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Appendix A
CATREG Algorithm

http://support.spss.com/Tech/Products/SPSS/Documentation/Statistics/algorithms/
14.0/catreg.pdf; Use “guest” as user-id and password.
The notation in this appendix differs somewhat from the notation used in the monograph.
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1

CATREG

CATREG (Categorical regression with optimal scaling using alternating least 
squares) quantifies categorical variables using optimal scaling, resulting in an 
optimal linear regression equation for the transformed variables. The variables can 
be given mixed optimal scaling levels and no distributional assumptions about the 
variables are made.

Notation
The following notation is used throughout this chapter unless otherwise stated: 

n Number of analysis cases (objects) 

wn Weighted number of analysis cases: 

1

n

i

i

w

=
∑

totn Total number of cases (analysis + supplementary) 

iw  Weight of object i ; 1iw =  if cases are unweighted; 0iw =  if object i is

supplementary. 

W Diagonal tot totn n×  matrix, with iw on the diagonal. 

p Number of predictor variables 

m Total number of variables  

r Index of response variable 

Jp Index set of predictor variables 

H The data matrix (category indicators), of order totn m× , after discretization,  

imputation of missings , and listwise deletion, if applicable. 

For variable j, 1, ,j m= K

jk Number of categories of variable j (number of distinct values 

in jh , thus,  including supplementary objects) 

jG  Indicator matrix for variable j, of order tot jn k×
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The elements of jG  are defined as 1, , ; 1, ,tot ji n r k= =K K

( )
1 when the th object is in the th category of variable 

0 when the th object is not in the th category of variable j ir
i r j

g
i r j


= 



jD  Diagonal j jk k×  matrix, containing the weighted univariate marginals; 

i.e., the weighted  column sums of jG   ( jD j j′= G WG )

f  Degrees of freedom for the predictor variables, of order p

jS  I-spline basis for variable j , of order ( )j j jk s t× +  (see Ramsay (1988) 

for details) 

ja  Spline coefficient vector, of order j js t+

jd Spline intercept. 

js Degree of polynomial 

jt Number of interior knots 

The quantification matrices and parameter vectors are: 

 yr
Category quantifications for the response variable, of order kr

 yj,  j∈Jp Category quantifications for predictor variable j, of order kj

b Regression coefficients for the predictor variables, of order p

v Accumulated contributions of predictor variables: 

p

j j j

j J

b

∈
∑ G y

Note: The matrices W , jG , and jD  are exclusively notational devices; they are 

stored in reduced form, and the program fully profits from their sparseness by 
replacing matrix multiplications with selective accumulation. 

Discretization
Discretization is done on the unweighted data. 
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Multiplying  First, the orginal variable is standardized. Then the standardized values are 
 multiplied by 10 and rounded, and  a value is added such that the lowest value 
 is 1. 

Ranking The original variable is ranked in ascending order, according to the 

 alpanumerical value . 

Grouping into a specified number of categories with a normal distribution 

First, the original variable is standardized. Then cases are assigned to categories 
using intervals as defined  in Max (1960).  

Grouping into a specified number of categories with a unifrom distribution 
First the target frequency is computed as n  divided by the number of specified 
categories, rounded.  Then the original categories are assigned to grouped 
categories such that the frequencies of the grouped categories are as close to the 
target frequency as possible. 

Grouping equal intervals of specified size 

First the intervals are defined as lowest value + interval size, lowest value + 

2*interval size, etc. Then cases with values in the thk interval are assigned to 
category k .   

Imputation of Missing Values 
When there are variables with  missing values specified to be imputed  (with mode 
or extra category), then first the jk ’s for these variables are computed before 

listwise deletion. Next the category indicator with the highest weighted frequency  
(mode; the smallest if multiple modes exist), or 1jk +  (extra category) is imputed. 

Then listwise deletion is applied if applicable. And then the jk ’s are adjusted. 

If  an extra category is imputed for a variable with optimal scaling level Spline 
Nominal, Spline Ordinal, Ordinal or Numerical, the extra category is not included 
in the restriction according to the scaling  level  in the final phase (see step (2) next 
section). 
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Objective Function Optimization 

Objective Function 

The CATREG objective is to find the set of ry , b , and jy  , pj J∈ , so that the 

function  

( ); ;

p p

r j r r j j j r r j j j

j J j J

b bσ − −

∈ ∈

′   
   =          

∑ ∑y b y G y G y W G y G y

is minimal, under the normalization restriction r r r wn′ =y D y  The quantifications of 

the response variable are also centered; that is, they satisfy r r′ =u WG y 0  with u

denoting an  n -vector with ones. 

Optimal Scaling Levels 

The following optimal scaling levels are distinguished in CATREG ( 1, ,j m= K ):

Nominal  Equality restrictions only.

Spline Nominal  j j j jd= +y S a   (equality and  spline restrictions). 

Spline Ordinal  j j j jd= +y S a   (equality and  monotonic spline  restrictions), 

with ja  restricted to contain nonnegative elements (to garantee monotonic I-

splines).

Ordinal  j jy C∈  (equality and monotonicity restrictions). 

The monotonicity restriction j jy C∈  means that jy  must be located in the 

convex cone of all jk -vectors  with nondecreasing elements. 



122 APPENDIX

Numerical   j jy L∈ (equality and linearity restrictions). 

The linearity restriction j jLy ∈  means that jy  must be located in the subspace 

of all jk -vectors that are a linear transformation of the vector consisting of jk

successive integers.  

For each variable, these levels can be chosen independently. The general 
requirement for all options is that equal category indicators receive equal 
quantifications. For identification purposes, jy  is always normalized so that 

j j j wn′ =y D y .

Optimization 
Iteration scheme

Optimization is achieved by executing the following iteration scheme: 

1. Initialization I or II 

2.  Update category quantifications response variable 

3.  Update category quantifications and regression coefficients predictor variables 

4. Convergence test: repeat (2)(3) or continue 

Steps (1) through (4) are explained below. 

(1) Initialization

I. Random 

The initial category quantifications jy%  (for j= 1, ..., m) are defined as the jk

category indicators of variable j , normalized such that 0j j′ =u WG y%  and 

j j j wn=y D y% % , and the initial regression coefficients are the correlations with the 

response variable. 

II. Numerical 

In this case, the iteration scheme is executed twice. In the first cycle, (initialized 
with initialization I) all variables are treated as numerical. The second cycle, with 
the specified scaling levels, starts with the category quantifications and regression 
coefficients  from the first cycle. 

 (2) Update category quantifications response variable
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With fixed current values jy , pj J∈ , the unconstrained update of ry  is

1
r r r

− ′=y D G Wv%

Nominal: *
r r=y y%

For the next four optimal scaling levels, if the response variable was imputed with 

an extra category, *
ry  is inclusive category rk in the initial phase, and is exclusive 

category rk in the final phase. 

Spline nominal and spline ordinal: *
r r r rd= +y S a .

The spline transformation is computed as a weighted regression (with weights the 
diagonal elements of rD ) of ry% on the I-spline basis rS . For the spline ordinal 

scaling level the elements of ja  are restricted to be nonnegative, which makes *
ry

monotonically increasing 

Ordinal: *
ry ← WMON( ry% ) . 

The notation WMON( ) is used to denote the weighted monotonic regression 

process, which makes *
ry monotonically increasing. The weights used are the 

diagonal elements of rD  and the subalgorithm used is the up-and-down-blocks 

minimum violators algorithm (Kruskal, 1964; Barlow et al., 1972).  

Numerical: *
ry ← WLIN( ry% ).

The notation WLIN( ) is used to denote the weighted linear regression process. 
The weights used are the diagonal elements of rD .

Next *
ry is normalized  (if the response variable was imputed with an extra 

category, *
ry  is inclusive category rk  from here on): 

r
+y 1/ 2 * * * 1/ 2( )w r r r rn −′= y y D y

 (3) Update category quantifications and regression weights predictor 
variables;  loop across variables j , ∈ pj J

For updating a predictor variable j , pj J∈ , first the contribution of variable j  is 

removed from v : j j j jb= −v v G y
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Then the unconstrained update of jy  is

( )1
j j j r r j

− ′= −y D G W G y v%

Next  jy% is restricted and normalized as in  step (2) to obtain j
+y .

Finally, we update the regression coefficient 

1
wj j j jb n+ − +′= y D y%  . 

(4) Convergence test 

The difference between consecutive values of the squared multiple regression 
coefficient, 

( ) ( ) 1 22 1 2
w r rR n

−− ′ ′= G y Wv v Wv

is compared with the user-specified convergence criterion ε  a small positive 
number. Steps (2) and (3) are repeated as long as the loss difference exceeds ε .

Diagnostics

Descriptive Statistics 
The descriptives tables gives the weighted univariate marginals and the weighted 
number of missing values (system missing, user defined missing, and values 0≤ )
for each variable.  

Fit and error measures 

The fit and the error for each iteration are reported in the History table. 

Multiple R Square 

2R as computed in step(4) in the last iteration. 
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Error  ( )1 221 R−

Also, the increase in 2R  for each iteration is reported. 

Summary Statistics 

Multiple R

( )1 22R R=

Multiple R Square 

2R

Adjusted Multiple R Square

( ) ( ) ( )21 1 1 1w wR n n ′− − − − − u f

with u a p -vector of ones.

ANOVA Table 
Sum of  
Squares 

df Mean Sum of 
Squares 

 Regression 2
wn R ′u f ( ) 12

wn R
−′u f

 Residual ( )2
w 1n R− w 1n ′− − u f ( ) ( ) 12

w w1 1n R n
−′− − − u f

F = MSreg/MSres
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Correlations and Eigenvalues 

Before transformation 

1
c cwn− ′=R H WH , with cH weighted centered and normalized H  excluding the 

response variable. 

After transformation 

1
wn− ′=R Q WQ , the columns of  Q are j j jq G y= pj J∈ .

Statistics for Predictor Variables ∈ pj J

Beta 

The standardized regression coefficient is 

Betaj = jb

Standard Error Beta 

The standard error of Betaj is estimated by  

SE (Betaj) ( ) ( )( )1 2
21 1w jR n t′− − − u f

with jt  the tolerance for variable j (see below). 

Degrees of Freedom 

The degrees of freedom for a variable depend on the optimal scaling level: 

numerical: 1jf = ;

spline ordinal, spline nominal: j j jf s t= +  minus the number of  elements equal 

to zero in ja  . 

ordinal, nominal: jf =  the number of distinct values in jy minus 1; 
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F-value

( )( )2
Beta SE Betaj j jF =

Zero-order correlation 

 Correlations between the transformed response variable r rG y and the transformed 

predictor variables j jG y :

( )1
rj w r r j jr n− ′= G y WG y

Partial correlation 

 PartialCorrj ( ) ( )( ) 1 2
2 21 1j j jb t R b

−
= − +

with jt  the tolerance for variable j (see below). 

Part correlation 

 PartCorrj
1 2

j jb t=

with jt  the tolerance for variable j (see below). 

Importance 

Pratt’s measure of relative importance (Pratt, 1987) 

Impj
2

j rjb r R=

Tolerance 

The tolerance for the optimally scaled predictor variables is given by 
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1
j p jj

t r−= ,

with p jj
r the jth diagonal element of pR ,  where pR is the correlation matrix of 

predictors that have regression coefficients > 0. 

The tolerance for the original predictor variables is also reported and is computed 
in the same way, using the correlation matrix for the original  predictor variables, 
discretized, imputed, and listwise deleted, if applicable. 

Quantifications 

The quantifications are jy , 1, ,j m= … .

Predicted and residual values 

There is an option to save the predicted values v and the residual values r r −G y v .

Supplementary objects 

 For supplementary objects predicted and residual values are computed.  

The category indicators of supplementary objects are replaced by the quantification 
of the category. If a category is only used by supplementary objects, the category 
indicator is replaced by a system-missing value. 

Residual Plots 

The residual plot for predictor variable j  displays two sets of points: unnormalized 

quantifications ( j jb y ) against category indicators, and residuals when the response 

variable is predicted from all predictor variables except variable j

( ( )r r j j jb− −G y v G y ) against category indicators. 
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17

Categorical Regression (CATREG)

Categorical regression quantifies categorical data by assigning numerical values
to the categories, resulting in an optimal linear regression equation for the trans-
formed variables. Categorical regression is also known by the acronym CATREG,
for categorical regression.

Standard linear regression analysis involves minimizing the sum of squared differ-
ences between a response (dependent) variable and a weighted combination of
predictor (independent) variables. Variables are typically quantitative, with (nominal)
categorical data recoded to binary or contrast variables. As a result, categorical vari-
ables serve to separate groups of cases, and the technique estimates separate sets of
parameters for each group. The estimated coefficients reflect how changes in the pre-
dictors affect the response. Prediction of the response is possible for any combination
of predictor values.

An alternative approach involves regressing the response on the categorical predic-
tor values themselves. Consequently, one coefficient is estimated for each variable.
However, for categorical variables, the category values are arbitrary. Coding the cate-
gories in different ways yield different coefficients, making comparisons across
analyses of the same variables difficult.

CATREG extends the standard approach by simultaneously scaling nominal, ordi-
nal, and numerical variables. The procedure quantifies categorical variables such that
the quantifications reflect characteristics of the original categories. The procedure
treats quantified categorical variables in the same way as numerical variables. Using
nonlinear transformations allow variables to be analyzed at a variety of levels to find
the best-fitting model.

Example. Categorical regression could be used to describe how job satisfaction de-
pends on job category, geographic region, and amount of travel. You might find that
high levels of satisfaction correspond to managers and low travel. The resulting regres-
sion equation could be used to predict job satisfaction for any combination of the three
independent variables.

Statistics and plots. Frequencies, regression coefficients, ANOVA table, iteration his-
tory, category quantifications, correlations between untransformed predictors, correla-
tions between transformed predictors, residual plots, and transformation plots.

12
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Data. CATREG operates on category indicator variables. The category indicators should
be positive integers. You can use the Discretization dialog box to convert fractional-val-
ue variables and string variables into positive integers.

Assumptions. Only one response variable is allowed, but the maximum number of pre-
dictor variables is 200. The data must contain at least three valid cases, and the number
of valid cases must exceed the number of predictor variables plus one.

Related procedures. CATREG is equivalent to categorical canonical correlation
analysis with optimal scaling (OVERALS) with two sets, one of which contains only
one variable. Scaling all variables at the numerical level corresponds to standard
multiple regression analysis.

To Obtain a Categorical Regression 

� From the menus choose:

Analyze
Regression

Optimal Scaling…

Figure 2.1 Categorical Regression dialog box

� Select the dependent variable and independent variable(s).

� Click OK.

Optionally, change the scaling level for each variable.
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Define Scale in Categorical Regression 

You can set the optimal scaling level for the dependent and independent variables. By
default, they are scaled as second-degree monotonic splines (ordinal) with two interior
knots. Additionally, you can set the weight for analysis variables.

Optimal Scaling Level. You can also select the scaling level for quantifying each
variable. 

• Spline Ordinal. The order of the categories of the observed variable is preserved in
the optimally scaled variable. Category points will be on a straight line (vector)
through the origin. The resulting transformation is a smooth monotonic piecewise
polynomial of the chosen degree. The pieces are specified by the user-specified num-
ber and procedure-determined placement of the interior knots.

• Spline Nominal. The only information in the observed variable that is preserved in
the optimally scaled variable is the grouping of objects in categories. The order of the
categories of the observed variable is not preserved. Category points will be on a
straight line (vector) through the origin. The resulting transformation is a smooth,
possibly nonmonotonic, piecewise polynomial of the chosen degree. The pieces are
specified by the user-specified number and procedure-determined placement of the
interior knots.

• Ordinal. The order of the categories of the observed variable is preserved in the opti-
mally scaled variable. Category points will be on a straight line (vector) through the
origin. The resulting transformation fits better than the spline ordinal transformation
but is less smooth.

• Nominal. The only information in the observed variable that is preserved in the opti-
mally scaled variable is the grouping of objects in categories. The order of the cate-
gories of the observed variable is not preserved. Category points will be on a straight
line (vector) through the origin. The resulting transformation fits better than the
spline nominal transformation but is less smooth.

• Numeric. Categories are treated as ordered and equally spaced (interval level). The
order of the categories and the equal distances between category numbers of the ob-
served variable are preserved in the optimally scaled variable. Category points will
be on a straight line (vector) through the origin. When all variables are at the numeric
level, the analysis is analogous to standard principal components analysis.



APPENDIX B CATREG SECTIONS FROM SPSS CATEGORIESR© 11.0 135

To Define the Scale in CATREG

� Select one or more variables on the variables list in the Categorical Regression dialog box.

� Click Define Scale.

Figure 2.2 Categorical Regression Define Scale dialog box

� Select the optimal scaling level to be used in the analysis.

� Click Continue.

Categorical Regression Discretization

The Discretization dialog box allows you to select a method of recoding your variables.
Fractional-value variables are grouped into seven categories (or into the number of dis-
tinct values of the variable, if this number is less than seven) with an approximately nor-
mal distribution, unless specified otherwise. String variables are always converted into
positive integers by assigning category indicators according to ascending alphanumeric
order. Discretization for string variables applies to these integers. Other variables are left
alone by default. The discretized variables are then used in the analysis.
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Figure 2.3 Categorical Regression Discretization dialog box

Method. Choose between grouping, ranking, or multiplying.

• Grouping. Recode into a specified number of categories or recode by interval.

• Ranking. The variable is discretized by ranking the cases.

• Multiplying. The current values of the variable are standardized, multiplied by 10,
rounded, and have a constant added such that the lowest discretized value is 1.

Grouping. The following options are available when discretizing variables by grouping:

• Number of categories. Specify a number of categories and whether the values of the
variable should follow an approximately normal or uniform distribution across those
categories.

• Equal intervals. Variables are recoded into categories defined by these equally sized
intervals. You must specify the length of the intervals.
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Categorical Regression Missing Values

The Missing Values dialog box allows you to choose the strategy for handling missing
values in analysis variables and supplementary variables.

Figure 2.4 Categorical Regression Missing Values dialog box

Strategy. Choose to impute missing values (active treatment) or exclude objects with
missing values (listwise deletion).

• Impute missing values. Objects with missing values on the selected variable have
those values imputed. You can choose the method of imputation. Select Mode to re-
place missing values with the most frequent category. When there are multiple
modes, the one with the smallest category indicator is used. Select Extra category to
replace missing values with the same quantification of an extra category. This im-
plies that objects with a missing value on this variable are considered to belong to the
same (extra) category.

• Exclude objects with missing values on this variable. Objects with missing values
on the selected variable are excluded from the analysis. This strategy is not available
for supplementary variables.
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Categorical Regression Options

The Options dialog box allows you to select the initial configuration style, specify iteration
and convergence criteria, select supplementary objects, and set the labeling of plots.

Figure 2.5 Categorical Regression Options dialog box

Supplementary Objects. This allows you to specify the objects that you want to treat as
supplementary. Simply type the number of a supplementary object and click Add. You
cannot weight supplementary objects (specified weights are ignored). 

Initial Configuration. If no variables are treated as nominal, select the Numerical config-
uration. If at least one variable is treated as nominal, select the Random configuration.

Criteria. You can specify the maximum number of iterations the regression may go
through in its computations. You can also select a convergence criterion value. The re-
gression stops iterating if the difference in total fit between the last two iterations is less
than the convergence value or if the maximum number of iterations is reached.

Label Plots By. Allows you to specify whether variables and value labels or variable names
and values will be used in the plots. You can also specify a maximum length for labels.
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Categorical Regression Options

The Options dialog box allows you to select the initial configuration style, specify iteration
and convergence criteria, select supplementary objects, and set the labeling of plots.

Figure 2.5 Categorical Regression Options dialog box

Supplementary Objects. This allows you to specify the objects that you want to treat as
supplementary. Simply type the number of a supplementary object and click Add. You
cannot weight supplementary objects (specified weights are ignored). 

Initial Configuration. If no variables are treated as nominal, select the Numerical config-
uration. If at least one variable is treated as nominal, select the Random configuration.

Criteria. You can specify the maximum number of iterations the regression may go
through in its computations. You can also select a convergence criterion value. The re-
gression stops iterating if the difference in total fit between the last two iterations is less
than the convergence value or if the maximum number of iterations is reached.

Label Plots By. Allows you to specify whether variables and value labels or variable names
and values will be used in the plots. You can also specify a maximum length for labels.
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• ANOVA. This option includes regression and residual sums of squares, mean squares,
and F. Two ANOVA tables are displayed: one with degrees of freedom for the
regression equal to the number of predictor variables and one with degrees of free-
dom for the regression taking the optimal scaling into account.

Category Quantifications. Tables showing the transformed values of the selected
variables are displayed.

Descriptive Statistics. Tables showing the frequencies, missing values, and modes of
the selected variables are displayed.

Categorical Regression Save

The Save dialog box allows you to save results to the working file or an external file.

Figure 2.7 Categorical Regression Save dialog box

Save to Working File. You can save the transformed values of the variables, model-
predicted values, and residuals to the working file.

Save to External File. You can save the discretized data and transformed variables to
external files.
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Categorical Regression Plots

The Plot dialog box allows you to specify the variables that will produce transformation
and residual plots.

Figure 2.8 Categorical Regression Plot dialog box

Transformation Plots. For each of these variables, the category quantifications are plot-
ted against the original category values. Empty categories appear on the horizontal axis
but do not affect the computations. These categories are identified by breaks in the line
connecting the quantifications.

Residual Plots. For each of these variables, residuals (computed for the dependent vari-
able predicted from all predictor variables except the predictor variable in question) are
plotted against category indicators and the optimal category quantifications multiplied
with beta against category indicators.

CATREG Command Additional Features

You can customize your categorical regression if you paste your selections into a syntax
window and edit the resulting CATREG command syntax. SPSS command language
also allows you to:

• Specify rootnames for the transformed variables when saving them to the working
data file (with the SAVE subcommand).
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81

Categorical Regression Examples

The goal of categorical regression with optimal scaling is to describe the relationship
between a response and a set of predictors. By quantifying this relationship, values of
the response can be predicted for any combination of predictors.

In this chapter, two examples serve to illustrate the analyses involved in optimal
scaling regression. The first example uses a small data set to illustrate the basic con-
cepts. The second example uses a much larger set of variables and observations in a
practical example.

Example 1: Carpet Cleaner Data

In a popular example by Green and Wind (1973), a company interested in marketing a
new carpet cleaner wants to examine the influence of five factors on consumer prefer-
ence—package design, brand name, price, a Good Housekeeping seal, and a money-
back guarantee. There are three factor levels for package design, each one differing in
the location of the applicator brush; three brand names (K2R, Glory, and Bissell); three
price levels; and two levels (either no or yes) for each of the last two factors. Table 8.1
displays the variables used in the carpet-cleaner study, with their variable labels and
values.

Ten consumers rank 22 profiles defined by these factors. The variable pref contains the
rank of the average rankings for each profile. Low rankings correspond to high
preference. This variable reflects an overall measure of preference for each profile.
Using categorical regression, you will explore how the five factors in Table 8.1 are
related to preference. This data set can be found in carpet.sav.

Table 8.1 Explanatory variables in the carpet-cleaner study

Variable label Value labels

package Package design A*, B*, C*

brand Brand name K2R, Glory, Bissell

price Price $1.19, $1.39, $1.59

seal Good Housekeeping seal No, yes

money Money-back guarantee No, yes

8



APPENDIX B CATREG SECTIONS FROM SPSS CATEGORIESR© 11.0 143

A Standard Linear Regression Analysis

To produce standard linear regression output, from the menus choose:

Analyze
Regression

Linear...

��Dependent: pref
��Independent(s): package, brand, price, seal, money

Statistics...
 Descriptives (deselect)

Save...
Residuals

 Standardized

The standard approach for describing the relationships in this problem is linear regres-
sion. The most common measure of how well a regression model fits the data is R2. This
statistic represents how much of the variance in the response is explained by the weighted
combination of predictors. The closer R2 is to 1, the better the model fits. Regressing pref
on the five predictors results in an R2 of 0.707, indicating that approximately 71% of the
variance in the preference rankings is explained by the predictor variables in the linear
regression. 

Figure 8.1 Model summary for standard linear regression

The standardized coefficients are shown in Figure 8.2. The sign of the coefficient indi-
cates whether the predicted response increases or decreases when the predictor increas-
es, all other predictors being constant. For categorical data, the category coding
determines the meaning of an increase in a predictor. For instance, an increase in money,
package, or seal will result in a decrease in predicted preference ranking. money is coded
1 for no money-back guarantee and 2 for money-back guarantee. An increase in money
corresponds to the addition of a money-back guarantee. Thus, adding a money-back
guarantee reduces the predicted preference ranking, which corresponds to an increased
predicted preference.

.841 .707 .615 3.9981
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate
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Figure 8.2 Regression coefficients

The value of the coefficient reflects the amount of change in the predicted preference
ranking. Using standardized coefficients, interpretations are based on the standard devi-
ations of the variables. Each coefficient indicates the number of standard deviations that
the predicted response changes for a one standard deviation change in a predictor, all
other predictors remaining constant. For example, a one standard deviation change in
brand yields an increase in predicted preference of 0.056 standard deviations. The stan-
dard deviation of pref is 6.44, so pref increases by . Changes in
package yield the greatest changes in predicted preference.

A regression analysis should always include an examination of the residuals. To
produce residual plots, from the menus choose:

Graphs
Scatter...

Select Simple. Click Define.

��Y Axis: zre_1
��X Axis: zpr_1

Then, recall the Simple Scatterplot dialog box and click Reset to clear the previous
selections.

��Y Axis: zre_1
��X Axis: package

The standardized residuals are plotted against the standardized predicted values in
Figure 8.3. No patterns should be present if the model fits well. Here you see a U-shape
in which both low and high standardized predicted values have positive residuals. Stan-
dardized predicted values near 0 tend to have negative residuals.

4.352 .000

-.560 -4.015 .001

.056 .407 .689

.366 2.681 .016

-.330 -2.423 .028

-.197 -1.447 .167

(Constant)

Package design

Brand name

Price

Good Housekeeping seal

Money-back guarantee

Model
1

Beta

Standardized
Coefficients

t Sig.

0.056 6.44 0.361=×
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Figure 8.3 Residuals versus predicted values

This shape is more pronounced in the plot of the standardized residuals against package
in Figure 8.4. Every residual for Design B* is negative, whereas all but one of the resid-
uals is positive for the other two designs. Because the regression model fits one param-
eter for each variable, the relationship cannot be captured by the standard approach.

Figure 8.4 Residuals versus package

A Categorical Regression Analysis

The categorical nature of the variables and the nonlinear relationship between pref and
package suggest that regression on optimal scores may perform better than standard re-
gression. The U-shape of Figure 8.4 indicates that a nominal treatment of package
should be used. All other predictors will be treated at the numerical scaling level.
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The response variable warrants special consideration. You want to predict the values
of pref. Thus, recovering as many properties of its categories as possible in the quanti-
fications is desirable. Using an ordinal or nominal scaling level ignores the differences
between the response categories. However, linearly transforming the response catego-
ries preserves category differences. Consequently, scaling the response numerically is
generally preferred and will be employed here.

To produce the following categorical regression output, from the menus choose:

Analyze
Regression

Optimal Scaling...

��Dependent: pref
��Independent(s): package, brand, price, seal, money

Select pref. Click Define Scale.
Optimal Scaling Level

 Numeric

Select package. Click Define Scale.
Optimal Scaling Level

 Nominal

Select brand, price, seal, and money. Click Define Scale.
Optimal Scaling Level

 Numeric

Output...
Display

 Correlations of original predictors
 Correlations of transformed predictors
 Frequencies (deselect)
 ANOVA table (deselect)

Save...
Save to Working File

 Transformed variables
 Residuals

Plots...
� Transformation Plots: package, price
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Intercorrelations

The intercorrelations among the predictors are useful for identifying multicollinearity in
the regression. Variables that are highly correlated will lead to unstable regression esti-
mates. However, due to their high correlation, omitting one of them from the model only
minimally affects prediction. The variance in the response that can be explained by the
omitted variable is still explained by the remaining correlated variable. However, zero-
order correlations are sensitive to outliers and also cannot identify multicollinearity due
to a high correlation between a predictor and a combination of other predictors.

Figure 8.5 and Figure 8.6 show the intercorrelations of the predictors for both the
untransformed and transformed predictors. All values are near 0, indicating that multi-
collinearity between individual variables is not a concern. 

Notice that the only correlations that change involve package. Because all other pre-
dictors are treated numerically, the differences between the categories and the order of
the categories are preserved for these variables. Consequently, the correlations cannot
change.

Figure 8.5 Original predictor correlations

Figure 8.6 Transformed predictor correlations

1.000 -.189 -.126 .081 .066

-.189 1.000 .065 -.042 -.034

-.126 .065 1.000 .000 .000
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Package design
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Good
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-.089 .065 1.000 .000 .000
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Model Fit and Coefficients

The Categorical Regression procedure yields an R2 of 0.948, indicating that almost 95%
of the variance in the transformed preference rankings is explained by the regression on
the optimally transformed predictors. Transforming the predictors improves the fit over
the standard approach. 

Figure 8.7 Model summary for categorical regression

Figure 8.8 shows the standardized regression coefficients. Categorical regression stan-
dardizes the variables, so only standardized coefficients are reported. These values are
divided by their corresponding standard errors, yielding an F test for each variable.
However, the test for each variable is contingent upon the other predictors being in the
model. In other words, the test determines if omission of a predictor variable from the
model with all other predictors present significantly worsens the predictive capabilities
of the model. These values should not be used to omit several variables at one time for
a subsequent model. Moreover, alternating least squares optimizes the quantifications,
implying that these tests must be interpreted conservatively.

Figure 8.8 Standardized coefficients for transformed predictors

The largest coefficient occurs for package. A one standard deviation increase in package
yields a 0.748 standard deviation decrease in predicted preference ranking. However,
package is treated nominally, so an increase in the quantifications need not correspond
to an increase in the original category codes. 

Standardized coefficients are often interpreted as reflecting the importance of each
predictor. However, regression coefficients cannot fully describe the impact of a pre-
dictor or the relationships between the predictors. Alternative statistics must be used
in conjunction with the standardized coefficients to fully explore predictor effects.

.974 .948 .932
Multiple R R Square

Adjusted
R Square

-.748 .058 165.495

4.530E-02 .058 .614

.371 .057 41.986

-.350 .057 37.702

-.159 .057 7.669

Package design
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Money-back guarantee

Beta Std. Error
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Coefficients
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Correlational Analyses

To interpret the contributions of the predictors to the regression, it is not sufficient to
only inspect the regression coefficients. In addition, the correlations, partial correla-
tions, and part correlations should be inspected. Figure 8.9 contains these correlational
measures for each variable.

The zero-order correlation is the correlation between the transformed predictor and
the transformed response. For this data, the largest correlation occurs for package. How-
ever, if you can explain some of the variation in either the predictor or the response, you
will get a better representation of how well the predictor is doing.

Figure 8.9 Zero-order, part, and partial correlations (transformed variables)

Other variables in the model can confound the performance of a given predictor in pre-
dicting the response. The partial correlation coefficient removes the linear effects of
other predictors from both the predictor and the response. This measure equals the cor-
relation between the residuals from regressing the predictor on the other predictors and
the residuals from regressing the response on the other predictors. The squared partial
correlation corresponds to the proportion of the variance explained relative to the resid-
ual variance of the response remaining after removing the effects of the other variables.
For example, in Figure 8.9, package has a partial correlation of –0.955. Removing the
effects of the other variables, package explains  of the vari-
ation in the preference rankings. Both price and seal also explain a large portion of vari-
ance if the effects of the other variables are removed.

Figure 8.10 displays the partial correlations for the untransformed variables. All of
the partial correlations increase when optimal scores are used. In the standard approach,
package explained 50% of the variation in pref when other variable effects were
removed from both. In contrast, package explains 91% of the variation if optimal scaling
is used. Similar results occur for price and seal.

-.816 -.955 -.733

.206 .192 .045

.441 .851 .369

-.370 -.838 -.350

-.223 -.569 -.158

Package design
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Price
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Zero-Order Partial Part

Correlations

–0.955( )2 0.91 91%= =
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Figure 8.10 Zero-order, part, and partial correlations (untransformed variables)

As an alternative to removing the effects of variables from both the response and a pre-
dictor, you can remove the effects from just the predictor. The correlation between the
response and the residuals from regressing a predictor on the other predictors is the part
correlation. Squaring this value yields a measure of the proportion of variance explained
relative to the total variance of response. From Figure 8.9, if you remove the effects of
brand, seal, money, and price from package, the remaining part of package explains

 of the variation in preference rankings.

Importance

In addition to the regression coefficients and the correlations, Pratt’s measure of relative
importance (Pratt, 1987) aids in interpreting predictor contributions to the regression.
Large individual importances relative to the other importances correspond to predictors
that are crucial to the regression. Also, the presence of suppressor variables is signaled
by a low importance for a variable that has a coefficient of similar size to the important
predictors.

Figure 8.11 displays the importances for the carpet cleaner predictors. In contrast to
the regression coefficients, this measure defines the importance of the predictors addi-
tively—that is, the importance of a set of predictors is the sum of the individual
importances of the predictors. Pratt’s measure equals the product of the regression coef-
ficient and the zero-order correlation for a predictor. These products add to R2, so they
are divided by R2, yielding a sum of one. The set of predictors package and brand, for
example, have an importance of 0.654. The largest importance corresponds to package,
with package, price, and seal accounting for 95% of the importance for this combination
of predictors.

-.657 -.708 -.544

.206 .101 .055

.440 .557 .363

-.370 -.518 -.328

-.223 -.340 -.196

(Constant)

Package design
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Price
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Multicollinearity

Large correlations between predictors will dramatically reduce a regression model’s sta-
bility. Correlated predictors result in unstable parameter estimates. Tolerance reflects
how much the independent variables are linearly related to one another. This measure is
the proportion of a variable's variance not accounted for by other independent variables
in the equation. If the other predictors can explain a large amount of a predictor’s vari-
ance, that predictor is not needed in the model. A tolerance value near 1 indicates that
the variable cannot be predicted very well from the other predictors. In contrast, a vari-
able with a very low tolerance contributes little information to a model, and can cause
computational problems. Moreover, large negative values of Pratt’s importance measure
indicate multicollinearity.

Figure 8.11 shows the tolerance for each predictor. All of these measures are very
high. None of the predictors are predicted very well by the other predictors and multi-
collinearity is not present.

Figure 8.11 Predictor tolerances and importances

Transformation Plots

Plotting the original category values against their corresponding quantifications can
reveal trends that might not be noticed in a list of the quantifications. Such plots are com-
monly referred to as transformation plots. Attention should be given to categories that re-
ceive similar quantifications. These categories affect the predicted response in the same
manner. However, the transformation type dictates the basic appearance of the plot.

Variables treated as numerical result in a linear relationship between the quantifica-
tions and the original categories, corresponding to a straight line in the transformation
plot. The order and the difference between the original categories is preserved in the
quantifications.
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The order of the quantifications for variables treated as ordinal correspond to the
order of the original categories. However, the differences between the categories are not
preserved. As a result, the transformation plot is nondecreasing but need not be a straight
line. If consecutive categories correspond to similar quantifications, the category dis-
tinction may be unnecessary and the categories could be combined. Such categories
result in a plateau on the transformation plot. However, this pattern can also result from
imposing an ordinal structure on a variable that should be treated as nominal. If a sub-
sequent nominal treatment of the variable reveals the same pattern, combining
categories is warranted. Moreover, if the quantifications for a variable treated as ordinal
fall along a straight line, a numerical transformation may be more appropriate.

For variables treated as nominal, the order of the categories along the horizontal axis
corresponds to the order of the codes used to represent the categories. Interpretations of
category order or of the distance between the categories is unfounded. The plot can
assume any nonlinear or linear form. If an increasing trend is present, an ordinal treat-
ment should be attempted. If the nominal transformation plot displays a linear trend, a
numerical transformation may be more appropriate.

Figure 8.12 displays the transformation plot for price, which was treated as numerical.
Notice that the order of the categories along the straight line correspond to the order of the
original categories. Also, the difference between the quantifications for $1.19 and $1.39
(–1.173 and 0) is the same as the difference between the quantifications for $1.39 and
$1.59 (0 and 1.173). The fact that categories 1 and 3 are the same distance from category
2 is preserved in the quantifications.

Figure 8.12 Transformation plot for price (numerical)
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The nominal transformation of package yields the transformation plot in Figure 8.13.
Notice the distinct nonlinear shape in which the second category has the largest quanti-
fication. In terms of the regression, the second category decreases predicted preference
ranking, whereas the first and third categories have the opposite effect.

Figure 8.13 Transformation plot for package (nominal)

Residual Analysis

Using the transformed data and residuals that you saved to the working file allows you
to create a scatterplot like the one in Figure 8.4.

To obtain such a scatterplot, recall the Simple Scatterplot dialog box and click Reset
to clear your previous selections and restore the default options.

��Y Axis: res_1
��X Axis: tra2_1

Figure 8.14 shows the standardized residuals plotted against the optimal scores for
package. All of the residuals are within two standard deviations of 0. A random scatter
of points replaces the U-shape present in Figure 8.4. Predictive abilities are improved
by optimally quantifying the categories.
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Figure 8.14 Residuals for categorical regression

Example 2: Ozone Data

In this example, you will use a larger set of data to illustrate the selection and effects of optimal
scaling transformations. The data include 330 observations on six meteorological variables
analyzed by Breiman and Friedman (1985), and Hastie and Tibshirani (1990), among others.
Table 8.2 describes the original variables. Your categorical regression attempts to predict the
ozone concentration from the remaining variables. Previous researchers found nonlinearities
among these variables, which hinder standard regression approaches.

This data set can be found in ozone.sav.

Table 8.2 Original variables

Variable Description

ozon daily ozone level; categorized into one of 38 categories

ibh inversion base height

dpg pressure gradient (mm Hg)

vis visibility (miles)

temp temperature (degrees F)

doy day of the year
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Categorizing Variables

In many analyses, variables need to be categorized or recoded before a categorical re-
gression can be performed. For example, the Categorical Regression procedure trun-
cates any decimals and treats negative values as missing. If either of these applications
is undesirable, the data must be recoded before performing the regression. Moreover, if
a variable has more categories than is practically interpretable, you should modify the
categories before the analysis to reduce the category range to a more manageable num-
ber.

The variable doy has a minimum value of 3 and a maximum value of 365. Using this
variable in a categorical regression corresponds to using a variable with 365 categories.
Similarly, vis ranges from 0 to 350. To simplify analyses, divide each variable by 10,
add 1, and round the result to the nearest integer. The resulting variables, denoted ddoy
and dvis, have only 38 and 36 categories respectively, and are consequently much easier
to interpret.

The variable ibh ranges from 111 to 5000. A variable with this many categories
results in very complex relationships. However, dividing by 100 and rounding the result
to the nearest integer yields categories ranging from 1 to 50 for the variable dibh. Using
a 50-category variable rather than a 5000-category variable simplifies interpretations
significantly.

Categorizing dpg differs slightly from categorizing the previous three variables. This
variable ranges from –69 to 107. The procedure omits any categories coded with nega-
tive numbers from the analysis. To adjust for the negative values, add 70 to all
observations to yield a range from 1 to 177. Dividing this range by 10 and adding 1
results in ddpg, a variable with categories ranging from 1 to 19.

The temperatures for temp range from 25 to 93 on the Fahrenheit scale. Converting
to Celsius and rounding yields a range from –4 to 34. Adding 5 eliminates all negative
numbers and results in tempc, a variable with 39 categories.
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To compute the new variables as suggested, from the menus choose:

Transform
Compute...

Target Variable: ddoy
Numeric Expression: RND(doy/10 +1)

Recall the Compute Variable dialog box. Click Reset to clear your previous selections.

Target Variable: dvis
Numeric Expression: RND(vis/10 +1)

Recall the Compute Variable dialog box. Click Reset to clear your previous selections.

Target Variable: dibh
Numeric Expression: RND(ibh/100)

Recall the Compute Variable dialog box. Click Reset to clear your previous selections.

Target Variable: ddpg
Numeric Expression: RND((dpg+70)/10 +1)

Recall the Compute Variable dialog box. Click Reset to clear your previous selections.

Target Variable: tempc
Numeric Expression: RND((temp-32)/1.8) +5

As described above, different modifications for variables may be required before con-
ducting a categorical regression. The divisors used here are purely subjective. If you
desire fewer categories, divide by a larger number. For example, doy could have been
divided into months of the year or seasons. 

Selection of Transformation Type

Each variable can be analyzed at one of three different levels. However, because predic-
tion of the response is the goal, you should scale the response “as is” by employing the
numerical optimal scaling level. Consequently, the order and the differences between
categories will be preserved in the transformed variable.
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To obtain a categorical regression in which the dependent variable is scaled at the nu-
merical level and the independent variables are scaled at the nominal level, from the
menus choose:

Analyze
Regression

Optimal Scaling...

Dependent: ozon
Independent(s): ddpg, ddoy, dibh, dvis, tempc

Select ozon. Click Define Scale.
Optimal Scaling Level

 Numerical

Select ddpg, ddoy, dibh, dvis, and tempc. Click Define Scale.
Optimal Scaling Level

 Nominal

Output...
Display

 ANOVA table (deselect)

Plots...
� Transformation Plots: ddpg, ddoy, dibh, dvis, tempc

Treating all predictors as nominal yields an R2 of 0.883. This large amount of variance
accounted for is not surprising because nominal treatment imposes no restrictions on the
quantifications. However, interpreting the results can be quite difficult.

Figure 8.15 Model summary

Figure 8.16 shows the standardized regression coefficients of the predictors. A common
mistake made when interpreting these values involves focusing on the coefficients while
neglecting the quantifications. You cannot assert that the large positive value of the
tempc coefficient implies that as tempc increases, predicted ozon increases. Similarly,
the negative coefficient for dibh does not suggest that as dibh increases, predicted ozon
decreases. All interpretations must be relative to the transformed variables. As the quan-
tifications for tempc increase, or as the quantifications for dibh decrease, predicted ozon
increases. To examine the effects of the original variables, you must relate the categories
to the quantifications.

.940 .883 .881
Multiple R R Square

Adjusted
R Square
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Figure 8.16 Regression coefficients (all predictors nominal)

Figure 8.17 displays the transformation plot for ddpg. The initial categories (1 through
7) receive small quantifications and thus have minimal contributions to the predicted
response. Categories 8 through 10 receive somewhat higher, positive values, resulting
in a moderate increase in predicted ozon. The quantifications decrease up to category
17, where ddpg has its greatest decreasing effect on predicted ozon. Although the line
increases after this category, using an ordinal scaling level for ddpg may not signifi-
cantly reduce the fit, while simplifying the interpretations of the effects. However, the
importance measure of 0.04 and the regression coefficient for ddpg indicates that this
variable is not very useful in the regression. 

Figure 8.17 Transformation plot for ddpg (nominal)

The transformation plots for dvis and dibh (Figure 8.18 and Figure 8.19) show no appar-
ent pattern. As evidenced by the jagged nature of the plots, moving from low categories
to high categories yields fluctuations in the quantifications in both directions. Thus,
describing the effects of these variables requires focusing on the individual categories.
Imposing ordinal or linear restrictions on the quantifications for either of these variables
might significantly reduce the fit.
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Figure 8.18 Transformation plot for dvis (nominal)

Figure 8.19 Transformation plot for dibh (nominal)

Figure 8.20 shows the transformation plot for ddoy. In contrast to Figure 8.18, this plot
displays a pattern. The quantifications tend to decrease up to category 21, at which point
they tend to increase, yielding a U-shape. Considering the sign of the regression coeffi-
cient for ddoy, the initial categories (1 through 5) receive quantifications that have a
decreasing effect on predicted ozon. From category 6 onward, the effect of the quantifi-
cations on predicted ozon gets more increasing, reaching a maximum around category
21. Beyond category 21, the quantifications tend to decrease the predicted ozon.
Although the line is quite jagged, the general shape is still identifiable.
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Figure 8.20 Transformation plot for ddoy (nominal)

The transformation plot for tempc (Figure 8.21) displays an alternative pattern. As the
categories increase, the quantifications tend to increase. As a result, as tempc increases,
predicted ozon tends to increase. This pattern suggests scaling tempc at the ordinal level.

Figure 8.21 Transformation plot for tempc (nominal)
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Thus, the transformation plots suggest scaling tempc at the ordinal level while keeping
all other predictors nominally scaled. To recompute the regression, scaling tempc at the
ordinal level, recall the Categorical Regression dialog box.

Select tempc. Click Define Range and Scale.
Optimal Scaling Level

 Ordinal

Options...
 Save transformed data

Plot...
� Plot: tempc

This model results in an R2 of 0.873, so the variance accounted for decreases negligibly
when the quantifications for tempc are restricted to be ordered.

Figure 8.22 Model summary for regression with tempc ordinal

Figure 8.23 displays the coefficients, correlations, and importances. Comparing the
coefficients to those in Figure 8.16, no large changes occur. The importance measures
suggest that tempc is still much more important to the regression than the other vari-
ables. Now, however, as a result of the ordinal scaling level of tempc and the positive
regression coefficient, you can assert that as tempc increases, predicted ozon increases.

Figure 8.23 Coefficients and importances

The transformation plot in Figure 8.24 illustrates the ordinal restriction on the quantifi-
cations for tempc. The jagged line in Figure 8.21 is here replaced by a smooth increasing
line. Moreover, no long plateaus are present, indicating that collapsing categories is not
needed.
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Figure 8.24 Transformation plot for tempc (ordinal)

Optimality of the Quantifications

As stated previously, the transformed variables from a categorical regression can be used
in a standard linear regression, yielding identical results. However, the quantifications are
optimal only for the model that produced them. Using a subset of the predictors in linear
regression does not correspond to an optimal scaling regression on the same subset. 

For example, the categorical regression that you have computed has an R2 of 0.873.
You have saved the transformed variables, so in order to fit a linear regression using
only tempc, dvis, and dibh as predictors, from the menus choose:

Analyze
Regression

Linear...

��Dependent: trans1_1
��Independent(s): trans2_1, trans3_1, trans5_1

Statistics...
 Descriptives (deselect)

Regression Coefficients
 Estimates (deselect)
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102 Chapter 8 

Figure 8.25 Model summary for regression with subset of optimally scaled predictors

Using the quantifications for the response, tempc, dvis, and dibh in a standard linear
regression results in a fit of 0.757. To compare this to the fit of a categorical regression
using just those three predictors, recall the Categorical Regression dialog box:

��Independent(s): tempc, dvis, dibh

Options...
Display

 Coefficients (deselect)

 Save transformed data (deselect)

Plot...
��Plot: (blank)

Figure 8.26 Model summary for categorical regression on three predictors

The categorical regression analysis has a fit of 0.791, which is better than the fit of 0.757.
This demonstrates the property of the scalings that the quantifications obtained in the
original regression are only optimal when all five variables are included in the model.

Effects of Transformations

Transforming the variables makes a nonlinear relationship between the original re-
sponse and the original set of predictors linear for the transformed variables. However,
when there are multiple predictors, pairwise relationships are confounded by the other
variables in the model. 

.870 .757 .755 .4962
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

.889 .791 .789
Multiple R R Square

Adjusted
R Square
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To focus your analysis on the relationship between ozon and ddoy, begin by looking at
a scatterplot. From the menus choose:

Graphs
Scatter...

Select Simple. Click Define.

��Y Axis: ozon
��X Axis: ddoy

Figure 8.27 illustrates the relationship between ozon and ddoy. As ddoy increases to
approximately 25, ozon increases. However, for ddoy values greater than 25, ozon de-
creases. This inverted U pattern suggests a quadratic relationship between the two
variables. A linear regression cannot capture this relationship.

Figure 8.27 Scatterplot of ozon and ddoy

By excluding the other variables from the model, you can focus on the relationship be-
tween ozon and ddoy. However, all interpretations based on the reduced model apply
only to the reduced model. Do not generalize the results to the regression involving all
predictors.

To obtain a standard linear regression of ozon on ddoy, recall the Linear Regression
dialog box:

��Dependent: ozon
��Independent(s): ddoy
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Figure 8.28 Model summary for linear regression of ozon on ddoy

The regression of ozon on ddoy yields an R2 of 0.004. This fit suggests that ddoy has no
predictive value for ozon. This is not surprising, given the pattern in Figure 8.27. By using
optimal scaling, however, you can linearize the quadratic relationship and use the trans-
formed ddoy to predict the response.

To obtain a categorical regression of ozon on ddoy, recall the Categorical Regression
dialog box:

��Independent(s): ddoy

Select ddoy. Click Define Scale.
Optimal Scaling

 Nominal

Save...
 Transformed variables

Plots...
� Transformation Plots: ddoy

Figure 8.29 Model summary for categorical regression of ozon on ddoy

The optimal scaling regression treats ozon as numerical and ddoy as nominal. This
results in an R2 of 0.562. Although only 56% of the variation in ozon is accounted for
by the categorical regression, this is a substantial improvement over the original regres-
sion. Transforming ddoy allows for the prediction of ozon.

Figure 8.30 displays the transformation plot for ddoy. The extremes of ddoy both
receive negative quantifications, whereas the central values have positive quantifica-
tions. By applying this transformation, the low and high ddoy values have similar effects
on predicted ozon.

.066 .004 .001 8.0057
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

.750 .562 .561
Multiple R R Square

Adjusted
R Square
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Figure 8.30 Transformation plot for ddoy (nominal)

To see a scatterplot of the transformed variables, recall the Simple Scatterplot dialog
box, and click Reset to clear your previous selections.

��Y Axis: tra1_2
��X Axis: tra2_2

Figure 8.31 depicts the relationship between the transformed variables. An increasing
trend replaces the inverted U in Figure 8.27. The regression line has a slope of 0.750,
indicating that as transformed ddoy increases, predicted ozon increases. Using optimal
scaling linearizes the relationship and allows interpretations that would otherwise go
unnoticed.

Figure 8.31 Scatterplot of the transformed variables
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243

CATREG

CATREG [VARIABLES =] varlist  

/ANALYSIS
depvar [([LEVEL={SPORD**}] [DEGREE={2}] [INKNOT={2}])]

{n}  {n}
{SPNOM  }  [DEGREE={2}] [INKNOT={2}]

{n} {n}
{ORDI   }
{NOMI   } 
{NUME   }

WITH indvarlist [([LEVEL={SPORD**}] [DEGREE={2}] [INKNOT={2}])] 
{n}  {n}

{SPNOM  }  [DEGREE={2}] [INKNOT={2}]
{n} {n}

{ORDI   }
{NOMI   } 
{NUME   }

[/DISCRETIZATION = [varlist [([{GROUPING  }] [{NCAT*={7}}] [DISTR={NORMAL }])]]]
{n}          {UNIFORM}

{EQINTV=d  }
{RANKING    }
{MULTIPLYING}

[/MISSING = [{varlist}({LISTWISE**})]]
{ALL**  } {MODEIMPU  }

{EXTRACAT  }

[/SUPPLEMENTARY = OBJECT(objlist)]

[/INITIAL = [{NUMERICAL**}]]
{RANDOM     }

[/MAXITER = [{100**}]]
{n  }

[/CRITITER = [{.00001**}]]
{n  }

[/PRINT = [R**] [COEFF**] [DESCRIP**[(varlist)]] [HISTORY] [ANOVA**]
[CORR] [OCORR] [QUANT[(varlist)]] [NONE]]

[/PLOT = {TRANS(varlist)[(h)]} {RESID(varlist)[(h)]}]

[/SAVE = {TRDATA[({TRA  })]} {PRED[({PRE  })]} {RES[({RES  })]}] 
{rootname} {rootname}          {rootname}

[/OUTFILE = {TRDATA(’filename’)} {DISCRDATA(’filename’)}] .

** Default if subcommand or keyword is omitted.

Overview

CATREG (Categorical regression with optimal scaling using alternating least squares) quan-
tifies categorical variables using optimal scaling, resulting in an optimal linear regression
equation for the transformed variables. The variables can be given mixed optimal scaling
levels and no distributional assumptions about the variables are made.
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Options 

Transformation type. You can specify the transformation type (spline ordinal, spline nominal,
ordinal, nominal, or numerical) at which you want to analyze each variable.

Discretization. You can use the DISCRETIZATION subcommand to discretize fractional-value
variables or to recode categorical variables. 

Initial configuration. You can specify the kind of initial configuration through the INITIAL
subcommand.

Tuning the algorithm. You can control the values of algorithm-tuning parameters with the
MAXITER and CRITITER subcommands.

Missing data. You can specify the treatment of missing data with the MISSING subcommand.

Optional output. You can request optional output through the PRINT subcommand.

Transformation plot per variable. You can request a plot per variable of its quantification against
the category numbers.

Residual plot per variable. You can request an overlay plot per variable of the residuals and the
weighted quantification, against the category numbers.

Writing external data. You can write the transformed data (category numbers replaced with
optimal quantifications) to an outfile for use in further analyses. You can also write the
discretized data to an outfile.

Saving variables. You can save the transformed variables, the predicted values, and/or the
residuals in the working data file.

Basic Specification

The basic specification is the command CATREG with the VARIABLES and ANALYSIS
subcommands. 

Syntax Rules

• The VARIABLES and ANALYSIS subcommands must always appear, and the VARIABLES
subcommand must be the first subcommand specified. The other subcommands, if
specified, can be in any order.

• Variables specified in the ANALYSIS subcommand must be found in the VARIABLES
subcommand.

• In the ANALYSIS subcommand, exactly one variable must be specified as a dependent
variable and at least one variable must be specified as an independent variable after the
keyword WITH.

• The word WITH is reserved as a keyword in the CATREG procedure. Thus, it may not be
a variable name in CATREG. Also, the word TO is a reserved word in SPSS.
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Operations

• If a subcommand is specified more than once, the last one is executed but with a syntax
warning. Note this is true also for the VARIABLES and ANALYSIS subcommands.

Limitations

• If more than one dependent variable is specified in the ANALYSIS subcommand, CATREG
is not executed.

• CATREG operates on category indicator variables. The category indicators should be pos-
itive integers. You can use the DISCRETIZATION subcommand to convert fractional-value
variables and string variables into positive integers. If DISCRETIZATION is not specified,
fractional-value variables are automatically converted into positive integers by grouping
them into seven categories with a close to normal distribution and string variables are
automatically converted into positive integers by ranking. 

• In addition to system missing values and user defined missing values, CATREG treats
category indicator values less than 1 as missing. If one of the values of a categorical
variable has been coded 0 or some negative value and you want to treat it as a valid
category, use the COMPUTE command to add a constant to the values of that variable such
that the lowest value will be 1. (See the SPSS Syntax Reference Guide or the SPSS Base
User’s Guide for more information on COMPUTE). You can also use the RANKING option
of the DISCRETIZATION subcommand for this purpose, except for variables you want to
treat as numerical, since the characteristic of equal intervals in the data will not be
maintained.

• There must be at least three valid cases. 

• The number of valid cases must be greater than the number of independent variables plus 1.

• The maximum number of independent variables is 200.
• Split-File has no implications for CATREG.

Example   
CATREG VARIABLES = TEST1 TEST3 TEST2 TEST4 TEST5 TEST6 

TEST7 TO TEST9 STATUS01 STATUS02
/ANALYSIS TEST4 (LEVEL=NUME) 
WITH TEST1 TO TEST2 (LEVEL=SPORD DEGREE=1 INKNOT=3) TEST5 TEST7
(LEVEL=SPNOM) TEST8 (LEVEL=ORDI) STATUS01 STATUS02 (LEVEL=NOMI)

/DISCRETIZATION = TEST1(GROUPING NCAT=5 DISTR=UNIFORM)
TEST5(GROUPING) TEST7(MULTIPLYING)

/INITIAL = RANDOM
/MAXITER = 100
/CRITITER = .000001
/MISSING = MODEIMPU
/PRINT = R COEFF DESCRIP ANOVA QUANT(TEST1 TO TEST2 STATUS01 

STATUS02) 
/PLOT = TRANS (TEST2 TO TEST7 TEST4)
/SAVE
/OUTFILE = ’c:\data\qdata.sav’.
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• VARIABLES defines variables. The keyword TO refers to the order of the variables in the
working data file. 

• The ANALYSIS subcommand defines variables used in the analysis. It is specified that
TEST4 is the dependent variable, with optimal scaling level numerical and that the
variables TEST1, TEST2, TEST3, TEST5, TEST7, TEST8, STATUS01, and STATUS02 are
the independent variables to be used in the analysis. (The keyword TO refers to the order
of the variables in the VARIABLES subcommand.) The optimal scaling level for TEST1,
TEST2, and TEST3 is spline ordinal, for TEST5 and TEST7 spline nominal, for TEST8
ordinal, and for STATUS01 and STATUS02 nominal. The splines for TEST1 and TEST2
have degree 1 and three interior knots, the splines for TEST5 and TEST7 have degree 2
and two interior knots (default because unspecified). 

• DISCRETIZATION specifies that TEST5 and TEST7, which are fractional-value variables,
are discretized: TEST5 by recoding into seven categories with a normal distribution
(default because unspecified) and TEST7 by “multiplying.” TEST1, which is a categorical
variable, is recoded into five categories with a close-to-uniform distribution. 

• Because there are nominal variables, a random initial solution is requested by the INITIAL
subcommand. 

• MAXITER specifies the maximum number of iterations to be 100. This is the default, so
this subcommand could be omitted here.

• CRITITER sets the convergence criterion to a value smaller than the default value. 
• To include cases with missing values, the MISSING subcommand specifies that for each

variable, missing values are replaced with the most frequent category (the mode).  

• PRINT specifies the correlations, the coefficients, the descriptive statistics for all vari-
ables, the ANOVA table, the category quantifications for variables TEST1, TEST2,
TEST3, STATUS01, and STATUS02, and the transformed data list of all cases.

• PLOT is used to request quantification plots for the variables TEST2, TEST5, TEST7, and
TEST4.

• The SAVE subcommand adds the transformed variables to the working data file. The
names of these new variables are TRANS1_1, ..., TRANS9_1.

• The OUTFILE subcommand writes the transformed data to a data file called qdata.sav in
the directory c:\data.

VARIABLES Subcommand

VARIABLES specifies the variables that may be analyzed in the current CATREG procedure.

• The VARIABLES subcommand is required and precedes all other subcommands. The
actual keyword VARIABLES can be omitted. (Note that the equals sign is always optional
in SPSS syntax.)

• The keyword TO on the VARIABLES subcommand refers to the order of variables in the
working data file. (Note that this behavior of TO is different from that in the indvarlist on
the ANALYSIS subcommand.)
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ANALYSIS Subcommand

ANALYSIS specifies the dependent variable and the independent variables following the
keyword WITH.

• All the variables on ANALYSIS must be specified on the VARIABLES subcommand.
• The ANALYSIS subcommand is required and follows the VARIABLES subcommand.

• The first variable list contains exactly one variable as the dependent variable, while the
second variable list following WITH contains at least one variable as an independent
variable. Each variable may have at most one keyword in parentheses indicating the
transformation type of the variable.  

• The keyword TO in the independent variable list honors the order of variables on the
VARIABLES subcommand.  

• Optimal scaling levels are indicated by the keyword LEVEL in parentheses following the
variable or variable list.

LEVEL Specifies the optimal scaling level.

LEVEL Keyword

The following keywords are used to indicate the optimal scaling level:

SPORD Spline ordinal (monotonic). This is the default for a variable listed
without any optimal scaling level, for example, one without LEVEL in
the parentheses after it or with LEVEL without a specification. Catego-
ries are treated as ordered. The order of the categories of the observed
variable is preserved in the optimally scaled variable. Categories will
be on a straight line through the origin. The resulting transformation is
a smooth nondecreasing piecewise polynomial of the chosen degree.
The pieces are specified by the number and the placement of the
interior knots. 

SPNOM Spline nominal (non-monotonic). Categories are treated as unordered.
Objects in the same category obtain the same quantification. Catego-
ries will be on a straight line through the origin. The resulting transfor-
mation is a smooth piecewise polynomial of the chosen degree. The
pieces are specified by the number and the placement of the interior
knots.

ORDI Ordinal. Categories are treated as ordered. The order of the categories
of the observed variable is preserved in the optimally scaled variable.
Categories will be on a straight line through the origin. The resulting
transformation fits better than SPORD transformation, but is less
smooth.

NOMI Nominal. Categories are treated as unordered. Objects in the same
category obtain the same quantification. Categories will be on a
straight line through the origin. The resulting transformation fits better
than SPNOM transformation, but is less smooth.
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NUME Numerical. Categories are treated as equally spaced (interval level).
The order of the categories and the differences between category num-
bers of the observed variables are preserved in the optimally scaled
variable. Categories will be on a straight line through the origin. When
all variables are scaled at the numerical level, the CATREG analysis is
analogous to standard multiple regression analysis.

SPORD and SPNOM Keywords

The following keywords are used with SPORD and SPNOM : 

DEGREE The degree of the polynomial. If DEGREE is not specified the degree
is assumed to be 2.

INKNOT The number of the interior knots. If INKNOT is not specified the num-
ber of interior knots is assumed to be 2.

DISCRETIZATION Subcommand

DISCRETIZATION specifies fractional-value variables that you want to discretize. Also, you
can use DISCRETIZATION for ranking or for two ways of recoding categorical variables.
• A string variable’s values are always converted into positive integers by assigning

category indicators according to the ascending alphanumeric order. DISCRETIZATION for
string variables applies to these integers.

• When the DISCRETIZATION subcommand is omitted, or when the DISCRETIZATION sub-
command is used without a varlist, fractional-value variables are converted into positive
integers by grouping them into seven categories (or into the number of distinct values of
the variable if this number is less than 7) with a close to normal distribution. 

• When no specification is given for variables in a varlist following DISCRETIZATION, these
variables are grouped into seven categories with a close-to-normal distribution. 

• In CATREG, a system-missing value, user-defined missing values, and values less than 1
are considered to be missing values (see next section). However, in discretizing a
variable, values less than 1 are considered to be valid values, and are thus included in the
discretization process. System-missing values and user-defined missing values are
excluded.

GROUPING Recode into the specified number of categories.

RANKING Rank cases. Rank 1 is assigned to the case with the smallest value on
the variable.

MULTIPLYING Multiplying the standardized values (z-scores) of a fractional-value
variable by 10, rounding, and adding a value such that the lowest
value is 1. 
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GROUPING Keyword

NCAT Recode into ncat categories. When NCAT is not specified, the number of
categories is set to 7 (or the number of distinct values of the variable if this
number is less than 7). The valid range is from 2 to 36. You may either
specify a number of categories or use the keyword DISTR.

EQINTV Recode intervals of equal size into categories. The interval size must be
specified (there is no default value). The resulting number of categories
depends on the interval size. 

DISTR Keyword

DISTR has the following keywords:

NORMAL Normal distribution. This is the default when DISTR is not specified.

UNIFORM Uniform distribution.

MISSING Subcommand

In CATREG, we consider a system missing value, user defined missing values, and values less
than 1 as missing values. However, in discretizing a variable (see previous section), values
less than 1 are considered as valid values. The MISSING subcommand allows you to indicate
how to handle missing values for each variable. 

LISTWISE Exclude cases with missing values on the specified variable(s). The
cases used in the analysis are cases without missing values on the
variable(s) specified. This is the default applied to all variables, when
the MISSING subcommand is omitted or is specified without variable
names or keywords. Also, any variable which is not included in the
subcommand gets this specification.

MODEIMPU Impute missing value with mode. All cases are included and the impu-
tations are treated as valid observations for a given variable. When
there are multiple modes, the smallest mode is used. 

EXTRACAT Impute missing values on a variable with an extra category indicator.
This implies that objects with a missing value are considered to belong
to the same (extra) category. This category is treated as nominal,
regardless of the optimal scaling level of the variable.

• The ALL keyword may be used to indicate all variables. If it is used, it must be the only
variable specification.

• A mode or extra-category imputation is done before listwise deletion.
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SUPPLEMENTARY Subcommand

The SUPPLEMENTARY subcommand specifies the objects that you want to treat as supple-
mentary. You cannot weight supplementary objects (specified weights are ignored). 

OBJECT Supplementary objects. Objects that you want to treat as supplemen-
tary are indicated with an object number list in parentheses following
OBJECT. The keyword TO is allowed, for example, OBJECT(1 TO 1 3
5 TO 9).

INITIAL Subcommand

INITIAL specifies the method used to compute the initial value/configuration.

• The specification on INITIAL is keyword NUMERICAL or RANDOM. If INITIAL is not
specified, NUMERICAL is the default.

NUMERICAL Treat all variables as numerical. This is usually best to use when there
are only numerical and/or ordinal variables.

RANDOM Provide a random initial value. This should be used only when there
is at least one nominal variable.

MAXITER Subcommand

MAXITER specifies the maximum number of iterations CATREG can go through in its com-
putations. Note that the output starts from the iteration number 0, which is the initial value
before any iteration, when INITIAL = NUMERICAL is in effect.

• If MAXITER is not specified, CATREG will iterate up to 100 times.
• The specification on MAXITER is a positive integer indicating the maximum number of

iterations. There is no uniquely predetermined (hard coded) maximum for the value that
can be used. 

CRITITER Subcommand

CRITITER specifies a convergence criterion value. CATREG stops iterating if the difference
in fit between the last two iterations is less than the CRITITER value. 

• If CRITITER is not specified, the convergence value is 0.00001. 

• The specification on CRITITER is any value less than or equal to 0.1 and greater than or
equal to .000001. (Values less than the lower bound might seriously affect performance.
Therefore, they are not supported.)
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PRINT Subcommand

The PRINT subcommand controls the display of output. The output of the CATREG procedure
is always based on the transformed variables. However, the correlations of the original pre-
dictor variables can be requested as well by the keyword OCORR. The default keywords are
R, COEFF, DESCRIP, and ANOVA. That is, the four keywords are in effect when the PRINT
subcommand is omitted or when the PRINT subcommand is given without any keyword. If a
keyword is duplicated or it encounters a contradicting keyword, such as /PRINT = R R NONE,
then the last one silently becomes effective.

R Multiple R. Includes R2, adjusted R2, and adjusted R2 taking the
optimal scaling into account.

COEFF Standardized regression coefficients (beta). This option gives three
tables: a Coefficients table that includes betas, standard error of the
betas, t values, and significance; a Coefficients-Optimal Scaling
table, with the standard error of the betas taking the optimal scaling
degrees of freedom into account; and a table with the zero-order, part,
and partial correlation, Pratt’s relative importance measure for the
transformed predictors, and the tolerance before and after transforma-
tion. If the tolerance for a transformed predictor is lower than the de-
fault tolerance value in the SPSS Regression procedure (0.0001), but
higher than 10E–12, this is reported in an annotation. If the tolerance
is lower than 10E–12, then the COEFF computation for this variable
is not done and this is reported in an annotation. Note that the regres-
sion model includes the intercept coefficient but that its estimate does
not exist because the coefficients are standardized. 

DESCRIP(varlist) Descriptive statistics (frequencies, missing values, and mode). The
variables in the varlist must be specified on the VARIABLES subcom-
mand, but need not appear on the ANALYSIS subcommand. If DESCRIP
is not followed by a varlist, Descriptives tables are displayed for all of
the variables in the variable list on the ANALYSIS subcommand.  

HISTORY History of iterations. For each iteration, including the starting values
for the algorithm, the multiple R and the regression error (square root
of (1–multiple R2)) are shown. The increase in multiple R is listed
from the first iteration.

ANOVA Analysis-of-variance tables. This option includes regression and
residual sums of squares, mean squares and F. This options gives two
ANOVA tables: one with degrees of freedom for the regression equal
to the number of predictor variables and one with degrees of freedom
for the regression taking the optimal scaling into account.

CORR Correlations of the transformed predictors.

OCORR Correlations of the original predictors.

QUANT(varlist) Category quantifications. Any variable in the ANALYSIS subcommand
may be specified in parentheses after QUANT. If QUANT is not fol-
lowed by a varlist, Quantification tables are displayed for all variables
in the variable list on the ANALYSIS subcommand. 
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NONE No PRINT output is shown. This is to suppress the default PRINT
output.  

• The keyword TO in a variable list can only be used with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS subcom-
mand. For variables that are in the VARIABLES subcommand but not in the ANALYSIS sub-
command, the keyword TO cannot be used. For example, if /VARIABLES = v1 TO v5 and
/ANALYSIS is v2 v1 v4, then /PRINT QUANT(v1 TO v4) will give two quantification plots,
one for v1 and one for v4. (/PRINT QUANT(v1 TO v4 v2 v3 v5) will give quantification tables
for v1, v2, v3, v4, and v5.)

PLOT Subcommand

The PLOT subcommand controls the display of plots. 

• In this subcommand, if no plot keyword is given, then no plot is created. Further, if the
variable list following the plot keyword is empty, then no plot is created, either.

• All the variables to be plotted must be specified in the ANALYSIS subcommand. Further,
for the residual plots, the variables must be independent variables.

TRANS(varlist)(l) Transformation plots (optimal category quantifications against cate-
gory indicators). A list of variables must come from the ANALYSIS
variable list and must be given in parentheses following the keyword.
Further, the user can specify an optional parameter l in parentheses
after the variable list in order to control the global upper boundary of
category label lengths in the plot. Note that this boundary is applied
uniformly to all transformation plots. 

RESID(varlist)(l) Residual plots (residuals when the dependent variable is predicted
from all predictor variables in the analysis except the predictor
variable in varlist, against category indicators, and the optimal
category quantifications multiplied with Beta against category
indicators). A list of variables must come from the ANALYSIS variable
list’s independent variables and must be given in parentheses follow-
ing the keyword. Further, the user can specify an optional parameter l
in parentheses after the variable list in order to control the global upper
boundary of category label lengths in the plot. Note that this boundary
is applied uniformly to all residual plots. 

• The category label length parameter (l) can take any non-negative integer less than or
equal to 20. If l = 0, values instead of value labels are displayed to indicate the categories
on the x axis in the plot. If l is not specified, CATREG assumes that each value label at its
full length is displayed as a plot’s category label, but currently LINE CHART in GRAPH
limit them to 20. Thus, it is equivalent to (l = 20). (Note that the VALUE LABELS command
allows up to 60 characters.) If l is an integer larger than 20, then we reset it to 20 and issue
a warning saying l must be a non-negative integer less than or equal to 20. 

• If a positive value of l is given, but if some or all of the values do not have value labels,
then for those values, the values themselves are used as the category labels, and they obey
the label length constraint. 
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• The keyword TO in a variable list can only be used with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS subcom-
mand. For variables that are in the VARIABLES subcommand but not in the ANALYSIS
subcommand, the keyword TO cannot be used. For example, if /VARIABLES = v1 TO v5 and
/ANALYSIS is v2 v1 v4, then /PLOT TRANS(v1 TO v4) will give two transformation plots,
one for v1 and for v4. (/PLOT TRANS(v1 TO v4 v2 v3 v5) will give transformation plots for
v1, v2, v3, v4, and v5.)

SAVE Subcommand

The SAVE subcommand is used to add the transformed variables (category indicators
replaced with optimal quantifications), the predicted values, and the residuals to the working
data file.

Excluded cases are represented by a dot (the sysmis symbol) on every saved variable. 

TRDATA Transformed variables.

PRED Predicted values. 

RES Residuals. 

• A variable rootname can be specified with each of the keywords. Only one rootname can
be specified with each keyword, and it can contain up to five characters (if more than one
rootname is specified with a keyword, the first rootname is used; if a rootname contains
more than five characters, the first five characters are used at most). If a rootname is not
specified, the default rootnames (TRA, PRE, and RES) are used.

• CATREG adds two numbers separated by an underscore (_) to the rootname. The formula
is ROOTNAMEk_n where k increments from 1 to identify the source variable names by us-
ing the source variables’ position numbers in the ANALYSIS subcommand (that is, the de-
pendent variable has the position number 1, and the independent variables have the
position numbers 2, 3, ... as they are listed), and n increments from 1 to identify the
CATREG procedures with the successfully executed SAVE subcommands for a given data
file in a continuous SPSS session. For example, with two predictor variables specified on
ANALYSIS, the first set of default names for the transformed data, if they do not exist in
the data file, would be TRA1_1, for the dependent variable, and TRA2_1, TRA3_1 for the
predictor variables. The next set of default names, if they do not exist in the data file,
would be TRA1_2, TRA2_2, TRA3_2. However, if, for example, TRA1_2 already exists in
the data file, then the default names should be attempted as TRA1_3, TRA2_3, TRA3_3—
that is, the last number increments to the next available integer.

• As k and/or n increase, the rootname is truncated to keep variable names within eight
characters. For example, if TRANS is specified as rootname, TRANS1_9 would be fol-
lowed by TRAN1_10. The initial character (T in this example) is required. Note that the
truncation is done variable-wise, not analysis-wise.

• Variable labels are created automatically. (They are shown in the Procedure Information
Table (the Notes table) and can also be displayed in the Data Editor window.)
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OUTFILE Subcommand

The OUTFILE subcommand is used to write the discretized data and/or the transformed data
(category indicators replaced with optimal quantifications) to an external data file. Excluded
cases are represented by a dot (the sysmis symbol) on every saved variable. 

DISCRDATA(’filename’) Discretized data.

TRDATA(’filename’) Transformed variables.

• Following the keyword, a filename enclosed by single quotation marks should be
specified. The filenames should be different for the each of the keywords.

• A working data file, in principle, should not be replaced by this subcommand, and the
asterisk (*) file specification is not supported. This strategy also prevents the OUTFILE
interference with the SAVE subcommand.



Appendix C Notation

|·| absolute value
‖·‖2 squared Euclidean norm
y observed response variable
X matrix of observed predictor variables
xj observed predictor variable j
ϕ(y) transformed response variable
ϕj(xj) transformed predictor variable j
Gr indicator matrix for the response variable
Gj indicator matrix for predictor variable j
Dr inner product of Gr (contains marginal frequencies on its main diagonal)
Dj inner product of Gj

vr category quantifications for the response variable
vj category quantifications for predictor variable j
b vector of standardized regression coefficients
βj standardized regression coefficient for predictor variable j
akj unstandardized regression coefficient for a dummy variable

representing category k of variable j
W matrix of weights
w vector of weights
wj weight for predictor variable j
e error vector
I identity matrix
N number of cases
P number of predictor variables
Kj number of categories for variable j
B number of bootstrap samples
R2 squared multiple regression coefficient
err estimate of apparent prediction error

Êrr
(.632)

.632 bootstrap estimate of expected prediction error

Err
(1)

leave-one-out bootstrap estimate of prediction error

ÔP estimate of optimism
C−i set of indices of bootstrap samples that do not contain observation i

|C−i| number of bootstrap samples that do not contain observation i
λ2 Ridge penalty parameter
λ1 Lasso penalty parameter
γAk slope of piece k of regularization paths
Ak set of indices of the active predictors on piece k of regularization paths
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der Magersucht und Bulimia Nervosa. Ein klinischer Leitfaden für den
Praktiker, eds. R. Meermann and W. Vandereycken, Berlin; New York:
Walter de Gruyter.

Meulman, J. J., Heiser, W. J., and SPSS Inc. (1999), SPSS Categories 10.0:
Chicago: SPSS Inc.

(2004), SPSS Categories 13.0: Chicago: SPSS Inc.

Meulman, J. J. and Van der Kooij, A. J. (2000), Transformations towards in-
dependence through optimal scaling: Paper presented at the International
Conference on Measurement and Multivariate Analysis (ICMMA), Banff,
Canada.



186 References

Nelder, J. A. and Wedderburn, R. W. M. (1972), “Generalized linear models,”
Journal of the Royal Statistical Society Series A, 135, 370–384.

Nielsen, J. P. and Sperlich, S. (2005), “Smooth backfitting in practice,” Jour-
nal of the Royal Statistical Society Series B, 67, 43–61.

Nollett, C. L. and Button, E. J. (2005), “Questionnaire Measures of
Psychopathology in Eating Disorders: Comparisons Between Clinical
Groups,” European Eating Disorders Review, 13, 211–215.

Olmsted, M. P., Kaplan, A. S., and Rockert, W. (2005), “Defining Remis-
sion and Relapse in Bulimia Nervosa,” International Journal of Eating
Disorders, 38, 1–6.

Opsomer, J. D. and Ruppert, D. (1997), “Fitting a bivariate additive model
by local polynomial regression,” Annals of Statistics, 25, 186–211.

Osborne, M. R., Presnell, B., and Turlach, B. A. (2000), “On the LASSO and
its Dual,” Journal of Computational and Graphical Statistics, 9, 319–337.

Perkins, S., Lacker, K., and Theiler, J. (2003), “Grafting: Fast, Incremental
Feature Selection by Gradient Descent in Function Space,” Journal of
Machine Learning Research, 3, 1333–1356.

Pratt, J. W. (1987), “Dividing the indivisible: using simple symmetry to
partition variance explained,” in Proceedings of the Second International
Conference in Statistics, eds. T. Pukkila and S. Puntanen, Tampere, Fin-
land: University of Tampere, pp. 245–260.

Ramsay, J. O. (1988), “Monotone regression splines in action,” Statistical
Science, 4, 425–441.

Ripley, B. D. (1996), Pattern recognition and neural networks: Cambridge
U.K.: Cambridge University Press.

Rounsaville, B. J., Alarcón, R. D., Andrews, G., Jackson, J. S., Kendell, R. E.,
and Kendler, K. (2002), “Basic Nomenclature Issues for DSM-V,” in A
research agenda for DSM-V, eds. D. J. Kupfer, M. B. First, and D. A.
Regier, Washington, DC: American Psychiatric Association.

SAS/STAT (1989), User’s Guide, Version 6, Vol. 2: Cary N.C.: SAS Institute
Inc.

Seber, G. A. F. and Wild, C. J. (1989), Nonlinear Regression: New York:
John Wiley and Sons.



References 187

SPSS Inc. (1998), SPSS Categories, 8.0: Chicago: SPSS Inc.

Stamey, T. A., Kabalin, J. N., McNeal, J. E., Johnstone, I. M., Freiha, F.,
Redwine, E. A., and Yang, N. (1989), “Prostate specific antigen in the
diagnosis and treatment of adenocarnicoma of the prostate, ii: Radical
prostatectomy treated patients,” Journal of Urology, 16, 1076–1083.

Stone, C. J. (1985), “Additive regression and other nonparametric models,”
Annals of Statistics, 13, 689–705.

Tibshirani, R. J. (1996), “Regression Shrinkage and Selection via the Lasso,”
Journal of the Royal Statistical Society Series B, 58, 267–288.

Tobin, D. L. and Griffing, A. S. (1995), “Coping and depression in bulimia
nervosa,” International Journal of Eating Disorders, 18, 359–363.

Van Buuren, S. and Heiser, W. J. (1989), “Clustering n objects into k groups
under optimal scaling of variables,” Psychometrika, 54, 699–706.

Van der Burg, E. and De Leeuw, J. (1983), “Non-linear canonical correlation,”
British Journal of Mathematical and Statistical Psychology, 36, 54–80.

Van der Kooij, A. J. and Meulman, J. J. (1997), “MURALS: Multiple regres-
sion and optimal scoring using alternating least squares,” in Softstat ’97
Advances in Statistical Software 6, eds. W. Bandilla and F. Faulbaum,
Stuttgart: Lucius & Lucius, pp. 99–106.

(1999), “Regression with Optimal Scaling,” in SPSS Categories 10.0,
eds. J. J. Meulman, W. J. Heiser, and SPSS Inc., Chicago: SPSS Inc.,
pp. 1–8, 77–101.

(2004), “Regression with Optimal Scaling,” in SPSS Categories 13.0,
eds. J. J. Meulman, W. J. Heiser, and SPSS Inc., Chicago: SPSS Inc.,
pp. 1–10, 107–157.

(2006a), “Prediction Accuracy of Regression with Optimal Scaling
Transformations: The .632 Bootstrap with CATREG,” Manuscript sub-
mitted for publication.

(2006b), “Regularization with Ridge Regression, the Lasso, and the
Elastic Net for Regression with Optimal Scaling Transformations,” Man-
uscript submitted for publication.



188 References

Van der Kooij, A. J., Meulman, J. J., and Heiser, W. J. (2006), “Local Minima
in Categorical Multiple Regression,” Computational Statistics and Data
Analysis, 50, 446–462.

Vapnik, V. (1996), The Nature of Statistical Learning Theory: New York:
Springer-Verlag.

Winsberg, S. and Ramsay, J. O. (1980), “Monotonic transformations to ad-
ditivity using splines,” Biometrica, 67, 669–674.

Young, F. W. (1981), “Quantitative analysis of qualitative data,” Psychome-
trika, 46, 357–388.

Young, F. W., De Leeuw, J., and Takane, Y. (1976), “Regression with qual-
itative and quantitative variables: An alternating least squares method
with optimal scaling features,” Psychometrika, 41, 505–529.

Yuan, M. and Lin, Y. (2006), “Model Selection and Estimation in Regression
with Grouped Variables,” Journal of the Royal Statistical Society Series
B, 68, 49–67.

Zhao, P. and Yu, B. (2004), “Boosted Lasso,” Technical Report 678, Univer-
sity of California, Berkeley, available at http://www.stat.berkeley.edu/
users/pengzhao.

Zou, H. and Hastie, T. J. (2005), “Regularization and variable selection via
the elastic net,” Journal of the Royal Statistical Society Series B, 67,
301–320.

Zou, H., Hastie, T. J., and Tibshirani, R. J. (2004), “On the ‘Degrees of
Freedom’ of the Lasso,” manuscript submitted for publication, available
at http://www-stat.stanford.edu/~hastie.




