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Statistically significant deviations from additivity 

Abstract 

There is increasing attention from scientists and policy makers to the joint effects of 

multiple metals on organisms when present in a mixture. Using root elongation of 

lettuce (Lactuca sativa L.) as a toxicity endpoint, the combined effects of binary 

mixtures of Cu, Cd, and Ni were studied. The statistical MixTox model was used to 

search deviations from the reference models i.e. Concentration Addition (CA) and 

Independent action (IA). The deviations were subsequently interpreted as 

‘interactions’. A comprehensive experiment was designed to test the reproducibility 

of the ‘interactions’. The results showed that the toxicity of binary metal mixtures 

was equally well predicted by both reference models. We found statistically 

significant ‘interactions’ in four of the five total datasets. However, the patterns of 

‘interactions’ were found to be inconsistent or even contradictory across the 

different independent experiments. It is recommended that a statistically significant 

‘interaction’, must be treated with care and is not necessarily biologically relevant. 

Searching a statistically significant interaction can be the starting point for further 

measurements and modeling to advance the understanding of underlying 

mechanisms and non-additive interactions occurring inside the organisms. 

Keywords: Metal mixtures; lettuce; statistically significant; biologically relevant; 

reproducibility 

3.1 Introduction 

Industrial discharges, consumer wastes and the usage of plant protection products 

or sewage sludge bio-fertilizers may all lead to metal contamination in soil. Metals 

can be easily adsorbed in soils (Yang et al., 2009) and be accumulated in plants 

which may result in a threat to the health of the plant itself and consumers in the 

food chain. In the natural environment, plants are often exposed to multiple metals 

simultaneously rather than a single metal (Backhaus et al., 2000). Many metals 

listed individually within the safe range of industrial permits are extremely toxic to 

certain species and even more so when present in combination (Wong et al, 1987). 

Thus, to maintain healthy and functioning ecosystems, it is necessary to improve 

the understanding of combined effects of multiple metals on terrestrial plants. 
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Since current testing is cost- and time-consuming, computational models are 

developed to help predict toxicological responses and understand the toxicity 

mechanisms of mixtures. The most frequently used predictive tools for assessing 

mixture toxicity disregarding interactions are Concentration Addition (CA) (Loewe 

and Muischnek, 1926) and Independent Action (IA) (Bliss, 1939) if the constituents 

making up the mixture are known. The CA model is used for chemical mixtures for 

which a similar mode of action is assumed, whereas the IA model is used to predict 

effects of compounds with a different mode of action (Bliss, 1939). It has been 

argued that concentration addition should be a more suited default model in risk 

assessment of chemical mixtures because of its conservatism in most cases 

(Cedergreen et al., 2008). In addition, it is suggested that dissimilarly acting 

chemicals rarely exist in complex organisms (Faust et al., 2003). However, the sites 

or the modes of action are ambiguously defined at the biochemical level and can be 

dose dependent (Cedergreen et al., 2008). In most cases, the CA and the IA models 

are used only based on their mathematical connotation as the toxicity mechanisms 

of metals are still greatly unknown. The conceptually unrelated CA and IA models 

are single-time point approaches which make them suitable to make predictions for 

mixture effects based on standardized toxicological tests. Therefore, the CA and the 

IA models were both used in this research. An elaborate description of these two 

approaches can be found for example in the papers by Altenburger et al. (2000) and 

Jonker et al. (2005). 

Predicting mixture effects becomes a challenge when a mixture is composed of 

interacting chemicals that synergize or antagonize the effects of each other. 

Accurately determining chemical interactions is not only conducive to adequately 

describing the relationship between exposure and effect, but also greatly aids risk 

assessments for chemical mixtures and further studies for underlying mechanisms 

of chemical toxicity. Synergistic interactions may cause severe effects on organisms 

(Johnson et al., 2013) which attract the attention of toxicology scientists and policy 

makers in finding synergism for naturally occurring mixtures. The reference models 

(i.e. CA and IA) are frequently extended to explore the presence of interaction 

between mixture components and to explain the variation in assessing mixture 

toxicity (Jonker et al., 2005; Le, 2012). Statistically significant deviations from the 
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predictions of reference models are usually interpreted as interactions. The 

strongest interactions often occur in binary mixtures and the interactive effects may 

become minor with an increased number of mixture components (Warne and 

Hawker, 1995; Lydy et al., 2004). Thereupon, experiments in this study were carried 

out with binary metal mixtures as a foundation for explaining joint effects of complex 

mixtures. The standardized framework described by Jonker et al. (2005) was 

applied to analyze the toxicity data of metal mixtures, a detailed description of which 

was given in our section 3.2.4.  

By using the above approach, it is possible to assign a statistically significant 

deviation from the reference model (at a point in time). Nevertheless, some issues 

remain unresolved, for instance why the deviation occurs and how to interpret a 

statistically significant deviation as a toxicologically relevant interaction. It was 

shown that these statistically significant interactions show poor reproducibility 

(Cedergreen et al., 2007). Therefore, finding statistically significant interactions 

should be the starting point for further research on biology-related interactions but 

not the endpoint or the conclusion. Deviations from additivity can be caused by 

uncertainties in the measurements or the limited power of predictive tools instead of 

‘real’ interactions between mixture components. Normally, the larger the sample 

size used, the more likely it represents a biologically relevant meaning of effects 

reflected in statistical significance (EFSA, 2011). Therefore, besides significance 

tests, a comprehensive experiment containing five independent experiments on the 

terrestrial plant Lactuca sativa L. was designed to explore the overall toxicity of 

Cu-Cd, Ni-Cd and Cu-Ni mixtures and to systematically examine the uncertainty of 

interactions between metal components. 

The present study aimed at exploring whether the mixture components of Cu-Cd, 

Ni-Cd and Cu-Ni combinations would interact in a way (antagonism or synergism, 

etc.) that affected the toxicity of each other. Reproducibility of deviations from the 

reference models in assessing the overall toxicity was tested by repeating mixture 

toxicity experiments at different concentration levels or ratios. The overall toxicity 

was evaluated by measuring the combined effects of binary metal mixtures on root 

growth of lettuce, Lactuca sativa L. 
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3.2 Materials and Methods 

3.2.1 Test chemicals and experimental design 

In accordance with the seven heavy metals of greatest environmental concern, i.e., 

Cd, Cu, Cr, Hg, Pb, Ni and Zn (Han et al., 2002), Cd as a serious pollutant in the 

pedosphere through human activities was selected to be one of the test element 

and the essential elements (i.e. Ni and Cu) were chosen as the other components in 

the test mixtures. A comprehensive series of acute toxicity tests were designed for 

lettuce exposed to Ni, Cd, Cu and their binary mixtures. Metals were added into the 

nutrient solution in the form of nitrate salts (Sigma-Aldrich, >99%, Japan). The 

concentration of added NO3
- was neglectable as compared to the nitrate 

concentration in the nutrient solution (68 times higher) at which no negative effect 

was observed on lettuce growth. In order to examine the reproducibility of 

interactions between mixture components at relatively low levels of input, the 

experiments of Ni-Cd and Cu-Ni mixtures were repeated three times across 

different exposure levels. To reduce the variation due to non-simultaneous toxicity 

tests, control groups with nutrient solution alone were conducted every week with 

mixture treatments in the same climate chamber. Independent experiments with 

different concentration ratios of Ni-Cd and Cu-Ni mixtures were separated into two 

groups. In the first group, the metal concentrations in the binary mixtures were set to 

be evenly distributed on both sides of the median effect concentrations (EC50s) of 

each metal. The EC50s for Cu, Ni, and Cd were estimated based on the results of 

pilot experiments for single metals. In the second group, the concentrations of Ni 

and Cd were slightly reduced and the concentrations of Cu were slightly increased 

to check if the statistically significant deviations are reproducible. Detailed spiked 

concentrations of Cu-Cd, Ni-Cd, and Cu-Ni mixtures are illustrated in Figure 3.1. In 

previous studies (Le, 2012; Liu et al., 2014a), it has been shown that the free-ion 

activities were the dominant metal species for the single toxicity of Cd, Cu and Ni to 

lettuce. Thus, taking bioavailability into account, the estimated free-ion activities 

were used instead of the measured total concentrations to express exposure of 

lettuce seedlings to metals in this study.  

The pH levels of the test medium were checked using a 691 pH meter (Metrohm, 

Switzerland) and kept at 7.0±0.02 every other day by the addition of either HNO3 or 
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NaOH. The activity of Cu2+ was checked using a Cu-ion selective electrode 

(Radiometer analytical, France). The metal concentrations in the nutrient solution 

for lettuce and in the test medium were determined by flame atomic absorption 

spectroscopy (FAAS, Perkin Elmer AAnalyst 100, US). Calibration standards 

(Sigma-Aldrich, Germany) and a reagent blank were analyzed after every 20 

samples. Speciation calculation was conducted using the Windermere Humic 

Aqueous Model 7.0.1 (Centre for Ecology & Hydrology, UK) based on the measured 

concentrations by FAAS, the measured activities by Cu-ISE and the total 

concentrations calculated from a formulation of the nutrient solution (Liu et al., 

2014a). As the hydroponic system was open to the ambient air, the pCO2 was set at 

10-3.5 atm. The pH value was set as 7.0 and the temperature was set as 15°C. 

Since the tests were conducted under controlled conditions in a laboratory nutrient 

solution, Al and Fe(Ⅲ) concentrations were considered negligible (Farley and 

Meyer, 2015) in the WHAM calculation. 

3.2.2 Test organism and exposure 

As recommended by the US Environmental Protection Agency (1988) and the 

Organization for Economic Cooperation and Development (2006), lettuce (Lactuca 

sativa L.) was selected as a bio-indicator for assessing the toxicity of metal mixtures. 

Seeds of lettuce were purchased from a commercial company (Horti Tops, Holland). 

Steiner solution, the preparation of which is shown in Supporting Information 3.1, 

was chosen as the nutrient solution for culturing lettuce since it has been shown to 

be well suited for plant growth (Steiner, 1961; Liu et al., 2014a). Seeds were 

germinated in a climate room at a temperature of 15°C, a humidity of 80%, a light 

intensity of 117 µmol·m-2·s-1 and under a 16:8 h light: dark cycle for 4 d on expanded 

perlite. After germination, seedlings with taproot lengths beyond 3 cm were selected 

and fixed to parafilm strips floating on the surface of glass beakers (100 ml) 

containing the metal-spiked test medium. For each beaker, 4 seedlings were 

planted. All the beakers were put in a large container with a layer of water to prevent 

excessive evaporation. Five ml of medium of each treatment with one drop of 65% 

nitric acid was preserved after exposure at 4°C for chemical analysis. 
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Chapter 3 

 
Figure 3.1 Set up of experiments for Cu-Cd, Ni-Cd, Cu-Ni mixtures expressed as 

free ion activities.  

3.2.3 Toxicity determination 

Relative root elongation (RRE, %) was chosen to be the toxicological endpoint of 

lettuce to exposures of Cu, Cd, Ni and their binary mixtures due to a relatively 

higher sensitivity of seedlings than seeds (Pfleeger et al., 1991) and the influence of 

non-simultaneous toxicity testing already considered in the formula. The length of 
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the root was measured before and after 4 d exposure, from the transition point 

between the hypocotyls and the root to the root tip (EPA, 1988). The root growth of 

4 seedlings was averaged at a given treatment. The RRE was determined as 

follows  

%RRE RG RG= ×S C/ 100                                               (3-1) 

where RGs: the averaged root growth of plants in the sample solution, cm; RGc: the 

averaged root growth of plants in the control solution, cm. 

3.2.4 Data analysis 

To analyze the combined effects of Cu-Cd, Ni-Cd and Cu-Ni mixtures, two standard 

‘additivity’ models were used as the reference model, i.e. concentration addition (CA) 

and independent action (IA). On the basis of CA concept, the relative contributions 

of mixture components to the overall toxicity can be added in the form of toxic units 

(TUs) (Jonker et al., 2005) as represented in equation (3-2). Strict concentration 

addition occurs when the toxic unit value of a mixture (TUmix) equals one.  
n

i i
i

c x
=
∑mix

1
= /TU EC                                                     (3-2) 

where ci: the concentration of individual chemical i in the mixture with n chemicals, 

free-ion activity was used to express ci; ECxi: the effect concentration of individual 

chemical i that results in the same effect (x%) as the mixture, free-ion activity was 

used to express ECxi; TUmix: a dimensionless ratio, the sum of each quotient or toxic 

unit (TU). 

Based on the concept of independent action, the dose-response relationship of 

metal mixtures can be expressed as equation (3-3) by multiplying the non-response 

of each component in the mixture at a given exposure concentration:  

max ( )
n

i i
i

Y u q c
=

= ∏
1

                                                      (3-3) 

where Y: the biological response; umax: the maximum biological response; qi(ci): the 

probability of non-response of individual chemical i in the mixture with n chemicals. 

The deviation patterns of Cu-Cd (1a), Ni-Cd (1b) and Cu-Ni (1c) mixtures from 

‘additivity’ were quantified by the freely downloadable software named the MixTox 

Model, provided by the Centre for Ecology & Hydrology (CEH). The programming 
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was conducted by the use of Visual Basic functions and the Solver program in 

Microsoft Excel. The reference models and the deviation functions 

(synergism/antagonism, dose ratio-dependent, and dose level-dependent) were all 

fitted to the toxicity data of Cu-Cd, Ni-Cd and Cu-Ni mixtures using the maximum 

likelihood method while minimizing the sum of squared residuals (SS). The median 

effect concentration (EC50) and the slope of dose-response relationships (β) of 

single metals were calculated in an excel spreadsheet using the log-logistic function 

provided by CEH as well and used as initial values for mixture toxicity modelling. 

The statistical significance of the improved model-fit from additional parameters was 

quantified by the chi-square ( χ2 ) tests. In this study, a value of p( χ2 ) lower than 5% 

was considered to indicate a statistically significance. Four types of deviation 

patterns were classified using the MixTox model, i.e. strict ‘additivity’ basically no 

deviations from the reference models (CA or IA), synergism/ antagonism (S/A) 

deviation, dose ratio-dependent (DR) deviation, dose level-dependent (DL) 

deviation. Since the deviation models of DR and DL were not nested, the 

comparison between these two models was not achieved using the chi-square ( χ2 ) 

tests. A detailed description of these mixture models is shown in the Supporting 

Information 3.2. The 2b and the 2c subsets of Ni-Cd and Cu-Ni mixtures were also 

entered into the MixTox model to check whether the statistically significant 

deviations from ‘additivity’ were reproducible.  

3.3 Results  

3.3.1 Background chemical analysis  

The concentrations of Mg, Ca, K, Na and Zn in the Steiner solution were measured 

to be 1.67 ± 0.02 mM, 2.10 ± 0.02 mM, 5.66 ± 0.06 mM, 1.25 ± 0.02 mM, and 0.002 

± 0.0002 mM (n=16) respectively by FAAS.  

3.3.2 Mixture toxicity modeling 

The toxicity data of Cu, Ni, Cd and their three binary mixtures are shown in Table 

S3.1 which also includes dose-response curves of individual metals and 

relationships between observed effects and estimated effects of metal mixtures 

analyzed using the MixTox model. The fitting results of various mixture models are 
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demonstrated in Table 3.1 for all the datasets. The values of R2 are shown to 

describe the goodness of fit of the reference models and the nested deviation 

functions in the MixTox model. The values of p ( χ2 ) are shown to indicate the 

statistically significant level.  

Generally, the combined effects of Cu-Cd, Ni-Cd and Cu-Ni mixtures to L. sativa 

were equally well explained by the CA- and the IA-based mixture models. The 

predictive ability of the mixture models differed when assessing the toxicity of 

different datasets of Ni-Cd mixtures. Fitting of the CA- or the IA-based models to the 

first dataset of Ni-Cd mixtures explained 72%-80% (Table 3.1) of the variation in 

observed effects on lettuce. However, at the lower concentrations of Ni and Cd 

(Figure 3.1) in the second dataset, only 47%-60% (Table 3.1) of the variation was 

explained by mixture models. Similar results were not observed in the Cu-Ni 

combination. The predictive power of reference models and deviation functions was 

shown to be similar in predicting the combined effects of Cu-Ni mixtures on root 

elongation. This indicated that the predictive power of mixture models may be 

dependent on the specific composition of metal mixtures. 

The improvement in fitting by the additional parameters was found to be dependent 

on the specific subset of metal mixtures and reference model applied. For the 

Cu-Cd mixtures, a statistically significant better fit was obtained when parameters 

related to DR or DL dependent deviations were included in the CA- and the 

IA-based models to describe the mixture toxicity. Although inclusion of the S/A 

parameter in the CA model showed a statistically significant better fit to the first 

dataset of Ni-Cd mixtures, adding DR parameters into the IA model improved the 

data description significantly at the 5% level. For the second dataset of Ni-Cd 

mixtures, significantly better fits were obtained after extending the CA and the IA 

models with DR deviation parameters. Extending the IA model with additional 

parameters did not decrease the residuals significantly for modeling the combined 

effects of Cu-Ni mixtures in the first experiment, which was different from the results 

obtained by the CA-based models. For the second dataset of Cu-Ni mixtures, the 

DR or DL parameters added in the CA- or the IA-based models significantly 

improved the model fit for mixture toxicity. 
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3.3.3 Determination of deviation patterns 

Based on the MixTox model, the statistically significant deviations from ‘additivity’ 

are represented in Table 3.2 and in Figure 3.2 for each dataset of Cu-Cd, Ni-Cd and 

Cu-Ni mixtures. Deviations from the reference model were generally found in 

predicting the overall toxicity of Cu-Cd and Ni-Cd mixtures to lettuce apart from the 

first dataset of Cu-Ni mixtures. The significant deviations for each metal 

combination investigated in this study were found to be dependent on concentration 

levels or ratios of metals and not consistent across different reference models. 

Especially for the 1c dataset of Cu-Ni mixtures, no deviation from ‘additivity’ was 

observed using the IA-based functions for toxicity modeling. This was different from 

the statistically significant dose ratio- or the dose level-dependent deviations found 

by the CA-based approaches. For the 1b and the 2b datasets of Ni-Cd mixtures, it 

was demonstrated that patterns shifted between antagonism and dose 

ratio-dependent deviation in modeling the toxicity of Ni-Cd mixtures. For the 1a and 

the 2c datasets, dose level-dependent deviations were obtained with CA as the 

reference model and dose ratio-dependent deviations when IA was used as the 

reference model.  

Moreover, the joint action of metal mixtures (Table 3.2) was determined according to 

the additional parameters estimated by the MixTox model (Table S3.2). Antagonistic 

effects were commonly found for the first datasets of Cu-Cd, Ni-Cd and Cu-Ni 

mixtures at lower dose levels and synergistic effects occurred at higher dose levels. 

However, for the second datasets of Ni-Cd and Cu-Ni mixtures, the joint action was 

contradictory to the first datasets or when different reference models were applied. 

The joint actions of Ni-Cd and Cu-Ni mixtures changed from antagonism in the first 

experiment to synergism in the second experiment. This indicated that interactions 

between mixture components were not reproducible. Synergistic effects between 

Ni2+ and Cd2+ were found where the mixture toxicity is mainly caused by Ni2+ using 

the IA-based models which was in contrast to the results of the CA-based models. 

Similar results were also obtained for the 2c dataset that synergism occurred 

between Cu2+ and Ni2+ at low dose levels using the CA-based models for assessing 

the mixture toxicity whereas antagonism found by the IA-based models. Although 

the experiments of mixture toxicity were repeated, the specific interactions between 
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mixture components could not be defined as the joint actions found by the MixTox 

model were different for diverse reference models or datasets selected. 

 
Figure 3.2 2D isobolic representations of the response surfaces fitted by the 
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statistically significant, most likely deviation models based on concepts of 

concentration addition (two rows on the left) and independent action (one row on 

the right) to describe the effects of mixtures of Cu-Cd, Ni-Cd and Cu-Ni on root 

elongation of L. sativa. The different colors indicate diverse response levels. The 

bigger the number in the addendum, the higher the root elongation rate. 

3.4 Discussion 

Chemical-chemical interactions occur at various processes which complicates the 

toxicity assessment for metal mixtures. First, at the environmental level outside the 

organism, metals can interact with the substances existing in the surrounding media 

which may affect their bioavailability. Secondly, interactions between metals at the 

toxicokinetic phase would influence the uptake of mixtures by organisms. Thirdly, 

interactions that occur at the toxicodynamic phase may influence the accumulation 

of metals at the biotic ligands, and subsequently affect joint toxicity of metal 

mixtures (Calamari and Alabaster, 1980). In our study, estimated bioavailable 

fractions of metals were used in mixture modelling, in which interactions of metals 

with environmental compartments were preliminarily addressed by the WHAM 

software. The potential interactive effects found between metal ions more likely 

occurred at the chemical-organism level. 

According to the results shown in this study, deviations from ‘additivity’ always 

occurred in assessing the overall toxicity of binary metal mixtures regardless of the 

reference models applied. However, the statistically significant deviations patterns 

were found to be not reproducible across the whole dataset for each metal 

combination which was consistent with the findings of Cedergreen et al. (2007). 

These inconsistent deviations may be the result of over-simplifications of the model, 

of the model itself as applied to judge interactions, and of experimental errors. 

Although the MixTox model was a powerful tool in finding statistically significant 

deviations, the improvements in fit by adding parameters were rather small in our 

case. For instance, apart from Cu-Ni mixtures, the goodness of fit in terms of R2 was 

increased by less than 10% when the S/A, DR or DL deviation parameters were 

added into the reference models. On the one hand, as the toxicological response of 

lettuce in exposure to binary metal mixtures was translated to the integrated 
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endpoint RRE (%), the variations of root growth at a small scale (e.g. mm) which fell 

well within the range of experimental uncertainty, would lead to the difference 

between a synergistic effect and an antagonistic effect. On the other hand, the 

sensitivity of this tool may be improper to distinguish interactions from deviations in 

our case. Fisher (1957) has suggested that a level of significance (e.g. α=0.05) 

could be set according to specific circumstances. A more stringent alpha level (e.g. 

α=0.01) may help avoid testing variability and raise the power of determining 

interactions in metal mixtures. 

Additionally, most of these significant deviations were found to be dependent on 

dose ratios of Cu-Cd, Ni-Cd and Cu-Ni mixtures, which is similar to the findings of 

Sharma et al. (1999). This may be the cause of the different and even opposite 

deviation patterns in the second datasets as compared to the results of the first 

datasets of Ni-Cd and Cu-Ni mixtures. It is thus good to note that the use of a fixed 

concentration ratio for experiments may bias the interpretation of interactions 

between mixture components in assessing the total toxicity (Drescher and Boedeker, 

1995). Although a comprehensive series of acute toxicity experiments can have a 

degree of replication (Tipping and Lofts, 2015), real experimental duplicates are still 

needed (Cedergreen et al., 2007) to systematically examine the effects of 

interactions on mixture toxicity assessment. These findings emphasized the 

importance of intensive and confirmatory experiments in analyzing mixture toxicity, 

as the ‘noise’ in the experimental toxicity data can be easily interpreted as 

interactions by statistical tools such as the MixTox model. However, blindly 

enlarging the sample size was also not recommended since a statistical test will 

always demonstrate a significant difference for a huge sample size (Sullivan and 

Feinn, 2012). Since the patterns of statistically significant deviations were not 

reproducible, scientists should take care in deriving any conclusions associated with 

interactions and the strength of interactive effects based on the statistical 

significance alone. 

Some researches already reported that interactions occurred in metal mixtures 

involving Cu, Zn, and Cd. Versieren et al. (2014) found that 74% of the interactions 

between Cu2+ and Zn2+ could be explained by the biotic ligand model based on a 

partial factorial and ray design (21 points repeated 3 times) for Hordeum vulgare L. 
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and they postulated that synergistic effects would occur for soil grown plants 

exposed to this mixture. The study of Le (2012) on Lactuca sativa indicated that 

significant alleviative effects of Zn2+ were found on the toxicity of Cu2+ based on a 

single dataset with 122 points as input in the extended CA and IA models. Sharma 

et al. (1999) found complex interactive effects depending on concentrations 

between components of Cu-Zn, Cu-Cd and Zn-Cd mixtures through more than 10 

times repeated root elongation tests and accumulation tests on Silene vulgaris. 

Tipping and Lofts (2015) showed that the toxicity of Cd to Daphnia magna (542 data 

points), Oncorhynchus clarkia lewisi (162 data points), and Oncorhynchus mykiss 

(207 data points) could be markedly reduced by Cu and Zn according to the 

WHAM-FTOX model. Although many replications or near-replications were 

conducted in the studies listed above, Tipping and Lofts (2015) pointed out the 

difficulty in obtaining reproducible results of toxicity experiments. Improvements in 

measurements and modeling are still needed before confidently accepting and 

applying conclusions concerning toxicologically relevant interactions. Better 

methods to advance the understanding of mechanism may assist in evaluating 

non-additive deviations or interactions between metals. 

Moreover, it is not possible to make a distinction between the CA- and the IA-based 

models as both models performed equally well in assessing the overall toxicity of 

Cu-Cd, Ni-Cd and Cu-Ni mixtures. This finding was in line with the result of Syberg 

et al. (2008) on dimethoate, pirimicarb and linear alkyl benzene sulfonate. 

Cedergreen et al. (2008) also proposed that on the basis of predictive accuracy 

alone, neither of the CA and IA models was significantly better than the other. The 

similar results of the CA- and the IA-based model predictions are likely to be caused 

by the slopes of the log-logit response curves being approximately equal to 1.0 

(Farley and Meyer, 2015) especially for the single metal exposures of Cu and Cd. 

As the MixTox model is developed based on the isobologram approach, the CA 

isoboles are difficult to be distinguished from the corresponding IA isoboles when 

the slope parameters of log-logit curves are around 1.0 (Drescher and Boedeker, 

1995). Until now, the comparison for a superior model in describing the joint effects 

of a given mixture mostly relies on experience as the knowledge of mechanism is 

still lacking (Jonker et al., 2005) especially for metals. Unlike organic pollutants, 
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metals are difficult to be classified based on their mode or mechanism of action due 

to organism-specific characteristics (Liu et al., 2014b). For example, the effects 

induced by Cu2+ may occur in the form of cellular destabilization via metal 

substitution reactions within Patracentrotus lividus (Manzo et al., 2010). Both Cu 

and Ni were found to influence the ionic balance of Gammarus pulex L. (Charles et 

al., 2014). In addition, Cu was also reported to interfere with the photosynthesis 

process in algae (Stauber and Florence, 1987). In contrast, Cd was always found to 

bind to the apoplastic and the symplastic and to block cell division by disrupting 

active components in Triticum aestivum (Lu et al., 2013). Terrestrial plants are in 

general complex organisms that may have multiple target sites (Zwart and 

Posthuma, 2005; Syberg et al., 2008). It is possible that metals within the higher 

plants like lettuce have primary and secondary modes of action (Manzo et al., 2010) 

and consequently influence the toxicity of each other in the mixture through distinct 

subsystems. Thus, without correct assignment, the mode of action may not be used 

as the sole tool for selecting the likely best model to predict the toxicity of metal 

mixtures. Similarly, an observed deviation cannot be exclusively assigned to a 

specific model. We suggested that the CA- and IA-based models can be used just 

as a representation of mathematical relationships between metal mixtures and their 

biological responses other than the indication of underlying mechanisms. Although 

the CA model was found to produce a relatively better prediction of mixture toxicity 

even for compounds with different modes of action (Faust et al., 2003; Zwart and 

Posthuma, 2005), it is recommended in the research of Bödeker et al. (1992) and in 

this study to use the range of expected responses predicted by both the CA and IA 

models for environmental quality regulations and to use both concepts instead of 

selecting one of them based on uncertain mechanisms of toxicity to assess the 

combined effects of metal mixtures. 

3.5 Conclusions 

The MixTox model was proven to be a very sensitive tool to define statistically 

significant deviations from ‘additivity’ in assessing the combined effects of binary 

metal mixtures. However, the replicated mixture experiments showed that the 

assessment of deviations strongly depended on the fitting of experimental data, the 

predictive methods applied and the specific range of exposure concentrations. 
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Therefore, it was concluded that the statistically significant deviations did not 

directly indicate the biological relevance of interactions. Instead of actually occurring 

interactions between metals, other factors discussed in this study would also result 

in statistically significant deviations in modeling mixture toxicity based on the CA 

and the IA reference models. Unless the underlying mechanism is clearly 

determined, the two reference models are suggested to be used as mathematical 

relationships for metal mixtures. To avoid the model development and the 

interaction investigation for mixture toxicity of metals becoming more like a 

data-fitting exercise and a consequence of experimental design, further studies 

should be focused on identifying the underlying mechanisms of metal mixtures. 

Instead of the endpoint of research, finding a statistically significant deviation can 

be the starting point of further mechanistic research concerning toxicologically 

relevant interactions. 
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Supporting Information 

S3.1 Formula of the Steiner solution (see Supplementary Materials 2.1) 

S3.2 Additional description for the mixture models 

As the statistical software we applied is established by the Centre for Ecology & 

Hydrology (CEH), we only roughly introduce the theoretical basis and the basic 

algorithm in the additional description for the mixture models. For more details of 

this predictive tool, please see the article of Jonker et al. (2005) or visit the following 

website http://www.ceh.ac.uk/products/stats/mixturetoxicity-analysistools.html. A 

deviation function (G) is added in the equations (3-2) and (3-3) shown in the body 

text to quantify the degree of deviations from additivity in the supporting information. 

Where G=0 (exp(G)=1), the actual effect of the mixture is adequately described by 

either concentration addition or independent action (CA or IA,) the 2D isobolic 

representations of which are shown as straight lines (or linear relationships). To 

quantify the deviations from concentration addition (CA), equation (3-2) in the 

manuscript can be rewritten as follows 

/
n

i i
i

−

=
∑ 1

1
( ) = ( )c f Y Gexp                                                 (S3-1)  

For independent action (IA), the dose-response relationship can be calculated by 

multiplying the probabilities of nonresponse or response  

max max ,...,[ ( ) ]
n

i i n
i

P− −

=
Φ Φ Φ Φ∏1 1

1
1

= { [ ( )] + } = -Y u q c G u G                       (S3-2) 

where ci : the concentration of individual chemical i in the mixture with n chemicals; 

Y: the biological response; umax: the maximum biological response; qi(ci): the 

probability of non-response of individual chemical i in the mixture with n chemicals; 
Φ: the standard cumulative normal distribution function; P1,…,n: probability of 

response. 

Since the toxicity of each component in a mixture may differ a lot, the deviation 

functions should depend on each component’s relative contribution to the combined 

toxicity instead of their actual concentrations. The relative amount of toxic units (TU) 

of each chemical component i in a mixture can be defined as follows 
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/
n

i i j
j=
∑

1
= TU TUz x x                                                   (S3-3) 

where i i iTU = / ECx c x                                               (S3-4) 

The following deviation functions are substituted in equation (S3-1) or (S3-2) for 

describing diverse deviation patterns. For synergism or antagonism (S/A), the 

deviation function can be described as  
n

n i
i=
∏1

1
( ,..., ) =G z z a z                                                   (S3-5) 

The deviation function describes antagonism when parameter a is positive and 

synergism when a is negative. The lines of 2D isobolic representations would 

become convex toward the high concentrations for antagonism, and be downward 

concave for synergism. For the binary mixtures investigated in this study, the 

equation (S3-5) can be made dose ratio-dependent (DR) by adding another 

parameter b. The overall antagonistic or synergistic deviation changes with 

chemical 1, where b1 determines the magnitude of change.  

1 2 1 1 1 2( , ) = (G z z a b z z z+ )                                              (S3-6) 

The deviation function describes antagonism when parameter a or b is positive and 

synergism when a or b is negative. Antagonism can be observed where the toxicity 

of the mixture is caused mainly by chemical 1, whereas synergism can be observed 

where the toxicity is caused mainly by chemical 2. To describe synergism and 

antagonism depending on the dose level (DL), the equation (S3-5) is extended by 

including quantified isoboles. As the 50% effect concentration (EC50) can be 

estimated with the least amount of variability, the deviation function is defined as 

follows for concentration addition by incorporating the EC50 isobole 
n n

n i i
i i= =
∑ ∏1 DL

1 1
( ,..., ) = 50G z z a b z(1- TU )                                     (S3-7) 

For independent action, the EC50 isobole is defined by P1,…,n=0.5 and the function 

can be written as  

,...,

n

n n i
i=
∏1 DL 1

1
( ,..., ) = )G z z a b P z(1-                                        (S3-8) 
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The function for dose-level dependent deviation describes antagonism when 

parameter a is positive and synergism when a is negative. The detailed 

interpretation of additional parameters can be found in Table 1 of the paper of 

Jonker et al. (2005). The function mentioned in equation (S3-1) and (S3-2) is the 

log-logistic dose-response model.  
i

i i i i( ) = 100 / [1+ ( / EC50 ) )]h c c β                                         (S3-9) 

where h(ci): a cumulative distribution function, functionally related to concentration c 

of compound i; βi: the slope parameter.  

These models are all fitted to the dataset using the method of maximum likelihood 

or minimizing the sum of squared residuals (SS). The parameters that most 

significantly improve the model fit are then left in the model. The model fit is always 

improved if a reference model is extended with additional parameters. To test the 

significance of improvements, the difference in SS can be used for a pairwise model 

comparison through the likelihood ratio test at degrees of freedom (the difference in 

the number of parameters in two models) which is always referred to a chi-square 

test or a χ2  test. Since the equation (S3-6) and the equation (S3-7) or (S3-8) are 

not nested, the CA or IA model is first compared with the S/A, DR, and DL extended 

models respectively, and then the S/A model is compared with the DR and the DL 

models. If the p χ2  value is lower than conventional criteria for statistical 

significance (0.05), the difference in SS between two models is supposed to be 

significant which also indicates a statistically significant deviation from additivity. 

S3.3 Table S3.1 Raw data (not shown in this Ph.D. thesis) 
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S3.4 Table S3.2 Estimates of additional parameters using the MixTox model 
for Cu-Cd, Ni-Cd and Cu-Ni mixtures 

Dataset 

number 

Additional 

parameter 

The CA-based models The IA-based models 

S/A DR DL S/A DR DL 

1a 

Cu-Cd 

a 1.43 -2.61 5.85 0.91 -3.54 5.09 

bCu - 7.97 - - 9.92 - 

bDL - - 0.37 - - 1.19 

1b 

Ni-Cd 

a 1.63 1.25 3.26 0.59 -2.30 4.13 

bNi - 0.59 - - 6.60 - 

bDL - - 0.30 - - 1.31 

2b 

Ni-Cd 

a -0.64 0.13 -1.34 -0.16 2.64 -1.17 

bNi - 0.36 - - -7.41 - 

bDL - - 0.90 - - 2.61 

1c 

Cu-Ni 

a 0.36 0.031 0.033 1.28 3.30 1.97 

bCu - -0.00032 - - -4.44 - 

bDL - - -0.0002 - - 0.52 

2c 

Cu-Ni 

a -0.28 -0.13 -0.01 1.56 -5.30 0.004 

bCu - -0.05 - - 11.31 - 

bDL - - 0.0004 - - -990.05 

1a: the dataset of Cu-Cd mixtures; 1b: the dataset of Ni-Cd mixtures; 1c: the dataset 

of Cu-Ni mixtures; 2b: the second dataset of Ni-Cd mixtures; 2c: the second dataset 

of Cu-Ni mixtures; CA or IA: concentration addition or independent action; S/A: the 

synergism/antagonism model; DR: the dose ratio-dependent model; DL: the dose 

level-dependent model; -: not applicabl.
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