo
g 1

0t
C
P
U

[s
]

0 1 2 3 4 5 6

log2p

0

1

2

3

4

5

6

lo
g 2

S

-60 -50 -40 -30 -20 -10

log10ε

-1

0

1

2

3

lo
g 1

0f
s

6 7 8 9 10 11 12

log2Lw

1

0

1

2

3

4

lo
g 2

f s

Figure 2.4: In the top left panel we show the scaling of the wall-clock time for
Brutus as a function of number of stars N . The dotted curve is a fit to the data
given by tCPU ∝ N2.6. In the top right panel we show the speed-up when the
number of cores, p, is increased. The bottom, solid curve represents N = 32 and
each curve above has an N a factor two higher than the previous curve. The dotted
curve represents ideal scaling. In the bottom left panel we plot the slowdown factor
as a function of the Bulirsch–Stoer tolerance ε, for a fixed word-length of 1024 bits.
In the bottom right panel we plot the slowdown factor as a function of word-length
Lw, for a fixed tolerance of 10−10. The slowdown of the simulations is mainly
caused by the very small Bulirsch-Stoer tolerances required.

26 CHAPTER 2. PRECISE N-BODY CODE: BRUTUS

A similar experiment was performed to measure the dependence on
word-length. This time we fixed the BS tolerance at ε = 10−10 and
varied the word-length. For Lw < 1024, the relation can be estimated
as tCPU ∝ L0.33

w , while for Lw > 1024, tCPU ∝ Lw. This transition
depends on the internal workings of the arbitrary-precision library
which we will not discuss here.

Using a very long word-length of 4096 bits, i.e. ∼ 103 digits, results
in a slowdown of a factor fs ∼ 16 compared to 64 bits. But for some
simulations a BS tolerance smaller than 10−50 can easily be required
to reach convergence, and this will result in a slowdown of a factor
fs > 100. The very small BS tolerance is often the main cause for the
slowdown of the simulations, instead of the increased word-length.

Using the above results, we can construct the following model to
estimate the wall-clock time for integrating 1 Hénon time unit with
Lw < 1024 bits:

tCPU =

(
N

512

)2.6 (ε

10−6

)−0.032
(
Lw
64

)0.33

104 [s]. (2.5)

Integrating N = 1024 with standard precision, (ε = 10−6, Lw =
64 bits), up to core collapse at ∼ 300 time units, and taking into ac-
count a speed up of a factor 30 due to parallellisation, we estimate a
total wall-clock time of a week. Increasing the precision to (ε = 10−20,
Lw = 112 bits), will take about a month. A precision of (ε = 10−50,
Lw = 232 bits) will take roughly a year. To estimate how much preci-
sion is needed, we will assume that the rate of exponential divergence
before the formation of the first hard binary is approximately constant.
In the left panel of Fig. 2.3, the initial slopes correspond to a loss of
∼ 2/3 digits per time unit. We construct the following approximate
model for the initial BS tolerance needed to end up with a converged
solution:

log10 ε = log10 δfinal −Rdivtcc. (2.6)

Here ε is the BS tolerance parameter, δfinal is the final precision of all
the coordinates in the system, Rdiv is the approximately constant rate
of divergence, e.g. the number of accurate digits lost per unit of time,
and tcc is the core collapse time. We set the final precision to 10−6, i.e.
convergence to the first 6 decimal places, and we set the core collapse
time to ∼ 300 as before. If we adopt Rdiv = 2/3, we estimate that
we need an ε ∼ 10−206. This would take about 105 years to finish. It
would be more practical to simulate a 256-body cluster. If we set the

2.4. SCALING WITH TIME 27

core collapse to 100 time units we estimate ε ∼ 10−73, which would
take about a month on a cluster of 64 Intel(R) Xeon(R) E5530 cores.

For direct N-body codes, the time for integrating up to core collapse
usually scales as O(N3). Using the analysis above, we estimate that
the time for converged core collapse simulations scales approximately
exponentially. This is effectively caused by the exponential divergence.

28 CHAPTER 2. PRECISE N-BODY CODE: BRUTUS

