
Constructions emerging : a usage-based model of the acquisition of
grammar
Beekhuizen, B.F.

Citation
Beekhuizen, B. F. (2015, September 22). Constructions emerging : a usage-based model of the
acquisition of grammar. LOT dissertation series. LOT, Utrecht. Retrieved from
https://hdl.handle.net/1887/35460
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/35460
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/35460


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/35460 holds various files of this Leiden University 
dissertation 
 
Author: Beekhuizen, Barend 

Title: Constructions emerging : a usage-based model of the acquisition of grammar  
Issue Date: 2015-09-22 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/35460


CHAPTER 4

Modeling the acquisition of meaning

In chapter 3, I presented a computational model of the acquisition of con-
structions. These constructions are incrementally learned from linguistic us-
age events, being pairings of an utterance and several situations, and are used
to analyze novel linguistic usage events. An important question that remains
is what these linguistic usage events consist of.

In this chapter, we will look at the way in which the conceptual side of
the linguistic usage events (viz. the situational context) is represented in input
items. What are the properties of these situational contexts? The motivation
for studying this, is that computational models of symbol acquisition (word
learning as well as constructional learning) often make strong assumptions
about the nature of the set of communicated concepts at which the learner ar-
rives independently of language. These assumptions, however, often do not
rely on empirical accounts of how a learner constructs this set. The represen-
tations acquired by a computational model depend on what is in the input,
and it is therefore equally important to provide the model with input items
that are as realistic as possible.

This chapter sets out to provide such an account, looking primarily at the
environmentally available information. The insights resulting from this inves-
tigation are then used to formulate a procedure for simulating realistic situa-
tional contexts in which utterances are produced. This procedure will then be
used to provide the learning model with input.
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4.1 Three problems in acquiring meaning

As I argued in the previous chapter, it is a logical necessity that the child has
some coarse understanding of what an utterance refers to when she hears it
(O’Grady’s Interpretability Requirement). In studies on symbol acquisition it
is often tacitly assumed that all of the meaning is correctly understood by the
child, and moreover, that only the correct meaning is understood, i.e., there are
no ‘distracting’, non-communicated concepts. Admittedly, the latter assump-
tion is less frequently made, as most researchers recognize that ‘distractors’
are present in the space of candidate meanings (that is: the set of considered
conceptualizations communicated with the utterance), and, in fact, this con-
stitutes a learnability problem by itself (cf. Quine’s (1960) Gavagai problem).
Nonetheless, this assumption is still used as the starting point of many compu-
tational modeling studies, as we will see later. Let us, for future reference, call
the ‘all-and-only’ assumption Assumption 1, with two corollaries, Assump-
tion 1a and Assumption 1b:

• Assumption 1: The correct set of concepts to be mapped onto the utter-
ance is active in the mind of the learner

– Assumption 1a: All of the concepts to be mapped onto the utter-
ance are active in the mind of the learner

– Assumption 1b: Only the concepts to be mapped onto the phono-
logical substrings of the utterance are active in the mind of the
learner

When we do find the assumption in an explicit form, for example in O’Gra-
dy (1997, 260) or Wexler & Culicover (1980, 80), it is presented as a requirement
for the acquisition of form-meaning pairings, but no supporting evidence for
its veracity is provided. We can wonder, however, to what extent the assump-
tion in its strong form holds. Even in a weaker form (most of the concepts
are available, and there are few distracting ones), we would like to know the
magnitude of the learning problem when the nature of the input deviates from
Assumptions 1a and 1b.

We can quantify and conceptualize the deviation as follows. First, are all
concepts the speaker wants to communicate with an utterance part of the can-
didate meanings? We will call this issue, corresponding with Assumption 1a,
the question of noise (cf. Siskind 1996, 50). When we, in a simplifying manner,
assume that the candidate meaningsMcandidate and the actually communicated
meanings Mcommunicated are sets of communicated elements (be they features,
entities, or whole propositions), we can measure the noise as follows:

Noise = 1− |Mcandidate ∪Mcommunicated|
|Mcommunicated|

(4.1)

That is: what proportion of the set of communicated concepts are actually
present in the set of candidate meanings? When noise = 0, all communicated
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concepts are part of the set of candidate meanings, whereas no element of the
communicated concepts is in the set of candidate meanings when noise = 1.

Second, to what extent are only the situations and objects the speaker
wants to refer to present in the set of candidate meanings? How many con-
cepts are there that are not referred to in the utterance, and thus increase the
referential uncertainty? We will call this issue, corresponding with Assump-
tion 1b the question of uncertainty (cf. Siskind 1996, 40).

Uncertainty = 1− |Mcandidate ∪Mcommunicated|
|Mcandidate|

(4.2)

uncertainty thus measures what proportion of the set of candidate mean-
ings is not communicated by the utterance. uncertainty = 1 means that the
candidate meaning Mcandidate consists fully of non-communicated concepts,
whereas uncertainty = 0 means that Mcandidate is entirely made up of commu-
nicated concepts.

Uncertainty, like noise, can take place on many levels: conceptual features
may be unavailable (conceptual noise), or superfluously available (conceptual
uncertainty, but also entire entities (objects, events, each of which can be de-
scribed with a number of conceptual features; referential noise and referential
uncertainty), and even full propositions (propositional noise and propositional un-
certainty). When operationalizing noise and uncertainty for specific cases, we
have to specify on what level this noise takes place, but for the current pur-
poses, the use of sets M generalizes over all three levels: it could refer to a set
of conceptual features, entities, or full propositions.

Once we acknowledge that learners probably operate under non-zero un-
certainty levels, another problem presents itself: is the non-target part of the
space of candidate meanings (the concepts not referred to) independent from
the target part of that space? If there are dependencies, this affects the ease
of learning: if certain elements in the space of candidate meanings are often
found together with other elements, the learner will have a harder time to use
cross-situational statistics, to name one learning mechanism, in order to disen-
tangle them (cf. Siskind 1996, 75). Examples of dependencies in the candidate
meaning would be different conceptualizations of the same event (e.g., ‘chase’
and ‘flee’), or meronymic relations (e.g., ‘rabbit’ and ‘ears’), but also concepts
that in principle engender different construals, but simply occur together of-
ten (e.g., ‘sitting at the table’ and ‘eating’, for the young child). Although the
full extent of this problem is beyond the scope of this chapter, we will briefly
touch upon the last kind of dependence, quantifying it and using the insights
in our simulation procedure.

Independently researching the environmental and cognitive sources of the
set of candidate meanings is relevant to the understanding of the cognitive
mechanisms responsible for forming the symbolic mappings. Experimental
work like Yu & Smith (2007) has demonstrated that learners can use the mech-
anism of keeping track of cross-situational co-occurance statistics in acquiring
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symbolic pairings. However, in several simulations and experiments, Smith,
Smith & Blythe (2011) and Blythe, Smith & Smith (2010) point out that, using
varying amounts of referential uncertainty, there are different strategies that
lead to optimal learning behavior: with higher levels of referential uncertainty,
a more heuristic variant of cross-situational learning explains the subjects’ per-
formance in learning form-meaning mappings better than with lower ones.
This means that, before we can determine (experimentally) what mechanisms
underly the acquisition of symbolic pairings, we have to understand in what
range the noise and uncertainty realistically fall.

This point becomes especially important in computational simulations of
the symbol acquisition process. In these studies, a formal operationalization
of a proposed cognitive mechanism is tested on data containing pairs of ut-
terances with meaning representations, thought to reflect the set of candidate
meanings. However, if amount of noise and uncertainty in the set of candi-
date meanings reflects the simplistic assumption, or the deviation from this
assumption is not empirically grounded, then the mechanisms under scrutiny
cannot be properly evaluated. Quantifying actual noise and uncertainty levels
on the basis of empirical data, for instance spontaneous caregiver-child inter-
action, allows us to do so.

A note on terminology is in place here. The term noise, as borrowed from
signal processing, is often used as a generic term concerning all undesirable
modulations of the signal, including both noise in the narrow sense, as I de-
fined it in this chapter, as well as uncertainty. Although ambiguity between
the superordinate term and a subordinate is in principle undesirable in scien-
tific discourse, and can lead to needless misunderstandings, it is at the same
time not beneficial to introduce completely new terms. Noise is used in both
the superordinate and subordinate sense in the literature and the value can
be contextually determined (in pairs such as noise and uncertainty, it always
means the absence of information in the signal, not both the absence and the
superfluence).

4.2 The informativeness of the situation

4.2.1 Earlier research

Linguistic research on the informativeness of the situation

Studies discussing situational availability are rather scarce, and are typically
framed on a propositional level, that is: does the utterance refer to a full sit-
uation in the here-and-now of the interactive setting. Moerk (1972) discusses
the nature of the interaction between mothers and children, and remarks that
“The mother [. . . ] model[s] nearly continuously for the child the process of
translating the structure of the objective environment and their own actions
into verbal utterances”, thus suggesting that little noise is to be expected in the
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mothers’ input. However, Moerk did not systematically investigate this, and
focusses only on what could be seen as the lack of noise: whenever the care-
giver talks to the child, the situation referred to is hardly absent. Cross (1977)
presents features of child-directed language that are predictive for the child’s
vocabulary size at certain ages. She discusses in the appendix four features
related to the referential nature of the mother’s utterance, namely whether the
utterance referred to 1) a child-controlled event, 2) a mother-controlled event,
3) other persons or objects present or 4) something outside of the here-and-
now. She defines the here-and-now of the speech situation as the time span
between the preceding and current conversational turn. Of the four features,
the first is significantly negatively correlated with vocabulary size, meaning
that mother will refer less to the child’s actions the more sophisticated a lan-
guage user the child is. Furthermore, the third is significantly positively cor-
related with vocabulary size, meaning that the mother will refer more to sit-
uations slightly more distal from the here-and-now the more advanced the
child’s language abilities are. As Cross provides no raw frequencies, we can-
not determine the precise situational availability in her data. Again, in Cross’
study, only the referential nature of the whole utterance is studied, and the
question of uncertainty (how much of the current situation is not being re-
ferred to), is not addressed.

From the only literature explicitly discussing co-temporal situational pres-
ence in naturalistic settings, Gleitman (1990), we know that both Assumptions
1a and 1b are problematic, especially for relational concepts, such as events.
Gleitman (1990, 20-22) discusses a paper by Beckwith, Tinkler & Bloom (1989),
where the authors describe how in many cases, the event to which a verb refers
is absent from the immediate context. This would constitute a case of referen-
tial noise. Gleitman further points to the imaginable plethora of cases where
the learner does perceive an event, but the label is not used in the utterance,
thus bringing about referential uncertainty.

With the scarcity of studies systematically addressing this issue on the ba-
sis of naturalistic data, it seems that we know very little about the extent to
which the utterances in the input are co-temporally matched with the commu-
nicated concepts. It is striking that empirical investigations into the nature of
the environmentally given information are so scant, whereas the Interpretabil-
ity Requirement constitutes a central assumption in acquisitional research.

Modeling approaches deriving candidate meanings from the utterance

Most computational research on acquiring form-meaning pairings focuses
on the cognitive mechanisms required to develop an inventory of symbols
given an existing set of candidate meanings, rather than on the learner’s un-
derstanding of the set of candidate meanings itself. Although computational
studies on the mechanisms have greatly added to our knowledge of possible
cognitive mechanisms, their evaluation remains problematic, as performance
may depend to a large extent on the properties of the set of candidate mean-
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ings. In this section, I will discuss computational studies of symbol acquisition
and the assumptions concerning noise and uncertainty they make.

The first group of studies derives properties of the set of candidate mean-
ings from the linguistic input. Corpora of child-directed speech are mostly
not structurally annotated with the situations that co-occur with the utter-
ances, let alone the child’s likely mental representation of those. As a means
of approximating the situation, several approaches, both in acquiring map-
pings between single words and their meanings, and in acquiring a grammar
with meaningful rules, use the utterance itself to infer the situation it is paired
with (Siskind 1996, Chang 2008, Alishahi & Stevenson 2010, Fazly et al. 2010).
Taken by itself, this method would constitute a very strong instantiation of
the assumption that all and only the correct meanings are present. Most, if
not all, authors acknowledge the problematic nature of this assumption, and
therefore introduce deviations from the ‘all candidate meanings are present’
assumption (by removing elements of the set of communicated concepts, thus
adding noise) and the ‘only the candidate meanings are present’ assumption
(by introducing additional elements into the set of candidate meanings, thus
increasing the uncertainty) so as to make the experiments with the models of
form-meaning pairing acquisition more realistic.

Older studies, like Regier (1992) and Bailey (1997) use toy examples with
more complex meaning representations than many later studies. However, be-
ing toy examples, the input data is generated in such as way that the situation
matches the word it is to be associated with. Because of that, we can also group
them in the category of utterance-derived candidate meanings.

The addition of noise and uncertainty found in most models of the ac-
quisition of form-meaning pairing is, by itself, a step in the right direction.
By adding noise and uncertainty, the models are shown to be robust to noise
and uncertainty (see table 4.1 below for some examples). However, few of
the works mentioned discuss how the parameter setting for their noise and
uncertainty values is motivated. That is: if we add noise, how much noise is
realistic? And is the amount of noise the same for every conceptual type and
every linguistic class? Are verb-to-event mappings noisier, for instance, than
noun-to-object-class mappings? The same question can be asked for uncer-
tainty. Crucially, as argued before, the evaluation of the explanatory value of
the model depends on its ability to deal with realistic sets of candidate mean-
ings: as long as we know little of what counts as realistic, the evaluations of
the models are problematic.1

This is not to say that the method of generating situations on the basis of
the utterances is useless. In fact, if one has an empirical grounding for the
amounts and types of noise and uncertainty that one introduces in the model,
this method may be currently the only way to obtain data sets large enough to
train our models on, as long as we do not have fully symbolically annotated

1Interestingly, only Siskind (1996) explicitly tries to ground the amount of uncertainty and
noise in acquisitional studies, citing Beckwith et al. (1989) and Snow (1977).
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model description parameter settings

Regier (1992) No noise or
uncertainty is
added

n.a.

Siskind (1996) Propositional
noise and
uncertainty are
added

Parametrized: between 0 and
20% of the utterances lacks the
target candidate proposition
completely and between 10 and
100 non-target candidate
propositions are added.

Bailey (1997) No noise or
uncertainty is
added

n.a.

Fazly et al.
(2010)

Referential
noise and
uncertainty are
added

In 20% of the utterances, one
element of the meaning is
discarded. Every other
utterance’s meaning is added as
referential uncertainty.

Chang (2008) No noise or
referential
uncertainty is
added

n.a.

Frank et al.
(2009)

Referential
noise and
uncertainty are
as in video data

n.a.

Alishahi &
Stevenson
(2010)

Conceptual
noise and
referential
uncertainty is
added

In 20% of the utterances, one
feature of the meaning is
discarded. In another 20%, one
feature is discarded and then
inferred. The meaning may
contain more referents than
expressed in the utterance.

Table 4.1: The treatment of noise and uncertainty in several models of the ac-
quisition of form-meaning pairings.
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descriptions of the situations accompanying the child-directed utterances.

Approaches deriving candidate meanings from empirical sources

The second group of modeling approaches to the acquisition of form-meaning
pairings explicitly addresses the issue of what can be gleaned from the situ-
ation accompanying the utterance by using videotaped caregiver-child inter-
action. Typically, this involves manual annotation of the candidate meanings,
although early work on video data shows that a mapping between the raw
visual input and the raw speech stream is possible too (Roy & Pentland 2002).
Ambitious as this project is, it remains limited as a method of studying lan-
guage acquisition, for two reasons. First of all, the data used by Roy & Pent-
land (2002) were not from natural dyadic interaction, let alone child-caregiver
interaction, which makes the ecological validity of the discourse problematic.
Secondly, the focus was on noun-to-object mappings only. Although this does
constitute an important part of the acquisition process, we have to move be-
yond this to gain insight on a more general level. The main reason is that a nar-
row focus on, for instance, nouns artificially limits the hypothesis space of the
learner: the event-like meanings form no uncertainty for the model learning
nouns, whereas we expect some uncertainty to be present unless we assume
that children start with attending only to objects and assuming that referring
to those is the sole function of language.

More recent approaches using video data suffer from the same problem
(Frank, Goodman & Tenenbaum 2008). Even if we assume that nouns are
more easily learned, and even if knowledge of the noun-object mappings
helps bootstrap other things, they artificially keep other kinds of candidate
meanings (events, relations, properties) out of the hypothesis space. The con-
tribution of these studies, however, is that they do show us, even for a narrow
subset of candidate meanings, what is and what is not available to the learner
(assuming that only the visual perception of spatiotemporally aligned objects
leads to the availability in the set of candidate meanings). This provides us
with the interesting opportunity of establishing empirically the levels of ref-
erential noise and (to some degree) referential uncertainty in caregiver-child
interaction.

A final approach that is of interest is one in which the focus is on a broader
class of candidate meanings than just object categories. Fleischman & Roy
(2005) had subjects play a game in which one subject had to verbally guide
the other subject through a video game world towards a certain goal. The lan-
guage involved directive and descriptive utterances about the task of the other
subject. The learning model received its input data from this experiment: the
utterances of the one subject were paired with the actions and the overarch-
ing plans behind the actions (opening a door is an action towards the plan of
entering a room) for the other subject. This represents a closer approximation
of the breadth of candidate meanings than the studies on noun-object map-
ping acquisition. A point of criticism here could be the ecological validity, as
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with Roy & Pentland (2002): the type of discourse is not the same as caregiver-
child interacting, although it should be granted that the directive nature of the
language and the fact that the subjects had a joint task approximate many sit-
uations of child-caregiver interaction relatively closely.

4.2.2 How available are the communicated concepts
What is the information in the actual environment in which children learn
words? Narrowing this question down to the two corrolaries of the inter-
pretability assumption, we have to ask what the noise and uncertainty is that
children face when starting to develop a lexicon. In this section, I present re-
search addressing these questions.2

Materials

Like the second group of modeling studies I discussed, we take videotaped
interactions of caregivers and children to be the starting point of our informa-
tion about the properties of the environment from which the set of candidate
meanings is inferred. The interaction has to be relatively typical of the kind
of interactions young children and their caregivers have. To this end, I used
videotaped interactions of Dutch mothers and 16 month-old daughters play-
ing a game of putting blocks in holes.3 Games form an interesting setting, as
they constitute a typical activity in which the child jointly attends the situ-
ation with the caregiver, and in which directive and descriptive language is
used (Tomasello & Farrar 1986, 1457). From the 131 available dyads, I selected
the first 32. The games were played for about five minutes per dyad, giving a
videotaped corpus of 152 minutes (henceforth: the corpus).

Annotation

In the corpus, I transcribed all speech according to CHAT-guidelines,4 and
two assistants coded the video data for the objects, properties and relations in
the situations. The transcriptions contained 7842 word tokens (480 types) in
2492 utterances. The language mostly refers to aspects of the game.

The situational coding was done according to guidelines described in
Beekhuizen (2011). As the situation consists of just one type of activity (play-
ing the game), the set of objects, properties and relations is relatively limited.
The most common object categories are the BUCKET, LID, BLOCKs, HOLEs and

2Parts of the research reported in this section was previously published in Beekhuizen, Fazly,
Nematzadeh & Stevenson (2013) and Beekhuizen, Bod & Verhagen (to appear)

3The data was courteously made available by Marinus van IJzendoorn and Marian
Bakermans-Kranenburg of the department of Child Studies at Leiden University.

4Available at http://childes.psy.cmu.edu/manuals/CHAT.pdf
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type name roles

action GRAB,LETGO,HIT Agent, Patient, (Instrument)
action POINT,SHOW Agent, Patient, Recipient, (Instrument)
action MOVE,FORCE Agent, Patient, Source, Goal, (Instrument)
action POSITION Agent, Patient, Ground, (Instrument)
spatial IN,ON,OFF, OUT,AT,NEAR Figure, Ground
spatial MATCH,MISMATCH Figure, Ground

Table 4.2: Coded relations. Parentheses denote optionality.

the two participants, MOTHER and CHILD.5 The feature COLOR={RED, GREEN,
YELLOW, BLUE} was coded for the blocks and the feature SHAPE={SQUARE,
ROUND, TRIANGULAR, STAR} for blocks and holes. The relations and their
roles can be found in table 4.2.

For every three-second interval of video, all coder-observed relations, the
objects partaking in these relations, and their properties were coded using
ELAN (Brugman & Russel 2004). The actions (first four rows of Table 4.2)
denote simple manual behavior, which we assume children can recognize
(Baillargeon & Wang 2002). The spatial relations reflect basic categories of
containment and support (IN,ON) and their negation (OUT,OFF), as well as
two relations denoting non-containment and non-support contact (AT) and
nearness (NEAR). Understanding basic spatial relations precedes the onset of
meaning acquisition and can thus be assumed to be in place (Needham &
Baillargeon 1993, Hespos & Baillargeon 2001), although many specifics may be
language-specific (Choi 2006).6 The MATCH or MISMATCH with a hole was fur-
thermore inferred from these relations. Spatial relations were deemed salient
if a change in the relation occurred (e.g., if a BLOCK was the Figure of an IN-
relation in the current interval, when it was not in the previous interval).

The coding procedure was evaluated for inter- and intracoder agreement
(Carletta 1996) on a subset of the data: both coders coded three randomly se-
lected dyads twice. All relations were coded reliably both within and between
coders (Cohen’s κ > 0.8), except POSITION (intercoder: κ = 0.51, intracoder:
κ = 0.47). Closer inspection showed that there was some leakage from POSI-
TION to MOVEMENT, which follows from the fact that the two predicates are

5In many cases, the complete description of a referent is a single feature. In those cases, only the
single feature is given. If multiple features constitute the description of a referent, this is marked
with curly brackets around the set of features making up a referent.

6Ideally, one would encode the range of construals of a situation, including ‘tightness-of-fit’.
As a first attempt at relational coding of situations, we opted for convenient, yet widely known
notions like ‘containment’ and ‘support’.
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time type coding/transcription
0m0s situation <nothing happens>

utterance een. nou jij een.
translation one. now you one. “One. Now you try one.”

0m3s situation position(mother, toy, on(toy, floor)) grab(child,
b-ye-tr) move(child, b-ye-tr, on(b-ye-tr, floor),
near(b-ye-tr, ho-ro)), mismatch(b-ye-tr, ho-ro)

utterance nee daar.
translation no there. “No, there.”

0m6s situation point(mother, ho-tr, child) position(child, b-ye-tr,
near(b-ye-tr, ho-ro)) mismatch(b-ye-tr, ho-ro)

utterance nee lieverd hier past ie niet.
translation no sweetie here fits he not. “No sweetie, it won’t

fit in here.”
0m9s situation: point(mother, ho-tr, child) letgo(mother,

lid) grab(mother, b-ye-tr) move(mother,
b-ye-tr, near(b-ye-tr, ho-ro), near(b-ye-tr,
ho-tr)) match(b-ye-tr, ho-tr) letgo(child,
b-ye-tr) grab(child, b-bl-st) move(ch,b-bl-
st,on(floor),in(air))

utterance: hier in. kijk e(en)s. een twee.
translation: here in. look once. one two. “In here. Look. One

two.”

Table 4.3: A sample of the dataset. The dash-separated abbreviations de-
note blocks and holes and their properties, where for blocks the order is
b-{red,green,blue,yellow}-{round,star,square,triangular}, and for holes ho-
{round,star,square,triangular}.

poles on the same scale (POSITION being motion in place, MOVE being motion
from one place to another), and the demarcation point is in practice rather
vague. When the coders disagreed, I decided the annotation. A sample of the
resulting data is given in Table 4.3.

Evaluation

Using these data, we can get closer to an answer to the question what the
environment is in which a learner acquires language. To do so, we first need
to determine what features form the set of candidate meanings at the time of
every utterance. As discussed earlier, we can do so at several levels of descrip-
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tion. First, we can wonder what conceptual features are available (conceptual
noise/uncertainty). Second, we can look at the availability of referents (entities
and events) of linguistic items in the utterance (referential noise/uncertainty). Fi-
nally, we can look at the availability of entire situations to which utterances
refer (propositional noise/uncertainty).

For this research, we focus on just the former two levels and collapse the
distinction between conceptual and referential noise and uncertainty: as many
events and objects were not coded with complex feature sets as representa-
tions, the single conceptual feature is identical to a description of the referent
class. For some cases, however, words are intended to refer to an event that
has to be described as a set of features. The verb zetten, for instance, means
‘to put/position something on/onto something’, so both POSITION and MOVE
can be part of the valid referent of this verb, in addition to the presence of
an ON feature. Other words refer to conceptual features of entities that do
not constitute the complete description of the referent itself: vierkant ‘square’,
means that the object is square-shaped, but the label can be applied to entities
of different categories: both blocks and holes can be square-shaped.

We assume that for the list of content words in table 4.4, the correct mean-
ing is the set of features given with it. Features that are separated with pipes
mean that one of these features is part of the correct meaning of that word. We
call this list the golden lexicon. Given this golden lexicon, we can investigate
how much uncertainty and noise the learner would experience in acquiring
that word. That is: we start from the words rather than from the sets of con-
cepts (as we did in the initial definitions of noise and uncertainty in section
4.1). Let us for now assume that the set of candidate meanings consists of
the set of features in the situation within the three-second interval in which
the utterance was starting to be produced, thus leaving out any hierarchy or
grouping in the annotation. Let us call the candidate meanings the situational
context S, the utterance U , consisting of words w, and the set of meaning fea-
tures to be associated with a word Meaning(w) (which would, for a set of
words constituting an utterance, be the set of communicated meanings of the
utterance).

Noise(w) = 1−

∑
f∈Meaning(w)

|U,SU,S:w∈U∧f∈S |
|U,SU,S:w∈U |

|Meaning(w)|
(4.3)

Uncertainty(w) = 1−

∑
U,S:w∈U

|S ∪Meaning(w)|

|U, SU,S:w∈U |
(4.4)

noise is the proportion of Utterance-Situation pairs in which the manu-
ally assigned feature of the word was lacking (averaged over all features in
Meaning(w), in the case of multiple features). uncertainty, then, is the av-
erage number of features in the situation of the Utterance-Situation pair in
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which a word occurs, that are not referred to by the word. In this operational-
ization, we do not formalize uncertainty as a proportion, but rather give the
average number of other situations. Again, the pipe-separated features ap-
plied when either of them was present (so that the noise will not become
higher when just one of them is present).

We calculate the levels of noise and uncertainty per word in the golden
lexicon, but also per part-of-speech class. For these latter calculations, we take
the average over the words contained in that class, weighted by the frequency
of that word. These aggregate figures give us an insight in how noise and
uncertainty values may differ between semantic/grammatical classes.

Noise in the input data

Figures 4.1 and 4.2 give the noise scores per word in table 4.4 and per part-
of-speech category respectively. We can see that the noise varies between 0.0
(everytime the word is uttered, the meaning is present in the set of candidate
meanings) to 1.0 (the meaning is always absent when the word is uttered).
For only 5 out of 41 words in the golden lexicon, the features to which the
word refers are always found in the situational context accompanying that
utterance. For another 21 out of the 41 words, the noise is lower than or equal
to 50%.

Interestingly, when we look per part-of-speech category (figure 4.2), the
category of adjectives (i.c., color and shape terms) has a substantially lower
average noise than the other categories. Furthermore remarkable is the lower
average noise for verbs than for nouns and prepositions, meaning that verbal
meanings (for the items listed in table 4.4) are less frequently absent from the
immediate situation than the meanings of nouns and prepositions. The high
values for nouns are striking; this is the class of words typically thought to be
learnable by ostension, but the object referred to is not being manipulated in
the immediate situational context in over 50% of all cases.

Uncertainty in the input data

Figures 4.3 and 4.4 give the uncertainty scores per word in table 4.4 and per
part-of-speech category respectively. For the uncertainty, we see far less vari-
ance between the words and different parts-of-speech: the majority of words
seem to have an uncertainty between 8 and 12. This does not come as a sur-
prise: we can expect the amount of other events happening and object being
present to remain approximately the same across different categories. In other
words: most of the time, about the same amount of candidate meanings can
be expected to be present.

Nevertheless, it is good to obtain this kind of information, because it pro-
vides us with insight in the amount of uncertainty per word, and shows how
most simulation-based models actually do approximate realistic values for ref-
erential uncertainty. In Fazly et al.’s (2010) approach, for every sentence, an-
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Figure 4.1: Noise per word.
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Figure 4.3: Referential uncertainty per word.

other sentence’s situation is added to the current sentence as uncertainty: sup-
pose we have sentences of five words, we will also have simulated situations
of ten semantic features, which contains about the same amount of referen-
tial uncertainty as the empirical data discussed here, with for every feature 9
non-target meanings being present.

4.2.3 Noise-reduction through understanding intentionality
The values for noise and uncertainty obtained in the previous section have to
be interpreted in the light of the assumption that the learner is only attending
to the interval of three seconds in which the utterance was produced. This
attentional scope is artificially narrow. However, if we want to make it wider,
we need a principled way of doing so. In this section, we work out a principled
extension of the attentional scope.

From behavioral experiments on word learning, we know that learners go
well beyond the spatiotemporally contiguous situational context in creating a
set of candidate meanings (Tomasello 1995, Sabbagh & Baldwin 2005). What
these experiments show, on a conceptual level, is that the child uses other
sources than the immediate environment to form the set of candidate mean-
ings. Most of these sources require complex mental models: understanding
that a word label applies to the object some person is looking for, but cannot
find, requires the child to engage in a rather complex line of reasoning. Imple-
menting these socio-cognitive mechanisms as computational models (or parts
of symbol-learning models) would be an interesting research avenue, but for
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the current purposes we take a simpler approach.
Here we follow Cross’s (1977) approach, viz. to take the situation between

the previous and the subsequent utterance to constitute the attentional scope
of the learner. This constraint can be motivated on socio-cognitive grounds.
Tomasello (1995) showed how children acquire verb meaning more readily
when the event follows the utterance than when it precedes the utterance,
and preceding situations in turn allow children to learn the verb’s meaning
better than ongoing situations.

We extend Tomasello’s (1995) insight to other categories as well, by gener-
alizing that the child will attend to all situations in the context in close temporal
proximity to the utterance. Once the child knows that the signal the caregiver
is emitting is meaningful, that is, is intended to refer to something, the child
can assume that some utterance U probably refers to something happening
after the previous signal, and before the next one was emitted. After all, if
another utterance U ′ intervenes at some time between the time of some situ-
ation S and the time of U , it is more likely that U ′ rather than U refers to S.
Otherwise, the speaker would not have emitted a novel signal.

Operationalization

For every utterance U at time t, all situations are included in the set of candi-
date meanings that fall in the inclusive interval between the highest t′ lower
than t for which there is an utterance specified on the one hand, and the low-
est t′′ higher than t for which there is an utterance specified on the other. We
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t utterance situational features candidate meanings

1 you grab ball! {} {CHILD, GRAB, LETGO, DOLL}
2 {}
3 {CHILD, GRAB, DOLL}
4 where’s the ball? {CHILD, LETGO, DOLL} {CHILD, GRAB, LETGO, DOLL, BALL,

MOTHER, POINT, COOKIE}
5 {CHILD, GRAB, BALL}
6 good girl! {MOTHER, POINT, COOKIE} {MOTHER, POINT, COOKIE, CHILD,

GRAB, BALL, LETGO, DOLL}
now this one. {MOTHER, POINT, COOKIE} {MOTHER, POINT, COOKIE, CHILD,

GRAB}
7 {}
8 {CHILD, GRAB, COOKIE}

Table 4.5: A toy example of how the wide set of candidate meanings is formed.

use the same golden lexicon and evaluation metrics as in the previous sec-
tion. Again, we describe the noise and uncertainty observed in these wider
candidate meaning sets, and compare them with the noise and uncertainty
observed in the narrower candidate meaning set, where the candidate mean-
ings include only the features observed in the interval in which the utterance
was starting to be produced.

Table 4.5 gives a toy example of the way the wide set of candidate mean-
ings is constructed. For the utterance at t = 1, all features up to and including
those at t = 4 (when the next utterance is produced) are included. Similarly,
the utterance at t = 4 includes all features between t = 1 and t = 6 inclusive.
At t = 6, two utterances are produced. The wider scope for the first thus is
limited to the features in the interval t = [4, 6], as at t = 6 the next utterance
is already produced. For the second utterance, the interval for the candidate
meaning is t = [6, 8], because the previous utterance is produced at t = 6 and
t = 8 is the endpoint of the fragment.

Noise given a wider attentional scope

As we can see in figure 4.7, the referential noise is lower for most words. This
is a logical necessity: as the narrow set of candidate meanings is a subset of the
wide set, anything present in the former is also present in the latter. For 13 out
of the 41 words in the golden lexicon, about one third, there is no noise in the
wide situational context, and for another 12 out of 41, the noise is lower than
or equal to 25%. So, whatever the level of uncertainty, the features referred to
by the words in the golden lexicon are often present in the situational context.

Interesting differences can be found between the different parts of speech.
For three out of the four categories, viz. adjectives, prepositions and verbs,
the noise is reduced on average with more than 50%, yielding noise levels for
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Figure 4.5: Noise per word, for both the narrow and wide set of candidate
meanings.
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Figure 4.7: Uncertainty per word, for both the narrow and wide set of candi-
date meanings.

verbs and prepositions of around 20%. Nouns remain a category for which
much noise is present: in about 33% of all cases, the object referred to by the
noun is absent from the wide-scope set of candidate meanings. The low lev-
els of noise for verbs and prepositions suggest that the absence of situational
information may not be as problematic as Gleitman (1990) suggests, if we as-
sign the language-learning child a slightly wider, but nonetheless temporally
restricted scope of attention. The high levels of noise for nouns remain puz-
zling, as it is often thought that this category has a salience bias because of
temporal stability (cf. Gentner & Boroditsky 2001) and can be learned through
ostension. One caveat is that what are called adjectives in this model, are in
fact most often expressions referring to objects (de rooie, ‘the red (one)’, die
vierkante ‘that square (one)’), so that the noise for all expressions referring to
objects (either by using their class label, or some salient property), is not as
high as that for nouns.

Uncertainty given a wider attentional scope

Increasing the scope of attention for the learner also logically increases the
amount of uncertainty: if the narrow-scope set is a subset of the wide-scope
one, all features present in the former are also present in the latter. The wide-
scope set furthermore contains all features found within the narrow scope, so
this set is always larger. As is shown in figures 4.7 and 4.8, most words now
have somewhere between 12 and 18 non-target features present in the set of
candidate meanings, again with little difference between the different parts of
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speech.

4.2.4 Interpretation and implications
What do these descriptive statistics imply for computational modeling?
Firstly, the noise levels found in the annotated video data are higher than any
of the authors suggest, even when applying a simple, motivated extension of
the temporal width of the attentional scope of the learner. Nevertheless, the
values, given the wider scope, are not much higher than with the methods of
Siskind (1996), Fazly et al. (2010), and Alishahi & Stevenson (2010). What we
do find, is a difference between parts of speech, with nouns displaying the
most noise, followed by prepositions and other spatial relations, followed by
verbs, and with adjectives displaying the least amount of noise.

Concerning uncertainty, we did not find any striking differences between
the word classes. Given the narrow attentional scope, between 8 and 12 non-
target features were present for every word, whereas given the wide scope,
this figure rose to somewhere between 12 and 18. These numbers are hard to
compare directly to the uncertainty parameters used by Siskind (1996) and
Fazly et al. (2010), but show that their choice to use a relatively high amount
of uncertainty is warranted.

Importantly, all of these results cannot be generalized without several
caveats. First of all, the amount of noise and uncertainty depends upon the
coding schema for the semantic features and the choice of features in the
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golden lexicon. One can criticize these, and it is likely that the methods I used
here can be improved. However, in formulating a method for measuring the
noise and uncertainty, this research is among the first (together with, for in-
stance, Matusevych, Alishahi & Vogt (2013); see section 4.2.5) to assess the
level of noise and uncertainty in realistic situations of caregiver-child interac-
tion.

Secondly, the setting in which this interaction is found is relatively narrow.
We looked only at situations in which the caregiver and the child were playing
a game of putting blocks in wholes. The setting of a game greatly influences
the discourse, and other situational contexts may show different noise and
uncertainty ratings.

Finally, the values may apply only to Dutch caregivers interacting with
their children. Possible effects of cultural background are not included. Is it
only the amount of verbal interaction that varies, or do we also find differences
in how the utterances relate to the set of candidate meanings? I do not expect
there to be any reason for the latter claim, but as long as this has not been
investigated, it remains an assumption.

As for the simulation method, the amount of noise we incorporate has to be
somewhat higher than the figures reported in table 4.1. With a stronger focus
on uncertainty, I believe the problem of noise has been understudied and thus
underestimated. Furthermore, a simulation method would have to approxi-
mate the noise-parameter differently for the different word classes. Although
the sample I used is rather small and non-varied, we can assume the values for
the different part-of-speech classes to hold until we have better information.

4.2.5 The issue of situational interdependence

Situational interdependence in earlier research

So far we have been making the assumption that the set of candidate meanings
is an unordered set. However, the concepts can be structured into events, rela-
tions, their participants and their properties. This is information that can both
be beneficial and detrimental to the learner. As Siskind (1996) notes, when a
model recognizes that several parts of the utterance map to several parts of
one situation out of the many possible ones, it can narrow down the space
of candidate meanings for the non-mapped words of the utterance, because
it can infer that these refer to (non-mapped) parts of that situation. On the
other hand: events do not occur independently from each other (as noted by
Siskind (1996) as well), so several different events and their participants may
be highly similar to each other, which makes the task of identifying the correct
one harder.

All models allowing for referential uncertainty incorporate this insight into
their procedures for generating non-target elements in the conceptual space.
Fazly et al. (2010) include the semantic representation of the previous utter-
ance in the set of candidate meanings. The motivation for this procedure is
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that contiguous utterances probably express related meanings (as the topics
of discourse will more often stay the same than shift drastically), and that by
adding these meanings, we have more realistic uncertainty than if we added
the semantic representation of a random sentence.

Siskind (1996) does not use corpora of child-directed speech to simulate
semantic representations and hence uses generation methods to obtain these
representations. In his generation procedure, he acknowledges and addresses
this issue of situational non-independence. His solution is to split up the space
of candidate events (thus: the candidate meanings, as structured into events,
represented as predicate-argument structures) into a number of clusters, each
of some size k (in Siskind’s case, k = 5). Within each cluster, the different situ-
ations are similar to each other. For each cluster, one event is first generated at
random, after which it is copied to form the cluster k − 1 times, where in the
copying elements of the event can be replaced with some probability, which
he sets at 0.25. This results in the candidate meanings consisting of a number
of internally similar clusters of events.

Siskind’s method seems a good way to generate realistic uncertainty, cap-
turing, among other things, Gentner’s (1978) concern that there are many
ways to conceptualize the same event or partition it into different sub-events
(where in his method the different conceptualizations or partitions would
form the different members of a cluster). However, we can again estimate the
probability of a similar event happening on the basis of the annotated video
data.

The inquiry into the dependence of situations on each other was pioneered
by Matusevych et al. (2013), starting from similar concerns as the ones raised
in this chapter, viz. providing more realistic simulated data to evaluate com-
putational models of symbol acquisition on. Matusevych et al. (2013) used
hand-coded video data of caregiver-child interaction in order to measure the
overlap between different situations. Aspects of the situation were coded as
atomic features, and every situation at some time consists of a set of such fea-
tures. They then calculated the overlap between two subsequent situations by
dividing the intersection of the two sets of features by the union of those sets:

Overlap(St−1, St) =
|St−1 ∩ St|
|St−1 ∪ St|

(4.5)

Matusevych et al. (2013) measured the overlap between situations in natu-
ral interaction under two conditions. In the ‘all’ condition, all objects and situ-
ations that were present in the visual field were part of the situation, whereas
in the ‘active’ condition, only the objects manipulated in actions performed
by the caregiver or child, as well as those actions themselves, were part of
the situation. Using the Overlap measure, they showed that the overlap be-
tween situations observed in natural interaction is significantly higher (0.436
for the ‘active’ condition, 0.912 for the ‘all’ condition) than when the situations
are generated on the basis of the utterances (0.112 using Fazly et al.’s (2010)
method).
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feature type features

objects CHILD, MOTHER, TABLE, LID, BUCKET, HOLE, HANDLE,
FLOOR, AIR, HAND OF CHILD, COOKIE, BLOCK

properties RED, YELLOW, BLUE, GREEN, SQUARE, CIRCULAR, TRIAN-
GULAR, STAR-SHAPED

relations IN, ON, AT, NEAR, OFF, OUT, MATCH, MISMATCH
actions REACH, GRAB, POINT, LET GO, HIT, FORCE, POSITION,

MOVE, SHOW

Table 4.6: Feature types.

Obtaining continuation probabilities

Operationalization Apart from obtaining more general insight in the situa-
tional stability using Matusevych et al.’s (2013) Overlap measure, we would
also like to measure whether certain aspects of the situation are more stable
over time. To do so, we can calculate the probability of a feature being present
in the next situation given its presence in the previous situation. We call this
measure the continuation probability, and we can calculate this per semantic
feature. The continuation probability of a semantic feature thus is given as
follows:

Continuation(f) =
|Sf∈St∧f∈St+1 |
|Sf∈St |

(4.6)

In other words: the continuation probability of a feature is given by the
cardinality of the set of situations in which f occurs, as well as in the subse-
quent situation, divided by the cardinality of the set of situations for which f
occurs.

We gain further insight in the continuation of certain types of features by
grouping them according to the kinds of meanings they constitute. Table 4.6
presents the grouping into four categories: objects, properties, static relations
and actions.

Results Matusevych et al.’s (2013) Overlap measure gives us a value of 0.429.
This value is very close to the 0.436 reported for the ‘active’ condition in their
study, which is the most similar to the coding method used with this data. The
continuation probabilities per feature, for all features occurring more than 20
times in the data, are given in figure 4.9. We can see that there is quite some
variation in the probability of a feature being found in the next situation, with
the primary agents and patients of the situations (the mother, child and blocks)
constituting the features for which it is most likely that they will be found
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Figure 4.9: Probability of a feature being present in the next interval given
presence in the current interval.

in the subsequent situation as well. When we look at the values for the se-
mantic types (figure 4.10), we observe that objects (0.679) and their properties
(0.661) have a higher probability of being found in the subsequent situation
than actions (0.515) and static relations (0.493). For the last category, it should
be remarked that it was only coded when a static relation came into being,
assuming the relation would only be salient when it is novel. Obviously, this
is a design choice that influences the continuation probability.

4.2.6 Discussion
In section 4.2, I reported several findings concerning the informativeness of
the situation in which the child is trying to create symbolic pairs. One can have
many doubts regarding the exact operationalization of the concepts and the
method of studying these. The main point was, regardless of these specifics,
to disentangle a set of concepts that influence the way we think about the ac-
quisition of symbolic pairs. Recall that noise was the absence of conceptual
material expressed with an utterance, uncertainty the superfluence of such
material with respect to what the utterance conventionally conveys, and con-
tinuation the consecutivity of conceptual material. Each provides the learner
with problems, and there may not be one learning mechanism to solve them
all. These finer distinctions thus provide ‘tools for thinking’: one looks at the
problem of the acquisition of symbolic pairings differently if one has to con-
sider all three problems and they subdivide the bigger problem of learning
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Figure 4.10: Probability of features being present in the next interval given
presence in the current interval, averaged over feature types.

conventional symbolic pairings into conceptually coherent subproblems. One
contribution of this chapter is to shape this conceptual toolbox.

The division into the levels of conceptual, referential and propositional
noise can be seen as another step towards conceptual clarification within the
domain. Here too, the ambiguity is not hurtful a priori, but the finer distinc-
tions can help focus research on the informativeness of the situation. This dis-
tinction for instance allows us to consider the different sources underlying and
mechanisms solving different kinds of noise and uncertainty: the absence of
conceptual features at a sub-referential level, such as considering a ball as only
being a round object, and not a toy, may point to misperception and cognitive
biases towards certain regions of the conceptual space, whereas the absence of
a referent or even an entire event is more likely due to simply not observing
it, the former being more cognitive and the latter more perceptual. The super-
fluous presence of conceptual features may not be a problem at all (as long
as the correct referents are identified, communication succeeds), but when too
many entities and events are considered as referents, or when too many situa-
tions or propositions are considered to be expressed, we may investigate what
mechanisms help the learner overcome this problem.

The reason why one would want to do an empirical exercise with such a
toolbox, as I did in this chapter, is to recognize the different problems noise,
uncertainty, and continuation cause and to evaluate the severity of these prob-
lems. This requires datasets such as the ones we used, and annotation pro-
grams such as ELAN. Although it requires prohibitively much effort to anno-
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tate enough data manually to directly train computational models on, they do
provide a source for further analysis of the concepts acquisitionists work with.
In explorations such as these, we can see how technological and methodolog-
ical innovation may direct further theoretical development.

4.3 Towards a realistic simulation procedure

For computational modeling studies, we need high quantities of training data.
Because obtaining such amounts of data in the way described in this chap-
ter is labor-intensive, the only way to proceed seems to be to use a method
for artificially generating data, as the other models described have done. The
properties of the data generated by his procedure have to be close to the pa-
rameter values for noise, uncertainty and continuation we have found in the
empirical study presented in this chapter. In this section, such a method is
presented, based on Alishahi & Stevenson’s (2008) method, insights from the
simulation method Matusevych et al. (2013) developed, as well as the findings
of the study presented earlier in this chapter.

4.3.1 Earlier methods
Matusevych et al. (2013) investigate to what extent the noise, uncertainty and
overlap (or: situation stability) values in naturally occurring caregiver-child
interaction are similar to those found in methods where the features of the
situation are based on the utterance, as in Fazly et al. (2010), and Alishahi &
Stevenson (2010). Motivated by the big differences found on all three param-
eters, Matusevych et al. (2013) developed a simulation method for generating
situation-utterance pairs whose noise, uncertainty and overlap is highly simi-
lar to the observed values.

The method Matusevych et al. (2013) propose generates situations, with
actions and objects, as well as utterances, on the basis of the utterance and sit-
uation generated in the prior turn. The probabilities of the situation and the
utterance at some time t thus depend (among other things) on the utterance
and situation at t − 1. The data generated by this procedure have noise, un-
certainty and overlap parameter values similar to the ones observed in the
‘active’ condition (see section 4.3.2 for a description of the conditions).

It is the insight of generating chains of events that we adopt from Matu-
sevych et al. (2013). For the purposes of training a model of symbol acquisition
that includes meaningful grammatical constructions, we need a semantic rep-
resentation that goes beyond flat sets of features, as hierarchically structured
grammatical representations correspond to hierarchically structured semantic
representations. One generation framework that does so, is that of Alishahi
& Stevenson (2010). The method described there generates utterances on the
basis of the frequencies of a set of verbs, their argument structures, as well as
their arguments in three subcorpora of child directed speech (the three chil-
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Figure 1 shows a sample verb usage, consisting of a natural language
utterance paired with the semantic information that is inferred through
observing the corresponding event given to our model as a sequence of
words in root form.

The meaning of the utterance is represented as three sets of semantic
features:

. Semantic primitives of the verb: the basic characteristics of the predicate
are described as semantic primitives (e.g., {cause, become, rotating}).
Some of the primitives are general and shared by many verbs (e.g.,
‘movement’ or ‘act’), whereas others are verb-specific (e.g., ‘consume’
or ‘play’).

. Lexical properties of each argument: the inherent properties of the
argument (e.g., {woman, adult, person, . . . }). These lexical semantic
properties are independent of the event that the argument participates in.

. Event-based properties of each argument: the properties that the
argument takes on in virtue of how it participates in the event. Some
of these properties are similar to the proto-role properties proposed by
Dowty (1991) (e.g., ‘cause’ or ‘affected’) but others are verb-specific
(e.g., ‘eating’ or ‘falling’).

We explain later how we choose the properties for events and arguments
in our experiments.

3.3 General constructions as groups of verb usages

A construction in our model is a group of verb usages that are ‘similar
enough’, according to the probabilities over their features, to be grouped
together. The notion of ‘similar enough’ is described in detail in the next

Sara eat lunch

Semantic primitives: {act, consume}

Lexical properties: {woman, adult female, female, person, individual, somebody, human, ...}
Event-based properties: {volitional, affecting, animate, independently exist, consuming, ...}

Lexical properties: {meal, repast, nutriment, nourishment, sustenance, ...}
Event-based properties: {non-independently exist, affected, change, ...}

Figure 1. A sample verb usage: an utterance paired with the inferred semantic information.

A MODEL OF LEARNING SEMANTIC ROLES 59

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
u
r
w
i
s
s
e
n
s
c
h
a
f
t
l
i
c
h
 
T
e
c
h
n
i
s
c
h
e
]
 
A
t
:
 
1
0
:
1
4
 
1
0
 
D
e
c
e
m
b
e
r
 
2
0
0
9

Figure 4.11: Semantic features extracted on the basis of the utterance in Al-
ishahi & Stevenson (2010, 59).

dren in the Brown corpus; Brown (1973)). Only the intersection of the thir-
teen most frequent verbs in the child-directed speech in each subcorpus of the
Brown corpus was used (i.e., the thirteen verbs go, put, get, make, look, take,
play, come, eat, fall, sit, see, give). The frequencies of the argument structures
was estimated by manually inspecting 100 instances of each verb, as were the
frequencies of the arguments (nouns and pronouns) in these argument struc-
tures.

The verbs, arguments and prepositions marking several valency relations,
as well as the valency relations themselves, are then used to determine the
meaning of the utterance. To do so, several resources are used (Jackendoff’s
(1990) event features, Dowty’s (1991) proto-roles, as well as event-specific
roles such as ‘eater’ and ‘moved entity’, and WordNet hyperonym chains for
objects (?)). Figure 4.11 gives an example of the sets of semantic features ex-
tracted on the basis of the utterance Sarah eats lunch.

Note that in this procedure the linguistic realization of arguments is not
by necessity isomorphic to the conceptual argument structure of the event: it
may be that the event has two participants, but only one is expressed linguis-
tically as an argument of the verb. This is an important property of the input
items, which we described as referential uncertainty, as linguistic descriptions
of situations often leave out participants.

Alishahi & Stevenson’s (2010) method includes a post-hoc procedure for
adding noise to the data, viz. by removing or replacing features. Adding un-
certainty and specifying amount of overlap is not something that can be done
yet with the generation framework of Alishahi & Stevenson (2010). However,
extending it to allow for the generation of a set of situations, with the appro-
priate amount of overlap, to be paired with an utterance, is a relatively small
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Linguistic distributions
from Brown corpus

Semantic representations 
from Jackendoff (1990), 

Dowty (1991), and WordNet

Input-generation 
procedure of Alishahi 
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Matusevych et al. (2013)

Empirical findings 
presented in this chapter

Current input-generation 
procedure

Figure 4.12: An overview of the components of the current input generation
procedure.

extension.

4.3.2 Operationalization of the input generation procedure
Where do the input items for the model come from? It is not easy to just pro-
vide the learning model with a single source of input data; each method dis-
cussed in this chapter has pros and cons and the best option at this point seems
to combine the best features of each. Figure 4.12 summarizes the components
and main sources of inspiration for the procedure to be presented below.

Essentially, I extend Alishahi & Stevenson’s (2010) procedure. This proce-
dure generates pairings of a situational context and an utterance on the basis
of a semantic ontology as well as the distribution of linguistic items in child-
directed speech. As such, it provides us with utterances that are linguistically
realistic in their distributional properties, and situational contexts or concep-
tual representations that are (arguably) cognitively realistic in their content
(especially Jackendoff (1990) and Dowty (1991) claim so). The conceptual rep-
resentations are, however, not realistic in their distribution, as the model op-
erates under no uncertainty and as subsequent input items are generated in-
dependently of each other.

In order to resolve this, I extend Matusevych et al.’s (2013) line of reason-
ing: we generate input items as chains, where every subsequent input item
is probabilistically constrained by the previous input item. Every input item
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furthermore contains not just one, but a range of situations from which the
learner then has to choose.

How does this work? As mentioned, the child often finds herself in the sit-
uation where multiple situations are likely candidates to be referred to, and we
use the uncertainty = [0,∞] parameter to regulate the number of additional
non-target situations in the input item. The noise = [0, 1] parameter, on the
other hand, regulates the probability of the absence of the target situation in
the input item. In this procedure, I only operationalize noise and uncertainty
at a propositional level, for convenience’s sake. Future extensions of the pro-
cedure may involve operationalizing both parameters at the level of referents
or features.

Recall that we defined the input of the model to consist of pairings of an ut-
terance U and a number of situations S. How do we arrive at sets of situations
that are grounded in what we know about the situational context in which the
language-learning child picks up the symbols of her language? First, we create
chains of U, s pairs. As we saw in paragraph 4.2.5, subsequent situations are
not independent from each other. We therefore use the notion of the continu-
ation probability to generate every situation at time t, or st on the basis of the
situation at t− 1, or st−1. We define two continuation probabilities as param-
eters of the model: one for the objects or semantic arguments of the situation
(Pargument_continuation), and one for the semantic predicate or event node of the
situation (Pevent_continuation). With these probabilities, we sample a set of nodes
that should be present in st, or node_constraintst.

Figure 4.13 gives an example. From the situation at t − 1, each object and
the event is added to the set of node_constraintst with a probability of the
continuation parameters Pargument_continuation and Pevent_continuation respectively.
In this case, say that the event node and the first argument node are sampled.
They are then added to the set of node constraints. Using this set, we find all
possible situations that fulfill all constraints, i.e., that have both nodes in their
graphical representations. If we find this set to be non-empty, we sample one
situation from it at random, for example the one on the right side of figure
4.13.

It is very likely that every now and then we will run into cases where the
set of situations meeting all constraints is empty. In such cases, we back off
and use the set of all possible situations meeting all but one constraints. If that
set is empty too, be back off further to the set of all possible situations meeting
all but two constraints, and so on until we have a non-empty subset. Globally,
we could say that we sample from the subset of all possible situations maxi-
mally satisfying the node constraints. Given the subset of situations of which
the members maximally meet the node_constraints, we sample similarly to
Alishahi & Stevenson (2010), that is: on the basis of the corpus frequency of
the verbs, argument structures and nouns expressing the situation (Psituation in
figure 4.14).

Furthermore, as chains of events in reality do not continue forever, we
start sampling without an empty node_constraints with a certain probabil-
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situationt-1 situationt

sampled node constraints
{act, consume}

{meal, repast, nutriment,nourishment,sustenance,...}

{act,consume}

{volitional,affecting, 
animate,independently 

exist,consuming,...}

{non-independently 
exist,affected, 

change,...}

{woman,adult female, 
female,person,individual, 

somebody,human,...}

{meal,repast, nutri-
ment,nourishment, 

sustenance,...}

{act,consume}

{volitional,affecting, 
animate,independently 

exist,consuming,...}

{non-independently 
exist,affected, 

change,...}

{Adam,male,person,
individual, 

somebody,human,...}

{meal,repast, nutri-
ment,nourishment, 

sustenance,...}

{non-independently 
exist,affected, 
instrument,...}

{artifact,tool,
cutlery,

fork}

Figure 4.13: An example of sampled node constraints.

ity, called the reset probability Preset. Figure 4.14 schematically represents the
sampling procedure

This procedure yields a chain of U, s pairs. To get input items in the form
of U, S pairs, we divide up the chain of U, s pairs into subchains. From each
subchain, we then select one U, s pair to be the utterance and target situation
starget. All of the other situations in the subchain are then added to S. The target
utteranceU , as well as S constitute one input item. The division into subchains
is thus the place in the generation procedure where we can parametrize un-
certainty: the longer the subchain is, the more non-target situations there are
in s, and the higher the uncertainty is.

We measure the uncertainty by the number of unique non-target nodes in
S, similar to the way we did it in section 4.2.2. That is: given a target situation
starget, we take the cardinality of the set of all nodes in all non-target situations
of S that are not part of starget. The subchain is divided at the point where this
cardinality exceeds the pre-set value for uncertainty, a non-negative value re-
flecting the maximum number of nodes in non-target situations in S. We do
not differentiate between different referent types, as this would complicate the
procedure too much. Figure 4.15 illustrates two chains, one with high uncer-
tainty and one with low uncertainty.

This way of generating input data is in several ways similar to Siskind’s
(1996), the main difference being that his procedure selects several clusters of
similar situations (see paragraph 4.2.5), whereas a subchain of situations in the
proposed procedure is comparable to only one such cluster. Although several
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situationt-1 situationt

Node constraints

P
event continuation

P
argument continuation

P
reset

P
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Figure 4.14: The procedure for sampling a situation.

s1 s2 s3 s4 s5 s6

U1 U2 U3 U4 U5 U6

s7 s8 s9 s10 s11 s12

U7 U8 U9 U10 U11 U12

s1 s2 s3 s4 s5 s6

U1 U2 U3 U4 U5 U6

s7 s8 s9 s10 s11 s12

U7 U8 U10 U11 U12U9 U10 U11 U12

Low uncertainty

High uncertainty

Figure 4.15: Two chains of situations, one subdivided with high uncertainty,
the other with low uncertainty. ‘U’ denotes an utterance and ‘s’ a situation. The
grey utterances are non-selected. An input item consists of all black marked
objects within one rectangle.
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s4 s6

U4 U5 U6

s7

U7

s5

Figure 4.16: A noisy input item. ‘U’ denotes an utterance and ‘s’ a situation.
The situation corresponding to the selected utterance has been removed and
is not part of the input item.

streams of events are likely to take place when the child is interacting with the
caregiver, the child probably only attends to one such stream, namely the one
that is in the joint focus of the caregiver and child.

Noise After creating an U, S pairing, we can add noise. We can do so on two
levels. Similarly to Siskind (1996), we can remove the target situation from the
set of situations S, so that the learner will always identify a non-target situ-
ation as the situation the speaker intended to refer to. This would constitute
propositional noise. Conceptually, this means that the learner for some reason
does not consider the target situation as a part of the set of candidate situa-
tions S. This may be because she did not observe it, or because she thought it
to be communicatively irrelevant. The parameter that determines the amount
of situations with propositional noise is called Ppropositional_noise. Another ap-
proach would be to change the feature sets for some parts of the representa-
tion. This would constitute conceptual noise, and it corresponds to the situa-
tion in which the learner misperceives aspects of the situation. The parameter
that controls the probability of replacing the feature set of a node in the target
situation for another is called Pconceptual_noise. Figure 4.16 provides an example.

Parameter settings Using the parameters of this input generation procedure,
we can generate data that fits realistic parameter settings. One major caveat
is to what extent the results from the video data can be extended to apply
more broadly. After all, they are derived from a very limited pragmatic setting.
We can apply them directly, which would give the values in table 4.7, but in
the following chapters, we will also evaluate the model presented in those
chapters with other values as well, to see under what conditions the model
performs well.

Note that several findings are not reflected in the parameters, e.g., the dif-
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parameters value motivation

Pargument_continuation 0.7 Continuation for objects in 4.2.5
Pobject_continuation 0.5 Continuation for actions and relations in

4.2.5
Preset 0.05 None
uncertainty 15 Given the average of 15 non-target referents

under the wide condition in section 4.2.3
Ppropositional_noise 0.1 High estimate on the basis of the different

values for referential noise in the wide scope
condition (section 4.2.3)

Table 4.7: Parameters of the generation procedure and values obtained from
the video data.

ference between various parts-of-speech in the parameters settings of noise
and uncertainty. This would require us to operationalize these parameters
at the level of semantic referents (entities and events), which turns out to be
problematic given the current definition of the model, and is therefore left for
future research.

4.4 Directions for modeling symbol acquisition

The experiments on the annotated video data described in this chapter pro-
vide a very simple first approach to empirically grounding the assumptions
concerning the availability of meaning independently of language. To this
end, we made some simplifying assumptions. We were only concerned with
features that were actively being attended to, following research on joint at-
tention (Tomasello 2003), and we assigned hardly any socio-cognitive skills
to the learner, beyond assuming that whatever situations are present between
the previous utterance and the subsequent one constitute the set of candidate
meanings for the current utterance.

Furthermore, we assumed that the features were independent within a sit-
uation, thereby making no difference between bundles of features occurring
together (properties always being the property of an object, events always
having participants). This inherent structure of the situations may provide
valuable cues for the learner. We will exploit this structure in the modeling
work described in the later chapters.

Finally, starting from a set of semantic primitives is problematic. Although
one can argue for a universal set of features underlying the semantics of all
natural languages (Jackendoff 1990), typological research shows that such a
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set at least has to be very flexible to accomodate the distinctions made in dif-
ferent languages. Conceptualizing the space of potential meanings in terms of
continuous scales rather than discrete features may prove to be a more insight-
ful starting point (Bowerman 1993, Levinson, Meira, & the Language and Cog-
nition Group 2003, Majid, Boster & Bowerman 2008) for describing language-
specific categories. Beekhuizen, Fazly & Stevenson (2014) describe how we
can use these continuous spaces to study semantic error patterns in language
acquisition, showing how overgeneralizations can be predicted on the basis
of continuous spaces and the insight that groupings of situations with one lin-
guistic marker that are cross-linguistically more common, are probably also
easier to acquire than groupings that are cross-linguistically less common.

One can always push realism further. I believe, however, that the current
proposal at least provides more realism than input generation procedures
hitherto proposed. With a computational model satisfying many constraints
or desiderata imposed by usage-based theorizing and a realistic input gener-
ation procedure, we can now see how the model behaves and what kinds of
representations it acquires. These issues will be addressed in the subsequent
three chapters.




