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Comparing three approaches in extending biotic ligand models 

Abstract  

Metals are always found in the environment as mixtures rather than as solitary 

elements. However, effect models such as biotic ligand models (BLMs) are usually 

derived for toxicity prediction of single metals. Our study aimed at predicting mixture 

toxicity of Cu-Ni, Cu-Zn and Cu-Ag combinations to lettuce (L. sativa L.) by 

combining BLMs with three toxicity indexes: the toxic unit, the overall amounts of 

metal ions bound to the biotic ligands and the toxic equivalency factor. The 

accumulation of metal ions at the biotic ligands was used to determine the toxic 

potency of metals alone or in combination. On the basis of parameters derived from 

toxicity assessment of individual metals, these three extended BLMs appeared to 

be all acceptable (p<0.0001) in assessing toxicity of diverse metal mixtures. The 

BLM-based approaches integrated competition between metal ions in assessing 

mixture toxicity and showed different predictive ability for each metal combination. 

The outcome of modeling suggested that the combined toxicity depends on the 

specific components of the metal mixtures. The best developed models assist in 

identifying the type of underlying toxic mechanisms of diverse metal mixtures in 

terrestrial plants.  

Keywords: Metal mixtures; toxicity; lettuce; biotic ligand models; toxicity index 

4.1 Introduction 

Complex metal mixtures are often found in aquatic and terrestrial ecosystems, 

instead of individual metals only. Joint actions of metals will create more distinct 

effects compared to simple summation of the effects of individual metals to assess 

toxicity of metal mixtures for living organisms. By modeling relationships between 

metal exposure and bioavailability or toxicity, basic toxic information of typical 

combinations of metals could be gained as a baseline for risk assessment. 

Toxic impacts of metal mixtures have been investigated often on the basis of metal 

concentrations (Borgmann et al., 2008) and were estimated using toxicity indexes 

such as the toxic unit (TU) (Marking, 1985) and the toxic equivalency factor (TEF) 

(Delistraty, 1997). However, it has been recognized that water chemistry, such as 
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activities of common cations and pH may affect metal toxicity by competitive binding 

to biotic ligands (BLs) and by influencing metal speciation (Niyogi and Wood, 2004). 

Biotic ligand models (BLMs) as an integration of reactive species of metals and 

competitive binding to the BLs are commonly suggested as useful tools in 

quantifying toxic effects of metals to organisms (Paquin et al., 2002). BLMs are 

usually applied to predict the toxicity of single metals. How to extend BLMs for 

mixture toxicity assessment has just recently attracted the attention of researchers. 

Thereupon, it may be helpful to elaborate the mechanisms of metal joint toxicity by 

combining BLMs with toxicity indexes. 

For most of the metals, ionic channels are often considered as the primary sites of 

action (Niyogi and Wood, 2004). It is therefore the BLMs were extended as additive 

models to predict toxicity of metal mixtures with known stability constants derived 

from single-metal BLMs in previous studies. Playle (2004) was one of the first who 

tried to build a multi-metal modeling framework by combining BLM with the TU 

concept. Using the BLM-based TU approach, it is assumed that single metals in the 

mixture bind to different target sites on the BLs. Thus, no competition would exist 

between individual metals in the mixture (Hewlett and Plackett, 1979). Experiments 

performed by Hatano and Shoji (2008) demonstrated the feasibility of this 

framework to estimate toxicity of Cu-Cd mixtures to duckweed L. paucicostata. 

Besides the competition of major cations, competition between metal ions may also 

influence the amount of ion binding to the BLs and consequently diminish or 

enhance the toxicity of metal mixtures to organisms. Thus, if two metals in the 

mixture compete for binding to the same target site on the BLs, the total amount of 

metal ions bound to the site of toxic action (i.e. the fmix index), likely assists in 

assessing mixture toxicity (Jho et al., 2011). Additionally, if the individual metals in 

the mixture have different potencies, the BLM-based TEF method is preferred (Van 

den Berg et al., 1998) as shown by Le et al. (2013) in their research on lettuce. 

Currently, there are still considerable uncertainties regarding the combined 

approach that is most reliable to predict combined effects of specific metal mixtures.  

A great number of trace metals such as Ag, Cu, Ni and Zn have been found to be 

released into the natural environment due to anthropogenic activities (Charles et al., 

2013). The elevated levels of trace metals may produce negative effects on fauna 
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and flora in the environment and may cause damage to human health either 

through the food chain or through direct uptake. In view of its high sensitivity to 

environmental stresses (Valerio et al., 2007), lettuce (Lactuca sativa) was selected 

as a bio-indicator in the present study. Standard testing protocols for lettuce have 

been recommended by EPA (1988) and OECD (2006). Thus, our paper aims at 

examining which BLM-based approach (i.e. TU, fmix, and TEF) would be most 

accurate in assessing the combined toxicity of Cu-Ni, Cu-Zn, and Cu-Ag 

combinations to lettuce. Basic modeling parameters were gained from Ni-only, 

Cu-only, Zn-only, and Ag-only toxicological data in the presence of different 

concentrations of Ca2+, Mg2+, K+, Na+ and different levels of pH.  

4.2 Material and methods  

4.2.1 Plant bioassays 

Lettuce seeds (L. sativa L.) and seedlings were all cultured in hydroponic solution. 

The nutrient solution for the plant culture and the test medium was prepared 

according to the Steiner solution formula (Steiner 1961; Le et al., 2012). Seeds of 

lettuce were germinated in a climate room (15˚C, 80% humidity, 16:8 hours light: 

dark cycle) for 4 days on sterilized expanded perlite in Steiner solution. Then the 

seedlings were fixed in parafilm straps floating on the surface of glass beakers (10 

cm height) with spiked medium. Four plants were put in each beaker. Beakers were 

placed in a large container with a layer of water inside to prevent excess 

evaporation of exposure media. After exposure, 5 ml medium of each treatment was 

acidified and preserved in a 4°C refrigerator for chemical analysis. 

4.2.2 Metal exposure and analysis 

Cu and Ni were added into the Steiner solution as nitrate salts since NO3
- was 

assumed not to interfere with the performance of the Cu-selective electrode. The 

concentrations of added Ni ranged from 34 to 85 μM and the range of Cu-activities 

was from 0.8 to 21 nM. The activity of Cu2+ was checked using an ISE25 

Cu-selective electrode (Radiometer analytical, France) and adjusted every other 

day to keep the Cu-activity constant as designed during the exposure. Solution pH 

was kept at 7.0 every other day using either HNO3 or NaOH and checked using a 

691 pH meter (Metrohm, Switzerland). Metal concentrations of the test medium and 
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the Steiner solution were measured by flame atomic absorption spectroscopy 

(Perkin Elmer AAnalyst 100, US), reference analytes were found to be within 15% of 

the certified reference values. Speciation calculations were conducted by 

Windermere Humic Aqueous Model 7.0.1 (Centre for Ecology ＆ Hydrology, UK) 

based on the measured concentrations in solution (Supplementary Material). Actual 

concentrations of the cations and anions in solution were calculated according to 

the Steiner solution formula applied in the study of Le et al. (2012). The pCO2 was 

set at 10-3.5 atm since the hydroponic system was open to the ambient air. 

4.2.3 Response measurements 

The root length of seedlings was measured before and after 4 days of exposure as 

the distance from the transition point between the hypocotyls and the root to the 

root tip. Root elongation was reported to be a suitable and sensitive endpoint of 

toxicity for metal exposure (EPA 1988; OECD 2006). The root growth of 4 seedlings 

was averaged as lettuce root elongation at a given concentration. The relative root 

elongation inhibition  (REI, %) was used to determine the toxic response of lettuce 

to Ni2+/Cu2+/Zn2+/Ag+ and their mixtures in the present study:  

( ) %
RG

REI
RG

= − ×S

C

1 100                                                 (4-1) 

In equation (4-1): RGs = the average root growth of plants in the sample solution; 

RGc = the average root growth of plants in the control solution.  

4.2.4 Data analyses 

The toxicological data (i.e. KMgBL and f50M) derived from exposure of lettuce to single 

metals were collected from previous studies and were summarized in Table S4.1 

(Supplementary Material). The response data of Cu-Zn and Cu-Ag mixtures used 

for modeling were taken from the research of Le et al. (2013) in which the same test 

species was used and the exposure was executed under similar experimental 

conditions. The single toxicity of Cu2+/Zn2+/Ag+ to L. sativa L. was significantly 

inhibited only by H+, and Ni2+ binding to the biotic surface was found to be 

Mg2+-dependent (Le et al., 2013; Liu et al., 2014). Thus, it is assumed that metals 

investigated in this paper mainly enter the biological cells as ionic forms through 

major cations or protons transport sites. In other words, the modes of action (MoA) 
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of Cu, Ni, Zn, and Ag are presumed similar, but their specific mechanisms are 

unknown. Based on this assumption, toxicity of Cu-Ni, Cu-Zn and Cu-Ag mixtures 

was predicted by combining the BLM concept with the TU, fmix and TEF indexes. 

In the BLMs, the interactions of the metals with the BLs are assumed to be purely 

competitive. The fraction f of the total number of biotic ligand sites bound by metal 

ions is considered as the key indicator of metal toxicity (Jho et al., 2011). 

{ }
{ } { }n
K

f
K K

+

+ +=
+ + ∑

×
× ×

2
MBL

2
MBL EBL1

M
M E

                                      (4-2) 

In equation (4-2): K = the binding constant for binding to the biotic ligand sites; M2+ = 

the metal ions of interest, namely Cu2+, Zn2+, Ag+ and Ni2+ in our case; En+ = 

essential or major ions competing for binding to the BLs, namely H+ or Mg2+ in our 

case; { } = the chemical activity. 

The Cu-Ni combination is used as an example to explain the development of 

binary-metal BLMs. Similar approaches can be applied to extending BLMs for 

Cu-Zn and Cu-Ag mixtures. If Cu2+ and Ni2+ bind to different specific 

transporters/sites on the biological membrane, which fits the assumption of TU 

approach (Khan et al. 2012), there would be no competition between Cu2+ and Ni2+ 

because of the different mechanisms of action (MOA). In that case, binding of these 

metal ions to the distinct target sites is only influenced by major cations, i.e. Mg2+ for 

Ni2+ and H+ for Cu2+. Then equation 4-2 can be transformed:  

[ ] { }
[ ] { } { }

K
f

K K

+

+ += =
+ +

×
× ×

2
CuBL

Cu 2
T CuBL HBL1

CuBL Cu
BL Cu H

                            (4-3) 

[ ] { }
[ { } { }

K
f

K K

+

+ += =
+ +

×
× ×

2
NiBL

Ni 2 2
NiBL MgBLT

1
NiBL Ni
BL] Ni Mg

                            (4-4) 

Toxicity of Cu-Ni mixtures can be described as adding up the TU values of each 

metal: 

, ,
i

f f
f f

= = +∑ Cu Ni

50 Cu 50 Ni

TU TU                                               (4-5) 

In equation (4-5): f50 = fraction of the biotic ligands occupied by metal ions at the 50% 

response level. 
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When Cu2+ and Ni2+ are assumed to act through similar mechanism of action (Van 

den Berg et al., 1998), both competition between metal ions and competition 

between cations for binding sites are supposed to affect the overall amounts of ions 

binding to the target sites.  

{ }
{ } { } { }

K
f

K K K

+

+ + +=
+ + +

×
× × ×

2
CuBL

Cu 2 2
CuBL NiBL HBL1

Cu
Cu Ni H

                        (4-6) 

{ }
{ } { } { }

K
f

K K K

+

+ + +=
+ + +

×
× × ×

2
NiBL

Ni 2 2 2
NiBL CuBL MgBL1

Ni
Ni Cu Mg

                     (4-7) 

Toxicity of Cu-Ni mixtures may be expressed: 

m xf f f= +i Cu Ni                                                          (4-8) 

If single metals in a mixture have dissimilar potency, the TEF index as an 

adjustment coefficient can be combined with the BLM for toxicity assessment of 

metal mixtures (Le et al. 2013). The value of TEF represents the comparative toxic 

potency for each metal in the mixture. Toxicity of a complex mixture can be 

expressed in terms of the toxic equivalent (TEQ). It is calculated by summing the 

products of concentration and TEF for each metal in the mixture (Delistraty, 1997). 

In the present study, Cu2+ was selected as the reference metal for standardization of 

toxicity of individual metals since Cu2+ has the highest stability constant (Table S4.1) 

and thus was assumed to be the most toxic metal in the mixtures. The values of 

TEF were equal to 1 and 0.63 for Cu and Ni respectively according to equation 4-9.  

,f
f

= 50 Cu
Ni

50

TEF
,Ni

                                                         (4-9) 

∑ × × ×M M Cu Cu Ni NiTEQ = TEF = TEF + TEFf f f                              (4-10) 

Inhibition of lettuce root elongation (REI) was expressed using TU, fmix and TEQ as 

follows:  

( )x xREI − ×=
+ 50

100
1 10 β                                                   (4-11) 

In equation (4-11): β = the fitted parameter determining the slope of the dose 

response curve; x = the value of the toxicity index, i.e. TU, fmix and TEQ at a given 

mixture concentration; x50 = the value of TU/fmix/TEQ when 50% inhibition to root 
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elongation is performed. Response data for Cu-Ni, Cu-Zn and Cu-Ag mixtures were 

fitted to the dose-response curves, using the software Origin 8.0725 (Origin Lab, 

UK). 

The IC50 values of one of the metals in the binary mixture, expressed as activity, 

were plotted against activities of the other metal to further investigate the 

competition between metal ions in the mixture. The median inhibition concentration 

(IC50) for each metal was also determined by means of equation 4-11. 

The adjusted root mean square error (RMSE) was calculated for the three extended 

BLMs and used for model comparison:   

SS
RMSE

n k
=

−
                                                     (4-12) 

In equation (4-12): SS = residual sum of square; n = number of points; k = number 

of free parameters in the model. The lowest value of RMSE indicated the best 

modeling method. To quantify the statistical differences between each model, the 

bootstrapping method was used to estimate the distribution of differences between 

RMSEs. Five thousand samples (typically 1000 to 10000) were randomly 

resampled from each original dataset. Two-tailed p values were obtained multiplying 

the proportions of smallest differences close to zero by two. The calculations were 

conducted using Statistics Analysis System 9.2 (SAS Institute Inc., US). 

4.3 Results 

4.3.1 Toxicity of Cu-Ni mixtures  

Observed toxic effects of the Cu-Ni mixtures plotted against BLM-based TU, fmix and 

TEQ values are shown in Figure 4.1. Using these three models, increased values of 

TU, fmix and TEQ significantly (p<0.0001, Table 4.1) correlated to the increasing root 

elongation inhibition of L. sativa. Although the difference with the TEF method 

(Table S4.2, Supplementary Material) was not statistically significant (p=0.10), the 

BLM-based TU approach was slightly better in interpreting toxicity of Cu-Ni mixtures 

because of the highest value of Adj. R2 (0.86) and the smallest RMSE (10.54). 

Although the value of TU50 was manually calculated to be 1.23±0.02, considering 

the actual experimental error, this deviation from additivity of Cu-Ni mixtures was 
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assumed to be not significant. The β values derived using the BLM-based TU 

approach for the three metal combinations were significantly different (Table 4.1) 

since their 95% CIs deviated significantly from each other.  

Changes of 4 d IC50 values of Cu2+/Ni2+ to L. sativa at various Ni2+/Cu2+ activities are 

presented in Figure 4.2. Significant logistic correlations (p<0.01) revealed that the 

more Cu2+ was added, the lower the IC50 value of Ni2+, and vice versa. The toxicity 

of Ni2+ increased with increasing activities of Cu2+ and the IC50 values of Ni2+ when 

exposed in a mixture with Cu were always lower than the corresponding values in 

single Ni experiments (3.03×10-5 M). A similar trend was observed in the relationship 

between Ni2+ activities and the IC50 of Cu2+. A 43-fold reduction of IC50 of Cu2+ was 

observed when the activity of Ni2+ increased up to 3.4×10-5 M. The above results 

demonstrated that the increased activities of Ni2+ did not reduce the Cu-toxicity and 

vice versa which implied that Ni2+ and Cu2+ may be bound to different target sites on 

the BLs. 

4.3.2 Toxicity of Cu-Zn mixtures  

Statistically significant correlations (p<0.0001) between the three toxicity indexes 

and REI were obtained (Table 4.1) for the Cu-Zn combination. The strength of the 

correlations differed from Adj. R2=0.58 to 0.73 (Figure 4.1). With the highest value 

of Adj. R2 (0.73) and the lowest RMSE (15.15), the predictive power of the 

BLM-based fmix model was significantly better than the BLM-based TU/TEF 

approaches (p<0.001, Table S4.2) in assessing toxicity of Cu-Zn mixtures. The TU50 

(1.79) was calculated to be significantly higher than 1 since the 95% confidence 

interval of the estimated TU50 (1.71-1.88) exceeded unity significantly. This implied 

that the concentration-addition hypothesis was rejected at the 5% significance level 

and the Cu-Zn combination resulted in an antagonistic effect. The fmix50 of Cu-Zn 

mixtures (0.59) was similar to the values derived for both the Cu-Ag combination 

(0.62) and the Cu-Ni combination (0.58).  

Logistic regressions (Figure 4.2) demonstrated that the IC50s of Zn2+ decreased 

significantly upon increasing activities of Cu2+, and vice versa (p<0.001). The 

elevation of Cu2+ activities resulted in a 45-fold reduction of the IC50 of Zn2+. At lower 

activities of Cu2+
 (< 3.38×10-8 M), the IC50 of Zn2+ was increased as compared to the 
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value when Zn2+ operated alone (1.06×10-4 M). Cu2+ turned into the dominant cause 

of inhibition at higher activities because of the low IC50 of Zn2+. Almost all the IC50s 

of Cu2+ in the mixtures were higher than the values in the treatment of Cu2+ alone 

(2.60×10-8 M) except at higher activities of Zn2+ (>1.23×10-4 M). Thus, conforming to 

the assumptions of the BLM-based fmix model, Zn2+ exerted an ameliorative effect 

on Cu-toxicity to lettuce and vice versa.  

 

Figure 4.1 Dose-response relationships between root elongation inhibition (REI, %) 

to lettuce L. sativa and toxic indexes i.e. TU (first column), fmix (second column) and 

TEQ (third column) for the mixture combinations Cu-Ni (first row), Cu-Zn (second 

row) and Cu-Ag (third row). The solid lines represent the logistic model fits 

(equation 4-11). R2 indicates the coefficient of determination adjusted for the 

degrees of freedom for the measured and the predicted REI. RMSE indicates the 

adjusted root-mean-square error of the predicted REI.  
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Figure 4.2 Relationships between the median inhibition concentrations (IC50s) of 

Zn2+/Cu2+/Ag2+/Ni2+ for L. sativa after 4 d exposures and the activities of 

Cu2+/Zn2+/Ag2+/Ni2+ in the mixture. The first row shows impacts in Cu-Ni mixtures, 

the second row shows impacts in Cu-Zn mixtures and the third row shows impacts 

in Cu-Ag mixtures. The solid lines represent the logistic model fits. R2 indicates the 

coefficient of determination adjusted for the degrees of freedom. p indicates the 

statistical significance level. 

4.3.3 Toxicity of Cu-Ag mixtures  

Toxic effects of Cu-Ag mixtures to lettuce were estimated by using the BLM-based 

TU, fmix and TEQ indexes. Dose-responses curves are presented in Figure 4.1 and 

all correlations showed to be statistically significant (p<0.0001, Table 4.1). The 

highest Adj. R2 (0.74) and the lowest RMSE (16.66) were obtained using the 
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BLM-based TEF in describing the combined toxicity of Cu-Ag mixtures. However, 

no statistically significant differences (p=0.15, Table S4.2) were found between 

using TU and TEF indexes. The TU50 value (2.23) for the Cu-Ag combination was 

likewise significantly higher than 1, which implied an antagonistic relationship 

between Cu2+ and Ag+. The β values derived using the three models significantly 

deviated from each other at the 5% significance level.  

As shown in Figure 4.2, a significant decrease of IC50s of Cu2+/Ag+ with increasing 

activities of Ag+/Cu2+ was observed (p<0.0001). Addition of Cu2+ alleviated the 

toxicity of Ag+ due to the higher value of IC50s as compared to single Ag+ exposure 

(1.34×10-7 M). Up to 1.03×10-7 M, the higher activities of Cu2+ resulted in root 

elongation inhibition again. Similarly, reduction of Cu-toxicity was observed with the 

addition of Ag+. Thereupon, competition may occur between Cu2+ and Ag+ when 

lettuce was exposed to Cu-Ag mixtures in solution. 

4.4 Discussion 

4.4.1 Competitions and metal toxicity of binary metal mixtures 

Overall, the results of this study showed that the three extended BLMs all 

succeeded to predict toxicity of Cu-Ni, Cu-Zn and Cu-Ag mixtures to lettuce. 

However, their predictive abilities varied for different binary-metal combinations, 

which indicated that the mixture toxicity is dependent on the specific composition of 

the metal mixture and the relative quantities of each metal presented in the mixture. 

The statistical difference between the BLM-based TU and TEF approaches was not 

significant in predicting toxicity of Cu-Ni and Cu-Ag mixtures, which differed from the 

finding for the Cu-Zn combination. In order to determine the most suitable model for 

each metal combination, the correlations between the IC50 values and the activities 

were developed to further explore the occurrence of competition. The increased 

values of the toxicity indexes (i.e. TU, fmix and TEQ) reflected the increased toxicity 

of binary-metal mixtures to L. sativa. By combining the BLMs with the TU/fmix/TEF 

approaches, the site-specific theory of ion binding provides explanations for 

competition between metals in the mixture. 
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The outcome of modeling plus the observations displayed in Figure 4.2 showed that 

the BLM-based TU model which only integrated competition attributable to the 

major cations, was the best predictive tool in explaining toxic effects of Cu-Ni 

mixtures to L. sativa. This indicated that Ni2+ followed a distinct pathway from Cu2+ 

in lettuce for uptake or translocation, which was consistent with the finding on 

Blepharis aspera (Nkoanea et al., 2007). However, some researchers pointed out 

that interactions occurred at the internal pathways. Both Cu and Ni were found to 

trigger oxidative stress in plants by generating reactive oxygen species (ROS) 

(Charles et al., 2013). On the other hand, no or little effect of Ni on the ionic balance 

was found in D. magna (Pane et al., 2003) which differed from the observed effects 

of Cu in G. pulex (Brooks and Mills, 2003). Thus, the significance of competition 

between Cu2+ and Ni2+ may be different due to diverse factors (Spurgeon et al., 

2010), such as endpoint of assessment and test species. 

The toxicity prediction of Cu-Zn mixtures was improved significantly when 

competition among metal ions was incorporated. This implied that Zn2+ and Cu2+ 

interacted at the organism level. This finding was consistent with the research of 

Luo and Rimmer (1995) on barley growth. The affinity for the same targets may be 

associated with a lack of binding preference of Zn2+, which makes Zn2+ bind to 

structurally diverse ligands (Peijnenburg and Vijver, 2007). In addition, Brӕk et al. 

(1976) found that in P. tricornutum, all divalent metal ions, including Cu2+ and Zn2+ 

act on a common site. Essential elements such as Cu and Zn exist within the plant 

as organometallic complexes, the remobilization potential of which were found to be 

similar from senescing tissues to the seeds (Cataldo and Wildung, 1978). Thus, 

possibly due to the occurrence of competition between Cu2+ and Zn2+, the 

BLM-based fmix method was found to be best in predicting toxicity of Cu-Zn mixtures 

to lettuce.  

In toxicity prediction of Cu-Ag mixtures, although the difference between the 

BLM-based TU and TEF models was not statistically significant, the results of TU50 

and competition exploration showed that the toxicity of Ag+ was reduced by addition 

of Cu2+, and vice versa. This may imply that Cu2+ competed with Ag+ at the level of 

metal uptake, which was similar to the findings in aquatic animals (Niyogi and Wood, 

105 
 



Chapter 4 

2004). Moreover, Howe and Merchant (1991) also found that the presence of Cu2+ 

blocked the synthesis of the Ag+-inducible components and made plant cells 

resistant to Ag+. The different toxic potencies of Cu2+ and Ag+ to lettuce which were 

suggested by TEF approach may be due to their dissimilar valence numbers. The 

similar MOA of Cu2+ and Ag+ indicated that the necessity of elements may not be 

the only criterion in judging interactions between metals.  

4.4.2 Application of estimated coefficients and models 

Based on the assumptions of the extended BLMs, the coefficients obtained from 

simulations may also have the potential to be indicative of the underlying 

mechanisms of metal mixtures in solution.  

According to the traditional method used for soil animals (Weltje, 1998), patterns of 

interaction between metals in a mixture may be obtained by rescaling the 

concentrations in terms of TUs. The TU50 values of Cu-Zn and Cu-Ag mixtures 

indicated that the deviations from additivity were statistically significant at the 5% 

significance level. In accordance with the null hypothesis of models, Cu2+ may 

compete with Zn2+/Ag+ on the similar transport sites. Relationships between median 

inhibition concentrations of Zn2+/Cu2+ and activities of Cu2+/Zn2+ did demonstrate a 

protective effect of Zn2+/Cu2+ on Cu2+/Zn2+ to lettuce. The impacts at lower activities 

of Cu2+/Zn2+ on Zn2+/Cu2+ were found to be different from the impacts at higher 

metal activities. This may imply that the interactions were dose-level dependent. 

Similar trends were found in this study for Cu-Ag mixtures. This is in agreement with 

the general finding that antagonism is the predominant response in modeling toxic 

effects of metal mixtures to organisms in the environment (Vijver et al., 2010). 

Another explanation for the discovered antagonism may be due to the 

overestimated prediction made by the conservative concentration addition model. 

Therefore, the BLM-based TU50 seems to be useful in determining interaction 

patterns for binary-metal mixtures. As the interaction in BLM was assumed to be 

competition, the interactive strength became a measure of magnitude of 

antagonism.  

The similar fractions of the total number of biotic ligands occupied by mixture ions to 

cause 50% inhibition of root growth (fmix50) may be indicative of similar sensitivities 
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of lettuce to the three binary-metal mixtures studied. Significant differences of β 

values were found among diverse metal combinations and different modeling 

methods. Plackett and Hewlett (1952) explained that observed dissimilarities in 

concentration-effect curves resulted from differences in transport or metabolic 

pathways from exposure level to the actual target within organisms. 

The significant dependence of mixture toxicity on the TEQ (Cu-equivalents) values 

across various metal combinations indicated the practicality of the BLM-based TEF 

approach in assessing toxicity of metal mixtures as for dioxin-like chemicals. The 

value of TEQ, which was the sum of weighted potency of each component in the 

mixture, represented the magnitude estimate of relative potency (Birnbaum and 

DeVito, 1995). The ranking of TEQ50s was found to be Cu-Ni<Cu-Zn<Cu-Ag. 

According to the binding constants of single metals, Ag+ was supposed to be most 

toxic among the three metals added to Cu. The biggest TEQ50 value of Cu-Ag 

mixtures may be attributed to relatively strong competition between Cu2+ and Ag+ 

when 50% root elongation inhibition was induced (Le et al., 2013).  Unlike classes 

of organic chemicals, it is difficult to classify metals due to their different toxic effects 

on various plant species. The individual TEF values are associated with the 

standard metal selected, which may consequently influence the toxicity or TEQ of a 

mixture (Safe, 1998). Thus, the utility of TEF/TEQ values to compare the toxic load 

of metals and their mixtures in terrestrial plants remains to be determined.  

The additivity models developed in this study are also applicable to predict toxicity 

of complex mixtures consisting of more than two metals if the binding affinities of 

metal components are known. Based on the combination-specific modeling results, 

the BLM-based TU approach is recommended as a good first approximate 

estimation of toxic effects of metal mixtures since it is relatively conservative and 

simple to implement. 

4.5 Conclusions 

In summary, the present study supported the BLM concept that the fraction of the 

total amount of BLs occupied by metal ions was a good indicator determining 

mixture toxicity with consideration of environmental impacts. The three extended 
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BLMs based on known stability constants of single metals successfully accounted 

for the toxicity of metal mixtures to lettuce. The predictive power of combining BLM 

principles and the TU/fmix/TEF indexes differed for the specific combination of metal 

mixtures. The incorporated ion-ion competition and toxic potency of individual 

metals gave more accurate toxicity assessment for specific metal mixtures. 

However, due to a limited understanding of metals mechanisms in terrestrial plant 

species, it is difficult to straightforwardly give a best approach in predicting toxicity 

of all possible metal mixtures. Thus, we suggest using the BLM-based TU method 

for the general risk assessment of new metal combinations. By comparing the 

performance of the three extended BLMs, the best model obtained is likely 

indicative of the underlying mechanisms of toxicity of metal mixtures. 
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Supplementary Materials 

S4.1 Chemical composition of Steiner solution 

The concentrations of Mg, Ca, K, Na and Zn in the Steiner solution were measured 

using FAAS. The values were averaged to be 1.674, 2.103, 5.662, 1.251, 0.002 mM 

respectively, and used for speciation calculation of mixture ions in WHAM 7.0.1. 

S4.2 Selection of conditional stability constants and fraction of the total 
number of BLs occupied by metal ions 
Mixture toxicity prediction in the present study was based on the known stability 

constants and the fraction of the total number of biotic ligands occupied by metal 

ions at the 50% response level which derived from the BLMs for single metals in 

previous studies. The value of KHBL (log scale) used for modeling in this study was 

set as a constant value for lettuce L. sativa since the affinity constants of H+ binding 

for diverse organisms in the aquatic system were found to be constant around 6 

(Verschoor et al., 2012). 

Among the conditional stability constants, Cu2+ has the highest binding affinity to the 

biotic ligands when compared to Ag+, Zn2+, and Ni2+, i.e. log KCuBL (7.4) > log KAgBL 

(6.39) > log KNiBL (5.10) > log KZnBL (4.0). 

Table S4.1 Binding constants of Cu, Zn, Ag and Ni to lettuce (Lactuca sativa) and 

the fraction of the total number of biotic ligands of lettuce occupied by metal ions at 

the 50% response level (f50M).  

Metal ions log KMBL log KHBL log KMgBL f50M Sources 

Cu2+ 7.40 6.27 - 0.36 Le et al. (2012) 

Zn2+ 4.00 6.27 - 0.42 Le et al. (2012) 

Ag2+ 6.39 6.27 - 0.22 Le et al. (2012) 

Ni2+ 5.10 - 2.86 0.57 Liu et al. (2014) 
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S4.3 Model comparisons using Bootstrapping 
In our case, the BLM-based models are non-nested by only changing the toxic 

indicators (i.e. TU, fmix, and TEQ). Thus, the traditional statistical hypothesis testing 

(such as F test) cannot be used to compare models. Bootstrapping method which 

was introduced in 1979 by B. Efron (1979) was chosen to determine the relative 

likelihood of two models for each combination. The constructed two-sided p values 

were used to interpret the significance of differences between usages of two 

models.  

Table S4.2 Model comparisons by using Bootstrapping. 

Combinations 
TU versus fmix 

(p values) 

TU versus TEF 

(p values) 

fmix versus TEF 

(p values) 

Cu-Ni <0.001* 0.10 <0.001* 

Cu-Zn <0.001* 0.03* <0.001* 

Cu-Ag 0.014* 0.15 <0.001* 

*: statistically significant difference at the 5% significance level. 
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