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CHAPTER 3

The Syntagmatic-Paradigmatic Learner

3.1 Introduction

In this chapter, I introduce the Syntagmatic-Paradigmatic Learner (SPL for
short), a computational model of the acquisition of linguistic representations
that constitutes the culmination of my inquiries presented in chapter 2. In
that chapter, I discussed several desiderata and explananda for a usage-based
learner. With those in mind, I developed a model that satisfies many desider-
ata and explains most of the explananda (as we will see in the later chapters)
with a limited set of mechanisms and representations.

Globally speaking, SPL is an incremental learner that processes input items
one by one. Each input item consists of an utterance, paired with a set of situa-
tions to which the utterance can refer. SPL tries to analyze the utterance on the
basis of the situational context, its current state of linguistic knowledge, and
several general processing operations. Using the resulting analysis, SPL up-
dates and expands its linguistic knowledge. The learning gets off the ground
by a procedure of analogical reasoning over recent exemplars. Using this pro-
cedure, the model is able to learn initial lexical mappings between form and
meaning.

Unique features of SPL are that it performs the full comprehension and
production task (desideratum D2), and acquires lexical and grammatical con-
structions at the same time (D3). The gradual build-up of the representa-
tions in the model through the syntagmatization and paradigmatization op-
erations (defined below) furthermore makes SPL a faithful implementation of
the usage-based conception. At the same time, it addresses those aspect of the
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usage-based approach that I deemed unsatisfactorily worked out (cf. section
2.2).

As a note for readers not accustomed to reading set-theoretical and graph-
theoretical definitions, and probability calculations: I will only employ the
high degree of formalization in this chapter, and try to explain and motivate it
in the text surrounding the formalization. The formalization is meant to show
how one can operationalize certain usage-based notions.

3.2 General properties of input items to the model

3.2.1 Input items: utterances and conceptualizations of situa-
tions

SPL takes as its input pairings of an utterance and a number of conceptual-
izations of situations that the learner considers to be the possible conveyed
meanings. The idea that the language-learning child has a conception of the
possible meaning of an utterance (in a conceptualization of a situation) is a
logical necessity for symbol acquisition to get started. At the very least, not
all of the possible concepts a child can entertain should be considered to be
signified by every utterance, as this would disallow any correct associations
to be formed.

The assumption that the meaning of an utterance can be independently ob-
tained has been commonly made, and has been labeled the Interpretatibility
Requirement (O’Grady 1997, 260), put forward most eloquently by MacNa-
mara:

It is not too fanciful to think of the infant as treating the sentences
he hears as glosses on the events that occur about him. The gram-
mar he writes is not in Latin or in any other language, but in some
neurological code of which as yet not a single letter has been deci-
phered. (Macnamara 1972, 12)

The most obvious source of this language-independent understanding
is the perception of the situation in which the language is used (Gleitman
et al. 2005, 28). In fact, the primary external source of obtaining a set of can-
didate meanings is experience. As we know from work such as Tomasello &
Farrar (1986) and Baldwin (1993), this does not necessarily mean the perceptual
experience of the immediate situation in which the utterance is produced (al-
though that is the simplest imaginable source); it can also include concepts in-
ferred on the basis of perceived situations (e.g., mental states such as intentions
and attitudes) as well as non-immediate situations (concepts not present in the
here and now of the speech situation, or in the child’s visual field, but never-
theless deemed relevant by the child because of these inferential mechanisms).
Nonetheless, the simplest source of potentially signified concepts is the per-
ception of the situation that is spatially and temporally contiguous with the
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Figure 1 shows a sample verb usage, consisting of a natural language
utterance paired with the semantic information that is inferred through
observing the corresponding event given to our model as a sequence of
words in root form.

The meaning of the utterance is represented as three sets of semantic
features:

. Semantic primitives of the verb: the basic characteristics of the predicate
are described as semantic primitives (e.g., {cause, become, rotating}).
Some of the primitives are general and shared by many verbs (e.g.,
‘movement’ or ‘act’), whereas others are verb-specific (e.g., ‘consume’
or ‘play’).

. Lexical properties of each argument: the inherent properties of the
argument (e.g., {woman, adult, person, . . . }). These lexical semantic
properties are independent of the event that the argument participates in.

. Event-based properties of each argument: the properties that the
argument takes on in virtue of how it participates in the event. Some
of these properties are similar to the proto-role properties proposed by
Dowty (1991) (e.g., ‘cause’ or ‘affected’) but others are verb-specific
(e.g., ‘eating’ or ‘falling’).

We explain later how we choose the properties for events and arguments
in our experiments.

3.3 General constructions as groups of verb usages

A construction in our model is a group of verb usages that are ‘similar
enough’, according to the probabilities over their features, to be grouped
together. The notion of ‘similar enough’ is described in detail in the next

Sara eat lunch

Semantic primitives: {act, consume}

Lexical properties: {woman, adult female, female, person, individual, somebody, human, ...}
Event-based properties: {volitional, affecting, animate, independently exist, consuming, ...}

Lexical properties: {meal, repast, nutriment, nourishment, sustenance, ...}
Event-based properties: {non-independently exist, affected, change, ...}

Figure 1. A sample verb usage: an utterance paired with the inferred semantic information.
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Figure 3.1: Semantic features extracted on the basis of the utterance in Alishahi
& Stevenson (2010, 59).

utterance, as this is a source that requires little further cognitive sophistication
to arrive at, and that is attested in other species as well (Goodall 1986, Savage-
Rumbaugh, Murphy, Sevcik, Brakke, Williams & Rumbaugh 1993, Kaminski,
Call & Fischer 2004).

The Interpretability Requirement may, however, be too strong compared
to the situations the child finds herself in. It may be that the correct situa-
tion is not observed, for instance. Furthermore, there may be many situations
besides the correct one that are initially equally likely to be the situation the
utterance refers to. These issues constitute a topic that many computational
models discuss, but the empirical grounding on the eventual decision they
make concerning the frequency with which the correct situation is absent and
the number of ‘distracting’ situations being co-present, is thin. For that rea-
son, I decided to venture into this topic empirically by looking at videotaped
caregiver-child interaction. The results of that exploration and an answer to
the question how to provide the computational model with realistic input
items are discussed in chapter 4.

3.2.2 The structure of the conceptual representations
In dealing with the acquisition of a constructicon, hierarchical representations
of meaning are required. Rather than taking recourse to approaches to mean-
ing based on formal logic, I do so by using a graphical structure with sets of
features on the nodes that reflect the subtleties of conceptualization better. To
do so, I make use of Alishahi & Stevenson’s (2010) input-generation proce-
dure. In their procedure, an utterance with a conceptual frame is generated.
An example is given in figure 3.1. We can automatically extract hierarchical
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{act,consume}

{volitional,affecting, 
animate,independently 

exist,consuming,...}

{non-independently 
exist,affected, 

change,...}

{woman,adult female, 
female,person,individual, 

somebody,human,...}

{meal,repast, nutri-
ment,nourishment, 

sustenance,...}

Figure 3.2: An example of a situation.

conceptual representations from Alishahi and Stevenson’s procedure given
the following three basic rules:

• The event node is the root node.

• The semantic role nodes, or event-based properties are daughters of the
root node.

• The semantic argument nodes, or lexical properties, are daughters of a
semantic role node.

For the example in figure 3.1, we obtain the structure found in figure 3.2.
This structure constitutes (a conceptualization of) a situation s. As we will
use conceptual graphs more in the model, it is useful to have some general
definition. A situation is a graph G, which consists of a pair of a set of vertices
V (or nodes), each of which contains a set of conceptual features, and a set of
unlabeled directed edges (or links) E, connecting pairs of vertices in V . As we
will see, the meanings of linguistic representations consist of meaning graphs
as well.

In Alishahi & Stevenson’s (2010) procedure, every generated situation is
paired with a linguistic argument structure and a set of words filling the main
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predicate and argument positions. Together, these constitute the utterance U .
The argument structure for the situation in figure 3.2 would be ARGUMENT1

+ PREDICATE + ARGUMENT2, but prepositions can also be part of the argu-
ment structure, for example in ARGUMENT1 + PREDICATE + ARGUMENT2

+ on + ARGUMENT3.
For now, this short exposition suffices to give an idea of the structure of

the representations. Chapter 4 will deal with the exact properties of the input
generation procedure.

3.3 Constructions

3.3.1 Constructions as representational primitives
The only representational unit of linguistic knowledge employed in SPL is
the construction. While there are many perspectives on what a construction is
within the theory of construction grammar, I start off from Verhagen’s (2009)
vantage point (cf. the discussion in section 2.1.1). Recall that Verhagen argues
for the importance of the conceptual distinction between the contents of con-
structions and the roles these contents play. Crucially, a construction is a sym-
bol, that is: a conventional pairing of a signifier and a signified. Signification
entails that when the hearer observes a signifier, he infers that the speaker in-
tends him to conceptualize the signified. The conventionality means that the
signification process relies on a mutual understanding of the inferential pro-
cess of signification between any two members of a language community.

The next question is what kinds of elements we assume to be present as
the signifying and signified roles of a construction. Following desideratum
D4-1, we assume only phonological and conceptual structure to be the ele-
ments out of which constructions are built. In the simplest case, that of words,
the signifying element is a phonological string, and the signified element a
conceptual representation. Grammatical constructions, however, often have
non-phonological signifiers. As Verhagen argues, conceptual structure can be
taken to fufill the role of a signifying element as well, and it is this content type
that constitutes the signifying element in many grammatical constructions in
SPL.

In grammatical constructions, we can also see a second property of the sig-
nifier, namely that it can be complex, that is: consisting of multiple elements.
It is this property that allows language its expressivity: signification processes
can be recursively applied to the outcomes of other signification processes,
and multiple signifieds can function together as the signifier of a larger, more
encompassing construction, effectively giving rise to a hierarchical interpreta-
tion of a phonological string.

We therefore assume that the signifier of a construction consists of a num-
ber of constituents, each specifying what kind of element (a phonological
string, a conceptual representation, or both) should be satisfied for that con-
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stituent to be recognized. The signified element of a construction is taken to
be a conceptual graph that is a subgraph of a situation: as we will see, all
signified conceptual structures are grounded in the situations, and as such,
the meaning of the constructions is qualitatively grounded in linguistic usage
events as well. Importantly, no matter how abstract, all constructions in SPL
have a semantic representation as a signified. That is: I assume that there are
no conventions in a language that are completely devoid of meaning.1

Finally, it has to be noted that this research just forms a proof of concept
of the feasibility of operationalizing a usage-based constructivist approach to
grammar learning, early production and comprehension. In order to model
more complex phenomena than the ones we study here, richer conceptual rep-
resentations and further extensions to the definition of a construction have
to be assumed. To name a few: the current definition of conceptual struc-
ture as a graph without re-entrances is not suited for addressing issues of
co-referentiality within sentences, as this would require multiple links in the
conceptual graph to connect to the same node. In principle, there is no rea-
son why this cannot be implemented in SPL. Furthermore, the signifiers of
constructions are now strictly linearly ordered. This is unproblematic for a
language like English, that relies heavily on word order and constrains the
possible word orders rather strictly, but for languages with freer word order,
we may want to loosen the strict linearity constraint and define constructions
in terms of sets of signifying constituents which may or may not have some
ordering constraints on them.

3.3.2 A formal definition of constructions and the constructi-
con

Formalizing these assumptions, we arrive at the following definition of a con-
struction and a constructicon:

1This is an issue that has drawn some attention in the constructivist literature. Concerning the
case of subject-auxiliary inversion in English, which is often considered to be a purely structural
generalization, Goldberg (2006, ch. 8) argued that a common functional element to all cases can
be found. A full treatment of the question whether purely structural generalizations exist falls
outside the scope of this research, but one option that is rarely considered is that a generaliza-
tion such as subject-auxiliary inversion in English may only be a linguist’s generalization. This
means that linguists may observe structural commonalities in several grammatical patterns, but
that the language user does not have any sort of mental representation corresponding to these
structural commonalities. That is to say: the abstraction over the various patterns is not made by
the language user, but she rather maintains a number of semantically non-vacuous lower-level
constructions.
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Definition of a construction and a constructicon

• Let α be a phonological element from the speaker’s phonological
inventory. In principle, there are no constraints on the size of α: it
can consist of a single phoneme, or a string longer than a word. For
the purposes of the experiments here, we set the lower bound on α
to be a word in the input generation procedure.

• A construction c is a pair of a signifier src and a signified sdc, where:

– sdc is a conceptual graph G (as defined in section 3.2).

– src is an n-tuple (where n ≥ 1) of constituents. Each constituent
(denoted: sric for the ith constituent) is a pair of a conceptual
constraint K and a phonological constraint F , where

∗ K(sric) is a single vertex in G
∗ F (sric) is a string of phonological elements of any length

greater than or equal to one (F (sric) = α+, where + denotes
the Kleene plus) or unspecified (F (sric) = ε)

– A construction is furthermore associated with a countc = [0,∞]
reflecting how often that construction has been processed.

• We define the head constituent of a construction srhead
c to be the

constituent that has a conceptual constraint K(srhead
c ) such that

K(srhead
c ) = vroot(G).

• We define a lexical construction to be a construction c that has a
single signifier, i.e., |src| = 1.

• A constructicon Γt is a set of constructions c1, . . . , cn, including their
counts, at some time t

Figure 3.3 gives two examples of possible constructions. In Figure 3.3a
we can see a lexical construction, containing a single signifying constituent.
The construction’s meaning is a conceptual graph consisting of a single vertex
and no edges. The signifier consists of a conceptual constraint (K) pointing to
the root vertex of G, and the phonological constraint (F ) specifying that this
construction can be recognized with the phonological string ball. Figure 3.3b,
next, displays a grammatical construction, that is: a construction consisting
of more than one signifying constituent. The signified meaning is a meaning
graph G consisting of four vertices, each containing a set of conceptual fea-
tures. The first signifying constituent sr1 has a phonological constraint that is
empty (represented as F : ε) and a semantic constraint pointing to the vertex
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F: ball

K

{object,entity,ball}

sd

sr
sr1

count = 4

(a) An example of a lexical construction.

F: Ɛ

K

F: go

K

{move}

{agent,mover} {location,goal}

{animate} {surface}

sd

sr
sr1 sr2

count = 12

(b) An example of a grammatical construction.

Figure 3.3: Two examples of constructions.
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of G that contains the feature ENTITY. The second constituent sr2 has a spec-
ified phonological constraint, viz. go, and a conceptual constraint stating that
whatever is combined with this constituent must somehow combine with the
feature set {EVENT,MOVE}. This second constituent, furthermore, is the head
constituent of the construction, as its semantic constraint points to the root
vertex of the constructional meaning.

As the box-diagrammatic format is often unwieldy, we will make use of a
modified version of Langacker’s (1987) bracket notation format, as introduced
in chapter 1. The two constructions in figure 3.3 would be represented as fol-
lows in this format:

(24) [ BALL / ball ]

(25) [ [ ANIMATE ] [ MOVE / go ] ] |
MOVE(MOVER(ANIMATE),LOCATION(SURFACE))

3.4 Defining the space of possible analyses

When presented with an input item, the model employs its inventory of con-
structions and processing mechanisms to analyze it. Constructions can be ap-
plied if the string of signifying constituents is found to be present and if their
meaning ‘makes sense’ in the context of one of the co-present situations.

I conceptualize the analysis of an utterance with constructions as a deriva-
tion process in which a fixed set of rules2 is applied to an utterance. This is
perceived for explanatory purposes as a top-down branching process (start-
ing with a TOP-node, and terminating in the words of the utterance). How-
ever, as we will see in section 3.5.4, the model employs in the implementation
a more realistic bottom-up process in which it does not keep track of all logical
possibilities.

As the learner starts with no knowledge of the linguistic conventions, and
as in the early stages of learning, the constructicon does not allow for full
analyses of the utterance, the model will have to be robust enough to inter-
pret parts of the utterance and situation on the basis of little knowledge. To
this end, I define several rules that allow the model to create analyses of the
utterance despite having little or no knowledge of linguistic constructions.

3.4.1 Mapping constructions to situations
I assume that SPL always interprets an utterance in the light of the observed
situations in the input item. This means that the meaning of every used con-
struction has to ‘make sense’ given at least one of the situations, or in other
words: the model has to establish how the meaning of a construction is con-
textually resolved. In the simple case of a noun-like lexical construction, the

2I will call them ‘rules’ or ‘mechanisms’: these should be taken to be equivalent.
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model can apply that construction if there is at least one element in the con-
text to which the constructional meaning can refer. Potentially, there are more:
a word may refer to a number of entities, possibly in multiple situations, in
which case the hearer has to disambiguate to which entity the construction
refers. What the model needs is a means of finding out what parts of the situ-
ational context S can be expressed by each of the constructions c ∈ Γ.

In order to link the constructions to the situations, subset mappings be-
tween signified meaning of the constructions and parts of situations are made.
The (possibly empty) set of subset mappings M between the signified concep-
tual graph sdc of a construction c and the situational context S consists of all
legal subset mappings mapsubset between sdc and situations in the context. A
mapping mapsubset between sdc and a subgraph of a situation s ∈ S is estab-
lished if and only if sdc and the subgraph of s have the same edge structure
and if the sets of conceptual features on the vertices of the subgraph of s are
supersets of the sets of features on the vertices of sdc.

Definition of subset mapping

A subset mapping is an injective structure-preserving function
mapsubset = f : sdc → s between a signified constructional mean-
ing sdc of a construction c and a situation s ∈ S such that

• mapsubset(sdc) is a connected subgraph of s

• The feature sets of all vertices in sdc are subsets of the feature sets of
the vertices mapsubset(v) ∈ s they correspond with
(i.e., ∀v ∈ V (sdc).v ⊆mapsubset(v))

For any construction c, the set of possible subset mappings holding be-
tween sdc and any s ∈ S is denoted as M(sdc). As per convention, we
leave out the subscript when talking about subset maps, i.e., map =
mapsubset (as opposed to other kinds of maps which we will encounter
later).

Some examples of subgraph mappings are presented in figure 3.4. In the
first example, we see a semi-open construction mapped to a subgraph of situa-
tion 1. Each of the four vertices of the constructional meaning maps to another
vertex in situation 1, and all of the edges are preserved in the mapping. Fur-
thermore, each vertex to which the vertices of the constructional meaning map
is a subset of the conceptual features in the subgraph of the situation.

The second example shows a mapping of a lexical construction to two sub-
graphs, each in a different situation. The first mapping, represented as a dot-
ted line, maps the vertex containing the feature set {ENTITY, OBJECT, BALL} to
a vertex with an identical feature set in the first situation. The second map-
ping, represented as a triple-dash triple-dot line, maps that vertex to a vertex
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{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

F: go

K

{event,move}

{role,patient,moved} {role,location,goal}

Situation 2

{role,patient,possessed}

{entity,object,ball}

F: ɛ

K

{entity}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(a) A subset mapping between a semi-open construction and the situational context.

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

F: ball

K

{entity,object,ball}

(b) Two subset mappings between a lexical construction and the situational context.

F: ɛ

K

{event}

{role}
{role}

F: ɛ

K

{entity}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(c) Two subset mappings between an open construction and the situational context.

Figure 3.4: Three examples of subset mappings. Different subgraph mappings
are represented with differently patterned lines.
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with an identical feature set in the second situation. In both cases, the edge
structure is (trivially) preserved, and the content of the single vertex in the
constructional meaning is a subgraph of each of the two vertices it maps to.

Finally, in the third example, we see what happens when we have a rel-
atively abstract construction. Because the sets of conceptual features on the
vertices of the constructional meaning are small, they have the potential of
being the subset of many vertices in the situational context. In this case, the
first vertex containing the conceptual feature set {ROLE} can be mapped onto
either the vertex containing {ROLE, PATIENT, MOVED} of situation 1, or onto
the vertex containing {ROLE, LOCATION, GOAL}, and similarly for the other
vertices. Because of this, two subgraphs of situation 1 can stand in a subgraph
mapping relationship with the construction.

The constraint that there needs to be at least one situational mapping in
order to apply a construction is obviously an oversimplification: if a construc-
tion has a meaning that is not among the meanings considered to be relevant
for communication, the model simply does not consider it. In adult linguistic
communication, however, constructions can be referring to entities and events
beyond what the hearer assumes the speaker to be considering, which means
that these can nonetheless be retrieved and the communicative intent can be
understood. Nonetheless, I believe that much of the infant’s communication is
based in the here-and-now of the situational context, and that, therefore, she
will consider those primarily.

3.4.2 Three general constraints
Two general constraints on derivations furthermore hold. The first is that all
constructions used in a derivation must be mapped, via a subset mapping,
to the same situation. This is the principle of coherence, which ensures that
the interpretation of the utterance is coherent. It relies on a communicative
assumption that the speaker is trying to refer to a specific situation with her
message.

The second constraint, isomorphy, states that the root vertices of the mean-
ings of any two constructions used in a derivation may not be mapped to the
same vertex in the situation. The principle of isomorphy constitutes a strong
case of mutual exclusivity on the level of the sentence, similar to models of
the acquisition of word meaning such as Fazly, Alishahi & Stevenson (2010)
and Siskind (1996). It takes an intermediate position: whereas Fazly et al.’s no-
tion of mutual exclusivity is a soft constraint, Siskind (1996, 43) goes further,
stating that no two words may refer to the same part of a situation at all.

I believe Siskind’s approach to be too strong: two words can refer to the
same semantic elements. A verb like leave signifies a Source-Path-Goal image
schema (Lakoff 1987), and a preposition like from does so as well. The fact
that both refer to aspects of the same frame, does not preclude language users
from using both in the same sentence (I left from my house this morning). The
isomorphy constraint I define is non-probabilistic, but weaker than Siskind’s
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approach. It only states that the root vertices of the meanings of the used con-
structions may not map to the same vertex of a situation. In order to combine
constructions in our model, we require the two constructions to share one ver-
tex in a s, as we will see in section 3.4.5. Because of this, we need different
constructions to be able to stand in a subset-mapping relationship to the same
vertex in a situation (as in the case of leave and from), whereas Siskind’s notion
of isomorphy would preclude this.

One exception to isomorphy is the case in which the head constituent of
a construction c is filled with another construction c′. In that case, the root
vertex of sdc′ points by necessity to the same vertex as the root vertex of sdc.
The other constituents of c and c′ still have to obey isomorphy. The reason for
this exception is that we want to allow for abstract argument structure con-
structions to be combined with verbs and more generally: for abstract valency
patterns (i.e., without a phonological specification of the head constituent) to
be combinable with lexical constructions giving a phonological specification
of the head.

Unlike for coherence, the discrete nature of the isomorphy constraint is not
self-evident. Exploring a more probabilistic version of isomorphy (in which
multiple coverage of the same situational vertex is directly or indirectly pe-
nalized) may constitute an interesting future extension of the model.

A final constraint concerning heads is the the single-dependent-distribu-
tion constraint. This constraint states that the head constituent of a construc-
tion cannot be combined with another construction that has the same head,
unless it is a lexical construction. This constraint prevents the recursive appli-
cation of highly abstract constructions early on, which would otherwise lead
to spurious bootstrapping behavior. The motivation for this constraint comes
from the connection with dependency parsing the model has: given a head,
certain patterns of dependents (other constituents) can be selected, but the
selection can to be made only once. Cognitively, one could argue that, when
selecting a verb, the speaker selects only a single, and not multiple, argument-
structure constructions to express that verb with.

3.4.3 Starting a derivation: concatenation
Derivations are built using a set of processing mechanisms that are given to
the model before it has any contentive knowledge of the grammatical con-
structions. As such, they should be considered ‘innate’ to the model, or at least
existing prior to any linguistic input. However, they should be considered
to be very general structure-building operations rather than domain-specific
rules. The four operations defined by them (concatenation, rule application,
ignoring, and bootstrapping) can be seen as general operations on informa-
tion.

All processing mechanisms are applied to the left-most non-terminal sym-
bol of a current derivation. A derivation starts with the TOP symbol. From a
TOP symbol, we can start any number of concatenated derivations:
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i TOP→ START+

The START symbol, then, forms the starting point for the application of
pairings of a construction and a subset mapping (c,map pairings). We there-
fore add the following processing mechanism to the set:

ii START→ (c,map)

With mechanism i, any number of derivations can be concatenated as long
as they obey the coherence and isomorphy constraints. Mechanism i gives
the model the robustness to jointly interpret several partial analyses in early
stages when it has little linguistic knowledge. As such, it can be seen as a gen-
eral inferential strategy: the model understands several parts, assumes they
are parts of the same message, and so interprets them jointly. Importantly, this
processing mechanism remains available to the model throughout develop-
ment (desideratum D6-4), although its relative importance may decrease.

3.4.4 Ignoring words
Furthermore, this concatenative top rule allows the model to integrate words
that it cannot analyze into the derivation. This behavior, too, is needed in
early stages, as the model simply does not have constructions to analyze all
the words in the utterance. For ignoring words, we define the following rule,
given that α is a minimal phonological string (in our case defined as a pre-
segmented word).

iii START→ α

Importantly, any α ∈ U can be ignored with rule iii. This is important in
allowing the model the robustness to interpret complex constructions whose
constituents are disjunct, i.e., by ignoring the intermediate words (applying
rule iii for each ignored word).

3.4.5 Applying construction-mapping pairings
When applying a c,map pairing with rule ii, the constraints on its signifying
constituents src have to be satisfied in order to create a legal derivation. The
processing mechanism iv specifies this, by instructing the model to replace c
with its constituents src.

iv (c,map)→ sr1
c , . . . sr

n
c

Satisfying the constraints on each sric can be done in three ways, depending
on the constraints on sric.

v sric → α+ (if F (sric) 6= ε)
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vi sric → α+ (if F (sric) = ε)

vii sric → (c′,map′) (only if c is not a lexical construction)

Rule v, firstly, terminates the derivation with any number of termi-
nal nodes. In the generative process, these terminal nodes are specified by
the non-empty phonological constraint F (sric). In parsing, this phonological
string α+ has to be a substring of U . When the phonological constraint is not
specified (i.e., F (sric) = ε), we can bootstrap a substring of U into that con-
stituent with rule vi. This is another operation, besides the concatenation pro-
cess of rule i and ignoring words with rule iii, allowing the model to apply
constructions despite not knowing certain lexical constructions.

Rule vii, finally, allows the model to fill any constituent of a construction c
with another pairing of a construction c′ and a subset mapping map′. Apart
from having to satisfy the general constraints of isomorphy and coherence,
the new pairing c′,map′ has to satisfy the phonological and semantic con-
straints on sric.

Satisfying semantic constraints

Satisfying a semantic constraint means that whatever fills a constituent (from
a top-down perspective) or whatever is used to recognize a constituent (from
a bottom-up perspective) has a meaning that is compatible with the content of
the semantic constraint. Recall that a semantic constraint on a signifier K(sric)
is a pointer to a single vertex v in the meaning of c. As such, it can be mapped,
via the subset mapping map to a vertex in one of the situations.

Semantic constraint satisfaction is defined as the situation in which the
root vertex of the meaning of the construction filling a constituent is mapped
to the same vertex in one of the situations to which the semantic constraint on
the constituent is mapped. More formally:

Definition of semantic constraint satisfaction

A semantic constraint K(sric) of a construction c with a mapping map is
satisfied by a pairing of a construction and a mapping c′,map′ iff

• map(K(sric)) = map′(vroot(sdc′))

Satisfying phonological constraints

Satisfying phonological constraints in rule vii is a slightly more complex mat-
ter. After all, the construction c′ itself is not a phonological element. However,
if the head constituent of c′ terminates into a phonological string α+ that is
identical F (sric), we consider F (sric) satisfied.



84 3.4. Defining the space of possible analyses

Formally, phonological constraint satisfaction works as follows:

Definition of phonological constraint satisfaction

A phonological constraint F (sric) of a construction c with a mapping
mapsubset is satisfied by a pairing of a construction and a mapping
c′,map′subset iff

• F (sric) = yield(srhead
c′ ), where the yield of a signifier yield(sric) is

defined as the string of phonological elements α+ governed by the
derivation at sric.

The motivation for allowing derivations themselves to satisfy phonologi-
cal constraints is that it allows us, for adult language, to parse modified idioms
like pull some family strings or pull political strings. In those cases, the strings
is a lexical constituent of a phonologically specified construction [ [ pull ]
[ strings ] ]. I propose that the analysis of pull political strings is that the [ [ pull ]
[ strings ] ] construction is combined with something like an [ [ PROPERTY ]
[ ENTITY ] ] construction, where the [ PROPERTY ] constituent is replaced with
the lexical element political. Similarly, if the child starts out with highly lex-
ically specified constructions, as usage-based theory has it, allowing for the
modification of a lexically specified constituent is a desirable feature of the
model.

Finally, a special constraint on head constituents srhead of constructions
is that rule vii can only apply if c′ is a lexical construction. I assume that a
head can only distribute its roles once, meaning that if a construction is ap-
plied in which the dependent constituents of a head constituent are given, the
head constituent of this construction cannot be filled with another construc-
tion which again gives the dependent constituents of the same head. We call
this constraint the single-dependent-distribution constraint. One could argue
that this constraint is overly strict: if a learner knows an [ [ AGENT ] [ kicks ] ] as
well as a [ [ kicks ] [ PATIENT ] ] construction, why could we not apply both sub-
sequently? It would give the learner more robustness for interpreting full(er)
utterances early on, for instance in cases where the learner does not have an
[ [ AGENT ] [ kicks ] [ PATIENT ] ] construction, but does have an [ [ AGENT ]
[ kicks ] ] and a [ [ kicks ] [ PATIENT ] ] construction (for a proposal along those
lines, see Langacker 2009).

One apparent problem is that this approach would allow for a lot of over-
generation: the head constituent of, say, a transitive construction can be filled
with a transitive construction, whose head constituent can be filled with an-
other transitive construction, and so forth. Of course, the isomorphy con-
straint limits this, and in practice it would not pose that much of a problem.
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PHON: go

K

{event,move}

{role,patient,moved} {role,location,goal}

F: ɛ

K

{entity}

F: ɛ 

K

{event,move}

{role,patient,moved} {role,location,goal}

F: ɛ

K

{entity}

F: ɛ 

K

{event}

{role,patient} {role}

F: ɛ

K

{entity}

PHON: ball

K

{entity,object,ball}

F: go

K

{event,move}

{role,patient,moved}

{role,location,goal}

c
1

c
2

c
3

c
4 c

5

count = 1 count = 2

count = 2 count = 5 count = 1

Γ

Figure 3.5: A constructicon Γ consisting of 5 constructions.

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

Figure 3.6: Two situations in the input item.

3.4.6 An example of the space of possible derivations
To illustrate the space of possible analyses of an utterance, let us take a look
at an example. First, assume the constructicon in figure 3.5. This constructicon
consists of five constructions. Let us further assume that the model is trying
to create derivations over the utterance U = ball go there. The situations S co-
present are given in figure 3.6.

First, all subset mappings between the constructions and subgraphs of the
situations are retrieved. Figure 3.7 gives all subset mappings for the five con-
structions and the two situations. Constructions c1 and c2 each have one map-
ping to situation s1. Construction c3, being more abstract, has two mappings:
one to s1 (let us call it map1(c3)), and one to s2 (map2(c3)), as has construction
c4 (map1(c4) and map2(c4)). The lexical construction c5, finally, just has one
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F: go

K

{event,move}

{role,patient,moved} {role,location,goal}

F: ɛ

K

{entity}

c
1

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(a) The mapping between c1 and the situations.

F: ɛ 

K

{event,move}

{role,patient,moved} {role,location,goal}

F: ɛ

K

{entity}

c
2

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(b) The mapping between c2 and the situations.

F: ɛ 

K

{event}

{role,patient} {role}

F: ɛ

K

{entity}

c
3

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(c) The mapping between c3 and the situations.
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F: ball

K

{entity,object,ball}

c
4

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(d) The mapping between c4 and the situations.

F: go

K

{event,move}

{role,patient,moved}

{role,location,goal}

c
5

{event,cause,possess}

{role,agent,possessor}

{entity,animate,mother}

Situation 2

{role,patient,possessed}

{entity,object,ball}

{event,move}

{role,location,goal}

{entity,object,box}

Situation 1

{role,patient,moved}

{entity,object,ball}

(e) The mapping between c5 and the situations.

Figure 3.7: The mappings between the constructions in the constructicon and
the situations.
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subset mapping.

d1 : i

iii

ball

iii

go

iii

there

d2 : i

ii(c4,m1)

iv(sr1(c4))

v

ball

iii

go

iii

there

d3 : i

ii(c4,m2)

iv(sr1(c4))

v

ball

iii

go

iii

there

d4 : i

iii

ball

ii(c5,m1)

iv(sr1(c5))

v

go

iii

there

Figure 3.8: Derivations d1 − d4 for ball go there.

Which derivations are possible given this set of construction-situation
mappings and the eleven processing mechanisms? Firstly, in the most trivial
case, d1, we ignore all words by applying rule i with an arity of three, followed
by three times rule iii, with which we ignore a word. In the next three deriva-
tions, d2-d4, we apply one grammatical construction with rule ii and ignore all
other words. Rule ii applies a c,map pair (represented as (c,mi)), which then
splits into the constituents of c with rule iv. Because the single constituent of
constructions c4 and c5 is phonologically specified and can be retrieved from
U with rule vi, the derivation is valid. Note that in the case of d2 and d4, the
construction is mapped to elements of situation s1, and in the case of d3 to s2.

d5 : i

ii(c4,m1)

iv(sr1(c4))

v

ball

ii(c5,m1)

iv(sr1(c5))

v

go

iii

there

d′5 : i

ii(c4,m2)

iv(sr1(c4))

v

ball

ii(c5,m1)

iv(sr1(c5))

v

go

iii

there

Figure 3.9: Derivations d5 and d5
′ for ball go there.
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Concatenating the constructions c4 and c5 is also possible. Derivation d5

exemplifies this: rule i is applied with an arity of three, after which construc-
tions c4 and c5 are inserted with rule ii, and the final word is ignored with rule
iii. Note that the derivation in d′5 is illegal: as c4 is mapped to situation s2 via
map2 and c5 to situation s1 via map1, the coherence constraint is violated,
rendering this derivation invalid.

d6 : i

ii(c1,m1)

iv(sr1(c1))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c1))

v

go

iii

there

d7 : i

ii(c1,m1)

iv(sr1(c1))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c1))

vii(c5,m1)

iv(sr1(c5))

v

go

ii

there

d8 : i

ii(c1,m1)

iv(sr1(c1))

vi

ball

iv(sr2(c1))

v

go

iii

there

d9 : i

ii(c1,m1)

iv(sr1(c1))

vi

ball

iv(sr2(c1))

vii(c5,m1)

iv(sr1(c5))

v

go

iii

there

Figure 3.10: Derivations d6 − d9 for ball go there.

Then there are four derivations in which construction c1 is applied and
there is ignored. In the first two cases, d6 and d7, the open constituent of c1 is
filled with the pairing c4,m1. In the latter two, d8 and d9, the word ball is boot-
strapped by directly terminating the phonological open constituent sr1(c1)
with rule vi. Secondly, in d6 and d8 rule vi is applied to the recognition of the
word go, whereas in d7 and d9 the second constituent of c1 is filled with c5,m1

via rule vii, which then terminates in the word go.
Construction c2, with two open constituents, allows for more derivations.

Derivation d10 gives the case in which c2 is combined with c4 and c5 and the
word there is ignored. However, we can also bootstrap either (d11−d14) or both
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(d15 − d19) constituents.
Note that, although in principle construction c1 could be combined with

the second constituent of c2, sr2(c2), the isomorphy constraint precludes this.
The combination of c5 with sr2(c2) is legal: although both c2,m1 and c5,m1

have root nodes mapped to the {EVENT,MOVE} vertex of situation s1, sr2(c2) is
the head constituent of c2, and hence this situation is exempt to isomorphy.

Finally, construction c3 allows for even more derivations. As it has two
mappings and is fully phonologically unspecified, many derivations involv-
ing bootstrapped constituents can be made. Below all 19 derivations can be
found (d20 − d37) in figures 3.13 and 3.14.
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d10 : i

ii(c2,m1)

iv(sr1(c2))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c2))

vii(c5,m1)

iv(sr1(c5))

v

go

iii

there

d11 : i

ii(c2,m1)

iv(sr1(c2))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c2))

vi

go there

d12 : i

ii(c2,m1)

iv(sr1(c2))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c2))

vi

go

iii

there

d13 : i

ii(c2,m1)

iv(sr1(c2))

vi

ball

iv(sr2(c2))

vii(c5,m1)

iv(sr1(c5))

v

go

iii

there

d14 : i

ii(c2,m1)

iv(sr1(c2))

vii(c4,m1)

iv(sr1(c4))

v

ball

iv(sr2(c2))

vi

there

iii

go

d15 : i

ii(c2,m1)

iv(sr1(c2))

vi

ball go

iv(sr2(c2))

vi

there

Figure 3.11: Derivations d10 − d15 for ball go there.
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d16 : i

ii(c2,m1)

iv(sr1(c2))

vi

ball

iv(sr2(c2))

vi

there

iii

go

d17 : i

ii(c2,m1)

iv(sr1(c2))

vi

ball

iv(sr2(c2))

vi

go

iii

there

d18 : i

iii

ball

ii(c2,m1)

iv(sr1(c2))

vi

go

iv(sr2(c2))

vi

there

d19 : i

iii(c2,m1)

iv(sr1(c2))

vi

ball

iv(sr2(c2))

vi

go there

Figure 3.12: Derivations d16 − d19 for ball go there.
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rule probability

i TOP→ START+ 1
2

|START+|

ii START→ (c,map) P (c,map|CSSTART)

iii START→ α P (u|CSSTART)
iv (c,map)→ sr1(c), . . . , srn(c) 1

v sric → α+ (if F (sric) 6= ε) 1

vi sric → α+ (if F (sric) = ε) P (u|CSsric) · 1
2

|α+| · P (u|CSSTART)|α
+|

vii sric → (c′,map′) P (c′,map′|CSsric)

Table 3.1: Probabilities of the processing mechanisms in the analysis proce-
dure.

3.5 Selecting the best analysis

The six processing mechanisms, along with the construction-mapping pair-
ings used in them, will typically lead to a situation in which many deriva-
tions are possible, as we have seen in the example above. I assume that the
learner selects a single best analysis among those different analyses. In this
section, I describe the process for doing so, and the actual implementation,
which makes the model more realistic in its processing of the utterance.

3.5.1 The probability model for derivations
We can consider the branching process defined by the seven processing mech-
anisms to be a probabilistic process, where the application of a rule at a point
in the derivation has a certain probability of occurring given that point in the
derivation. Some of these probabilities are fixed, whereas others change as
the state of linguistic knowledge of the learner progresses. Table 3.1 gives the
probabilities of the processing mechanisms, which will be explained below.

P (c,map|CS) in mechanisms ii, vi, and vii is defined as the smoothed
relative frequency of the construction c out of all c,map pairings that can be
applied at that point in the derivation, i.e., that compete with c,map for being
applied. We call the set of all applicable c,map pairings at some point x the
competition set given x, or CSx. Formally, a competition set is defined as
follows:
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CSSTART = ∀(cc∈Γ,map).map(sdc) = s ∈ S (3.1)

CSsric = ∀(c′c′∈Γ,map′).map′(vroot(sdc′)) = map(K(sric)) (3.2)

That is to say: given the START symbol, all pairings of a construction in
the constructicon and a legal subset mapping compete with each other. Next,
given a constituent of a construction sric, all pairings of a construction c′ and
a mapping map′ for which the root vertex of the meaning of c′ refers to the
same vertex in a situation as the conceptual constraint of sric.

The smoothed relative frequency of the construction-mapping pairing is
then defined as:

P (c,map|CS) =
countc + 1∑

c′,map′∈CS
(countc′ + 1) + 1

(3.3)

The probability of an unseen event u, applied in rules iii and v, is given by
the remaining probability mass given a competition set CS, i.e.:

P (u|CS) =
1∑

c,map∈CS
(countc + 1) + 1

(3.4)

Motivating the probability of rule i In the concatenation process of rule i,
we set the probability of concatenating n derivations to 1

2

n, that is: the more
derivations are concatenated, the lower the probability of the overall deriva-
tion. This probability can be seen as a prior on the length of the concatena-
tion, while, at the same time, it ensures that the probabilities of all generations
given the constructicon and all possible situations sum to 1.

Motivating the probabilities of rules ii and iii Rule ii involves the ap-
plication of a c,map pairing given the START symbol. This means that
any construction, with any possible mapping to a situation in S can be ap-
plied. The competition set (as given in equation (3.1)) thus consists of all
these construction-mapping pairings. The probability of selecting the pairing
c,map out of all possible pairings is given by the smoothed relative frequency
of c out of all applicable pairings. The fact that the probabilities are based on
the counts of the constructions reflects desideratum D2-3, viz. the idea that
the representational strength of the representations or their ease of retrieval
should be grounded in their frequency of use.

Ignoring a word with rule iii, then, involves not selecting any construction-
mapping pairing. That is: the model considers ignoring a word to be an unseen
event u, and the remainder of the probability mass given CSSTART, as defined
in equation (3.4) is applied. Importantly, the probability of ignoring a word
goes down as the size of the part of the constructicon that can be applied to
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the current input item grows. This means that the more the model has learned,
the smaller the probability of ignoring a word becomes.

Motivating the probability of rule iv Rule iv can be considered a dummy
rule that expands the c of some c,map pairing into its signifying constituents
src. Because it can be trivially applied after rules ii and vii, I assign it a prob-
ability mass of 1

Motivating the probabilities of rules v, vi, and vii When substituting a sig-
nifying constituent sric of a construction for another element, several things
can happen. Firstly, if sric is phonologically specified (i.e., if F (sric) 6= ε), we
can terminate the derivation directly into the phonological structure given by
F (sric) with rule v. In that case, the termination has a probability of 1.

Regardless of whether the phonological constraint on sric is specified, we
can combine it with other c,map pairings with rule vii. Again, any c,map
pairing applied at this point in the derivation stands in competition with all
c,map pairings that can be applied at that point, that is: all c,map pairings
that satisfy the phonological and semantic constraints on sric. The probability
of applying a construction-mapping pairing c′,map′ thus is the smoothed rel-
ative frequency of c′ out of all c,map pairings that can be used to fill sric (i.e.,
CSsric ), as given in equation (3.3). Again, this aspect of the probability model
is grounded in desideratum D2-3, the idea that representational strength is
grounded in the frequency of use.

Finally, if the phonological constraint on sric is empty, we may nonetheless
terminate the derivation into a string of phonological elements α+ with rule
vi. This is the bootstrapping operation described earlier. The bootstrapping
operation competes with all construction-mapping pairings that are applica-
ble given sric, and, as with ignoring words, we assign it the remainder of the
probability mass of c′,map′ pairings given sric. However, as the bootstrapped
string α+ can be of any length, it is undesirable if bootstrapped phonological
strings of any length are equiprobable. This would lead the model to boot-
strapping very long phonological strings too eagerly. Therefore, we apply the
same principle as in the concatenation process of rule i to assign a quadrati-
cally decreasing probability over the length of the phonological string. Finally,
we consider all elements α in α+ to be ignored elements, and therefore multi-

ply P (u|CSsric) · 1
2

|α+| with the number of times rule iii would be applied if it
was a regular ‘ignore’ operation, that is: with P (u|CSSTART)|α

+|.

The probability of a derivation

The probability of a derivation can now be defined as the joint probability of
all applications of the mechanisms in the derivation process. That is, P (d|Γ, S)
is the product of the probabilities of all rules r applied in it, as defined in table
3.1:



98 3.5. Selecting the best analysis

P (d|Γ, S) =
∏
r∈d

P (r) (3.5)

3.5.2 Equivalent derivations: parses
The 38 derivations we saw in section 3.4.6 give rise to different interpretations:
d3 and d30 − d37 refer to situation s2, d1 to no situation, and the remaining
derivations to s1. Also within the groups of parses referring to the same sit-
uation, there is variation as to which parts of the utterance and the inferred
linguistic structure point to which parts of the situation.

Under the usage-based assumption that linguistic knowledge can be re-
dundantly stored at several levels of abstraction (Beekhuizen, Bod & Zuidema
2013), the model will apply constructions at varying levels of abstraction when
analyzing an utterance. Several of these, however, have an identical deriva-
tional structure and refer in the same way to the same aspects of a situation.
Therefore, for the purposes of analyzing an utterance they can be considered
identical. We define DERIVATIONAL IDENTITY as follows:

Definition of DERIVATIONAL IDENTITY

Derivations d1 and d2 are derivationally identical iff

• rules(d1) = rules(d2)

• ∀ri:ri∈rules(d1), rj:rj∈rules(d2).mapi(ci) = mapj(cj)

Given this definition, d1 and d2 first have to satisfy the constraint that the
strings of rules rules(d1) and rules(d2) be equal, that is: the same rules are ap-
plied in the same order. The c,map pairings applied in these strings of rules
may, however, differ. At the same point in a derivation, the model can some-
times apply different construction-mapping pairings. Now, if for two strings
of rules each mapping map applied at a certain point in d1 has the same set
of vertices in its codomain (the subgraph of a situation s ∈ S) as the map-
ping map′ applied at the parallel point in derivation d2, we consider the two
derivations to be equal.

We define a parse or analysis a as the set of derivations that are deriva-
tionally identical to each other, and the set A as all parses given the utterance,
the situations, and the constructicon. The probability of a parse can then be
defined as the probability of either of the derivations subsumed by that parse
being generated by the constructicon given the situation:

P (a|Γ, S) =
∑
d∈a

P (d) (3.6)



The Syntagmatic-Paradigmatic Learner 99

d30 : i

ii(c3,m2)

iv(sr1(c3))

vii(c4,m2)

iv(sr1(c4))

v

ball

iv(sr2(c3))

v

go

iii

there

Figure 3.15: Derivation d30 for Ball go there.

Parallel c,map pairings in various derivations of a parse stand in a parent-
child relationship to each other. As the derivational structure of the various
derivations is identical, the constructions used should have the same num-
ber and types of constituents (otherwise the tree structure and choice of pro-
cessing mechanisms would be different), and given the mapping equivalence,
they should have meanings that are supersets or subsets of each other. We can
relate this to Langacker’s notion of immanence: the various derivations are not
distinct events, but are all activation patterns over the same traces of linguistic
usage events. The advantage of using both the parents and child constructions
in the same parse is that we allow abstract constructions to back-up more con-
crete ones. This can be seen as a form of multiple licensing, albeit a very simple
one (cf. Kay 2002)

The best parse abest then, is taken to be the most-probable one.

abest = arg max
a∈A

P (a|Γ, S) (3.7)

The situation mapped to by abest is the identified situation sidentified, that is:
the situation SPL thinks the speaker refers to. If the best parse has no mapping
to any situation s ∈ S, for instance in the case when all words are ignored,
one situation is selected at random to be the interpretation of the utterance. If
multiple analyses are equally likely, one is selected at random to be abest.
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3.5.3 An example of the probability model

A single derivation

With the counts of the constructions, as given in figure 3.5, we can calculate
the probabilities of all derivations. Let us look at derivation d30, repeated here
as figure 3.15. By substituting the left-most open symbol every time, we can
order the rules as follows:

• i, ii(c3,m2), iv(sr1(c3)), vii(c4,m2), iv(sric4), v, iv(sr2(c3)), vi, iii

Rule i, applied with an arity of 2, has a probability of 1
2

2
= 1

4 . Applying rule
ii to the pairing c3,map2 requires us to consider the competing construction-
mapping pairings. Given the START symbol, this means we consider the com-
petition set CSSTART. As CSSTART contains all possible construction-mapping
pairings, it consists of {(c1, map1), (c2,map1), (c3,map1), (c3,map2),(c4,
map1), (c4,map2), (c5,map1)}. The probability of selecting (c3,map2) out
of this competition set, or its smoothed relative frequency, is 3 (the count of
c3 plus one) over the sum of all smoothed frequencies of the elements in the
competition set, plus one, or (1 + 1) + (2 + 1) + (2 + 1) + (2 + 1) + (5 + 1) +
(5 + 1) + (2 + 1) + 1:

P (ii) =
3

27
(3.8)

Next, the application of rule iv has a probability of 1. Applying rule vii
afterwards again requires us to consider the competition set of the selected
c,map pairing. In this case c4,map2 is selected. The set of c,map pairings
referring to the vertex {ENTITY, OBJECT, BALL} in situation 2 consists only of
c4,map2 itself, and the probability of selecting this pairing is

P (vii) =
5 + 1

(5 + 1) + 1
=

6

7
(3.9)

The subsequent applications of rule iv and v each have a probability of 1, in
the case of rule v because the phonological constituent of the first constituent
of c4 is specified.

After having terminated the first constituent of c3, we look at the second
constituent. Again, rule iv is applied with a probability of 1. After this applica-
tion, go is bootstrapped into the constituent slot. The second constituent of c3
has no phonological specification, and hence we take the second equation for
rule v. This requires us to get the competition set for the second constituent,
which consists of only the pairing c3,map2 itself,3 as well as for CSSTART,
which we saw in the application of rule ii before. The probability of an un-
seen event given CSsr2(c3) is 1 over 4 (2 + 1 for c3, and 1 to smooth). The

3Note that the application of this pairing is ruled out by the single-dependent-distribution
constraint, which in this case specifies that whatever fills the second constituent must be a lexical
construction.
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probability of an unseen event given CSSTART is 1
27 , given that the denomina-

tor given this competition set is 27, as we have seen in the application of rule
ii before. The P (u|CSSTART) is applied once, as the length of the phonologi-
cal string is |α+| = 1. Similarly, the probability constraining the length of the
concatenation 1

2 is also raised to the power |α+| = 1, giving us the following
probability

P (vi) =
1

(2 + 1) + 1
· 1

2

1

· 1

27

1

=
1

216
(3.10)

Finally, we apply rule iii in order to ignore the word there. This amounts to
an instance of an unseen event given the START symbol, which we have seen
before, viz. P (iii) = 1

27 . Table 3.2 below gives the probabilities of all deriva-
tions. I leave the calculation of the individual probabilities of the mechanisms
as an exercise to the reader.

Several things can be learned from this example. First of all, because of the
probability model, bootstrapping two adult words or bootstrapping one and
ignoring one are equiprobable. Derivations d30 and d31 illustrate this.

Second, not every bootstrapping operation is equally likely. The higher the
frequencies of the items in the competition set, the lower the probability of
bootstrapping an element into it. Derivations d22 and d23 show this effect: be-
cause a highly frequent construction (c4) can be fit into the first signifier, boot-
strapping it becomes less likely. c5 has a lower count, and hence bootstrapping
the second constituent is relatively more likely, resulting in a probability of d22

that is twice as high as that of d23. This effect can be seen as a pragmatic line
of reasoning: I know some construction to be applicable given the constituent
and the situation, so if that’s a very likely construction, it is unlikely that the
speaker would use a novel element to express it.

Third, we can see that the most likely derivations are those in which c1 is
used. This is a semi-open schema, with the phonological element go specified
on the second constituent. As such, less rules have to be applied in order to
arrive at a full derivations, and because of this, derivations with c1 are globally
more likely than those with c2 and c3, despite c1 having a lower count than
either c2 or c3. The most likely derivation is d6 (P (d6) = 1

1701 ), in which c1
is combined with c4, and the last word is ignored. Here we see an effect akin
to statistical pre-emption, which I will explore later in this thesis, namely that
derivations with more concrete constructions use fewer rules and are thereby
often more likely. It follows, however, from the general probability model and
the rules, and is as such not a special built-in feature of the model.

Getting equivalent derivations

As discussed in section 3.5.2, we first look for all parses, that is: sets of deriva-
tions that are created by the same processing mechanisms, and for which ev-
ery node in one derivation has the same subset mapping to a subgraph of a
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derivation P

d1
1
2

3 · 1
27 ·

1
27 ·

1
27 = 1

157,464

d2
1
2

3 · 6
27 · 1 ·

1
27 ·

1
27 = 6

157,464 = 1
26,244

d3
1
2

3 · 6
27 · 1 ·

1
27 ·

1
27 = 6

157,464 = 1
26,244

d4
1
2

3 · 1
27 ·

3
27 · 1 ·

1
27 = 3

157,464 = 1
52,488

d5
1
2

3 · 6
27 · 1 ·

3
27 · 1 ·

1
27 = 18

157,464 = 1
8748

d6
1
2

2 · 2
27 · 1 ·

6
7 · 1 · 1 · 1 · 1 ·

1
27 = 12

20,412 = 1
1701

d7
1
2

2 · 2
27 · 1 ·

6
7 · 1 · 1 · 1 ·

2
12 · 1 · 1 ·

1
27 = 24

489,888 = 1
20,412

d8
1
2

2 · 2
27 · 1 ·

1
7 · 1 · 1 ·

1
27 = 2

40,824 = 1
20,412

d9
1
2

2 · 2
27 · 1 ·

1
7 · 1 ·

2
12 · 1 · 1 ·

1
27 = 4

489,888 = 1
122,472

d10
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

3
12 · 1 · 1 ·

1
27 = 54

244,944 = 1
4536

d11
1
2

1 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

1
34,992 = 18

13,226,976 = 1
734,832

d12
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

1
648 ·

1
27 = 18

13,226,976 = 1
734,832

d13
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

3
12 · 1 · 1 ·

1
27 = 9

13,226,976 = 1
1,469,664

d14
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

3
12 · 1 · 1 ·

1
27 = 9

13,226,976 = 1
1,469,664

d15
1
2

1 · 3
27 · 1 ·

1
20,412 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d16
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
648 ·

1
27 = 3

714,256,704 = 1
238,085,568

d17
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
648 ·

1
27 = 3

714,256,704 = 1
238,085,568

d18
1
2

2 · 1
27 ·

3
27 · 1 ·

1
378 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d19
1
2

1 · 3
27 · 1 ·

1
20,412 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d20
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

3
12 · 1 · 1 ·

1
27 = 54

244,944 = 1
4536

d21
1
2

1 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

1
34,992 = 18

13,226,976 = 1
734,832

d22
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 · 1 ·

1
648 ·

1
27 = 18

13,226,976 = 1
734,832

d23
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

3
12 · 1 · 1 ·

1
27 = 9

13,226,976 = 1
1,469,664

d24
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

3
12 · 1 · 1 ·

1
27 = 9

13,226,976 = 1
1,469,664

d25
1
2

1 · 3
27 · 1 ·

1
20,412 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d26
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
648 ·

1
27 = 3

714,256,704 = 1
238,085,568

d27
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
648 ·

1
27 = 3

714,256,704 = 1
238,085,568

d28
1
2

2 · 1
27 ·

3
27 · 1 ·

1
378 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d29
1
2

1 · 3
27 · 1 ·

1
20,412 · 1 ·

1
648 = 3

714,256,704 = 1
238,085,568

d30
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 ·

1
162 ·

1
27 = 18

3,306,744 = 1
183,708

d31
1
2 ·

3
27 · 1 ·

6
7 · 1 · 1 ·

1
8748 = 18

3,306,744 = 1
183,708

d32
1
2

2 · 3
27 · 1 ·

6
7 · 1 · 1 ·

1
162 ·

1
27 = 18

3,306,744 = 1
183,708

d33
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
162 ·

1
27 = 18

178,564,176 = 1
9,920,232

d34
1
2

2 · 3
27 · 1 ·

1
378 · 1 ·

1
162 ·

1
27 = 18

178,564,176 = 1
9,920,232

d35
1
2

2 · 1
27 ·

3
27 · 1 ·

1
378 · 1 ·

1
162 = 18

178,564,176 = 1
9,920,232

d36
1
2 ·

3
27 · 1 ·

1
378 · 1 ·

1
8748 = 3

178,564,176 = 1
59,521,392

d37
1
2 ·

3
27 · 1 ·

1
20,412 · 1 ·

1
162 = 3

178,564,176 = 1
59,521,392

Table 3.2: Probabilities of derivations d1 − d37.
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situation as the parallel node in the other derivations. In our set of 37 deriva-
tions, we find several that are derivationally equivalent. There are ten cases
in which in one derivation the pairing c2,map1 is applied, and in the other
c3,map1. As the mappings of these pairings point to exactly the same ver-
tices in situation 1, it is possible that two derivations, when otherwise using
the same rules in the same order, are equivalent. Furthermore, there are two
cases (a7 and a9) in which three derivations are equivalent, namely when c1,
c2 and c3 are applied at the same point in the derivation. In these cases, the
first constituent of the three constructions is combined with c4 and the second
constituents with c5.

What this table tells us is that parse a6, consisting of derivations d6 is the
most likely analysis or abest. In parse a6, c1 is combined with c4 as its first con-
stituent, and the second constituent is phonologically specified and can hence
be terminated. This analysis is only minimally different from the second-best
parse, the slightly more compositional a7. In this parse, the second constituent
is combined with another construction (c5). The third-best analysis is a5, con-
sisting of just the derivation d5. In this derivation, the two lexical constructions
c4 and c5 are concatenated and no overarching construction is used. The three
best analyses, in the bracket notation, are given below:

(26) a6: [ [ ENTITY ]→[ BALL / ball ] [ MOVE / go ] ]

(27) a7: [ [ ENTITY ]→[ BALL / ball ] [ MOVE ]→[ MOVE(MOVED,GOAL) /
go ] ]

(28) a5: ( [ BALL / ball ] [ MOVE(MOVED,GOAL) / go ] )

3.5.4 Implementation: lineair processing and pruning
The use of a probability model to find the best analysis is inspired by the sta-
tistical parsing tradition (Jurafsky & Martin 2009), where the disambiguation
between multiple possible analyses is a massive practical problem. We may,
however, doubt its cognitive reality. The most elementary of these concerns,
that human beings do not actually perform such calculations, can be consid-
ered well-addressed by Jurafsky’s (2003) discussion of the use of probability
models in language comprehension and production. Jurafsky acknowledges
that it is unlikely that people actually perform these calculations, but argues
that probability models constitute a well-understood tool to model aspects of
frequency and the competition between units (words, constructions).

Nonetheless, it remains unlikely that, even if the probability model is but
an analytical tool, language users ‘consider’ all of the possible derivations that
a model like SPL allows for. Starting from the insight that processing takes
place linearly, and that language users do not keep track of all possible anal-
yses (as evidenced by studies on garden-path sentences, see for instance Fer-
reira, Bailey & Ferraro (2002)), SPL performs the actual analysis in a bottom-up
way, pruning away all but the most likely analyses (similar to the model de-
veloped by Jurafsky (1996)). As this aspect of the model was not at the heart
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parse derivations probabilities derivations probability parse

a1 d1
1

157,464
1512

238,085,568

a2 d2
1

26,244
9072

238,085,568

a3 d3
1

26,244
9072

238,085,568

a4 d4
1

52,488
4536

238,085,568

a5 d5
1

8748
27,216

238,085,568

a6 d6
1

1701
139,967

238,085,568

a7 d7, d10, d20
1

20,412 + 1
4536 + 1

4536
116,640

238,085,568

a8 d8
1

20,412
11,664

238,085,568

a9 d9, d13, d23
1

122,472 + 162
238,085,568 + 1

1,469,664
2268

238,085,568

a10 d11, d21
1

734,832 + 1
734,832

648
238,085,568

a11 d12, d22
1

734,832 + 1
734,832

648
238,085,568

a12 d14, d24
1

1,469,664 + 162
238,085,568

324
238,085,568

a13 d15, d25
1

238,085,568 + 1
238,085,568

2
238,085,568

a14 d16, d26
1

238,085,568 + 1
238,085,568

2
238,085,568

a15 d17, d27
1

238,085,568 + 1
238,085,568

2
238,085,568

a16 d18, d28
1

238,085,568 + 1
238,085,568

2
238,085,568

a17 d19, d29
1

238,085,568 + 1
238,085,568

2
238,085,568

a18 d30
1

183,708
1296

238,085,568

a19 d31
1

183,708
1296

238,085,568

a20 d32
1

9,920,232
24

238,085,568

a21 d33
1

9,920,232
24

238,085,568

a22 d34
1

9,920,232
24

238,085,568

a22 d35
1

9,920,232
24

238,085,568

a23 d36
1

59,521,392
4

238,085,568

a24 d37
1

59,521,392
4

238,085,568

Table 3.3: All parses A for Ball go there.
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of my research, the implementation of the parser simply satisfies these con-
straints, but more realistic processing models can be thought of. In line with
desideratum D5-2, I implemented the parser of SPL as follows.

SPL processes the words one by one. Over a span of words up to a cer-
tain word, a (possibly empty) set of derivations can be formed, which can be
derivationally equivalent, and hence form a set of parses. From among this
set of parses over a span, SPL only keeps the most likely one (or ones if there
are multiple equiprobable parses) and discards the rest. When processing the
next word, only the parses that are still active can be used to be combined
into larger parses. Technically, the model employs an adaptation of the Cocke-
Younger-Kasami algorithm that allows for words to be ignored, and prunes
every cell in the matrix to the most likely analysis.

The motivation for this way of implementing the model not only comes
from processing studies, but also from Langacker’s (1988) discussion of pro-
cessing, where he argues that when multiple units are in competition, a lan-
guage user only selects a single one as the active unit. The implementation
therefore not only constitutes an attempt to adhere to processing studies, but
is also faithful to the description of processing within the theoretical frame-
work.

3.5.5 SPL as a usage-based processing model
The derivation process described in this section allows the model to do com-
prehension on the basis of an utterance and a set of situations. As we will
see later in this chapter, the production of an utterance on the basis of a sit-
uation is also among the model’s possibilities, and therefore the model sat-
isfies desideratum D2 (comprehensiveness). The model furthermore satisfies
desiderata D5-1 (heterogeneous structure building) and D6-4 (developmen-
tal continuity) by having a set of diverse processing mechanisms that remain
available over time. In the actual implementation of the way SPL performs its
analyses, the model can be said to satisfy desideratum D5-2, although this as-
pect is not at the center stage of this research, and likely more realistic models
of processing can be developed.

3.6 Learning

The resulting best parse abest from every input item constitutes the input for
the learning procedure. The constructions used in the best parse are reinforced
(reinforcement), the result of any concatenative process is stored (syntagmati-
zation) and any new possible abstractions that can be made are added to the
constructicon (paradigmatization). Finally, the learner stores a limited num-
ber of recent best parses and the situations they were assumed to refer to, and
employs a simple form of cross-situational learning to extract initial repre-
sentations.
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The learning model presented here aims to make three contributions to
usage-based theory. First, SPL uses the syntagmatization operation to gradu-
ally build up longer constructions. The build-up of increasingly long construc-
tions is a feature needed by the model to satisfy the law of cumulative com-
plexity (D6-1). Second, the paradigmatization operation extracts any overlaps
between the more concrete constructions and involves no grammar-wide eval-
uation of how useful the abstraction is. As I will argue, these features make
the model conceptually congruent with the learning-by-processing and im-
manence view (cf. desiderata D4-3 and D6-2). Third, the model is the first
usage-based model of language acquisition that is shown to acquire both lex-
ical and grammatical constructions at the same time (cf. desideratum D2-8).

3.6.1 Reinforcement
The simplest form of learning is the reinforcement of the constructions em-
ployed in the derivations of the best parse.

Maximally concrete constructions

Langacker (2009) argues that the maximally concrete representations of the
situation and the linguistic units used leave a trace in memory when they are
processed. I operationalize this idea as follows. Recall that in an analysis a,
there are several parallel derivations (i.e., every step in the derivation is the
same, although different constructions may be used). For every such parallel
step s in the derivation where a construction-mapping pairing c,map is ap-
plied, a maximally concrete construction mcc is extracted. We assume mcc to
have as its meaning sdmcc the subgraph of the situation to which the mean-
ing of c maps via map. The meaning of this novel construction thus directly
reflects the conceptualization of the usage event in full detail. The signifiers of
mcc consist of the signifiers of c, where the phonological constraints will be
specified with whatever substring of the utterance is filling them, thus reflect-
ing the utterance of the usage event in full detail.

In the case of a string that has been bootstrapped into a signifier of a con-
struction c, we assume a novel construction mcc with as its signified meaning
sdmcc the vertex in the situation to which sric maps via the mapping map
paired with c. The signifier of this bootstrapped construction mcc is then a
pair of the string of words bootstrapped and a semantic constraint pointing to
the vertex that constitutes sdmcc.

All maximally concrete constructions (mccs) are then added to the con-
structicon Γ (if they are not already present in it) with a count of 0. Example
3.16 illustrates the extraction of the maximally concrete constructions out of
parse a7. Importantly, the mcc for the second step of the derivation (the appli-
cation of rule ii) is a phonologically specified grammatical construction. This
construction, as opposed to the second and third mccs, is not present yet in
the constructicon and added with a count of zero if a7 were the best parse.
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Figure 3.16: Extracted maximally concrete constructions from parse a7.

The storage of maximally concrete representations is needed to account for
prototype effects. A group of constructions in the constructicon whose mean-
ing stands in superset-subset relations to each other may regularly map to the
same subgraph of a situation in the analysis. However, if some more concrete
constructions (i.e., constructions having more conceptual features specified in
the constructional meaning sd) are used more frequently, we expect them to
be more readily applicable than equally concrete constructions that are not
as frequent. Now, if we only reinforce the more abstract constructions used,
we cannot keep track of the frequency of the more concrete ones. Therefore,
adding the maximally concrete ones, and generalizing over them in the ab-
straction step of the learning procedure (cf. section 3.6.3) allows us to keep
track of this information.

This approach is similar to Alishahi & Stevenson’s (2010) clustering ap-
proach, where frequently occurring conceptual features have more weight in
the recognition of a construction. However, because in SPL the cluster can
be said to be stored in a distributed fashion (a cluster in Alishahi & Steven-
son’s (2010) approach would correspond to a number of constructions in the
constructicon in my approach), a ‘cloud’ of constructions may have multiple
prototypes. That is to say: there may be two distinct sets of features being
prototypical for a construction and both would be seperately stored in my
approach, whereas in Alishahi & Stevenson’s (2010) approach the association
strength of the features is averaged over when they are clustered together.4

4However, if they are too distinct, they will form different cluster. The point is that with a hard
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Figure 3.17: Extracted maximally concrete used constructions from parse a7.

Reinforcement for maximally concrete used constructions

Secondly, not only the most concrete constructions are added to the constructi-
con, the constructions that are actually used are reinforced as well. The model
does not reinforce all constructions used in all derivations of the best analy-
ses, but only the most concrete used constructions per parallel step s in the
derivation or: mcuc(s). Note that these are not necessarily the mcc(s) as de-
fined in the previous paragraph. A construction c in any derivation in abest is
a maximally-concrete used construction if there is no other construction c′ at
the same step s in another derivation in abest whose meaning is a superset of
the meaning of c.

For simplicity’s sake, I assume that after every input item, one ‘count’ can
be distributed over the various most concrete constructions per step. That is: if
there is a single derivation in the best parse, all constructions in that derivation
are updated with 1. However, we will sometimes have multiple maximally-
concrete used constructions for a certain step of the derivation. In that case,
we distribute the count of 1 uniformly over the maximally-concrete used con-
structions at that step of the derivation. The update function thus is defined
as follows:

countct = countct−1 + 1
|mcuc(s)| if c ∈mcuc(s)

countct−1 otherwise
(3.11)

Figure 3.17 gives an example of the extraction and update of the
maximally-concrete used constructions for parse a7. The main difference with
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the mccs in figure 3.16 is that the reinforced construction is not fully phono-
logically specified and has a more abstract signified conceptual representation.

The reason for using maximally-concrete used constructions, is that only
those constructions are reinforced that are used productively. Their ‘parents’
in the constructional network that may be used in parallel steps in other
derivations of abest do not get reinforced, as there is a more concrete construc-
tion ‘blocking’ their update. This could be regarded as a form of pre-emption
in the reinforcement procedure. Alternatively, we could say that the more ab-
stract constructions are only motivating the use of the use of the maximally
concrete constructions, backing them up with their probability mass.

A desirable effect of this procedure is that more abstract constructions are
only reinforced when they are used productively, that is: in novel situations
where no more concrete daughter constructions of those constructions can be
used. This reflects Bybee’s (2006) ideas about type and token frequency: the
more novel instances of an abstract pattern are found, the more distinct types
it can be said to have, and the more it will be reinforced.

3.6.2 Syntagmatization
Syntagmatization allows for the gradual build-up of the valency of construc-
tions (i.e., the number of slots they have). Postponing the formal definition of
the process for now, syntagmatization as a learning process is derived from
the same general gradualist starting points many usage-based developmental
theorists start off from (Tomasello 2003, Goldberg 2006). Despite being a grad-
ualist take on the growth of grammar, this notion has not been worked out
in detail by either of these theorists. If we want to adhere to Brown’s law of
cumulative complexity (desideratum D6-1), we have to assume that at least
something akin to this learning process has to take place in the language-
learning child

The fact that early productions often have fewer arguments expressed
can, to my mind, be explained most readily if we assume that the construc-
tions underlying these productions have more restricted valency patterns
than later constructions. Most developmental approaches assume a combina-
tion of richer linguistic structure plus the deletion of some elements (Bloom
et al. 1975). I believe this to be (1) a less parsimonious explanation, and (2)
not in line with findings such as those presented by Theakston et al. (2012),
who show that productions with transitive verbs and a single argument (SV
and VO-utterances) have a different profile than productions at the same age
with transitive verbs and two arguments (SVO-utterances). I interpret this fact
as suggesting that the child uses different representations to generate SV, VO,
and SVO-utterances respectively.

Similarly to the hypothesis that the various paradigms of a construction are
gradually learned (which is typically called ‘abstraction’), I assume that the

clustering operation, the model needs to decide and the cluster takes on a centroid representation.
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syntagms constituting adult constructions are also acquired in an item-based,
piecemeal way. Most developmental theorists, and many usage-based com-
putational models discussed in the previous chapter assume that the learner
is able to process the complete utterance and understand the valency rela-
tions between several elements of the utterance. Over these maximally con-
crete valency relations, then, more abstract constructions are learned. To my
mind, this approach overlooks two other steps which we should expect to
take place simultaneously, viz. the acquisition of lexical constructions and the
acquisition of the linguistic realization of the semantic valency relations of
these words. Syntagmatization takes care of this latter process. The gradual
build-up of grammatical syntagms is reminiscent of Freudenthal et al.’s (2010)
approach. Their MOSAIC model gradually builds up an inventory of strings
of words to process utterances. The SPL model takes a similar approach, but
combines it with a semantic parsing approach.

Implementation

Recall that a derivation can contain a number of concatenated constructions
by the application of rule i. These constructions are understood by the model
as being part of the same communicative intent. What syntagmatization does,
then, is to take these concatenated constructions, look for constructions whose
meanings stand in a semantic head-dependent relation to each other, and ex-
tend the ‘head’ constructions expressing that semantic head with the ‘depen-
dent’ constructions.

Formally, the set of concatenated derivations consists of all applications of
construction-mapping pairings that are directly governed by rule i. We use the
maximally-concrete construction mcc for every construction-mapping pair-
ing. For every construction c in this set with the meaning sdc, we take all other
constructions c′ in this set whose meaning sdc′ refers to a child or grandchild
of the root vertex of sdc. If the root vertex expresses an event, this involves the
semantic roles it projects and the referents filling these roles. The reason we in-
clude grandchildren is that event roles are specified on a separate vertex in the
meaning representation, and we want to capture events and their participants.
This particular design choice thus depends on the semantic formalism used,
and has to be modified to accomodate different representational formats.

Next, we take the constituents of c and the head constituents of any other
construction c′ that refers to semantic dependents of sdc, and linearly consider
those to be the signifiers of a novel construction csyn. The meaning of csyn,
viz. sdcsyn , consists of the meaning of c, the root vertices of the meanings of
all dependent c′ and any vertices from the situation needed to make sdcsyn

connected. csyn is then added to the constructicon with a count of 0.
To give an example, let us assume a5 was the best parse. In this parse,

three partial derivations are concatenated with rule i. The third, however, is
the ignoring of there, and hence is not considered. The set of concatenated
constructions thus consists of the mccs for c4 and c5. For the former, there
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Figure 3.18: An example of the syntagmatization process applied to parse a5.

are no other constructions in the set that express semantic dependents of it
and hence no novel syntagmatizations can be made. c5, on the other hand,
expresses the {EVENT,MOVE} vertex of the situation, and c4 expresses {EN-
TITY,OBJECT,BALL}, which is a grandchild of the {EVENT,MOVE} vertex. We
therefore take all constituents of the mcc of c5 and the head constituent of the
mcc of c4 and consider those to be a novel construction. The meaning of this
novel construction consists of the meaning of the mcc of c4 and the root ver-
tex of the mcc of c5 and any vertices needed to connect them (i.c., none). This
novel construction is then added to the constructicon as c6 with a count of 0.
Figure 3.18 illustrates this process.

3.6.3 Paradigmatization
As we saw before, the model is able to parse utterances using a mixture of
concrete and abstract constructions. How does it obtain these more abstract
constructions? We can consider abstraction as the formation of paradigms of
linguistic elements that can be substituted for each other, and hence call the
process paradigmatization. In my implementation of the notion of abstrac-
tion, I again follow Langacker (2009), who argues that abstraction is not so
much the creation of a novel hypothesis about the constructicon, but rather
a by-product of processing several more concrete instantiations of a pattern.
The overlap between these more concrete instantiations then becomes a po-
tential to generalize. Whether one describes this in terms of abstract schemas
or as a set of exemplars plus a rule to analogize over these, does not matter ac-
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cording to Langacker (2009), as long as one is aware that these abstractions are
not new cognitive ‘entities’ created from other ‘entities’ but rather a potential
that is ‘immanent’ in these exemplars. In my implementation, however, the
abstractions are separate entities. This should be seen as reflecting an imple-
mentational rather than an ontological issue, and as such it does not conflict
with desideratum D4-3.

It is the idea of acquiring a grammar as a hypothesis testing procedure that
underlies Bayesian Model Merging. What I propose, for abstraction, is to take
the view seriously that there is no such thing as selection between levels of
abstraction, i.e., that the organization of the abstraction in the constructicon
is not governed by a selection mechanism deciding which level or cluster-
ing is the most appropriate one given the data and some prior conception on
what the constructicon, or grammars in general, should look like (e.g., com-
pact, or uniform). Rather, all possible abstractions over reinforced construc-
tions (i.e., constructions with non-zero counts) are made, and the reinforce-
ment of some of these abstractions, but not others (as discussed in section
3.6.1) leads to a constructicon that is highly general, but probabilistically con-
strained (i.e., utterances analyzed with both abstract and concrete construc-
tions will have higher probabilities than utterances analyzed with only ab-
stract constructions). This way, the abstraction in the SPL model differs from
that of Chang (2008) and Beekhuizen, Zuidema & Bod (2013), who apply a
Minimum Description Length criterion (Rissanen 1978) to the selection of ab-
stractions, as well as Alishahi & Stevenson (2010), who cluster maximally con-
crete frames, thereby forcing the model to categorize an input item discretely
with one or the other centroid cluster. Incorporating an element of ‘selection’
in one’s model fits better with a deductionist view on language acquisition
than an inductionist. For that reason, I think having a model that does allow
for a gradual, bottom-up search through the hypothesis space, but without se-
lection, is the preferable computational approach for a usage-based account of
grammar acquisition (cf. desideratum D6-2).

Implementation

Whenever a construction c obtains its first reinforcement, it is compared to all
constructions c′ ∈ Γ at that point in time that have also been reinforced (i.e.,
have a countc′ > 0). If from the overlap between c′ and c a new construction
cpara can be formed, and if cpara is not in Γ yet, cpara is added to the grammar.

The formation of an abstraction requires a comparison between c and c′.
Not all comparisons lead to novel abstractions. Crucially, the model has to
be able to find parallels between c and c′ in both their signifiers and sig-
nifieds. This does not constitute a selection process, but rather reflects what
comparisons the learner can and cannot make. A novel construction cpara can
be formed from c and c′ ∈ Γ under the following conditions:
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Conditions for creating an abstraction over two constructions

• Let mapoverlap be a bijective structure-preserving mapping f : sdc →
sdc′ between the signified meanings sdc and sdc′ of two construc-
tions c and c′ such that

– ∀vv∈sdc .(mapoverlap(v) ∪ v) 6= ∅

• Let Moverlap(c, c′) be the set of all possible mapoverlap between c and
c′.

• For each mapoverlap ∈ Moverlap(c, c′), a novel construction cpara is
created iff

– |src| = |src′ |
– ∀ii∈[1,...,|src|].mapoverlap(K(sric)) = K(sric′)

– ¬((|src| = 1) ∧ (F (sr1
c ) 6= F (sr1

c′)))

• where cpara consists of

– sdc o contains the intersection between all elements in
mapoverlap as well as their edge structure.

– srcpara , where for each i ∈ [1, . . . , |src|], sricnew
consists of

∗ F (sricnew
= F (sric) if F (sric) = F (sric′) else ε

∗ K(sri(cnew)) = mapoverlap(K(sric)) ∪K(sric)

The starting point for the abstraction over two constructions c and c′ is
an intersection mapping mapoverlap between their meanings sdc and sdc′ . For
every possible intersection mapping between two constructions, we create a
novel construction if all signifiers in both c and c′ have conceptual constraints
mapped to each other per mapoverlap.

Two further constraints are that the number of signifying constituents
must be equal for both constructions, and that if one of the constructions is
a lexical construction, the two constructions must have the same phonologi-
cal constraint on that signifier. This last constraint is intended to obviate the
possibility of having phonologically-unspecified single-constituent construc-
tions. These constructions add little to the potential for analyzing an utterance,
and even though they could be extracted, using them would always result in
derivations of a lower probability than derivations mapping to the same part
of the same situation without them. Chang (2008), however, does allow for
them.

The constraints proposed above are motivated, but not cast in stone. One
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Figure 3.19: An example of succesful paradigmatization.

may drop the latter two constraints. The final constraint (identical phonolog-
ical signifiers in the case of lexical constructions) only keeps the model from
making spurious abstractions that, due to the probability model, will not be
used.5 The equal-number-of-signifiers constraint is more interesting. Loosen-
ing or dropping this constraint may result in different kinds of constructions
being abstracted (in a similar way to Chang (2008)), but for the current pur-
poses, this would needlessly complicate the model.

To give an example of the paradigmatization procedure, assume that a5

was the best parse, and that the syntagmatized construction in figure 3.18 was
added to the grammar. Through some subsequent input item, that construc-
tion becomes reinforced. Assume furthermore that another construction, rep-
resented as c′ in figure 3.19, was present in the grammar as well. The meanings
of the two constructions can be mapped with an overlap mapping, and the
signifying constituents of both constructions point to each other via this map-
ping, so an abstraction can be made. This abstraction, cpara in figure 3.19, con-
tains the intersection between c and c′ as its meaning. The first constituent is
phonologically specified and points to the {OBJECT,ENTITY,BALL} vertex in the
meaning of cpara. The second, on the other hand, is not phonologically speci-
fied (as the phonological constraints on the second constituents of c and c′ dif-
fer) and points to the root vertex of the meaning of cpara. With the paradigma-
tization operation, the model has now extracted a semi-open [ [ BALL / ball ]

5An ‘abstract’ lexical construction is simply useless in creating derivations as for every use of
an abstract lexical construction plus a concrete one, the competing analysis involving only the
concrete lexical construction is more probable.
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[ EVENT ] ] construction, which is then added to the grammar with a count of
0.

Paradigmatization, I claim, is congenial with the view that abstractions
are immanent in the more concrete patterns that instantiate them. Recall that
Langacker argues that abstraction is essentially the co-activation pattern of
several more concrete patterns. I believe the overlaps correspond to these co-
activation patterns. Because SPL ‘extracts’ any and all of these patterns, the
set of paradigmatized constructions can be seen as the potential for abstrac-
tion immanent in the more concrete ones. If a selection between paradigmati-
zations were made, on the basis of some criterion, the immanence would be,
at least, harder to defend, as it would require a bridging hypothesis between
the selection of certain paradigmatizations but not others. The view that ab-
stractions are immanent, but discretely represented in a model is not new: we
can find a similar idea in Skousen’s (1989) Analogical Modeling, where all ab-
stractions over a feature set are abstracted, and the model performs analogical
reasoning over these.6

Note that paradigmatized constructions can be reinforced without the
more concrete constructions instantiating them receiving further reinforce-
ment. If an abstract construction is frequently used as the maximally-concrete
used construction in many cases, it will receive much reinforcement, and
hence be established as a unit, without the more concrete constructions achiev-
ing unit status. If an abstraction, however, is hardly used, for instance, because
it generalizes over only two more concrete patterns that are themselves often
used as mcucs, the abstraction will stay rather weakly reinforce. As we will
see in the following chapters, this dynamic leads to interesting insights in the
development of constructional networks.

3.6.4 Cross-situational learning
When we assume a usage-based perspective on language acquisition, the
model starts with an empty inventory of signs. Therefore, it should have learn-
ing operations at its disposal to get an initial inventory of constructions off the
ground. A prime candidate for such learning operations is cross-situational
learning.

Broadly speaking, cross-situational learning is the process whereby a lear-
ner observes multiple situations in which utterances are produced and ex-
tracts or reinforces recurring matching pairs of parts of the utterances and
parts of the situations. An intuitive example would be the case in which the
learner first hears the utterance you grab the ball! and sees a ball on the table
and understands the intention that the caregiver want her to grab it, and next
the utterance oh, now the ball is on the floor!, paired with a situation where the
child just threw the ball off of the table. The phonological substring the ball is

6The difference being that the abstractions themselves can receive reinforcement and thus ob-
tain a degree of representational autonomy, whereas this in not possible in lazy learners such as
Analogical Modeling or Memory-Based Learning.
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shared between the two utterance-situation pairs, as is the semantic element
of an entity ‘ball’ being present in both understood communicative intentions.

The acquisition of form-meaning pairings via cross-situational learning
can be interpreted in several ways. Many word learning models (Xu & Tenen-
baum 2000, Frank, Goodman & Tenenbaum 2009, Fazly et al. 2010) assume a
probabilistic model, where the connections between phonological strings and
their referents get reinforced every time a pair of a word and a semantic ele-
ment co-occur in an utterance-situation pairing. Recently, this view has been
contested by researchers who argue that this places too much of a burden on
the learner, as she has to maintain and update an m × n matrix for all m seen
words and all n seen semantic elements (Stevens 2011). Instead, Stevens pro-
poses, the learner forms hypotheses at random, and validates these in next
rounds, either reinforcing them if the new utterance-situation pairing corrob-
orates it, or discarding them if not.

There are things to be said for both views. The probabilistic view, as op-
ponents of this view argue, creates behavior that is too gradient in nature.
Learner’s behavior seems more categorical than would be expected on the
basis of a probabilistic view. On the other hand, one could argue that a prob-
abilistic system interacts with more discrete decision-making systems which
are addressed (possibly in different ways) in experiments and natural process-
ing and production behavior. This could resolve the issue of apparent discrete-
ness in behavior, but until it is worked out, it remains hand-waving. On the
other hand, the creation of hypotheses at random seems like a strange starting
point. It is not clear to me why a learner would form a hypothesis about a
form-meaning pairing on the basis of no evidence.

The instantiation of cross-situational learning I assume here can be seen
as taking a halfway position between the two. Because I do not think the
metaphor ‘language acquisition as hypothesis testing’ is the right one (see sec-
tion 3.6.3 as well), I consider these initial form-meaning pairings to be reflec-
tions of the processing of utterance-situation pairs, despite the learner not hav-
ing any contentive linguistic knowledge yet. The cross-situationally extracted
patterns are not random guesses, but reflect a simple form of analogical rea-
soning. On the other hand, I do not want to assume too much keeping track
of every contingency between possible forms and possible meanings.

An exemplar is a structured representation of an experience. Importantly,
it is structured by linguistic processing. That is: whatever linguistic structure
is found in the input item (the U, S pairing) is stored alongside the U, S pair.
For the current purposes, I assume that a linguistic exemplar is a pair of the
selected situation s ∈ S, and the best parse abest. Let us furthermore assume
that the learner keeps track of the most recent n exemplars, where n = [1,∞].

Implementation

The form of cross-situational learning I assume extracts overlaps in form and
meaning between a new exemplar and the most recent n exemplars. It only
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extracts those overlaps about which it is sure, that is: only if a single maxi-
mal overlap in the ignored parts of the utterance strings and a single maxi-
mal shared subgraph between the analyses can be found, a novel construction
containing exactly this overlap is extracted and added to the grammar with a
count of 0. More formally:

Cross-situational learning

For every new exemplar st, atbest and every exemplar st−i, at−ibest in the
range i = [1, . . . , n]:

• Let UI be the yield of a parse a that is governed by rule iii (i.e.,
ignored words).

• Let GI be the subgraph of s to which no root node of any construc-
tion used in a has a mapping, or:
GI = ∀vv∈Vs . 6 ∃c,mapc,map∈a.map(sdc) = v′ → v′ 6= v

• Extract a novel construction cxsl iff:

– U tI ∪ U
t−i
I 6= ∅

– U tI ∪U
t−i
I is a contiguous substring of the yield of atbest (i.e., the

original utterance U t).

– U tI ∪U
t−i
I is a contiguous substring of the yield of at−ibest (i.e., the

original utterance U t−i).

– Assuming the set M(GtI),

∗ which consists of all possible structure-preserving bijective
functions mapidentical between a connected subgraph of GtI
and a connected subgraph ofGt−iI containing identical fea-
ture sets on the mapped vertices,

there is exactly one most-encompassing mapping mapmem ∈
M(GtI) such that all other functions map′identical ∈M(GtI) spec-
ify a domain and a codomain that are subsets of the domain
and codomain of mapmem.

• where the new construction cxsl consists of

– sdcxsl , which is the subgraph ofGtI being the domain of mapmem

– srcxsl , being a single constituent sr1,

∗ where K(sr1
c ) = vroot(sdcnew), and

∗ F (sr1
c ) = U tI ∪ U

t−i
I
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Whenever a new exemplar st, at is added, it is compared to all exemplars
in this ‘memory buffer’. In this comparison, for st, at and some st−i, at−i, the
part of the utterance that is ignored in at is compared to the part of the ut-
terance that is ignored in at−i. If the maximal overlapping substring is not
a contiguous substring of the full yield of at and of at−i, or if the maximal
overlapping substring is empty, no new construction is extracted.

On the side of the meaning, a similar process takes place. The model com-
pares the part of the situations st and of st−i that are not analyzed with at

and at−i respectively (i.e., GtI and Gt−iI ). If, out of all functions mapping a
subgraph of GtI to an identical subgraph of Gt−iI , there is exactly one function
mapmem such that all other mapping functions specify subgraphs of the two
graphs in mapmem, a construction can be extracted. Otherwise, no construc-
tion can be extracted.

This precludes the situation in which more than one most-emcompassing
mapping can be made, i.e., the situation in which one mapping points to one
part of the situation graph, and another mapping to a (at most partially) over-
lapping other part of the situation. In those cases the learner cannot be fully
sure which analogy to make, and hence extracts no novel construction. Admit-
tedly, this strict rule for extracting initial constructions is relatively brittle and
simplistic, but given the complexity of the rest of the model I believe an overly
constrained learning mechanism is preferable over an underconstrained one.
Furthermore, the constraints all derive from more general principles of mak-
ing analogies and reasoning with uncertainty (beit in a very simple form: if
the learner encounters any uncertainty, it will do nothing).

Importantly, substrings of more than a single word in the adult represen-
tation can be extracted with the cross-situational learning procedure. These
holistic chunks correspond to undersegmentation in Peters’s (1983) sense.

To given an example of the cross-situational learning procedure, assume
that a6 was the best parse of the utterance, and that there is a previous ex-
emplar consisting of at−1, st−1, depicted in figure 3.20 below. As the maximal
overlap in unanalyzed parts of the situations consists of the {ROLE,LOCATION,
GOAL} vertex, and the overlap in the utterance of there, a novel construction,
linking these two can be extracted.

3.6.5 SPL as a usage-based learner
The mechanisms described in this section jointly embody many of the insights
discussed in the previous chapter. Despite being operationalized as learning
operations applying to the best analyses, they can be conceptualized as neu-
ral effects of the processing of the best analysis itself. That is to say: there is
no decision-making process outside the processing of the usage events (D6-
2). Novel constructions are learned without evaluating their value: if they are
of use to the model in analyzing utterances, they will receive subsequent re-
inforcement, if not, they will remain one-off patterns with a zero count. The
model embodies developmental continuity (D6-4), with all learning mecha-
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{event,move}

{role,location,
goal}

{entity,object,
box}

st

{role,patient,
moved}

{entity,object,
ball}

ball go there

at

{event,state}

{role,location,
goal}

{entity,object,
floor}

st-1

{role,theme}

{entity,object,
cup}

cup lies there

at-1

{role,location,goal}

F: there

K

c
xsl

Figure 3.20: An example of succesful cross-situational learning. Analyzed
parts of the utterances and the situations are marked in grey.

nisms being available throughout developmental time and simultaneity (D3)
because both lexical and grammatical constructions can be learned with the
same set of mechanisms. Although in practice, cross-situational learning op-
erations will precede syntagmatization operations, which in turn precede the
paradigmatization operations on them, all operations are used all the time.

Interestingly, the model has several ways of acquiring novel lexical con-
structions, viz. cross-situational learning, bootstrapping, and the use of maxi-
mally-concrete constructions. As bootstrapping will only take place after
slightly more abstract constructions have been acquired, it typically takes
place later in development than the cross-situational learning. These two ways
of acquiring lexical constructions can be seen as reflecting Gleitman et al.’s
(2005) ideas of the various ways in which lexical mappings can be learned,
but from a usage-based perspective.

The two core mechanisms for the acquisition of grammatical construc-
tions, syntagmatization and paradigmatization, further instantiate a few other
desiderata. With syntagmatization, the acquisition of longer grammatical
rules is qualitatively grounded in the usage-events: there is no preconception
that longer rules will be part of the language, but the joint processing of sev-
eral shorter rules leaves a trace in the mind of the learner (D5-1 and D6-2).
At the same time, this means that longer constructions can only emerge if
their parts are known, which satisfies D6-1, but having this as the only mech-
anism of the acquisition of rules conflicts with D6-3, the idea that we want a
learner that does parts-to-whole and whole-to-parts learning. The latter is not



120 3.7. Generation

instantiated in this model, and, as I expressed before, I am skeptical about the
necessity of such an operation and whether it fits in with ideas about learning-
as-processing (D6-2).

The notion of abstraction engendered in the model is similar to Chang’s,
but differs in that it contains no post-hoc decision mechanism, thus being
closer to the idea of learning-as-processing, to my mind. By extracting any
and all abstractions, we can easily dereify the (reified) discrete representations
as the potential for abstraction immanent in the most concrete constructions.
Furthermore, the reinforcement mechanism only ‘rewards’ the most concrete
used constructions, thereby boosting the potential of abstract representations
(giving them more of a ‘unit’ status in Langacker’s (2000) terminology) only if
they are productively used.

3.7 Generation

An important property of SPL, as a generative model, is that it is bidirectional:
we can analyze given utterances with it as well as generate new ones given a
situation. Doing so, the model can simulate both processes of language com-
prehension and production (desideratum D2). Generation works largely by
the same processes as analyzing an utterance, in that we generate a derivation
that corresponds to the situation and take the phonological symbols at the leaf
nodes of the derivation to be the utterance the model produces. Again, many
analyses are possible and the model has to select the best one.

3.7.1 Differences with the analysis procedure
One aspect of the model differs from the comprehension procedure in the gen-
eration procedure. Several processing mechanisms defined in section 3.4 are
geared towards processing input of which a part is not understood. In partic-
ular, the concatenation, ignoring and bootstrapping operations, as defined by
rules i, iii, and vi, are operations allowing the model to interpret utterances
despite having a limited inventory of linguistic signs. Generation works on the
basis of known signs, and hence these three rules are not used. We assume that
any derivation starts at rule ii, that is: with the application of a construction-
mapping pairing. That is, the set of rules applicable in generation consists of
rules ii, iv, v, and vi.

The probability of the derivation is again the product of the rules that are
applied in it, as in equation (3.5). The probabilities of the c,map pairings are
the same as for the comprehension procedure, and are repeated here as equa-
tions (3.12) and (3.13).

P (c,map|CS) =
countc + 1∑

c′,map′∈CS
(countc′ + 1) + 1

(3.12)
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rule probability

ii START→ (c,map) P (c,map|CSSTART)

iv (c,map)→ sr1
c , . . . , sr

n
c 1

v sric → α+ (if F (sric) 6= ε) 1

vii sric → (c′,map′) P (c′,map′|CSsric)

Table 3.4: Probabilities of the processing mechanisms in the generation proce-
dure.

P (u|CS) =
1∑

c,map∈CS
(countc + 1) + 1

(3.13)

The probability of a derivation is, as in comprehension, given by:

P (d|Γ, S) =
∏
r∈d

P (r) (3.14)

3.7.2 Expressivity
In producing an utterance, a language user wants to be as expressive as pos-
sible (with as little effort as possible). I operationalize this idea as follows.
Assume that the model creates analyses consisting of equivalent derivations,
as in the comprehension procedure. The model penalizes an analysis for ev-
ery feature of the situation that it does not express. It does so by taking the
summed proportion of features in the situation s not expressed by the analy-
sis a (unexpressed(a, s)) and raises the probability of an unseen event to the
power of unexpressed(a, s).

The calculation of unexpressed(a, s) is defined as follows. For every ver-
tex, the model checks which features are expressed by any construction in the
derivation and takes the proportion of unexpressed features per vertex, after
which the proportions are summed. Vertices that are completely unexpressed
will thus contribute a proportion of 1 to unexpressed(a, s), whereas partially
expressed vertices add a value between 0 and 1 (exclusive) to the score. The
referential penalty over a, or referential penalty(a) can thus be defined as:

referential penalty(a) = P (u|CSstart)
unexpressed(a,s) (3.15)
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Obviously, the notion of referential expressivity employed here is a rather
naïve one. The speaker, while interacting with the hearer, has a shared com-
mon ground with the hearer in the speech situation often allowing for the cor-
rect identification of the situation referred to with minimal means (see, e.g.,
Clark 1996). Furthermore, framing communicative success as the correct iden-
tification of a situation is rather simplistic as well. I leave it to future research
to operationalize and implement more complex notions, involving for in-
stance construal (Croft & Cruse 2004, ch. 3), argumentativity (Verhagen 2005),
and the many other dimensions of communication.

3.7.3 Selecting the best analysis and utterance
The full probability of an analysis can now be given as follows:

P (a|s,Γ) =
∑
d∈a

P (d|s,Γ) · referential penalty(a) (3.16)

Again, we can select the best analysis abest given the situation, using the
same definitions as in section 3.5.

Equally interesting is the selection of the best utterance. Multiple analyses
may have the same yield (i.e., the same string of phonological structures) as
the leaf nodes of the derivations. I take the probability of an utterance U given
a situation s and a grammar Γ to be the disjoint probability of all analyses that
have U as their yield.

P (U |s,Γ) =
∑

a:yield(a)=U

P (a|s,Γ) (3.17)

3.7.4 An example of the generation procedure
Assume the grammar with the five constructions in figure 3.5, and the first
situation (s1) from figure 3.6. All of these constructions have subset mappings
to the situation and hence all can be applied as the first rule. Constructions c1−
c3 are grammatical constructions and can therefore be combined with other
constructions. Figure 3.21 gives all possible derivations given the situation
and the grammar in the box-diagrammatic notation.

Calculating the derivational probabilities and the referential penalties, we
get the probabilities of the six derivations in table 3.5. As we can glean from
the table, derivations d2, d3 and d4 are derivationally equivalent, while the
other derivations are not equivalent with any other derivation. We thus arrive
at the four analyses in table 3.6.

The penalty is calculated by looking at the summed proportion of the fea-
tures on the vertices of the situation. For analysis a1, the entire vertex {ENTITY,
OBJECT,BOX} is left out. This means that the penalty is the probability of an
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Figure 3.21: All derivations for the generation of utterances given s1.
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d rules yield
∏
r∈d

P (r) P (d|s,Γ)

d1 ii, iv, vi, iv, v, v ball go 1
13
· 1 · 5

6
· 1 · 1 · 1 5

78

d2 ii, iv, vi, iv, v, vi, iv, v ball go 1
13
· 1 · 5

6
· 1 · 1 · 2

8
10
624

d3 ii, iv, vi, iv, v, vi, iv, v ball go 2
13
· 1 · 5

6
· 1 · 1 · 2

8
10
624

d4 ii, iv, vi, iv, v, vi, iv, v ball go 2
13
· 1 · 5

6
· 1 · 1 · 2

8
10
624

d5 ii, iv, v ball 5
13
· 1 · 1 5

13

d6 ii, iv, v go 2
13
· 1 · 1 5

13

Table 3.5: The probabilities of the six derivations in figure 3.21.

analysis derivations P derivations
∑
d∈a

penalty P (a)

a1 d1
5
78

5
78

1
13

1 5
1014
≈ 4.93e− 3

a2 d2, d3, d4 10
624

+ 10
624

+ 10
624

30
624

1
13

1 30
8112
≈ 4.93e− 3

a3 d5
5
13

5
13

1
13

4 5
371,293

≈ 1.35e− 5

a4 d6
5
13

5
13

1
13

2 5
2197
≈ 2.28e− 3

Table 3.6: The probabilities of the parses given the six derivation in figure 3.21.

unseen event to the power 1, or 1
13

(1). Analysis a3, on the other hand, leaves
out four full vertices, and thus has a penalty of 1

13

4.
Two analyses are equally likely, viz. a1 and a2. If we look at the yields, we

find that the utterance ball go is the most likely utterance given the situation
and the grammar, with a probability of P (U = ball go|s,Γ) = 9.86e − 3. At
about a quarter of that probability is the utterance go, supported only by anal-
ysis a4 (P (U = go|s,Γ) = 2.28e − 3). The utterance ball is least likely to be
generated by the model, with a probability of 1.35e− 5.

3.8 Meeting desiderata with SPL

SPL was developed with the theoretical discussion about the mechanisms nec-
essary to account for language acquisition in mind. The close adherence to lin-
guistic theorizing is therefore an aspect of this research that warrants its own
section. In this section I evaluate whether SPL meets the various desiderata
we set out in chapter 2. Throughout this chapter, I have discussed why the
several aspects of SPL do so. Here, I briefly summarize them.
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desideratum evaluation

D1 (explicitness) +

D2 (comprehensiveness) +

D3 (simultaneity) +

D4 (representational realism)

D4-1 (qualitative grounding) +

D4-2 (quantitative grounding) +

D4-3 (immanence) +

D5 (processing realism)

D5-1 (heterogeneous structure building) +

D5-2 (linear processing) +

D6 (ontogenetic realism)

D6-1 (cumulative complexity) +

D6-2 (learning-by-processing) +

D6-3 (parts-to-whole and whole-to-parts) +/−
D6-3 (developmental continuity) +

D7 (explanatory insight)

D7-1 (unification) +

Table 3.7: Evaluating SPL against the desiderata.
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Concerning the explicitness of the model’s simplifying assumptions (D1),
I believe SPL to be relatively clear. Several aspects of the model were more
at center stage than others, and, for instance, the implementation of cross-
situational learning and the linear parser constitute highly simplified versions
of obviously much richer cognitive processes.

Second, the model is (in principle) able to comprehend and produce utter-
ances using the process of forming derivations and selecting the best one from
among those (D2). It can, however, only be gradually expected to acquire this
skill, as the model starts with an empty set of constructions. Over time, the
model learns lexical and grammatical constructions, where the processes for
the acquisition of both apply at the same time and are available to the model
throughout developmental time (D3, D6-3).

The representations used by SPL, constructions, consist solely of concep-
tual and phonological structure, as well as a symbolic link, and can thus be
said to be qualitatively grounded in the linguistic usage events (D4-1). By
reinforcing the used constructions (more specifically, the maximally-concrete
used construction), the model is sensitive to the frequencies of aspects of usage
events (D4-2).

SPL processes utterances by using a derivation process, and selecting the
most likely set of equivalent derivations from among all possibilities. Because
such a global optimization process can be considered cognitively unrealistic,
the actual analysis is done with a parser that goes over the utterance linearly
and prunes all but the most likely analyses as it goes (D5-2). In building up
analyses, the model has several processing mechanisms at its disposal: simple
slot-filling, but also the creation of non-hierarchical analyses by means of con-
catenation, the top-down interpretation of a word by means of bootstrapping,
and the possibility to ignore words, and as such the model has a robust toolkit
of processing mechanism (D5-1).

Learning in SPL can be considered to be a by-product of processing (D6-
2): the model processes an utterance, and the resulting best analysis as it is
mapped to a situation leaves a trace by adding syntagmatized constructions
and maximally-concrete constructions. Syntagmatization can be said to in-
stantiate a cognitive take on Brown’s law of cumulative complexity (D6-1)
and part-to-whole learning: more complex constructions can only be learned
on the basis of concatenations of simpler structures that leave traces in the
mind of the speaker in the form of syntagmatized constructions.

Multiple constructions may share structure, in which case the model ex-
tracts a more abstract construction by means of paradigmatization. The para-
digmatization operation involves no selection process whereby it is decided
whether an abstraction is useful or not. As such any and all abstraction are
extracted, and, as I argued, this makes this implementation of a notion of ab-
straction congruent with the idea of abstractions being immanent (D4-3).

Whole-to-parts learning was not the focus of this model, and, for instance,
the model does not break down acquired unanalyzed chunks any further,
and hence I evaluated D6-3 as +/−. There are some aspects of whole-to-parts
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learning available to the model. One is the bootstrapping operator, whereby
the meaning of an unknown part is assigned to it on the basis of a whole. This,
however, does not constitute a case of the decomposition of a thitherto unan-
alyzed whole, and as such not all whole-to-parts learning operations conceiv-
able are done by the model. Discussing this, I argued that the decomposition
of chunks is perhaps an unlikely kind of cognitive operation from the per-
spective of D6-2: it requires the learner to engage in a post-hoc adjustment of
the acquired chunks, which seems to be a kind of off-line reasoning for which
more evidence would be needed. I leave it to proponents of the starting-big
perspective to reconcile the decomposition of chunks with the learning-as-
processing perspective, or to find evidence for off-line operations that break
down chunks.

The issue of explanatory insight (D7) can of course only be discussed sen-
sibly after we have seen some results. Before we turn to these, there is one
aspect of the realism of the model that I would like to consider, viz. the nature
of the input items, especially the situational contexts, given to the model. The
next chapter deals with this issue.




