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General Introduction 

1.1 Metals and their effects 

1.1.1 Metal resources 

Minerals on the planet are widely present in oceans and in the crust of the earth. 

Due to their specific properties, minerals bind tightly to the crust, which causes 

lower concentrations of metals close to the Earth’s surface. Although at such lower 

concentrations, a few metals play a crucial role in the proper functioning of living 

organisms on earth. These metals are involved in various biological processes that 

sustain the life of organisms and are therefore called essential elements. For 

example, calcium, magnesium and potassium are defined as major elements or 

macronutrients since they are needed in a great amount within most plants and 

animals. In addition, the growth and the metabolism activities of organisms are 

inseparable from the presence of trace elements or micronutrients e.g., copper, iron, 

manganese, molybdenum, nickel and zinc, which are required in a small amount 

(Yruela l, 2013). Generally, the essential elements can be replenished through 

uptake from the soil and water by the plant roots. On the one hand, a lack of any 

one or at a very low supply can lead to nutrient deficiency and subsequently result 

in early mortality due to the lack of vitality. On the other hand, an excess of trace 

metals or nonessential metals may result in adverse effects, toxicity or even death 

of organisms. 

1.1.2 Metal contamination  

With the progress of human civilization over recent centuries, metals have become 

concentrated on the Earth’s surface mainly by mining, smelting and industrial 

products. Although several adverse effects of metals have been known for a long 

time, exposure to heavy metals continues, and is even increasing in particular in 

less developed countries (Järup, 2003). Organisms on the earth can therefore be 

exposed to metals at elevated concentrations. Furthermore, metals in soil are 

difficult to clean up (Tangahu et al., 2011) which makes their threats long-term 

persisting in the terrestrial ecosystems. Plant growth, ground cover and soil 

micro-flora have been known to be affected by metal exposure (McLaughlin, 2001; 

Roy et al., 2005). Crops grown in contaminated land may accumulate a range of 

metals in their harvestable parts. Ingestion of those contaminated plant- or 
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Chapter 1 

animal-based foods (Radojevic and Bashkin, 1999) and skin contacts (Qu et al., 

2012) are two main possibilities for metals to enter the human body. Metals cannot 

be degraded or destroyed (Pezzarossa et al., 2011) that once absorbed by 

organism, remain residents over decades. Their increasing cumulative amounts 

may therefore cause disorders and diseases to humans. The most typical case was 

the itai-itai disease that occurred in Japan first starting around 1912. Due to mining, 

large quantities of cadmium and other metals were discharged into the Jinzū River 

which was mainly used for irrigation of rice fields and washing. Long-term intake of 

cadmium-contaminated rice leads to toxic effects on kidney (renal disfunction) and 

bones (osteomalacia, osteoporosis) among itai-itai victims (Järup, 2003). This 

horrible event made people aware of the seriousness of metal contamination.  

1.2 Metal-based nanoparticles and their effects  

1.2.1 Metal-based nanoparticles 

With the fast growth of the world population and of urbanized societies, how to fulfill 

the rising demand for metal supplies will become a pressing problem in the future. 

Engineered metal-based nanoparticles (NPs) with their specific characteristics may 

provide a solution to raise metal-recycling rates and therefore address resource 

scarcity and mitigate environment impacts. Nanoparticles are often defined as 

microscopic particles with at least one dimension between 1 and 100 nanometers in 

size (Lin and Xing, 2007). Besides size, other physicochemical properties of 

metal-based NPs such as magnetism, electrical and optical properties (Schrand et 

al., 2010), surface area, reactivity and sensitivity (Lin and Xing, 2007) can also be 

altered according to corresponding requirements which make them different from 

conventional larger sized materials. Due to those unique characteristics, diverse 

engineered metal-based NPs appear in industrial products, consumer and 

household commodities (Chang et al., 2012). Zinc oxide (ZnO) and copper oxide 

(CuO) are two typical representatives of metal-based nanoparticles. ZnO NPs have 

been manufactured to be a highly reactive catalyst in automobile exhaust treatment 

(Colvin, 2003). Because of their strong absorption abilities, ZnO NPs are also widely 

applied as UV-absorbers in cosmetics and modern sunscreens (Chang et al., 2012). 

As CuO NPs can improve fluid viscosity and thermal conductivity (Chang et al., 

2012), they are used amongst others in gas sensors (Chowdhuri et al., 2004), 
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General Introduction 

catalysis (Jammi et al., 2009), batteries (Zhang et al., 2005), high temperature 

superconductors (Dar et al., 2008), solar energy conversion (Yin et al., 2005) and 

field emission emitters (Dar et al., 2008). In addition, due to the high surface areas 

and unusual crystal morphologies, CuO NPs were found to inhibit the microbial 

activity of Escherichia coli strains (Pan et al., 2010) that may guide CuO NPs to be 

for instance specific antibacterial agents in the future (Stoimenov et al., 2002). 

1.2.2 Contamination due to engineered metal-based nanoparticles 

Large numbers of applications induce direct or indirect environmental release of 

engineered metal-based NPs from the manufacture and processing industries. The 

ability of cells and bacteria to absorb nano-sized particles provides the possibility of 

bio-accumulation of metal-based NPs in the food chain (Biswass and Wu, 2005) 

and therefore may pose hazards to humans and ecosystems. Recent studies have 

reported that metal-based NPs can interact with proteins or enzymes of mammalian 

cells and generate reactive oxygen species (ROS) and oxidative stresses to 

humans and rodents (Brunner et al., 2006; Soto et al., 2006; Schrand et al., 2010). 

Engineered nanoparticles can also end up in terrestrial plants through direct 

application (e.g. fertilizers), accidental release, contaminated soil/sediments, or 

atmospheric fallouts (Rico et al., 2011). It has been found that many metal-based 

NPs can exert toxic effects on seedlings and seeds of crops such as rape, radish, 

lettuce, corn, ryegrass, cucumber, mung bean, and wheat (Lin and Xing, 2007; Lee 

et al., 2008; Barrena et al., 2009). However, these studies primarily focus on 

observational toxicity testing with little knowledge or insights in the underlying 

pathways of toxicity. Innovative methods and technologies are needed to advance 

the understanding of phytotoxicity and underlying mechanisms of toxicity of metallic 

NPs to higher plants (Savolainen et al., 2013).   

1.3 Bioavailability  

1.3.1 Metal exposure, uptake and effect  
The concept of bioavailability is used to express the fraction of a chemical that can 

be available for uptake by organisms in specific environmental compartments 

(Meyer, 2002). Bioavailability of metals has been considered to be a three-step 

approach (Dickson et al., 1994; Peijnenburg et al., 2007) including exposure, 
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Chapter 1 

uptake and effect. Interactions between metals and various environmental 

compartments would affect actual exposure of metals. In aquatic systems, the 

complexation of metal ions can be highly affected by natural organic matter, 

hardness and alkalinity (Van Gestel et al., 2010). Exposure and uptake of metals in 

the soils are influenced by abiotic factors such as metal and water content, pH, and 

oxidation-reduction potential (Eh) (Yang et al., 2005) and by biotic factors including 

soil engineering bacteria and mycorrhizal fungi which can interact with plants and 

excrete enzymes or organic compounds to change the mobility of metals in soil 

(Salt et al., 1995). In the process of plant growth, protons and organic acids 

secreted from roots which can also acidify the rhizosphere, increase the metal 

solubility and finally influence metal absorption of plants (Bernal et al., 1994; 

Krishnamurti et al., 1997; Yang et al., 2005).  

The exposure stage may play an important role in subsequent metal uptake rates 

on the membrane or cell wall of organisms (Wang and Rainbow, 2005). 

Mechanisms of metal uptake in plants may involve processes of passive diffusion, 

facilitated transport, active transport and endocytosis (McLaughlin, 2001; Le, 2012). 

Apart from fat-soluble metals, most of the hydrophilic metals are absorbed via 

proton pumps (-ATPases), co- and antitransporters (proteins use the 

electrochemical gradients), and channels in the plant cell plasma membrane 

(Tangahu et al., 2011). The factors that modify the fate of metals in the environment 

as described above can also affect metal uptake through changing membrane 

fluidity (Norwood, 2007). In addition, competition between multiple metals for 

transporters on the membrane can lead to the binding sites being blocked and 

consequently influence the degree of absorption.  

Metals absorbed react with the target sites within the organisms and cause 

physiological effects. Most plants have developed multiple constitutive and adaptive 

mechanisms to adjust their internal metal concentrations and maintain homeostasis 

(Yang et al., 2005). Excessive metal exposure within a certain range can be dealt 

with by plants via sequestration, detoxification and storage (Le, 2012). Metals can 

be distributed to apoplast tissues in cell walls, can form metal-ligand chelation and 

then be stored in vacuoles (Yang et al., 2005). The vacuole is known to be the 

predominant location in cells for storage of citrate and malate (Ryan and 
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Walker-Simmons, 1983) which can effectively chelate metal at the acidic pH of the 

vacuole (Dawson et al., 1986). Exposure levels beyond the capacity for metal 

storage in the cell wall and the vacuoles may cause toxicity and cell death (Ni et al., 

2005) as metals can be accumulated in the cytoplasm and may bind to important 

biomolecules in the cell (e.g. Cys in proteins, glutathione, nucleotides) (Dawson et 

al., 1986). 

1.3.2 Fate and behavior of metal-based NPs  

Using a life-cycle model, Mueller and Nowack (2008) found that the predicted 

concentrations of nano-TiO2 in Swiss surface water were already close to or higher 

than the No Observed Effect Concentration (NOEC). Metal-based NPs can easily 

enter the water and soil compartments through application of sewage sludge from 

wastewater treatment as shown in Figure 1.1 (Batley et al., 2012; Tourinho et al., 

2012). In recent years, a number of studies regarding the effects of NPs have been 

published but specifically for the aquatic environment. Little information is generated 

for terrestrial ecosystems (Tourinho et al., 2012), especially for higher plants.  

 
Figure 1.1 Pathways and transformations of nanomaterials in the environment. 

(Cited from Batley et al., 2012) 

As compared to water systems, behavior of metal-based NPs in soils is relatively 

complex since metals can be found in several pools of the soil (Shuman, 1991). The 

fate of metal-based NPs in soil varies according to different soil types and diverse 
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physiochemical characteristics of NPs. Ionic strength, zeta potential, organic matter 

content and pH are found to be highly correlated to the behavior of NPs in the soil. 

For example, as humic substances are negatively charged in the soil (Ghosh et al., 

2008), the negative charges of particle-humic conglomerates would increase the 

stability of particles in solution (Tourinho et al., 2012). There are two possibilities by 

which metal-based NPs behave once released into soil: (1) NPs can be strongly 

adsorbed to soil particles due to their high surface areas and would be immobile in 

soil; (2) NPs can fit into soil pores because of their small size that allows NPs to 

travel further before being stabilized in the soil matrix (USEPA, 2007).  

Agglomeration/aggregation is a basic characteristic for metal-based NPs and is of 

crucial importance in predicting the hazards of NPs. In the natural environment, 

nanoparticles can bind to other nanoparticles (homoaggregation) or to natural 

mineral and organic colloids (heteraggregation) which may change their fate and 

toxicity in terrestrial ecosystems (Batley et al., 2012). The homoaggregation rate of 

NPs was found to depend not only on size, shape and type of particles but also on 

initial concentration and solution chemistry (Batley et al., 2012; Tourinho et al., 

2012). Nowadays, metal-based NPs are frequently manufactured with surface 

coatings which would extremely affect their surface chemistry and thereby influence 

agglomeration/aggregation rates or particle stability (Tourinho et al., 2012). 

Furthermore, dissolution may also play an important role in understanding the 

potential effects of metal-based NPs on terrestrial organisms. Metal species 

dissolved in the solution have been proven to be toxic to specific organisms. 

Therefore, both dissolved parts produced by dissolution and nano-sized particle 

forms may contribute to the toxicity of metal-based NPs. Considering these factors, 

it is difficult to quantify the fate and behavior of NPs in soil since general 

technologies such as dynamic light scattering (DLS) and microscopy-based 

techniques are still limited to be used for aqueous solution (Tourinho et al., 2012).  

1.4 Ecological effects assessment  

When hazardous chemicals are released into the environment, the response of 

biota especially plants occupying the lower trophic levels may act as an ‘early 

warning signal’ for the presence of pollutants. Higher plants tend to retain greater 
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concentrations of metals as compared to free-floating species because of their root 

tissues (Doust et al., 1994). Their seeds often possess relatively lower sensitivity to 

pollutants in their ambient environment than seedlings as the germination rate 

mainly depends on the reserves within the cotyledons (Pfleeger et al., 1991). It is 

therefore that in this thesis the root growth of lettuce is used as the endpoint in 

toxicity tests to assess the impacts of metals and metal-based nanoparticles on 

terrestrial ecosystems.  

In order to make sure that the large-scale applications of metallic pollutants in 

different sizes are safe to the environment, safety criteria are needed based on a 

comprehensive understanding of their properties and toxicity. Toxicity experiments 

are a direct method to establish dose-effect relationships that can evaluate to what 

degree metal pollutants are toxic to environmental receptors. Tests have been 

conducted with different exposure media e.g., soil, sediment, air, water and food. 

However, toxicological tests are time-consuming and resource-intensive (Burello 

and Worth, 2011). With an extensive and complex set of data, mathematical models 

can be a more straightforward way to describe observed phenomenon in 

toxicological experiments. Models can assist in setting scenarios for estimating 

effects of chemicals to the environment under initial conditions and for exploring the 

underlying mechanisms of chemicals within organisms (Ashford, 1981). Toxicity of 

metals or metal-based NPs is metal- and species-specific, and is strongly 

influenced by the environmental chemistry or characteristics of NPs (e.g. size, 

shape). Current risk assessments focus on individual chemicals. However, it has 

been recognized that metal pollutants naturally occur in the environment as 

mixtures (Bongers 2007). Interactions between metal pollutants may also contribute 

to the toxicokinetics, toxicodynamics and the overall toxicity of metal mixtures (Le, 

2012). Noteworthy, the process of ecological effects assessment involves inherent 

assumptions and limitations which may produce uncertainties. To reflect the actual 

risks of metal pollutants of different sizes, scientific researchers try to incorporate 

the relevant parameters above for assessing bioavailability and toxicity. 

1.4.1 Single toxicity modelling 

Speciation 
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Chemical speciation is vital in determining fate and transport, bioavailability and 

toxicity of pollutants. Metal speciation indicates the distribution of an element 

amongst various chemical species in a system. The analytical methods of chemical 

speciation have been divided into two ways, namely laboratory analysis and overall 

equilibrium distribution modelling (Van Briesen et al., 2010). Many instruments for 

measuring metal concentrations in water have been generated in the last decades, 

e.g. atomic absorption spectrometry (AAS), inductively coupled plasma atomic 

emission spectrometry (ICP-AES) and inductively coupled plasma mass 

spectrometry (ICP-MS) (Paquin et al., 2002). Recently, ion-selective electrodes 

(ISE) are exploited to directly measure the activity of a specific ion dissolved in a 

solution. Alternatively, geo-chemical speciation models are applied to compute 

solution equilibria and the bioavailable fraction of metals with given water chemistry 

parameters. Chemical speciation modelling programs that are widely used by 

researchers include MINEQL+4.6 (Environmental Research Software, U.S.), 

MINTEQA2 (Environmental Protection Agency, U.S.), and WHAM 6/7.0 (Centre for 

Ecology and Hydrology, U.K.). Often, the chemical speciation is determined by 

combining direct analytical technology with indirect speciation modelling.  

Total Metal Model 

At first, total or dissolved metal concentrations were used to establish connections 

between exposure levels and effects for deriving water quality criteria in the US and 

Canada (Paquin et al., 2002). The total dissolved metal concentration as a subset of 

the total metal concentration (0.45-µm membrane filtration) contains the free metal 

ion, the organic and inorganic metal complexes in the water column. The total metal 

model (TMM) assumed that the total or dissolved fraction of metals may closely 

approximate the biologically available fraction that leads to toxicity. For the aim of 

conservatism, the US EPA still suggests the total metal concentration to be used in 

specific ecological risk assessments (Suter II et al., 2000). 

Free Ion Activity Model 

Further studies have shown that total or dissolved metal concentrations are poor in 

predicting the acute toxicity of metals to aquatic biota (Borgmann, 1983). Highly 

dynamic factors (e.g. pH, alkalinity, and hardness) of water or of the soil column 

may affect the actual metal uptake (Meyer, 2002). The free-ion-activity model (FIAM) 
16 
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was first formulated by Morel (1983) and was further improved by Campbell (1995) 

to model the bio-uptake fluxes outside the cells. The free metal ion and metal 

complexes with dissolved biotic and abiotic ligands are identified as parts of the 

bioavailable fraction responsible for toxicity. The plasma membrane is presumed to 

be the primary site for metal interactions with organisms. Three steps are involved 

in interactions of metals with organisms in aquatic environment (Campbell, 1995; 

Qiu, 2014):  

(1) Advection or diffusion of metal ions in bulk solution; 
(2) Sorption or surface complexation of the metal ions at the active sites of the cell 

membrane; 

(3) Uptake or transport of the metal ion through the cell membrane into the 

organism. The interaction of free active sites on the cell membrane with different 

metal species in bulk solution can be described as follows: 

[z+ ↔{M } + [L] ML] ;
[ ]
[ ]

zK +×1 } =
ML{M
L

                                  (1-1) 

z+ ↔{M } + {- } {M - }cell cellX X ; z+× ×2{M - } = {M } {- }cell cellX K X                (1-2) 

↔[ML]+ {- } {M - } + [L]cell cellX X ;

[ ]
[ ]

z+×
× × × ×3 1 3

{- } ML
{M - } = = {- } {M }

L
XX K K K Xcell

cell cell                   (1-3) 

where {Mz+} is the free metal ion activity; [L] is the concentration of biotic or abiotic 

ligands dissolved in solution; [ML] is the concentration of the metal complex bound 

to a ligand; {-Xcell} is the concentration of free surface sites on the cell membrane; 

{M-Xcell} is the activity of the surface complex; K1, K2, and K3 are the conditional 

stability constants. Since the nature of the biological surface and the concentration 

of free sites are assumed to be constant, variations in {M-Xcell} follow the change of 

{Mz+} according to the equations above. Although speciation calculation is 

incorporated, interactions during uptake at biotic plasma membrane are ignored 

(Norwood, 2007) which makes the FIAM inaccurate in describing actual effects of 

metals in certain systems. 

Biotic Ligand Model 
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By taking both chemical speciation and biotic binding into account, the FIAM was 

extended to the biotic ligand model (BLM) (Di Toro et al., 2001). The modern BLMs 

also contain the theory of the gill surface interaction model (GSIM) that toxicity to 

fish results from salt and water unbalance within the gill tissue as caused by cationic 

metals (Pagenkopf, 1983; Niyogi and Wood, 2004). Free metal ions and the 

corresponding competing cations (e.g. Ca2+, Mg2+, Na+, H+) bind to the fish gill with 

specific affinities (log K) and capacities (Bmax). These competitions with 

complexation by abiotic ligands (e.g. NOM, carbonates, chlorides, sulfides) are 

used to frame a geochemical equilibrium in quantifying the fraction of metal ions 

accumulated at the biotic ligand (BL) (Niyogi et al., 2008). The BLM was a 

theoretical framework first developed for single metal species (Paquin et al., 2002). 

Toxic effects of a metal are determined by the amount of metal ions binding to the 

specific site of toxic action which is treated as a BL (Van Gestel et al., 2010).   

Since soil metal concentration has been regarded not to represent metal 

bioavailability and toxicity, further methods based on bioavailable fractions are 

needed to assess the risk levels of metals in soil (Thakali et al., 2006). As general 

binding sites (e.g. sodium and calcium transporters) are intrinsic in almost every 

living cell (Niyogi and Wood, 2004), later studies have applied the aquatic BLM to 

terrestrial ecosystems (tBLMs) by Thakali et al. (2006). The interaction of the cation 

activities ({Xz+}) with the biological phase (in Figure 1.2) was incorporated into a 

log-logistic toxicity model expressing the relationship between biological response 

and fraction of free metal ions (Mz+) that bind to the BL. 

× 50

100
=

1+ exp[ ( - )]
R

β f f
                                             (1-4) 

According to the equilibrium relationships described in FIAM, the concentration of 

total BL sites ([TBL]) is specified as follows 

K∑ ∑× ××- + + - Z+ Z+
XBL MBL[TBL] = [BL ]+ [MBL ]+ [XBL ] [BL ] (1+ {X } + {M })= K    (1-5) 

The fraction (f) of the total BL sites bound by Mz+ is defined as 
Z

Z Z

+ +

+ +

×

× ∑ ×

[MBL ] {M }
[TBL] 1+ {M } + {X }

MBL

MBL XBL

= = Kf
K K

                          (1-6) 

where R is the biological response; β is the shape parameter; f50 is the fraction of 
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the total BL sites occupied by Mz+ at which a 50% response is induced; K is the 

conditional binding constant; {} is the activity of the cation and metal ion; [MBL+] is 

the concentration of metal ion-biotic ligand complexes.  

 
Figure 1.2 Diagram of the biotic ligand model framework in terrestrial ecosystems. 

(Adapted from Thakali et al., 2006) 

Other toxicity models 

Toxicity models can be altered according to the approaches above and used in 

different ecosystems. For instance, multicomponent Freundlich models concerning 

the pH-dependent metal ion binding to BLs were developed instead of BLM to 

predict Cu-toxicity to maize, fungal, and yeast (Plette et al., 1999; Qiu, 2014).  

Furthermore, some researchers suggested that the surface electrical potential of 

plasma membranes (PMs) seems also important to explain bioavailability of metal 

ions. The permeability of a membrane is the rate of passive diffusion of molecules 

through the membrane. Permeability depends mainly on the electric charge and 
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polarity of the molecule and to a lesser extent the molar mass of the molecule. The 

PM electrical properties therefore play a key role in the distribution of ions at the 

exterior surface of PMs, ion transport across PMs and ion intoxication (Wang et al., 

2011). On the basis of electrical potential at the PM surface (ψ0), the electrostatic 

toxicity modeling (ETM) was developed to assess metal bioavailability and toxicity 

taking into account the plant-ion interactions at the PM surface. The ETM can be 

applied as a complement for the BLM when observed toxic effects cannot be 

interpreted in terms of site-specific competition such as in the case of synergistic 

interactions (Kinraide, 2006; Le, 2012). 

1.4.2 Mixture toxicity modelling 

Mixtures are defined as any combination of two or more chemicals, regardless of 

source and spatial or temporal proximity that may act jointly to induce actual or 

potential effects in a receptor population (US ATSDR, 2004). Since humans and 

other organisms living in the environment are exposed to a variety of substances, 

increasing concerns from both scientific and legislative perspectives have shifted 

from individual chemicals to mixtures. Guidelines for evaluating data on the health 

risks from exposure to chemical mixtures were first established by the 

Environmental Protection Agency of the United States in 1986 (US EPA, 2000). 

Afterwards, the European Commission also set relevant regulations for toxicity 

assessment of chemical mixtures (European Commission, 2012). Researchers are 

also constantly improving methods on how to increase the accuracy of toxicity 

assessments for multiple chemicals. 

Additivity models 

Toxic effects of a mixture can be characterized by four possible types of joint action 

as presented in Table 1.1 (Plackett and Hewlett, 1952). However, only 

non-interactive or additive mixture effects have been well defined in the form of 

multicomponent models. These models for assessing mixture toxicity are based on 

the term ‘additivity’ that mixture components act together to produce an effect 

without enhancing or diminishing each other’s actions (Van Gestel et al., 2010). The 

additive effects of mixtures can be predicted by summing the scaled exposure 

levels (Dose Addition or Concentration Addition) or the responses (Response Action 
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or Independent Action) of mixture components. The concentration addition (CA) 

approach assumes that components in a mixture act on similar physiological 

systems within the organism. The independent action (IA) approach on the other 

hand presumes that each component present in a mixture acts independently but 

triggers similar effects on the organism (Bliss, 1939). This indicates that the 

predictive capability of these two additivity models may depend on the similarity of 

mode of action (MoA) or mechanism of action (MOA) of mixture components. 

Nevertheless, information on toxicity mechanisms is rarely available which hinders 

the selection of a most suitable model for risk assessment of metal mixtures. In 

addition, the majority of metal mixtures do not meet the assumptions of additivity 

models (Bongers, 2007) e.g. purely independently acting MoA, as organisms are 

always treated as a coordinated system (Ashford, 1981). 

A total concentration of the mixture, at which a certain effect is generated, can be 

expressed according to the concept of CA as follows (Altenburger et al., 2004) 

xi

−∑ 1
mix

=1
EC = ( )

EC

n i
x

i

p                                            (1-7) 

where ECxmix is the total concentration of the mixtures provoking x% effect on the 

test organism; ECxi is the concentration of the ith component provoking x% effect 

solely; pi is the fraction of component i in the mixture. 

The IA model can be defined as  
n

i
i=
∏mix

1
( ) = 1- (1- ( ))E c E c                                         (1-8) 

where ci is the concentration of the ith component in the mixture; E(cmix) is the total 

effect on the test organism caused by the mixtures; E(ci) is the toxic effect on the 

test organism caused by the ith component in the mixture. 

Table 1.1 Four possible joint actions of chemical mixtures (Adapted from Plackett 

and Hewlett, 1952). 

Types Similar joint action Dissimilar joint action 

Non interactive 
Simple similar action 

(DA or CA) 

Independent joint action 

(RA or IA) 

Interactive Complex similar action* Dependent joint action* 
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DA or CA: Dose Addition or Concentration Addition interaction pattern; RA or IA: Response 
Action or Independent Action interaction pattern; *: no mathematical descriptions available. 

Toxicity indices 

To facilitate the calculation of the strength of a given compound, the fraction of 

component i in the mixture shown in equation (1-7) was previous called toxic units 

(TU) (Sprague and Ramsay, 1965). The sum of TUs can represent the empirical 

observation of the strength of a mixture since they are expressed in the same units 

(Sprague, 1970). All components in the mixture can be described as dilutions of 

each other and their contributions can be scaled relative to their single toxicity 

(Bongers 2007). In applying the TU approach, concentration addition is the basic 

assumption regardless of interactions between mixture components (Playle, 2004). 

As the fraction of the total mixture concentration can be known as the concentration 

of each component in the mixture, equation (1-7) can be rewritten as (Altenburger et 

al., 2004) 

n
i

i xi

c
=
∑

1
TU =mix EC

                                                    (1-9) 

where ci is the concentration of the ith component in the mixture; ECxi is the standard 

effect concentration of the ith component in the mixture, it can be the 50% effective 

concentration of the organisms (EC50) or even the lowest observed effect 

concentration (LOEC). If the 50% toxic effects are observed based on EC50 when 

the sum of TU equals to 1, the mixture toxicity is supposed to be strictly additive. If 

the 50% toxic effects are observed when the sum of TU is significantly less than one, 

toxicity is greater than additive (synergistic) and if the sum of TU is significantly 

greater than one, toxicity is less than additive (antagonistic). 

Although the mathematical expression of the TU approach is very simple, this 

method may be invalid for mixtures containing more than two components or when 

antagonistic effects occur (Lloyd, 1987). The Mixture Toxicity Index (MTI) was 

developed as an alternative for the TU concept and was shown to be more 

appropriate to quantify the extent of the joint action because of the largest fraction 

of LC50 defined (Könemann, 1981). The different fixed MTIs also have physical 

meanings such as the tolerance concentrations and relative toxicities of mixtures as 

compared to their components which may help explain acute toxicity data.  
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0

log
MTI = 1-

log
M
M

                                                   (1-10) 

where Mo = ∑ fi/fmax; fi = ci/LC50i; M = ∑fi; LC50 is the lethal concentration for 50% of 

the organisms; fmax is the largest fi value in the mixture. MTI<0, M>Mo (fmax>1) 

indicates that the type of joint action is antagonism; MTI=0, M=Mo (fmax=1) indicates 

no addition (the expected result for independent action, positive correlation between 

susceptibilities of the individual organisms to the individual compounds in a mixture); 

0<MTI<1, Mo>M>1 (fmax<1) indicates partial addition; MTI=1, M=1 (fmax<1) indicates 

concentration addition (simple similar action); MTI>1, M<1 (fmax<1) indicates supra 

addition (potentiation of the toxic actions of one or more of the compounds in a 

mixture). 

Besides the above approaches, some other toxicity indices were generated to 

facilitate effect and risk assessment of mixtures. For example, the toxic equivalency 

(TEQ) concept has been utilized to assess cumulative risks related to dioxins and 

dioxin-like compounds (Ahlborg et al., 1994) and is endorsed by the World Health 

Organization (Van den Berg et al., 2006). The toxic equivalency factor (TEF) 

expresses the toxicity of a single pollutant in terms of the most toxic one in chemical 

groups. With TEFs, TEQs report the toxicity-weighted masses of mixtures of 

PCDDs, PCDFs and PCBs as a single number.  
n

i i
i

c TEF
=

×∑
1

=TEQ                                                   (1-11) 

where TEF is the toxic equivalency factor comparing to the index chemical (TEF1=1); 

ci is the concentration of the ith component (c1=2,3,7,8-TCDD). However, the TEF 

approach is still limited to be used for specific organic chemical groups which may 

be resulted from various degrees of uncertainty under certain assumptions as 

follows: (1) individual compounds act through the same biological pathway; (2) 

individual effects are additive; (3) dose-response curves of individual compounds 

are parallel; (4) individual compounds are similarly distributed in the organism body.  

Although there are some literatures focusing on mixture toxicity, it is still largely 

unknown that how to reduce the ‘noise’ in modeling the toxicity of metal mixtures. In 

addition, less information of metal mixtures was gained from terrestrial ecosystems 

as compared to aquatic systems. Thus, this thesis tried to improve the predictive 
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ability of existing mixture models by extending them in different ways and compare 

their performance for assessing the toxicity of multiple metals to terrestrial plants.  

Deviations from additivity models 

Ion-ion interactions may occur naturally in terrestrial ecosystems (Påhlsson, 1989) 

at various levels: (1) during exposure in the environment, (2) uptake at the root 

surface, (3) at target sites within the plant, (4) in the internal detoxification pathway 

(Calamari and Alabaster, 1980). Toxicity of metal mixtures may deviate significantly 

from the addition of biological actions of single metals because of ion-ion 

interactions. Interaction patterns may be inconsistent depending on the total 

concentration of mixtures (Figure 1.3 DL) and the relative proportion of component 

concentrations in the mixture (Figure 1.3 DR) (Bongers, 2007; Qiu, 2014). 

Therefore, more complex interaction patterns are distinguished to quantify how 

observed data deviate from additivity models (Jonker et al., 2005):  
(1) No deviation: the actual effects of the mixtures are well explained by additivity 

models (Figure 1.3 Control). 

(2) Synergism or antagonism: if the effects of the mixtures are less than that 

suggested by the toxic effects of individual components present in the mixture, 

antagonism is observed (Figure 1.3 S/A). If the effects of the mixtures are greater 

than that suggested by the toxic effects of the individual components, synergism is 

observed. 

(3) Dose level-dependent deviation: the deviation from additivity models at low dose 

levels is different from the deviation at high dose levels. For example, antagonism 

can be observed at low dose levels of mixtures and synergism can be observed at 

high dose levels of mixtures (Figure 1.3 DL). 

(4) Dose ratio-dependent deviation: the deviation from additivity models depends on 

the relative proportion of mixture components. For instance, for binary mixtures, 

antagonism can be observed when Component 1 dominates the overall toxicity, 

whereas synergism can be observed when Component 2 dominates the mixture 

toxicity (Figure 1.3 DR). 

Extended models 

Although the additivity models can provide an approximate estimation for the toxic 

effects of metal mixtures in ecosystems, these simplified models not only ignore the 
24 
 



General Introduction 

ion-ion interactions but also the ion-organism interactions. Without considering 

interactions, the CA and IA models may fail to accurately assess the combined 

toxicity of multiple metals in specific cases (Spurgeon et al., 2010). Jonker et al. 

(2005) have already presented the MixTox program to distinguish the statistically 

significant chemical-chemical interactions. In this thesis, statistically significant 

deviations found in the plant-bioassays data were incorporated into the 

mathematical models to describe the dose-response relationships for metal 

mixtures. 

 
Figure 1.3 Three dimensional dose-response relationships (Top) of binary mixtures 

and isobologram (Bottom) illustrating interaction patterns from the additivity (CA): 

antagonistic deviation (S/A), dose level-dependent deviation (DL), and 

dose-ratio-dependent deviation (DR). (Cited from Jonker et al., 2005) 

Some researchers have tried to comprise the parameters that may influence the 

bioavailability of metals into mixture toxicity modelling, e.g. environmental chemistry. 

Furthermore, different toxicity descriptors which have been used in single toxicity 

modelling are substituted into the mixture models in order to deduce the 

bioavailable metal-related fractions. For example, the BLM and the ETM 

approaches considering main reactive metal forms (e.g. free metal ions in bulk 

solution), ion-ion competitions, ion-plant interactions have been extended to predict 

overall effects of metal mixtures by combining bioavailability or toxicity models with 

addition models (Hatano and Shoji, 2008; Jho et al., 2011; Le, 2012). However, no 

universally accepted framework is available to determine an approach to assess the 
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combined toxicity of a given metal mixture across different exposure conditions and 

different combinations. 

1.4.3 Toxicity assessment of metal-based NPs 

Compared to the case of dissolved metal ions, the toxicity assessment of 

metal-based NPs is still at an initial stage. Physicochemical characteristics of 

nanoparticles (e.g. particle size, shape, surface area, types, activity and 

concentration), and of specific organism species have been both suggested to be 

correlated with toxicity of metal-based NPs (Yang and Watts, 2005; Ma et al., 2010). 

Some researchers tried to use quantitative structure-activity relationship (QSAR) 

methods to make connections between theoretical descriptors (e.g. 

physicochemical properties and behavior of NPs) and toxicity testing data (Burello 

and Worth, 2011). Due to the particular morphology of metal-based NPs, Song et al. 

(2014) used the response addition model to separate the toxicity contribution of 

particulate forms of CuNPs and Cu2+ to mammalian and piscine cell lines. A similar 

approach was also used for a whole organism (Hua et al., 2014). The findings of 

these authors emphasized the contributions of ion release rate of NPs as well as 

species-specific traits in explaining and extrapolating toxicity testing results of 

metal-based NPs.   

total
CuNPs

Cu2+

(1- E )E = 1-
(1- E )

                                          (1-12) 

where Etotal is the total cell toxicity caused by the copper suspensions; ECuNPs and 

ECu2+ are the cell toxicity caused by the particulate form of CuNPs and Cu2+, 

respectively. 

Increasing numbers of studies have been published recently concerning the 

interactions of metal-based NPs with animals, but scant attention has been 

published so far for plant species. Engineered metal-based NPs can adhere to 

external root surfaces of plants and thereby reduce the root hydraulic conductivity 

and plant availability of external water sources (Asli and Neumann, 2009). Both 

metal ions released from NPs and nano-sized particles can be absorbed and 

transported within plants and thereupon cause toxicity. Nanoparticles can enter the 

plant cells through carrier proteins, aquaporins, ion channels, endocytosis, newly 
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created pores (by CNTs), and wrapped by organic chemicals in the media (Rico et 

al., 2011). However, modes of uptake and accumulation of metal-based NPs are 

variable for specific plant species and various NPs (e.g. different size, shape, type). 

To improve the understanding of toxicity mechanisms of metal-based NPs in plants, 

lettuce was chosen as the test-organism in this thesis and exposed to metal-based 

NPs, i.e., nano-Cu and nano-ZnO. Moreover, dissolution and aggregation 

processes of metal-based NPs are found to be highly associated with their toxicity 

(Franklin et al., 2007). In other words, parameters that affect these two main 

processes such as characteristics of the surrounding media may also influence 

toxicological responses of metal-based NPs. However, to our knowledge, research 

related to impacts of surrounding media on nano-toxicology is sorely lacking. To 

mimic a more realistic exposure environment, interactions of metal-based NPs with 

other common pollutants such as metals dissolved in water, or other types of NPs 

would be discussed in this thesis to improve the understanding of nano-toxicology.   

1.5 This thesis 

1.5.1 Objective  

Elevated concentrations of metals have diminished the biodiversity of aquatic and 

terrestrial ecosystems and endangered the health of human beings. Plants play an 

important role in the biogeochemical cycling of the elements and can be efficient 

biomarkers for metal-related chemical stresses. However, ecological effects 

assessment for metal mixtures sizes of which ranging down to the nanoscale is still 

in its infancy. Multiple layers of interacting processes increase the difficulty of 

accurate estimation of bioavailability and toxicity of metals. In addition, simple 

correlations cannot satisfy the specific physiological processes in higher plants such 

as metal-specific selectivity. This PhD thesis aims at quantifying mixture toxicity of 

metals to lettuce (Lactuca sativa L.) and the impacts of interacting processes on the 

actual effects of metals in different sizes. How to choose a suitable approach in 

mixture toxicity modelling across various exposure situations and across different 

combinations of metal pollutants is also discussed in this thesis. To achieve this 

objective, the following sub-questions are addressed:  

(1) How does water chemistry affect the toxicity of individual metals (Ni and Cd) to 
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lettuce and how to quantify the influence of water chemistry?  

(2) Can the toxicity-modifying factors of water chemistry be incorporated into toxicity 

models and will the prediction of acute toxicity of individual metals (Ni and Cd) to 

lettuce seedlings be improved because of incorporation of these factors in the 

toxicity models?  

(3) What kind of statistically significant deviation patterns from additivity are induced 

in assessing the combined effects of metal mixtures (Cu-Cd, Ni-Cd and Cu-Ni) to 

lettuce?  

(4) Can the statistically significant deviations from additivity be reproduced and how 

likely is it that metal ions (Cd2+, Ni2+ and Cu2+) interact with each other?  

(5) How to incorporate the impacts of environmental chemistry in assessing the 

toxicity of metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce?  

(6) Will the estimation of mixture toxicity be improved considering ion-ion 

interactions?  

(7) Will the dissolved metal species and the particulate fractions of each type of 

metal-based NP act jointly according to the rules of additivity?  

(8) Will Cu NPs interact with ZnO NPs and influence the toxicity of each other to 

lettuce? 

1.5.2 Outline 

Chapter 1 provides an overview of the PhD thesis describing the state-of-the art of 

the science on issues involving effects of metals and metal-based NPs. The 

research objectives and the fundamental principles for different modelling 

approaches in terrestrial ecosystems are outlined.  

In Chapter 2, the impacts of Ca2+, Mg2+, K+, Na+ and pH were investigated on the 

acute toxicity of Ni and Cd to butter-head lettuce seedlings (Lactuca sativa L.). The 

total metal model (TMM), the free ion activity model (FIAM) and the biotic ligand 

model (BLM) were all used to quantify the 4-day root elongation inhibition. The 

predictive power of TMM, FIAM and BLM was compared for determining the toxicity 

of Ni and Cd. 

In Chapter 3, using root elongation of lettuce (Lactuca sativa L.) as a toxicity 
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endpoint, the combined effects of Cu, Cd, and Ni were studied. The joint actions of 

binary metal mixtures were investigated using statistical software i.e., the MixTox 

model. The reproducibility of deviations from the reference models i.e., 

Concentration Addition (CA) and Independent action (IA) in assessing the mixture 

toxicity was tested based on a comprehensive experiment design. 

In Chapter 4, the biotic ligand model was extended to predict the overall toxicity of 

Cu-Ni, Cu-Zn, and Cu-Ag mixtures to lettuce (Lactuca sativa L.) in three approaches 

based on the concept of additivity, i.e. the toxic unit approach, the toxic equivalency 

factor approach and the approach by determining fraction of total number of biotic 

ligand sites bound by metal ions of mixtures. The predictive capabilities of these 

different BLM-based approaches for each combination were compared by the 

bootstrapping method.  

In Chapter 5, the combined toxicity of copper nanoparticles (50 nm) and zinc oxide 

nanoparticles (150 nm) to Lactuca sativa L. was assessed by the IA model to check 

whether mixtures of metal-based NPs would also act jointly following the rules of 

‘additivity’. To systematically examine whether chemical-chemical interactions 

would affect their joint toxicity, a step by step experiment was designed with six 

nested combinations of Cu-Zn, Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, 

Zn-nanoCu, nanoCu-nanoZnO. The suspension of each type of metal-based NP 

was presumed to be a mixture including a soluble part and an undissolved 

particulate part. The EC50 values of one compound were plotted as a function of 

increasing concentrations of other compounds in the mixture to assign where and 

how chemical-chemical interactions occurred.  

In Chapter 6, the results obtained in Chapters 2-5 are synthesized in order to 

answer the research questions proposed in Chapter 1. Based on the synthesis, the 

choice of a suitable model for predicting mixture toxicity across different 

combinations of metal pollutants in different sizes is discussed by considering the 

observed chemical-chemical interactions and comparing the predictive power of the 

different approaches applied in this thesis. This chapter also gives 

recommendations for potential applications of the modelling approaches developed 

and brief outlooks for further research. 
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Impacts of major cations and protons on toxicity of Ni and Cd 

Abstract 

Biotic Ligand Models (BLM) explicitly accounting for hypothetical interactions with 

biotic ligands and bioavailability as dictated by water chemistry have been 

developed for various metals and different organisms. It is only recently that BLMs 

for plants have received increasing attention. Lettuce is one of the most important 

vegetable crops in the world. This study investigated the impacts of Ca2+, Mg2+, K+, 

Na+ and pH, on acute toxicity of Ni and Cd to butter-head lettuce seedlings (Lactuca 

sativa L.). Four day assays with the root elongation inhibition as the endpoint were 

performed in hydroponic solutions. Magnesium was found to be the sole cation 

significantly enhancing the median inhibition concentration (IC50) of Ni2+ with 

increasing concentration. By incorporating the competitive effects of Mg2+, the 

Ni-toxicity prediction was improved significantly as compared to the total metal 

model (TMM) and the free ion activity model (FIAM). The conditional stability 

constants derived from the Ni-BLM were log KMgBL=2.86, log KNiBL=5.1, and f 50%
NiBL

=0.57. A slight downtrend was observed in the 4-d IC50 of Cd2+ at increasing H+ 

concentrations, but this tendency was not consistent and statistically significant (p = 

0.07) over the whole range. The overall variations of Cd2+-toxicity within the tested 

Na+, K+, Ca2+ and Mg2+ concentration ranges were relatively small and not 

statistically significant. Eighty percent of lettuce root elongation inhibition (REI) by 

Cd could be explained using both TMM and FIAM instead of BLM in the present 

study. Thus, the mechanistically underpinned models for soil quality guidelines 

should be developed on a metal-specific basis across different exposure conditions. 

Keywords: Root elongation; nickel; cadmium; biotic ligand model; toxicity 

2.1 Introduction 

Elevated concentrations of metals in soil are a worldwide problem (Gupta et al., 

2013), the adverse effects of which could threaten the environment (Thakali et al., 

2006a). In order to minimize the entry of metals into the environment, standards 

continue to be developed for underpinning the risk assessment procedures (Wang 

et al., 2010a). Many models have been developed to take into account the factors 
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which may affect metal toxicity to organisms (Hatano and Shoji, 2010). 

At first, metal toxicity is correlated with the total or dissolved metal concentrations 

as used by U.S. Environmental Protection Agency (EPA, 1985) which include not 

only the free metal ion, but also the organic and inorganic metal complexes (Paquin 

et al., 2002). Afterward, some researchers pointed out that the link between effects 

and metal exposure levels can be improved by considering the underlying 

processes of intricate chemical and physiological details about what was occurring 

in nature. The free metal ion has been generally accepted as one of the dominant 

reactive species that could be taken up by organisms directly (Lexmond and van 

der Vorm, 1981; Gopalapillai et al., 2013) and can impose adverse effects. With this 

theoretical basis, the free ion activity model (FIAM) was proposed and has been 

used to predict toxicity of metals to organisms (Morel and Hering, 1993; Li et al., 

2009). However, besides the metal speciation in the water phase, H+ and common 

cations (e.g. K+, Na+, Ca2+, Mg2+) were found to form complexes with biotic ligands 

(BL) which may also have impacts on the metal bioavailability and toxicity (Di Toro 

et al., 2001). Thus, by taking solution chemistry and competing components into 

consideration, the Biotic Ligand Model (BLM) was originally synthesized and 

conceptualized by Di Toro et al. (2001) and used extensively for acute metal toxicity 

prediction in aquatic organisms (Clifford and McGeer, 2010). However, toxicity of 

metals is complex and affected by various factors, such as exposure conditions 

(Hatano and Shoji, 2010), and organism species (Le, 2012).  

The excessive level of metals is one of the principal abiotic pressures leading to the 

potential hazardous effects to the flora (Hossain et al., 2012) as plants can be more 

sensitive to the ambient stresses (Valerio et al., 2007) compared to animals. Thus, it 

needs to be investigated whether metal toxicity to plants could be explained by 

variations of metal species in the solution and competitive effects of major cations 

or protons as in aquatic animals. Until recently, BLMs have been developed to 

estimate metal toxicity in terrestrial systems (Thakali et al., 2006 a, b). 

Cd and Ni have been considered as being toxic to plants and may induce 

respiratory, photo-synthetic and structural disorders at relatively low concentrations 

(Dixon, 1988). Researches concerning the ameliorative effects of cations and 
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protons on Ni2+ and Cd2+ toxicity to plants have been better conducted on aquatic 

plants, such as green algae (François et al., 2007; Deleebeeck et al., 2009) and 

duckweed species (Gopalapillai et al., 2013). By contrast, metal toxicity to terrestrial 

plants is less understood and highly variable (Läuchi and Epstein, 1984; Dixon, 

1988; Das et al., 1997). Even within one plant species, the ameliorative effects of 

cations and protons are found to be different in soils and in soil solutions. When 

barley seedlings were exposed in nutrient solution, higher activities of Ca2+ (Li et al., 

2009) and Mg2+ increased the EC50 of Ni2+ significantly (Lock et al., 2007; Antunes 

and Kreager, 2009). In soils, the protective effect of protons was observed (Rooney 

et al., 2007) and the effect of Ca2+ was found to be not simply competitive as 

proposed in the equilibrium BLM (Thakali et al., 2006a). Hence, the development of 

BLMs for terrestrial plants to predict metal toxicity needs to be further explored.  

Butter-head lettuce (Lactuca sativa L.) was selected as a monitoring tool in 

assessing environmental contamination of Ni and Cd since it is an important crop 

plant and is recommended by EPA (1988) and Organization for Economic 

Cooperation and Development (OECD, 2006) as a key species. The total global 

commercial production of lettuce was up to 23.6 million metric tons in 2010 

according to the Food and Agriculture Organization of the United Nations (van Wyk, 

2005). The metals accumulated in the lettuce may cause damage to human health 

through the food-chain. On the other hand, L. sativa has been found to 

hyper-accumulate metals such as Cd and Zn (Garate et al., 1993) and to be 

sensitive to Ni and Cu (Charles et al., 2011). Thus, in order to determine the 

potential risk of Ni and Cd for ecosystems, the present study aimed at predicting Ni 

and Cd toxicity to lettuce (L. sativa) in hydroponic exposure setting, taking into 

account the effects of H+, Ca2+, Mg2+, K+ and Na+. This was achieved by developing 

mathematical relationships between the main reactive form of metals in the solution 

and plant responses to metals using total metal model (TMM), FIAM and BLM.  

2.2 Methodology 

2.2.1 Plant culture and endpoint 

Seeds of L. sativa (Milan) were bought from a Dutch commercial seed company. 

Lettuce was cultured in the Steiner solution which has been shown to be a good 
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plant growth and rooting media (Steiner, 1961; Peijnenburg et al., 2000). The 

composition of Steiner solution was given in the Supplementary material S2.1. The 

relative root elongation inhibition (REI, %) was used to determine the toxicity of Ni2+ 

and Cd2+ (details in 2.4) as the higher accumulated amounts of metals were found 

in roots of lettuce with the increased exposure concentrations (Garate et al., 1993). 

2.2.2 Experimental design 

Effects of pH and cations on Cd- and Ni- toxicity were determined by systematically 

varying either pH or the concentrations of one of the cations, while keeping all other 

conditions constant. The designed levels of cation concentrations were supposed to 

be metal-specific and species-specific, and therefore were set up based on 

previous studies (Le, 2012) under the same experimental conditions. The 

concentration ranges of the four sets of major cations added in the solution and one 

set of proton experiments for each Ni and Cd toxicity assessment were fixed as 

follows: Na (from 0 to 20 mM), K (from 0 to 20 mM), Ca (from 0 to 10 mM), Mg (from 

0 to 16 mM) and pH (from 5 to 8). Some of the tests were duplicated to check 

experimental uncertainty. In the solution, the Ni concentrations ranged from 0 to 4.5 

mg/L and the Cd concentrations covered ranges from 0 to 10 mg/L, except the 

Mg-set, in which the Ni concentration was increased to 10 mg/L and the Cd 

concentration was increased to 12 mg/L. Because after the preliminary experiments, 

the protective effect of Mg2+ was found to be stronger as compared to other major 

cations. 

Apart from the experiments in which effects of varying pH were assessed, all test 

solutions were kept at a pH value of 7.0 during exposure by adding either HNO3 or 

NaOH. The pH value of the test solutions was measured using a 691 pH meter 

(Metrohm, Herisau, Switzerland). The pH was determined every day in the 

experiments in which the effect of pH on toxicity was tested, while it was measured 

every other day for the other experiments. Cd, Ni and the cations (Na+, K+, Ca2+, 

Mg2+) were added as nitrate salts.  

2.2.3 Toxicity assays 

Root growth is recommended as a suitable endpoint linked to the toxic effects of 

metals since it is relatively simple to assess (Fodor, 2002; Hagemeyer, 2004), and 
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accurately to quantify (Clemens, 2006). Before the toxicity test, lettuce seeds were 

germinated on sterilized expanded perlite in Steiner solution for 4 days in a climate 

room at a temperature of 15˚C, 80% humidity, and a 16:8 hours light: dark cycle. 

The 4 d-old seedlings were fixed in parafilm sheets floating on the surface of glass 

beakers (100 ml volume) with their roots fully immersed in the metal-spiked 

hydroponic medium. In each exposure, four plant seedlings were used. To prevent 

excess evaporation and subsequent lack of exposure of the roots, the beakers were 

placed in a container with a small layer of water inside. The intuitive diagram of the 

experimental process has been shown in the Supplementary material S2.2. The 

relative increase in root length was measured after 4 days and was assessed as the 

distance from the transition point between the hypocotyl and the root, to the root tip. 

The lengths of all roots were measured to the nearest millimeter (EPA, 1988). Five 

ml of the exposure medium was reserved for chemical analysis before or after the 

exposure in vials and stored at 4°C in the refrigerator. The concentrations of Cd and 

Ni in solution were analyzed by flame atomic absorption spectroscopy (FAAS, 

Perkin Elmer AAnalyst 100, Waltham, U.S.). Electrical conductivity (EC) was 

checked after exposure by means of a Microprocessor EC/TDS Meter HI 98360 

(Hanna instruments, Woonsocket, U.S.). Besides root elongation, visual inspection 

on the appearance of the seedlings was done on leaves (color and size), hypocotyls 

(length and thickness), lateral roots (amount, length and color) and taproot 

(thickness and color).  

2.2.4 Data analysis and speciation calculation 

Root elongation inhibition (REI) was calculated by comparing the measured root 

elongation in the solution containing Cd/Ni after 4 days of growth with the root 

elongation in the controls according to the following equation:  

( ) %
RG

REI
RG

= − ×S

c

1 100                                                 (2-1) 

where RGs: the average root growth of plants in the sample solution with added 

Cd/Ni; RGc: the average root growth of plants in the control solution, the controls for 

the cation/hydrogen -sets were the ones with only cation/hydrogen inside. 

The speciation of Ni, Cd and major cations (i.e. K, Na, Ca, and Mg) was calculated 
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using the Windermere Humic Aqueous Model 7.0.1 (Centre for Ecology ＆ 

Hydrology, Wallingford, UK). The activities of the metal ions and major cations in 

solution (Cu2+, Mg2+, Ca2+, K+, Na+, Zn2+) were calculated based on the measured 

concentrations using FAAS, whereas the entered concentrations of the other 

cations or anions (e.g. NO3
-, SO4

2-, and PO4
3-) were determined in terms of total 

concentrations which were calculated from the known formula of the Steiner 

medium (S2.1). Because the hydroponic system was open to the ambient air, the 

pCO2 was set at 10-3.5 atm. 

2.2.5 Estimation of the BLM parameters 

The BLM-methodology is based on the assumption that stability constants remain 

similar under various physico-chemical conditions (Heijerick et al., 2002). Stability 

constants, for example of Ni2+, KNiBL (L/mol) were defined as follows: 

K
+

+ −=
×NiBL 2

NiBL
Ni BL

[ ]
{ } [ ]

                                                   (2-2) 

where {Ni2+}: the activity of the free nickel ion (mol/L); [NiBL+]: the concentration of 

Ni bound to the biotic ligand (mol/L); [BL-]: the concentration of free biotic ligand, not 

occupied by any cation (mol/L). Similar equations could be written for Cd2+.  

The toxic effect is determined by the fraction of the total number of metal binding 

sites occupied by Ni2+ or Cd2+ (fNiBL, fCdBL) (De Schamphelaere and Janssen, 2002; 

Lock et al., 2007). The formula for calculating fNiBL was derived as follows: 

f

K
K K K K K K

+

+

+ + + + + +

= =

+ + + + + +

×
× × × × × ×

NiBL
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2
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2 2 2
NiBL HBL CaBL MgBL NaBL KBL

NiBL
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{ }
{ } { } { } { } { } { }

(2-3) 

In the BLM concept, fNiBL is constant at the 50% effect level for each species 

regardless of water chemistry (Meyer et al., 1999). When inhibition of lettuce root 

elongation is up to 50%, the above equation can be organized as:  
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Similar formulas can be derived for Cd2+ if needed. According to the assumptions of 

the BLM, if there is a linear relationship between IC50 of Ni2+ or Cd2+ and the activity 

of one cation including hydrogen, when the others are constant, the toxicity of Ni2+ 

or Cd2+ could be considered to be significantly influenced by this cation/hydrogen. 

Then the values of KHBL, KNaBL, KCaBL, KMgBL and KKBL may be calculated from the 

slope and intercept of the linear regression line between IC50 of Ni2+ or Cd2+ and the 

activities of either Na+, K+, Ca2+, Mg2+ or H+ (Le, 2012). Linear regression analysis of 

cations effects on IC50 of Ni2+ or Cd2+ was performed using Graphpad Prism 5.00 

(GraphPad Software Inc., San Diego, U.S.). 

The median inhibition concentrations (IC50 of Ni2+ or IC50 of Cd2+) were calculated by 

fitting the root growth response (REI) to a symmetrical sigmoidal curve using the 

non-linear regression method in GraphPad Prism 5.00. Duplicate data points were 

expressed as the average value. 

((log ) )x HillslopeREI − ×=
+

100
1 10 50IC                                              (2-5) 

where Hillslope: the steepness of the curve; x: the corresponding activities of Ni or 

Cd inducing the toxic response. 

The values of KNiBL and f 50%
NiBL  were derived using the data of pH-set or cation-sets 

in which statistical and constant impacts on the IC50 of Ni2+ were observed. The 

detailed procedure followed the methodology presented by De Schamphelaere and 

Janssen (2002): the optimum KNiBL was selected as the value which resulted in the 

best fit between the logit of the 4-d REI and fNiBL; the associated constants ( f 50%
NiBL and 

β) were obtained based on the logistic relationship (Thakali et al., 2006a) of fNiBL 

versus the REI using the software Origin 8.0725 (Origin Lab, Northampton, UK) as 

follows: 
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%( )
REI

f
f

=
+ NiBL

50
NiBL

100

1 β
                                                     (2-6) 

where β: the shape parameter that determines the steepness of the response 

curves.  

2.2.6 Mathematical description of model comparison  

Additionally, the TMM and the FIAM were also fitted to the same dataset to compare 

the model performance with BLM. An additional description of the models 

developed in this study is presented in the Supplementary material S2.3. The 

following equation was set up for Ni as an example: 

( )
REI =

+

100

1
50

Total Ni
IC

β
                                                  (2-7) 
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2
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100

1
50
Ni

IC
β

                                                 (2-8) 

The measured concentrations of Ni and Cd in solution were used as the dose in the 

TMM (equation 2-7). The FIAM used the calculated metal ion activities of Ni and Cd 

as the dose (equation 2-8). The fitting parameters, namely β and the concentration 

(IC50) or the free metal ion activity (IC50 of Ni2+) inducing 50% inhibition of root 

elongation were estimated by minimizing the root-mean-squared error (RMSE) of 

the predicted REIs using Origin 8.0725. The lower value of RMSE was used as an 

indicator of a better model among the TMM, the FIAM and the BLM:  

SS
RMSE

n
=                                                         (2-9) 

where SS = residual sum of squares; n = number of points. 

2.3 Results 

2.3.1 Impacts of Ni and Cd on lettuce morphology 

In addition to inhibition effects on the root elongation, leaves of lettuce seedlings 

exposed to medium concentrations of Ni and Cd were smaller and lighter green 
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than leaves in the control groups. The hypocotyls of exposed plants became 

swollen and lateral roots were shortened or even absent. At higher concentrations 

of Ni and Cd, both tops of lateral roots and taproots turned brown and became 

thinner. Leaves of seedlings exposed to Cd were influenced to a higher extent when 

compared with plants exposed to the same concentration of Ni (data not shown in 

this study). 

2.3.2 Impacts of pH and cations on the toxicity of Ni2+ and Cd2+ 

The initial concentrations of Cu2+, Mg2+, Ca2+, K+, Na+, and Zn2+ in the Steiner 

solution were measured to be 0.003, 1.674, 2.103, 5.662, 1.251, and 0.002 mM, 

respectively. The individual effects of K+, Na+, Ca2+, Mg2+, and H+ on the toxicity of 

Ni2+ and Cd2+ are presented in Figure 2.1 a-e and Figure 2.2 a-e. The pH value was 

the average of each adjustment during the 4-d exposure period. 

The IC50 of Ni2+ for lettuce was found to be in the range of 15 to 56 μM with varying 

pH and concentrations of Na+, K+, Ca2+ and Mg2+. An increase in Mg2+ activity from 

0.85 to 5.90 mM (Figure 2.1 d) resulted in a significant increase of the IC50 of Ni2+ 

(r2=0.90, p=0.0001) i.e. the Ni2+ toxicity was reduced by a factor of 2.4. No 

consistent or statistically significant (p>0.05) linear correlations were found between 

the activity of H+, Na+, K+, Ca2+ and the IC50 of Ni2+ in the concentration range 

investigated in this study (Figure 2.1 a, b, c, e). 

The IC50 of Cd2+ to lettuce ranged from 5 to 22 μM. An inconsistent reduction in Cd2+ 

toxicity was observed with decreasing H+ activity (Figure 2.2 e) which was opposite 

to the BLM assumption. When pH ≤ 7 this inverse relationship became significant 

(r2=0.90, p=0.013). No significant changes in the 4-d IC50 of Cd2+ were found when 

the activities of either Na+, K+, Ca2+ or Mg2+ were varied (Figure 2.2 a, b, c, d). 

2.3.3 Model development 

Based on the above findings, only the ameliorative influence of Mg2+ on Ni-toxicity 

was statistically significant in this study across the concentration ranges tested. This 

implies that Mg2+ should be taken into account when assessing Ni toxicity to lettuce 

instead of only using total Ni concentration or the activity of Ni2+. 
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Figure 2.1 Relationships between the median inhibition activity of Ni2+ expressed as 

IC50 values and the activities of K+ (a), Na+ (b), Ca2+ (c), Mg2+ (d) and H+ (e) in the 

exposure medium for lettuce root elongation inhibition. The solid line represents the 

statistically significant linear correlation. The activities of hydrogen ions, i.e. 10.47, 

3.16, 0.83, 0.33, 0.11, 0.04, and 0.01 (μM) correspond to the pH values as following: 

4.98, 5.5, 6.08, 6.48, 6.94, 7.45, and 7.84. 

The Mg-set (the toxic effects of Ni in the presence of different concentrations of Mg), 

totaling 51 treatments, was used for modeling and associated constants estimation. 

When the IC50 of Ni2+ (M: mol/L) was considered as a function of Mg2+ (M), linear 

regression gave the following expression to predict the Mg2+ dependence of Ni2+ 
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toxicity to root elongation of lettuce: 

+= × + ×2+
-5

{Ni }50IC 0.0073 {Mg } 1 102   (r2=0.90, p=0.0001)                (2-10) 

The Mg2+ stability constant was calculated from the slope of the relationship 

between IC50 of Ni2+
 and the activity of Mg2+, divided by the intercept (Figure 2.1 d), 

as log KMgBL=2.86. The optimal values of log KNiBL and f 50%
NiBL  were calculated to be 

5.1 and 0.57, respectively. 

 
Figure 2.2 Relationships between the median inhibition activity of Cd2+ expressed 

as IC50 values and the activities of K+ (a), Na+ (b), Ca2+ (c), Mg2+ (d) and H+ (e) in the 

exposure medium for lettuce root elongation inhibition. The activities of hydrogen 
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ions, i.e. 10.47, 3.16, 0.83, 0.33, 0.11, 0.04, and 0.01 (μM) correspond to the pH 

values as following: 4.98, 5.5, 6.08, 6.48, 6.94, 7.45, and 7.84. The solid line in the 

small graph represents the statistically significant linear correlation when pH ≤ 7. 

Using the TMM, the FIAM and the BLM for toxicity assessment of Ni and Cd, the 

dose-response curves obtained are shown in Figure 2.3 and Figure 2.4. Compared 

to the TMM (Adj. R2=0.49) and the FIAM (Adj. R2=0.60), the Ni-BLM (Adj. R2=0.80) 

with the lowest RMSE (14.07) which was derived using the Mg-set in the present 

study significantly improved the predictive capability for the 4-d REI of lettuce (L. 

sativa). Moreover, 90% of the IC50 of Ni2+ can be explained by considering 

competitive effects of Mg2+. However, since non-significant and constant 

competitive effects of cations or pH were observed in the Cd-toxicity experiments, a 

Cd-BLM could not be established in the present study. Thus, the TMM and the FIAM 

were used in predicting toxicity of Cd to lettuce based on the dataset without adding 

cations or varying pH values. Eighty percent of the variance in Cd toxicity to lettuce 

root elongation can be explained by using both the TMM and the FIAM. The 

detailed model fits and estimated parameters are all presented in Table 2.1. 

Table 2.1 Model fit and the estimated parameters of the TMM, FIAM and BLM for Ni 

and Cd toxicity to lettuce root elongation inhibition. 

Metal Model Adj. R2 RMSE f 50
NiBL

%  or IC50 (M) β 

Ni 
TMM 0.49 22.02 6.60e-05 -2.18 
FIAM 0.60 19.61 3.15e-05 -2.47 
BLM 0.80 14.07 0.57 -5.42 

Cd 
TMM 0.80 8.92 2.85e-05 -0.78 
FIAM 0.80 8.92 1.50e-05 -0.79 

Adj. R2 indicates the adjusted determination coefficient of the models between the 
observed and the predicted REI; β indicates the fitting parameter determining the 
slope of the dose-response curve; RMSE indicates root-mean-squared error of the 
predicted REI; f 50

NiBL
%  indicates the fraction of the total number of binding sites 

occupied by toxic ions when inhibition of lettuce root elongation is up to 50%; IC50 
indicates the concentrations or free ion activities of toxic metals inducing 50% 
inhibition of root elongation. 

2.4 Discussion 

2.4.1 Cations and protons effects on Ni toxicity 
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Figure 2.3 Dose-response relationships between 4 d root elongation inhibition (REI) 

and total Ni concentration (a), free Ni2+ activity (b), fraction of the total biotic ligand 

sites occupied by toxic Ni2+ (fNiBL) (c). The solid lines represent the logistic model fits 
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(equation 2-6, 2-7, and 2-8). R2 indicates the adjusted determination coefficient of 

the models between the observed and the predicted REI. RMSE indicates 

root-mean-squared error of the predicted REI. 

 

Figure 2.4 Dose-response relationships between 4 d root elongation inhibition (REI) 

and total Cd concentration (a), free Cd2+ activity (b). The solid lines represent the 

logistic model fits (equation 2-7 and 2-8). R2 indicates the adjusted determination 

coefficient of the models between the observed and the predicted REI. RMSE 

indicates root-mean-squared error of the predicted REI. 

Based on the data obtained from the present study, the TMM and the FIAM were 

used to quantitatively explain the toxicity of Ni to root elongation of lettuce (L. sativa). 

By considering the mitigating effect of Mg2+ in the solution, a Ni-BLM was developed 
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which significantly improved the toxicity estimation of Ni. These findings for Ni 

supported one of the key assumptions of the BLM that cations compete with metal 

ions for transport sites (De Schamphelaere and Janssen, 2002). The number of the 

binding sites occupied by metal ions which was integrated in the BLM seemed to be 

a better indicator for Ni-toxicity assessment to lettuce as compared with total 

concentration and free ion activity. 

The statistically significant competitive effect of Mg2+ on Ni-toxicity observed in this 

study suggested that Mg2+ and Ni2+ shared the same uptake pathway. This finding 

also confirmed the hypothesis that Mg2+ provided protection to the biotic ligands of 

lettuce in case of exposure to Ni2+ based on the previous studies (Lock et al., 2007; 

Li et al., 2009). The response mechanism of terrestrial plants to Ni may differ from 

aquatic plants as no significant interactive effects of Mg could be detected on the 

toxicity of Ni in aquatic plants (Deleebeeck et al., 2009; Gopalapillai et al., 2013). 

Our observation can be explained by the fact that Ni and Mg have a similar ionic 

radius (Snavely et al., 1991). As no other significant impacts from divalent cations 

(such as Ca2+) were observed in our case, reduced Ni toxicity could not be 

explained only by the change in the electrical negative potential at the plant 

membrane as suggested by Gopalapillai et al. (2013). Moreover, Ni2+ was found to 

displace Mg2+ in ribulose-1, 5-bisphosphate-carboxylase/oxygenase (RuBisCO) 

and lead to the loss of enzyme activities (Wildner and Henkel, 1979) which 

illustrated the occurrence of interactions between Ni2+ and Mg2+ in the organisms. 

The BLM as a better method for Ni-toxicity prediction comparing with the TMM and 

the FIAM (Table 2.1) suggested that not only metal species in the solution but also 

water chemistry did influence Ni-toxicity. 

Values of binding constants as found in our study were compared with constants 

reported in other studies for plants in Table 2.2. The log KMgBL value obtained in our 

study was similar to the value reported by Deleebeeck et al. for algae (2009) but 

was lower than the values reported by Lock et al. (2007), Li et al. (2009), Antunes 

and Kreager (2009) for barley, Thakali et al. (2006b) for barley and tomato. The 

value of log KNiBL found for lettuce in our study was relatively close to the former 

results for barley listed in Table 2.2, but lower than the value calculated for tomato. 
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The optimized value of f 50%
NiBL  in this study implied that 57% of the BL sites had to be 

occupied by Ni2+ to cause 50% inhibition, which was similar to the value reported by 

Lock et al. (2007). The significance of f50 depends not only on the test situations but 

also on the theoretical basis for building the BLM (Antunes et al., 2007) which may 

also result in the differences of KNiBL values even for the same test organism, such 

as barley. 

Ca2+ was not observed to inhibit Ni2+ toxicity on the site of action in lettuce which 

was in line with the researches of Lock et al. (2007) and Thakali et al. (2006b). 

Unlike Mg2+ in chlorophyll associated with photosynthesis, Ca2+ as a cofactor of 

calmodulin in cellular signaling may explain the observation that no interactions 

occurred between Ca2+ and Ni2+ (Hossain et al., 2012).The modification of either the 

K+ or the Na+-concentration exerted non-significant effects on Ni-toxicity, which was 

consistent with previous studies presented in Table 2.2. Unlike the researches on 

barley and algae exposed also in solutions (Deleebeeck et al., 2009; Li et al., 2009), 

insignificant competitive effects of H+ to lettuce were found in the present study. 

Lettuce (L. sativa) grows better at a soil pH ranging from slightly acid to neutral. 

When the pH value was below 6, H+ may have adverse impacts on lettuce seedlings 

which offset the protective effects on plants. This may be the reason that pH was 

not observed to be significantly involved in Ni-toxicity. In summary, the estimated 

parameters and the effects of cations and protons found in the present study can 

serve as a basis for further research on mechanisms that induce differences in 

bioavailability and toxicity of Ni and for actual risk assessments of Ni in soil. 

2.4.2 Cations and protons effects on Cd toxicity  

Competitive effects of major cations (Na+, K+, Ca2+, Mg2+) in the solution on 

Cd-toxicity to lettuce were not observed at a physiological level using REI as the 

endpoint in this study. Only a slight but non-significant negative trend of IC50 of Cd2+ 

was observed across the whole range of pH levels in the present study (Figure 2.2). 

Our findings demonstrated that the resistance mechanism of lettuce to diverse 

metals was metal-specific since no apparent interaction between Cd2+ and cations 

was observed at the water-organism interface. Instead of BLM, TMM or FIAM was 

found to be a reasonable indicator of Cd-toxicity to lettuce root growth.  
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The 4-d IC50 of Cd2+ increased as pH increased to 8 which indicated that there was 

no competitive interaction between Cd2+ and H+ for lettuce. François et al. (2007) 

also found a non-competitive inhibition by H+ on the green algae Chlamydomonas 

reinhardtii. They suggested that the BLM was not capable of describing the true 

impact of pH on Cd uptake by algae. Instead of increased unoccupied sites of 

action, the metal fluxes were increased by conformational changes of the transport 

proteins when pH values were raised. When pH ≤ 7 the toxicity of Cd2+ was 

enhanced obviously by the increased hydrogen concentration in the present study 

which was contrary to the BLM theory. Lei et al. (2012) pointed out that a 

combination of morphological changes may be the fundamental reason why toxicity 

of Cd2+ on tobacco decreased as the pH gradually increased. At higher pH levels, 

the activities of other cadmium species increase in the solution, such as CdCO3 and 

CdOH+. Otherwise, at lower pH values, the dominantly bioavailable Cd species 

would be Cd2+ which concentration would be increased with increased H+. This may 

also lead to the result that most of the toxic effects of Cd to lettuce can be explained 

by both TMM and FIAM when pH was maintained around 7 (Fig. 2.4). Another 

explanation of our finding may be related to electrostatic effects of the cell 

membrane, as the surface negativity of the membranes was reduced when the 

proton activity was increased. This reduction of surface negativity will increase the 

surface-to-surface trans-membrane potential difference (Wang et al., 2010b) which 

will in turn increase the electrical driving force of toxic metallic ions across the cell 

membrane (Gopalapillai et al., 2013). Therefore, the mitigating effect of higher pH 

on Cd-toxicity may be due to the change of the electrostatic nature of the plant cell 

wall. On the other hand, according to the theory of Lexmond and van der Vorm 

(1981), the toxicity of metal ions often decreases with increasing pH for plants when 

grown in nutrient solution. This may result from changes of the morphology and 

physiology of plant roots in solution cultures that differed from those in the soil 

environment because of the aeration and microbial status (Voigt et al., 2006). Thus, 

it seemed to be theoretically possible to reduce the bioavailability of Cd for plants 

when alkaline fertilizers were applied to increase pH values. Emphasis can be laid 

on whether moderately contaminated soils are suitable for specific crop plants 

culture by increasing pH levels in future work. 
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Besides pH, changes in Na+, K+, and Mg2+ concentrations also had no apparent 

effects on Cd-toxicity, which was consistent with the previous findings in plant 

system (Das et al., 1997) and indicated that Na+, K+, and Mg2+ did not interfere with 

Cd2+ at the site of action or vice versa. Although the toxic effects of Cd to lettuce 

grown in a soil matrix have been shown to be ameliorated by Ca2+ (Voigt et al., 

2006), the antagonistic effect between Cd2+ and Ca2+ was not observed in the 

present study. The higher concentration of dissolved organic matter (DOM) in the 

forest soil extracts may account for the differences of results by influencing the 

metal speciation (Haghiri, 1974). The uptake of Cd in the nitrate test solutions was 

predominantly controlled by Cd2+ (Cabrera et al., 1988). Metal toxicity of Cd 

decreased with increasing DOM concentration, which may be caused by the 

formation of less toxic organically complexed metals. In other words, metals may be 

sequestered by chelating with specific organic acid and the toxic effects of which 

would be reduced (Dong et al., 2007). On the other hand, root damage was 

assumed to cause the reduced uptake of Ca in barley shoot rather than the specific 

ion antagonism between Cd2+ and Ca2+ (Cabrera et al., 1988). Based on the findings 

above, the traditional BLM-type as single-site competition suggested was not 

applicable in assessing the toxicity of Cd to lettuce exposed in hydroponic solution. 

2.4.3 Effects of solution salinity and counter-ion on metal toxicity predictions 

In our toxicity experiments, Steiner solution prepared by adding inorganic salts was 

used as the hydroponic nutrient solution to prevent reduction in growth rate due to 

low availability of mineral nutrients. Some researchers declared that additions of 

large amounts of soluble metal salts may confound toxicity by increasing the ionic 

strength or salinity in the soil solution (Stevens et al., 2003; Rooney et al., 2007). 

Besides coexistent major cations discussed in 2.4.1 and 2.4.2, metal counter-ions 

(e.g. NO3
-) were also found to lead to overestimation of EC50s of Zn and Pb in soil 

samples (Stevens et al., 2003). However, no apparent osmotic change was 

observed due to the increased salinity in irrigation water (Shannon and Grieve, 

1999). Lettuce was chosen as a moderately salt sensitive crop (Andriolo et al., 2005) 

and L. sativa showed a higher tolerance for salt than other lettuce species 

(Shannon and Grieve, 1999). In this study, no negative effects were observed on 

lettuce growth using Steiner solution. Conversely, the calcium salts added, may first 
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alleviate the nutrients deficiency (Wang et al., 2010b) if malnutrition occurred. The 

electrical conductivity (EC) that reduces germination by 50% of lettuce was found to 

be 8 dS/m by adding NaCl (Shannon and Grieve, 1999). The EC values of the 

solutions used in the present study were all below this threshold. The Steiner 

solution was used as both plant culture and test medium for all the treatments, it is 

therefore that the effects of the background ionic environment could be excluded. 

Although the hydroponic technique is convenient nowadays, the more effective use 

of the technique in the field of toxicology is worth pondering. Instead of influence on 

plant responses to Ni, added anions such as sulfate, nitrate, or chloride may affect 

metal speciation in solution (Gopalapillai et al., 2013). The speciation equilibrium in 

aqueous solution is the basis for toxicity modeling of metals by FIAM or BLM. The 

metal species in solution and those binding to the biological surface are expected at 

a thermodynamic equilibrium as well in the BLM (Worms and Wilkinson, 2007). 

According to the formula of Steiner solution, the major anions, such as NO3
-, SO4

2- 

and PO4
3- at relatively higher concentrations were all included in the speciation 

calculation. Therefore, the effect of anions cannot be ignored in metal risk 

assessment for terrestrial plants when free metal ion is supposed to be one of the 

most important species to induce toxicity. 

2.5 Conclusions 

In this study, it was found that the mechanism of lettuce resistance to excessive 

metals differed for Cd and Ni. By considering the competitive effect of Mg2+, the 

prediction for Ni-toxicity to lettuce (L. sativa) was significantly improved as 

compared to FIAM and TMM. The protective effect of Mg2+ was incorporated into 

the BLM model as represented by the value of log KMgBL=2.86. The conditional 

stability constants were calculated to be log KNiBL=5.1, and f 50%
NiBL =0.57. Impacts of 

other cations (Na+, K+, and Ca2+) and pH were excluded because of lack of 

significant competitive effects on the toxicity variation. According to observations in 

Cd-toxicity experiments, major cations or protons did not inhibit the toxicity of Cd2+ 

to lettuce via competition as expected in the BLM concept. Instead, the total 

concentration or free ion activity succeeded in predicting toxicity of Cd. It was 

therefore represented that in hydroponic solution, no ionic brakes apparently 
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inhibited the movements of Cd2+ entering vegetable crops which may explain that 

the toxic effects of Cd to lettuce seedlings showed at the lower concentration as 

compared to Ni. Besides a better understanding of toxic mechanisms of metals, the 

models developed in the present study could be used to predict toxicity of Cd and Ni 

to lettuce and 50% inhibition concentration of Ni2+ to cut down the costs for 

regulatory testing of chemicals in soil. 
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Supplementary materials 

S2.1 Formula of the Steiner solution 
The Steiner nutrient solution is composed by adding 10 ml of solution A and B and 1 

ml of solution C and D to one liter of tap water and then aerating the solution during 

16 hours. Afterwards the pH is measured and adjusted at pH 6.5±0.5 using no more 

than 158 µl concentrated sulphuric acid per liter solution. The precipitation that 

might have been produced during the aeration will disappear while adjusting the pH. 

Solution A: 68 g Ca(NO3)2 * 4H2O, 62 g KNO3 per 1liter water. 

Solution B: 46 g MgSO4 * 7H2O, 13.6 g KH2PO4 per 1 liter water. 

Solution C: 2.69 g H3BO3, 2.0 g MnSO4 * H2O, 0.506 g ZnSO4 * 7H2O, 0.126 g 

Na2MoO4 * 2H2O, 0.078 g CuSO4 * 5H2O per 1 liter water. 

First dissolve these chemicals separately in 100 ml of tap water, where H3BO3 is 

dissolved in hot water (±70 °C). Then join the solutions of the first 4 chemicals, 

supplement with water to ± 850 ml, add the solution of CuSO4 * 5H2O and 

supplement again until 1 liter. If there is a precipitation in the CuSO4 * 5H2O-solution 

or in solution C after adding of the CuSO4 * 5H2O-solution, then add 0.5 or1 M 

H2SO4 until the precipitation disappears. 

Solution D1: 16.659 g Titriplex III (C10H14O8N2Na2 * 2H2O), 2.91 g KOH per 500 ml 

distilled water, dissolve the Titriplex in hot distilled water (± 70 °C). 

Solution D2: 12.44 g FeSO4 *7H2O,  2 ml 0.5 M H2SO4 per 200 ml distilled water 

Solution D: Join solutions D1 and D2, supplement until 900 ml with distilled water, 

aerate the solution during ca. 16 hours and supplement until 1litre with distilled 

water. After aeration the solution is coloured reddish brown. 
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S2.2 Diagram of the experimental process 
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S2.3 Additional description of the mechanistically based models  
The cations (i.e. H+, Na+, K+, Ca2+, and Mg2+) and toxic metal ions (Cd2+ and Ni2+) 

investigated in this study were assumed to form complexes with BL at a ratio which 

expressed as the stability constants (K, equation 2-2). The traditional BLM used in 

this study was based on the binding sites on a single biotic ligand (BL) that would 

influence the root elongation of lettuce. The total BL site concentration [TBL] was 

described as  

[TBL] = [BL]+[HBL]+[NaBL]+[KBL]+[CaBL]+[MgBL]+[MBL] 

When the equilibrium relationships (equation 2-2) were integrated, the above 

equation could be rewritten as follows  

[TBL] = [BL] 
(1+KHBL × {H+}+KNaBL × {Na+}+KKBL × {K+}+KCaBL × {Ca2+}+KMgBL × {Mg2+}+KMBL × {M2+}) 

Then according to the BLM concept, toxicity of Ni/Cd was determined by the fraction 

of the total number of BL occupied by Ni/Cd (equation 2-3). In the BLM, the fraction 

of metals for each species was assumed to be constant at 50% biological effect. 

Then equations (2-3) and (2-4) were derived to show relationships between IC50Ni/Cd 

and cations. The effect experiments were conducted to find out whether IC50Ni/Cd 

could be influenced by the cations in the solution as suggested by the BLM concept. 

As shown in Figure 2.1, there was only a linear relationship between IC50Ni/Cd and 

the activity of Mg2+ (equation 2-10) when activities of other cations were constant. 

Thus, KMBL can be calculted as follows 
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With the fixed KNiBL value, the data of Mg-sets was fitted to equation (2-6) to obtain 

f 50%
NiBL =0.57 and β= -5.42. Then the same dataset was fitted to TMM and FIAM 

(equation 2-7, 2-8) formulas and the related estimated parameters were shown in 

Table 2-1. Apart from BLM which cannot be built for Cd due to no competitive effects 

of cations or protons found in the present study, similar methods were used to 

develop TMM and FIAM for Cd-toxicity prediction.
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Statistically significant deviations from additivity 

Abstract 

There is increasing attention from scientists and policy makers to the joint effects of 

multiple metals on organisms when present in a mixture. Using root elongation of 

lettuce (Lactuca sativa L.) as a toxicity endpoint, the combined effects of binary 

mixtures of Cu, Cd, and Ni were studied. The statistical MixTox model was used to 

search deviations from the reference models i.e. Concentration Addition (CA) and 

Independent action (IA). The deviations were subsequently interpreted as 

‘interactions’. A comprehensive experiment was designed to test the reproducibility 

of the ‘interactions’. The results showed that the toxicity of binary metal mixtures 

was equally well predicted by both reference models. We found statistically 

significant ‘interactions’ in four of the five total datasets. However, the patterns of 

‘interactions’ were found to be inconsistent or even contradictory across the 

different independent experiments. It is recommended that a statistically significant 

‘interaction’, must be treated with care and is not necessarily biologically relevant. 

Searching a statistically significant interaction can be the starting point for further 

measurements and modeling to advance the understanding of underlying 

mechanisms and non-additive interactions occurring inside the organisms. 

Keywords: Metal mixtures; lettuce; statistically significant; biologically relevant; 

reproducibility 

3.1 Introduction 

Industrial discharges, consumer wastes and the usage of plant protection products 

or sewage sludge bio-fertilizers may all lead to metal contamination in soil. Metals 

can be easily adsorbed in soils (Yang et al., 2009) and be accumulated in plants 

which may result in a threat to the health of the plant itself and consumers in the 

food chain. In the natural environment, plants are often exposed to multiple metals 

simultaneously rather than a single metal (Backhaus et al., 2000). Many metals 

listed individually within the safe range of industrial permits are extremely toxic to 

certain species and even more so when present in combination (Wong et al, 1987). 

Thus, to maintain healthy and functioning ecosystems, it is necessary to improve 

the understanding of combined effects of multiple metals on terrestrial plants. 
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Since current testing is cost- and time-consuming, computational models are 

developed to help predict toxicological responses and understand the toxicity 

mechanisms of mixtures. The most frequently used predictive tools for assessing 

mixture toxicity disregarding interactions are Concentration Addition (CA) (Loewe 

and Muischnek, 1926) and Independent Action (IA) (Bliss, 1939) if the constituents 

making up the mixture are known. The CA model is used for chemical mixtures for 

which a similar mode of action is assumed, whereas the IA model is used to predict 

effects of compounds with a different mode of action (Bliss, 1939). It has been 

argued that concentration addition should be a more suited default model in risk 

assessment of chemical mixtures because of its conservatism in most cases 

(Cedergreen et al., 2008). In addition, it is suggested that dissimilarly acting 

chemicals rarely exist in complex organisms (Faust et al., 2003). However, the sites 

or the modes of action are ambiguously defined at the biochemical level and can be 

dose dependent (Cedergreen et al., 2008). In most cases, the CA and the IA models 

are used only based on their mathematical connotation as the toxicity mechanisms 

of metals are still greatly unknown. The conceptually unrelated CA and IA models 

are single-time point approaches which make them suitable to make predictions for 

mixture effects based on standardized toxicological tests. Therefore, the CA and the 

IA models were both used in this research. An elaborate description of these two 

approaches can be found for example in the papers by Altenburger et al. (2000) and 

Jonker et al. (2005). 

Predicting mixture effects becomes a challenge when a mixture is composed of 

interacting chemicals that synergize or antagonize the effects of each other. 

Accurately determining chemical interactions is not only conducive to adequately 

describing the relationship between exposure and effect, but also greatly aids risk 

assessments for chemical mixtures and further studies for underlying mechanisms 

of chemical toxicity. Synergistic interactions may cause severe effects on organisms 

(Johnson et al., 2013) which attract the attention of toxicology scientists and policy 

makers in finding synergism for naturally occurring mixtures. The reference models 

(i.e. CA and IA) are frequently extended to explore the presence of interaction 

between mixture components and to explain the variation in assessing mixture 

toxicity (Jonker et al., 2005; Le, 2012). Statistically significant deviations from the 
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predictions of reference models are usually interpreted as interactions. The 

strongest interactions often occur in binary mixtures and the interactive effects may 

become minor with an increased number of mixture components (Warne and 

Hawker, 1995; Lydy et al., 2004). Thereupon, experiments in this study were carried 

out with binary metal mixtures as a foundation for explaining joint effects of complex 

mixtures. The standardized framework described by Jonker et al. (2005) was 

applied to analyze the toxicity data of metal mixtures, a detailed description of which 

was given in our section 3.2.4.  

By using the above approach, it is possible to assign a statistically significant 

deviation from the reference model (at a point in time). Nevertheless, some issues 

remain unresolved, for instance why the deviation occurs and how to interpret a 

statistically significant deviation as a toxicologically relevant interaction. It was 

shown that these statistically significant interactions show poor reproducibility 

(Cedergreen et al., 2007). Therefore, finding statistically significant interactions 

should be the starting point for further research on biology-related interactions but 

not the endpoint or the conclusion. Deviations from additivity can be caused by 

uncertainties in the measurements or the limited power of predictive tools instead of 

‘real’ interactions between mixture components. Normally, the larger the sample 

size used, the more likely it represents a biologically relevant meaning of effects 

reflected in statistical significance (EFSA, 2011). Therefore, besides significance 

tests, a comprehensive experiment containing five independent experiments on the 

terrestrial plant Lactuca sativa L. was designed to explore the overall toxicity of 

Cu-Cd, Ni-Cd and Cu-Ni mixtures and to systematically examine the uncertainty of 

interactions between metal components. 

The present study aimed at exploring whether the mixture components of Cu-Cd, 

Ni-Cd and Cu-Ni combinations would interact in a way (antagonism or synergism, 

etc.) that affected the toxicity of each other. Reproducibility of deviations from the 

reference models in assessing the overall toxicity was tested by repeating mixture 

toxicity experiments at different concentration levels or ratios. The overall toxicity 

was evaluated by measuring the combined effects of binary metal mixtures on root 

growth of lettuce, Lactuca sativa L. 
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3.2 Materials and Methods 

3.2.1 Test chemicals and experimental design 

In accordance with the seven heavy metals of greatest environmental concern, i.e., 

Cd, Cu, Cr, Hg, Pb, Ni and Zn (Han et al., 2002), Cd as a serious pollutant in the 

pedosphere through human activities was selected to be one of the test element 

and the essential elements (i.e. Ni and Cu) were chosen as the other components in 

the test mixtures. A comprehensive series of acute toxicity tests were designed for 

lettuce exposed to Ni, Cd, Cu and their binary mixtures. Metals were added into the 

nutrient solution in the form of nitrate salts (Sigma-Aldrich, >99%, Japan). The 

concentration of added NO3
- was neglectable as compared to the nitrate 

concentration in the nutrient solution (68 times higher) at which no negative effect 

was observed on lettuce growth. In order to examine the reproducibility of 

interactions between mixture components at relatively low levels of input, the 

experiments of Ni-Cd and Cu-Ni mixtures were repeated three times across 

different exposure levels. To reduce the variation due to non-simultaneous toxicity 

tests, control groups with nutrient solution alone were conducted every week with 

mixture treatments in the same climate chamber. Independent experiments with 

different concentration ratios of Ni-Cd and Cu-Ni mixtures were separated into two 

groups. In the first group, the metal concentrations in the binary mixtures were set to 

be evenly distributed on both sides of the median effect concentrations (EC50s) of 

each metal. The EC50s for Cu, Ni, and Cd were estimated based on the results of 

pilot experiments for single metals. In the second group, the concentrations of Ni 

and Cd were slightly reduced and the concentrations of Cu were slightly increased 

to check if the statistically significant deviations are reproducible. Detailed spiked 

concentrations of Cu-Cd, Ni-Cd, and Cu-Ni mixtures are illustrated in Figure 3.1. In 

previous studies (Le, 2012; Liu et al., 2014a), it has been shown that the free-ion 

activities were the dominant metal species for the single toxicity of Cd, Cu and Ni to 

lettuce. Thus, taking bioavailability into account, the estimated free-ion activities 

were used instead of the measured total concentrations to express exposure of 

lettuce seedlings to metals in this study.  

The pH levels of the test medium were checked using a 691 pH meter (Metrohm, 

Switzerland) and kept at 7.0±0.02 every other day by the addition of either HNO3 or 
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NaOH. The activity of Cu2+ was checked using a Cu-ion selective electrode 

(Radiometer analytical, France). The metal concentrations in the nutrient solution 

for lettuce and in the test medium were determined by flame atomic absorption 

spectroscopy (FAAS, Perkin Elmer AAnalyst 100, US). Calibration standards 

(Sigma-Aldrich, Germany) and a reagent blank were analyzed after every 20 

samples. Speciation calculation was conducted using the Windermere Humic 

Aqueous Model 7.0.1 (Centre for Ecology & Hydrology, UK) based on the measured 

concentrations by FAAS, the measured activities by Cu-ISE and the total 

concentrations calculated from a formulation of the nutrient solution (Liu et al., 

2014a). As the hydroponic system was open to the ambient air, the pCO2 was set at 

10-3.5 atm. The pH value was set as 7.0 and the temperature was set as 15°C. 

Since the tests were conducted under controlled conditions in a laboratory nutrient 

solution, Al and Fe(Ⅲ) concentrations were considered negligible (Farley and 

Meyer, 2015) in the WHAM calculation. 

3.2.2 Test organism and exposure 

As recommended by the US Environmental Protection Agency (1988) and the 

Organization for Economic Cooperation and Development (2006), lettuce (Lactuca 

sativa L.) was selected as a bio-indicator for assessing the toxicity of metal mixtures. 

Seeds of lettuce were purchased from a commercial company (Horti Tops, Holland). 

Steiner solution, the preparation of which is shown in Supporting Information 3.1, 

was chosen as the nutrient solution for culturing lettuce since it has been shown to 

be well suited for plant growth (Steiner, 1961; Liu et al., 2014a). Seeds were 

germinated in a climate room at a temperature of 15°C, a humidity of 80%, a light 

intensity of 117 µmol·m-2·s-1 and under a 16:8 h light: dark cycle for 4 d on expanded 

perlite. After germination, seedlings with taproot lengths beyond 3 cm were selected 

and fixed to parafilm strips floating on the surface of glass beakers (100 ml) 

containing the metal-spiked test medium. For each beaker, 4 seedlings were 

planted. All the beakers were put in a large container with a layer of water to prevent 

excessive evaporation. Five ml of medium of each treatment with one drop of 65% 

nitric acid was preserved after exposure at 4°C for chemical analysis. 
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Figure 3.1 Set up of experiments for Cu-Cd, Ni-Cd, Cu-Ni mixtures expressed as 

free ion activities.  

3.2.3 Toxicity determination 

Relative root elongation (RRE, %) was chosen to be the toxicological endpoint of 

lettuce to exposures of Cu, Cd, Ni and their binary mixtures due to a relatively 

higher sensitivity of seedlings than seeds (Pfleeger et al., 1991) and the influence of 

non-simultaneous toxicity testing already considered in the formula. The length of 
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the root was measured before and after 4 d exposure, from the transition point 

between the hypocotyls and the root to the root tip (EPA, 1988). The root growth of 

4 seedlings was averaged at a given treatment. The RRE was determined as 

follows  

%RRE RG RG= ×S C/ 100                                               (3-1) 

where RGs: the averaged root growth of plants in the sample solution, cm; RGc: the 

averaged root growth of plants in the control solution, cm. 

3.2.4 Data analysis 

To analyze the combined effects of Cu-Cd, Ni-Cd and Cu-Ni mixtures, two standard 

‘additivity’ models were used as the reference model, i.e. concentration addition (CA) 

and independent action (IA). On the basis of CA concept, the relative contributions 

of mixture components to the overall toxicity can be added in the form of toxic units 

(TUs) (Jonker et al., 2005) as represented in equation (3-2). Strict concentration 

addition occurs when the toxic unit value of a mixture (TUmix) equals one.  
n

i i
i

c x
=
∑mix

1
= /TU EC                                                     (3-2) 

where ci: the concentration of individual chemical i in the mixture with n chemicals, 

free-ion activity was used to express ci; ECxi: the effect concentration of individual 

chemical i that results in the same effect (x%) as the mixture, free-ion activity was 

used to express ECxi; TUmix: a dimensionless ratio, the sum of each quotient or toxic 

unit (TU). 

Based on the concept of independent action, the dose-response relationship of 

metal mixtures can be expressed as equation (3-3) by multiplying the non-response 

of each component in the mixture at a given exposure concentration:  

max ( )
n

i i
i

Y u q c
=

= ∏
1

                                                      (3-3) 

where Y: the biological response; umax: the maximum biological response; qi(ci): the 

probability of non-response of individual chemical i in the mixture with n chemicals. 

The deviation patterns of Cu-Cd (1a), Ni-Cd (1b) and Cu-Ni (1c) mixtures from 

‘additivity’ were quantified by the freely downloadable software named the MixTox 

Model, provided by the Centre for Ecology & Hydrology (CEH). The programming 
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was conducted by the use of Visual Basic functions and the Solver program in 

Microsoft Excel. The reference models and the deviation functions 

(synergism/antagonism, dose ratio-dependent, and dose level-dependent) were all 

fitted to the toxicity data of Cu-Cd, Ni-Cd and Cu-Ni mixtures using the maximum 

likelihood method while minimizing the sum of squared residuals (SS). The median 

effect concentration (EC50) and the slope of dose-response relationships (β) of 

single metals were calculated in an excel spreadsheet using the log-logistic function 

provided by CEH as well and used as initial values for mixture toxicity modelling. 

The statistical significance of the improved model-fit from additional parameters was 

quantified by the chi-square ( χ2 ) tests. In this study, a value of p( χ2 ) lower than 5% 

was considered to indicate a statistically significance. Four types of deviation 

patterns were classified using the MixTox model, i.e. strict ‘additivity’ basically no 

deviations from the reference models (CA or IA), synergism/ antagonism (S/A) 

deviation, dose ratio-dependent (DR) deviation, dose level-dependent (DL) 

deviation. Since the deviation models of DR and DL were not nested, the 

comparison between these two models was not achieved using the chi-square ( χ2 ) 

tests. A detailed description of these mixture models is shown in the Supporting 

Information 3.2. The 2b and the 2c subsets of Ni-Cd and Cu-Ni mixtures were also 

entered into the MixTox model to check whether the statistically significant 

deviations from ‘additivity’ were reproducible.  

3.3 Results  

3.3.1 Background chemical analysis  

The concentrations of Mg, Ca, K, Na and Zn in the Steiner solution were measured 

to be 1.67 ± 0.02 mM, 2.10 ± 0.02 mM, 5.66 ± 0.06 mM, 1.25 ± 0.02 mM, and 0.002 

± 0.0002 mM (n=16) respectively by FAAS.  

3.3.2 Mixture toxicity modeling 

The toxicity data of Cu, Ni, Cd and their three binary mixtures are shown in Table 

S3.1 which also includes dose-response curves of individual metals and 

relationships between observed effects and estimated effects of metal mixtures 

analyzed using the MixTox model. The fitting results of various mixture models are 
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demonstrated in Table 3.1 for all the datasets. The values of R2 are shown to 

describe the goodness of fit of the reference models and the nested deviation 

functions in the MixTox model. The values of p ( χ2 ) are shown to indicate the 

statistically significant level.  

Generally, the combined effects of Cu-Cd, Ni-Cd and Cu-Ni mixtures to L. sativa 

were equally well explained by the CA- and the IA-based mixture models. The 

predictive ability of the mixture models differed when assessing the toxicity of 

different datasets of Ni-Cd mixtures. Fitting of the CA- or the IA-based models to the 

first dataset of Ni-Cd mixtures explained 72%-80% (Table 3.1) of the variation in 

observed effects on lettuce. However, at the lower concentrations of Ni and Cd 

(Figure 3.1) in the second dataset, only 47%-60% (Table 3.1) of the variation was 

explained by mixture models. Similar results were not observed in the Cu-Ni 

combination. The predictive power of reference models and deviation functions was 

shown to be similar in predicting the combined effects of Cu-Ni mixtures on root 

elongation. This indicated that the predictive power of mixture models may be 

dependent on the specific composition of metal mixtures. 

The improvement in fitting by the additional parameters was found to be dependent 

on the specific subset of metal mixtures and reference model applied. For the 

Cu-Cd mixtures, a statistically significant better fit was obtained when parameters 

related to DR or DL dependent deviations were included in the CA- and the 

IA-based models to describe the mixture toxicity. Although inclusion of the S/A 

parameter in the CA model showed a statistically significant better fit to the first 

dataset of Ni-Cd mixtures, adding DR parameters into the IA model improved the 

data description significantly at the 5% level. For the second dataset of Ni-Cd 

mixtures, significantly better fits were obtained after extending the CA and the IA 

models with DR deviation parameters. Extending the IA model with additional 

parameters did not decrease the residuals significantly for modeling the combined 

effects of Cu-Ni mixtures in the first experiment, which was different from the results 

obtained by the CA-based models. For the second dataset of Cu-Ni mixtures, the 

DR or DL parameters added in the CA- or the IA-based models significantly 

improved the model fit for mixture toxicity. 
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3.3.3 Determination of deviation patterns 

Based on the MixTox model, the statistically significant deviations from ‘additivity’ 

are represented in Table 3.2 and in Figure 3.2 for each dataset of Cu-Cd, Ni-Cd and 

Cu-Ni mixtures. Deviations from the reference model were generally found in 

predicting the overall toxicity of Cu-Cd and Ni-Cd mixtures to lettuce apart from the 

first dataset of Cu-Ni mixtures. The significant deviations for each metal 

combination investigated in this study were found to be dependent on concentration 

levels or ratios of metals and not consistent across different reference models. 

Especially for the 1c dataset of Cu-Ni mixtures, no deviation from ‘additivity’ was 

observed using the IA-based functions for toxicity modeling. This was different from 

the statistically significant dose ratio- or the dose level-dependent deviations found 

by the CA-based approaches. For the 1b and the 2b datasets of Ni-Cd mixtures, it 

was demonstrated that patterns shifted between antagonism and dose 

ratio-dependent deviation in modeling the toxicity of Ni-Cd mixtures. For the 1a and 

the 2c datasets, dose level-dependent deviations were obtained with CA as the 

reference model and dose ratio-dependent deviations when IA was used as the 

reference model.  

Moreover, the joint action of metal mixtures (Table 3.2) was determined according to 

the additional parameters estimated by the MixTox model (Table S3.2). Antagonistic 

effects were commonly found for the first datasets of Cu-Cd, Ni-Cd and Cu-Ni 

mixtures at lower dose levels and synergistic effects occurred at higher dose levels. 

However, for the second datasets of Ni-Cd and Cu-Ni mixtures, the joint action was 

contradictory to the first datasets or when different reference models were applied. 

The joint actions of Ni-Cd and Cu-Ni mixtures changed from antagonism in the first 

experiment to synergism in the second experiment. This indicated that interactions 

between mixture components were not reproducible. Synergistic effects between 

Ni2+ and Cd2+ were found where the mixture toxicity is mainly caused by Ni2+ using 

the IA-based models which was in contrast to the results of the CA-based models. 

Similar results were also obtained for the 2c dataset that synergism occurred 

between Cu2+ and Ni2+ at low dose levels using the CA-based models for assessing 

the mixture toxicity whereas antagonism found by the IA-based models. Although 

the experiments of mixture toxicity were repeated, the specific interactions between 
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mixture components could not be defined as the joint actions found by the MixTox 

model were different for diverse reference models or datasets selected. 

 
Figure 3.2 2D isobolic representations of the response surfaces fitted by the 
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statistically significant, most likely deviation models based on concepts of 

concentration addition (two rows on the left) and independent action (one row on 

the right) to describe the effects of mixtures of Cu-Cd, Ni-Cd and Cu-Ni on root 

elongation of L. sativa. The different colors indicate diverse response levels. The 

bigger the number in the addendum, the higher the root elongation rate. 

3.4 Discussion 

Chemical-chemical interactions occur at various processes which complicates the 

toxicity assessment for metal mixtures. First, at the environmental level outside the 

organism, metals can interact with the substances existing in the surrounding media 

which may affect their bioavailability. Secondly, interactions between metals at the 

toxicokinetic phase would influence the uptake of mixtures by organisms. Thirdly, 

interactions that occur at the toxicodynamic phase may influence the accumulation 

of metals at the biotic ligands, and subsequently affect joint toxicity of metal 

mixtures (Calamari and Alabaster, 1980). In our study, estimated bioavailable 

fractions of metals were used in mixture modelling, in which interactions of metals 

with environmental compartments were preliminarily addressed by the WHAM 

software. The potential interactive effects found between metal ions more likely 

occurred at the chemical-organism level. 

According to the results shown in this study, deviations from ‘additivity’ always 

occurred in assessing the overall toxicity of binary metal mixtures regardless of the 

reference models applied. However, the statistically significant deviations patterns 

were found to be not reproducible across the whole dataset for each metal 

combination which was consistent with the findings of Cedergreen et al. (2007). 

These inconsistent deviations may be the result of over-simplifications of the model, 

of the model itself as applied to judge interactions, and of experimental errors. 

Although the MixTox model was a powerful tool in finding statistically significant 

deviations, the improvements in fit by adding parameters were rather small in our 

case. For instance, apart from Cu-Ni mixtures, the goodness of fit in terms of R2 was 

increased by less than 10% when the S/A, DR or DL deviation parameters were 

added into the reference models. On the one hand, as the toxicological response of 

lettuce in exposure to binary metal mixtures was translated to the integrated 
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endpoint RRE (%), the variations of root growth at a small scale (e.g. mm) which fell 

well within the range of experimental uncertainty, would lead to the difference 

between a synergistic effect and an antagonistic effect. On the other hand, the 

sensitivity of this tool may be improper to distinguish interactions from deviations in 

our case. Fisher (1957) has suggested that a level of significance (e.g. α=0.05) 

could be set according to specific circumstances. A more stringent alpha level (e.g. 

α=0.01) may help avoid testing variability and raise the power of determining 

interactions in metal mixtures. 

Additionally, most of these significant deviations were found to be dependent on 

dose ratios of Cu-Cd, Ni-Cd and Cu-Ni mixtures, which is similar to the findings of 

Sharma et al. (1999). This may be the cause of the different and even opposite 

deviation patterns in the second datasets as compared to the results of the first 

datasets of Ni-Cd and Cu-Ni mixtures. It is thus good to note that the use of a fixed 

concentration ratio for experiments may bias the interpretation of interactions 

between mixture components in assessing the total toxicity (Drescher and Boedeker, 

1995). Although a comprehensive series of acute toxicity experiments can have a 

degree of replication (Tipping and Lofts, 2015), real experimental duplicates are still 

needed (Cedergreen et al., 2007) to systematically examine the effects of 

interactions on mixture toxicity assessment. These findings emphasized the 

importance of intensive and confirmatory experiments in analyzing mixture toxicity, 

as the ‘noise’ in the experimental toxicity data can be easily interpreted as 

interactions by statistical tools such as the MixTox model. However, blindly 

enlarging the sample size was also not recommended since a statistical test will 

always demonstrate a significant difference for a huge sample size (Sullivan and 

Feinn, 2012). Since the patterns of statistically significant deviations were not 

reproducible, scientists should take care in deriving any conclusions associated with 

interactions and the strength of interactive effects based on the statistical 

significance alone. 

Some researches already reported that interactions occurred in metal mixtures 

involving Cu, Zn, and Cd. Versieren et al. (2014) found that 74% of the interactions 

between Cu2+ and Zn2+ could be explained by the biotic ligand model based on a 

partial factorial and ray design (21 points repeated 3 times) for Hordeum vulgare L. 
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and they postulated that synergistic effects would occur for soil grown plants 

exposed to this mixture. The study of Le (2012) on Lactuca sativa indicated that 

significant alleviative effects of Zn2+ were found on the toxicity of Cu2+ based on a 

single dataset with 122 points as input in the extended CA and IA models. Sharma 

et al. (1999) found complex interactive effects depending on concentrations 

between components of Cu-Zn, Cu-Cd and Zn-Cd mixtures through more than 10 

times repeated root elongation tests and accumulation tests on Silene vulgaris. 

Tipping and Lofts (2015) showed that the toxicity of Cd to Daphnia magna (542 data 

points), Oncorhynchus clarkia lewisi (162 data points), and Oncorhynchus mykiss 

(207 data points) could be markedly reduced by Cu and Zn according to the 

WHAM-FTOX model. Although many replications or near-replications were 

conducted in the studies listed above, Tipping and Lofts (2015) pointed out the 

difficulty in obtaining reproducible results of toxicity experiments. Improvements in 

measurements and modeling are still needed before confidently accepting and 

applying conclusions concerning toxicologically relevant interactions. Better 

methods to advance the understanding of mechanism may assist in evaluating 

non-additive deviations or interactions between metals. 

Moreover, it is not possible to make a distinction between the CA- and the IA-based 

models as both models performed equally well in assessing the overall toxicity of 

Cu-Cd, Ni-Cd and Cu-Ni mixtures. This finding was in line with the result of Syberg 

et al. (2008) on dimethoate, pirimicarb and linear alkyl benzene sulfonate. 

Cedergreen et al. (2008) also proposed that on the basis of predictive accuracy 

alone, neither of the CA and IA models was significantly better than the other. The 

similar results of the CA- and the IA-based model predictions are likely to be caused 

by the slopes of the log-logit response curves being approximately equal to 1.0 

(Farley and Meyer, 2015) especially for the single metal exposures of Cu and Cd. 

As the MixTox model is developed based on the isobologram approach, the CA 

isoboles are difficult to be distinguished from the corresponding IA isoboles when 

the slope parameters of log-logit curves are around 1.0 (Drescher and Boedeker, 

1995). Until now, the comparison for a superior model in describing the joint effects 

of a given mixture mostly relies on experience as the knowledge of mechanism is 

still lacking (Jonker et al., 2005) especially for metals. Unlike organic pollutants, 
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metals are difficult to be classified based on their mode or mechanism of action due 

to organism-specific characteristics (Liu et al., 2014b). For example, the effects 

induced by Cu2+ may occur in the form of cellular destabilization via metal 

substitution reactions within Patracentrotus lividus (Manzo et al., 2010). Both Cu 

and Ni were found to influence the ionic balance of Gammarus pulex L. (Charles et 

al., 2014). In addition, Cu was also reported to interfere with the photosynthesis 

process in algae (Stauber and Florence, 1987). In contrast, Cd was always found to 

bind to the apoplastic and the symplastic and to block cell division by disrupting 

active components in Triticum aestivum (Lu et al., 2013). Terrestrial plants are in 

general complex organisms that may have multiple target sites (Zwart and 

Posthuma, 2005; Syberg et al., 2008). It is possible that metals within the higher 

plants like lettuce have primary and secondary modes of action (Manzo et al., 2010) 

and consequently influence the toxicity of each other in the mixture through distinct 

subsystems. Thus, without correct assignment, the mode of action may not be used 

as the sole tool for selecting the likely best model to predict the toxicity of metal 

mixtures. Similarly, an observed deviation cannot be exclusively assigned to a 

specific model. We suggested that the CA- and IA-based models can be used just 

as a representation of mathematical relationships between metal mixtures and their 

biological responses other than the indication of underlying mechanisms. Although 

the CA model was found to produce a relatively better prediction of mixture toxicity 

even for compounds with different modes of action (Faust et al., 2003; Zwart and 

Posthuma, 2005), it is recommended in the research of Bödeker et al. (1992) and in 

this study to use the range of expected responses predicted by both the CA and IA 

models for environmental quality regulations and to use both concepts instead of 

selecting one of them based on uncertain mechanisms of toxicity to assess the 

combined effects of metal mixtures. 

3.5 Conclusions 

The MixTox model was proven to be a very sensitive tool to define statistically 

significant deviations from ‘additivity’ in assessing the combined effects of binary 

metal mixtures. However, the replicated mixture experiments showed that the 

assessment of deviations strongly depended on the fitting of experimental data, the 

predictive methods applied and the specific range of exposure concentrations. 
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Therefore, it was concluded that the statistically significant deviations did not 

directly indicate the biological relevance of interactions. Instead of actually occurring 

interactions between metals, other factors discussed in this study would also result 

in statistically significant deviations in modeling mixture toxicity based on the CA 

and the IA reference models. Unless the underlying mechanism is clearly 

determined, the two reference models are suggested to be used as mathematical 

relationships for metal mixtures. To avoid the model development and the 

interaction investigation for mixture toxicity of metals becoming more like a 

data-fitting exercise and a consequence of experimental design, further studies 

should be focused on identifying the underlying mechanisms of metal mixtures. 

Instead of the endpoint of research, finding a statistically significant deviation can 

be the starting point of further mechanistic research concerning toxicologically 

relevant interactions. 
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Supporting Information 

S3.1 Formula of the Steiner solution (see Supplementary Materials 2.1) 

S3.2 Additional description for the mixture models 

As the statistical software we applied is established by the Centre for Ecology & 

Hydrology (CEH), we only roughly introduce the theoretical basis and the basic 

algorithm in the additional description for the mixture models. For more details of 

this predictive tool, please see the article of Jonker et al. (2005) or visit the following 

website http://www.ceh.ac.uk/products/stats/mixturetoxicity-analysistools.html. A 

deviation function (G) is added in the equations (3-2) and (3-3) shown in the body 

text to quantify the degree of deviations from additivity in the supporting information. 

Where G=0 (exp(G)=1), the actual effect of the mixture is adequately described by 

either concentration addition or independent action (CA or IA,) the 2D isobolic 

representations of which are shown as straight lines (or linear relationships). To 

quantify the deviations from concentration addition (CA), equation (3-2) in the 

manuscript can be rewritten as follows 

/
n

i i
i

−

=
∑ 1

1
( ) = ( )c f Y Gexp                                                 (S3-1)  

For independent action (IA), the dose-response relationship can be calculated by 

multiplying the probabilities of nonresponse or response  

max max ,...,[ ( ) ]
n

i i n
i

P− −

=
Φ Φ Φ Φ∏1 1

1
1

= { [ ( )] + } = -Y u q c G u G                       (S3-2) 

where ci : the concentration of individual chemical i in the mixture with n chemicals; 

Y: the biological response; umax: the maximum biological response; qi(ci): the 

probability of non-response of individual chemical i in the mixture with n chemicals; 
Φ: the standard cumulative normal distribution function; P1,…,n: probability of 

response. 

Since the toxicity of each component in a mixture may differ a lot, the deviation 

functions should depend on each component’s relative contribution to the combined 

toxicity instead of their actual concentrations. The relative amount of toxic units (TU) 

of each chemical component i in a mixture can be defined as follows 
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/
n

i i j
j=
∑

1
= TU TUz x x                                                   (S3-3) 

where i i iTU = / ECx c x                                               (S3-4) 

The following deviation functions are substituted in equation (S3-1) or (S3-2) for 

describing diverse deviation patterns. For synergism or antagonism (S/A), the 

deviation function can be described as  
n

n i
i=
∏1

1
( ,..., ) =G z z a z                                                   (S3-5) 

The deviation function describes antagonism when parameter a is positive and 

synergism when a is negative. The lines of 2D isobolic representations would 

become convex toward the high concentrations for antagonism, and be downward 

concave for synergism. For the binary mixtures investigated in this study, the 

equation (S3-5) can be made dose ratio-dependent (DR) by adding another 

parameter b. The overall antagonistic or synergistic deviation changes with 

chemical 1, where b1 determines the magnitude of change.  

1 2 1 1 1 2( , ) = (G z z a b z z z+ )                                              (S3-6) 

The deviation function describes antagonism when parameter a or b is positive and 

synergism when a or b is negative. Antagonism can be observed where the toxicity 

of the mixture is caused mainly by chemical 1, whereas synergism can be observed 

where the toxicity is caused mainly by chemical 2. To describe synergism and 

antagonism depending on the dose level (DL), the equation (S3-5) is extended by 

including quantified isoboles. As the 50% effect concentration (EC50) can be 

estimated with the least amount of variability, the deviation function is defined as 

follows for concentration addition by incorporating the EC50 isobole 
n n

n i i
i i= =
∑ ∏1 DL

1 1
( ,..., ) = 50G z z a b z(1- TU )                                     (S3-7) 

For independent action, the EC50 isobole is defined by P1,…,n=0.5 and the function 

can be written as  

,...,

n

n n i
i=
∏1 DL 1

1
( ,..., ) = )G z z a b P z(1-                                        (S3-8) 
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The function for dose-level dependent deviation describes antagonism when 

parameter a is positive and synergism when a is negative. The detailed 

interpretation of additional parameters can be found in Table 1 of the paper of 

Jonker et al. (2005). The function mentioned in equation (S3-1) and (S3-2) is the 

log-logistic dose-response model.  
i

i i i i( ) = 100 / [1+ ( / EC50 ) )]h c c β                                         (S3-9) 

where h(ci): a cumulative distribution function, functionally related to concentration c 

of compound i; βi: the slope parameter.  

These models are all fitted to the dataset using the method of maximum likelihood 

or minimizing the sum of squared residuals (SS). The parameters that most 

significantly improve the model fit are then left in the model. The model fit is always 

improved if a reference model is extended with additional parameters. To test the 

significance of improvements, the difference in SS can be used for a pairwise model 

comparison through the likelihood ratio test at degrees of freedom (the difference in 

the number of parameters in two models) which is always referred to a chi-square 

test or a χ2  test. Since the equation (S3-6) and the equation (S3-7) or (S3-8) are 

not nested, the CA or IA model is first compared with the S/A, DR, and DL extended 

models respectively, and then the S/A model is compared with the DR and the DL 

models. If the p χ2  value is lower than conventional criteria for statistical 

significance (0.05), the difference in SS between two models is supposed to be 

significant which also indicates a statistically significant deviation from additivity. 

S3.3 Table S3.1 Raw data (not shown in this Ph.D. thesis) 
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S3.4 Table S3.2 Estimates of additional parameters using the MixTox model 
for Cu-Cd, Ni-Cd and Cu-Ni mixtures 

Dataset 

number 

Additional 

parameter 

The CA-based models The IA-based models 

S/A DR DL S/A DR DL 

1a 

Cu-Cd 

a 1.43 -2.61 5.85 0.91 -3.54 5.09 

bCu - 7.97 - - 9.92 - 

bDL - - 0.37 - - 1.19 

1b 

Ni-Cd 

a 1.63 1.25 3.26 0.59 -2.30 4.13 

bNi - 0.59 - - 6.60 - 

bDL - - 0.30 - - 1.31 

2b 

Ni-Cd 

a -0.64 0.13 -1.34 -0.16 2.64 -1.17 

bNi - 0.36 - - -7.41 - 

bDL - - 0.90 - - 2.61 

1c 

Cu-Ni 

a 0.36 0.031 0.033 1.28 3.30 1.97 

bCu - -0.00032 - - -4.44 - 

bDL - - -0.0002 - - 0.52 

2c 

Cu-Ni 

a -0.28 -0.13 -0.01 1.56 -5.30 0.004 

bCu - -0.05 - - 11.31 - 

bDL - - 0.0004 - - -990.05 

1a: the dataset of Cu-Cd mixtures; 1b: the dataset of Ni-Cd mixtures; 1c: the dataset 

of Cu-Ni mixtures; 2b: the second dataset of Ni-Cd mixtures; 2c: the second dataset 

of Cu-Ni mixtures; CA or IA: concentration addition or independent action; S/A: the 

synergism/antagonism model; DR: the dose ratio-dependent model; DL: the dose 

level-dependent model; -: not applicabl.

90 
 



 

Chapter 4 
Comparing three approaches in extending biotic 

ligand models to predict the toxicity of binary metal 
mixtures (Cu–Ni, Cu–Zn and Cu–Ag) to lettuce 

(Lactuca sativa L.). 

 

 

 

Yang Liu, Martina G. Vijver, Willie J.G.M. Peijnenburg 

Published in Chemosphere 112, 282-288, 2014

 





Comparing three approaches in extending biotic ligand models 

Abstract  

Metals are always found in the environment as mixtures rather than as solitary 

elements. However, effect models such as biotic ligand models (BLMs) are usually 

derived for toxicity prediction of single metals. Our study aimed at predicting mixture 

toxicity of Cu-Ni, Cu-Zn and Cu-Ag combinations to lettuce (L. sativa L.) by 

combining BLMs with three toxicity indexes: the toxic unit, the overall amounts of 

metal ions bound to the biotic ligands and the toxic equivalency factor. The 

accumulation of metal ions at the biotic ligands was used to determine the toxic 

potency of metals alone or in combination. On the basis of parameters derived from 

toxicity assessment of individual metals, these three extended BLMs appeared to 

be all acceptable (p<0.0001) in assessing toxicity of diverse metal mixtures. The 

BLM-based approaches integrated competition between metal ions in assessing 

mixture toxicity and showed different predictive ability for each metal combination. 

The outcome of modeling suggested that the combined toxicity depends on the 

specific components of the metal mixtures. The best developed models assist in 

identifying the type of underlying toxic mechanisms of diverse metal mixtures in 

terrestrial plants.  

Keywords: Metal mixtures; toxicity; lettuce; biotic ligand models; toxicity index 

4.1 Introduction 

Complex metal mixtures are often found in aquatic and terrestrial ecosystems, 

instead of individual metals only. Joint actions of metals will create more distinct 

effects compared to simple summation of the effects of individual metals to assess 

toxicity of metal mixtures for living organisms. By modeling relationships between 

metal exposure and bioavailability or toxicity, basic toxic information of typical 

combinations of metals could be gained as a baseline for risk assessment. 

Toxic impacts of metal mixtures have been investigated often on the basis of metal 

concentrations (Borgmann et al., 2008) and were estimated using toxicity indexes 

such as the toxic unit (TU) (Marking, 1985) and the toxic equivalency factor (TEF) 

(Delistraty, 1997). However, it has been recognized that water chemistry, such as 
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activities of common cations and pH may affect metal toxicity by competitive binding 

to biotic ligands (BLs) and by influencing metal speciation (Niyogi and Wood, 2004). 

Biotic ligand models (BLMs) as an integration of reactive species of metals and 

competitive binding to the BLs are commonly suggested as useful tools in 

quantifying toxic effects of metals to organisms (Paquin et al., 2002). BLMs are 

usually applied to predict the toxicity of single metals. How to extend BLMs for 

mixture toxicity assessment has just recently attracted the attention of researchers. 

Thereupon, it may be helpful to elaborate the mechanisms of metal joint toxicity by 

combining BLMs with toxicity indexes. 

For most of the metals, ionic channels are often considered as the primary sites of 

action (Niyogi and Wood, 2004). It is therefore the BLMs were extended as additive 

models to predict toxicity of metal mixtures with known stability constants derived 

from single-metal BLMs in previous studies. Playle (2004) was one of the first who 

tried to build a multi-metal modeling framework by combining BLM with the TU 

concept. Using the BLM-based TU approach, it is assumed that single metals in the 

mixture bind to different target sites on the BLs. Thus, no competition would exist 

between individual metals in the mixture (Hewlett and Plackett, 1979). Experiments 

performed by Hatano and Shoji (2008) demonstrated the feasibility of this 

framework to estimate toxicity of Cu-Cd mixtures to duckweed L. paucicostata. 

Besides the competition of major cations, competition between metal ions may also 

influence the amount of ion binding to the BLs and consequently diminish or 

enhance the toxicity of metal mixtures to organisms. Thus, if two metals in the 

mixture compete for binding to the same target site on the BLs, the total amount of 

metal ions bound to the site of toxic action (i.e. the fmix index), likely assists in 

assessing mixture toxicity (Jho et al., 2011). Additionally, if the individual metals in 

the mixture have different potencies, the BLM-based TEF method is preferred (Van 

den Berg et al., 1998) as shown by Le et al. (2013) in their research on lettuce. 

Currently, there are still considerable uncertainties regarding the combined 

approach that is most reliable to predict combined effects of specific metal mixtures.  

A great number of trace metals such as Ag, Cu, Ni and Zn have been found to be 

released into the natural environment due to anthropogenic activities (Charles et al., 

2013). The elevated levels of trace metals may produce negative effects on fauna 
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and flora in the environment and may cause damage to human health either 

through the food chain or through direct uptake. In view of its high sensitivity to 

environmental stresses (Valerio et al., 2007), lettuce (Lactuca sativa) was selected 

as a bio-indicator in the present study. Standard testing protocols for lettuce have 

been recommended by EPA (1988) and OECD (2006). Thus, our paper aims at 

examining which BLM-based approach (i.e. TU, fmix, and TEF) would be most 

accurate in assessing the combined toxicity of Cu-Ni, Cu-Zn, and Cu-Ag 

combinations to lettuce. Basic modeling parameters were gained from Ni-only, 

Cu-only, Zn-only, and Ag-only toxicological data in the presence of different 

concentrations of Ca2+, Mg2+, K+, Na+ and different levels of pH.  

4.2 Material and methods  

4.2.1 Plant bioassays 

Lettuce seeds (L. sativa L.) and seedlings were all cultured in hydroponic solution. 

The nutrient solution for the plant culture and the test medium was prepared 

according to the Steiner solution formula (Steiner 1961; Le et al., 2012). Seeds of 

lettuce were germinated in a climate room (15˚C, 80% humidity, 16:8 hours light: 

dark cycle) for 4 days on sterilized expanded perlite in Steiner solution. Then the 

seedlings were fixed in parafilm straps floating on the surface of glass beakers (10 

cm height) with spiked medium. Four plants were put in each beaker. Beakers were 

placed in a large container with a layer of water inside to prevent excess 

evaporation of exposure media. After exposure, 5 ml medium of each treatment was 

acidified and preserved in a 4°C refrigerator for chemical analysis. 

4.2.2 Metal exposure and analysis 

Cu and Ni were added into the Steiner solution as nitrate salts since NO3
- was 

assumed not to interfere with the performance of the Cu-selective electrode. The 

concentrations of added Ni ranged from 34 to 85 μM and the range of Cu-activities 

was from 0.8 to 21 nM. The activity of Cu2+ was checked using an ISE25 

Cu-selective electrode (Radiometer analytical, France) and adjusted every other 

day to keep the Cu-activity constant as designed during the exposure. Solution pH 

was kept at 7.0 every other day using either HNO3 or NaOH and checked using a 

691 pH meter (Metrohm, Switzerland). Metal concentrations of the test medium and 
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the Steiner solution were measured by flame atomic absorption spectroscopy 

(Perkin Elmer AAnalyst 100, US), reference analytes were found to be within 15% of 

the certified reference values. Speciation calculations were conducted by 

Windermere Humic Aqueous Model 7.0.1 (Centre for Ecology ＆ Hydrology, UK) 

based on the measured concentrations in solution (Supplementary Material). Actual 

concentrations of the cations and anions in solution were calculated according to 

the Steiner solution formula applied in the study of Le et al. (2012). The pCO2 was 

set at 10-3.5 atm since the hydroponic system was open to the ambient air. 

4.2.3 Response measurements 

The root length of seedlings was measured before and after 4 days of exposure as 

the distance from the transition point between the hypocotyls and the root to the 

root tip. Root elongation was reported to be a suitable and sensitive endpoint of 

toxicity for metal exposure (EPA 1988; OECD 2006). The root growth of 4 seedlings 

was averaged as lettuce root elongation at a given concentration. The relative root 

elongation inhibition  (REI, %) was used to determine the toxic response of lettuce 

to Ni2+/Cu2+/Zn2+/Ag+ and their mixtures in the present study:  

( ) %
RG

REI
RG

= − ×S

C

1 100                                                 (4-1) 

In equation (4-1): RGs = the average root growth of plants in the sample solution; 

RGc = the average root growth of plants in the control solution.  

4.2.4 Data analyses 

The toxicological data (i.e. KMgBL and f50M) derived from exposure of lettuce to single 

metals were collected from previous studies and were summarized in Table S4.1 

(Supplementary Material). The response data of Cu-Zn and Cu-Ag mixtures used 

for modeling were taken from the research of Le et al. (2013) in which the same test 

species was used and the exposure was executed under similar experimental 

conditions. The single toxicity of Cu2+/Zn2+/Ag+ to L. sativa L. was significantly 

inhibited only by H+, and Ni2+ binding to the biotic surface was found to be 

Mg2+-dependent (Le et al., 2013; Liu et al., 2014). Thus, it is assumed that metals 

investigated in this paper mainly enter the biological cells as ionic forms through 

major cations or protons transport sites. In other words, the modes of action (MoA) 
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of Cu, Ni, Zn, and Ag are presumed similar, but their specific mechanisms are 

unknown. Based on this assumption, toxicity of Cu-Ni, Cu-Zn and Cu-Ag mixtures 

was predicted by combining the BLM concept with the TU, fmix and TEF indexes. 

In the BLMs, the interactions of the metals with the BLs are assumed to be purely 

competitive. The fraction f of the total number of biotic ligand sites bound by metal 

ions is considered as the key indicator of metal toxicity (Jho et al., 2011). 

{ }
{ } { }n
K

f
K K

+

+ +=
+ + ∑

×
× ×

2
MBL

2
MBL EBL1

M
M E

                                      (4-2) 

In equation (4-2): K = the binding constant for binding to the biotic ligand sites; M2+ = 

the metal ions of interest, namely Cu2+, Zn2+, Ag+ and Ni2+ in our case; En+ = 

essential or major ions competing for binding to the BLs, namely H+ or Mg2+ in our 

case; { } = the chemical activity. 

The Cu-Ni combination is used as an example to explain the development of 

binary-metal BLMs. Similar approaches can be applied to extending BLMs for 

Cu-Zn and Cu-Ag mixtures. If Cu2+ and Ni2+ bind to different specific 

transporters/sites on the biological membrane, which fits the assumption of TU 

approach (Khan et al. 2012), there would be no competition between Cu2+ and Ni2+ 

because of the different mechanisms of action (MOA). In that case, binding of these 

metal ions to the distinct target sites is only influenced by major cations, i.e. Mg2+ for 

Ni2+ and H+ for Cu2+. Then equation 4-2 can be transformed:  

[ ] { }
[ ] { } { }

K
f

K K

+

+ += =
+ +

×
× ×

2
CuBL

Cu 2
T CuBL HBL1

CuBL Cu
BL Cu H

                            (4-3) 

[ ] { }
[ { } { }

K
f

K K

+

+ += =
+ +

×
× ×

2
NiBL

Ni 2 2
NiBL MgBLT

1
NiBL Ni
BL] Ni Mg

                            (4-4) 

Toxicity of Cu-Ni mixtures can be described as adding up the TU values of each 

metal: 

, ,
i

f f
f f

= = +∑ Cu Ni

50 Cu 50 Ni

TU TU                                               (4-5) 

In equation (4-5): f50 = fraction of the biotic ligands occupied by metal ions at the 50% 

response level. 
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When Cu2+ and Ni2+ are assumed to act through similar mechanism of action (Van 

den Berg et al., 1998), both competition between metal ions and competition 

between cations for binding sites are supposed to affect the overall amounts of ions 

binding to the target sites.  

{ }
{ } { } { }

K
f

K K K

+

+ + +=
+ + +

×
× × ×

2
CuBL

Cu 2 2
CuBL NiBL HBL1

Cu
Cu Ni H

                        (4-6) 

{ }
{ } { } { }

K
f

K K K

+

+ + +=
+ + +

×
× × ×

2
NiBL

Ni 2 2 2
NiBL CuBL MgBL1

Ni
Ni Cu Mg

                     (4-7) 

Toxicity of Cu-Ni mixtures may be expressed: 

m xf f f= +i Cu Ni                                                          (4-8) 

If single metals in a mixture have dissimilar potency, the TEF index as an 

adjustment coefficient can be combined with the BLM for toxicity assessment of 

metal mixtures (Le et al. 2013). The value of TEF represents the comparative toxic 

potency for each metal in the mixture. Toxicity of a complex mixture can be 

expressed in terms of the toxic equivalent (TEQ). It is calculated by summing the 

products of concentration and TEF for each metal in the mixture (Delistraty, 1997). 

In the present study, Cu2+ was selected as the reference metal for standardization of 

toxicity of individual metals since Cu2+ has the highest stability constant (Table S4.1) 

and thus was assumed to be the most toxic metal in the mixtures. The values of 

TEF were equal to 1 and 0.63 for Cu and Ni respectively according to equation 4-9.  

,f
f

= 50 Cu
Ni

50

TEF
,Ni

                                                         (4-9) 

∑ × × ×M M Cu Cu Ni NiTEQ = TEF = TEF + TEFf f f                              (4-10) 

Inhibition of lettuce root elongation (REI) was expressed using TU, fmix and TEQ as 

follows:  

( )x xREI − ×=
+ 50

100
1 10 β                                                   (4-11) 

In equation (4-11): β = the fitted parameter determining the slope of the dose 

response curve; x = the value of the toxicity index, i.e. TU, fmix and TEQ at a given 

mixture concentration; x50 = the value of TU/fmix/TEQ when 50% inhibition to root 
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elongation is performed. Response data for Cu-Ni, Cu-Zn and Cu-Ag mixtures were 

fitted to the dose-response curves, using the software Origin 8.0725 (Origin Lab, 

UK). 

The IC50 values of one of the metals in the binary mixture, expressed as activity, 

were plotted against activities of the other metal to further investigate the 

competition between metal ions in the mixture. The median inhibition concentration 

(IC50) for each metal was also determined by means of equation 4-11. 

The adjusted root mean square error (RMSE) was calculated for the three extended 

BLMs and used for model comparison:   

SS
RMSE

n k
=

−
                                                     (4-12) 

In equation (4-12): SS = residual sum of square; n = number of points; k = number 

of free parameters in the model. The lowest value of RMSE indicated the best 

modeling method. To quantify the statistical differences between each model, the 

bootstrapping method was used to estimate the distribution of differences between 

RMSEs. Five thousand samples (typically 1000 to 10000) were randomly 

resampled from each original dataset. Two-tailed p values were obtained multiplying 

the proportions of smallest differences close to zero by two. The calculations were 

conducted using Statistics Analysis System 9.2 (SAS Institute Inc., US). 

4.3 Results 

4.3.1 Toxicity of Cu-Ni mixtures  

Observed toxic effects of the Cu-Ni mixtures plotted against BLM-based TU, fmix and 

TEQ values are shown in Figure 4.1. Using these three models, increased values of 

TU, fmix and TEQ significantly (p<0.0001, Table 4.1) correlated to the increasing root 

elongation inhibition of L. sativa. Although the difference with the TEF method 

(Table S4.2, Supplementary Material) was not statistically significant (p=0.10), the 

BLM-based TU approach was slightly better in interpreting toxicity of Cu-Ni mixtures 

because of the highest value of Adj. R2 (0.86) and the smallest RMSE (10.54). 

Although the value of TU50 was manually calculated to be 1.23±0.02, considering 

the actual experimental error, this deviation from additivity of Cu-Ni mixtures was 
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assumed to be not significant. The β values derived using the BLM-based TU 

approach for the three metal combinations were significantly different (Table 4.1) 

since their 95% CIs deviated significantly from each other.  

Changes of 4 d IC50 values of Cu2+/Ni2+ to L. sativa at various Ni2+/Cu2+ activities are 

presented in Figure 4.2. Significant logistic correlations (p<0.01) revealed that the 

more Cu2+ was added, the lower the IC50 value of Ni2+, and vice versa. The toxicity 

of Ni2+ increased with increasing activities of Cu2+ and the IC50 values of Ni2+ when 

exposed in a mixture with Cu were always lower than the corresponding values in 

single Ni experiments (3.03×10-5 M). A similar trend was observed in the relationship 

between Ni2+ activities and the IC50 of Cu2+. A 43-fold reduction of IC50 of Cu2+ was 

observed when the activity of Ni2+ increased up to 3.4×10-5 M. The above results 

demonstrated that the increased activities of Ni2+ did not reduce the Cu-toxicity and 

vice versa which implied that Ni2+ and Cu2+ may be bound to different target sites on 

the BLs. 

4.3.2 Toxicity of Cu-Zn mixtures  

Statistically significant correlations (p<0.0001) between the three toxicity indexes 

and REI were obtained (Table 4.1) for the Cu-Zn combination. The strength of the 

correlations differed from Adj. R2=0.58 to 0.73 (Figure 4.1). With the highest value 

of Adj. R2 (0.73) and the lowest RMSE (15.15), the predictive power of the 

BLM-based fmix model was significantly better than the BLM-based TU/TEF 

approaches (p<0.001, Table S4.2) in assessing toxicity of Cu-Zn mixtures. The TU50 

(1.79) was calculated to be significantly higher than 1 since the 95% confidence 

interval of the estimated TU50 (1.71-1.88) exceeded unity significantly. This implied 

that the concentration-addition hypothesis was rejected at the 5% significance level 

and the Cu-Zn combination resulted in an antagonistic effect. The fmix50 of Cu-Zn 

mixtures (0.59) was similar to the values derived for both the Cu-Ag combination 

(0.62) and the Cu-Ni combination (0.58).  

Logistic regressions (Figure 4.2) demonstrated that the IC50s of Zn2+ decreased 

significantly upon increasing activities of Cu2+, and vice versa (p<0.001). The 

elevation of Cu2+ activities resulted in a 45-fold reduction of the IC50 of Zn2+. At lower 

activities of Cu2+
 (< 3.38×10-8 M), the IC50 of Zn2+ was increased as compared to the 
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value when Zn2+ operated alone (1.06×10-4 M). Cu2+ turned into the dominant cause 

of inhibition at higher activities because of the low IC50 of Zn2+. Almost all the IC50s 

of Cu2+ in the mixtures were higher than the values in the treatment of Cu2+ alone 

(2.60×10-8 M) except at higher activities of Zn2+ (>1.23×10-4 M). Thus, conforming to 

the assumptions of the BLM-based fmix model, Zn2+ exerted an ameliorative effect 

on Cu-toxicity to lettuce and vice versa.  

 

Figure 4.1 Dose-response relationships between root elongation inhibition (REI, %) 

to lettuce L. sativa and toxic indexes i.e. TU (first column), fmix (second column) and 

TEQ (third column) for the mixture combinations Cu-Ni (first row), Cu-Zn (second 

row) and Cu-Ag (third row). The solid lines represent the logistic model fits 

(equation 4-11). R2 indicates the coefficient of determination adjusted for the 

degrees of freedom for the measured and the predicted REI. RMSE indicates the 

adjusted root-mean-square error of the predicted REI.  
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Figure 4.2 Relationships between the median inhibition concentrations (IC50s) of 

Zn2+/Cu2+/Ag2+/Ni2+ for L. sativa after 4 d exposures and the activities of 

Cu2+/Zn2+/Ag2+/Ni2+ in the mixture. The first row shows impacts in Cu-Ni mixtures, 

the second row shows impacts in Cu-Zn mixtures and the third row shows impacts 

in Cu-Ag mixtures. The solid lines represent the logistic model fits. R2 indicates the 

coefficient of determination adjusted for the degrees of freedom. p indicates the 

statistical significance level. 

4.3.3 Toxicity of Cu-Ag mixtures  

Toxic effects of Cu-Ag mixtures to lettuce were estimated by using the BLM-based 

TU, fmix and TEQ indexes. Dose-responses curves are presented in Figure 4.1 and 

all correlations showed to be statistically significant (p<0.0001, Table 4.1). The 

highest Adj. R2 (0.74) and the lowest RMSE (16.66) were obtained using the 
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BLM-based TEF in describing the combined toxicity of Cu-Ag mixtures. However, 

no statistically significant differences (p=0.15, Table S4.2) were found between 

using TU and TEF indexes. The TU50 value (2.23) for the Cu-Ag combination was 

likewise significantly higher than 1, which implied an antagonistic relationship 

between Cu2+ and Ag+. The β values derived using the three models significantly 

deviated from each other at the 5% significance level.  

As shown in Figure 4.2, a significant decrease of IC50s of Cu2+/Ag+ with increasing 

activities of Ag+/Cu2+ was observed (p<0.0001). Addition of Cu2+ alleviated the 

toxicity of Ag+ due to the higher value of IC50s as compared to single Ag+ exposure 

(1.34×10-7 M). Up to 1.03×10-7 M, the higher activities of Cu2+ resulted in root 

elongation inhibition again. Similarly, reduction of Cu-toxicity was observed with the 

addition of Ag+. Thereupon, competition may occur between Cu2+ and Ag+ when 

lettuce was exposed to Cu-Ag mixtures in solution. 

4.4 Discussion 

4.4.1 Competitions and metal toxicity of binary metal mixtures 

Overall, the results of this study showed that the three extended BLMs all 

succeeded to predict toxicity of Cu-Ni, Cu-Zn and Cu-Ag mixtures to lettuce. 

However, their predictive abilities varied for different binary-metal combinations, 

which indicated that the mixture toxicity is dependent on the specific composition of 

the metal mixture and the relative quantities of each metal presented in the mixture. 

The statistical difference between the BLM-based TU and TEF approaches was not 

significant in predicting toxicity of Cu-Ni and Cu-Ag mixtures, which differed from the 

finding for the Cu-Zn combination. In order to determine the most suitable model for 

each metal combination, the correlations between the IC50 values and the activities 

were developed to further explore the occurrence of competition. The increased 

values of the toxicity indexes (i.e. TU, fmix and TEQ) reflected the increased toxicity 

of binary-metal mixtures to L. sativa. By combining the BLMs with the TU/fmix/TEF 

approaches, the site-specific theory of ion binding provides explanations for 

competition between metals in the mixture. 
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The outcome of modeling plus the observations displayed in Figure 4.2 showed that 

the BLM-based TU model which only integrated competition attributable to the 

major cations, was the best predictive tool in explaining toxic effects of Cu-Ni 

mixtures to L. sativa. This indicated that Ni2+ followed a distinct pathway from Cu2+ 

in lettuce for uptake or translocation, which was consistent with the finding on 

Blepharis aspera (Nkoanea et al., 2007). However, some researchers pointed out 

that interactions occurred at the internal pathways. Both Cu and Ni were found to 

trigger oxidative stress in plants by generating reactive oxygen species (ROS) 

(Charles et al., 2013). On the other hand, no or little effect of Ni on the ionic balance 

was found in D. magna (Pane et al., 2003) which differed from the observed effects 

of Cu in G. pulex (Brooks and Mills, 2003). Thus, the significance of competition 

between Cu2+ and Ni2+ may be different due to diverse factors (Spurgeon et al., 

2010), such as endpoint of assessment and test species. 

The toxicity prediction of Cu-Zn mixtures was improved significantly when 

competition among metal ions was incorporated. This implied that Zn2+ and Cu2+ 

interacted at the organism level. This finding was consistent with the research of 

Luo and Rimmer (1995) on barley growth. The affinity for the same targets may be 

associated with a lack of binding preference of Zn2+, which makes Zn2+ bind to 

structurally diverse ligands (Peijnenburg and Vijver, 2007). In addition, Brӕk et al. 

(1976) found that in P. tricornutum, all divalent metal ions, including Cu2+ and Zn2+ 

act on a common site. Essential elements such as Cu and Zn exist within the plant 

as organometallic complexes, the remobilization potential of which were found to be 

similar from senescing tissues to the seeds (Cataldo and Wildung, 1978). Thus, 

possibly due to the occurrence of competition between Cu2+ and Zn2+, the 

BLM-based fmix method was found to be best in predicting toxicity of Cu-Zn mixtures 

to lettuce.  

In toxicity prediction of Cu-Ag mixtures, although the difference between the 

BLM-based TU and TEF models was not statistically significant, the results of TU50 

and competition exploration showed that the toxicity of Ag+ was reduced by addition 

of Cu2+, and vice versa. This may imply that Cu2+ competed with Ag+ at the level of 

metal uptake, which was similar to the findings in aquatic animals (Niyogi and Wood, 
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2004). Moreover, Howe and Merchant (1991) also found that the presence of Cu2+ 

blocked the synthesis of the Ag+-inducible components and made plant cells 

resistant to Ag+. The different toxic potencies of Cu2+ and Ag+ to lettuce which were 

suggested by TEF approach may be due to their dissimilar valence numbers. The 

similar MOA of Cu2+ and Ag+ indicated that the necessity of elements may not be 

the only criterion in judging interactions between metals.  

4.4.2 Application of estimated coefficients and models 

Based on the assumptions of the extended BLMs, the coefficients obtained from 

simulations may also have the potential to be indicative of the underlying 

mechanisms of metal mixtures in solution.  

According to the traditional method used for soil animals (Weltje, 1998), patterns of 

interaction between metals in a mixture may be obtained by rescaling the 

concentrations in terms of TUs. The TU50 values of Cu-Zn and Cu-Ag mixtures 

indicated that the deviations from additivity were statistically significant at the 5% 

significance level. In accordance with the null hypothesis of models, Cu2+ may 

compete with Zn2+/Ag+ on the similar transport sites. Relationships between median 

inhibition concentrations of Zn2+/Cu2+ and activities of Cu2+/Zn2+ did demonstrate a 

protective effect of Zn2+/Cu2+ on Cu2+/Zn2+ to lettuce. The impacts at lower activities 

of Cu2+/Zn2+ on Zn2+/Cu2+ were found to be different from the impacts at higher 

metal activities. This may imply that the interactions were dose-level dependent. 

Similar trends were found in this study for Cu-Ag mixtures. This is in agreement with 

the general finding that antagonism is the predominant response in modeling toxic 

effects of metal mixtures to organisms in the environment (Vijver et al., 2010). 

Another explanation for the discovered antagonism may be due to the 

overestimated prediction made by the conservative concentration addition model. 

Therefore, the BLM-based TU50 seems to be useful in determining interaction 

patterns for binary-metal mixtures. As the interaction in BLM was assumed to be 

competition, the interactive strength became a measure of magnitude of 

antagonism.  

The similar fractions of the total number of biotic ligands occupied by mixture ions to 

cause 50% inhibition of root growth (fmix50) may be indicative of similar sensitivities 
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of lettuce to the three binary-metal mixtures studied. Significant differences of β 

values were found among diverse metal combinations and different modeling 

methods. Plackett and Hewlett (1952) explained that observed dissimilarities in 

concentration-effect curves resulted from differences in transport or metabolic 

pathways from exposure level to the actual target within organisms. 

The significant dependence of mixture toxicity on the TEQ (Cu-equivalents) values 

across various metal combinations indicated the practicality of the BLM-based TEF 

approach in assessing toxicity of metal mixtures as for dioxin-like chemicals. The 

value of TEQ, which was the sum of weighted potency of each component in the 

mixture, represented the magnitude estimate of relative potency (Birnbaum and 

DeVito, 1995). The ranking of TEQ50s was found to be Cu-Ni<Cu-Zn<Cu-Ag. 

According to the binding constants of single metals, Ag+ was supposed to be most 

toxic among the three metals added to Cu. The biggest TEQ50 value of Cu-Ag 

mixtures may be attributed to relatively strong competition between Cu2+ and Ag+ 

when 50% root elongation inhibition was induced (Le et al., 2013).  Unlike classes 

of organic chemicals, it is difficult to classify metals due to their different toxic effects 

on various plant species. The individual TEF values are associated with the 

standard metal selected, which may consequently influence the toxicity or TEQ of a 

mixture (Safe, 1998). Thus, the utility of TEF/TEQ values to compare the toxic load 

of metals and their mixtures in terrestrial plants remains to be determined.  

The additivity models developed in this study are also applicable to predict toxicity 

of complex mixtures consisting of more than two metals if the binding affinities of 

metal components are known. Based on the combination-specific modeling results, 

the BLM-based TU approach is recommended as a good first approximate 

estimation of toxic effects of metal mixtures since it is relatively conservative and 

simple to implement. 

4.5 Conclusions 

In summary, the present study supported the BLM concept that the fraction of the 

total amount of BLs occupied by metal ions was a good indicator determining 

mixture toxicity with consideration of environmental impacts. The three extended 
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BLMs based on known stability constants of single metals successfully accounted 

for the toxicity of metal mixtures to lettuce. The predictive power of combining BLM 

principles and the TU/fmix/TEF indexes differed for the specific combination of metal 

mixtures. The incorporated ion-ion competition and toxic potency of individual 

metals gave more accurate toxicity assessment for specific metal mixtures. 

However, due to a limited understanding of metals mechanisms in terrestrial plant 

species, it is difficult to straightforwardly give a best approach in predicting toxicity 

of all possible metal mixtures. Thus, we suggest using the BLM-based TU method 

for the general risk assessment of new metal combinations. By comparing the 

performance of the three extended BLMs, the best model obtained is likely 

indicative of the underlying mechanisms of toxicity of metal mixtures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
108 
 



Comparing three approaches in extending biotic ligand models 

References 

Birnbaum LS, De Vito MJ. 1995. Use of toxic equivalency factors for risk 
assessment for dioxins and related compounds. Toxicology 105, 391-401. 
Borgmann U, Norwood WP, Dixon DG. 2008. Modelling bioaccumulation and 
toxicity of metal mixtures. Hum. Ecol. Risk Assess 14, 266-289. 
Brӕk GS, Jensen A, Mohus Å. 1976. Heavy metal tolerance of marine 
phytoplankton III. Combined effects of copper and zinc ions on cultures of four 
common species. J Exp Mar Biol Ecol 25, 37-50. 
Brooks SJ, Mills CL. 2003. The effect of copper on osmoregulation in the freshwater 
amphipod Gammarus pulex. Comp Biochem Physiol A 135, 527-537. 
Cataldo DA, Wildung RE. 1978. Soil and plant factors influencing the accumulation 
of heavy metals by plants. Environ Health Perspect 27, 149-159. 
Charles J, Crini G, Degiorgi F, et al. 2013. Unexpected toxic interactions in the 
freshwater amphipod Gammarus pulex (L.) exposed to binary copper and nickel 
mixtures. Environ Sci Pollut Res 1-13. 
Delistraty D. 1997. Toxic equivalency factor approach for risk assessment of 
polycyclic aromatic hydrocarbons. Toxico Enviro Chem 64, 81-108. 
Efron B. 1979. Bootstrap methods: another look at the jackknife. Ann Stat 1-26. 
Grosell M, Wood CM. 2002. Copper uptake across rainbow trout gills mechanism of 
apical entry. J Exp Biol 205, 1179-1188. 
Hatano A, Shoji R. 2008. Toxicity of copper and cadmium in combination to 
duckweed analyzed by the biotic ligand model. Environ Toxicol 23, 372-378. 
Hewlett PS, Plackett RL. 1979. The interpretation of quantal responses in biology, 
Edward Arnold, London. 
Howe G, Merchant S. 1992. Heavy metal-activated synthesis of peptides in 
Chlamydomonas reinhardtii. Plant Physiol 98, 127-136. 
Jho EH, An J, Nam K. 2011. Extended biotic ligand model for prediction of mixture 
toxicity of Cd and Pb using single toxicity data. Environ Toxicol Chem 30, 
1697-1703. 
Khan FR, Keller W, Yan ND, et al. 2012. Application of biotic ligand and toxic unit 
modeling approaches to predict improvements in zooplankton species richness in 
smelter-damaged lakes near Sudbury, Ontario. Environ Sci Technol 46, 1641-1649. 
Le TTY, Peijnenburg WJGM, Hendriks JA, et al. 2012. Predicting effects of cations 
on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model. Environ 
Toxicol Chem 31, 355-359. 
Le TTY, Vijver MG, Hendriks JA, et al. 2013. Modeling toxicity of binary metal 
mixtures (Cu2+-Ag+, Cu2+-Zn2+) to lettuce, Lactuca sativa, with the biotic ligand 
model. Environ Toxicol Chem 32, 137-143. 
Liu Y, Vijver MG, Peijnenburg WJGM. 2014. Impacts of major cations (K+, Na+, Ca2+, 
Mg2+) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca 
sativa L.) using exposure models. Ecotoxicology 23, 385-395. 
Luo YM, Rimmer DL. 1995. Zinc-copper interaction affecting plant growth on a 
metal-contaminated soil. Environ Pollut 88, 79-83. 
Marking LL. 1985. Toxicity of chemical mixtures. In: Rand GM, Petrocelli SR (Ed.), 
Fundamentals of aquatic toxicology: methods and applications. Hemisphere 
Publishing Corporation, Washington DC, pp. 164-176. 
Nkoanea BBM, Wibetoe G, Lund W, et al. 2007. Examination of Blepharis aspera as 
a possible Cu-Ni indicator plant. S Afr J Sci 103, 9-10. 

109 
 



Chapter 4 

Niyogi S, Wood CM. 2004. Biotic ligand model, a flexible tool for developing 
site-specific water quality guidelines for metals. Environ Sci Technol 38, 6177-6192. 
OECD. 2006. OECD Test Guideline 208: Terrestrial plant test – seedling emergence 
and seedling growth test. OECD Guidelines for the Testing of Chemicals. Paris. 
Pane EF, Smith C, McGeer J, et al. 2003. Mechanisms of acute and chronic 
waterborne nickel toxicity in the freshwater Cladoceran Daphnia magna. Environ 
Sci Technol 37, 4382-4389. 
Paquin PR, Gorsuch JW, Apte S, et al. 2002. The biotic ligand model: a historical 
overview. Comp Biochem Phys C 133, 3-25. 
Peijnenburg WJGM, Vijver MG. 2007. Metal-specific interactions at the interface of 
chemistry and biology. Pure Appl Chem 79, 2351-2366. 
Plackett RL, Hewlett PS. 1952. Quantal responses to mixtures of poisons. J Royal 
Stat Soc B (Methodological) 14, 141-163. 
Playle RC. 2004. Using multiple metal-gill binding models and the toxic unit concept 
to help reconcile multiple-metal toxicity results. Aquat Toxicol 67, 359-370. 
Safe SH. 1998. Hazard and risk assessment of chemical mixtures using the toxic 
equivalency factor approach. Environ Health Perspect 106, 1051-1058. 
Spurgeon DJ, Jones OAH, Dorne JCM, et al. 2010. Systems toxicology approaches 
for understanding the joint effects of environmental chemical mixtures. Sci Total 
Environ 408, 3725-3734. 
Steiner AA. 1961. A universal method for preparing nutrient solutions of a certain 
desired composition. Plant Soil 15, 134-154. 
US EPA. 1988. Protocols for short term toxicity screening of hazardous waste sites, 
EPA 600/3-88/029, Office of Water, Washington DC. 
Valerio ME, García JF, Peinado FM. 2007. Determination of phytotoxicity of soluble 
elements in soils, based on a bioassay with lettuce (Lactuca sativa L.). Sci Total 
Environ 378, 63-66. 
Van den Berg M, Birnbaum L, Bosveld AT, et al. 1998. Toxic equivalency factors 
(TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife Environ. Health Perspect 
106, 775-792. 
Vijver MG, Peijnenburg WJGM, De Snoo GR. 2010. Toxicological mixture models 
are based on inadequate assumptions. Environ Sci Technol 44, 4841-4842. 
Verschoor AJ, Hendriks AJ, Vink JPM, et al. 2012. Multimetal accumulation in 
crustaceasns in surface water related to body size and water chemistry. Environ 
Toxicol Chem 31, 2269-2280. 
Weltje L. 1998. Mixture toxicity and tissue interactions of Cd, Cu, Pb and Zn in 
earthworms (Oligochaeta) in laboratory and field soils: a critical evaluation of data. 
Chemosphere 36, 2643-2660. 

110 
 



Comparing three approaches in extending biotic ligand models 

Supplementary Materials 

S4.1 Chemical composition of Steiner solution 

The concentrations of Mg, Ca, K, Na and Zn in the Steiner solution were measured 

using FAAS. The values were averaged to be 1.674, 2.103, 5.662, 1.251, 0.002 mM 

respectively, and used for speciation calculation of mixture ions in WHAM 7.0.1. 

S4.2 Selection of conditional stability constants and fraction of the total 
number of BLs occupied by metal ions 
Mixture toxicity prediction in the present study was based on the known stability 

constants and the fraction of the total number of biotic ligands occupied by metal 

ions at the 50% response level which derived from the BLMs for single metals in 

previous studies. The value of KHBL (log scale) used for modeling in this study was 

set as a constant value for lettuce L. sativa since the affinity constants of H+ binding 

for diverse organisms in the aquatic system were found to be constant around 6 

(Verschoor et al., 2012). 

Among the conditional stability constants, Cu2+ has the highest binding affinity to the 

biotic ligands when compared to Ag+, Zn2+, and Ni2+, i.e. log KCuBL (7.4) > log KAgBL 

(6.39) > log KNiBL (5.10) > log KZnBL (4.0). 

Table S4.1 Binding constants of Cu, Zn, Ag and Ni to lettuce (Lactuca sativa) and 

the fraction of the total number of biotic ligands of lettuce occupied by metal ions at 

the 50% response level (f50M).  

Metal ions log KMBL log KHBL log KMgBL f50M Sources 

Cu2+ 7.40 6.27 - 0.36 Le et al. (2012) 

Zn2+ 4.00 6.27 - 0.42 Le et al. (2012) 

Ag2+ 6.39 6.27 - 0.22 Le et al. (2012) 

Ni2+ 5.10 - 2.86 0.57 Liu et al. (2014) 
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S4.3 Model comparisons using Bootstrapping 
In our case, the BLM-based models are non-nested by only changing the toxic 

indicators (i.e. TU, fmix, and TEQ). Thus, the traditional statistical hypothesis testing 

(such as F test) cannot be used to compare models. Bootstrapping method which 

was introduced in 1979 by B. Efron (1979) was chosen to determine the relative 

likelihood of two models for each combination. The constructed two-sided p values 

were used to interpret the significance of differences between usages of two 

models.  

Table S4.2 Model comparisons by using Bootstrapping. 

Combinations 
TU versus fmix 

(p values) 

TU versus TEF 

(p values) 

fmix versus TEF 

(p values) 

Cu-Ni <0.001* 0.10 <0.001* 

Cu-Zn <0.001* 0.03* <0.001* 

Cu-Ag 0.014* 0.15 <0.001* 

*: statistically significant difference at the 5% significance level. 
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Evaluating the combined toxicity of Cu NPs and ZnO NPs 

Abstract 

We evaluated the combined toxicity of Cu and ZnO nanoparticles (NPs) using six 

nested combinations, Cu(NO3)2- Zn(NO3)2, Cu(NO3)2-CuNPs, Zn(NO3)2-ZnONPs, 

Cu(NO3)2-ZnONPs, Zn(NO3)2-CuNPs, CuNPs-ZnONPs. Each type of metal-based 

NPs was presumed to be a mixture containing soluble metal species and 

undissolved solid metal particles. A Zn(NO3)2 or Cu(NO3)2 solution was used as a 

reference to assess the toxicity of the dissolved fraction of ZnO NPs or Cu NPs. 

Effect measurements were performed using root elongation of Lactuca sativa L. 

Results were interpreted with the independent action (IA) model. This showed a 

good predictive power in estimating mixture toxicity of Zn(NO3)2-ZnONPs (R2=0.84), 

Cu(NO3)2-CuNPs (R2=0.94) and CuNPs-ZnONPs (R2=0.82). The variations left in 

toxicity modeling of Zn(NO3)2-ZnONPs mixtures were explained by small 

antagonistic effects found between particulate ZnO and dissolved Zn which were 

not observed for Cu(NO3)2-CuNPs mixtures. Besides antagonistic effects between 

dissolved Cu and Zn, statistically significant relationships were also observed 

between increased concentrations of particulate Cu or Zn and increased median 

effective concentrations of Zn(NO3)2 or Cu(NO3)2. Results illustrated that ‘interaction’ 

between dissolved and particulate fractions of metal-based NPs affected the 

combined toxicity of Cu NPs and ZnO NPs, which complicated their observed 

effects as compared to mixtures of Cu and Zn nitrates.  

Keywords: Cu; Zn; nanoparticles; mixture; toxicity 

5.1 Introduction 

Nanotechnology has been applied to create novel materials with unique 

characteristics in a large variety of consumer and household products. For example, 

engineered zinc oxide nanoparticles (NPs) are added into personal care products 

and coatings, which benefits from their ability to efficiently absorb UV-light and their 

increased transparency to visible light (Rousk et al., 2012). Nano-Cu powders can 

be dispersed into catalysts, conductive pastes, sintering additives, anti-bacteria 

products, and lubricant additives owing to their potential catalytic, dielectric, and 

biomedical properties (Mortimer et al., 2010). Increasing numbers of applications 
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may lead to direct or indirect releases of engineered metal-based NPs into the 

environmental. This may pose effects on a variety of organisms in aquatic and 

terrestrial eco-systems, and in turn requires more attention on their 

eco-toxicological effects.   

Dissolution and aggregation/agglomeration are the two main processes that can 

strongly influence the state of metal-based NPs present in suspensions, and 

consequently impact the bioavailability, uptake and toxicity of NPs (Misra et al., 

2012). It has been reported that various characteristics of the exposure media can 

affect dissolution and aggregation of metal-based NPs, e.g. pH, ionic strength and 

the presence of naturally occurring organic matter (Franklin et al., 2007). 

Dissolution of NPs is a dynamic process in which constituent molecules of the 

dissolving solid migrate from the surface to the bulk solution through a diffusion 

layer (Borm et al., 2006). The adsorption of molecules and ions from solution can 

promote or delay the dissolution process by modifying the diffusion layer 

characteristics (Adamson and Gast, 1997). Apart from heteroaggregation, particles 

can also be bound together (homoaggregation) when their equilibrium solubility is 

above saturation concentrations (Holsapple et al., 2005), which can increase the 

overall diffusion layer thickness and hinder dissolution of NPs.  

Metal-based NPs are always an intermediate state of bulk and molecular materials. 

Metal ions or small inorganic complexes produced by engineered metal-based NPs 

consisting of highly toxic elements inevitably drive the partial toxicity of metal-based 

NPs to organisms (Misra et al., 2012). However, it is still a challenge to clarify which 

metal species contribute most to the nano-toxicity. Some studies suggested that the 

toxic effects of ZnO NPs and Cu NPs on environmentally relevant organisms were 

most likely due to the dissolved metal species rather than being particle-dependent 

(Blinova et al., 2010; Bondarenko et al., 2012; Ivask et al., 2013). Other researchers 

argued that the particulate forms of ZnO NPs and Cu NPs contributed substantially 

to the cytotoxic effects on mammalian and piscine cell lines (Fernández-Cruz et al., 

2013; Song et al., 2014). The translation from an effect on a cell line to a whole 

organism is not straightforward and depends on numerous factors such as the types 

of cell lines and metal-based nanoparticles. Karlsson et al. (2014) found that the 

oxidative stress of mouse embryonic stem (mEs) cells was induced by the released 
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Cu ions of CuO NPs whereas the stress was particle related for NiO NPs.  

Nano-ZnO has been classified as ‘extremely toxic’ to aquatic organisms, followed 

by ‘very toxic’ nano-Cu (Kahru and Dubourguier, 2010). They were already found to 

be simultaneously present in wastewater effluents (Bystrzejewska-Piotrowska et al., 

2009; Bolyard et al., 2013; Li et al., 2015). These nanoparticles can enter the 

terrestrial system by the application of bio-solids from sewage systems as a fertilizer 

(Batley et al., 2012). Higher plants have been reported to be able to ingest and store 

metal-based NPs in tissues (Rico et al., 2011). To date, the knowledge of the 

eco-toxicity of Cu NPs and ZnO NPs is far from being adequate as compared to 

their large-scale application (Hu et al., 2010; Song et al., 2010), especially under 

conditions of their co-exposure.   

This study aims at improving the understanding of effects of Cu NPs, ZnO NPs and 

their mixtures on L. sativa L. and unravelling two questions as follows: (1) Will the 

dissolved metals and the particulate metals of each type of metal-based NPs act 

jointly following the common rules of additivity? (2) Will Cu NPs interact with ZnO 

NPs and influence the toxicity of each other? Theoretically, if Cu NPs and ZnO NPs 

would act comparable to metal salts, e.g. Cu(NO3)2 and Zn(NO3)2, then the existing 

models for general eco-toxicology of metals such as the free ion activity model 

(FIAM) and the biotic ligand model (BLM) can be applied to predict the toxicity of 

metal-based NPs. As shown in our previous studies (Le et al., 2013; Liu et al., 2014), 

Cu2+ competed with Zn2+ for binding to the biotic ligand of lettuce. What makes this 

research more difficult than the case of mixtures of metal salts is that the 

suspensions of each type of metal-based NPs are a mixture mainly containing 

dissolved metal species and undissolved particles. Suspensions of Cu NPs and 

ZnO NPs were therefore assumed to contain four metal species i.e. dissolved Cu, 

dissolved Zn, particulate Cu and particulate ZnO. Cedergreen et al. (2012) have 

shown that the joint effect of ternary mixtures can be predicted from binary mixture 

toxicity results. To trace down the potential ‘interactions’ between Cu NPs and ZnO 

NPs and where these ‘interactions’ (if any) take place, an elaborate nested 

experiment was designed including all possible combinations: 

·Cu(NO3)2- Zn(NO3)2 (dissolved Cu and dissolved Zn, Cu-Zn) 
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·Cu(NO3)2 and Cu NPs (dissolved Cu and particulate Cu, Cu-nanoCu) 

·Zn(NO3)2 and ZnO NPs (dissolved Zn and particulate ZnO, Zn-nanoZnO) 

·Zn(NO3)2 and Cu NPs (dissolved Zn and particulate Cu, Zn-nanoCu) 

·Cu(NO3)2 and ZnO NPs (dissolved Cu and particulate ZnO, Cu-nanoZnO) 

·Cu NPs and ZnO NPs (particulate Cu and particulate ZnO, nanoCu-nanoZnO) 

A Zn(NO3)2 or Cu(NO3)2 solution was used as a reference to assess the single 

toxicity of the dissolved fraction of ZnO NPs or Cu NPs. The combined effects 

caused by nanoCu-nanoZnO mixtures were then compared with the overall effects 

of Cu(NO3)2 and Zn(NO3)2 the data of which have been reported in the study of Le 

et al. (2013). 

5.2 Methods  

5.2.1 Test compounds and nutrient solution 

The engineered uncoated Cu NPs (nano-spheres, nominal particle size 50 nm, 

NM-0014, purity 99.8%) and the engineered uncoated ZnO NPs (nano-sticks, 

nominal particle size 150 nm, NM-110) were purchased from the io-li-tec company 

(Heilbronn, Germany). Cu(NO3)2•3H2O (purity 99.5%), Zn(NO3)2•6H2O (purity 

99.5%) and other salts used in preparing the nutrient solution were all purchased 

from the Merck KGaA company (Darmstadt, Germany). The nutrient solution was 

composed of Ca(NO3)2•4H2O (236.1 mg/L), MgSO4•7H2O (60 mg/L), NaHCO3 (50 

mg/L), and KHCO3 (10 mg/L) totally dissolved in demi-water (pH 7.8) and was 

applied for culturing plants and preparing exposure medium.    

5.2.2 Experimental design 

A full factorial experimental design included all the six possible combinations of 

particles and dissolved metal species. A detailed description of the experimental 

setup after pre-screening tests is represented in Figure S5.1. Negative controls 

(nutrient solution) and positive controls (single compounds, i.e. Cu(NO3)2, Zn(NO3)2, 

Cu NPs, ZnO NPs individually) were both conducted every week with mixture 

treatments and were repeated twice. Hydroponic exposure was used to avoid 

complex interactions of particles and ions in the soil compartment. To keep the 

concentrations of compounds in solution constant, the test media were replaced 
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every day. Stock suspensions of Cu NPs and ZnO NPs were daily prepared in 

nutrient solution and sonicated in an S 40 H Elmasonic water bath sonicator (Elma, 

Germany) for 10 min. All the stock solutions including the nitrate salts were further 

diluted 10 times with nutrient solution to obtain the nominal concentrations for each 

treatment.  

5.2.3 Exposure of lettuce and toxicity determination 

Lactuca sativa L. was selected as the test organism because this species can be 

manipulated relatively easily and it is sensitive to environmental contaminants 

(OECD, 2006). The toxicity tests were operated according to guidelines of the US 

Environmental Protection Agency (EPA, 1988). As compared to the germination rate 

of seeds, the relative root elongation rate (RRE, %) of lettuce seedlings was more 

realistic in reflecting external stressors (Pfleeger et al., 1991) and therefore was 

employed as the toxicological endpoint in this study. Lettuce seeds were purchased 

from the Horti Tops company (Amsterdam, the Netherlands) and germinated on 

expanded perlite in a climate room (18°C, 80% humidity, and a 16:8 h light: dark 

cycle) for 96 h. After germination, seedlings with taproot lengths more than 3 cm 

were chosen to be fixed on parafilm strips floating on the surface of glass petri 

dishes containing 30 ml test medium. In each petri dish, 4 seedlings were 

suspended. Before and after 96 h exposure, the length of lettuce taproot was 

measured from the transition point between the hypocotyls and the root to the root 

tip. The root growth of each treatment was defined as the mean value of differences 

in root length of 4 seedlings before and after exposure. Then RRE was determined 

as follows 

%
RG

RRE
RG

= ×S

C

100                                                    (5-1) 

where RGs: the root growth of plants in the sample solution, cm; RGc: the root 

growth of plants in the control solution, cm. 

5.2.4 Characterization of nanoparticles 

The morphology and particle size of metal-based NPs were characterized using a 

JEOL 1010 Transmission Electron Microscope (JEOL, Japan). The particle size of 

Cu NPs and ZnO NPs was analyzed using a Nano Measurer 1.2 (Fudan University, 
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China). The distribution of the hydrodynamic diameter and the zeta-potential of NPs 

in different spiked test media were measured after 1 h and 24 h of preparation by 

Dynamic Light Scattering (DLS) on a Zetasizer Nano-ZS instrument (Malvern, 

United Kingdom).   

5.2.5 Chemical analysis  

A Cu-ion selective electrode (Cu-ISE, Metrohm, Switzerland) was used as a direct 

way to measure the free Cu-ion activity in solution after 1 h and 24 h. The Zn-ion 

selective electrode was not used in this study because the detection limit was not 

sufficient for the test. To check whether particles will reduce the sensitivity of the 

Cu-electrode membrane, plain polystyrene fluorescent microspheres # 103125-05 

(nominal particle size 70 nm, Microspheres-Nanospheres, American) were added to 

compare the activities of Cu2+ with those in solutions of Cu(NO3)2 alone. The actual 

total concentrations of Ca, Mg, Na, K, Cu, Zn, and the dissolved concentrations of 

Cu and ZnO NPs after 1 h and 24 h of equilibration were analyzed using Flame 

Atomic Absorption Spectroscopy (Perkin Elmer AAnalyst 100, American). 

Centrifugation of samples removed Cu NPs, ZnO NPs and ions which may be 

adsorbed to particle surfaces. The supernatants were obtained after 20 min of 

centrifugation in a Centrifuge 5415D (Eppendorf, Germany) at 13 300 g 

(Fernández-Cruz et al., 2013). The particle suspensions, the supernatants and the 

liquids with nitrate salts were digested using HNO3 and sampled for FAAS analysis.  

5.2.6 Data analysis 

To check the potential chemical-chemical interactions before entering the organism, 

relationships between the free Cu2+ activities in the solution (or the dissolved metal 

species of Cu NPs or ZnO NPs) and the added amount of one compound in 

mixtures of Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, Zn-nanoCu, and 

nanoCu-nanoZnO after 1 h and 24 h of exposure were all analyzed using the linear 

regression method in the GraphPad Prism 5 software (GraphPad, American). For 

the Cu-nanoCu mixtures, the activities of Cu2+ released from Cu NPs were 

calculated by subtracting the Cu2+ activities of Cu(NO3)2 from the totally measured 

activities of Cu2+ in mixture solutions. The actually total or dissolved concentrations 

of Cu NPs or ZnO NPs in Cu-nanoCu and Zn-nanoZnO mixtures were calculated in 

a similar way. 
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To check the potential interactions after compounds entered the organism, the 

independent action (IA) model based on the rules of ‘additivity’ (Bliss, 1939) was 

initially used to predict the combined toxicity of mixtures of Cu-nanoCu, 

Zn-nanoZnO and nanoCu-nanoZnO since the effect of each compound in a mixture 

can be directly measured from positive controls. 
n

i
i

E C E C
=
∏mix

1
( ) = 1- [1- ( )]                                                 (5-2) 

where E(Cmix): the estimated effect of an n-compound mixture; E(Ci): the effect of 

the ith compound applied singly at a fixed concentration.                                                                                                                                                    

If compounds in a mixture do not act following the rules of ‘additivity’, ‘interactions’ 

between these compounds may play an important role in their combined toxicity. 

Finding interactions in mixtures is always a challenge especially when a mixture 

contains more than two components. Since the suspensions of Cu-nanoZnO, 

Zn-nanoCu, nanoCu-nanoZnO mixtures involve more than two metal species, 

searching interactions between these different metal species cannot be done using 

the existing models for binary mixtures. Therefore, a different approach was used in 

this study, which will be explained by the following example of Cu-nanoZnO 

mixtures.  

To examine the influence of Cu(NO3)2 on the toxicity of ZnO NPs, the root growth 

inhibition caused by Cu(NO3)2 should be subtracted from the total effects of 

Cu-nanoZnO mixtures. The RREs induced by ZnO NPs in co-exposure of Cu(NO3)2 

and ZnO NPs can be calculated by substituting the RGc of positive controls (with 

Cu(NO3)2 alone) in equation (1). The RREs induced by ZnO NPs alone can be 

calculated by substituting the RGc of negative controls (nutrient solution only) in 

equation (5-1). The median effective concentrations (EC50s) of ZnO NPs in 

single-exposure or co-exposure with Cu(NO3)2 were all calculated using the log-logit 

function in GraphPad Prism 5. The EC50 values of ZnO NPs in the co-exposure with 

Cu(NO3)2 were then compared with the EC50 value of ZnO NPs in single exposure. It 

was assumed that if the EC50s of ZnO NPs in the co-exposure with Cu(NO3)2 were 

significantly different from the value of ZnO NPs in single exposure, then the 

influence of Cu(NO3) on the toxicity of ZnO NPs was statistically significant. The 

EC50 values of ZnO NPs were plotted as a function of increasing concentrations of 
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Cu(NO3)2 by the linear regression in OriginPro 8 (Origin Lab, United Kingdom). As 

an initial attempt, the slope of straight lines was compared with zero to indicate the 

overall antagonism or synergism. A non-significant slope is indicative of no 

substantial effects of Cu(NO3)2 on the toxicity of ZnO NPs, a significant positive (p < 

0.05) slope is indicative of antagonistic effects, and a significant negative slope 

indicates synergistic effects. Similar methods can be used to find out the influence 

of ZnO NPs (in both dissolved and particulate forms) on the toxicity of Cu(NO3)2 and 

for other mixtures investigated in this study. 

To determine whether Cu NPs and ZnO NPs have similar effects as Cu(NO3)2 and 

Zn(NO3)2, the biological responses (RRE, %) caused by mixtures of 

nanoCu-nanoZnO and of Cu2+-Zn2+ were plotted as the 2D isobolic representations 

by the software of OriginPro 8. Data for the toxicity of Cu2+ and Zn2+ to L. sativa L. 

were obtained under similar environmental environment, and are published by Le et 

al. (2013). The x-axis or y-axis was presented as toxic unit (TU) for each compound 

(1TU=the median effective concentration). The theoretical line of additivity is the 

straight line that connects the individual doses of each compound in a mixture to 

produce a fixed equal effect alone. In general terms, isoboles represent an upward 

curve (round) when the combined effects are less than addition and isoboles 

become hollow when mixture effects are more toxic than addition (Bongers, 2007). 

5.3 Results 

5.3.1 Characterization of nanoparticles 

The TEM images of Cu NPs, ZnO NPs and their mixtures are shown in Figure 5.1. 

The primary sizes and shapes of the particles were estimated based on the TEM 

images. The Cu NPs were shown to be of spherical shape, 127 nm in size (size 

variation of 119-137 nm). The ZnO NPs crystals were approximatively displayed 

tetragonal morphology (width: 55 nm, size variation of 24-110 nm; length: 144 nm, 

size variation of 95-224 nm). The size distribution of the hydrodynamic diameter of 

NPs in lettuce culture solution and in solution of five combinations was determined 

using DLS and shown in Table S5.1. Initial particle sizes changed quickly after the 

NPs were submerged in lettuce culture solution. Both NPs were present as 

aggregates (370 nm - 1531 nm) in lettuce culture solution and in mixture solutions. 
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The hydrodynamic particle sizes of Cu NPs and ZnO NPs increased by a factor of 

1.5 to 2 after 24 h submerged in lettuce culture solution and in solution of mixtures 

of Zn-nanoCu, nanoCu-nanoZnO, Zn-nanoZnO. Besides, the absolute values of 

zeta-potential of NPs were < 14 mV. This indicated that the suspensions of NPs 

were relatively less stable which resulted in the aggregates by Van Der Waals 

inter-particle force. 

 

Figure 5.1 The TEM images of Cu NPs, ZnO NPs and their mixtures. Scale bars 

indicate size (nm). 

5.3.2 Fate analysis  

Relationships between the free activities of Cu2+ in solution and the added ZnO NPs, 

Zn(NO3)2, Cu NPs, Cu(NO3)2 after 1 h and 24 h are plotted in Figure S5.2. After 24 h, 

the activities of Cu2+ were generally increased in mixtures of Cu-nanoCu, 

Zn-nanoCu, Cu-nanoZnO, and nanoCu-nanoZnO as compared to the values after 1 

h. However, no consistently significant effects of increasing concentrations of 
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Cu(NO3)2, Cu NPs, Zn(NO3)2, ZnO NPs were observed on the activities of Cu2+ in 

solution after 1h and 24 h of equilibration using the Cu-ISE. This indicated that the 

amount of free Cu2+ released from either Cu NPs or Cu(NO3)2 was not substantially 

affected by other compounds of Cu or Zn added to the solution. It is shown in Figure 

S5.3 that the growing trend of Cu2+ activities in solution with polystyrene fluorescent 

microspheres remained constant when more Cu(NO3)2 was added and the slope of 

linear curves remained positive. This finding showed that polystyrene fluorescent 

microspheres did not reduce the sensitivity of Cu-ISE. 

The background concentrations of Na, K, Ca, Mg in nutrient solution were 

respectively measured to be 11.9 ± 0.3 mg/L, 3.68 ± 0.07 mg/L, 31.24 ± 0.5 mg/L, 

5.49 ± 0.08 mg/L. The impacts of addition of a compound to solution, on the 

dissolution of Cu NPs and ZnO NPs after 1h and 24 h of equilibration in mixtures of 

Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, Zn-nanoCu, nanoCu-nanoZnO are 

represented in Figure S5.4. Generally, the more NPs were added to the solution, 

the lower proportion of dissolved fraction of the same type of metal-based NPs was 

measured after 1 h and 24 h. The dissolved concentrations of Cu NPs at the same 

dose levels were found to be higher after 24 h in all combinations which coincided 

with the increased values of free Cu2+ activities. No statistically significant impacts 

were observed from addition of Zn(NO3)2, Cu(NO3)2, and Cu NPs on the dissolution 

of ZnO NPs. Although the dissolved concentrations of Cu NPs at lower doses were 

significantly increased by the added Cu(NO3)2 after 1 h, the influence was not 

constant across the whole range of concentrations. Only for Zn-nanoCu mixtures, it 

was found that the dissolved concentrations of Cu NPs were significantly reduced 

by the added Zn(NO3)2 after 24 h. 

5.3.3 Toxicity of individual compounds 

Following the full factorial experimental design, a complete dose-response curve 

was obtained for each compound investigated in this study, which was used to 

calculate the EC50s to L. sativa L. The averaged EC50 values of Cu NPs, ZnO NPs, 

Cu(NO3)2 and Zn(NO3)2 are provided in Table 5.1. Nano-ZnO had the minimum 

acute toxicity to lettuce as shown by its highest EC50 value and Cu(NO3)2 with the 

lowest EC50 resulted in the highest toxic effects on root growth. The EC50 values of 

nano-Cu and Cu(NO3)2 were similar, and the EC50 of nano-ZnO was twice as big as 
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for Zn(NO3)2.  

Table 5.1 The median effective concentrations (EC50, mg/L) with the 95% 

confidence interval (CI) of nano-Cu, nano-ZnO, Cu(NO3)2 and Zn(NO3)2 individually 

on root elongation of lettuce (L. sativa L.) in the present study.   

Compounds Forms EC50 (mg/L) 

Cu NPs Total Cu 0.10 (0.08-0.11) 

ZnO NPs Total Zn 4.47 (3.39-5.85) 

Cu(NO3)2 Dissolved Cu 0.07 (0.06-0.07) 

Zn(NO3)2 Dissolved Zn 2.08 (1.75-2.39) 

5.3.4 Toxicity of mixtures 

In the present study, 82-94% of the variability in the toxicity of nanoCu-nanoZnO, 

Zn-nanoZnO and Cu-nanoCu mixtures could be explained by the independent 

action (IA) model (Figure 5.2). To examine whether potential ‘interactions’ were the 

cause of remaining deviations from the model, the effective concentrations causing 

a 50% reduction in root elongation of Cu NPs, ZnO NPs, Cu(NO3)2, Zn(NO3)2 in 

single-exposure and in co-exposure of Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, 

Zn-nanoCu, and nanoCu-nanoZnO mixtures were plotted in Figure 5.3 as a function 

of the various dose levels of Cu or Zn in solution. The dissolved concentrations of 

metal-based NPs were expressed as the average values after 1 h and 24 h of 

equilibration. As shown in Figure 5.3 A-D, the EC50s of nano-Cu were not 

statistically significantly increased with increasing concentrations of Cu(NO3)2 and 

significant impacts of Cu NPs were neither observed on the EC50s of Cu(NO3)2. This 

implied that the dissolved Cu and the particulate Cu did not affect the toxicity of 

each other for lettuce (Table 5.2). For the combination of Cu-nanoZnO, the EC50s of 

nano-Zn cannot be calculated in the second replicates when concentrations of 

Cu(NO3)2 were beyond 0.06 mg/L, which were thus not used in the data analysis. 

The EC50 of nano-Zn was still significantly increased, up to a factor of 5.5 at 0.05 

mg/L of Cu(NO3)2. In Figure 5.3 F-H, the EC50 of Cu(NO3)2 at the highest 

concentration of ZnO NPs (42.2. mg/L) was not calculated due to the small 
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difference in root length as compared to the positive controls. Without this data point, 

the EC50 values of Cu(NO3)2 were significantly increased upon increasing amounts 

of ZnO NPs in the solution. For the combination of Zn-nanoCu, the EC50s of 

Zn(NO3)2 were found to be sharply increased by the added Cu NPs regardless of 

the metal species in solution. However, a similar result was not observed in turn. 

The EC50 values of nano-ZnO significantly increased upon increasing 

concentrations of Zn(NO3)2 in solution. At lower concentrations of ZnO NPs, the 

EC50s of Zn(NO3)2 were also increased with increasing concentrations of Zn NPs (b, 

N-P, Figure 5.3). This finding indicated that the dissolved Zn may compete against 

the particulate Zn for inducing toxicity to lettuce at lower concentrations of Zn NPs 

(< 20 mg/L). For the complex nanoCu-nanoZnO mixtures, the EC50s of ZnO NPs 

cannot be calculated in the second replicates when concentrations of Cu NPs were 

higher than 0.05 mg/L and non-significant impacts of Cu NPs at lower 

concentrations were observed on the toxicity of ZnO NPs. The EC50s of Cu NPs 

were observed to significantly increase with an increased amount of ZnO NPs in the 

solution (< 5mg/L).  

The biological responses caused by mixtures of nanoCu-nanoZnO and mixtures of 

Cu2+-Zn2+ are plotted in Figure 5.4. For the combination of Cu2+-Zn2+, the toxicity 

was dominated by Cu2+ at lower concentrations of Zn2+ and antagonistic effects 

occurred. At higher concentrations of Zn2+, the toxicity was relatively dominated by 

Zn2+ and synergistic effects occurred. A similar dose ratio-dependent deviation 

pattern was not observed for the combination of nanoCu-nanoZnO. Antagonism is 

observed at lower effect levels, whereas deviation patterns were found to be 

dependent on the concentration ratios of Cu NPs and ZnO NPs at high effect levels. 

Synergistic effects occurred if the combined toxicity was dominated by Cu NPs and 

a mixture acted antagonistic if ZnO NPs relatively dominated.  

5.4 Discussion 

5.4.1 Fate of nanoparticles 

The size of Cu NPs and ZnO NPs in culture media of lettuce was not observed to be 

strongly affected by the added amount of Cu(NO3)2 and Zn(NO3)2 in solution after 1 

h and 24 h of equilibration. This may be attributed to the high tendency of both NPs 
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to aggregate after submersion in nutrient solution. The high concentrations of 

ingredients in nutrient solution can be a reason for rapid and dramatic aggregation 

(Franklin et al., 2007). The increasing concentrations of Cu or Zn in the exposure 

media were shown not to hinder or stimulate the dissolution of Cu NPs or ZnO NPs 

and therefore the ion release of Cu NPs except in the co-exposure of Zn(NO3)2 and 

Cu NPs after 24 h. This may be caused by incompletely separating the dissolved 

metal species from nanoparticles, since there is still no definitely effective technique 

for assessing dissolution of bulk materials to NPs (Misra et al., 2012). Alternatively, 

unlike the other properties of water chemistry such as pH, HPO4
2- and DOM (Li et 

al., 2013), the dissolved Cu and Zn in solution cannot strongly influence the 

dissolution of Cu NPs and ZnO NPs.  

 

Figure 5.2 Relationships between the estimated and the observed effects of 

mixtures of Cu-nanoCu, Zn-nanoZnO and nanoCu-nanoZnO on relative root 
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elongation (RRE, %) of lettuce Lactuca sativa L. using the independent action (IA) 

model. R2 indicates the determination coefficient. p indicates the statistical 

significance level. 

 

Figure 5.3 Relationships between the median effective concentrations (EC50s) of 

Cu(NO3)2, Zn(NO3)2, Cu NPs, ZnO NPs for L. sativa L. after 4 d of exposure and the 

total concentration (or dissolved, or particulate concentration) of Cu NPs, ZnO NPs, 
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Zn(NO3)2, or Cu(NO3)2. Data are presented as mean ± standard error of the mean. 

Solid lines represent the statistically significant linear regression fits to figure out the 

overall synergistic or antagonistic effects. R2 indicates the determination coefficient 

adjusted for the degrees of freedom. p indicates the statistical significance level. * 

indicates that the slope of linear curve is significantly different from zero at the 5% 

significance level. 

 

Figure 5.4 2D isobolic representation of the biological responses (RRE, %) for 

mixtures of Cu(NO3)2 and Zn(NO3)2 and mixtures of Cu NPs and ZnO NPs. The 

values of RRE are high in the negative control groups and decrease as doses of 

compounds increase. The x-axis or y-axis is presented as toxic unit (TU) for each 

compound (1TU=the value of median effective concentration which was shown in 

Table 5.1).  

5.4.2 Toxicity of individual compounds 

Our results showed that Cu is more toxic to lettuce seedlings than Zn regardless of 

the metal being in the form of a cation or a nanoparticle. This may be attributed to 

the different demands of plant cells for Cu and Zn in the growth and development. 

To our knowledge, similar studies were not conducted before, which made it difficult 

to compare the EC50 values of Cu NPs and ZnO NPs calculated in this study with 

those in other studies. Substantial differences in EC50s can be caused by diverse 

properties of metal-based NPs e.g. size and shape, by different sensitivities of plant, 

and by different periods of plant growth. 

5.4.3 Combined toxicity of Cu NPs and ZnO NPs 

The good fitting provided by the standard IA model and the non-significant 
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‘interactions’ observed for Cu-nanoCu mixtures simultaneously verified the 

assumption of Song et al. (2014) that the addition model can be used to estimate 

the relative contribution of ionic and particulate forms to the cytotoxicity of Cu NPs. 

The IA model also showed a reasonable predictive power in estimating toxicity of 

Zn-nanoZnO mixtures and the rest of variations in modelling were explained by 

small antagonistic effects found in mixtures of Zn-nanoZnO. Since significant 

interactions were not observed on the dissolution and aggregation of ZnO NPs, the 

dissolved Zn may compete with the particulate Zn at the organism level, which 

influenced the toxicity of each other. Based on the antagonistic effects observed in 

mixtures of Cu-nanoZnO and Zn-nanoCu, it was suggested that the dissolved Zn 

may interact with the dissolved Cu which was consistent with the competition 

between Cu2+ and Zn2+ reported in previous studies of Le et al. (2013) and Liu et al. 

(2014). The feed-back mechanism (Qiu and Hogstrand, 2005) may be an 

explanation that an increase of copper in plant cell decreases the quantity of zinc 

importer proteins and blocks channels for zinc. In turn, the presence of low amounts 

of zinc may exert a positive effect on cell homeostasis and on the tolerance of cells 

to copper (Li et al., 2015). Until now, only Li et al. (2015) reported the potentiation 

effects on the human hepatoma cell line HepG2 co-exposed to Cu NPs and ZnO 

NPs and suggested that the nano-particulate fractions of ZnO NPs were attributable 

to the enhancement of Cu NPs toxicity. In contrast to the first finding of Li et al. 

(2015), antagonistic effects were observed in this study between Cu NPs and ZnO 

NPs on the toxicity of each other to lettuce. This may be caused by different 

features between animal cells and plant cells which lead to a diverse bioavailability 

or toxicity across species. In compliance with the second finding of Li et al. (2015), 

the particulate fractions of NPs were also observed to correlate with the ‘interactions’ 

and the overall toxicity of Cu NPs and ZnO NPs. This can be a reason that lead to a 

small deviation from ‘additivity’ in IA modeling and a difference in 2D isobolic 

representations between nanoCu-nanoZnO mixtures and mixtures of Cu(NO3)2 and 

Zn(NO3)2. The results of Zn-nanoCu, Cu-nanoZnO, Cu-nanoCu, and Zn-nanoZnO 

mixtures showed that the observed antagonistic effects between Cu NPs and ZnO 

NPs may be attributed to ‘interactions’ between dissolved Cu and dissolved Zn, 

between particulate Zn and dissolved Zn, of particulate Cu on dissolved Zn, and of 

particulate Zn on dissolved Cu at the organism level.  
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5.5 Conclusions 

Our study first showed the commonly known independent action model can be used 

as a starting point to predict mixture effects of metal-based NPs. By dividing each 

type of metal-based NPs into a part of highly soluble metal species and a part of 

undissolved particles, we did record small antagonistic effects between these two 

parts of ZnO NPs which resulted in small deviations (16%) from ‘additivity’ in toxicity 

modelling. Similar effects were not observed for mixtures of Cu-nanoCu and 

therefore 94% variations in root growth could be explained by the IA model. The 

toxicity of ZnO NPs was found to be significantly decreased upon increasing 

concentrations of Cu(NO3)2 in solution, and vice versa. The EC50s of Zn(NO3)2 were 

also highly correlated to the total (or dissolved, or particulate) concentrations of Cu 

NPs. Based on the above results, the small antagonistic effects observed between 

Cu NPs and ZnO NPs can be attributed to ‘interactions’ found among dissolved 

metal species as well as particulate fractions and lead to small deviations from 

‘additivity’ (R2=0.82), which cannot be easily explained by a simple combination of 

Cu(NO3)2 and Zn(NO3)2. To our knowledge, this is an innovative research in which 

data were generated on physic-chemical behavior as well as on biological effects of 

ZnO NPs, Cu NPs and their mixtures. Although the mechanism of interactions 

remains to be determined, there is no doubt that our research will enrich the rapid 

evolving field of nano-toxicology and help scientists develop approaches to 

evaluate the potential impacts of metal-based NPs and their mixtures on 

eco-systems.
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Supplementary Materials  

 

Figure S5.1 The set-up for Cu-nanoCu, Cu-nanoZnO, Zn-nanoCu, Zn-nanoZnO, 

and nanoCu-nanoZnO mixtures expressed as actual concentrations tested by the 

Flame AAS. 
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Figure S5.2 Relationships between free Cu2+ activities in the solution and the added 
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amount of ZnO NPs, Zn(NO3)2, Cu NPs, Cu(NO3)2 after 1 h and 24 h of equilibration. 

For the combination of Cu-nanoCu, the activities of Cu2+ released from Cu NPs 

equal to the total Cu2+ activities minus the activities of Cu2+ released from Cu(NO3)2, 

and vice versa. The solid lines represent linear relationships. * indicates that the 

slope of linear curve is significantly different from zero at the 5% significance level. {} 

indicates the free ion activities. 

 

Figure S5.3 Relationships between free Cu2+ activities in solution and the added 

amount of Cu(NO3)2 in the presence of plain polystyrene fluorescent microspheres 

after 1 h of equilibration. The total concentration of Cu is the mean value (n=2) of 

actual concentration of Cu in nitrate salts measured by FAAS. #103125-05 indicates 

the plain polystyrene fluorescent microspheres. The solid lines represent linear 

relationships. R2 indicates coefficient of determination. p indicates the statistical 

significance level. 

Table S5.1 Particle characterization of nano-Cu, nano-ZnO and five mixtures 

expressed as mean ± standard error of the mean (SEM) by dynamic light scattering. 

Compounds 
Size distribution (nm) Zeta-potential (mV) 

1 h 24 h 1 h 24 h 

Nano-Cu 370 ± 36 786 ± 107 -12.7 ± 0.4 -5.5 ± 0.4 

Nano-ZnO 1016 ± 28 1487 ± 33 0.9 ± 0.1 -6.5 ± 0.3 

Cu-nanoCu 851 ± 26 815 ± 26 -13.6 ± 0.7 -9.2 ± 0.6 

Zn-nanoCu 418 ± 32 631 ± 58 -11.4 ± 0.6 -4.4 ± 0.4 

NanoCu-nanoZnO 644 ± 37 1531 ± 101 -8.5 ± 0.5 -10.8 ± 0.4 

Cu-nanoZnO 1060 ± 90 1010 ± 144 -5.6 ± 0.3 -4.1 ± 0.3 

Zn-nanoZnO  1222 ± 166 1365 ± 93 8.1 ± 0.9 -7.3 ± 0.6 
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Figure S5.4 Relationships between the percentage of dissolved concentrations 

divided by the total concentrations of one compound and the added amount of other 

compounds in mixtures of Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, Zn-nanoCu, 

nanoCu-nanoZnO after 1 h and 24 h of equilibration. The solid lines represent linear 

relationships. * indicates that the slope of linear curve is significantly different from 

zero at the 5% significance level. 
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General Discussion 

Organisms are regularly and unavoidably exposed to mixtures of metals which are 

released into the ecosystems as a result of natural and anthropogenic activities via 

air, water, food and dermal contacts. However, the majority of published data 

concerning toxicity testing of metals is focused on single metal effects (Ince et al., 

1999). Similar problems occur in the currently accelerating research topic of hazard 

assessment of synthesized metal-based nanoparticles (NPs) which may 

subsequently enter the natural environment by for instance the use of bio-solids 

from sewage systems for fertilizing agricultural soils. It then becomes the challenge 

of accurately determining interactions of metals and metal-based NPs with 

biological systems. In this PhD thesis, the influence of the surrounding environment 

(H+, K+, Na+, Ca2+, Mg2+) was incorporated in the quantification of the adverse 

effects of metals (Ni and Cd) on root elongation of Lactuca sativa L. Besides the 

interactions within the exposure media, ion-ion interactions were also included in 

estimating the combined effects of metal mixtures (Cu-Zn, Cu-Ag, Cu-Ni, Cu-Cd, 

and Ni-Cd) and the relative contributions of each metal to the overall toxicity. 

Deviations towards overestimated effects (antagonism) or underestimated effects 

(synergism) using the ‘additivity’ principle were also discussed to search a 

biologically relevant link. To improve the understanding of the behavior and effects 

of metal-based NPs on terrestrial plants, lettuce seedlings were respectively 

exposed to Cu(NO3)2, Zn(NO3)2, Cu NPs, ZnO NPs and their five combinations i.e. 

mixtures of Cu(NO3)2 and Cu NPs (Cu-nanoCu), mixtures of Zn(NO3)2 and ZnO NPs 

(Zn-nanoZnO), mixtures of Cu(NO3)2 and ZnO NPs (Cu-nanoZnO), mixtures of 

Zn(NO3)2 and Cu NPs (Zn-nanoCu), and mixtures of Cu NPs  and ZnO NPs 

(nanoCu-nanoZnO). This PhD thesis is primarily focused on the metals and 

metal-based NPs mentioned above since they were always found present together 

at elevated concentrations in contaminated fields (Han et al., 2002; 

Bystrzejewska-Piotrowska et al., 2009). The aim of this research is translated into a 

number of research questions as follows: 

(1) How does water chemistry affect the toxicity of individual metals (Ni and Cd) to 

lettuce and how to quantify the influence of water chemistry?  

(2) Can the toxicity-modifying factors of water chemistry be incorporated into toxicity 

models and will the prediction of acute toxicity of individual metals (Ni and Cd) to 
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lettuce seedlings be improved because of incorporation of these factors in the 

toxicity models?  

(3) What kind of statistically significant deviation patterns from additivity are induced 

in assessing the combined effects of metal mixtures (Cu-Cd, Ni-Cd and Cu-Ni) to 

lettuce?  

(4) Can the statistically significant deviations from additivity be reproduced and how 

likely is it that metal ions (Cd2+, Ni2+ and Cu2+) interact with each other?  

(5) How to incorporate the impacts of environmental chemistry in assessing the 

toxicity of metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce?  

(6) Will the estimation of mixture toxicity be improved considering ion-ion 

interactions?  

(7) Will the dissolved metal species and the particulate fractions of each type of 

metal-based NP act jointly according to the rules of additivity?  

(8) Will Cu NPs interact with ZnO NPs and influence the toxicity of each other to 

lettuce?  

Prior to a synthesized discussion and a future outlook, answers to the research 

questions are given below. 

6.1 Answers to research questions 

(1) How does water chemistry affect the toxicity of individual metals (Ni and Cd) to 

lettuce and how to quantify the influence of water chemistry? 

Based on the experimental results, it was shown that only Mg2+ other than H+, K+, 

Na+, and Ca2+ was found to exert a significantly alleviative effect on the toxicity of Ni 

to lettuce, whereas no significant influence of these common cations was observed 

on the toxicity of Cd to root growth of lettuce. The effects of Mg2+ on Ni2+ toxicity to 

lettuce (Lactuca sativa L.) were quantified by calculating the affinity (the stability 

constants) of Ni2+ for biotic ligands at the water-organism interface and the fraction 

of the total number of biotic ligands occupied by Ni2+ according to the biotic ligand 

model (BLM) theory. (Chapter 2) 

(2) Can the toxicity-modifying factors of water chemistry be incorporated into toxicity 

models and will the prediction of acute toxicity of individual metals (Ni and Cd) to 

lettuce seedlings be improved because of incorporation of these factors in the 
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toxicity models? 

By incorporating the competition from Mg2+ in a developed BLM, the prediction of 

Ni-toxicity was significantly improved from 50% to 80% of the explained variance in 

lettuce responses, as compared to the total metal model (TMM) and the free ion 

activity model (FIAM). Since the overall variations of IC50{Cd2+} within the varied 

concentrations of H+, K+, Na+, Ca2+, Mg2+ in the solution were rather small, the TMM 

and the FIAM instead of BLM performed equally well in explaining the inhibitive 

effects of Cd on root elongation of lettuce. (Chapter 2) 

(3) What kind of statistically significant deviation patterns from additivity are induced 

in assessing the combined effects of metal mixtures (Cu-Cd, Ni-Cd and Cu-Ni) to 

lettuce? 

The statistically significant deviation patterns from additivity varied for specific 

binary mixtures of metals and for different base models applied. Using the MixTox 

model, statistically significant deviations were always found in predicting the toxicity 

of Cu-Cd, Ni-Cd and Cu-Ni mixtures to lettuce (Lactuca sativa L.) when the 

concentration addition (CA) model was used as the reference model. Deviations 

shifted from antagonism to synergism, the magnitude of which depended on the 

relative concentrations of the two metal components in the mixture and the dose 

levels across the whole tested ranges. However, no statistically significant 

deviations were found when the independent action (IA)-based models were 

applied to assess the overall toxicity of Cu2+ and Ni2+ to root growth of lettuce. 

Similarly, the BLM-based toxic unit (TU) method without considering ion-ion 

interactions was significantly superior to fmix or TEF approaches in assessing the 

toxicity of Cu-Ni mixtures, which indicated no substantial deviations from additivity 

as well. (Chapter 3 and Chapter 4) 

(4) Can the statistically significant deviations from additivity be reproduced and how 

likely is it that metal ions (Cd2+, Ni2+ and Cu2+) interact with each other? 

Dissimilar results or even contradictory deviation patterns were obtained when the 

datasets of Ni-Cd and Cu-Ni mixtures with lower concentrations of Ni and Cd were 

inserted into the MixTox model. The assessment of deviations strongly depended 

on the fitting of experimental data, the choice of mathematical models and the 

specific range of exposure concentrations. Thus, the toxic actions or interactions of 
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Cd2+, Ni2+ and Cu2+ cannot be easily concluded based on these non-reproducible 

statistically significant deviations. Further measurements and modeling may assist 

in improving the mechanistic understanding of interactions between metals in a 

mixture especially at the internal process of organisms. (Chapter 3) 

(5) How to incorporate the impacts of environmental chemistry in assessing the 

toxicity of metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce? 

According to the concepts of the BLM, the toxicity of metals to organisms is mainly 

determined by the fraction of the biotic ligands occupied by free metal ions. Thus, 

the affinities of Cu2+, Ni2+, Zn2+, Ag+ for biotic ligands at the water-organism interface 

were included in the toxicity assessment of Cu-Ni, Cu-Zn and Cu-Ag mixtures to 

lettuce (Lactuca sativa L.). This allowed not only to integrate the impacts of 

environmental chemistry (i.e. Mg2+ and H+) but also the interactions between Cu2+, 

Ni2+, Zn2+, Ag+ and roots of lettuce in toxicity modelling. By combining the BLM with 

the overall amounts of metal ions bound to the biotic ligands (fmix), competitions at 

the water-organism interface between each component in the binary mixtures for 

binding sites on the biotic ligands were also considered in estimating mixture toxicity. 

With the toxic equivalency factor (TEF) as a toxicity index, the different potencies of 

Cu2+, Ni2+, Zn2+, Ag+ relative to the most toxic metal (Cu) towards lettuce can be 

incorporated in modeling toxicity of metal mixtures as well. (Chapter 2 and Chapter 

4)  

(6) Will the estimation of mixture toxicity be improved considering ion-ion 

interactions? 

Using the MixTox model, the predictive capabilities of extended mixture functions 

were compared with those of reference models (CA and IA). Extended mixture 

functions integrating ion-ion interactions were mostly better than the addition 

models for four of the five datasets. By the method of bootstrapping, the statistical 

significance of difference in predictive power was compared between different 

non-nested BLMs. The models considering ion-ion interactions were better than the 

BLM-based toxic unit (TU) approach and the strictly additive models for assessing 

the overall toxicity of Cu-Cd, Ni-Cd, Cu-Zn, Cu-Ag mixtures, apart from the 

combination of Cu-Ni. This may be caused by the different mechanisms of toxicity of 

diverse metal mixtures and suggests that joint toxicity of metal mixtures to terrestrial 
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plants needs to be evaluated on a combination-specific basis. (Chapter 3 and 

Chapter 4) 

(7) Will the dissolved metal species and the particulate fractions of each type of 

metal-based NP act jointly according to the rules of additivity? 

Since most metal-based nanoparticles (NPs) are hydrophilic but slightly soluble, it 

was assumed that each type of metal-based NPs can be divided into two parts i.e. 

the soluble species and the undissolved particles, and both of them may play a role 

in inducing toxicity of Cu NPs or ZnO NPs to lettuce (Lactuca sativa L.). The 

dissolved concentrations of Cu NPs or ZnO NPs were expressed as the averaged 

values after 1 h and 24 h as the exposure media was refreshed every day. 

Antagonistic effects were indeed found between the dissolved Zn and the 

particulate Zn based on the toxicity data obtained for Zn-nanoZnO mixtures, which 

was not observed for Cu-nanoCu mixtures. This finding simultaneously explained 

the difference in predictive power (10%) when the IA model was used to predict the 

combined toxicity of Zn-nanoZnO (R2=0.84) and Cu-nanoCu (R2=0.94) mixtures 

respectively. (Chapter 5) 

(8) Will Cu NPs interact with ZnO NPs and influence the toxicity of each other to 

lettuce? 

The IA model explained 82% of the variance in the data of mixtures of Cu NPs and 

ZnO NPs to lettuce. To systematically detect how and where the discrepancy of 

modeling occurred, the experiments were designed with six nested combinations i.e. 

mixtures of Cu-Zn, Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, Zn-nanoCu, 

nanoCu-nanoZnO. The 50% effective concentrations of Cu NPs or ZnO NPs were 

found to be statistically significant increased by the raised amount of each other and 

by Cu(NO3)2 or Zn(NO3)2 in the solution. Besides the interactions between dissolved 

Cu and dissolved Zn (or Cu2+ and Zn2+), their particulate forms were also highly 

correlated with the overall toxicity of Cu NPs and ZnO NPs to lettuce. This indicated 

that the combined toxicity of Cu and Zn in nano-size was much more complex than 

the combined toxicity of their nitrate mixtures. Moreover, only the amount of 

dissolved Cu released from Cu NPs after 24 h was found to be consistently 

decreased by the added amount of Zn(NO3)2. These findings suggested that the 

small antagonistic effects between Cu NPs and ZnO NPs likely occurred at the 
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organism level and therefore is responsible for the remaining variation (18%) in 

toxicity modeling. (Chapter 4 and Chapter 5) 

6.2 Application of biotic ligand models in assessing toxicity of metals to 
terrestrial organisms 

Understanding bioavailability and toxicity of metals in depth is necessary to derive 

environmental quality criteria and standards. Some researchers have proposed that 

the free metal ion activity, considering the influence of environmental factors on 

bioavailable fractions of metals, can establish a better link between effects and 

exposure of metals as compared to total metal or dissolved metal concentrations 

(Lexmond and Vorm, 1981). As an extension of free ion activity model (FIAM), the 

biotic ligand model (BLM), which integrates competitions from common cations in 

natural environment for binding to the biotic ligands (BL), has been suggested as a 

useful tool to address how metals interact with organisms in the aquatic 

environment. For instance, the US Environmental Protection Agency (EPA) has 

applied the aquatic biotic ligand model ((a)BLM) to outline Ambient Water Quality 

Criteria (AWQC) in surface water (EPA, 2007).  

As compared with water systems, the exposure pathways of metals are much more 

complex in the soil phases for different terrestrial organisms (exposure via the pore 

water or the soil particles). Steenbergen et al. (2005) developed a terrestrial biotic 

ligand model ((t)BLM) to predict the toxicity of Cu to the earthworm Aporrectodea 

caliginosa and Lock et al. (2006) developed a (t)BLM to predict cobalt toxicity to the 

potworm Enchytraeus albidus. However, some scientists have shown that there is 

no single bioassay or organism that can be representative of all biota present in the 

ecosystem (Ince et al., 1999). Thus, food choice of higher plants may be a potential 

alternative in currently developed short-term toxicity testing methods to represent 

the bioavailability and toxicity of metals to soil biota. Thakali et al. (2006a, 2006b) 

developed (t)BLMs for assessing the ecotoxicity of Cu and Ni to higher plants, 

invertebrates, and microbes. 

The development of (t)BLMs largely relies on the partitioning of metals between the 

soil and the solution phase, which is usually estimated by speciation models such 
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as WHAM 6 and MINEQL+4.5. However, the accuracy of prediction for metal 

speciation in soil may be affected by the default assumptions of these models, e.g. 

by overestimating the binding capacity of humic substances with metals 

(Cloutier-Hurteau et al., 2007) and by ignoring precipitation removing metals from 

the solution in WHAM 6 (Thakali et al., 2006a). Higher plants are predominantly 

exposed to metals via the pore water (McLaughlin, 2000). To manipulate better the 

composition of the soil pore water and the metal concentrations to which organisms 

are exposed, hydroponic solutions were chosen as the exposure media in this study 

to overcome the above problems in the application of BLMs for terrestrial organisms. 

To avoid uncertainties in activity modeling, the free ionic form of Cu (Cu2+) was 

directly measured by a Cu-ionic selective electrode (Cu-ISE) in this thesis (Chapter 

3 and Chapter 4). In Chapter 2, it was proven that the total concentration of nickel 

cannot well account for its bioavailability and toxicity to lettuce and the site-specific 

competitions of other cations in solution helped to explain the variations in toxicity, 

which was consistent with the concept of BLM (Di Toro et al., 2001). The derived 

stability constants of metal ions for biotic ligand binding i.e. log KMgBL = 2.86, log 

KNiBL = 5.1, fNiBL = 0.57 may help scientists to estimate the intrinsic toxicity of 

individual metals and the sensitivity of terrestrial organisms to specific metals. 

However, similar results were not observed for cadmium, which suggested that the 

toxicity of metals to higher plants needs to be evaluated on a metal-specific basis.  

Until now, most studies are focused on development and application of a (t)BLM for 

assessing metal toxicity in controlled water systems (Antunes and Kreager, 2009; Li 

et al., 2009; Lock et al., 2007), and validations in the field are further needed. 

Nevertheless, it is problematic to exactly determine the most influential soil 

characteristics affecting metal toxicity across different soils (Christiansen et al., 

2015) based on the current level of knowledge and technology. This raises the 

difficulty of extrapolating the developed BLMs from solution to soil. As shown in 

Chapter 2, the values of fNiBL differed a lot in solution (0.57) and soil culture (0.05) 

even for the same plant species Hordeum vulgare. This was strongly correlated with 

the different toxicity-modifying factors (e.g. common cations) found in different 

conditions. Additionally, deviations of toxicity modeling can also be effects caused 

by other factors that are ignored in conventional BLMs, e.g. mixture, food quality or 
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quantity, and life history of organisms (Verschoor, 2013). Integrating mixture factors 

can be not only helpful for further model validation but would also assist in obtaining 

accurate knowledge of underlying mechanism of metals. Thereupon, the BLM was 

extended with mixture effects for toxicity modeling in this thesis (Chapter 4). By 

combining BLMs with toxicity indices (i.e. TU, fmix and TEQ), both the influence of 

other toxic metals in the surrounding environment and the different toxic potencies 

of each metal were included in toxicity assessment of metals. However, it remains 

to be determined whether to incorporate unfavorable conditions from the 

environment and the organism in risk assessment. In this thesis (Chapter 2 to 5), 

those variables were strictly controlled which allowed to focus the toxicity-modifying 

factors on mixture factors and water chemistry. To reduce the interference of 

nutritional deficiencies, the Steiner solution which has been proven to be sufficient 

for lettuce growth and rooting (Peijnenburg et al., 2000) was used as the culturing 

and testing media in the present study. To avoid individual differences, the 4 d 

seedlings were strictly chosen making sure that roots with a length greater than 3 

cm were used for all experiments. 

6.3 Interpretation of interactions in assessing toxicity of metal mixtures 

Since metal mixtures are often found in the environment instead of single metals 

alone, the assessment of metal toxicity seems to be more relevant and accurate 

when mixture effects are considered. Metal speciation, competition and 

complexation, as well as interactions with organisms may help to construct a real 

scenario of bioavailability and toxicity for metal mixtures (Qiu, 2014). The 

mechanistic bioavailability models such as the BLM and the electrostatic toxicity 

model (ETM) may be expanded to increase the predictive power for the combined 

effects of metal mixtures. Until now, the concept of concentration addition (CA) is 

the mostly used method to extend the BLM for toxicity assessment of metal 

mixtures (Playle, 2004; Hatano and Shoji, 2008; Jho et al., 2011; Le, 2012). In this 

thesis (Chapter 4), the relative contributions of mixture components to the overall 

toxicity were expressed as three toxicity indexes i.e. toxic unit (TU), the overall 

amounts of metal ions bound to the biotic ligand (fmix), the toxic equivalency factor 

(TEF), and were added up to reflect inhibition of lettuce root elongation (RRE, %) by 

metal mixtures. The use of TU was based on the assumption that no competition 
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occurs between toxic components in a mixture (Hewlett and Plackett, 1979) apart 

from the statistically significant impacts from the surrounding media e.g. the 

influence of H+ and Mg2+ on the toxicity of Cu2+ (Le, 2012) and Ni2+ (Chapter 2) 

respectively. Using the approach of fmix, both competition between metal ions and 

competition with common cations in the surrounding media for the binding sites can 

be included in mixture modelling (Jho et al., 2011). On the basis of fmix, the different 

toxic potencies of each metal relative to the most toxic one (Cu) can be considered 

by TEF (Van den Berg et al., 1998; Le, 2012). The best fitted models (i.e. the 

BLM-based fmix and TEF) explained 73% to 74% of the variance in inhibition effects 

of Cu-Zn and Cu-Ag mixtures on root elongation (see Table 6.1). As compared to 

the BLM-based methods, the ETMs showed a higher predictive power for Cu-Zn (R2 

= 0.92) and Cu-Ag (R2 = 0.80) mixtures. This difference may be caused by the 

exclusion of physiological processes in simulating ion-ion interactions by BLMs e.g. 

the change of the electrostatic nature of the plant cell wall (Wang et al., 2010). At 

various levels, metals will interact with each other and with organisms, whereas only 

competitions for the binding sites at the water-organism interface are included in the 

BLMs and directly related to the combined toxicity of metal mixtures. However, 

without considering the toxic-kinetic mechanism of metal ions, the incorporated 

interactions (fitting factors) in the ETMs for assessing toxicity of metal mixtures 

largely depend on the mathematical fitting (Le, 2012) and therefore may not be 

applicable to complex mixtures. Based on the significance tests of bootstrapping, 

the BLM-based TU approach (R2 =0.86) provided the best prediction of the overall 

toxicity of Cu-Ni mixtures regardless of the potential competitions between Cu2+ and 

Ni2+. Similar to the BLM-based TU method, the FIAM also explained 85% of the 

variance in toxicity of Cu-Ni mixtures based on the concept of independent action 

(IA) and the assumption of no substantial interactions. It was thus concluded that 

the underlying mechanisms of mixture toxicity are different across diverse metal 

combinations, as indicated by the best fitting model. 

The extended BLMs based on the concept of CA integrated the influence of 

environmental chemistry on the toxicity of each metal in a mixture, which allowed 

them to be applied for complex mixtures containing more than two metals. The 

binding constants derived from single exposure of metals were applicable to metal 
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mixtures under the same experimental conditions, which reduced the amounts of 

measurements for all the combinations of metals. However, the inclusion of affinity 

of metal ions for the biotic ligands sometimes becomes a problem for specific 

metals. In this PhD thesis (Chapter 2), it was impossible to empirically fix the key 

parameters of the BLM (e.g. f50 and KCdBL) for cadmium due to the lack of a 

statistically significant relationship between the Cd2+ toxicity (median effective 

concentrations) and the concentrations of other common cations in the solution. 

Therefore, the conventional models (i.e. CA and IA) were extended for assessing 

the combined toxicity of metal mixtures with Cd (Chapter 3). As shown in the study 

of Jonker et al. (2005), the deviations from ‘additivity’ can be quantified by the 

additional parameters in the extended CA or IA model. Statistically significant 

antagonistic effects were commonly found for Cu-Cd and Ni-Cd mixtures by the 

MixTox model and their changes of magnitude were dependent on the relative 

concentration levels across the whole range and the concentration ratios of mixture 

components. However, similar deviation patterns were not observed when the 

mixture models were fitted to the toxicity data of mixtures with lower concentrations 

of Ni2+ or Cd2+. This implied that the statistically significant deviations may not 

necessarily be the biologically relevant interactions, which proved the arguments of 

Cedergreen et al. (2007) and EFSA (2011). Alternatively, the assessment of 

deviation patterns strongly depended on the different metal combinations, the 

diverse predictive methods applied and the mathematical fitting results. The MixTox 

model overcomes the shortcoming of BLM that the binding constants of each metal 

should be fixed separately beforehand, and refines the complex deviation patterns 

not limited to overall antagonism or synergism. However, the intricate calculation 

process relying on empirical isotherms and the lack of insight into the mechanisms 

of the interaction would hinder the wide-scale applicability of the MixTox model. This 

raises the question of how to balance the mathematical data-fittings with the 

explanations of possible mechanisms in which interactions of metals would occur in 

toxicity assessments of metal mixtures. Generally, our findings provided the 

comparison of existing models in assessing combined toxicity of different metal 

mixtures, pointed out the technical problems in interpreting statistically significant 

departures from classic ‘additivity’, and proposed a possible future of developing 

alternative models. 
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Table 6.1 Assessment of interactions in Cu-Ni, Cu-Zn, Cu-Ag mixtures by the biotic 

ligand model (BLM), the free ion activity model (FIAM), and the electrostatic toxicity 

model (ETM) on the basis of concentration addition (CA) and independent action (IA) 

concepts. 

Methods Cu-Ni mixtures Cu-Zn mixtures Cu-Ag mixtures 

Assumption of FIAM or 

ETM (CA) 

DR or DL 

dependent 

interactions 

Interactions Interactions 

Goodness of fitting 

(Chapter 3; Le, 2012) 
R2 = 0.55 R2 = 0.92 R2 = 0.80 

Assumption of FIAM or 

ETM (IA) 

No substantial 

interactions 
Interactions 

No substantial 

interactions 

Goodness of fitting 

(Chapter 3; Le, 2012) 
R2 = 0.85 R2 = 0.92 R2 = 0.80 

Assumption of 

BLM-based TU (CA) 

No substantial 

interactions 
No substantial 

interactions 
No substantial 

interactions 
Goodness of fitting 

(Chapter 4) 
R2 = 0.86 R2 = 0.58 R2 = 0.69 

Assumption of 

BLM-based fmix (CA) 
Interactions Interactions Interactions 

Goodness of fitting 

(Chapter 4) 
R2 = 0.58 R2 = 0.73 R2 = 0.58 

Assumption of 

BLM-based TEF (CA) 

Toxic potency 

dependent 

interactions 

Toxic potency 

dependent 

interactions 

Toxic potency 

dependent 

interactions 
Goodness of fitting 

(Chapter 4; Le, 2012) 
R2 = 0.76 R2 = 0.65 R2 = 0.74 

TU: toxic unit index; fmix: the overall amounts of metal ions bound to the biotic 

ligands; TEF: the toxic equivalency factor; DR: dose ratio; DL: dose level; R2: the 

determination coefficient. 
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6.4 Extrapolation of mixture models to nano-toxicity 

Due to the decreased size, some metal-based NPs are showing increased toxicity 

to organisms as comparted to their bulk forms, even for inert elements such as Ag, 

Au and Cu (Schrand et al., 2010), which has gained increasing attention from 

people. However, precise knowledge should be gained before establishing the 

standards to assess the hazards of metal-based NPs. Physical and chemical 

properties of metal-based NPs keep changing over time when particles are 

released into the environment. Inadequate information is currently available for 

metal-based NPs to quantify the processes of dissolution, agglomeration or 

aggregation (Tourinho et al., 2012). Thus, as an extension of this thesis (Chapter 5), 

we tried to increase the understanding of behavior and effects of metal-based NPs 

in liquids based on a newly designed toxicity testing method and the conventional 

mixture models applied in previous chapters.  

Due to the high uncertainties in calculating EC50s for engineered metal-based NPs, 

the most frequently used independent action model (IA) was applied for assessing 

toxicity of Cu NPs and ZnO NPs other than the concentration addition (CA) model. 

More than 80% of the variation in combined toxicity was explained by the IA model 

for nanoCu-nanoZnO mixtures. To identify where and how the variations left in 

toxicity modeling occurred, a comprehensive experiment was designed with six 

nested combinations i.e. Cu-Zn, Cu-nanoCu, Zn-nanoZnO, Cu-nanoZnO, 

Zn-nanoCu, nanoCu-nanoZnO. Copper or zinc nitrates were mixed with ZnO NPs 

or Cu NPs to mimic changing concentrations of dissolved species of metal-based 

NPs. To date, the dissolution, agglomeration or aggregation of metal-based NPs are 

found to be dynamic processes which result in an intermediate state of bulk and 

molecular for metal-based NPs (Misra et al., 2012). It was thus assumed that each 

type of metal-based NP was a mixture containing a part of dissolved metal species 

and a part of undissolved particles in the present study. In exploring whether these 

two parts would impact the toxicity of each other, increasing concentrations of 

Zn(NO3)2 in the solution were found to strongly correlate with the EC50 values of 

ZnO NPs, and vice versa. This finding emphasized the importance of particulate 

forms in inducing the toxicity of metal-based NPs to environmentally relevant 

organisms and suggested that searching a dominant metal species may not be 
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appropriate to truly reflect the adverse effects of NPs. Similar effects were not 

observed for Cu NPs and Cu(NO3)2, which was consistent with the result that 94% 

of the variation in toxicity of Cu-nanoCu mixtures can be explained by the IA model. 

The increasing concentrations of dissolved or particulate Cu or Zn were also 

substantially associated with reduced toxicity of Zn(NO3)2 or Cu(NO3)2 to lettuce. 

The above results succeeded in explaining the difference in the 2D isobolic 

representations between nanoCu-nanoZnO mixtures and Cu2+-Zn2+ mixtures. Small 

antagonistic effects were found between Cu NPs and ZnO NPs by using linear 

relationships, whereas these mutual impacts between metal-based NPs were much 

complex than interactions occur among metal ions.  

Based on the current knowledge, the concentrations of particulate forms can be 

roughly estimated by the total concentrations minus the dissolved concentrations. 

However, the toxic effects that resulted from the particulate forms alone cannot be 

easily separated from the total effects of Cu NPs or ZnO NPs following the rules of 

additivity because of the potential interactions between dissolved metal species and 

non-dissolved particles. The way of quantifying the biological responses caused by 

the non-dissolved particles of metal-based NPs seems to be beneficial to further 

application of mixture models in toxicity assessment of metal-based NPs. Ideally the 

toxicological studies will be more accurate if testing is performed at intermediate 

points in time instead of a standardized exposure time (Baas et al., 2010). However, 

it is difficult to get data over time and continue the experiments for 4 d since lettuce 

seedlings are very sensitive to the environment out of water and easy to be hurt 

while manually measuring length. This problem may be solved by an automatic 

image measuring instrument, while experimental costs would be greatly increased 

and the measurement error due to the curling roots is difficult to avoid. Although 

there is still much room for improvement, our research no doubt established a more 

realistic scenario which would enrich the rapid evolving field of nano-toxicology and 

helps scientists to develop approaches to predict the potential impacts of 

metal-based NPs on eco-systems. 

6.5 Implications  

Ecological risk assessments of chemicals are supposed to evaluate how likely it is 
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that the environment may be impacted as a result of exposure to these 

environmental stressors. The information and tools developed from ecological risk 

assessments can be used to create criteria and management means by 

government agencies or industry for chemical stressors before application or 

release into the environment (Van Gestel, 2012). Generally, the derivation of limit 

values accounting for soil or water quality has strong links with the eco-toxicological 

data. However, the laboratory conditions have been well-standardized far from 

potentially exposed ecosystems in most studies concerning effect assessments of 

chemicals (Arvidsson et al., 2011). This reduces the interference from the complex 

nature of the environment in toxicological experiments and therefore adds a high 

uncertainty in actual consequences of chemical stressors in the environment (EC, 

2013). In this thesis, relatively realistic scenarios were developed in effects 

assessments of metals and metal-based NPs by incorporating the factors of 

environmental chemistry, bioavailability and mixtures. A range of health issues such 

as the neuro-developmental disorders are suspected to be related to cumulative 

stress of heavy metals (Løkke et al., 2013). Thus, lettuce (L. sativa L.) as one of the 

main food items on the table was chosen to be a biomarker of early life exposure to 

metals and metal-based NPs in this study. Data of measurements on exposures to 

individual metals and mixtures of metals in Chapter 2, 3 and 4 enrich the database 

on adverse effects of multiple metals on edible plants. The critical values (e.g. EC50 

of metals) calculated at specific conditions can be used for setting environmental 

risk limits (e.g. negligible concentrations) for metals. The affinity of metals may help 

distinguish interactions occurring at the membrane surface or at the internal 

process. The bioavailability models developed in Chapter 2 and 4 help toxicologists 

to understand how and why metals interact and the approaches used in Chapter 3 

assist in quantifying and characterizing the uncertainty in current methodologies for 

searching interactions between metals. Since laboratory work is not feasible to be 

carried out for all the possible combinations of metals, this thesis investigated five 

most likely combinations of metals in the terrestrial environment (Han et al., 2002), 

and developed a scheme as shown in Figure 6.1 to assess the combined effects of 

metals for specific combinations. First of all, the bioavailability and toxicity of each 

metal in a mixture should be investigated separately. If the variability in median 

effective concentrations of metals could be sufficiently described with no impact of 
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common cations, then the normal mixture models (CA or IA) can be used to 

estimate the overall toxicity of metal mixtures to organisms and the extended 

mixture functions can be used to quantify the deviations of modelling from ‘additivity’. 

If cations (H+, Ca2+, Mg2+, K+, Na+ etc.) are found to significantly alleviate the toxicity 

of single metals, it is better to incorporate the influence of environmental chemistry 

in modelling the joint toxicity of multiple metals in terms of competitive binding for 

the biotic ligand. In that case, models with a mechanistic basis are recommended 

for a relatively effective and accurate risk assessment of metal mixtures e.g. the 

extended BLM in diverse ways for describing deviations or interactions. Based on 

the current scientific knowledge, it is still difficult to directly determine the underlying 

mechanisms of interactions as an organism is a complex entity. This also hinders 

the way to distinguish deviations from interactions. The enhancement of 

statistically-based tools (Van Genderen et al., 2015) and the improvement of 

bioavailability models such as combining BLM and ETM may additionally explain 

how and where metal-metal interactions occur, and may advance the mixture 

modelling. Engineered metal-based nanoparticles are a new source of 

environmental contamination, while the information is scarce on their release, fate 

and toxicity, especially under their co-exposure. In Chapter 5, we first proposed that 

the well-known independent action (IA) model can be preliminarily used to assess 

the combined toxicity of mixtures with metal-based nanoparticles based on good 

fitting results (R2=0.82-0.94). This indicates that our study provided a way to roughly 

calculate environmental quality standards (EQS) for metal-based NPs which is 

essential to protect and sustain the quality of surface water and soils. The variations 

left in toxicity modeling of Cu NPs and ZnO NPs (up to 18%) were exactly explained 

by a novel experimental setup with six nested combinations. This experimental 

design assisted in searching mutual impacts between different types of metal-based 

NPs and tracing down where these mutual impacts took place. Further 

measurements and modeling can be focused on verifying these statistically small 

antagonistic effects. If the underlying mechanism of metal-based NPs can be 

determined across different exposure conditions, the specific assessing framework 

can be generated for evaluating the potential impacts of metal-based NPs on 

eco-systems.  
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Figure 6.1 Scheme of approaches for assessing toxicity of metal-based mixtures 

applied in this PhD thesis. 

6.6 Future outlook and recommendations 

In this PhD thesis, two of the most important toxicity-modifying factors (i.e. 

environmental chemistry and mixture effects) were incorporated into the 

assessment of adverse effects of metals and metal-based NPs on terrestrial plants 

in different ways. To improve the risk assessment procedures for metals and 

metal-based NPs, the observed toxic effects and the mutual impacts found among 
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metals or metal-based NPs were interpreted by means of considering several 

processes. It is recommended that a series of validation and extrapolation studies 

are performed in the future for further strengthening the models and conclusions 

developed in our research.  

Compared to organic compounds with a known mode of action, the toxicity of 

metals and the underlying mechanisms are much more complex. This may be 

specific across different conditions. As a starting point for looking into the mixture 

toxicity, the bioavailable fractions of each metal in different surrounding 

environments were linked to toxicity by TMM, FIAM and BLM. In the natural 

environment, the water chemistry (common cations) is not the only potential 

stressor. Other factors e.g. temperature, oxygen, and light may also affect the 

functioning of organisms and then affect the adverse effects of metals. It may be 

favorable to work with these multiple stressors and integrate them in explaining 

toxicity of metals under natural conditions. 

To deal with the impacts of mixtures on toxicity assessment of metals, metals and 

their mixtures were exposed in a simplified system—a hydroponic solution, to avoid 

the interactions in the soil compartment and to manipulate the exposure 

concentrations. Different metals may share the same uptake route and likely 

interact at the water-organism interface (Bongers, 2007). It was observed that Mg2+ 

and H+ did compete with respectively Ni2+ and Cu2+ for the binding sites on lettuce 

roots. Based on the concept of concentration addition, BLMs considering 

competition from common cations were extended to describe the combined toxicity 

of metal mixtures and several parameters (e.g. TEQ50) were derived for mixtures of 

Cu-Ni, Cu-Zn and Cu-Ag. Toxicity of metal mixtures with Cd was assessed using the 

extended additivity models (CA or IA) with additional parameters. However, the 

biological meaning of such parameters was not completely clarified given the large 

variability of statistical significance and of bioavailability and sensitivity of metals to 

specific organisms. To improve mixture toxicity principles, it is necessary to 

intensively identify relationships between these parameters and the ‘intrinsic’ 

toxicity of metal mixtures. Although the bioavailability models developed in this 

study explained chemical-chemical interactions which may affect the combined 

toxicity of metal mixtures before entering organisms, the mechanisms of interaction 
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of metals present in mixtures inside the organisms are poorly understood. Metal 

accumulation in organisms does not always correlate well with observed toxic 

effects (Lanno et al., 2004) as organisms have created many mechanisms to 

process metal stressors (Tangahu et al., 2011). It is therefore suggested to further 

investigate the observed mutual impacts between multiple metals by advanced 

monitoring tools such as patch clamp, proteomics and genomics.  

The developed models for mixtures of Cu-Ni, Ni-Cd, Cu-Cd, Cu-Zn, Cu-Ag are 

recommended to be further validated in real soils and extrapolated for other higher 

plants. For a better extrapolation from water to soil, it is essential to increase the 

understanding of toxicokinetics and toxicodynamics of metals (Van Gestel, 2012). 

Toxicity of metals was already found to be time-dependent (Alda Álvarez et al., 2006; 

Baas et al., 2010). Evaluating mixture toxicity and interactions may also benefit from 

a better understanding of such dynamic processes, especially for metal-based NPs, 

the toxicity of which is known up to now as a consequence of aggregation, 

agglomeration and dissolution processes that vary over time. The combined effects 

of mixtures of metal-based NPs were found to be different from those of metal 

mixtures in the sense that mutual impacts as observed between metal-based NPs 

were much more complex than interactions among metal ions. Besides dissolved 

metal species, the fractions of undissolved particles also played an important role in 

inducing toxicity of metal-based NPs to higher plants. Although further studies are 

still needed for selecting a representative endpoint or biomarker, we made the first 

step to unravel the fate and toxicity of metal-based NPs and their complex mixtures 

for terrestrial plants. Death and growth are often regarded as multi-step processes. 

In parallel with growth, other physiological endpoints such as pigment content, 

primary chlorophyll and carotenoids which can be directly associated with the health 

of the plants, may be helpful to describe internal interactions over time and evaluate 

the joint toxicity of nanoparticles and their mixtures. Properly evaluating the effects 

of mixture interactions on modulating the combined toxicity can help authorities to 

determine how to incorporate the issue of mixtures into the risk assessment of 

exposures to metals and metal-based nanoparticles. 
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Summary 

Metals are widely present in oceans and in the crust of the earth. Some of them 

provide organisms on this planet with the necessary nutrients to sustain proper 

functioning. However, excessive quantities of metals can be toxic. The 

physicochemical properties of water and soil in the natural environment, such as 

hardness, pH and dissolved organic carbon, may affect the bioaccumulation of 

metals and complicate their risk assessment in aquatic and terrestrial ecosystems. 

Integrating these factors in the development of mechanistic models allows the 

variability in predicting bioavailability and toxicity of metals to be reduced.  

The study presented in Chapter 2 investigated the influence of Ca2+, Mg2+, K+, Na+ 

and pH on the acute toxicity of Ni and Cd to butter-head lettuce seedlings (Lactuca 

sativa L.). It was shown that only Mg2+ and not H+, K+, Na+, and Ca2+, exerts a 

significant alleviative effect on the toxicity of Ni to lettuce, whereas no significant 

influence of any of these common cations was observed on the effect of Cd on the 

root growth of lettuce. Based on the biotic ligand model (BLM), the competition of 

Mg2+ with Ni2+ for binding sites at the biotic ligand at the water-organism interface 

was incorporated in the prediction of Ni toxicity. This greatly improved the predictive 

power (R2=0.80) in assessing the toxic effects of Ni at varying concentrations of 

Mg2+ in the solution, compared to the total metal model (TMM) (R2=0.49) and the 

free ion activity model (FIAM) (R2=0.60). As regards Cd, since the overall variations 

of IC50{Cd2+} at the different concentrations of H+, K+, Na+, Ca2+, Mg2+ in the 

solution were rather small, the TMM performed just as well as the FIAM in 

explaining the inhibition of root elongation of lettuce by Cd. We therefore suggest 

that mechanistically underpinned models for assessing the toxicity of metals to 

higher plants should be generated on a metal-specific basis according to the 

toxicological data. 

Another toxicity-modifying factor, namely mixture effects, also plays an important 

role in the assessment of adverse effects of metals on terrestrial plants. Humans 

and other organisms living in the natural environment are often exposed to a variety 

of substances. Toxicity of metal mixtures to organisms may deviate significantly 
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from the added effects of individual metals because of interactions. Hence, 

researchers are constantly improving the accuracy of methods for toxicity 

assessments for multiple metals.  

Chapter 3 reports on a study to investigate the joint toxicity of binary metal mixtures, 

i.e. Cu-Cd, Ni-Cd, and Cu-Ni, using concentration addition (CA) based models and 

independent action (IA) based models. Inhibition of the root elongation of lettuce by 

Cu-Cd, Ni-Cd and Cu-Ni mixtures was quantified by statistical software, i.e. the 

MixTox model. The toxicity of these binary metal mixtures was equally well 

predicted by the CA-based and IA-based models. Statistically significant deviations 

from additivity were often found in the toxicity modeling of these three metal 

mixtures, and the deviation patterns were variable for specific combinations and for 

different base models. To examine whether these statistically significant deviations 

were reproducible, other datasets derived from independent experiments using 

Ni-Cd and Cu-Ni mixtures were used as input in the same mixture models. However, 

the deviations patterns were found to be inconsistent or even contradictory across 

various ranges of metal concentrations and different base models. We therefore 

recommended that a statistically significant deviation from a standard model must 

be interpreted with caution, and does not necessarily reflect a biologically relevant 

interaction. Finding statistically significant deviations may be a starting point for 

further measurements and modeling to improve the understanding of non-additive 

interactions occurring inside organisms.  

In Chapter 4, the biotic ligand model (BLM) was extended to predict the overall 

toxicity of Cu-Ni, Cu-Zn, and Cu-Ag mixtures to lettuce (Lactuca sativa L.) in three 

approaches based on the concept of additivity, namely the toxic unit approach (TU), 

the toxic equivalency factor approach (TEF) and the approach of determining the 

fraction of the total number of biotic ligand sites bound by metal ions in mixtures 

(fmix). The impacts of environmental chemistry and ion-ion interactions can be 

incorporated in the assessment of both bioavailability and toxicity of metal mixtures 

by combining the BLM with toxicity indexes. Using the method of bootstrapping, the 

predictive capabilities of these non-nested BLM-based approaches for each 

combination were compared, and the best fitted model was found to be dependent 

on the specific composition of the mixtures. This finding may be attributable to 
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diverse physiological properties of individual metals with regard to higher plants, 

and different underlying mechanisms of metal mixtures in lettuce.  

Engineered metal-based nanoparticles (NPs) are a new source of environmental 

contamination, but the information concerning their release, fate and toxicity is 

limited. It is therefore difficult to assess the potential effects of metal-based NPs in 

the environment.  

The study presented in Chapter 5 systematically evaluated the combined effects 

and mutual impacts of Cu NPs and ZnO NPs, using six nested combinations, 

namely mixtures of Cu(NO3)2-Zn(NO3)2, Cu(NO3)2-Cu NPs, Zn(NO3)2-ZnO NPs, 

Cu(NO3)2-ZnO NPs, Zn(NO3)2-Cu NPs, and Cu NPs-ZnO NPs. No substantial 

differences were found in the aggregation or agglomeration of Cu NPs or ZnO NPs 

and their mixtures with nitrates. More than 80% of the variability in the combined 

effects of mixtures of Zn(NO3)2-ZnO NPs and Cu NPs-ZnO NPs was explained by 

the independent action (IA) model. The variations left in toxicity modeling of Cu NPs 

and ZnO NPs can be explained by small antagonistic effects found among 

dissolved metal species as well as non-dissolved particulate fractions of NPs. 

These results demonstrated that mutual impacts of soluble metals and 

non-dissolved particles can affect the combined toxicity of Cu NPs and ZnO NPs, 

which cannot be easily explained by a simple combination of Cu(NO3)2 and 

Zn(NO3)2. 

In conclusion, our study emphasizes the importance of two toxicity-modifying 

factors (the composition of the surrounding exposure media and mixture effects) in 

the assessment of toxic effects of metals and metal-based NPs on higher plants. 

Based on the affinity of metals for binding sites on the biotic ligand at the 

water-organism interface, the mechanistic models we developed provide better 

links with the toxicity of metal mixtures. We also recommend that finding a 

statistically significant deviation from additivity can be the starting point for further 

mechanistic research concerning toxicologically relevant interactions between 

substances, instead of the endpoint of research used so far. As an extension of the 

research discussed in the third chapter of this thesis, the commonly known model 

for the toxicity of mixtures was proven to be suitable for preliminarily assessing the 
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effects of metal-based NPs on terrestrial organisms. The experimental design of 

nested combinations helps establish a more realistic exposure scenario for the 

environment and makes it possible to identify where and how chemical-chemical 

interactions occur with metal-based NPs. Consequently, our findings enrich the 

rapidly evolving field of toxicology regarding metals and metal-based NPs. 
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Samenvatting 

Overal in de oceanen en de aardkorst bevinden zich metalen, waarvan er sommige 

als voedingsstoffen dienen die de organismen op onze planeet in staat stellen hun 

normale functies te blijven vervullen. Hoge concentraties aan metalen kunnen 

echter ook toxisch zijn. De fysisch-chemische eigenschappen van water en bodem 

in het natuurlijke milieu, zoals hardheid, pH en opgelost organisch koolstof, kunnen 

van invloed zijn op de bioaccumulatie van metalen, en bemoeilijken daarmee de 

bepaling van de risico’s van metalen in aquatische en terrestrische ecosystemen. 

Wanneer deze factoren worden meegenomen bij de ontwikkeling van 

mechanistische modellen, kan dit de variabiliteit bij het voorspellen van de 

biologische beschikbaarheid en de toxiciteit van metalen verminderen. 

Het in Hoofdstuk 2 beschreven onderzoek had betrekking op de effecten van Ca2+, 

Mg2+, K+, Na+ en de pH op de acute toxiciteit van Ni en Cd voor zaailingen van sla 

(Lactuca sativa L.). Gevonden werd dat alleen Mg2+, en niet H+, K+, Na+ of Ca2+, de 

toxiciteit van Ni voor sla vermindert; en geen van deze veel voorkomende kationen 

had een significante invloed op het effect van Cd op de wortelgroei van sla. Op 

basis van het biotische ligand model (BLM) werd de competitie tussen MG2+ en Ni2+ 

voor de bindingsplaatsen aan de biotische ligand op het grensvlak tussen water en 

organisme meegenomen in de voorspelling van de toxiciteit van Ni. Dit leidde tot 

een aanzienlijke verbetering van de voorspellende waarde (R2=0,80) voor wat 

betreft het toxische effect van Ni in combinatie met verschillende concentraties Mg2+ 

in de oplossing, in vergelijking met het totaal-metaal model (TMM) (R2=0,49) en het 

vrije-ion activiteitsmodel (FIAM) (R2=0,60). Voor wat betreft Cd, aangezien de totale 

variatie in IC50{Cd2+} bij de toegepaste concentraties H+, K+, Na+, Ca2+ en Mg2+ in 

de oplossing vrij klein was, deden het TMM het even goed als het FIAM als het 

erom ging de remming van de lengtegroei van de wortels van sla door Cd te 

verklaren. Aanbevolen wordt daarom om per metaal op basis van de toxicologische 

data mechanistische modellen te genereren voor het bepalen van de toxiciteit van 

metalen voor hogere planten. 

Een andere eigenschap die van invloed is op de toxiciteit, namelijk 

mengings-effecten, speelt ook een belangrijke rol bij het bepalen van negatieve 
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effecten van metalen op terrestrische planten. Mensen en andere organismen staan 

in hun natuurlijke omgeving bloot aan allerlei stoffen, en de toxiciteit van mengsels 

van metalen voor organismen kan als gevolg van interacties aanzienlijk afwijken 

van de som van de biologische effecten van elk van die metalen afzonderlijk. 

Daarom werken onderzoekers steeds aan de verbetering van de nauwkeurigheid 

van methoden voor het bepalen van de toxiciteit van mengsels van metalen. 

Het in Hoofdstuk 3 beschreven onderzoek had betrekking op de gecombineerde 

toxiciteit van binaire metaalmengsels, te weten Cu-Cd, Ni-Cd en Cu-Ni, bestudeerd 

met op concentratie-additie (CA) gebaseerde modellen en op onafhankelijke 

werking (independent action, IA) gebaseerde modellen. De remming van de 

lengtegroei van de wortels van sla door mengsels van Cu-Cd, Ni-CD en Cu-Ni werd 

gekwantificeerd met behulp van statistische software, het MixTox model. De 

toxiciteit van deze binaire metaalmengsels bleek even goed te worden voorspeld 

door de CA-modellen als door de IA-modellen. Bij het modelleren van de toxiciteit 

van deze drie metaalmengsels werden vaak statistisch significante afwijkingen van 

additiviteit gevonden, en de patronen in deze afwijkingen verschilden voor de 

specifieke combinaties en verschillende soorten modellen. Om te onderzoeken of 

deze statistisch significante afwijkingen reproduceerbaar waren, werden andere 

datasets, verkregen uit onafhankelijke experimenten met Ni-Cd en Cu-Ni mengsels, 

als invoer gebruikt in dezelfde modellen voor mengsels. De patronen in de 

afwijkingen bleken echter inconsistent of spraken elkaar zelfs tegen bij 

verschillende metaalconcentraties en de verschillende soorten modellen. 

Aanbevolen wordt daarom om voorzichtig te zijn bij de interpretatie van statistisch 

significante afwijkingen van een standaardmodel, aangezien deze niet per se 

wijzen op een biologisch relevante interactie. Het zoeken naar statistisch 

significante afwijkingen kan een uitgangspunt vormen voor verdere metingen en 

modellen ter bevordering van het inzicht in niet-additieve interacties die optreden 

binnen organismen.  

Het in Hoofdstuk 4 besproken onderzoek omvatte de uitbreiding van het biotische 

ligand model (BLM) met het voorspellen van de totale toxiciteit voor sla van Cu-Ni, 

Cu-ZN en Cu-Ag mengsels. Hiertoe werden drie benaderingen toegepast, 

gebaseerd op het concept van additiviteit, namelijk de toxische eenheid (toxic unit, 
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TU) benadering, de toxische equivalentiefactor (TEF) benadering en de benadering 

waarbij wordt gekeken naar de fractie van het totale aantal biotische ligandplaatsen 

dat bezet is door metaalionen uit mengsels (fmix). De invloeden van het chemische 

milieu en de ion-ion interacties kunnen worden meegenomen in de bepaling van 

zowel de biologische beschikbaarheid als de toxiciteit van metaalmengsels, door 

het BLM te combineren met de toxiciteits-index. Met behulp van bootstrapping werd 

de voorspellende waarde van deze niet-geneste op BLM gebaseerde benaderingen 

vergeleken voor elke combinatie, waarna het model met de beste fit afhankelijk 

bleek van de specifieke samenstelling van het mengsel. Dit kan wellicht worden 

toegeschreven aan de uiteenlopende fysiologische eigenschappen van de 

verschillende metalen in hogere planten en verschillende onderliggende 

mechanismen van metaalmengsels in sla. 

Kunstmatige metallische nanodeeltjes vormen een nieuwe bron van 

milieuverontreiniging, waarvoor nog weinig informatie beschikbaar is aangaande 

hun lozing, verdere gedrag en toxiciteit. Dit maakt het moeilijk om de potentiële 

effecten van metallische nanodeeltjes in het milieu te bepalen. 

In het in Hoofdstuk 5 beschreven onderzoek werden de gecombineerde effecten en 

de wederzijdse beïnvloeding van Cu-nanodeeltjes en ZnO-nanodeeltjes 

systematisch bestudeerd met behulp van zes geneste combinaties, namelijk 

mengsels van Cu(NO3)2 met Zn(NO3)2, Cu(NO3)2 met Cu-nanodeeltjes, Zn(NO3)2 

met ZnO-nanodeeltjes, Cu(NO3)2 met ZnO-nanodeeltjes, Zn(NO3)2 met 

Cu-nanodeeltjes en Cu-nanodeeltjes met ZnO-nanodeeltjes. Er werden geen 

significante verschillen gevonden in de mate van aggregatie or agglomeratie van de 

Cu- of ZnO-nanodeeltjes en de mengsels daarvan met nitraten. Meer dan 80% van 

de variabiliteit van de gecombineerde effecten van mengsels van Zn(NO3)2 met 

ZnO nanodeeltjes en Cu- en ZnO-nanodeeltjes kon worden verklaard met het 

IA-model. De resterende variaties in de toxiciteitsmodellen van Cu-nanodeeltjes en 

ZnO-nanodeeltjes kunnen worden verklaard door kleine antagonistische effecten 

die werden gevonden bij opgeloste metalen en niet-opgeloste deeltjesfracties van 

nanodeeltjes. Deze resultaten laten zien dat de wederzijdse beïnvloeding tussen 

opgeloste metalen en niet-opgeloste deeltjes van invloed kan zijn op de 

gecombineerde toxiciteit van Cu- en ZnO-nanodeeltjes, hetgeen niet gemakkelijk 
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kan worden verklaard uit een simpele combinatie van Cu(NO3)2 en Zn(NO3)2.   

Geconcludeerd kan worden dat dit onderzoek het belang heeft onderstreept van 

twee factoren die van invloed zijn op de toxiciteit van metalen en metallische 

nanodeeltjes op hogere planten; te weten de samenstelling van het omringende 

milieu waarin de blootstelling plaatsvindt en de effecten van mengsels. Op basis 

van de affiniteit van metalen voor de bindingsplaatsen op de biotische ligand 

kunnen de ontwikkelde mechanistische modellen zorgen voor betere links met de 

toxiciteit van metaalmengsels. Aanbevolen wordt om wanneer statistisch 

significante afwijkingen van additiviteit worden gevonden, dit als uitgangspunt voor 

verder mechanistisch onderzoek naar toxicologisch relevante interacties tussen 

stoffen te nemen. Als vervolg op het in de derde hoofdstuk van dit proefschrift 

beschreven onderzoek, is aangetoond dat het algemene model voor 

mengseltoxiciteit van stoffen geschikt is om een eerste schatting te geven van de 

effecten van metallische nanodeeltjes op terrestrische organismen. De op geneste 

combinaties gebaseerde onderzoeksopzet helpt bij het opstellen van een meer 

realistisch scenario voor blootstelling in het milieu en maakt het ook mogelijk te 

bepalen waar en hoe onderlinge chemische interacties optreden bij metallische 

nanodeeltjes. Onze bevindingen betekenen daarmee een verrijking van het zich 

snel ontwikkelende onderzoeksterrein van de toxicologie van metalen en 

metallische nanodeeltjes. 
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