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Chapter 8

Radio frequency pulses for
nuclear magnetic resonance
force microscopy

Radio frequent pulses are one of the crucial ingredients in magnetic resonance force
microscopy. The magnitude of the spin signal is influenced by the used RF pulse
sequence. Moreover, issues involving spurious crosstalk, heat dissipation, and incom-
plete inversions are important considerations in designing the pulse. In this chapter,
several radio frequent pulses, used in NMR and MRFM will be discussed.

As discussed in Chapter 3, in MRFM one can focus either on creating a force inter-
action or a gradient force interaction between the spins and the magnetic particle of
the cantilever. This requires different RF pulses according to the desired interaction.
The goal of this chapter is to provide a basic and intuitive understanding of the ways
to influence spins, which may be relevant for designing new experiments, especially in
our group. In addition, we propose a pulse sequence which is used in NMR and MRI,
which may be useful for MRFM experiments in which T2 measurements are relevant.

In the first sections the motion of a (classical) magnetic moment, with only an
external magnetic field (section 8.1) and with time varying magnetic field (section 8.2
and section 8.3) will be described. These sections form a foundation for the expla-
nation of common RF pulses (section 8.4) and adiabatic inversions (section 8.5). In
section 8.6, the pulse sequence called B1 Insensitive Rotation (BIR) will be described.
In the final sections (sections 8.7, 8.8 and 8.9), the use of adiabatic pulses in MRFM
and relevant pulses for our group will be discussed.

8.1 The motion of a magnetic moment in an exter-
nal magnetic field

In the following part, we will use a semiclassical description. Further, we will assume
that the spins are not interacting and that no dissipation channels are present. The
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equation of motion for a magnetic moment µ in an external magnetic field B is found
by equating the torque µ×B and the rate of change of the angular momentum J:

dJ

dt
= µ×B (8.1)

Hence, since µ = γJ:
dµ

dt
= µ× γB (8.2)

where γ is the gyro-magnetic ratio. Since the direction of change is perpendicular to
both µ and B, the magnetic moment vector will precess around the external magnetic
field, thereby describing a cone. Note that the initial angle between the magnetic
moment and the external field remains fixed during precession. The frequency at
which the magnetic moment precesses around the magnetic field is called the Larmor
frequency, which is: ωL = γB.

It is convenient to define a rotating reference frame, in which this frame is rotating
with an arbitrary angular frequency Ω relative to the inertial frame (also called the
laboratory frame). In this rotating reference frame, the equation of motion of the
magnetic moment is [108, p. 12]:

δµ

δt
= µ× γ(B + Ω/γ) (8.3)

In which the symbol δ/δt represents the time derivative in the rotating reference
frame. Note that now the magnetic field B is in terms of the rotating reference frame
coordinates. This equation is similar to equation 8.2 by replacing the magnetic field
with an effective magnetic field: Beff = B + Ω/γ. Therefore the magnetic moment
is precessing around the effective magnetic field Beff in the rotating reference frame.
This rotating reference frame description is convenient when time varying magnetic
fields are used, since a varying magnetic field appears to be static when the reference
frame rotates with the angular rotation of the varying magnetic field. From equation
8.3, we see that the magnetic moment is static in the rotating reference frame ( δµδt = 0)
when the direction and amplitude of the angular frequency matches to the Larmor
frequency (Ω = −ωL = −γB).

8.2 Time varying magnetic field

By applying a time varying magnetic field B1(t), which can be achieved by sending
radio frequent (RF) waves, one can influence the magnetic moment of spins. In the
laboratory frame, the equation of motion of a magnetic moment will be:

dµ

dt
= µ× γ(B + B1(t)) (8.4)

In the rotating reference frame, the time dependence of the B1 field can be dropped
when the varying magnetic field is rotating with Ω. To prevent B to get a time
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dependence in terms of the new coordinates, Ω needs to be parallel to B. This means
that B1 will be perpendicular to B. Therefore in the rotating reference frame:

δµ

δt
= µ× γ(B + Ω‖B/γ + B1⊥B) (8.5)

Most of the processes in magnetic resonance are described in the rotating reference
frame, rotating with the B1 field.

8.3 Sending an RF field

Suppose, a radio frequent field is sent in the x-direction (laboratory frame) and the
external magnetic field is pointing along the z-direction. Then the magnetic field from
this electromagnetic wave can have the following form: Bx = 2B1cos(ωt)x̂, which can
be decomposed into a left rotating BL and right rotating field BR:

Bx = BL + BR (8.6)

BR = B1(cos(ωt)x̂ + sin(ωt)ŷ)

BL = B1(cos(ωt)x̂− sin(ωt)ŷ)
(8.7)

Where 2B1 is the amplitude and ω is the angular frequency of the radio frequent
field. From equation 8.7, we see that BL interchanges with BR by replacing ω by −ω.
Therefore, when BR is at resonance, the influence of BL is negligible and vice versa,
since the difference in angular frequency is 2ω. By defining an angular frequency ωz
which can be positive or negative, the rotating magnetic field will be:

B1 = B1(cos(ωzt)x̂ + sin(ωzt)ŷ) (8.8)

Therefore B1 will become BL or BR, depending on ωz. Using equation 8.4 with (B0

in ẑ) we have:

dµ

dt
= µ× γ(B0 ẑ +B1cos(ωzt)x̂ +B1sin(ωzt)ŷ) (8.9)

The time dependence of B1 can be dropped in the rotating reference frame, where
the coordinate system rotates about the z-direction with angular frequency ωz. Using
equation 8.5, the motion of the magnetic moment will be:

δµ

δt
= µ× γ((B0 + ωz/γ)ẑ′ +B1x̂

′) (8.10)

Where B1 is taken along the x-direction. By taking ωz = −ω, we see that the
resonance condition for equation 8.10 will be ω = γB0 for positive γ. In this case
the left rotating field component of the radio frequent field causes the resonance for
positive γ. The motion of the magnetic moment in the rotating reference frame,
rotating with −ω, is therefore [108, p. 21]:

δµ

δt
= µ× γBeff (8.11)

= µ× γ((B0 − ω/γ)ẑ′ +B1x̂
′) (8.12)
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8.4 Common RF pulses

In the following part we will describe pulses that are used in NMR and MRI. Again,
we assume that initially the magnetic moment µ is pointed along the external mag-
netic field B0ẑ in the z-direction. In resonance (ω = γB0), the magnetic moment is
precessing around B1x̂′ in the rotating reference frame. Therefore the z-component
of the magnetic moment is oscillating between positive z and negative z, with a fre-
quency ω1 = γB1, called the Rabi- or nutation frequency. In the laboratory frame,
the tip of the vector of the magnetic moment describes a spherical spiral around the
z-axis. When the magnetic field is off-resonance, we see that the effective field, around
which the magnetic moment is precessing, receives a z-component. In this case, the
magnetic moment cannot reach the full magnitude along ẑ. It is important to note
however that off-resonant excitation does excite the spins. As a rule of thumb, it
helps to keep in mind that the width of a peak in an NMR spectrum has a width
(at full width half maximum (FWHM)) that is at least as wide as twice the B1 field,
δωFWHM = 2γB1.

Any rotation θ, relative to the z-axis of the magnetic moment can be achieved by
sending a resonance RF pulse with amplitude B1 for a duration of τ = θ/(γB1). The
magnetic moment will be rotated to the transverse plane when a so-called π/2-pulse
or 90 degree pulse is applied. A 180 degree rotation of the magnetic moment is called
the π-pulse or inversion pulse.

8.5 Adiabatic inversion

In conventional MRI and NMR, π/2-pulses and π-pulses are commonly used. How-
ever, for MRFM applications these pulses are less convenient for several reasons:
First, due to the demand of low dissipation and high power RF sources, generally
these sources do not generate a homogeneous B1 field, which makes π/2 and π-pulses
unsuitable because different positions in the sample require to have different pulse
widths. The second argument will be made clear in the following: In MRFM, the
signal to noise ratio increases if the spin has a force interaction with the cantilever
(force sensor). This force interaction is achieved by driving the spins in resonance
with the cantilever. If one tries to drive the cantilever with Rabi-oscillations (contin-
uous π-pulses), the B1 field should be homogeneous and the Rabi frequency should
exactly match the cantilever frequency (ωc): γB1 = ωc.

When performing adiabatic pulses, on the other hand, the sweep time of the adi-
abatic pulses determines the time of inversion. Therefore, one can achieve exactly
timed adiabatic inversions as long as the adiabatic condition is fulfilled: ωc � γB1,
which will be described later. Finally, due to the inhomogeneous B0-field, the reso-
nance slice thickness is more easily controlled by performing adiabatic pulses.

In the following, an adiabatic pulse will be described, in the rotating reference
frame.

The magnetic moment can be inverted when the frequency of the B1 field is
swept from far below resonance to far above resonance. For convenience, assume
that initially the magnetic moment µ is pointed along the external magnetic field
B0ẑ in the z-direction and assume that B1 � B0. Note that the description below
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is also valid for a magnetic moment which is initially in the opposite direction. A
magnetic moment, which is parallel to the effective field, is called spin locked. Likewise
a magnetic moment, antiparallel to the effective magnetic field, is called spin anti-
locked. Starting with a frequency of the B1 field below resonance, the direction of the
effective magnetic field and therefore the direction of the magnetic moment will alter
only slightly. Moreover, the z-component of the effective magnetic field is dominant
off-resonance, (assuming that B1 � B0).

We see that the effective field Beff rotates about the y-axis in the rotating reference
plane as the frequency approaches resonance, see 8.12. Using equation 8.12, the
magnitude of Beff and the angle α between the z-axis and Beff is:

Beff =
√

(B0 − ω(t)/γ)2 +B1(t)2 (8.13)

α = arctan

(
B1(t)

B0 − ω(t)/γ

)
(8.14)

We have kept the frequency ω and B1 time-dependent, since adiabatic inversion de-
scribed below requires a frequency and amplitude modulation. From these equations,
we see that a sweep of the B0 field can have the same effect as a frequency sweep of
ω. Therefore an adiabatic inversion can equally well be performed by both methods.

It is now convenient to introduce another reference frame, in which the z-axis
follows Beff in the rotating reference frame, also called the Beff -frame, as in ref.
[117]. Therefore we obtain a doubly rotating reference frame, which rotates with
ωa = dα

dt about the ŷ′-axis. Hence, the motion of the magnetic moment in this
reference frame is:

δ̃µ

δ̃t
= µ× γ (Beff ẑ

′′ + (ωa/γ)ŷ′′) (8.15)

In which the symbol δ̃/δ̃t represents the time derivative in the doubly rotating refer-
ence frame. From this equation, it becomes clear that in the case of a fast inversion (a
large ωa), the component in ŷ′′ = ŷ′-direction becomes significant. This means that,
after an inversion pulse, the magnetic moment can have a component in the lateral
direction, which therefore blurs the inversion. The magnetic moment only follows the
effective magnetic field Beff , provided that:

ωa(t)� γBeff ∀t (8.16)

Since B1 � B0, the minimal magntiude of the effective magnetic field is equal to B1.
Hence,

ωa(t)� γB1 (8.17)

This is called the adiabatic condition. A full inversion can only be achieved if this
adiabatic condition is fulfilled. In the previous description, we treated the spins as
being isolated. However, the spins have interaction with their environment, i.e. spin-
lattice interaction and spin-spin interaction. If the spin system applies to the Bloch
equations [118], it is sufficient to add a condition in which the relaxation mechanisms
due to the environmental interactions are negligible during the adiabatic inversion
[18, p. 66] :

1/ωa(t)� T1, T2 (8.18)
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Combining this condition with the previous (Eq. 8.17) and since T2 is usually much
smaller than T1 (T2 � T1):

1

T2
� ωa(t)� |γB1| (8.19)

Since T2 times can be very short, the necessary speed of the passage has caused the
adiabatic inversion to be called ‘adiabatic rapid passage’ [18, p. 66]. However, for
solids, this inequality is far too stringent with RF fields larger than the local field
from neighboring spins. [18, p. 66] [119]. A hand-waving argument, according to
Redfield et al. [119] is as follows: Suppose that the magnetization with magnitude
(M1) is initially in the direction of the RF field, then according to the Bloch equations,
the magnetization will decay exponentially to zero in a time T2. The work during
this decay is equal to M1B1. Since we assumed that T2 � T1, the energy (during
T2) can only come from the spin-spin energy. Therefore, for Bloc � B1 and due
to conservation of energy, the spin system is not able to acquire the entire energy
(M1B1) corresponding to the applied rotating field B1, which means that the T2 decay
according to the Bloch equations is partially forbidden. As a result, the transverse
decay for the component of the magnetization parallel to the B1 field (say, x’-direction
in the rotating frame) is rather in the order of the T1 time [119] [18, p. 66 and p.
539-545]. Meanwhile, the transverse decay for the component of the magnetization
perpendicular to the B1 (y’-direction) still decays with the T2 time according to the
Bloch equations. Since the magnetization follows the effective field if the adiabatic
condition is fulfilled, only a small contribution of the field is in the y-direction. For
many experiments the following less stringent inequality can be applied [18, p. 66]:

1

T1
� ωa(t)� |γB1| > |γBloc| '

1

T2
(8.20)

Where Bloc is the local magnetic field experienced by neighboring spins.
Many pulse shapes are used with several different forms of ω(t) and B1(t) [18,

117, 120, 121]. Most of the pulses will also give a time dependence of Beff (t) and
ωa(t). However, we can try to find a time independent solution by requiring that
dBeff/dt = 0 and ωa = dα/dt is constant. The latter requirement ensures a constant
angular velocity of the effective field vector. Then, using equations 8.13 and 8.14 and
taking ω(t) = γB0 + ∆ω(t), we find the following differential equations:

0 = B1(t)Ḃ1(t)− ∆ω(t)∆ω̇(t)

γ2
(8.21)

ωa =
Ḃ1(t)∆ω(t)/γ +B1(t)∆ω̇(t)/γ

B1(t)2 + ∆ω(t)2/γ2
(8.22)

We take the boundary condition such that the spin is aligned to the external magnetic

field (in z-direction) at t=0. This yields at resonance ∆ω(π/2ωa
) = 0 and B1(π/2ωa

) =
B10

. By solving the differential equations with the latter boundary conditions, we
obtain a full adiabatic inversion with the following time dependencies of the B1 field
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T

Figure 8.1: Adiabatic rapid passage in which the change in the magnitude of the effective field is
zero and in which the tip of the effective field rotates with a constant angular velocity. The red curve
corresponds with the frequency sweep of ∆ω and the blue curve corresponds with the amplitude
modulation of B1(t).

and angular frequency modulation (∆ω):

B1(t) = B10 sin(ωat) 0 ≤ t ≤ π

ωa
(8.23)

∆ω(t) = −γB10
cos(ωat) 0 ≤ t ≤ π

ωa
(8.24)

In figure 8.1, the adiabatic inversion pulse is shown. The same adiabatic inversion
would have been obtained if we sweep the external magnetic field (B∗0(t)) instead of
∆ω(t), according to:

B∗0(t) = B0 + ∆B0 = B0 +B10
cos(ωat) 0 ≤ t ≤ π

ωa
(8.25)

Since ωa is constant in these equations, the adiabatic condition without time
dependence of ωa applies for these pulse shapes (see Eq. 8.17).

Other pulse shapes are designed to be more independent of resonance offsets or
they are designed to decrease the average or peak power of the RF-radiation. These
so called offset independent adiabaticity (OIA) pulses are useful in NMR and MRI to
obtain larger signals. In the case of MRFM, one would rather like to have small reso-
nance slices, which omits the requirement of large offset independent pulses. However,
it may still be of interest to control the resonance slice thickness with these pulses, to
increase the signal to the desired level.In the following, we will evaluate a condition
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for offset independent adiabaticity pulses [117]. If we apply the adiabatic condition
(Eq. 8.16) with a resonance offset Ω incorporated, we obtain:

C(Ω, t) =
γBeff (t)

dα(t)/dt
(8.26)

=

(
(Ω−∆ω(t))2 + γ2B2

1(t)
)

γḂ1(t)(Ω−∆ω(t)) + γB1(t)|∆ω̇(t)
� 1 (8.27)

= for |Ω| ≤ max(|∆ω|) = A (8.28)

Where A is the frequency sweep amplitude and C indicates how much the adiabatic
condition is fulfilled. In order to obtain high independence of Ω in the bandwidth A,
we can require that the condition must be equally satisfied for all Ω. This means that
C needs to be independent of Ω, which is satisfied on resonance (Ω = ∆ω) at time
tΩ:

C(tΩ) =
γ2B2

1(tΩ)

∆ω̇(tΩ)
� 1 (8.29)

Therefore, we obtain an equation for which the condition satisfies equally well for
all |Ω| ≤ |A|:

C(tΩ)∆̇ω(tΩ) = γ2B2
1(tΩ) (8.30)

Since at resonance, the effective field is only determined by B1, which normally cor-
responds to the lowest effective field for B1 � B0, the adiabatic condition and Eq.
8.29 is most critical at tΩ. Therefore we can assume that usually Eq. 8.27 is satisfied
for all t within the pulse. The simplest RF pulse which satisfies Eq. 8.30 equally well
for all |Ω| ≤ A, is a constant B1 field and a linear frequency sweep. This pulse is
often used in MRFM [2, 30, 122]. Therefore the condition in Eq. 8.29 is often shown
as the adiabatic condition. Equation 8.30 assembles to Eq. 3.21 for a straight line
frequency sweep: ∆ω(t) = Aωa

t
2π −

1
2A and constant B1, where ωa = 2π/Tp with Tp

the pulse length.
From equations 8.23, 8.24 and 8.14, we see that the adiabatic rotation of the spin

is only independent of the B1 field if the rotation is 90 or 180 degrees. For in-plane
rotations, such as performed in spin echo experiments, the end phase of an adiabatic
in-plane inversion depends on the frequency and magnetic field. Since these are not
constant during the pulse, the phases of the components of the magnetization will
only slightly refocus after an in-plane rotation. This means that spin echo experiments
yield poor results when performed by conventional adiabatic in-plane inversions. This
effect can be impaired if a composite pulse like a B1 insensitive rotation (BIR) pulse
is used. This pulse will be described in the next section.

8.6 T2 measurements with B1 insensitive rotation
(BIR)

In contrast to free induction decay as used in conventional nuclear magnetic resonance
(NMR) and magnetic resonance imaging (MRI), in MRFM it is hard to measure the
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spin-spin relaxation times (T2 relaxation), since usually inhomogeneous B1 fields are
present. However, a lot of interesting information is buried in the T2 relaxation times
of materials.

In order to measure the T2 relaxation times, one usually performs spin-echo exper-
iments. The conventional way of performing spin-echo experiments is by applying a
π/2 π pulse (Hahn echo), in which the magnetization is transferred to the transverse
plane where the dephasing occurs, whereupon the components of the magnetization
can refocus after being inverted. This procedure only applies when the B1 field is
homogeneous over the sample, since otherwise the majority of spins would not make
an exact π/2 or π pulse. Moreover, in the case of spin-echo experiments for MRFM,
the spins have to be transferred to the longitudinal direction after being dephased
and refocused. As stated above, since usually in MRFM one has to deal with an
inhomogeneous B1-field, a spin echo has to be performed with an adiabatic pulse.

In the following, an adiabatic pulse sequence that is used in NMR and MRI will
be described, which may be useful for future MRFM experiments in which spin-spin
relaxation is relevant.

The pulse sequence and the schematic description of the pulse is shown in figure
8.2. First, the so called BIR-1 will be described, which is the more simple version of
the later discussed BIR-4. Both pulses were introduced and described by Garwood et
al. [123, 117] The basic idea is to perform an adiabatic pulse in which the dephasing
and refocusing occurs due to a combination of a phase delay in the RF pulse and an
inversion of the effective field. The phase delay determines the final rotation of the
magnetization vector. The BIR-1 pulse consists of two segments and will be described
in the rotating reference frame. Again, we assume that initially the magnetization
vector is pointed in the z-direction, parallel to the external field.

The pulse starts with the effective field in the transverse plane in the x-direction
(in resonance), whereupon the effective field is rotated to the z-axis by an adiabatic
sweep. During this sweep the magnetic moment precesses perpendicularly around
the effective field to the transverse plane. During this precession, dephasing occurs
mainly due to inhomogeneities of the B1- and B0 field. After the end of this adiabatic
pulse (Tp/2), the effective field is inverted by a sign change with magnitude ∆ω. At
exactly the same moment (Tp/2) a phase shift of ∆φ = π + θ is introduced in which
θ will be the final rotation of the magnetization. For a 90 degrees rotation, one
therefore needs a 270 degrees phase shift of the RF pulse. During this event, the
rotation direction of the precession changes (in the rotating reference frame), which
means that the accumulated phase runs back and therefore refocuses the components
of the magnetization. The phase shift causes the effective field to rotate to the -y-axis
instead of the x-axis. Due to the symmetry of the pulse, which zeroes the accumulated
phase when off-resonance effects are omitted, the magnetization vector ends on the
transverse plane in the -x-direction.

In the case of a B0 field inhomogeneity, yielding a resonance offset Ω, the total
accumulated phase may not be zero [117]:

Ψtot = Ψ1 + Ψ2 = −
∫ Tp/2

0

Beff (t)dt +

∫ Tp

Tp/2

Beff (t)dt (8.31)

Where Beff is as Eq. 8.13, from which ω(t) is shown in figure 8.2. We can see from
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the formulas and looking at figure 8.2, that the two integrals (corresponding to the
two pulse segments) do not equal each other when a frequency offset is present. As an
example, in the case of a positive resonance offset, the difference ω0 − ω(t) is smaller
in the first integral than in the second.

This effect can be eliminated by the BIR-4 pulse as described below. Another
effect, which cannot be compensated by the BIR-4 pulse but does not depend on
the length of the pulse, is the fact that the initial effective magnetic field receives an
angle, see Eq. 8.14. The BIR-4 pulse essentially consists of two concatenated BIR-1
pulses with four segments. In segment three, the pulse continues on BIR-1, in which
the phase starts to increase (opposite to segment one). In between segment three and
four, the effective field is inverted again, with an accompanied phase shift. In this
way, the total phase is zero, since −Ψ1 = Ψ3 and Ψ2 = −Ψ4. With the BIR-4 pulse,
two phase shifts have to be applied in accordance with:

∆φ1 = π + θ/2 (8.32)

∆φ2 = −π + θ/2 (8.33)

Where θ is the final rotation of the magnetization vector.
The effect of the spin-spin interaction becomes apparent when the short-lived inter-
actions with other spins cause irreversible additional phases to the components of the
magnetization. This eventually ends up in a dephased (smaller) magnetization vec-
tor. In a free induction decay experiment, this will be apparent after several spin-echo
experiments with different delays between the π/2 and π pulses.

In the case of a BIR-4 180 degree rotation, after dephasing and rotating the
magnetization to the z-axis, a resultant smaller z component of the magnetization
will be observed. Using different pulse lengths, in which the phase error increases
with pulse length, a T ∗2 measurement may be performed. Another advantage of the
BIR pulse is that any rotation of the magnetization can be performed adiabatically.
Note that the T2 relaxation time of the pulse may not be too short when the B1 field
is much smaller than the local field (Bloc), else all information may be lost already
during one pulse, see Eq. 8.19 and Eq. 8.20.

8.7 Pulse sequences for MRFM: OSCAR and CER-
MIT

The pulse sequences that are described in this section are designed to invert spins in
synchronization with the resonance frequency of the cantilever. In the following, the
OScillation Cantilever-driven Adiabatic Reversals (OSCAR) and interrupted OSCAR
(iOSCAR) will be described [124, 27]. When the cantilever is moving at its resonance
frequency in the presence of a B1-field, the dipolar field from the magnet sweeps
its resulting resonance slice back and forth through the sample. This creates an
oscillating B0 field around the resonance slice. Looking at Eq. 8.13 and Eq. 8.14, the
spins invert back and forth adiabatically. These inversions create a force which either
repels or attracts the cantilever, depending on the relative position of the cantilever
and the spins as well as on the orientation of the spins. The oscillating force changes
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Figure 8.2: The pulse shape of a B1 independent rotation in the case of a BIR-4 pulse. The simpler
BIR-1 pulse, which does not compensate for resonance offsets Ω, consists of just half the BIR-4
pulse with time Tp/2. The red dashed lines divide the pulse into 4 segments. On the upper side
of the image, the accompanying representation of the pulse in the rotating frame is shown. In this
representation, the evolution of the Beff field and the components of the magnetization (M) are
shown for the events during the pulse, which are numbered from 1 to 5 and marked by black dots
on the curve. Initially, the magnetization is supposed to be in the z’-direction (the accent marks the
rotating frame representation). The effective field starts on resonance, and is chosen to be at the
x’ axis. The magnetization stays perpendicular to the effective field when the adiabatic condition
is fulfilled. It rotates around the effective field with its corresponding frequency γBeff . Dephasing
occurs mainly due to B1 field inhomogeneity. The accumulated phase error refocuses again after the
abrupt frequency step, in which the effective field changes sign. Due to an added phase shift of 270◦

between point 2 and 2*, the magnetization ends up in the transverse plane. The same procedure
is repeated in segment 3 and 4 to undo the extra phase shift when a resonance offset Ω is present.
The compensation of the accumulated phase error due to the offset can be seen by the filled areas,
which are related to the accumulated phase error; segment 3 compensates segment 1 and segment 4
compensates segment 2 (at point 2 and 4, the phase accumulation is reversed).

81



the restoring force from the cantilever, shifting its effective spring constant [124]:
∆k = Fspin/∆z.

In order to obtain a large and reproducible signal from the spins, the B1 field is
switched on at the maximum deflection of the cantilever. The frequency shift, which
corresponds to the spring constant shift can be detected by a PLL-measurement or by
frequency detection while self-oscillating the cantilever. The pulse is shown in figure
8.3a. As described in chapter 3 and chapter 6, surface noise, which is responsible for
most of the 1/f noise at the eigenfrequency of the cantilever, is a major problem of
this detection method. For this reason the iOSCAR protocol was introduced, in which
the frequency shift is modulated. The protocol is shown in figure 8.3c. This protocol
makes use of the fact that the shift of the spring constant changes sign, depending on
the relative phase of the movement of the cantilever and the rotations of the spins.

In this protocol, the B1 field is switched off for half a cycle in every N cycles of the
cantilever. During the off-cycle, the relative phase accumulates to a 180 degree phase
shift, changing the sign of the frequency shift. The number of cycles (N) determines
the frequency of the frequency shift changes: f(∆f) = f0/2N . By the use of this
protocol, the spin signal of a single electron was detected [27].

Another method, which is very similar to the OSCAR protocol, is the Cantilever
Enabled Readout by Magnetization Inversion Transients (CERMIT) protocol [40],
see figure 8.3b. In this protocol, the magnetization direction in the resonance slice
determines the spring constant shift of the cantilever. Therefore this protocol is based
on a different interaction than the OSCAR protocol. The advantage of this protocol
is that instead of continuously driving the B1 field, only one inversion is necessary to
shift the resonance. This eventually lowers the power dissipation of the RF source,
which will make it easier to reach lower temperatures.

Similar to the iOSCAR protocol, one can also modulate the frequency shift by
cyclically inverting the spins, called cyclic CERMIT, see figure 8.3d. Practically, the
pulse sequence is exactly the same as the iOSCAR protocol, but with the on and
off state of the B1 field interchanged. Both RF protocols are based on a response
to a force gradient, changing the spring constant and therefore the frequency of the
cantilever. However, the origin and amplitude of the force interaction are different.

8.8 Pulse sequences for MRFM: cyclic adiabatic driv-
ing

A force detection method is favorable, since it is more sensitive than frequency de-
tection, as described in Chapter 3. This requires a method in which the cantilever
is cyclically driven by the spins at the eigenfrequency of the cantilever, since static
forces only shift the position of the cantilever. However, due to symmetry, when
Boltzmann polarization is dominant, only a force from cyclic spin inversions is expe-
rienced by the cantilever when it is vibrating towards the surface (a cantilever with
the long direction parallel to the surface). One of the first experiments with MRFM
having this cantilever configuration was performed with cyclic saturation [125] and
later on with cyclic adiabatic inversion [126]. This configuration is not favorable, since
the cantilever may snap into contact with the surface, especially with the often used
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Figure 8.3: Radio frequency pulse sequences used in MRFM. (a) OScillation Cantilever-driven Adi-
abatic Reversals (OSCAR) pulse sequence. The motion of the magnetic particle on the cantilever
(xres) causes adiabatic inversions when the oscillating magnetic field (B1) is switched on at a max-
imum of xres. The oscillating magnetization M causes a frequency shift ∆f on the frequency of
the cantilever. (b) Cantilever Enabled Readout by Magnetization Inversion Transients (CERMIT).
An adiabatic inversion causes a different spin configuration, changing the magnetization and the
effective spring constant. (c) interrupted OSCAR (iOSCAR). By periodically switching off the B1

field, a phase shift of M corresponding to xres changes ∆f in synchrony. (d) cyclic CERMIT. By
periodically applying adiabatic inversions, the frequency is shifted accordingly. (e) Cyclic adiabatic
rapid passages. This pulse is applied for statistically polarized samples. By applying adiabatic inver-
sions at twice the cantilever frequency, the spin inversions create a force on the cantilever depending
on the configuration. The variance of these force interactions are translated into a variance σs in
the in phase component of the cantilever motion. To decrease measuring time, randomization pulses
may be applied, which decrease the correlation of spin configurations (the squares in the B1 field
represent the randomization pulses).
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floppy MRFM cantilever.
In the case of statistical polarization, a different cantilever orientation may still

be used (perpendicular to the surface), since the force on the cantilever is dependent
on the configuration of randomly oriented spins. The spin signal can be detected by
using cyclic adiabatic pulses at twice the cantilever frequency while measuring the
variance of the in-phase signal of the cantilever motion [2, 30, 122], see figure 8.3e.
The doubling of the frequency of inversion pulses is required, because a full cycle of
spins is obtained after two inversion cycles. This detection method was used for 3D
imaging of virus particles with a resolution smaller than 10 nm [2].

A limiting factor, especially at low temperatures, is the required radio frequency
current through the RF wire, due to the required fulfillment of the adiabatic condition
in Eq. 8.17. The adiabatic condition in ref. [30] for fluorine with a gyromagnetic
ratio of 40 MHz/T for a linear frequency sweep with a modulation amplitude of 1.4
MHz corresponding to Eq. 3.21 is equal to 1 if the B1 field is 2 mT for a 6 kHz
pulse frequency (2 times the cantilever frequency). Twice this B1-field (4 mT) yields
reasonable inversions [30]. Since only one of the rotating directions is in resonance
(left rotating or right rotating, see section 8.3), the applied field has to be twice as
large. This means that an oscillating magnetic field of 8 mT has to be sent (for a 4
mT B1 field), which corresponds to an RF current of 20 mA for a sample at a distance
of 500 nm from the RF wire such as in ref. [30].

In conclusion; although the force sensitivity increases signal-to-noise ratio, as-
pects such as cantilever orientation and RF current requirements limit the use of this
method.

8.9 T1 and T2 measurements with a single adiabatic
inversion

As described in the previous section and section 3.5, the necessary RF currents cause
considerable heating, even when using a superconducting wire. In our current setup,
the heating of the superconducting wire from the required current for cyclic adiabatic
rapid passage is too much for measurements at millikelvin temperatures. However,
we could perform a single and slower adiabatic passage to invert spins, such that the
adiabatic condition 8.17 is satisfied more easily. On the other hand, when the B1

field is lower than the local magnetic field (Bloc) we should take into account that
the T2 time should be large enough to fulfill the condition in Eq. 8.19. In the case of
large RF fields, in the order of the local magnetic field or larger, the adiabatic rapid
passage is limited by T1, see Eq. 8.20 and section 8.5.

In the case of samples in which the spins carrying magnetic moments are close to
each other (such as often the case in solids), the T2 time may especially become short,
since the T2 time is approximately equal to the Larmor period from the local field of
the neighboring spins [113, p. 14]. In the case of the copper sample, where the T2

time is only 0.15 ms, a field larger than 500 µT is enough to considerably increase the
effective T ∗2 time. The required current at 1 µm from the RF wire is therefore 5-10
mA. The length of the adiabatic pulse may then be much longer, i.e. a fraction of the
T1 time, being T1 = 1 second to 20 seconds depending on the temperature (T < 1 K).
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The use of slow adiabatic (rapid) passage on silicon is much more feasible, since
the natural abundance of 29Si (having a magnetic moment) is only 4.6% [127], yield-
ing a longer T2 time through larger average neighbor distance. Moreover the B1 field
is easily larger than the local field. The T2 time is measured to be 25 seconds for
undoped natural silicon at room temperature [128, p. 427]. If this T2 time is domi-
nated by dipolar interactions, it is expected to have little change when going to lower
temperatures. Since the T1 time is very long especially at low temperatures, it may
be interesting, for example to measure the T2 time of 29Si by using the BIR-protocol
(see section 8.6) [128, p. 427]. The T1 time is more than 8 hours at low temperatures
(10 K) [128, p. 427]. Any other diluted spin system may also be of interest for slow
adiabatic passage.
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