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General Discussion 

Organisms are regularly and unavoidably exposed to mixtures of metals which are 

released into the ecosystems as a result of natural and anthropogenic activities via 

air, water, food and dermal contacts. However, the majority of published data 

concerning toxicity testing of metals is focused on single metal effects (Ince et al., 

1999). Similar problems occur in the currently accelerating research topic of hazard 

assessment of synthesized metal-based nanoparticles (NPs) which may 

subsequently enter the natural environment by for instance the use of bio-solids 

from sewage systems for fertilizing agricultural soils. It then becomes the challenge 

of accurately determining interactions of metals and metal-based NPs with 

biological systems. In this PhD thesis, the influence of the surrounding environment 

(H+, K+, Na+, Ca2+, Mg2+) was incorporated in the quantification of the adverse 

effects of metals (Ni and Cd) on root elongation of Lactuca sativa L. Besides the 

interactions within the exposure media, ion-ion interactions were also included in 

estimating the combined effects of metal mixtures (Cu-Zn, Cu-Ag, Cu-Ni, Cu-Cd, 

and Ni-Cd) and the relative contributions of each metal to the overall toxicity. 

Deviations towards overestimated effects (antagonism) or underestimated effects 

(synergism) using the ‘additivity’ principle were also discussed to search a 

biologically relevant link. To improve the understanding of the behavior and effects 

of metal-based NPs on terrestrial plants, lettuce seedlings were respectively 

exposed to Cu(NO3)2, Zn(NO3)2, Cu NPs, ZnO NPs and their five combinations i.e. 

mixtures of Cu(NO3)2 and Cu NPs (Cu-nanoCu), mixtures of Zn(NO3)2 and ZnO NPs 

(Zn-nanoZnO), mixtures of Cu(NO3)2 and ZnO NPs (Cu-nanoZnO), mixtures of 

Zn(NO3)2 and Cu NPs (Zn-nanoCu), and mixtures of Cu NPs  and ZnO NPs 

(nanoCu-nanoZnO). This PhD thesis is primarily focused on the metals and 

metal-based NPs mentioned above since they were always found present together 

at elevated concentrations in contaminated fields (Han et al., 2002; 

Bystrzejewska-Piotrowska et al., 2009). The aim of this research is translated into a 

number of research questions as follows: 

(1) How does water chemistry affect the toxicity of individual metals (Ni and Cd) to 

lettuce and how to quantify the influence of water chemistry?  

(2) Can the toxicity-modifying factors of water chemistry be incorporated into toxicity 

models and will the prediction of acute toxicity of individual metals (Ni and Cd) to 
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lettuce seedlings be improved because of incorporation of these factors in the 

toxicity models?  

(3) What kind of statistically significant deviation patterns from additivity are induced 

in assessing the combined effects of metal mixtures (Cu-Cd, Ni-Cd and Cu-Ni) to 

lettuce?  

(4) Can the statistically significant deviations from additivity be reproduced and how 

likely is it that metal ions (Cd2+, Ni2+ and Cu2+) interact with each other?  

(5) How to incorporate the impacts of environmental chemistry in assessing the 

toxicity of metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce?  

(6) Will the estimation of mixture toxicity be improved considering ion-ion 

interactions?  

(7) Will the dissolved metal species and the particulate fractions of each type of 

metal-based NP act jointly according to the rules of additivity?  

(8) Will Cu NPs interact with ZnO NPs and influence the toxicity of each other to 

lettuce?  

Prior to a synthesized discussion and a future outlook, answers to the research 

questions are given below. 

6.1 Answers to research questions 

(1) How does water chemistry affect the toxicity of individual metals (Ni and Cd) to 

lettuce and how to quantify the influence of water chemistry? 

Based on the experimental results, it was shown that only Mg2+ other than H+, K+, 

Na+, and Ca2+ was found to exert a significantly alleviative effect on the toxicity of Ni 

to lettuce, whereas no significant influence of these common cations was observed 

on the toxicity of Cd to root growth of lettuce. The effects of Mg2+ on Ni2+ toxicity to 

lettuce (Lactuca sativa L.) were quantified by calculating the affinity (the stability 

constants) of Ni2+ for biotic ligands at the water-organism interface and the fraction 

of the total number of biotic ligands occupied by Ni2+ according to the biotic ligand 

model (BLM) theory. (Chapter 2) 

(2) Can the toxicity-modifying factors of water chemistry be incorporated into toxicity 

models and will the prediction of acute toxicity of individual metals (Ni and Cd) to 

lettuce seedlings be improved because of incorporation of these factors in the 
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toxicity models? 

By incorporating the competition from Mg2+ in a developed BLM, the prediction of 

Ni-toxicity was significantly improved from 50% to 80% of the explained variance in 

lettuce responses, as compared to the total metal model (TMM) and the free ion 

activity model (FIAM). Since the overall variations of IC50{Cd2+} within the varied 

concentrations of H+, K+, Na+, Ca2+, Mg2+ in the solution were rather small, the TMM 

and the FIAM instead of BLM performed equally well in explaining the inhibitive 

effects of Cd on root elongation of lettuce. (Chapter 2) 

(3) What kind of statistically significant deviation patterns from additivity are induced 

in assessing the combined effects of metal mixtures (Cu-Cd, Ni-Cd and Cu-Ni) to 

lettuce? 

The statistically significant deviation patterns from additivity varied for specific 

binary mixtures of metals and for different base models applied. Using the MixTox 

model, statistically significant deviations were always found in predicting the toxicity 

of Cu-Cd, Ni-Cd and Cu-Ni mixtures to lettuce (Lactuca sativa L.) when the 

concentration addition (CA) model was used as the reference model. Deviations 

shifted from antagonism to synergism, the magnitude of which depended on the 

relative concentrations of the two metal components in the mixture and the dose 

levels across the whole tested ranges. However, no statistically significant 

deviations were found when the independent action (IA)-based models were 

applied to assess the overall toxicity of Cu2+ and Ni2+ to root growth of lettuce. 

Similarly, the BLM-based toxic unit (TU) method without considering ion-ion 

interactions was significantly superior to fmix or TEF approaches in assessing the 

toxicity of Cu-Ni mixtures, which indicated no substantial deviations from additivity 

as well. (Chapter 3 and Chapter 4) 

(4) Can the statistically significant deviations from additivity be reproduced and how 

likely is it that metal ions (Cd2+, Ni2+ and Cu2+) interact with each other? 

Dissimilar results or even contradictory deviation patterns were obtained when the 

datasets of Ni-Cd and Cu-Ni mixtures with lower concentrations of Ni and Cd were 

inserted into the MixTox model. The assessment of deviations strongly depended 

on the fitting of experimental data, the choice of mathematical models and the 

specific range of exposure concentrations. Thus, the toxic actions or interactions of 
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Cd2+, Ni2+ and Cu2+ cannot be easily concluded based on these non-reproducible 

statistically significant deviations. Further measurements and modeling may assist 

in improving the mechanistic understanding of interactions between metals in a 

mixture especially at the internal process of organisms. (Chapter 3) 

(5) How to incorporate the impacts of environmental chemistry in assessing the 

toxicity of metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce? 

According to the concepts of the BLM, the toxicity of metals to organisms is mainly 

determined by the fraction of the biotic ligands occupied by free metal ions. Thus, 

the affinities of Cu2+, Ni2+, Zn2+, Ag+ for biotic ligands at the water-organism interface 

were included in the toxicity assessment of Cu-Ni, Cu-Zn and Cu-Ag mixtures to 

lettuce (Lactuca sativa L.). This allowed not only to integrate the impacts of 

environmental chemistry (i.e. Mg2+ and H+) but also the interactions between Cu2+, 

Ni2+, Zn2+, Ag+ and roots of lettuce in toxicity modelling. By combining the BLM with 

the overall amounts of metal ions bound to the biotic ligands (fmix), competitions at 

the water-organism interface between each component in the binary mixtures for 

binding sites on the biotic ligands were also considered in estimating mixture toxicity. 

With the toxic equivalency factor (TEF) as a toxicity index, the different potencies of 

Cu2+, Ni2+, Zn2+, Ag+ relative to the most toxic metal (Cu) towards lettuce can be 

incorporated in modeling toxicity of metal mixtures as well. (Chapter 2 and Chapter 

4)  

(6) Will the estimation of mixture toxicity be improved considering ion-ion 

interactions? 

Using the MixTox model, the predictive capabilities of extended mixture functions 

were compared with those of reference models (CA and IA). Extended mixture 

functions integrating ion-ion interactions were mostly better than the addition 

models for four of the five datasets. By the method of bootstrapping, the statistical 

significance of difference in predictive power was compared between different 

non-nested BLMs. The models considering ion-ion interactions were better than the 

BLM-based toxic unit (TU) approach and the strictly additive models for assessing 

the overall toxicity of Cu-Cd, Ni-Cd, Cu-Zn, Cu-Ag mixtures, apart from the 

combination of Cu-Ni. This may be caused by the different mechanisms of toxicity of 

diverse metal mixtures and suggests that joint toxicity of metal mixtures to terrestrial 
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plants needs to be evaluated on a combination-specific basis. (Chapter 3 and 

Chapter 4) 

(7) Will the dissolved metal species and the particulate fractions of each type of 

metal-based NP act jointly according to the rules of additivity? 

Since most metal-based nanoparticles (NPs) are hydrophilic but slightly soluble, it 

was assumed that each type of metal-based NPs can be divided into two parts i.e. 

the soluble species and the undissolved particles, and both of them may play a role 

in inducing toxicity of Cu NPs or ZnO NPs to lettuce (Lactuca sativa L.). The 

dissolved concentrations of Cu NPs or ZnO NPs were expressed as the averaged 

values after 1 h and 24 h as the exposure media was refreshed every day. 

Antagonistic effects were indeed found between the dissolved Zn and the 

particulate Zn based on the toxicity data obtained for Zn-nanoZnO mixtures, which 

was not observed for Cu-nanoCu mixtures. This finding simultaneously explained 

the difference in predictive power (10%) when the IA model was used to predict the 

combined toxicity of Zn-nanoZnO (R2=0.84) and Cu-nanoCu (R2=0.94) mixtures 

respectively. (Chapter 5) 

(8) Will Cu NPs interact with ZnO NPs and influence the toxicity of each other to 

lettuce? 

The IA model explained 82% of the variance in the data of mixtures of Cu NPs and 

ZnO NPs to lettuce. To systematically detect how and where the discrepancy of 

modeling occurred, the experiments were designed with six nested combinations i.e. 

mixtures of Cu-Zn, Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, Zn-nanoCu, 

nanoCu-nanoZnO. The 50% effective concentrations of Cu NPs or ZnO NPs were 

found to be statistically significant increased by the raised amount of each other and 

by Cu(NO3)2 or Zn(NO3)2 in the solution. Besides the interactions between dissolved 

Cu and dissolved Zn (or Cu2+ and Zn2+), their particulate forms were also highly 

correlated with the overall toxicity of Cu NPs and ZnO NPs to lettuce. This indicated 

that the combined toxicity of Cu and Zn in nano-size was much more complex than 

the combined toxicity of their nitrate mixtures. Moreover, only the amount of 

dissolved Cu released from Cu NPs after 24 h was found to be consistently 

decreased by the added amount of Zn(NO3)2. These findings suggested that the 

small antagonistic effects between Cu NPs and ZnO NPs likely occurred at the 
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organism level and therefore is responsible for the remaining variation (18%) in 

toxicity modeling. (Chapter 4 and Chapter 5) 

6.2 Application of biotic ligand models in assessing toxicity of metals to 
terrestrial organisms 

Understanding bioavailability and toxicity of metals in depth is necessary to derive 

environmental quality criteria and standards. Some researchers have proposed that 

the free metal ion activity, considering the influence of environmental factors on 

bioavailable fractions of metals, can establish a better link between effects and 

exposure of metals as compared to total metal or dissolved metal concentrations 

(Lexmond and Vorm, 1981). As an extension of free ion activity model (FIAM), the 

biotic ligand model (BLM), which integrates competitions from common cations in 

natural environment for binding to the biotic ligands (BL), has been suggested as a 

useful tool to address how metals interact with organisms in the aquatic 

environment. For instance, the US Environmental Protection Agency (EPA) has 

applied the aquatic biotic ligand model ((a)BLM) to outline Ambient Water Quality 

Criteria (AWQC) in surface water (EPA, 2007).  

As compared with water systems, the exposure pathways of metals are much more 

complex in the soil phases for different terrestrial organisms (exposure via the pore 

water or the soil particles). Steenbergen et al. (2005) developed a terrestrial biotic 

ligand model ((t)BLM) to predict the toxicity of Cu to the earthworm Aporrectodea 

caliginosa and Lock et al. (2006) developed a (t)BLM to predict cobalt toxicity to the 

potworm Enchytraeus albidus. However, some scientists have shown that there is 

no single bioassay or organism that can be representative of all biota present in the 

ecosystem (Ince et al., 1999). Thus, food choice of higher plants may be a potential 

alternative in currently developed short-term toxicity testing methods to represent 

the bioavailability and toxicity of metals to soil biota. Thakali et al. (2006a, 2006b) 

developed (t)BLMs for assessing the ecotoxicity of Cu and Ni to higher plants, 

invertebrates, and microbes. 

The development of (t)BLMs largely relies on the partitioning of metals between the 

soil and the solution phase, which is usually estimated by speciation models such 
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as WHAM 6 and MINEQL+4.5. However, the accuracy of prediction for metal 

speciation in soil may be affected by the default assumptions of these models, e.g. 

by overestimating the binding capacity of humic substances with metals 

(Cloutier-Hurteau et al., 2007) and by ignoring precipitation removing metals from 

the solution in WHAM 6 (Thakali et al., 2006a). Higher plants are predominantly 

exposed to metals via the pore water (McLaughlin, 2000). To manipulate better the 

composition of the soil pore water and the metal concentrations to which organisms 

are exposed, hydroponic solutions were chosen as the exposure media in this study 

to overcome the above problems in the application of BLMs for terrestrial organisms. 

To avoid uncertainties in activity modeling, the free ionic form of Cu (Cu2+) was 

directly measured by a Cu-ionic selective electrode (Cu-ISE) in this thesis (Chapter 

3 and Chapter 4). In Chapter 2, it was proven that the total concentration of nickel 

cannot well account for its bioavailability and toxicity to lettuce and the site-specific 

competitions of other cations in solution helped to explain the variations in toxicity, 

which was consistent with the concept of BLM (Di Toro et al., 2001). The derived 

stability constants of metal ions for biotic ligand binding i.e. log KMgBL = 2.86, log 

KNiBL = 5.1, fNiBL = 0.57 may help scientists to estimate the intrinsic toxicity of 

individual metals and the sensitivity of terrestrial organisms to specific metals. 

However, similar results were not observed for cadmium, which suggested that the 

toxicity of metals to higher plants needs to be evaluated on a metal-specific basis.  

Until now, most studies are focused on development and application of a (t)BLM for 

assessing metal toxicity in controlled water systems (Antunes and Kreager, 2009; Li 

et al., 2009; Lock et al., 2007), and validations in the field are further needed. 

Nevertheless, it is problematic to exactly determine the most influential soil 

characteristics affecting metal toxicity across different soils (Christiansen et al., 

2015) based on the current level of knowledge and technology. This raises the 

difficulty of extrapolating the developed BLMs from solution to soil. As shown in 

Chapter 2, the values of fNiBL differed a lot in solution (0.57) and soil culture (0.05) 

even for the same plant species Hordeum vulgare. This was strongly correlated with 

the different toxicity-modifying factors (e.g. common cations) found in different 

conditions. Additionally, deviations of toxicity modeling can also be effects caused 

by other factors that are ignored in conventional BLMs, e.g. mixture, food quality or 
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quantity, and life history of organisms (Verschoor, 2013). Integrating mixture factors 

can be not only helpful for further model validation but would also assist in obtaining 

accurate knowledge of underlying mechanism of metals. Thereupon, the BLM was 

extended with mixture effects for toxicity modeling in this thesis (Chapter 4). By 

combining BLMs with toxicity indices (i.e. TU, fmix and TEQ), both the influence of 

other toxic metals in the surrounding environment and the different toxic potencies 

of each metal were included in toxicity assessment of metals. However, it remains 

to be determined whether to incorporate unfavorable conditions from the 

environment and the organism in risk assessment. In this thesis (Chapter 2 to 5), 

those variables were strictly controlled which allowed to focus the toxicity-modifying 

factors on mixture factors and water chemistry. To reduce the interference of 

nutritional deficiencies, the Steiner solution which has been proven to be sufficient 

for lettuce growth and rooting (Peijnenburg et al., 2000) was used as the culturing 

and testing media in the present study. To avoid individual differences, the 4 d 

seedlings were strictly chosen making sure that roots with a length greater than 3 

cm were used for all experiments. 

6.3 Interpretation of interactions in assessing toxicity of metal mixtures 

Since metal mixtures are often found in the environment instead of single metals 

alone, the assessment of metal toxicity seems to be more relevant and accurate 

when mixture effects are considered. Metal speciation, competition and 

complexation, as well as interactions with organisms may help to construct a real 

scenario of bioavailability and toxicity for metal mixtures (Qiu, 2014). The 

mechanistic bioavailability models such as the BLM and the electrostatic toxicity 

model (ETM) may be expanded to increase the predictive power for the combined 

effects of metal mixtures. Until now, the concept of concentration addition (CA) is 

the mostly used method to extend the BLM for toxicity assessment of metal 

mixtures (Playle, 2004; Hatano and Shoji, 2008; Jho et al., 2011; Le, 2012). In this 

thesis (Chapter 4), the relative contributions of mixture components to the overall 

toxicity were expressed as three toxicity indexes i.e. toxic unit (TU), the overall 

amounts of metal ions bound to the biotic ligand (fmix), the toxic equivalency factor 

(TEF), and were added up to reflect inhibition of lettuce root elongation (RRE, %) by 

metal mixtures. The use of TU was based on the assumption that no competition 
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occurs between toxic components in a mixture (Hewlett and Plackett, 1979) apart 

from the statistically significant impacts from the surrounding media e.g. the 

influence of H+ and Mg2+ on the toxicity of Cu2+ (Le, 2012) and Ni2+ (Chapter 2) 

respectively. Using the approach of fmix, both competition between metal ions and 

competition with common cations in the surrounding media for the binding sites can 

be included in mixture modelling (Jho et al., 2011). On the basis of fmix, the different 

toxic potencies of each metal relative to the most toxic one (Cu) can be considered 

by TEF (Van den Berg et al., 1998; Le, 2012). The best fitted models (i.e. the 

BLM-based fmix and TEF) explained 73% to 74% of the variance in inhibition effects 

of Cu-Zn and Cu-Ag mixtures on root elongation (see Table 6.1). As compared to 

the BLM-based methods, the ETMs showed a higher predictive power for Cu-Zn (R2 

= 0.92) and Cu-Ag (R2 = 0.80) mixtures. This difference may be caused by the 

exclusion of physiological processes in simulating ion-ion interactions by BLMs e.g. 

the change of the electrostatic nature of the plant cell wall (Wang et al., 2010). At 

various levels, metals will interact with each other and with organisms, whereas only 

competitions for the binding sites at the water-organism interface are included in the 

BLMs and directly related to the combined toxicity of metal mixtures. However, 

without considering the toxic-kinetic mechanism of metal ions, the incorporated 

interactions (fitting factors) in the ETMs for assessing toxicity of metal mixtures 

largely depend on the mathematical fitting (Le, 2012) and therefore may not be 

applicable to complex mixtures. Based on the significance tests of bootstrapping, 

the BLM-based TU approach (R2 =0.86) provided the best prediction of the overall 

toxicity of Cu-Ni mixtures regardless of the potential competitions between Cu2+ and 

Ni2+. Similar to the BLM-based TU method, the FIAM also explained 85% of the 

variance in toxicity of Cu-Ni mixtures based on the concept of independent action 

(IA) and the assumption of no substantial interactions. It was thus concluded that 

the underlying mechanisms of mixture toxicity are different across diverse metal 

combinations, as indicated by the best fitting model. 

The extended BLMs based on the concept of CA integrated the influence of 

environmental chemistry on the toxicity of each metal in a mixture, which allowed 

them to be applied for complex mixtures containing more than two metals. The 

binding constants derived from single exposure of metals were applicable to metal 
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mixtures under the same experimental conditions, which reduced the amounts of 

measurements for all the combinations of metals. However, the inclusion of affinity 

of metal ions for the biotic ligands sometimes becomes a problem for specific 

metals. In this PhD thesis (Chapter 2), it was impossible to empirically fix the key 

parameters of the BLM (e.g. f50 and KCdBL) for cadmium due to the lack of a 

statistically significant relationship between the Cd2+ toxicity (median effective 

concentrations) and the concentrations of other common cations in the solution. 

Therefore, the conventional models (i.e. CA and IA) were extended for assessing 

the combined toxicity of metal mixtures with Cd (Chapter 3). As shown in the study 

of Jonker et al. (2005), the deviations from ‘additivity’ can be quantified by the 

additional parameters in the extended CA or IA model. Statistically significant 

antagonistic effects were commonly found for Cu-Cd and Ni-Cd mixtures by the 

MixTox model and their changes of magnitude were dependent on the relative 

concentration levels across the whole range and the concentration ratios of mixture 

components. However, similar deviation patterns were not observed when the 

mixture models were fitted to the toxicity data of mixtures with lower concentrations 

of Ni2+ or Cd2+. This implied that the statistically significant deviations may not 

necessarily be the biologically relevant interactions, which proved the arguments of 

Cedergreen et al. (2007) and EFSA (2011). Alternatively, the assessment of 

deviation patterns strongly depended on the different metal combinations, the 

diverse predictive methods applied and the mathematical fitting results. The MixTox 

model overcomes the shortcoming of BLM that the binding constants of each metal 

should be fixed separately beforehand, and refines the complex deviation patterns 

not limited to overall antagonism or synergism. However, the intricate calculation 

process relying on empirical isotherms and the lack of insight into the mechanisms 

of the interaction would hinder the wide-scale applicability of the MixTox model. This 

raises the question of how to balance the mathematical data-fittings with the 

explanations of possible mechanisms in which interactions of metals would occur in 

toxicity assessments of metal mixtures. Generally, our findings provided the 

comparison of existing models in assessing combined toxicity of different metal 

mixtures, pointed out the technical problems in interpreting statistically significant 

departures from classic ‘additivity’, and proposed a possible future of developing 

alternative models. 
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Table 6.1 Assessment of interactions in Cu-Ni, Cu-Zn, Cu-Ag mixtures by the biotic 

ligand model (BLM), the free ion activity model (FIAM), and the electrostatic toxicity 

model (ETM) on the basis of concentration addition (CA) and independent action (IA) 

concepts. 

Methods Cu-Ni mixtures Cu-Zn mixtures Cu-Ag mixtures 

Assumption of FIAM or 

ETM (CA) 

DR or DL 

dependent 

interactions 

Interactions Interactions 

Goodness of fitting 

(Chapter 3; Le, 2012) 
R2 = 0.55 R2 = 0.92 R2 = 0.80 

Assumption of FIAM or 

ETM (IA) 

No substantial 

interactions 
Interactions 

No substantial 

interactions 

Goodness of fitting 

(Chapter 3; Le, 2012) 
R2 = 0.85 R2 = 0.92 R2 = 0.80 

Assumption of 

BLM-based TU (CA) 

No substantial 

interactions 
No substantial 

interactions 
No substantial 

interactions 
Goodness of fitting 

(Chapter 4) 
R2 = 0.86 R2 = 0.58 R2 = 0.69 

Assumption of 

BLM-based fmix (CA) 
Interactions Interactions Interactions 

Goodness of fitting 

(Chapter 4) 
R2 = 0.58 R2 = 0.73 R2 = 0.58 

Assumption of 

BLM-based TEF (CA) 

Toxic potency 

dependent 

interactions 

Toxic potency 

dependent 

interactions 

Toxic potency 

dependent 

interactions 
Goodness of fitting 

(Chapter 4; Le, 2012) 
R2 = 0.76 R2 = 0.65 R2 = 0.74 

TU: toxic unit index; fmix: the overall amounts of metal ions bound to the biotic 

ligands; TEF: the toxic equivalency factor; DR: dose ratio; DL: dose level; R2: the 

determination coefficient. 
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6.4 Extrapolation of mixture models to nano-toxicity 

Due to the decreased size, some metal-based NPs are showing increased toxicity 

to organisms as comparted to their bulk forms, even for inert elements such as Ag, 

Au and Cu (Schrand et al., 2010), which has gained increasing attention from 

people. However, precise knowledge should be gained before establishing the 

standards to assess the hazards of metal-based NPs. Physical and chemical 

properties of metal-based NPs keep changing over time when particles are 

released into the environment. Inadequate information is currently available for 

metal-based NPs to quantify the processes of dissolution, agglomeration or 

aggregation (Tourinho et al., 2012). Thus, as an extension of this thesis (Chapter 5), 

we tried to increase the understanding of behavior and effects of metal-based NPs 

in liquids based on a newly designed toxicity testing method and the conventional 

mixture models applied in previous chapters.  

Due to the high uncertainties in calculating EC50s for engineered metal-based NPs, 

the most frequently used independent action model (IA) was applied for assessing 

toxicity of Cu NPs and ZnO NPs other than the concentration addition (CA) model. 

More than 80% of the variation in combined toxicity was explained by the IA model 

for nanoCu-nanoZnO mixtures. To identify where and how the variations left in 

toxicity modeling occurred, a comprehensive experiment was designed with six 

nested combinations i.e. Cu-Zn, Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, 

Zn-nanoCu, nanoCu-nanoZnO. Copper or zinc nitrates were mixed with ZnO NPs 

or Cu NPs to mimic changing concentrations of dissolved species of metal-based 

NPs. To date, the dissolution, agglomeration or aggregation of metal-based NPs are 

found to be dynamic processes which result in an intermediate state of bulk and 

molecular for metal-based NPs (Misra et al., 2012). It was thus assumed that each 

type of metal-based NP was a mixture containing a part of dissolved metal species 

and a part of undissolved particles in the present study. In exploring whether these 

two parts would impact the toxicity of each other, increasing concentrations of 

Zn(NO3)2 in the solution were found to strongly correlate with the EC50 values of 

ZnO NPs, and vice versa. This finding emphasized the importance of particulate 

forms in inducing the toxicity of metal-based NPs to environmentally relevant 

organisms and suggested that searching a dominant metal species may not be 
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appropriate to truly reflect the adverse effects of NPs. Similar effects were not 

observed for Cu NPs and Cu(NO3)2, which was consistent with the result that 94% 

of the variation in toxicity of Cu-nanoCu mixtures can be explained by the IA model. 

The increasing concentrations of dissolved or particulate Cu or Zn were also 

substantially associated with reduced toxicity of Zn(NO3)2 or Cu(NO3)2 to lettuce. 

The above results succeeded in explaining the difference in the 2D isobolic 

representations between nanoCu-nanoZnO mixtures and Cu2+-Zn2+ mixtures. Small 

antagonistic effects were found between Cu NPs and ZnO NPs by using linear 

relationships, whereas these mutual impacts between metal-based NPs were much 

complex than interactions occur among metal ions.  

Based on the current knowledge, the concentrations of particulate forms can be 

roughly estimated by the total concentrations minus the dissolved concentrations. 

However, the toxic effects that resulted from the particulate forms alone cannot be 

easily separated from the total effects of Cu NPs or ZnO NPs following the rules of 

additivity because of the potential interactions between dissolved metal species and 

non-dissolved particles. The way of quantifying the biological responses caused by 

the non-dissolved particles of metal-based NPs seems to be beneficial to further 

application of mixture models in toxicity assessment of metal-based NPs. Ideally the 

toxicological studies will be more accurate if testing is performed at intermediate 

points in time instead of a standardized exposure time (Baas et al., 2010). However, 

it is difficult to get data over time and continue the experiments for 4 d since lettuce 

seedlings are very sensitive to the environment out of water and easy to be hurt 

while manually measuring length. This problem may be solved by an automatic 

image measuring instrument, while experimental costs would be greatly increased 

and the measurement error due to the curling roots is difficult to avoid. Although 

there is still much room for improvement, our research no doubt established a more 

realistic scenario which would enrich the rapid evolving field of nano-toxicology and 

helps scientists to develop approaches to predict the potential impacts of 

metal-based NPs on eco-systems. 

6.5 Implications  

Ecological risk assessments of chemicals are supposed to evaluate how likely it is 
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that the environment may be impacted as a result of exposure to these 

environmental stressors. The information and tools developed from ecological risk 

assessments can be used to create criteria and management means by 

government agencies or industry for chemical stressors before application or 

release into the environment (Van Gestel, 2012). Generally, the derivation of limit 

values accounting for soil or water quality has strong links with the eco-toxicological 

data. However, the laboratory conditions have been well-standardized far from 

potentially exposed ecosystems in most studies concerning effect assessments of 

chemicals (Arvidsson et al., 2011). This reduces the interference from the complex 

nature of the environment in toxicological experiments and therefore adds a high 

uncertainty in actual consequences of chemical stressors in the environment (EC, 

2013). In this thesis, relatively realistic scenarios were developed in effects 

assessments of metals and metal-based NPs by incorporating the factors of 

environmental chemistry, bioavailability and mixtures. A range of health issues such 

as the neuro-developmental disorders are suspected to be related to cumulative 

stress of heavy metals (Løkke et al., 2013). Thus, lettuce (L. sativa L.) as one of the 

main food items on the table was chosen to be a biomarker of early life exposure to 

metals and metal-based NPs in this study. Data of measurements on exposures to 

individual metals and mixtures of metals in Chapter 2, 3 and 4 enrich the database 

on adverse effects of multiple metals on edible plants. The critical values (e.g. EC50 

of metals) calculated at specific conditions can be used for setting environmental 

risk limits (e.g. negligible concentrations) for metals. The affinity of metals may help 

distinguish interactions occurring at the membrane surface or at the internal 

process. The bioavailability models developed in Chapter 2 and 4 help toxicologists 

to understand how and why metals interact and the approaches used in Chapter 3 

assist in quantifying and characterizing the uncertainty in current methodologies for 

searching interactions between metals. Since laboratory work is not feasible to be 

carried out for all the possible combinations of metals, this thesis investigated five 

most likely combinations of metals in the terrestrial environment (Han et al., 2002), 

and developed a scheme as shown in Figure 6.1 to assess the combined effects of 

metals for specific combinations. First of all, the bioavailability and toxicity of each 

metal in a mixture should be investigated separately. If the variability in median 

effective concentrations of metals could be sufficiently described with no impact of 
154 
 



General Discussion 

common cations, then the normal mixture models (CA or IA) can be used to 

estimate the overall toxicity of metal mixtures to organisms and the extended 

mixture functions can be used to quantify the deviations of modelling from ‘additivity’. 

If cations (H+, Ca2+, Mg2+, K+, Na+ etc.) are found to significantly alleviate the toxicity 

of single metals, it is better to incorporate the influence of environmental chemistry 

in modelling the joint toxicity of multiple metals in terms of competitive binding for 

the biotic ligand. In that case, models with a mechanistic basis are recommended 

for a relatively effective and accurate risk assessment of metal mixtures e.g. the 

extended BLM in diverse ways for describing deviations or interactions. Based on 

the current scientific knowledge, it is still difficult to directly determine the underlying 

mechanisms of interactions as an organism is a complex entity. This also hinders 

the way to distinguish deviations from interactions. The enhancement of 

statistically-based tools (Van Genderen et al., 2015) and the improvement of 

bioavailability models such as combining BLM and ETM may additionally explain 

how and where metal-metal interactions occur, and may advance the mixture 

modelling. Engineered metal-based nanoparticles are a new source of 

environmental contamination, while the information is scarce on their release, fate 

and toxicity, especially under their co-exposure. In Chapter 5, we first proposed that 

the well-known independent action (IA) model can be preliminarily used to assess 

the combined toxicity of mixtures with metal-based nanoparticles based on good 

fitting results (R2=0.82-0.94). This indicates that our study provided a way to roughly 

calculate environmental quality standards (EQS) for metal-based NPs which is 

essential to protect and sustain the quality of surface water and soils. The variations 

left in toxicity modeling of Cu NPs and ZnO NPs (up to 18%) were exactly explained 

by a novel experimental setup with six nested combinations. This experimental 

design assisted in searching mutual impacts between different types of metal-based 

NPs and tracing down where these mutual impacts took place. Further 

measurements and modeling can be focused on verifying these statistically small 

antagonistic effects. If the underlying mechanism of metal-based NPs can be 

determined across different exposure conditions, the specific assessing framework 

can be generated for evaluating the potential impacts of metal-based NPs on 

eco-systems.  
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Figure 6.1 Scheme of approaches for assessing toxicity of metal-based mixtures 

applied in this PhD thesis. 

6.6 Future outlook and recommendations 

In this PhD thesis, two of the most important toxicity-modifying factors (i.e. 

environmental chemistry and mixture effects) were incorporated into the 

assessment of adverse effects of metals and metal-based NPs on terrestrial plants 

in different ways. To improve the risk assessment procedures for metals and 

metal-based NPs, the observed toxic effects and the mutual impacts found among 
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metals or metal-based NPs were interpreted by means of considering several 

processes. It is recommended that a series of validation and extrapolation studies 

are performed in the future for further strengthening the models and conclusions 

developed in our research.  

Compared to organic compounds with a known mode of action, the toxicity of 

metals and the underlying mechanisms are much more complex. This may be 

specific across different conditions. As a starting point for looking into the mixture 

toxicity, the bioavailable fractions of each metal in different surrounding 

environments were linked to toxicity by TMM, FIAM and BLM. In the natural 

environment, the water chemistry (common cations) is not the only potential 

stressor. Other factors e.g. temperature, oxygen, and light may also affect the 

functioning of organisms and then affect the adverse effects of metals. It may be 

favorable to work with these multiple stressors and integrate them in explaining 

toxicity of metals under natural conditions. 

To deal with the impacts of mixtures on toxicity assessment of metals, metals and 

their mixtures were exposed in a simplified system—a hydroponic solution, to avoid 

the interactions in the soil compartment and to manipulate the exposure 

concentrations. Different metals may share the same uptake route and likely 

interact at the water-organism interface (Bongers, 2007). It was observed that Mg2+ 

and H+ did compete with respectively Ni2+ and Cu2+ for the binding sites on lettuce 

roots. Based on the concept of concentration addition, BLMs considering 

competition from common cations were extended to describe the combined toxicity 

of metal mixtures and several parameters (e.g. TEQ50) were derived for mixtures of 

Cu-Ni, Cu-Zn and Cu-Ag. Toxicity of metal mixtures with Cd was assessed using the 

extended additivity models (CA or IA) with additional parameters. However, the 

biological meaning of such parameters was not completely clarified given the large 

variability of statistical significance and of bioavailability and sensitivity of metals to 

specific organisms. To improve mixture toxicity principles, it is necessary to 

intensively identify relationships between these parameters and the ‘intrinsic’ 

toxicity of metal mixtures. Although the bioavailability models developed in this 

study explained chemical-chemical interactions which may affect the combined 

toxicity of metal mixtures before entering organisms, the mechanisms of interaction 
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of metals present in mixtures inside the organisms are poorly understood. Metal 

accumulation in organisms does not always correlate well with observed toxic 

effects (Lanno et al., 2004) as organisms have created many mechanisms to 

process metal stressors (Tangahu et al., 2011). It is therefore suggested to further 

investigate the observed mutual impacts between multiple metals by advanced 

monitoring tools such as patch clamp, proteomics and genomics.  

The developed models for mixtures of Cu-Ni, Ni-Cd, Cu-Cd, Cu-Zn, Cu-Ag are 

recommended to be further validated in real soils and extrapolated for other higher 

plants. For a better extrapolation from water to soil, it is essential to increase the 

understanding of toxicokinetics and toxicodynamics of metals (Van Gestel, 2012). 

Toxicity of metals was already found to be time-dependent (Alda Álvarez et al., 2006; 

Baas et al., 2010). Evaluating mixture toxicity and interactions may also benefit from 

a better understanding of such dynamic processes, especially for metal-based NPs, 

the toxicity of which is known up to now as a consequence of aggregation, 

agglomeration and dissolution processes that vary over time. The combined effects 

of mixtures of metal-based NPs were found to be different from those of metal 

mixtures in the sense that mutual impacts as observed between metal-based NPs 

were much more complex than interactions among metal ions. Besides dissolved 

metal species, the fractions of undissolved particles also played an important role in 

inducing toxicity of metal-based NPs to higher plants. Although further studies are 

still needed for selecting a representative endpoint or biomarker, we made the first 

step to unravel the fate and toxicity of metal-based NPs and their complex mixtures 

for terrestrial plants. Death and growth are often regarded as multi-step processes. 

In parallel with growth, other physiological endpoints such as pigment content, 

primary chlorophyll and carotenoids which can be directly associated with the health 

of the plants, may be helpful to describe internal interactions over time and evaluate 

the joint toxicity of nanoparticles and their mixtures. Properly evaluating the effects 

of mixture interactions on modulating the combined toxicity can help authorities to 

determine how to incorporate the issue of mixtures into the risk assessment of 

exposures to metals and metal-based nanoparticles. 
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