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Recent experiments on ultracold atomic alkali gases in a one-dimensional optical lattice have
demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas in the hard-
core limit, where one-dimensional bosons behave like fermions in many respects. We have studied the
underlying many-body physics through numerical simulations which accommodate both the soft-core
and hard-core limits in one single framework. We find that the Tonks-Girardeau gas is reached only at
the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a
Mott-like phase already at weaker optical lattice potentials, show that these Mott-like short-range
correlations do not enhance the convergence to the hard-core limit.

DOI: 10.1103/PhysRevLett.93.210401 PACS numbers: 05.30.Jp, 03.75.Hh, 03.75.Lm
I. Introduction.—Since the prediction by Jaksch et al.
[1] on the experiment by Greiner et al. [2], ultracold atoms
in optical lattices have been the focus of much activity. By
tightly confining the motion in the transverse direction,
an array of quasi-one-dimensional optical lattices results
[3], where particle exchange between the one-dimen-
sional tubes is suppressed. The role of quantum fluctua-
tions is enhanced in one dimension compared to the
three-dimensional case, such that traditional mean-field
theories fail. Instead, the long-range low-energy physics
is described by the Luttinger liquid model. In the limit of
infinite repulsion between the atoms the atomic gas is
called a Tonks-Girardeau gas [4,5] (TG). Because of the
blocking of double occupancies, the resulting hard-core
bosons have some properties very similar to noninteract-
ing fermions; e.g., the density profiles become indistin-
guishable. However, more complicated properties such as
the momentum distribution remain discriminating char-
acteristics [6]. The regime of strong repulsions between
bosons has been studied experimentally [7] and theoreti-
cally [8] for an atomic gas not subject to an optical
potential, but the acquired values for the ratio of the
repulsive interaction strength to the kinetic energy were
rather low and the TG regime was not seen. By using an
optical lattice, much higher values for this ratio could be
reached [6]. The interpretation of these experiments is
complicated by the finite-size effects due to the harmonic
trap. But even in the homogeneous case, an accurate
theoretical description of the transition from a weakly
interacting Bose gas to a strongly interacting Tonks gas
has to rely on numerical simulations. Our aim is to model
the experimental results of Ref. [6] using one single
numerical framework which accommodates both the
weakly and the strongly interacting regime.

The physics of ultracold atoms in optical lattices can be
described by the Bose-Hubbard model [1], which consid-
ers bosons occupying Wannier orbitals. The validity of
this model is confirmed by the ratio of the central to first
0031-9007=04=93(21)=210401(4)$22.50 
Bragg peak in the experimentally observed momentum
distributions, which depends only on the shape of the
Wannier orbitals (see below). The TG regime is charac-
terized by the absence of double occupancies in the many-
boson wave function. To identify the TG regime unam-
biguously, one has to evaluate whether the experimental
results are better described by soft-core bosons with a
considerable overlap or by hard-core bosons for which
double occupations are explicitly suppressed. Exact re-
sults for realistic parameters over the entire range of the
axial optical lattice depths used in the experiment are
obtained using quantum Monte Carlo methods. We find
that the results for soft-core and hard-core bosons do not
coincide except for the strongest optical potentials used in
the experiments, in contrast with the fermionization ap-
proach of Ref. [6] which assumes hard-core bosons at all
optical-potential strengths.

II. One-dimensional optical lattice.—When an ultra-
cold Rb gas of atoms is cooled and loaded into an optical
lattice [2] with very tight transverse confinement, its
dynamics is governed by the one-dimensional Hamil-
tonian,

H �
p2

2m
� V0�x� � VT�x� � gint

X

i<j

��xi � xj�; (1)

withm the atomic mass, xi the position of atom i, V0�x� �
V0sin

2�kx� the optical potential (V0 takes the laser inten-
sity and the dynamic polarizability of the atoms into
account), and VT�x� the harmonic trapping potential,
which varies slowly compared to the optical potential.
The wave vector k of the laser along the axial direction
defines the length scale �=2 through k � 2�=� and the
recoil energy ER � �h2k2=�2m� which we will use as an
energy scale. The Hamiltonian Eq. (1) reduces to the
exactly solvable Lieb-Liniger [5] model for VT�x� � 0
and V0�x��0 while it reduces to a Mathieu equation for
VT�x� � 0 and gint � 0. The interaction gint between the
2004 The American Physical Society 210401-1
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FIG. 1. Internal energy per site as a function of U=J for a
homogeneous model with 128 sites at a temperature T=J � 0:2.
The data points with error bars connected by the full line are
the energies obtained by the SSE method. The energies for
noninteracting fermions (upper dotted horizontal line) and
noninteracting bosons (lower dotted horizontal line) are
shown, together with the Bogoliubov approximation for bosons
(dashed line on the left) and a first-order perturbation theory
for fermions (dashed line on the right).
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atoms is determined by the three-dimensional scattering
length as of the atoms. Olshanii [9] studied the scattering
problem of two particles in tight waveguides and found
for the effective one-dimensional coupling constant

gint �
2 �h2as
ma2?

1

1� 1:033as=a?
; (2)

where a? �
�����������������
�h=m!?

p
is the characteristic length of the

transverse harmonic confinement. For very tight radial
confinement it suffices to integrate over the y and z
directions assuming harmonic confinement, yielding
gint �

2 �h2as
ma2

?

. The Wannier orbitals are calculated for the

periodic potential given by the kinetic and the optical
terms in Eq. (1), restricted to the lowest band [10]. For
low-density gases we can express the Hamiltonian of
Eq. (1) in the Wannier basis, resulting in a Bose-
Hubbard model [1,11],

H � �J
X

hi;ji

byi bj �
X

i

"ini �
U
2

X

i

ni�ni � 1�; (3)

where the first summation runs over nearest neighbors
only, the operator ni counts the number of bosons at site i
and the effective parameters U, "i, and J represent the
strengths of the on-site repulsion, the harmonic trapping,
and the kinetic hopping, respectively. Recent studies of
the one-dimensional Bose-Hubbard model mainly fo-
cused on the Mott-superfluid transition, using a wide
range of methods: a slave-boson approach [12], the nu-
merical renormalization group [13], the density matrix
renormalization group [14], the time-evolving block dec-
imation method [15], and Monte Carlo methods [16]. The
main uncertainties in the model relate to the accuracy of
the scattering length as and the renormalization of the
effective parameters of the Bose-Hubbard model. As we
work in the grand-canonical ensemble, the chemical po-
tential � must be fine-tuned such that the expected num-
ber of particles corresponds to the experimental number
of particles. The Bose-Hubbard model is simulated using
the stochastic series expansion method [17] (SSE) with
locally optimized directed loop updates [18,19]. From
this Monte Carlo simulation thermodynamic observables
such as the energy, the (local) density, the (local) com-
pressibility, and the one-body correlation function can be
computed exactly in a statistical sense [20].

III. Homogeneous system.—First, we consider a homo-
geneous ("i � 0) atomic gas in a lattice of L � 128 sites
with periodic boundary conditions at a very low but finite
temperature, T=J � 0:2. In Fig. 1 we show the internal
energy per site of this system for increasing values of
U=J, keeping the average density fixed at hni 
 0:5. An
ideal Bose gas occurs in the limit of vanishing U, which
is indicated by the lower horizontal line in Fig. 1, while
the ideal Fermi gas is found for U ! 1 and indicated by
the upper horizontal line. For very large values ofU=J, no
site of the lattice will be doubly occupied and one can
210401-2
apply the Jordan-Wigner transformation to map the bo-
sons onto fermions [21]. For small but finite U (U=J 

0:1 in Fig. 1) , the system is adequately described by the
standard Bogoliubov approximation [10]. For large U a
perturbation of interacting fermions was derived in
Ref. [22] to order 1=U. From the log scale in Fig. 1 it
appears that the limit of noninteracting fermions is
reached slowly for values of U=J > 10. For U=J� 1
one has to resort to numerical methods, and we see that
the SSE method remains efficient over the entire U=J
range. Higher temperatures lead qualitatively to the same
results, but the description in terms of fermions is only
valid for higher values of U=J. Temperature can be seen
as a source for exciting double occupancy on a particular
site, whose likeliness must be suppressed by a stronger on-
site repulsion term.

IV. Inhomogeneous system.—The harmonic trapping
potential breaks the homogeneity of the system. For the
parameters we follow Ref. [6]: the scattering length as of
Rb atoms is taken to be as � 102�6�a0 [23], with a0 the
Bohr length; the characteristic length a? of the tight
confinement in the y and z directions is a? � 57:6 nm;
the parameter "i in Eq. (3), characterizing the trapping in
the axial direction, is given by "i�

R
dxVT�x�j��x�

xi�j2’8�10�4ER�i�
L
2�

2, with ��x� xi� the Wannier
function centered around site i and L � 50 the total
number of sites. The ratio U=J can be varied by changing
the optical-potential strength V0. The temperature T and
the number of particles in one tube are not directly
accessible experimentally. The averaging over an array
of one-dimensional tubes in Ref. [6] can be understood as
an averaging over condensates with different tempera-
tures and particle numbers. However, one can understand
the onset of the TG limit from simulations for a single
tube with a fixed temperature. We used T=J�1 at all
210401-2
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interaction strengths, which is of the same order as the
temperatures estimated in Ref. [6]. In Fig. 2 the local
densities and the momentum profiles are shown for sev-
eral values of the optical-potential strength V0, in line
with the actual values used in the experiment of Ref. [6].
All Monte Carlo simulations consist of at least 20 chains
of 216 samples with each 50–200 off-diagonal updates
such that error bars are not visible.

Momentum profiles are experimentally measurable and
can be calculated from a numerical simulation as

n�p� � j��p�j2
X

j;l

e�ip�j�l�hbyj bli; (4)

where the envelope ��p� is the Fourier transform of the
Wannier function ��x�, p denotes momentum in units of
�hk, and hbyj bli is the one-body density matrix of the Bose-
Hubbard model. In Fig. 2, the peak observed at p � 2 �hk
is the first-order diffraction peak reflecting the presence
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FIG. 2. Local densities ni in coordinate space as a function of
the site index i (left) and the corresponding momentum profiles
n�p� as a function of the momentum p (in units �hk) on the right.
The axial optical lattice depths, the ratios U=J and the values
of the slope parameter & for soft-core (solid line) and &0 for
hard-core bosons (dashed line) are (a) V0=ER � 1,U=J � 1:75,
&�2:71, &0 �1:69, (b) V0=ER�5, U=J�7:85, &�1:92, &0 �
1:38, (c) V0=ER�9:5, U=J�28:6, &�1:00, &0 �0:78, (d) V0=
ER�12, U=J�52:28, &�0:72, &0 �0:56, (e) V0=ER�20,
U=J�258:54, &�0:33, &0 �0:32. In each plot the average
number of particles is hNi 
 15, the temperature is T=J � 1,
and the lattice consists of 50 sites.
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of the optical lattice. The ratio between the height of the
central peak and the first-order peak is solely related to
the width of the Wannier orbitals and is not affected by
averaging over the array of tubes or by the dynamics of
the Bose-Hubbard model. The procedure to calculate the
Wannier orbitals outlined above yields ratios in good
agreement with the experimental data shown in Fig. 2
of Ref. [6]. This suggests that the ramping down along the
axial direction in the experiment proceeded adiabatically,
and it demonstrates that the discrete Bose-Hubbard
model is a valid approach to describe the physics of ultra-
cold atomic alkali gases in optical lattices.

In each of Figs. 2(a)–2(e) there is a region where the
slope of the momentum distribution is almost linear (on a
log-log scale), similar to what occurs in an infinite ho-
mogeneous Tonks gas at T � 0, which has an infrared
divergence n�p� / p�1=2 at low momenta and an asymp-
totic tail n�p� / p�4 at high momenta [24]. In our case,
the periodicity of the optical lattice sets an upper mo-
mentum scale pL � �hk. The width of theWannier orbitals
sets another upper scale, pW ’ �V0=ER�1=4pL, which
turns out to be larger than pL for the parameter regimes
considered here. The harmonic trap sets a lower momen-
tum scale pT � �m �h!�1=2 ’ 0:1 �hk, below which the mo-
mentum distribution is flattened because of the
suppression of long-range correlations. Because of the
trapping potential, the influence of temperature on the
momentum distribution will be different from the homo-
geneous case: thermal fluctuations will occur at the edges
of the cloud and therefore they will mainly affect the
momentum distribution below pT . Only the momentum
distribution in the region between pT and pL relates
directly to the short-range dynamics of the Bose-
Hubbard model and might show a power-law behavior
similar to the homogeneous system. We have fitted the
linear parts of the log-log curves in this region with a
power-law n�p� / p�&. The slope & is sensitive to tem-
perature, density and interaction strength, but to first-
order independent of the Wannier orbitals.

By comparing the results for soft-core and hard-core
bosons in Fig. 2, one sees that the TG regime is ap-
proached for optical potentials V0=ER � 9:5 and
V0=ER � 12, while it is fully reached only at V0=ER �
20, which in our model corresponds to a ratioU=J � 259.
These values are in good agreement with Fig. 1, where the
energy for U=J � 200 is only 4% lower than the energy
of an ideal Fermi gas. For lower optical potentials, finite
boson-boson interactions certainly need to be taken into
account and double occupancies in the center of the trap
do play an important role. We see in Fig. 2(e) that a Mott-
like region is formed in the center of the trap. For a
homogeneous system in the Mott phase, the dispersion
relation of the excitations has a gap of order U [11],
meaning that the role of double occupancies is strongly
suppressed [13]. The Mott phase is entered at a ratio U=J
as low as 1.67at T � 0 for a density of one particle per site
210401-3
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potential V0=ER � 7 and temperature T=J � 1, for soft-core
(solid line) and hard-core bosons (dashed line).
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[25]. For the inhomogeneous system, the insulating be-
havior translates into a local compressibility that tends to
vanish in the center of the trap [26]. Hence, for T 
 U
hard-core bosonic behavior can be reached for local den-
sities varying from hnii � 0 to hnii � 1. However, the
reduced local compressibility does not mean that for
higher densities the TG regime would be reached at
weaker optical-potential strengths. Figure 3 shows that
a significant difference between the soft-core and hard-
core momentum profiles persists even if the density pro-
file develops a Mott-like region, at an intermediate opti-
cal lattice strength V0=ER�7, �U=J�14:3�. This indi-
cates that the short-range correlations in the Mott-like
region differ significantly from the short-range correla-
tions in the TG regime.

In conclusion, we have shown that the experiment of
Ref. [6] is very well described by a Bose-Hubbard model
based on Wannier orbitals. Soft-core boson wave func-
tions with a significant contribution of double occupan-
cies can explain the experimental results over the largest
part of the optical-potential parameter range. Only for
very deep optical lattices (V0=ER�20) do the atoms be-
have as hard-core bosons and does the Tonks-Girar-
deau picture apply. The averaging over the array of one-
dimensional tubes has only a minor effect and does not
significantly alter the momentum profiles. At higher den-
sities, Mott-like correlations might develop, but they do
not enhance the convergence to the Tonks-Girardeau
regime.
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Bloch, Nature (London) 415, 39 (2002).
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